

Network Processors

The Morgan Kaufmann Series in Systems on Silicon
Series Editor: Wayne Wolf, Georgia Institute of Technology

The Designer’s Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer’s Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Modeling Embedded Systems and SoCs
Axel Jantsch

ASIC and FPGA Verification: A Guide to Component Modeling
Richard Munden

Multiprocessor Systems-on-Chips
Edited by Ahmed Amine Jerraya and Wayne Wolf

Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

Customizable and Configurable Embedded Processors
Edited by Paolo Ienne and Rainer Leupers

Networks-on-Chips: Technology and Tools
Edited by Giovanni De Micheli and Luca Benini

VLSI Test Principles & Architectures
Edited by Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen

Designing SoCs with Configured Processors
Steve Leibson

ESL Design and Verification
Grant Martin, Andrew Piziali, and Brian Bailey

Aspect-Oriented Programming with e
David Robinson

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation
Edited by Scott Hauck and André DeHon

System-on-Chip Test Architectures
Edited by Laung-Terng Wang, Charles Stroud, and Nur Touba

Verification Techniques for System-Level Design
Masahiro Fujita, Indradeep Ghosh, and Mukul Prasad

VHDL-2008: Just the New Stuff
Peter J. Ashenden and Jim Lewis

On-Chip Communication Architectures: System on Chip Interconnect
Sudeep Pasricha and Nikil Dutt

Embedded DSP Processor Design: Application Specific Instruction Set Processors
Dake Liu

Processor Description Languages: Applications and Methodologies

Edited by Prabhat Mishra and Nikil Dutt

Network Processors
Architecture, Programming,

and Implementation

Ran Giladi
Ben-Gurion University of the Negev

and EZchip Technologies Ltd.

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann is an imprint of Elsevier

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803

This book is printed on acid-free paper. �

Copyright © 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
 appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, scanning, or otherwise, without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department
in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by
selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Giladi, Ran.

Network processors: architecture, programming, and implementation/Ran Giladi.
p. cm.—(The Morgan Kaufmann systems on silicon series)

Includes bibliographical references and index.
ISBN 978-0-12-370891-5 (alk. paper)
 1. Network processors. 2. Routing (Computer network management)—Equipment and supplies.
 3. Packet switching (Data transmission)—Equipment and supplies. I. Title.
TK5105.543.G55 2008
621.382’1–dc22
 2008024883

For information on all Morgan Kaufmann publications,
visit our Website at www.mkp.com or www.books.elsevier.com

Printed in the United States
08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

In memory of my father Benjamin (Sontag) Z”L
To my mother Rita (Aaron)

To my beloved wife Kora
To Ornit, Niv, and Itamar, our wonderful children,

and to my dear brother Eival

This page intentionally left blank

Contents

Preface .. xi

CHAPTER 1 Introduction and Motivation ... 1
 1.1 Network Processors Ecosystem .. 1
 1.2 Communication Systems and Applications 2
 1.3 Network Elements .. 6
 1.4 Network Processors .. 8
 1.5 Structure of This Book .. 10
 1.6 Summary ... 12

PART 1 Networks
CHAPTER 2 Networking Fundamentals .. 15
 2.1 Introduction .. 16
 2.2 Networks Primer ... 17
 2.3 Data Networking Models .. 21
 2.4 Basic Network Technologies ... 25
 2.5 Telecom Networks .. 26
 2.6 Data Networks .. 38
 2.7 Summary ... 69

Appendix A .. 70
Appendix B ... 72

CHAPTER 3 Converged Networks .. 77
 3.1 Introduction .. 77
 3.2 From Telecom Networks to Data Networks 78
 3.3 From Datacom to Telecom .. 87
 3.4 Summary ... 134

Appendix A .. 135

CHAPTER 4 Access and Home Networks ... 149
 4.1 Access Networks ... 149
 4.2 Home and Building Networks ... 178
 4.3 Summary ... 180

PART 2 Processing
CHAPTER 5 Packet Processing .. 183
 5.1 Introduction and Defi nitions .. 183
 5.2 Ingress and Egress ... 186
 5.3 Framing ... 188

 5.4 Parsing and Classifi cation .. 195
 5.5 Search, Lookup, and Forwarding ... 205
 5.6 Modifi cation .. 236
 5.7 Compression and Encryption ... 237
 5.8 Queueing and Traffi c Management 238
 5.9 Summary ... 239

CHAPTER 6 Packet Flow Handling .. 241
 6.1 Defi nitions ... 242
 6.2 Quality of Service .. 243
 6.3 Class of Service ... 244
 6.4 QoS Mechanisms ... 249
 6.5 Summary ... 286

CHAPTER 7 Architecture.. 287
 7.1 Introduction .. 287
 7.2 Background and Defi nitions.. 289
 7.3 Equipment Design Alternatives: ASICs versus NP 308
 7.4 Network Processors Basic Architectures............................... 309
 7.5 Instruction Set (Scalability; Processing Speed) 314
 7.6 NP Components .. 314
 7.7 Summary ... 335

CHAPTER 8 Software .. 337
 8.1 Introduction .. 338
 8.2 Conventional Systems ... 342
 8.3 Programming Models Classifi cation 348
 8.4 Parallel Programming .. 349
 8.5 Pipelining .. 355
 8.6 Network Processor Programming ... 359
 8.7 Summary ... 363

Appendix A .. 364
Appendix B ... 371
Appendix C ... 377

CHAPTER 9 NP Peripherals .. 379
 9.1 Switch Fabrics ... 379
 9.2 CoProcessors .. 403
 9.3 Summary ... 407

PART 3 A Network Processor: EZchip
CHAPTER 10 EZchip Architecture, Capabilities, and Applications 411
 10.1 General description .. 411
 10.2 System Architecture .. 413

viii Contents

 10.3 Lookup Structures ... 419
 10.4 Counters, Statistics and Rate Control 421
 10.5 Traffi c Management .. 424
 10.6 Stateful Classifi cation .. 425
 10.7 Multicast Frames ... 425
 10.8 Data Flow .. 426
 10.9 Summary ... 438

CHAPTER 11 EZchip Programming .. 439
 11.1 Instruction Pipeline .. 440
 11.2 Writing NP Microcode .. 443
 11.3 Preprocessor Overview .. 447
 11.4 Developing and Running NP Applications 447
 11.5 TOP Common Commands .. 449
 11.6 Summary ... 457

Appendix A .. 458

CHAPTER 12 Parsing .. 461
 12.1 Internal Engine Diagram ... 461
 12.2 TOPparse Registers ... 465
 12.3 TOPparse Structures ... 469
 12.4 TOPparse Instruction Set .. 469
 12.5 Example .. 474
 12.6 Summary ... 478

Appendix A .. 479
Appendix B ... 486
Appendix C ... 487

CHAPTER 13 Searching .. 501
 13.1 Introduction ... 501
 13.2 Internal Engine Diagram ... 502
 13.3 TOPsearch I Structures ... 505
 13.4 Interface to TOPparse (Input to TOPsearch) 506
 13.5 Interface to TOPresolve (Output of TOPsearch) 509
 13.6 Hash Table Learning .. 511
 13.7 Example .. 513
 13.8 Summary ... 516

CHAPTER 14 Resolving .. 517
 14.1 Internal Engine Diagram ... 517
 14.2 TOPresolve Registers .. 521
 14.3 TOPresolve Structures .. 526
 14.4 TOPresolve Instruction Set ... 527
 14.5 Example .. 531

Contents ix

 14.6 Summary ... 536
Appendix A .. 537
Appendix B ... 544
Appendix C ... 546

CHAPTER 15 Modifying .. 561
 15.1 Introduction .. 561
 15.2 Internal Engine Diagram ... 563
 15.3 TOPmodify Registers .. 566
 15.4 TOPmodify Structures ... 570
 15.5 TOPmodify Instruction Set ... 571
 15.6 Example .. 574
 15.7 Summary ... 583

Appendix A .. 584
Appendix B ... 591
Appendix C ... 592

CHAPTER 16 Running the Virtual Local Area
Network Example .. 603

 16.1 Installation .. 603
 16.2 Getting Started .. 604
 16.3 Microcode Development Workfl ow 607
 16.4 Summary ... 615

CHAPTER 17 Writing Your First High-Speed Network
Application ... 617

 17.1 Introduction .. 617
 17.2 Data Flow and TOP Microcode ... 618
 17.3 Data Structures .. 648
 17.4 Summary ... 654

List of Acronyms 655

References 673

Index 695

x Contents

Preface

Network Processor Units (NPUs) are designed for use in high-speed, complex, and
fl exible networking applications, and they have very unique architectures and soft-
ware models. The fi rst generation of NPUs appeared in about 2000, followed by a
second generation of specialized NPUs for various segments of networking appli-
cations, usually equipped with the traffi c managers required by contemporary net-
works. NPUs can be compared to Digital Signal Processors (DPSs) that are targeted
for high-speed, complex, and fl exible signal processing, or to Graphical Processing
Units (GPUs) that are required in demanding video processing.

Using NPUs is not trivial, and professional engineers have to learn how to use and
program these processors. System architects and system engineers must be aware
of the capabilities and advantages that NPUs can provide them in designing net-
work devices. Since data communications and telecommunications industries are
bound to use these devices, I found it necessary to include a basic course on NPUs
in my department of Communication Systems Engineering at Ben-Gurion Univer-
sity. I have been teaching the subject of NPUs since 2003, and during this period
an increasing number of similar courses have been given by other electrical engi-
neering, computer science, and communication systems engineering departments
worldwide. In addition, many of my graduate students (now engineers) have called
specifi cally to tell me how important this course has been for their professional
careers, helping them to use any NPU, or even developing and using a special-pur-
pose ASIC, for networking applications.

After teaching this subject for several years, I was asked to write a comprehensive
book to cover all aspects of NPUs, from network technologies, computer architec-
ture, and software, to specifi c network processing functions and traffi c engineering.
Taking advantage of my long association with EZchip, one of the leading NPU ven-
dors, what I wrote emphasizes what practitioners require while studying NPUs for
their projects. The result is this book, which took me almost two years to complete.

Network Processors: Architecture, Programming, and Implementation is
 organized in three parts: (1) Networks—from fundamentals, to converged core and
metro networks, to access networks; (2) processing—from network processing
and algorithms, to network processor architectures and software modeling; and
(3) an in—depth example of a network processor (EZchip), including hardware,
interfaces, programming and applications.

The book’s target audience is practitioners and students alike. Practitioners
 include professionals—system architects and system engineers who plan their
next-generation equipment and require more in-depth knowledge for choosing and
 using NPUs; network engineers and programmers who manage projects or write
applications for high-speed networking, and need the knowledge and the terminol-
ogy used in networks, network algorithms and software modeling; and possibly
product managers and other professionals who want cutting-edge knowledge in
order to design products or to understand them. Research and graduate students,

or students in the last phase of their undergraduate studies, may need this book for
projects, research on high-speed network applications, or simply a deeper under-
standing of networking; it will prepare them well for their professional careers.

Acknowledgments
While writing, many assisted me in various ways—too many to list here, and I
thank them all. However, I must thank fi rst and foremost a dear friend, Eli Fruchter,
who I have known for the last 25 years since we started working together as
engineers. Eli founded EZchip and has headed the company from the beginning,
and he agreed to disclose EZchip’s architecture and have it included in this book.
Amir Eyal, EZchip’s vice president of business development, who knows the NPU
market and technology inside out, provided me with his vision and insight into this
fi eld. Eyal Choresh, vice president of software at EZchip, whom I also have known
for many years, assisted me in explaining the NP architecture’s details, as well as
providing other clever ideas on software issues. Alex Tal, EZchip’s fi rst chief tech-
nical offi cer, gave me my fi rst insight into how this book should be structured and
provided me with his perspectives on the architecture of NPUs. Thanks go to all
the EZchip family for various kinds of assistance, including, EZchip’s current CTO
Guy Koren, Nimrod Muller, Aweas Rammal, Daureen Green, and Anna Gissin.

Many of my students and colleagues were very helpful in writing and checking
software, reviewing and commenting; they include Mark Mirochnik, Dr. Nathalie
Yarkoni, Dr. Iztik Kitroser, Micahel Borokhovich, Kfi r Damari, Arthur Ilgiaev, Dr.
Chen Avin, Dr. Zvi Lotker, Prof. Michael Segal, and Dr. Nissan Lev-Tov.

Among the many friends and colleagues who pushed and supported me during
the long period of writing, I must thank Prof. Gad Rabinowitch, Prof. Gabi Ben-Dor,
Shai Saul, Beni Hanigal, Prof. Yair Liel, and Moshe Leshem.

Special thanks go to Dr. Tresa Grauer who worked with me on editing every-
thing I wrote, watching me to make sure that everything I wrote was clear, who
made me rewrite and reedit until she was satisfi ed. Her devoted efforts have been
remarkable. I am grateful to Chuck Glaser, Greg Chalson, Marilyn Rash, and the edi-
torial and production staff at Morgan Kaufmann and Elsevier for their wonderful
work, patience, encouragement, and professionalism.

I want to take the opportunity to thank my parents who form the basis of
 everything I’ve got, each of them in a special way—the endless support and warmth
of my mother and the drive for knowledge and accomplishments from my father.
I owe them the many things I have achieved, this book included. I regret that my
father’s wish to see it completed was unfulfi lled.

Last, but not least: Kora, my wife and lifetime friend, and our three children, Ornit,
Niv, and Itamar. All were so tolerant of me and my absence while working on this book
(and on other projects, in their turn). They assisted with drawings, and Itamar even
 arranged all the acronyms. Their support and love allowed me to devote time to read
many hundreds of papers, learning and thinking, designing, and writing this book.

xii Preface

CHAPTER

1
Network processors (NPs) are chips—programmable devices that can process
 network packets (up to hundreds of millions of them per second), at wire-speeds
of multi-Gbps. Their ability to perform complex and fl exible processing on each
packet, as well as the fact that they can be programmed and reprogrammed as
required, make them a perfect and easy solution for network systems vendors
developing packet processing equipment.

Network processors are about a decade old now and they have become a funda-
mental and critical component in many high-end network systems and demanding
network processing environments.

This chapter introduces this relatively new processing paradigm, and provide a
high-level perspective of what NPs are, where to use them and why, and conclude
with a brief description of the contents of the rest of the book.

1.1 NETWORK PROCESSORS ECOSYSTEM
Telecommunications and data networks have become essential to everything that
we do, to our well-being and to all of our requirements. The prevalence of Internet
technology, cable TV (CATV), satellite broadcasting, as well as fi xed and cellular
mobile telephony, tie many and expanding services to a very large population that
is growing exponentially. The increasing speed of the communication links has
triggered a wide range of high-speed networks, followed by an increasingly broad
spectrum of services and applications.

We are witnessing this dramatic growth in communication networks and ser-
vices; just think of the changes that networks and services have undergone in the
past 10 years in the areas of mobile, video, Internet, information availability, TV,
automation, multimedia, entertainment, online services, shopping, and multiplayer
games. You can safely assume that an equivalent jump in technology and services
will happen again in the next 5 years or so.

Introduction and Motivation

Networks and infrastructures have enabled it all. Most houses, vehicles, pieces
of equipment, and people, maintain a communication link to the “network,” a giant
 octopus with zillions of arms. And the oxygen that runs in its veins, pipes, and trunks
are packets and cells; zillions of zillions of them are fl ying around us and surrounding
us at every moment. These packet fl ows undergo various treatments, processing, and
forwarding, in many kinds of network devices. These network devices are systems
by themselves, and they keep the octopus, or the “network,” alive. Such network
systems include switches, adapters, routers, fi rewalls, and so on.

Network systems, therefore, face an ever-increasing magnitude of packets they
have to handle, while at the same time, the processing of these packets becomes
more and more complex. This creates a gigantic performance problem. In order
to cope with it, vendors have replaced the traditional general purpose Central
 Processing Unit (CPU) in the network systems with Application Specifi c Integrated
Circuits (ASICs), which are hardwired processing devices. However, as vendors
also face rapid changes in technology, dynamic customer requirements, and a pres-
sure for time-to-market, short developing cycles and lots of revisions have become
necessary. All of this has required an innovative approach toward network systems
architecture and components.

This is the foundation on which NPs fl ourish. NPs enjoy the advantages of two
worlds—they have the performance capabilities of an ASIC, and the fast, fl exible,
and easy programmability of a general-purpose CPU. NPs constitute the only option
for network systems developers to implement dynamic standardized protocols in
performance-demanding environments.

1.2 COMMUNICATION SYSTEMS AND APPLICATIONS
Communication systems are composed of networks and network devices (which
are sometimes referred to as network elements, or network systems, as we called
them above, since they are computerized, special purpose systems that include
both software and hardware).

Communication networks can be separated into three main categories: the core,
the aggregation (or metro), and the access networks. Each of these network catego-
ries are characterized by different requirements, technologies, and equipments.

In addition, there are traditionally two communication systems we use: telecom-
munications (telecom) and data communications (datacom). The more established
and older network, the telecommunication network, is based on “circuits,” or chan-
nels of continuous bit streams, which grew out of its original application to tele-
phony services. The more recent networks, the data communications networks,
were initially based on packets of data to carry information among computers. This
resulted in two paradigms of network technologies—circuit switching and packet
switching.

The main technology in telecommunication systems is the Synchronized Opti-
cal Networks/Synchronous Digital Hierarchy, which is used in both the core and

2 CHAPTER 1 Introduction and Motivation

the aggregation networks. Radio Access Networks through which most mobile
 telephony is conducted, as well as the wireline telephony access networks, are usu-
ally attached to these networks, using their own technologies. CATV is a parallel
network that is traditionally used for TV services.

The main technologies in the datacom systems are the Ethernet and the Internet
Protocol (IP). For the last two decades, converged telecom–datacom networks
have been subject to vast research, industry implementation trials, and services.
This convergence happens in the technology plane as well as in services: recent
Telecom networks’ cores are implemented using datacom technologies (such as
Ethernet, Multiprotocol Label Switching [MPLS] and IP). Recent trends in con-
verged services, starting with “triple-play” service (or “quadruple-play” for Inter-
net, TV, telephony, and data-oriented services) to Voice over Internet Protocol
telephone services and TV over IP, are just a few examples of the transition to a
unifi ed, converged network.

The result is that packet networks have become the prevalent technology for
communication systems. Network systems are making the transition from circuit-
switched based technologies (multiplexers, cross connects, branch exchanges,
etc.) to packet-switched based technologies (such as bridges and routers).

Services are also developing in scale and complexity; from plain telephony,
TV, and Internet surfi ng and e-mails, we are now facing High Defi nition TV, new
 generations of web and web services, digital libraries, and information availabil-
ity, gaming, and mobile 3G and 4G services that include information, multimedia,
video, and TV, and many other demanding applications. Other adjunct services, such
as security, provisioning, reliability, and accounting must be supported by network
systems, which may impose additional signifi cant load on them.

As networks become the infrastructure for information, interactive data,
real-time data, huge multimedia content transport, and many other services
described previously, the technology of networks must cope with various
requirements, but primarily that of speed. High-speed networking refers to two
aspects of speed: the links’ transmission rates—from multi Mbps (106 bits per
 second) to multi Gbps (109 bits per second)—and the complexity and speed
of the required processing due to the number of networks, addresses, services,
traffi c fl ows, and so on.

If we examine the speed of network links over the years, we fi nd a similar but
higher growth pattern than that of processing capabilities. In computing, this
exponential growth is modeled as doubling roughly twice every 2 years (after
Moore’s law);1 however, in the last decade this growth rate has shrunk, and is
roughly at 41% annually (with clock speedups increasing only 29% annually).
[116] If we look, for example, at Ethernet bandwidths, we fi nd a �104 speedup in
27 years (from 10 Mbps approved in 1983 to 100 Gbps expected to be approved

1Moore’s law is an interpretation of the 1965 statement of Gordon Moore of Fairchild, who was a
founder of Intel. The law refers to the doubling of the number of transistors on a chip, or the chip
performance, every 18 to 24 months.

1.2 Communication Systems and Applications 3

100000
Expected
100 GbE

10 GbE

1 GbE

100 Mbps

10 Mbps
Ethernet

1983 1988 1993 1999 2004 2010

10000

1000

100

10

1
2015

FIGURE 1.1

Ethernet-approved interface speeds

in 2010, as shown in Figure 1.1), which is doubling the bandwidth every 24
months. However, if we examine the increase from 100 Mbps (approved in 1995)
to 100 Gbps (�103), it is doubling the bandwidth every 18 months. This pattern
of growth is similar to that of telecom links (Optical Carrier—availability during
these years).

Ethernet bandwidth growth is in-line with Moore’s law, although a bit faster.
Add to that the increase in network utilization and the increased number of net-
works, which are doubling roughly every four years, as the number of BGP2 entries
indicate, depicted3 in Figure 1.2; and we have aggregated traffi c that is doubling
approximately once a year [85].

This traffi c increase is twice as fast as Moore’s law, or twice as fast as comput-
ing processing is capable of meeting, including network systems (such as routers)
that are based on the same computing paradigm. The many different applications
used on the Internet, with varying demands that are changing constantly, add
another dimension of diffi culty for network systems. Figure 1.3 shows a snapshot
demonstrating traffi c growth and application mix in a major Asian-Pacifi c ISP4 from
July 1, 2007, to April 1, 2008.

2Border Gateway Protocol (BGP) routers possess entries that indicate the number of IP networks.
3The number of active BGP entries are from http://bgp.potaroo.net/as2.0/bgp-active.txt.
4The data are sampled on the fi rst of every month, at 07:00 hours.

4 CHAPTER 1 Introduction and Motivation

FIGURE 1.2

Number of IP networks known to BGP routers

250

Number of IPv4 networks (in 000)

200

150

‘0
0

0
 A

ct
iv

e
B

G
P

 E
nt

ri
es

 (
IP

v4
)

100

50

0
06/88 12/90 05/93 11/95 05/98 11/00 05/03 11/05 05/08

FIGURE 1.3

Application mix in internet (Courtesy of Allot Communications.)

Aug 2007
0

100

200

300

400

To
ta

l B
an

dw
id

th
 (

M
bp

s)

500

Protocol
Bit Torrent
eDonkey
FTP
HTTP
P2P Applications
SMTP
Streaming Applications
YouTube

600

700

800

900

Sep 2007 Oct 2007 Nov 2007 Dec 2007 Jan 2008 Feb 2008 Mar 2008

P2P Applications

HTTP

Bit Torrent

1.2 Communication Systems and Applications 5

The shift to packet-oriented networks, together with the exponential growth
of demanding services, traffi c, and number of networks has thus become a great
challenge to network systems. This challenge is enormously complicated, due to
the need to forward packets among huge numbers of networks at extremely high
speeds, as well as to establish and maintain tunnels, sessions, and fl ows, while keep-
ing the required Class of Service.

Network processors must play a signifi cant role in inputting packets and
outputting processed, classifi ed, prioritized, and forwarded packets, in high-
speed networks, for various requirements and with high complexity. The shift
to new network processing paradigms is a must, and NPs are the vehicles for
doing it.

1.3 NETWORK ELEMENTS
Network elements (also called network systems, network equipment, or network
devices) are nodes in the networks that enable the network to function. These nodes
are complex computerized systems that contain both software and hardware (some-
times also operating systems), and are special purpose systems that are used for net-
working and, more specifi cally, for networking functions such as switching, routing,
multiplexers, cross-connects, fi rewalls, or load balancers [380].

Network elements are usually architected in two separated planes [255, 435]:
the control plane and the data forwarding plane. The control plane is responsible
for signaling as well as other control and management protocol processing and
implementation. The data forwarding plane forwards the traffi c based on deci-
sions that the control plane makes, according to information the control plane
collects. The control plane can use some routing or management protocol,
 according to which it decides on the best forwarding tables, or on the active
interfaces, and it can manipulate these tables or interfaces in the data forward-
ing plane so that the “right” actions will take place. For example, in IP network
 elements, the control plane may execute routing protocols like RIP, OSPF, and BGP,
or control and signaling protocols such as RSVP or LDP. (All these abbreviations
indicating various protocols are covered in Part 1 of the book, which describes
 networks.) The data forwarding in these IP network systems may execute packet
processing, address searches, address prefi x matching for forwarding, classifying,
traffi c shaping, and metering, network address translation, and so on.

A typical system can be either a “pizza box” (Figure 1.4) or a multicard chassis
(see Figure 1.5). A “pizza box” contains a single board, on which all processing,
data forwarding, and control are executed. In a multicard chassis, there are separate
cards for each function; some execute data forwarding (and are usually referred
to as line-cards), while others may execute control and management functions.
Additional cards may be used for switching data between all cards, and other
 utilities of the chassis.

6 CHAPTER 1 Introduction and Motivation

FIGURE 1.4

Stand-alone, “pizza box” system

T
x
R
x

1
T
x
R
x

2
T
x
R
x

3
T
x
R
x

4
T
x
R
x

5
T
x
R
x

6
T
x
R
x

7
T
x
R
x

8
T
x
R
x

9
T
x
R
x

10

Since the data forwarding plane is responsible for per-packet processing and
handling, it is executed by high-speed devices such as ASICs or NPs, as described
before. Control plane processing is usually executed by general-purpose proces-
sors, since the load on the control plane is signifi cantly less than that of the data
forwarding plane.

There are several alternatives for components in the data forwarding plane
that do the processing for various functions; these alternatives include switching
chip sets, programmable communication components, Application Specifi c Stan-
dard Products (ASSPs), confi gurable processors, Application Specifi c Instruction
Processors (ASIPs), Field Programmable Gate Arrays (FPGAs), NPs, and ASICs
[176]. Among these options, ASICs and NPs are the two real options for the main
processing units of network systems. These alternatives offer processing power
and best fi t to the required applications.

It is worth noting here, that ASIC was perceived as a better solution, commer-
cially, although it suffers from a very high development cycle and cost, and is abso-
lutely infl exible. NPs, on the other hand, used to be more expensive, but had a short
and low cost development cycle. However, as technological advantages made the
size and cost of NPs and ASICs about equal, ASICs lost their advantage. Indeed, at
the beginning of 2008, leading networking vendors announced that they had devel-
oped NPs in-house in order to support their network systems, in addition to their
continued use of NPs from various external vendors.

1.3 Network Elements 7

1.4 NETWORK PROCESSORS
Network processors are categorized into three groups according to their use and
the way they have evolved: entry-level or access NPs, mid-level processors (legacy
and multiservice NPs), and high-end NPs that are targeted for core and metro net-
working equipment, usually on line cards.

Entry-level NPs, or access NPs, process streams of up to 1 to 2 Gbps packets,
and are sometimes used for enterprise equipment. Applications for such access
NPs include telephony systems (e.g., voice gateways and soft switches), Digi-
tal Subscriber Loop (xDSL) access, cable modems, RANs, and optical networks
(e.g., Fiber to the Home, Passive Optical Networks, etc.). A few examples of
such NPs are EZchip’s NPA, Wintegra’s WinPath, Agere, PMC Sierra, and Intel’s
IXP2300.

FIGURE 1.5

Multicard chassis system

Backplane

Line Cards

Connectors

Chassis

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

Tx Rx

8 CHAPTER 1 Introduction and Motivation

Mid-level NPs (2–5 Gbps) contain two subgroups of NPs: legacy NPs and multiser-
vice NPs, which are usually used for service cards of communication equipment, data
center equipment, and multiservice platforms, in Deep Packet Inspection and Layer
7 applications (security, storage, compression, etc.). In the legacy subgroup, one can
include the classical, multipurpose NPs like AMCC, Intel’s IPX, C-port, Agere, Vittese,
and IBM’s NP (which was sold to Hifn). Examples of multiservice and application
(Layer 7) NPs are Cisco’s QFP, Cavium, RMI, Broadcom, Silverback, and Chelsio.

High-end NPs (10–100 Gbps) are used mainly for core and metro networks,
usually on the line cards of the equipment. These NPs can process hundreds of
 millions of packets per second, at wire-speed. Examples of such NPs are EZchip’s
NPs, Xelerated, Sandburst (which was bought by Broadcom), Bay Microsystems, or
the in-house Alcatel-Lucent SP2.

The choice of which category can signifi cantly impact the architecture of the
NPs. In any case, the architecture and programming models of NPs are completely
different from general purpose processors. NPs’ architecture can be characterized
as being based on parallel processing and pipelining. Most NPs include integrated
hardware assists such as integrated traffi c management and search engines, and
also have high-speed memory and packet I/O interfaces. The main processors of
NPs can be based on MIPS RISC processors, VLIW or reconfi gurable processors, or
special packet processors (generic RISC, also called micro engine, pico engine, or
Task-Optimized Processors [TOPs], etc.).

Network processors are sometimes distinguished from packet processors by
being programmable, whereas packet processors are just confi gurable. The pro-
gramming paradigms, models, styles, and languages that are used for NPs are also
very different from those used for applications running on general purpose proces-
sors. No interrupts are used in NPs, and the main principle is to use an event-driven
control program, in which packets dictate how the software runs. Network proces-
sors perform several key functions, including:

� Parsing the incoming frames in order to understand what they are, and where
to fi nd the relevant information that is required for processing.

� Retrieving the relevant information from the frames, which may be compli-
cated as encapsulation, variable fi elds length, and various levels of protocols
may be involved.

� Deep packet analysis when required, such as understanding HTTP names,
identifi cation of XML protocols, and so on. This may be required for priority
assignments for various kinds of traffi c fl ows.

� Searching for related information in repositories; for example, routing tables,
access lists, and so on.

� Classifying the frames according to the various forwarding and processing
schemes that the frames should undergo.

� Modifying the frame’s contents or headers, possibly adding tags, changing
addresses, or altering the contents.

� Forwarding, which may potentially be coupled with various traffi c management
tasks such as metering, policing, shaping, queueing, scheduling, and statistics.

1.4 Network Processors 9

Network processors appeared in the late 1990s, and fl ourished as major
 processor and network vendors led the NPs market (companies like Intel, IBM,
Motorola, and Agere). Since the concept was new, it created a lot of enthusiasm, and
caused a wave of established companies as well as many newcomers to invest and
innovate. Then the market suffered a slowdown, and most players abandoned their
NPs, or sold them. Some say this was a consequence of the “bubble” phenomena of
the early 2000s that hit the telecom markets the most (for which NPs are targeted);
others say it was a normal market reaction to any new revolutionary technology—
the phase of absorbing, understanding, and applying the rules of natural selection
ultimately narrows the fi eld until only the best remain.

Whatever the case may be, those who survived established themselves and their
NPs as solid solutions for network systems, and the market fl ourished again. As of
the beginning of 2008, major network vendors announced new generations of NPs
that are the only way for them to compete and introduce network devices that
can sustain network demands. Total investment in NPs development has reached
approximately 1 billion U.S. dollars, as of 2008.

Companies that introduced various levels of NPs include:

Network and packet processors: Agere, Applied Micro Circuits Corp (AMCC, which
bought MMC Networks), Bay Microsystems, C-Port (acquired by Motorola, which
is now FreeScale), Cognigine, ClearSpeed Technology, Clearwater Networks
(formerly XStream Logic), Entridia, Ethernity Networks, EZchip Technologies,
Fast-Chip, Greenfi eld Networks (acquired by Cisco), Hyperchip, IBM (sold its
NP line to Hifn), Intel, Internet Machines (changed to IMC semiconductor and
a new business), Paion, PMC-Sierra, Sandburst (acquired by Broadcom), Sand-
Craft, Silicon Access Networks, Sitera (acquired by Vitesse), Teradiant (formerly
 SiOptics), Terago Communications, Xelerated, Zettacom (acquired by Integrated
Device Technology).

Access processors: Agere, AMCC, Audiocodes, Broadcom, Centillium, Conexant,
Ethernity, EZchip Technologies, Freescale, Infi neon, Intel, Mindspeed, Octasic,
Texas Instruments, TranSwitch, Wintegra.

1.5 STRUCTURE OF THIS BOOK
Part 1 is concerned with the fi rst part of the phrase Network Processors, the
 networks. This part contains a brief summary of networks’ technologies, standards
and protocols. It begins in Chapter 2 with fundamentals, discussing data and tele-
communication network technologies, then goes on to provide more in-depth
description of contemporary converged networks, and ends with a description of
access networks and home networking.

Chapter 2 describes network models and architectures, and then data networks—
namely, Ethernet and Internet Protocol networks. The basics of telecommunications
networks are also described in this chapter (e.g., PDH and SDH/SONET networks),
with an emphasis on relevant technologies for data applications.

10 CHAPTER 1 Introduction and Motivation

Chapter 3 focuses on converged networks. In these networks, data and
 telecommunications applications interface and mix, despite their very different
natures. Data networks are bursty, and oriented toward connectionless traffi c,
whereas telecommunications networks are streamed, and connection-oriented.
This chapter covers Asynchronous Transfer Protocol (ATM), Multiprotocol Label
Switching (MPLS), Layer 2 and Layer 3 Virtual Private networks (VPNs), Carrier
Ethernet, and Next Generation SONET/SDH technologies.

Chapter 4 discusses access and home networks, or customer premises networks.
These networks also use converged technologies, and equipment in these networks
is increasingly based on network processors, as bandwidth and complexity reach
a degree that justifi es them.

Part 2 is concerned with the second part of the phrase Network Processors,
the processing and processors. It discusses the theory behind network processors,
starting with frame and packet processing, the algorithms used, data structures, and
the relevant networking schemes that are required for packet processing. Then it
describes the theory behind the processors themselves, beginning with hardware
(architecture), moving on to software (programming models, languages, and devel-
opment platforms), and concluding with network processors’ peripherals.

Chapter 5 describes packet structure and all the processing functions that the
packet must go through (i.e., framing, parsing, classifying, searching, and modify-
ing). Searching (lookups) and classifi cation are treated in a detailed manner, since
they are the most important and demanding tasks.

Chapter 6 addresses various aspects of packet fl ows, traffi c management, and
buffers queuing. The chapter deals with Quality of Service (QoS) and related defi -
nitions, and QoS control mechanisms, algorithms, and methods.

Chapter 7 describes the basic architectures and defi nitions of network pro-
cessors. It covers various computation schemes, as well as network processing
architectures in general. In particular, parallelism, threading, and pipelining are
described. Other architectural components (e.g., I/O and memories) as well as
interface standards are also described, in order to provide a comprehensive under-
standing of network processors’ design and interface, both at the system level
(board and equipment), and at the networking level.

Chapter 8 describes programming models of network processors, as well as
some important principles that are relevant to their programming, and concludes
by describing the typical programming environment of network processors.
 Programming a network processor is very different from programming any other
processor. Parallel and pipelining processing and programming are covered.

Chapter 9 concludes the second part of the book with a description of two
important network processors’ peripherals: switch fabrics (the interconnection
functions), and coprocessors (for adjunct functions).

Part 3 examines the two subjects of networks and processing together with
a concrete example of a network processor. It provides an in-depth description
of EZchip’s network processor, which dominates the metro networks markets. It
begins with a description of the hardware architecture, and then continues with
the software architecture and programming. Following these chapters, each of the

1.5 Structure of the Book 11

processors and the functional units of the NP is described in a separate chapter.
This part concludes with a comprehensive example of writing a program and using
the network processor.

Chapter 10 describes the general architecture of EZchip’s NP-1 network
 processor, its heterogeneous pipeline of parallel processors, the TOPs, the inter-
faces, and the data fl ow of a packet inside the NP-1.

Chapter 11 explains how to program the NP, how to use the development envi-
ronment of the network processor (including compiling, debugging, simulating,
etc.), and how to run the programs (i.e., initializing the NP, downloading it, and
working with the attached external host processor). It covers pipelining program-
ming in depth, as well as the NP-1 Assembly.

Chapters 12, 14, and 15 outline the TOPparse, TOPresolve, and TOPmodify
 architectures, respectively, as well as their internal blocks and their instruction sets.
Simple examples are also given to demonstrate the use of these TOP engines.

Chapter 13 describes TOPsearch I very briefl y, and explains how to carry out
various simple lookup operations with the TOPsearch engine by providing search
keys, and getting results that match these keys.

Chapter 16 describes how to use the EZchip development system based on the
example given in previous chapters; that is, how we load it, compile it, and debug it.
In addition, the chapter provides a quick and basic review of how to defi ne frames
(which the simulator will use) and how to build the search database (structures
that also can be used during the debugging phase).

Chapter 17 concludes the third part of the book by demonstrating how to use
the EZchip NP, with a high-speed network application, a multi-Gbps routing, and
an “on the fl y” screening fi lter for prescribed words that are to be identifi ed and
masked. This chapter shows how to design, write, run, debug, and simulate an
application with the Microcode Development Environment (MDE).

The EZmde demo program can be used to write a code, debug it, and simulate an
NP with this code (with debugging features turned on). The EZmde can be down-
loaded from http://www.cse.bgu.ac.il/npbook (access code: CSE37421), as well as
the EZmde design manual.

1.6 SUMMARY
Network processors became an essential component for network system vendors.
This chapter outlined the ecosystem of NPs, the reasons for their importance, their
growth, and their capabilities.

This subject is very dynamic; the interested reader may use periodicals, books
[86, 92, 134, 135, 278], and Internet sources for remaining updated in the area of NPs.
Some excellent Internet sources for example are Light Reading [10] and the Linley
Group [286].

12 CHAPTER 1 Introduction and Motivation

PART

This part of the book, Network Processors: Architecture, Programming, and
Implementation, is concerned with the fi rst part of its title, Networks.

Since network processing is about processing packets and frames in net-
works, according to network protocols, demands, and behavior, it is essen-
tial to have a thorough knowledge of them before network processing is
possible. For example, even analyzing a packet or a frame cannot be done
without this understanding because the frame is structured according to
the network protocol used, among many other issues.

To provide unifi ed terminology for this book, as well as some background
on the relevant networking concepts, this part contains a brief summary of
networks’ technologies, standards, and protocols. It begins with fundamen-
tals, discussing data, and telecommunication network technologies, with an
emphasis on the common networks that are most likely to be of interest to

Networks 1

14 PART 1 Networks

users who want to learn about network processing and processors. It then
goes on to provide more in-depth descriptions of contemporary converged
networks, as well as some good background on the technologies required
for the reader who is interested in implementing network processors
into metro or core networks. This part ends with a description of access
networks, both wireline, and Radio Access Networks (RANs), and home
 networking.

As this is not a general textbook on networking, the descriptions pro-
vided in this part do not cover networking comprehensively; rather, they
provide the necessary information required for and relevant to network
processors. It contains the following chapters:

� Chapter 2—Networking Fundamentals
� Chapter 3—Networks Convergence
� Chapter 4—Access to Home Networks

Part 2 deals with the second part of this book’s title—processors and
 processing.

CHAPTER

2
The previous chapter introduced the huge fi eld of networks—what a network
 processor is and how to use it, as well as services that are relevant and the challenges
that make network processors so important. Before we jump into a discussion of the
requirements, roles, and benefi ts of network processors, however, it is fi rst essential
to be familiar with networking principles and technologies. Because we assume that
most of the readers have at least some background knowledge of networking, our
overview of the fundamentals of networking is quite general, and our descriptions
are provided primarily in order to establish our terminology. In the next chapter,
we move on to discuss more advanced, converged, and contemporary networking
technologies.

When talking about networks in the context of network processors, it
is important to remember that networks can be found in many places and in
many shapes, on many kinds of media and serving many purposes. We focus on
a small but important segment of networks, where network processors are used
in network nodes to carry the networking functions. We are mainly concerned
here with data networks and telecommunications networks. In this chapter, we
begin by describing network models and architectures. Then we describe data
networks—namely, Ethernet and Internet Protocol (IP) networks. Ethernet tech-
nology is used primarily and traditionally for data com munications in local area
networks (LANs), and more recently in metropolitan area networks (MANs), or
Metro networks. IP, which is a network of networks, is used as the underlying
technology for the Internet and most wide area networks (WANs), including
enterprise and campus networks. The basics of telecommunications networks
are also described in this chapter, with an emphasis on relevant technologies for
data applications.

In the next chapter, we describe contemporary networks—networks that com-
bine data applications and services with telecommunication (or data networks,
telecommunication networks, and what is in between them)—and elaborate
on our discussion of converged data and telecommunication networks such as
 Multiprotocol Label Switching (MPLS) and metro networks technologies.

Networking Fundamentals

16 CHAPTER 2 Networking Fundamentals

A disclaimer: As mentioned above, we describe and generalize network con-
cepts with a bias toward issues that are relevant to network processors. It is not the
goal of this chapter or the next one to work systematically through an explanation
of networking itself.

2.1 INTRODUCTION
In recent years, telecommunications, computers, networks, contents, and applica-
tions concepts have been combined and reshaped into new paradigms of infra-
structure (networks and equipment), services (applications), and information
(content). We introduce networks in this chapter from the perspective of infra-
structure, that is, starting from the hosts, communication links and network equip-
ment. We then go on to describe algorithms, protocols, and data structures that are
part of the communication system.

Communication networks started by creating physical connections between
peers, fi rst carrying analog-streamed data and then evolving to connections carry-
ing digital-streamed data. With the ability to carry digital information came the pos-
sibility of organizing and packaging information in packets for networking. Data
communications networks were initially based on packets to carry data, whereas
telecommunication networks were based on “circuits,” or channels of continuous
bit streams. This was refl ected in two communication network paradigms—circuit
switching and packet switching. In circuit switching, communication channels are
dedicated to the communicating peers throughout the communication session,
whereas in packet switching, the physical channels are shared by many communi-
cation sessions simultaneously, and packets are routed and switched between the
communicating peers.

Circuit switching in its original form has been mostly replaced by packet-
 switching technologies that emulate the circuit-switching paradigm, providing
 virtual circuits between the communicating peers. Packet networks are subdivided
into connection- oriented networks, and connectionless- oriented networks. The
fi rst category describes “ordered” and reliable communications procedures like the
telephone system (e.g., call set-up, transmission acknowledgment and verifi cation,
and call termination), while the second describes “lighter” procedures and
 requirements that simplify the communication procedure (e.g., a mail or messaging
system that does not require call set-up or the other procedures).

Today, almost the entire world of communication networks uses packets,
and we are surrounded by packets fl ying and fl owing around us, both in wires
and wireless. The rapid growth in networking and communications applica-
tions has been accompanied by exponential growth in the number and rate of
packets fl owing around—packets that have to be analyzed, treated, processed,
routed, and accounted for. This is the ground on which network processors
emerged.

2.2 Networks Primer 17

This chapter begins with a networks primer and some functional, physical, and
architectural models. Then we describe networks according to their classifi cation
as either Telecom or Datacom:

■ Pure Telecom networks (global, state, regional, or public networks):
– Plesiosynchronous Digital Hierarchy (PDH).
– Synchronized Optical Networks/Synchronous Digital Hierarchy (SONET/SDH).
– Optical networks.

■ Pure Datacom networks (offi ce or campus-wide private networks):
– Enterprise Ethernet.
– Internet Protocol.

The network technologies that are the most likely to be used by Network Processors
applications are Ethernet (enterprise and carrier class), MPLS, and IP. Therefore, most
of the description in this chapter is focused on these networks, with discussion of the
other networks provided to fi ll out the general overview and to provide the reader
with a framework of how networks are combined, relate to each other, and develop.

2.2 NETWORKS PRIMER
Networks exist with wide ranges of functions, speeds and distances—from a scale
of millimeters to global span (including satellite networks). Networks are even used
in chips (called Networks on Chips, NoCs). Networks’ speeds vary from very low
bps to as many as thousands of Giga bps (Gbps, ending up in the Tera bps, Tbps
range). As a rule of thumb, the smaller the span, the faster the network (Figure 2.1),
and technology pushes the speed-span curve to ever higher speeds at larger spans.

1Mbps

1Gbps

1Tbps

1m 1000km1km

Network
Speed

Technology

FIGURE 2.1

Network span and speed

18 CHAPTER 2 Networking Fundamentals

Network processing covers several segments of networks and technologies, as
described in this subsection, and shown in Figure 2.2. Computer-Peripheral Net-
works (CNs) are entirely beyond the scope of this book, although, as we shall see
in the following chapters, some switching systems are offered that are based on
these kinds of networks. Personal area networks (PANs) are also beyond the scope
of this book, although as pervasive and ubiquitous computing grows in popularity
(and might be the “killer application” for PAN), it might overload the other kinds of
networks that we are describing.

Local area networks are defi nitely relevant to network processors, and many
applications of network processors are frequently used in these kinds of net-
works. Since it is important for writing network processors applications to abso-
lutely understand how LANs operate (mainly Ethernet, the dominant technology),
 Ethernet will be covered here in some detail.

Wide area networks are also very relevant to network processors, and the
 domi nant internetworking technologies are also described here in detail. WAN
is overlaid on metro or other telecom and core networks for providing data
 applications services.

Data networks are used mainly for computer data transfers, and telecommuni-
cations networks are used for streaming services (voice, video), as well as for large
trunks of data channels to interconnect data networks. In Figure 2.2, for example, data
networks are LANs and WANs, whereas Core networks are considered to be telecom-
munications networks. Metro networks can be either telecommunications networks
or data networks, depending on the technology, the defi nition, and the current trend.

Despite the fact that the “convergence” trend of data, voice, and video is both
exciting and long-awaited, there is (still) a separation between data networks and

Telecom
Core/WAN

Metro

1 Mbps

1 Gbps

1000km1km

Data WAN

LAN

100 Gbps

1m

PAN

CN

CN—Computer Peripherals Network
PAN—Personal Area Network
LAN—Local Area Network
WAN—Wide Area Network

Access
Networks

FIGURE 2.2

Relevant networks

2.2 Networks Primer 19

telecommunications networks. Convergence is happening though, and buzzwords
like triple-play or available services that are data-voice-video converged are here to
stay (e.g., Voice over IP, VoIP; or TV over IP, IPTV).

Another way to categorize networks is based on their functions and the rela-
tionships between them (from which the span and the speed are derived). Sche-
matically, at one extreme we have PAN, LAN, home networking, data-centers, and
enterprise networking (Customer Premise’s Networks, CPN), with core networks
at the other extreme (as shown in Figure 2.3). As mentioned above, WANs are over-
laid on the access, metro, regional, and core networks.

Networks have basic hierarchies, as can be seen in Figure 2.3. Core networks
(sometimes referred to as long-haul, or backbone networks) are networks that
span globally, nationwide, and long distance (hundreds and even thousands of
miles), carrying 10 Gbps and more, to which regional networks are connected
through a Regional Central Offi ce (RCO).1 The regional networks (sometimes
referred to as core-metro) are many tens of miles in span, carrying 10 Gbps, and

1Regional Central Offi ce (RCO, also called Toll-Center, TC) uses interfacing and switching equip-
ment that is analogous to the class 4 telecommunications switches, or tandem switches, used in the
 traditional telephone network hierarchy.

Wireless
(cellular,
WiMax)

Regional

Metro

Metro

Access

Access

Access Access

CPN

CPN

CPN

CPN

CPN

CPN CPN

CPN

CPN

Core

RCO (Regional Central Office)

LCO (Local Central Office)

Remote Units

CPE (Customer Premise’s Equipment)

CPN—Customer Premise’s Network

Residential

Enterprise—
Branch Office

Enterprise—
Headquarters

Content Provider
(TV, information)

Service Provider
(storage, hosting)

FIGURE 2.3

Network hierarchy

20 CHAPTER 2 Networking Fundamentals

connecting metro networks through a Local Central Offi ce (LCO).2 The metro
networks (sometimes referred to as metro edge, metro access, or aggregation
 networks) run at 2.5 to 10 Gbps, are up to a few tens of miles, and are connected
to the access networks through remote units. The access networks have a span
of about a mile, run up to 2.5 Gbps, and connect the CPN to the entire network
through the customer premise’s equipment. At the customer premises, there are
many types of networks, depending on the type of customer— residential, enter-
prise, content or service provider, and so on. Wireless networks are also part of
this setup, where public wireless networks such as cellular and WiMAX are con-
nected like the metro networks (sometimes through the metro networks), and
private networks (i.e., residential or enterprise) are within the customer premises
(e.g., Wi-Fi and all PAN networks).

Although most readers are familiar with networks topologies (Figure 2.4),
it is worth noting that most networks today are either based on a star topology
(like most enterprise networks), or a ring topology (like most regional and metro
 networks).

2Local Central Offi ce (LCO, also called End-Offi ce, EO) uses interfacing and switching equipment that
is analogous to the class 5 telecommunications switches, or telephone exchange, used in the tradi-
tional telephone network hierarchy. Actual telephones were connected to this equipment, whereas
today metro or access trunks are connected to the LCO.

(a) Bus (b) Ring (c) Star

(d) Tree of rings (e) Tree of stars

FIGURE 2.4

Network topologies

2.3 Data Networking Models 21

2.3 DATA NETWORKING MODELS
Network modeling can be done in any one of the following two ways: either by
modeling the data and the communications’ protocols between the communica-
tors, or by modeling the physical components of the network and their intercon-
nections. Eventually, the two models converge into one representation of network
modeling.

Communication between two nodes can be done by a program that handles
everything from taking care of bit and byte ordering and transmission or receiv-
ing to inter-application inputs and outputs. Such a program also handles all
aspects of networking (routing and forwarding), error recovery, handshakes
between the applications, data presentation, and security. These programs
existed in the early days of data communications; however, in modern, sophisti-
cated networks, it is now impractical not only to handle communications pro-
grams in this way, but also to maintain them or to reuse parts of them when
required.

As data communications and telecommunications programming, interfaces,
and equipment grew more sophisticated, the International Standard Organiza-
tion (ISO) suggested a structured, layered architecture of networking called Open
System Interconnect (ISO/OSI). The ISO/OSI is an abstract reference model of
 layered entities (protocols, schemes), depicting how each entity interfaces with
the entities that reside in the layers directly above and below it (except for the
lowest layer, which communicates only with peer entities). At about the same
time, the U.S. Department of Defense (DoD) offered another layered model that
concentrated on data-network modeling. These two models provide fundamen-
tal concepts in communications, and most systems and defi nitions use their
 language.

According to the ISO/OSI model, which is also called the seven-layer model, any
two peered layers interact logically, carrying the relevant data and parameters, and
executing the functionality of that layer. These layers actually interface with the lay-
ers above or below them (i.e., they hand them the data and parameters). The seven
layers are shown in Figure 2.5.

The physical layer handles bits and the physical transmission of bits across the
communication channel through some sort of medium (whether it be a kind of
wire, fi ber, radio-waves, or light). The second layer (referred to as L2) is the data-
link layer, which takes care of framing bytes or a block of bytes, and handles the
integrity and error recovery of the data transmitted at this level between two nodes
connected by a physical channel. The third layer (referred to as L3) is the network
layer, which is responsible for carrying blocks of data between two or more nodes
across a network that is composed of multiple nodes and data-links; L3 responsi-
bilities include the required addressing, routing, and so on. The transport layer is
the lowest application (or host) layer that carries data between applications (or
hosts), independently and regardless of the networks used. It is responsible for the
end-to-end data integrity and reliability, and it works through either connection or

22 CHAPTER 2 Networking Fundamentals

 connectionless transport mechanisms.3 The session layer controls the session (e.g.,
determining whether the relationship between the nodes is peered or master/slave;
establishing, maintaining, and terminating a session). The presentation layer deter-
mines such things as the format, encryption, compression, structure, and encoding
of the application data. The application layer determines the way the application
uses the communication facilities, that is, e-mailing, fi le transfer, and so on.

The upper four layers (the transport, session, presentation, and application)
are considered the host layers, while the lower three (the physical, data-link, and
 network) are the network layers. The network layers are considered the most impor-
tant in network processing; nevertheless, many networking decisions are made
based on the upper four layers, such as priority, routing, addressing, and so on.

The equivalent data-networking model of the DoD (often called the Internet
model, or more commonly, the TCP/IP model), is simpler, and contains fewer layers.
(It originally had only four layers, without the physical layer; see Figure 2.6.)

The ISO/OSI model layers are not mapped exactly onto the TCP/IP model
 layers; however, roughly speaking, the TCP/IP model shrinks all host layers into the
host-to-host (transport) layer (L4), and adds a new, internetworking layer that is
 composed mainly of the ISO/OSI network layer (L3). TCP/IP’s network layer (L2)
is composed mainly of the functionalities of ISO/OSI’s data link layer and some of
its network layer. Recently, this model has been amended by a “half” (or a “shim”)

3Connection and connectionless communication interfaces are fundamental in networking, and the
concepts are briefl y described in the introduction. In connection-oriented communication, one node
asks the other to establish a link (“call setup”), and once allowed, uses this link until it “hangs up”
(like a telephone conversation). In connectionless communications, the originating node simply
“throws” data to the network (like letters or e-mails).

Medium

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

L2

L3

L4

L7

FIGURE 2.5

ISO/OSI seven layers model

2.3 Data Networking Models 23

layer as new technologies have been introduced, so this model can better fi t systems
more precisely. These new technologies, which appear mainly in the “2.5” layer,
are described later, and are actually extensions to the network layer in the TCP/IP
model.

Application entities, as well as the other entities in the various layers, can inter-
face with other entities up or down the communication model to allow for specifi c
use of protocols and interfaces. Figure 2.7 demonstrates how three application
entities use two transport entities (which manifest themselves as protocols when
interacting with peer entities in the other host).

The way the applications and other entities are multiplexed in one host and
demultiplexed in the target hosts is by using headers in each layer, and data encap-
sulation. In ISO/OSI and TCP/IP models, each layer’s entity interfaces with the enti-
ties in the layer underneath it by adding a layer-header describing the parameters
required for the entity in the layer underneath to function properly. This header
also lets the peered entity in the same layer in the other host to have the required

Medium

Network

Internetwork

Host-to-Host

Application

Physical
L2

L3

L4

Network

Internetwork

Host-to-Host

Application

Physical

FIGURE 2.6

TCP/IP mode

Application B Application A Application C

Network,
Physical Layer

Internetworking,
IP Layer

Transport Layer

Application Layer

Transport A Transport B

Medium

IP

FIGURE 2.7

Using the TCP/IP mode

24 CHAPTER 2 Networking Fundamentals

information about how to process the data (according to the protocol). These
headers are added as the data travels downwards through the layers, and they are
removed as the data travels upwards. Figure 2.8 depicts data encapsulation in the
TCP/IP model, and names the data units (Protocol Data Units, PDUs) that result;
that is, datagrams in the application layer, packets in the IP layer, and frames in the
physical layer.

The other network modeling emphasizes the physical components of the net-
work, and is composed basically of nodes and links. Some of the nodes are hosts
or end systems (clients and servers, or peer communicators), and some are net-
work edge devices or network core devices, as shown in Figure 2.9. Edge and core
devices are gateways, routers, switches, bridges, hubs, and repeaters.

Network devices work up to the third layer (with the exception of gateways
that work on all layers, and connect very different types of networks and applica-
tions). Generally speaking, repeaters and hubs work only on the fi rst, physical layer,

Medium

Transport
Header Application Data

Application Data

Application Data

Application Data

Transport
Header

Transport
Header

IP
Header

IP
Header

Physical
Header

Physical
Trailer

Network,
Physical Layer

Internetworking,
IP Layer

Transport Layer

Application Layer

Transport Payload

IP Payload

Network Payload

Frames

Packets

Datagrams

FIGURE 2.8

Data (payload) encapsulation

Node A

Edge Core Edge Node B

Node C

FIGURE 2.9

Network model

2.4 Basic Network Technologies 25

bridges, and switches work on the second layer, and routers work on the third
layer. Thus, for example, routers interconnect networks and links by analyzing and
 forwarding packets based on the headers of the third layer, as shown in Figure 2.10,
where node A and router A are connected by one link (the left medium), and node
B and router B are connected by another link (the right medium). The routers are
connected by a third link (the middle medium).

Links can be replaced, or generalized, by networks, such that, for example, the
routers are connected by networks in between them, as shown in the Internet
model in Figure 2.11.

2.4 BASIC NETWORK TECHNOLOGIES
Network technologies can be grouped according to different dimensions; we already
saw the layered approach, in which various levels are defi ned for some function
(e.g., data link, internetworking, or application). There are network technologies
that are specifi c to each of these layers, such as forwarding, routing, encryption,
and data-link control. In this subsection, we use other two major dimensions that
are imperative to network processing.

Host A
Router Router Router Host B

Host C

FIGURE 2.11

Internet model

Network Network

Medium

Internetwork Internetwork

Host-to-Host Host-to-Host

Application Application

Physical Physical

L2

L3

L4

Network

Internetwork

Physical

Network

Internetwork

Physical

Medium Medium

Node A Node B Router A Router B

FIGURE 2.10

Router layers

26 CHAPTER 2 Networking Fundamentals

Data plane and control plane describe two basic processing levels in
 networks as described in the previous chapter.4 Data plane processing deals with
actual data forwarding, while control plane processing deals with how the data
is forwarded; that is, mainly builds and maintains various data structures and
repositories, or databases of forwarding rules. In network processing, we relate
these two terms to the data path (or fast path) and the control path (or slow path),
as described in more detail in Chapter 5.

The second grouping of network technologies results from the requirements
of the networks for which these technologies are used, the applications they serve
and the traffi c patterns they meet.

One group of technologies that originated from the telecom networks is that of
voice-centric transport networks that emerged from telephony services. These are
connection-oriented, streaming, synchronous networks, and include Plesiochro-
nous Digital Hierarchy (PDH), Synchronous Optical NETwork and Synchronous
Digital Hierarchy (SONET/SDH) networks.

The other group of technologies is data-centric and originated from enterprise
networks, which started with LANs (Ethernet, IEEE 802.3) and continued with
internetworking (among LANs). Internetworking technologies include bridging
and switching in layer 2 (IEEE 802.1), tunneling and forwarding in layer 2.5 (MPLS),
and routing in layer 3 (IP), all of which are the infrastructure of WANs, MANs, and
core networks. These are usually connectionless-oriented, packet-based, bursty, and
asynchronous networks.

A third group of technologies are hybrid technologies, that is, technologies
that aim to bridge these two groups of technologies (traditional telecom and data-
 centric). There are two approaches to provide such multiservice networks that
refl ect current traffi c patterns on the core networks (which consists mostly of
data): fi rst, taking data networks to the telecom, and second, adapting telecom
 networks to data traffi c. The remainder of this chapter describes the telecom
 networks and the data-centric networks, and the next chapter deals with the con-
verged networks.

2.5 TELECOM NETWORKS
Telecommunication networks are used mainly for traditional telecommunications
services such as telephone and TV services, as well as some data (point-to-point
connectivity) and video services. We describe here the main telecommunication
networks that are used for telephony and data services. Other telecommunications
networks (e.g., cellular networks, or broadcast networks such as CATV) are briefl y
discussed in Chapter 4, since they usually do not use network processors.

4A third plane, the management plane, deals with confi guration and monitoring of network elements.
Network processors function mainly in the data plane, less in the control plane, and almost not at all
in processing of the management plane.

2.5 Telecom Networks 27

The main service of traditional, pure telecommunications networks is teleph-
ony. Thus, telecommunications networks technologies mainly stream data of
digitized voice; they are usually circuit switched, the duration of sessions is
 measured in seconds and minutes, and they have clear call set-up and termination
procedures. Telecommunications links and trunks convey multiple simultaneous
voice channels through Time Division Multiplexing (TDM); hence, in many net-
work infrastructures (and not only in telecom), TDM services has come to refer to
those services that are supported by these telecommunication networks (such as
voice channels, video, and other real-time, streaming services).

Optical networks, which emerged mainly from and for the telecom industry, are
based on Wave Division Multiplexing (WDM), which allows large trunks to be car-
ried for distances and to be switched and routed much like the TDM networks.

It is important to note here that the transport networks in the telecommunications
industry were voice-centric (traditionally designed for voice traffi c); however, during
the last decade or two, traffi c on these transport networks has become data-centric, as
Internet and data applications has become the main communications means for enter-
tainment, business, news, peer-to-peer, and other applications (and this is before TV
services shifted to IPTV). In fact, for some time now, the volume of data traffi c has sur-
passed that of voice, and the ratio grows rapidly in favor of data traffi c. The burstiness
and noncontinuous, unpredictable nature of data traffi c requires short-lived high band-
width connections, and dynamic, fl exible, and on-demand transport services. There-
fore, the telecom industry, vendors, and operators, are amending and modifying their
telecommunications transport networks, which are described in the next chapter.

2.5.1 PDH
Plesiochronous Digital Hierarchy [194] (also called T-Carrier in North America)
was the main digital transmission mechanism used in telecommunications trunks,
and was the foundation for later technologies. In Greek, “plesio” means almost and
“chronos” refers to time, and the etymology of the name describes the technology
fairly well; that is, “plesiochronous” refers to almost-synchronous data transmission
in which the digital data streams are clocked at about the same speed. “Digital hier-
archy” means that PDH networks multiplex voice channels into a higher hierarchy
of trunks’ capacities, and demultiplex them into decreasing capacities. In other
words, several digital channels are combined (multiplexed) to create a higher hier-
archy digital channel in the PDH network.

Since the roots of PDH are in the telephony system, the basic channel of the
digital hierarchy is a voice telephone channel. Each voice channel is 64 Kbps and
is an uncompressed digitized voice channel,5 called DS0 for Digital Signal level 0
(sometimes also called Digital Service level zero).

5The basic digitized voice is represented by Pulse Code Modulation (PCM), 8000 8-bit samples per sec-
ond, which are enough to carry the 4 KHz analog line—the bandwidth of the telephone voice channel.

28 CHAPTER 2 Networking Fundamentals

In North America, the basic T-Carrier link is called DS1 for Digital Signal Level
One, and is 1.544 MHz, multiplexing 24 DS0 channels. The multiplexing of the voice
channels into DS1 is done according to time division; that is, 1 byte from each chan-
nel is picked up in turn, cyclically. The DS1 frame6 is composed of 24 bytes (from
all channels) and one control bit (total of 193 bits). There are 8000 such frames per
second, or 125 microseconds for frame processing. The resulting control channel
is 8 Kbps wide (from the one extra bit per frame). The DS1 signal is carried in the
T1 channel (J1 in Japan), which defi nes the framing, the physical layer, and the line
interfaces, and is also used to defi ne any 1.544 Mbps service.

T1 was a very popular service, and it was used quite extensively to connect private
(enterprise) telephone exchanges to the telephony system. In addition, and although
PDH was designed primarily for telephone services, PDH links were also used very
often for data networking applications, where connections of two networks or data
equipment was done through a point-to-point PDH link (e.g., T1 service).

Higher hierarchy links are DS2 (which multiplexes four DS1 channels, or 96 DS0
channels, into a 6.321 Mbps channel), and DS3 (which multiplexes 28 DS1 trunks
into 44.736 Mbps). The same applies to T2 and T3, which multiplex four and 28 T1
links, respectively. In Japan, J2 is similar to T2, but J3 multiplexes just fi ve J2 lines
(and therefore is 32 Mbps), and J4 multiplexes three J3 lines (and is 98 Mbps wide).

The basic PDH link that is used in Europe, called E1, is 2 Mbps wide, and it multi-
plexes 32 channels—two for control purposes, and 30 voice channels. E1’s frame is
256-bit long (1 byte from each of the 32 channels), and also lasts 125 microseconds.
Higher hierarchies of SDH are E2 (which multiplexes four E1 lines into 8 Mbps),
E3 (which multiplexes 16 E1 lines, or four E2 lines, into 34 Mbps), and E4 (which
multiplexes 64 E1 lines, or 16 E2 lines, or four E3 lines, into a 140 Mbps trunk).

Plesiochronous Digital Hierarchy links were used for trunks that connected telecom-
munication equipment, as well as to provide point-to-point digital links for enterprises
and other wide access network customers; for example, intra-network communica-
tion equipment in central offi ces. A summary of PDH links is provided in Table 2.1 as
 follows. These lines used coax cables, twisted pairs cables, or fi ber-optic links.

Plesiochronous Digital Hierarchy lines were used from the 1960s and were gradu-
ally replaced by a fully synchronous network, SDH, based on optical networking, as
described in the next subsection. The major reason for their replacement is that PDH
was basically a point-to-point connection, and in order to connect various PDH hier-
archies, or any other required manipulation of channels, the multiplexed PDH line
had to be decoded, demultiplexed at every end-point, and multiplexed again as
required. This procedure was necessary because PDH was not fully synchronized
and some buffering was required, and also because the multiplexing involves inter-
channel dependencies. Moreover, PDH links were not designed for the high-rate
optical networks that became available.

6Please note that “frame” in the context of PDH is meant to describe the repetitive structure of TDM
signals and is not a frame of the packet-oriented networks, specifi cally not a Layer 2 frame.

2.5 Telecom Networks 29

2.5.2 Synchronized Optical Networks/Synchronous
Digital Hierarchy

The next phase of telecommunications networks was to create a fully synchronized,
end-to-end, data transmission service, with trunking hierarchy that enabled fl exibil-
ity and scalability on optical networks. The Synchronous Digital Hierarchy telecom-
munication networks is the international standard [197], while in North America
the SDH variant is called SONET, for Synchronous Optical NETwork.

Synchronous optical networks and synchronous digital hierarchy networks
were also voice-centric, working through streams of digitized 64 Kbps telephone
voice channels. However, SONET/SDH provides the means to support other data
communications requirements, such as packet over SONET/SDH (POS) and Asyn-
chronous Transfer Mode (ATM) services, as described in the next chapter. Next
Generation SONET/SDH (NG-SDH/SONET) is a collection of several attempts
that aim towards the inclusion of data networking in the SONET/SDH framework,
mainly bursty, noncontinuous data streams (such as Ethernet), which, by nature,
is opposed to the synchronous, streamed data bits of TDM applications (mainly
voice). NG-SONET/SDH is described in the next chapter.

SDH networks can be built in ring, point-to-point, linear add/drop, or mesh con-
fi gurations, but they are usually built in rings. The rings are actually double rings;
that is, two optical fi bers carry data in opposite directions, backing each other, thus
resulting in resilience (see Figure 2.12). The active fi bers (or working fi bers) use
the backup fi bers (or protection fi bers) for 50 ms protection; that is, in case of a
working fi ber fault, data fl ow will resume in <50 ms.

Table 2.1 PDH Lines

Link # of DS0 Frame size Bandwidth Frames per second

DS0 1 64 Kbps

DS1, T1, J1 24 193 bits 1.544 Mbps 8000

E1 32 256 bits 2.048 Mbps 8000

DS2, T2, J2 96 1176 bits 6.231 Mbps 5300

E2 128 848 bits 8.448 Mbps 9962

J3 480 32.064 Mbps

E3 512 1536 bits 34.368 Mbps 22,375

DS3, T3 672 4760 bits 44.736 Mbps 9400

J4 1440 97.728 Mbps

E4 2048 2928 bits 139.264 Mbps 47,563

DS4, T4 4032 274.176 Mbps

30 CHAPTER 2 Networking Fundamentals

SDH and SONET are technically almost identical, but there are several differ-
ences, mainly in terminology and the basic transmission rates. Hierarchy in signal
bandwidth of SONET starts with a basic Synchronous Transport Signal 1 (STS-1),
which is 51.84 Mbps, carried in an Optical Carrier 1 (OC-1) link. SDH starts its hier-
archy with a basic Synchronous Transport Module 1 (STM-1), which is 155.52 Mbps,
designed for one E4 link, and is equivalent to OC-3.8 A summary of SONET/SDH
links is provided in Table 2.2.78

7Due to practical multiplexing considerations and techniques, STS-1 can carry a DS-3 signal, or 28
DS-1 signals, which are less than this theoretical capacity.
8STM-n interfaces are defi ned as logical and electrical signals and are also defi ned for optical
 transmission, whereas STS-n is the electrical signal of SONET, and OC-n is the corresponding optical
signal for SONET.

ADM

ADM

OC-12 ADM

ADM

ADM OC-12

DCS

ADM

ADM

DCS

Access Transport Ring

Regional Transport Ring

Core Transport Ring

ADM TM ADM—Add/Drop Multiplexer
DCS—Digital Cross-Connect
TM—Terminal Multiplexer
OC-n—Optical Carrier-n

OC-48

OC-192

FIGURE 2.12

SDH network

Table 2.2 SDH Lines

SONET signal Optical carrier SDH signal Bit rate (Mbps) DS0 capacity

STS-1 STM-0 51.84 7837

STS-3 OC-3 STM-1 155.52 2349

STS-9 OC-9 STM-3 466.56 7047

STS-12 OC-12 STM-4 622.08 9396

STS-48 OC-48 STM-16 2488.32 37,584

STS-192 OC-192 STM-64 9953.28 56,376

STS-768 OC-768 STM-256 39,813.12 601,344

STS-1536 OC-1536 STM-512 79,626.24 1,202,688

STS-3072 OC-3072 STM-1024 159,252.48 2,405,376

2.5 Telecom Networks 31

The multiplexing technique in SONET/SDH is much more sophisticated than it is
in PDH (in which the demultiplexing of the entire channel is forced down to its lowest
rate channels in order to isolate one channel). Here, all frames9 are transmitted 8000
times per second, or, all frames last 125 �s. Higher hierarchy SDH signals are obtained
by interleaving the bytes of the lower hierarchy aligned frames, so frames are essentially
getting bigger and contain all lower hierarchies’ frames. The frame structure is based
on pointers that specify the location of the multiplexed payload data in the frame.

Before going into the structure of SONET/SDH, there are some defi nitions of the
SONET/SDH physical network entities that should be familiar in order to understand
the frame’s overhead. There are two types of network elements in SONET/SDH:
Digital Cross Connect (DCS), which is used to add, drop, multiplex, demultiplex,
and switch streams from various inputs to required outputs, and Path Terminating
Equipment (PTE). PTE includes Add/Drop Multiplexers (ADM), which add and
drop lower rate data streams onto or from the multiplexed stream, and Terminal
Multiplexers (TM), which multiplex and demultiplex PDH and SDH links to or from
the SDH network. This structure can be seen in Figure 2.12, where three rings of
different hierarchies that are used for different purposes (access networks, regional
networks and core networks) are interconnected by, and use, various equipment
types. Communications between SONET/SDH physical network elements are
defi ned in three layers, as can be seen in Figure 2.13:

■ The path layer, which does the end-to-end connectivity and maps data streams
onto the SONET/SDH payload.

■ The line layer (also called the Multiplexer section, MS), which multiplexes
the path layer frames on a single line, synchronizes the frames, and activates
protection switching when required.

9As in PDH, “frame” in the context of SDH is meant to describe the repetitive structure of TDM
signals and not a frame of the packet-oriented networks, specifi cally not a Layer 2 frame.

Repeater/
Regenerator

Repeater/
Regenerator

Terminal
Multiplexer

Terminal
Multiplexer

Add/Drop
Multiplexer

Section

Line Line

Path

Section Section Section RS Layer

MS Layer

Path Layer

Traffic Mapped to
SONET/SDH Frames

RS Layer

MS Layer

Path Layer

Traffic Mapped to
SONET/SDH Frames

RS Layer RS Layer

MS Layer

RS Layer

PTE PTE SONET/SDH Node

MS—Multiplexer Section
RS—Regenerator Section
PTE—Path Terminating Equipment

FIGURE 2.13

SONET/SDH network elements

32 CHAPTER 2 Networking Fundamentals

■ The section layer (also called the Regenerator section, RS), which does the
framing using the physical interface.

Each SONET frame contains overhead (called Transport Overhead, TOH), and
 payload (called Synchronous Payload Envelope, SPE). The basic SONET’s STS-1
(OC-1) frame is composed of 810 bytes, organized in nine rows of 90 bytes each.
The frame is transmitted row by row, starting from the top row, and each row is
transmitted from left to right (i.e., the most signifi cant byte fi rst, and the most
signifi cant bit fi rst). The fi rst 3 bytes in each row are used for the TOH, and the
rest of the 87 bytes are used for the SPE (see Figure 2.14). This gives a total of
50,112 Kbps payload rate (87 bytes � 9 rows � 8 bits � 8000 frames per second),
which is exactly the right rate for 783 64 Kbps DS0 voice channels.10 Higher hierar-
chies of SONET frames are built by byte interleaving of the lower hierarchy frames,
so, for example, an STS-3 frame would use 9 bytes in each row for TOH, and 261
(87 � 3) bytes for the SPE in each row.

The TOH, which is 27 bytes per frame or a 217 Kbps link in STS-1, is further
divided into Section overhead and Line Overhead (LOH) that are used by the
 corresponding network layers; that is, the section endpoint equipment and the line
endpoint equipment. The Path Overhead (POH) is the fi rst byte of every row in the
payload (SPE), so in STS-1 there are 9 bytes for POH at each frame (or 72 Kbps link).

The basic SDH’s STM-111 frame is very similar to the SONET frame structure (STS-
3 frame, see Figure 2.14), and is composed of 9 rows, each of 270 bytes, for a total
of 2340 bytes [195]. The fi rst 9 bytes of each row are used for Section Overhead
(SOH, which is similar to the TOH of SONET), and the rest of the 261 bytes are used
for the payload. The SOH is divided, like the TOH, into a Regenerator SOH (RSOH),
equivalent to SONET’s SOH, a pointer to the payload, and a Multiplex SOH (MSOH)
that is almost equivalent to SONET’s LOH (the LOH contains this pointer).

10See footnote 7.
11STM-0 was defi ned later to match SONET’s basic frame STS-1.

9
 r

ow
s

n � 3

n � 90 bytes

Transport
Overhead

Li
ne

O

ve
rh

ea
d

S

ec
ti

on

O
ve

rh
ea

d

Synchronous Payload Envelope
SONET’s STS-n frame

FIGURE 2.14

SONET/SDH frame

2.5 Telecom Networks 33

As noted before, the fi rst row in the LOH is used as a pointer to the fi rst byte of
the payload in each of the frames. For example, in the STS-1 frame, the pointer is
located in the three bytes starting at an offset of 270 bytes, which begins the fourth
row of the frame. This pointer is defi ned in SDH’s STM-1 frame at exactly the same
place (i.e., the beginning of the fourth row, at an offset of 810 bytes). An example
of payload pointing is shown in Figure 2.15.

This pointer mechanism allows SDH to accommodate payloads that originate
with some differences in speed between the SDH frames and the payload. It can
also be used for pointing to several payloads that are made up of smaller capacities
than the SPE. The last issue in SONET/SDH that we deal with here, is how to map
various sources of data streams onto the SONET/SDH frames (or actually, onto the
payload).

In SONET, the basic sub-SPE synchronous signal is called Virtual Tributary
(VT). There are several VT defi nitions for 3, 4, 6, or 12 columns of the SPE. For
example, VT-1.5 occupies three columns; it therefore has 27 bytes per frame, and is
1.728 Mbps in bandwidth (8000 frames per second). VT-2 occupies four columns,
or 36 bytes per frame, and thus has 2.304 Mbps and so forth. VT-1.5 can contain T1
(DS-1 signal), and VT-2 can contain an E1 signal. Similar VTs are grouped into one
block of 12 columns of the SPE (i.e., 108 bytes); seven VT groups can fi t into one
STS-1 SPE,12 where the seven VT groups can be of different VT types (e.g., three VT
groups of VT-1.5, and four VT groups of VT-2). The multiplexing scheme of SONET
is depicted in Figure 2.16 on next page.

12It occupies 84 of the 87 columns of the SPE; one of the remaining three is used for the POH
 (column 1), and the other two (columns 30 and 59) are fi xed.

SOH/

SOH/

RSOH

MSOH

9 bytes 261 bytes

LO
H

Fr
am

e
#

1

Fr
am

e
#

2

LO
H

TOH

Payload #1
Payload #1

Payload #2
Payload #2

P
O

H
 #

2
P

O
H

 #
1

Pointer

Pointer

Row #1
Row #2
Row #3
Row #4
Row #5
Row #6
Row #7
Row #8
Row #9
Row #1
Row #2
Row #3
Row #4
Row #5
Row #6
Row #7
Row #8
Row #9

SOH/
RSOH

MSOH

FIGURE 2.15

STM-1/STS-3 payload pointing

34 CHAPTER 2 Networking Fundamentals

A similar scheme, though a bit more complicated, is used for SDH, as shown in
Figure 2.17. The synchronous payload is packaged in a container.13 As noted above,
STM-1 contains 270 columns (bytes) of nine rows, of which 260 columns (bytes) are
used for payload and are defi ned as Container-4, or C-4. Smaller containers, which
are termed low-order containers, are used for lower bandwidth streams and are
multiplexed to become a STM-1 frame eventually. Higher data rates are organized by
associating several containers together through a procedure called concatenation,
which results in a combined capacity that can be used as a single container across
the network. In other words, concatenation, according to ITU-T G.707 [195], is a
process of summing the bandwidth of a number of smaller containers into a larger
bandwidth container. The concatenated containers are marked by the number of
C-4 containers multiplexed together; for example, C-4-4c means four contiguously
concatenated C-4 containers, resulting eventually in 622 Mbps STM-4, and so forth.

13Container is defi ned in ITU-T G.707 [195] as the information structure that forms the network’s
 synchronous information payload.

VT-1.5

VT-2

VT-6 VT group

1.5Mbps

150Mbps

48Mbps

6Mbps

2Mbps

SPE

SPE 3c STS-3

STS-1

x3

x4

x7

x3

OC-3

OC-1 51.84Mbps

155.52Mbps

DS1 (1.544Mbps)

E1 (2.048Mbps)

DS2 (6.312Mbps)

DS3 (44.736Mbps), E3 (34.368Mbps), ATM (48.384Mbps)

E4 (139.264Mbps). ATM (149.76Mbps)

VT : Virtual Tributary
VT Group: several VTs
SPE: Synchronous Payload Envelope (several multiplexed VT groups)
STS: Synchronous Transport Signal (SPE � Transport Overhead)
OC: Optical Carrier

FIGURE 2.16

SONET multiplexing scheme

x7

x3

x3

C-11

C-12

TUG-2

1.5Mbps

2Mbps

6Mbps

48Mbps

150Mbps

AU-3

AU-4 AUG-1

AUG-4

x4

x7

x3

155.52Mbps

VC-3

VC-4

C-3

C-2

C-4

2-CV

VC-12

VC-11

TU-3

TU-2

TU-12

TU-11

TUG-3

SONET specific

C: Container
VC: Virtual Container (C � Path Overhead)
TU: Tributary Unit (VC � TU Pointer)
TUG: Tributary Unit Group (several multiplexed TUs)
AU: Administrative Unit (VC � pointer)
AUG: Administrative Unit Group
STM: Synchronous Transport Module
 (AUG � Section Overhead)

51.84Mbps

AU-4-4cVC-4-4c STM-4

STM-1

STM-0

622.08MbpsC-4-4C

x4

SDH specific

600Mbps

FIGURE 2.17

SDH multiplexing scheme

2.5 Telecom Networks 35

Each Container, together with its POH, is called a Virtual Container (VC), as
it can be placed anywhere in the payload, using two levels of pointers. SDH’s
Virtual Container (VC) is thus equivalent to SONET’s SPE. The relation between
the information rates and the multiplexed and overhead frame rates are shown in
Table 2.3.14

Small VCs (sub-STM-1 frame in size, which SDH calls “low order VCs”) are multi-
plexed to become a Tributary Unit Group, after each VC is aligned with a Tributary
Unit (TU) pointer. The bigger VCs (high order VCs) become Administrative Units
(AU) after the frame’s pointer is attached to them. Several AUs can be multiplexed
into an Administrative Unit Group (AUG) for higher STM-n signals. The last opera-
tion is to add the Section Overhead (SONET’s equivalent of TOH) to the AUG, and
to make it a STM frame. Figure 2.17 summarizes this multiplexing structure, where
formations from containers to VCs are done by mapping, from VCs to TUs or AUs
by aligning (both TUs and AUs are themselves pointer processing), and all the rest
are done by multiplexing.

Several enhancements to SONET/SDH were standardized to handle data
traffi c. These include Virtual Concatenation (VCAT), Link Capacity Adjustment
Scheme (LCAS), and Generic Framing Procedure (GFP). These techniques are
described in the next chapter, where data convergence is explained.

14The calculations for STM-1, for example, are based on a frame of 270 columns (bytes) by nine rows,
8000 frames per second, and 8 bits per byte, which yields a 155.52 Mbps SDH frame rate; when
261 bytes are considered (which is the frame without the nine-column overhead), the VC bandwidth
comes to 150.336 Mbps, and when just 260 bytes are considered (without the nine-column frame
overhead and the one column path overhead), the net VC payload comes to 149.76 Mbps.

Table 2.3 VC Types and Capacities

VC type
VC bandwidth

(Mbps)
VC payload

(Mbps) SHD frame
SDH frame rate

(Mbps)

VC-11 1.644 1.6

VC-12 2.240 2.176

VC-2 6.848 6.784

VC-3 48.960 48.384 STM-0 51.84

VC-4 150.336 149.76 STM-1 155.52

VC-4-4c 601.344 599.04 STM-4 622.08

VC-4-16c 2405.376 2396.16 STM-16 2488.32

VC-4-64c 9621.504 9584.64 STM-64 9953.28

VC-4-256c 38,486.016 38,338.56 STM-256 39,813.12

36 CHAPTER 2 Networking Fundamentals

2.5.3 Optical Networks
The underlying technology of SDH is based on optical links (fi bers). Optical net-
working evolved from plain optical links—from point-to-point connections that
mainly supported the long-haul telecom networks—to become an important
 telecommunication network infrastructure in itself. In addition, multiservice
 provisioning,15 or networks used not only for traditional telecommunication
 applications, but also for a variety of services such as telephony, TV, Internet, and
data applications, pushed optical infrastructure to support Multiservice Provision-
ing Platforms (MSPP) that include direct data communications interfaces.

The main advantages of optical networks are their huge capacity, solid reliabil-
ity, and low price. Although an “all-optical-network” is desirable, optical networks
are usually hybrid in terms of electronics, and optical–electrical conversions are
often required in optical networks. The principal technologies that enable optical
networking are optical switching and WDM.

Optical switching can be done through several different means: electro- optical
(e.g., liquid crystals or semiconductors), electro-mechanical (e.g., Micro Electro
Mechanical Systems or micro-optoelectromechanical systems), or thermo-optical.
Optical switching is used for Optical Cross-Connects and for other optical devices
and network elements. Switching is done either for Optical Circuit Switching, for
Packet Switching (OPS), or for Burst Switching, which is used for aggregated pack-
ets [339, 438]. OPS requires that packet headers be processed in a matter of nano-
seconds, and network processors must be used for this.

Wave Division Multiplexing means simultaneous transmission of several opti-
cal carriers, each with a different wave-length (color), on a single fi ber.16 Each of
the “colors” of the lights represents a different channel, and fi lters (or different
light color pairs of sources and receivers) at the fi ber-ends separate and distin-
guish between these channels. There are two basic approaches to WDM: Coarse
WDM (CWDM), which handles several channels simultaneously, and Dense WDM
(DWDM), which handles tens of channels. WDM enables a single optical fi ber to
carry as many as several Tbps.

Various optical devices and network elements are used in WDM networks for
multiplexing, routing, and switching the light paths from sources to destinations. The
simplest device is a passive multiplexer, which combines several fi bers carrying
different colors. A demultiplexer can be composed of a passive splitter, coupled
with an optical band-pass fi lter. An optical add/drop multiplexer (OADM) adds and
drops channels (colors) from the fi bers, analogously to the ADM of the SDH net-
works. Attaching optical switches to an OADM results in a reconfi gurable OADM
(ROADM), which adds fl exibility in setting up or breaking light-paths in the network,

15An often used buzzword that describes multiservice provision by operators is “triple play”
(for telephony, TV, and Internet) or “quadruple play” (which also includes data communications;
for example, Storage Are Networks, SAN).
16Wave-length is related to frequency, and the same WDM principle is actually used in wireless and
other radio systems, where it is called Frequency Division Multiplexing (FDM).

2.5 Telecom Networks 37

and even makes it possible to route light paths dynamically, on the fl y (again, usu-
ally controlled by a network processor).

In recent years, an Optical Transport Network (OTN) was standardized by the
ITU-T [196, 200, 201] that unifi es SONET, SDH, and other packet-based services,
and is based on WDM networks. It offers data rates that are several orders of mag-
nitude higher than current SDH/SONET rates, but in practice, OTN was not mas-
sively adopted because of SDH/SONET improvements, the high cost of replacing
the installed base, and the potential leap to Ethernet-based transport networks.

Optical Transport Network provides separated and transparent digital multiser-
vices that go beyond those of the analog WDM networks, including error manage-
ment and quality of service provisioning at the physical, optical layer. It specifi es
a new optical channel frame,17 the Optical channel Transport Unit (OTU), which
is transmitted in one of three bit rate classes, called k. The frame is fi xed in size
for all rates, in contrast to SONET/SDH, and structured as four rows of 4080 bytes
each. The fi rst class, OTU1, is 2.67 Gbps, and the frame transmit time is 48 �s, as
opposed to SONET/SDH in which all frame periods are always 125 �s. The second
rate, OTU2, is 10.7 Gbps, and the frame duration is 12 µs. Currently, the highest rate
is OTU3, 43 Gbps, for a frame time of 3 �s. The Optical channel Payload Unit (OPU)
has 3808 bytes in each row, and has an additional two columns overhead. The
 Optical channel Data Unit (ODU) encapsulates the OPU, and has 3824 columns,
of which 14 columns are overhead that include frame alignment and maintenance
signals, path and tandem connection monitoring, general communication, and pro-
tection control Channels. A 256-column forward-error-correction code is added
to the ODU to create the OTU.18 This entire structure is shown in Figure 2.18.
Low-order OPU payload and ODU frames can be multiplexed by interleaving to

17As with the case of SDH and PDH, OTN’s frame describes the repetitive structure of TDM signals,
and is not a frame of the packet-oriented networks (specifi cally not a Layer 2 frame).
18ODU’s data rate is lower than OUT’s data rate: ODU1 is then 2.5 Gbps, ODU2 is 10 Gbps, and ODU3
is 40 Gbps.

Client (service) Payload

4 � 3808 bytes
4 � 2
bytes

Optical channel Payload Unit
4 � 3810 bytes

OTU FEC
(4 � 256 bytes)

4 �14
bytes

Optical channel Data Unit
4 � 3824 bytes Optical Transport Unit

Optical channel Data Unit

Optical channel Payload Unit
Overhead

FIGURE 2.18

Optical transport unit frame

38 CHAPTER 2 Networking Fundamentals

create a higher order OPU payload and ODU frame; for example, four OPU1/ODU1
frames create one OPU2/ODU2 frame.

Optical channel Transport Unit (OTU) frames are electrical signals representing
the frames, and they are placed on the optical fi ber by converting them fi rst to the
optical channel layer, which is the fi rst of the optical layer hierarchy. (The optical
layer hierarchy is a physical layering system that we are not discussing here.)

SDH, SONET, and ATM payloads are mapped directly into the OPU. Other packet-
type payloads such as IP and Ethernet are mapped by various methods into the
OPU for transport services.

The control plane is an important layer in optical networks, and uses call and con-
nection functions in real time, which enables effi cient use of the underlying optical
networks. It is becoming increasingly important, as switching and routing decisions
are dynamic, fl exible, fast, and interoperable in a data-centric environment. Toward this
end, the standard of Automatically Switched Optical Networks (ASON) was established
by the ITU-T [212, 213] to be used by SONET/SDH and OTN.19 ASON includes not just
call and connection functions, but also path control (i.e., routing, protection, and resto-
ration) and discovery services for self-confi guration. ASON’s signaling protocols, used
to transport messages between all communicating entities of the control plane, are
based on a variety of signaling protocols, for interoperability of multi-domain networks.
Although ASON is a protocol-neutral framework, it uses several signaling protocols,20
and is likely to implement Generalized Multi-Protocol Label Switching (GMPLS)-based
signaling protocols [234]. GMPLS by itself offers an alternative approach for the con-
trol plane implementation [297], which evolved from data networks.

All of the optical networks described so far are used primarily for long hauls, metro
networks, and core networks. In the next chapter we will briefl y describe Passive
Optical Networks (PONs), which are used for access networks or aggregation net-
works that connect customers’ premises to the telecom network. PONs are standard-
ized not just by the telecommunication community, but also by the data community
as well, that is, the “fi rst mile” Ethernet. This brings us to the next section, in which we
discuss data networks and their convergence with telecommunication networks.

2.6 DATA NETWORKS
Data networks are as old as computer systems, and were developed alongside the
already existing telecommunications networks—some relying on their services
and some completely separate from them. There are many types of data networks

19ASON is a framework that continues, extends, and eventually replaces its root standard, Automatic
Switched Transport Network (ASTN) [199], since ASON is general enough to handle nonoptical
transport networks as well.
20Such protocols include Private Network to Network Interface (PNNI) [209], Generalized Multi-
Protocol Label Switching—Reservation Protocol Traffi c Engineering (GMPLS RSVP-TE) [210] and
GMPLS Constraint Routing Label Distribution Protocol (GMPLS CR-LDP) [211].

2.6 Data Networks 39

and many typologies for categorizing them, and they use many different technolo-
gies. It is not our intention here to cover data networks generally—there are numer-
ous books on this subject—but instead to focus on the two dominant technologies:
Ethernet and Internet.

2.6.1 Enterprise Ethernet
The Ethernet is basically an L2 protocol that dominates most LANs without any
real competition from any other technology (at least when it comes to wired
networks, as wireless networks have their own standards). The original version
of the Ethernet was proposed in the 1970s by Xerox, and standardized in the
1980s by DEC, Intel, and Xerox to what is known as Ethernet DIX, or Ethernet II.
Basically, the Ethernet offered a communication protocol and interface between
several hosts (“stations,” in the original notation) by using a shared medium. The
Ethernet was based on the Carrier Sense Multiple Access/Collision Detection
(CSMA/CD)21 protocol. At the same time IEEE standardized all LAN technolo-
gies in the 802 standards committee,22 the Ethernet included, and the Ethernet
was slightly modifi ed to become what was known as Ethernet 802.3, after the
IEEE 802.3 standard [186]. Despite the passage of time and many proposed
LAN alternatives, technologies, and usages, the Ethernet survived and evolved to
become the major LAN technology due to its simplicity and price. (It is in use
in over 85% of all LANs.) This technology now expands the scope of LANs and
is proposed as an infrastructure to MANs (pure Ethernet metro), as described
in the following.

The Ethernet now refers to a family of LAN standards that cover many media,
speeds, and interfaces, all still sharing the CSMA/CD protocol, and that have
similar (but not identical) frame formats. The Ethernet specifi cation relates to
the two lower layers of the ISO OSI model; that is, the data-link and the physi-
cal layers [178]. The data link layer in the Ethernet is composed of the Media
Access Control (MAC) sublayer, and the Logical Link Control (LLC) sublayer.
The MAC layer controls the node’s access to the media, and describes the data
structure and frame format, defi ned by IEEE802.3, as described in the following.

21Carrier sense means that before attempting any transmission, the host listens to the medium to
fi nd a gap between transmitted frames for its own transmission. It is multiple access in the sense that
many hosts can do such listening, but there is still a chance of collision when two distant hosts sense
a clear medium and start their transmission at about the same time. In this case, collision detection
happens, when each host checks, while transmitting, that its transmitted frame is uninterrupted,
that is, no “foreign” bits interfered with its own bits. If there is a collision, the host stops transmitting,
waits some random amount of time, and retransmits its frame again.
22IEEE 802 standards committee started as an initiative of the IEEE Computer Society called “Local
Network Standards Committee,” project 802, in February 1980. The name “802” has no special mean-
ing; it is just a number in the sequence of the IEEE numbers issued for standards projects. Later
on, this standards committee was named “LAN/MAN Standards Committee (LMSC)” after expanding
from issues of LANs to MANs.

40 CHAPTER 2 Networking Fundamentals

The LLC interfaces between the Ethernet MAC and the upper protocol layers,
and is defi ned in the IEEE802.2 standards [185]. The physical layer defi nes bit
rate, signal encoding, and media interface, and is also described in IEEE802.3.
There are some differences in the physical layer of the different Ethernet imple-
mentations, as can be seen in the architectural positioning of the Ethernet
 (Figure 2.19). Above the Ethernet, there are higher layers, described by other
protocols and standards; however, IEEE802.1 defi nes a framework of using the
Ethernet and offers some networking capabilities that go beyond using a shared
media, as IEEE802.3 does. This is described in later subsections.

2.6.1.1 Ethernet Physical Layer
The reconciliation sublayer maps the signals between the medium interface and the
MAC layer. As can be seen in Figure 2.19, the physical layer defi nes several alterative

MDI

Line Side

Media Access Control (MAC)

MAC Control (optional)

Logical Link Control (LLC)

PMA

Medium

AUI

PLS

System Side

M
A

U

1Mbps, 10Mbps

PMA

Medium

AUI

Reconciliation
Sublayer (RS)

MDI

10Mbps

PLS

MII

PMD

Medium

Reconciliation
Sublayer (RS)

100Mbs

PCS

PMA

MDI

MII

PMD

Medium

Reconciliation
Sublayer (RS)

1Gbps

PCS

PMA

MDI

GMII

PMD

Medium

Reconciliation
Sublayer (RS)

10Gbps
10GBASE-W

WIS

PMA

MDI

XGMII

64B/66B PCS

PMD

Medium

Reconciliation
Sublayer (RS)

10Gbps
10GBASE-R

PMA

MDI

XGMII

64B/66B PCS

PMD

Medium

Reconciliation
Sublayer (RS)

10Gbps
10GBASE-X

PMA

MDI

XGMII

8B/10B PCS

XGXS

XGMII

XGXS

XAUI

Higher Layers

D
at

a
Li

nk
P

hy
si

ca
l

802.1

802.2

802.3

P
H

Y

AUI—Attachment Unit Interface
MDI—Medium Dependent Interface
MAU—Medium Attachment Unit
PHY—Physical layer device
PMA—Physical Medium Attachment
WIS—WANInterface Sublayer
XGMII—10 Gigabit MII

GMII—Gigabit MII
MII—Medium Independent Interface
PCS—Physical Coding Sublayer
PLS—Physical Layer Signaling
PMD—Physical Medium Dependent
XAUI—10 Gigabit AUI
XGXS—XGMIIExtended Sublayer

FIGURE 2.19

Ethernet architectural positioning

2.6 Data Networks 41

and compatible interfaces (which are described in more detail in Chapter 7 in the
subsection that describes interfaces):

■ MII/GMII/XGMII
■ MDI
■ AUI/XAUI

The MII, GMII, and the XGMII are optional, and are designed to connect the
MAC to remote physical devices, to different medium dependent physical devices,
or to be used in chip-to-chip interfaces; thus, they can be used as compatible
interfaces. The MDI is independent of the upper layers, defi ning the physical cable
interface (e.g., media signals), and relating to the bit interface. AUI and XAUI are
very different interfaces, but have functions similar to the MII/XGMII; they extend
the connection between the MAC and the physical device. In the beginning of the
Ethernet, AUI interface was very common, used by a cable that connected the host
(with the MAC at its lowest communication stack) to a nearby MAU (through some
required circuitry attached directly to the LAN cable). The XAUI is used mainly for
chip-to-chip interface, and is optional. The physical interfaces, or cable schemes,
are marked by the IEEE as this table shows:

1BASE5 1 Mb/s over two pairs of twisted-pair telephone wire

2BASE-TL Up to 5.696 Mb/s point-to-point link over single copper wire pair

10BASE2 10 Mb/s over RG 58 coaxial cable (up to 200 m)

10BASE5 10 Mb/s over coaxial cable (i.e., thicknet, up to 500 m)

10BASE-F 10 Mb/s over fi ber-optic cable

10BASE-T 10 Mb/s over two pairs of twisted-pair telephone wire (up to 100 m)

10BROAD36 10 Mb/s over single broadband cable

100BASE-X 100 Mb/s that uses FDDI encoding on two strands of fi ber or two Category 5 UTP wires

100BASE-T 100 Mb/s (up to 100 m) that uses two or four copper pairs in many encoding schemes

100BASE-T2 100 Mb/s over two pairs of Category 3 or better balanced cabling

100BASE-T4 100 Mb/s over four pairs of Category 3, 4, and 5 UTP wire

100BASE-TX 100 Mb/s over two pairs of Category 5 UTP or STP wire

100BASE-FX 100 Mb/s over two multimode optical fi bers (up to 2 km)

100BASE-BX10 100 Mb/s point-to-point link over one single-mode fi ber

100BASE-LX10 100 Mb/s point-to-point link over two single-mode fi bers

10PASS-TS 100 Mb/s point-to-point link over single copper wire pair

1000BASE-X 1 Gb/s using two strands of fi ber or two STP copper wire pairs

(continued)

42 CHAPTER 2 Networking Fundamentals

1000BASE-T 1 Gb/s using four pairs of Category 5 balanced UTP copper cabling (up to 75 m)

1000BASE-CX 1000BASE-X over specialty shielded balanced copper jumper cable assemblies

1000BASE-SX 1000BASE-X using short wavelength laser devices over multimode fi ber (<500 m)

1000BASE-LX 1000BASE-X using long wavelength over multimode and single-mode fi ber (<5 km)

1000BASE-LX10 1 Gb/s point-to-point link over two single-mode or multimode optical fi bers

1000BASE-PX10 1 Gb/s point to multipoint link over one single-mode fi ber, with a reach of up to 10 km

1000BASE-PX20 1 Gb/s point to multipoint link over one single-mode fi ber, with a reach of up to 20 km

1000BASE-BX10 1 Gb/s point-to-point link over one single-mode optical fi ber

10GBASE-X Physical coding sublayer for 10 Gb/s operation over XAUI and four lane PMDs

10GBASE-T 10 Gb/s over UTP

10GBASE-CX4 10GBASE-X encoding over four lanes over shielded balanced copper cabling

10GBASE-R Physical coding sublayer for serial 10 Gb/s operation

10GBASE-W Physical coding sublayer for serial 10 Gb/s operation that is data-rate and format com-
patible with SONET STS-192c

10GBASE-S PMD specifi cations for 10 Gb/s serial transmission using short wavelength

10GBASE-SR 10GBASE-R encoding and 10GBASE-S optics (up to 300 m)

10GBASE-SW 10GBASE-W encoding and 10GBASE-S optics

10GBASE-L PMD specifi cations for 10 Gb/s serial transmission using long wavelength

10GBASE-LR 10GBASE-R encoding and 10GBASE-L optics (up to 10 km)

10GBASE-LW 10GBASE-W encoding and 10GBASE-L optics

10GBASE-LX4 10GBASE-X encoding over four WWDM lanes over multimode fi ber

10GBASE-E PMD specifi cations for 10 Gb/s serial transmission using extra long wavelength

10GBASE-ER 10GBASE-R encoding and 10GBASE-E optics

10GBASE-EW 10GBASE-W encoding and 10GBASE-E optics

There are some converters and other interfaces such as the Gigabit Interface
Converter (GBIC) that allow confi guration of each gigabit port for short-wave (SX),
long-wave (LX), long-haul (LH), and copper physical (CX) interfaces.

2.6.1.2 Ethernet MAC Layer
The Ethernet’s MAC layer provides services to its clients, that is, the sublayers
above it—the LLC sublayer, bridge relay entity (as described later), or other
users of the MAC layer. Basically, these services include sending and receiving
frames to allow the LLC sublayer to exchange data with a peer LLC sublayer.
MAC services may provide support for resetting the MAC sublayer to some

2.6 Data Networks 43

state, and an optional MAC control sublayer may add control services to the
MAC sublayer, such as fl ow control between the MAC clients. From a frame
processing perspective, the main issue of Ethernet MAC is Ethernet frame types
and formats, and it is important to know them since manipulations of these
frames might be required in network processing. The Ethernet, however, has
many types and formats of frames, depending on the standards, and the evolu-
tion of the Ethernet.

The original Ethernet II frame contained addresses (sender and receiver), the
type of the payload, and some header bits. Although the length is signifi cant in
the Ethernet protocol, the length was supposed to be defi ned in the payload;
this was unacceptable to the IEEE802.3 standards committee due to the inde-
pendency principle required in each of the layers.23 So, the defi ned 802.3 frame
is a bit different from that of the Ethernet II, and length fi eld is used instead of
the type fi eld as described in Figure 2.20.24 Nevertheless, as can be seen, the for-
mat of the Ethernet II frame is supported by including the option of having the
type of the MAC clients (commonly known as the Ethertype) in the Length/Type
fi eld. As a matter of fact, most Ethernet frames still contain Ethertype rather than
frame Length.

The preamble is used for synchronization, and is composed of alternating bits
of 1 and 0, forming seven bytes of 0xAA. The preamble is terminated by the Start
of Frame Delimiter (SFD) fi eld, which “breaks” the alternating bits by one byte of
0xAB. Following this header, the destination and source address fi elds are defi ned,
where the destination address identifi es the host(s) that should receive the

23Each layer has to function independently, without using fi elds that contain information managed
by other layers. Length is an outcome of a specifi c layer; in our case, of the MAC. The MAC layer
should not expect another layer to put length somewhere in order to function properly, since it
breaks the independency principle. And, if length is not there (that is, not provided by another layer,
as Ethernet II MAC expects), the MAC layer will not work.
24Please note that the order of the bytes in Figure 2.20, moves from right to left, and not as is custom-
ary in similar fi gures. But, as Figure 2.20 indicates, the fl ow of the frame moves from left-to-right; that
is, transmitting bytes into the imaginary medium to the right of the frame.

Preamble

46-1500 bytes

S
FDDestination

Address
Source
Address

Le
ng

th
/

Ty
peMAC Client Data +

PaddingFr
am

e
C

he
ck

S
eq

ue
nc

e

4 bytes

2 bytes

6 bytes

6 bytes

1 byte

7 bytes

Bytes from the packets are transmitted from the preamble to the frame check sequence

Bits from each byte of the packets are transmitted LSB (b0) to MSB (b7)

Optional Extension

FIGURE 2.20

Ethernet MAC frame format (from right to left)

44 CHAPTER 2 Networking Fundamentals

frame, and the source address identifi es the sending host. The fi rst bit (LSB) in
the destination address fi eld is called I/G, and indicates whether the destination
address is an individual (0) or a group address (1). The source address is always
an individual address; hence, its leftmost bit is always 0. The second bit is called
U/L, and distinguishes between addresses that are administered universally (0) or
locally (1). The remaining 46 bits identify either a unique individual host according
to an assigned value, or a defi ned group of hosts (multicast), or all hosts on the
network (broadcast, indicated by an all ‘1’ address).

Addresses are known as MAC addresses, and are usually marked as six bytes in
the notation XX:XX:XX:XX:XX or XX-XX-XX-XX-XX. In order to approach a specifi c
host, its Ethernet MAC address must be known to the sending host. If there are
several Ethernet interfaces to a host, it can be approached by any of the various
interfaces, using their specifi c MAC addresses. This poses the problem of having to
maintain a dictionary or an address book in order to communicate between peer
hosts, if broadcast or multicast addresses are not to be used.

The next two bytes have two possible meanings. Since frame length is limited
to 1536 bytes (which equals 0x0600, in hexadecimal notation), then a frame con-
taining any value greater than or equal to 0x0600 indicates that this fi eld contains
the type (or nature) of the MAC client; that is, this fi eld should be interpreted as
the Ethertype, and the frame is an Ethernet II frame. This frame format, Ethernet II,
that uses the Length/Type fi eld for Ethertype, is the most frequent format used. If,
on the other hand, the value is less than 1536 (or 0x0600), this fi eld contains the
length of the MAC client data, and the frame is called an 802.3 frame.

All 802.3 frames must contain a LLC header at the beginning of their payload.
Ethertype is conveyed in 802.3 frames by a specifi c protocol and header, the Sub-
network Access Protocol (SNAP), which has an encapsulated LLC/SNAP header, as
described in the following. Some common Ethertypes are listed in the table below.25

The payload—the MAC client data—comes after the Length/Type fi eld. The
data fi eld must be of some minimum size for correct CSMA/CD protocol operation;
these minimums are described in the following. If it does not meet the minimum,
the data fi eld is extended by adding extra bytes to pad it.

Minimal frame size is necessary, since the collision detection mechanism
requires that the worst round trip time of a transmitted frame in the LAN seg-
ment will be at least the same as the frame transmission time. This ensures that a

25The entire list is at http://standards.ieee.org/regauth/ethertype/eth.txt

0x0800 Internet Protocol (IPv4) 0x0806 Address Resolution Protocol

0x8035 Revered ARP (ARP) 0x809B Ethertalk (AppleTalk)

0x8100 802.1Q tagged frame 0x86DD Internet Protocol (IPv6)

0x8847 MPLS unicast 0x8848 MPLS multicast

2.6 Data Networks 45

collision, if it happens, will be detected by the transmitting host. In the Ethernet,
a round trip is limited to 50 �s (equivalent to 2500 m propagation of the bits in a
copper transmission channel). This means, for example, that at a transmit rate of
10 Mbps, 500 bits are transmitted in this time.

This round-trip propagation is called the slot time and is expressed in bits time. At
8 bits per byte, the slot time of 10 Mbps is slightly <64 bytes, which determines the
minimum frame size of 10 Mbps Ethernet. The same minimal frame size is used for
the 100 Mbps Ethernet, which means that the network span (diameter) is reduced by
a factor of 10; that is, to about 200 m. In 1 Gbps Ethernet, it became impractical to scale
the network diameter down again by a factor of 10 just to maintain frame compat-
ibility (i.e., a minimal frame size of 64 bytes), so the solution was to extend the frame
by appending bytes after the FCS fi eld, just to have the collision detection mechanism
work. (The receiver automatically ignores this extension fi eld.) In this case, the 200-
meter network diameter remains, as well as the minimal 64 bytes frame, and the slot
time becomes 4096 bits time. This means that the minimum frame, with the exten-
sion fi eld, should be 512 bytes. IEEE802.3 standard defi ned a minimum frame size
of 520 bytes for 1000BASE-T, and 416 bytes for 1000BASE-X (because it uses 8B/10B
encoding, which requires 10 bits transmission or receiving for each byte).

The last fi eld is the Frame Check Sequence, which contains the calculated Cyclic
Redundancy Check (CRC) of the main frame-fi elds (addresses, type/length and data
fi elds), for validating the frame by the receiving host.26 This fi eld is transmitted from
the most signifi cant bit (MSB) of the entire 4 bytes fi eld to its least signifi cant bit
(LSB) (i.e., b31 to b0). This is in contrast to all other fi elds of the frame, which are
sent byte after byte, with their least signifi cant bit fi rst.

An additional inter-frame gap of 96 bits was defi ned by the IEEE802 for all
 Ethernet rates in order to separate frames and allow the correct CSMA/CD
 algorithm to work. In the case of 1 Gbps Ethernet, a host can initiate a transmission
of a sequence of frames, known as burst mode transmission, without contending
for the medium as required in a normal CSMA/CD operation. The maximum burst
size is 8K bytes, composed of a sequence of regular frames (of which only the
fi rst requires the extended fi eld), with an inter-frame gap of 96 bits in between
them. This is not to be confused with a nonstandard industry practice of using
Jumbo Frames of size 9216 bytes (which is large enough to carry 8K bytes and
small enough to maintain the CRC effectiveness).

Subnetwork Access Protocol is used to identify the Ethertype when the
IEEE802.3 frame is used, as described above (Type/Length of the frame is its
length, and is <0x0600) [186]. A SNAP header is preceded by the LLC header, and
both are encapsulated in the 802.3 frame (since LLC is described in IEEE802.2
[185], this type of frame is often called IEEE802.2/802.3 Encapsulation [358]).
Basically, LLC provides mechanisms for connection and connectionless modes
of data link services, with optional fl ow control and retransmission based on

26More details are provided in Chapter 5.

46 CHAPTER 2 Networking Fundamentals

sliding window protocol (e.g., High-level Data Link Control, HDLC [193]), but
it is out of the scope and interest of this book. For our purposes, for providing
Ethertype, LLC uses an “unnumbered information” (UI) frame, carrying the SNAP
PDU, which contain the Ethertype (called Protocol IDentifi er, PID), as shown in
Figure 2.21.

Logical Link Control uses specifi c addresses, called Service Access Points (SAP,
an OSI terminology) to indicate the services in the higher layers that use the
LLC. The Destination Service Access Point (DSAP) is the address of the frame’s
intended destination, and the Source Service Access Point (SSAP) is the address
of the source that initiated the frame; in the case of SNAP, both addresses are
0xAA. The control Field contains either commands or responses according to the
LLC protocol and the state of the protocol, and for SNAP it contains 0x03, which
means Unnumbered Information, UI. The information fi eld contains the required
information according to the LLC protocol and its state, and in the SNAP case, it
contains three bytes of the Organizationally Unique Identifi er (OUI) (which is
always 0x00-00-00), followed eventually by the two bytes Protocol Identifi er (PID).
For instance, the Ethernet 802.2/802.3 encapsulated frame that conveys an IP data-
gram looks like the frame shown in Figure 2.22.

2.6.1.3 Ethernet Evolution
There has been continuous effort by the IEEE802.3 standards committee to keep
updating the Ethernet protocol suite. As of 2008, the following standards are
 completed; some are integrated into the current IEEE802.3-2005 standard:

IEEE Std 802.3z-1998, Gigabit Ethernet (1000BASE-X).
IEEE Std 802.3ab-1999, 1000BASE-T (1GbE over 4 pairs of category 5 copper wire).
IEEE Std 802.3ac-1998, Frame extensions for Virtual LAN (VLAN) tagging.

DSAP
Address

0 or more bytes

SSAP
Address

ControlInformation

1 or 2 bytes 8 bits 8 bits

(a) LLC PDU format

0xAA

5 bytes of SNAP

0xAA0x03

8 bits 8 bits 8 bits

OUI
0x00-00-00PID

(b) SNAP conveyed

FIGURE 2.21

IEEE802.2 LLC/SNAP encapsulation (from right to left)

2.6 Data Networks 47

IEEE Std 802.3ad-2000, Aggregation of multiple link segments.
IEEE Std 802.3ae-2002, 10Gb/s Ethernet (over fi ber; 10GBASE-S/L/E R/W).
IEEE Std 802.3af-2003, DTE Power via MDI.
IEEE Std 802.3ah-2004, Ethernet in the First Mile (subscriber access network).
IEEE Std 802.3ak-2004, 10GBASE-CX4 (over twinax).
IEEE Std 802.3an-2006, 10GBASE-T (over UTP).
IEEE Std 802.3ap-2007, Backplane Ethernet (for printed circuit boards).
IEEE Std 802.3aq-2006, 10GBASE-LRM (over multimode fi ber).
IEEE Std 802.3as-2006, Frame Expansion.
IEEE Std 802.3-2005/Cor 1-2006 (IEEE 802.3au) DTE Power Isolation Corrigendum.
IEEE Std 802.3-2005/Cor 2-2007 (IEEE 802.3aw), 10GBASE-T Corrigendum.

As of 2008, there are still several study groups working on various issues, and drafts
that are in process, as follows:

IEEE P802.3ar, Congestion Management Task Force.
IEEE P802.3at, DTE Power Enhancements Task Force.
IEEE P802.3av, 10Gb/s PHY for EPON Task Force.
IEEE 802.3ax, (IEEE P802.1AX) Link Aggregation Task Force.
IEEE 802.3az Energy-Effi cient Ethernet Task Force.
IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force (previously Higher
 Speed Study Group—HSSG).

2.6.1.4 Ethernet Networking
The Ethernet started as a communication means for many hosts, sharing one
medium, as one LAN. It was possible to extend the diameter of this LAN by using
repeaters and hubs functioning at the physical layer, as described above. It created
a broadcast domain; that is, a domain in which every frame reaches all the hosts on
the network. However, scalability became impractical when many hosts competed
for a clear gap in which to transmit, and when all collisions had to be detected
throughout the entire network.

Two main directions were taken to allow Ethernet networking and scalability
at the network layer (L2, not the internetworking layer-L3). The fi rst was to sepa-
rate a physical LAN into many manageable virtual LANs (VLANs) by frame tagging

Preamble

Information

S
FD

Destination
Address

Source
Address Le

ng
th

IP Datagram

Fr
am

e

C
he

ck

S
eq

ue
nc

e

4 bytes 2 bytes 6 bytes 6 bytes 1 byte 7 bytes

Optional
Extension

Ty
pe

 �
 0

80
0

D
S

A
P

�
A

A

S
S

A
P

�
A

A

C
on

tr
ol

�
0

3

O
rg

 c
od

e
�

0

0
-0

0
-0

0

802.3 MAC Header
802.2 LLC

Header 802.2 SNAP

38-1492 bytes

FIGURE 2.22

IP datagram in 802.2/802.3 frame (from right to left)

48 CHAPTER 2 Networking Fundamentals

(IEEE802.1Q [184]), and the second was to attach several manageable LANs by
bridges and switches among them (IEEE802.1D [183]). Higher layers for Ethernet
networking scalability are described later, mainly the IP and metro Ethernet (or car-
rier class Ethernet). It should be noted that these directions were not taken specifi -
cally for the Ethernet (IEEE802.3), but can be used for any LAN, and therefore are
defi ned by IEEE802.1. However, since practically the only relevant LAN technology
is the Ethernet, we refer from here on just to the Ethernet.

2.6.1.4.1 Virtual Local Area Networks
Ethernet virtual LANs (VLANs) were created by simply amending the Ethernet II
frame and creating a new Ethertype, 0x8100, that identifi es the frames as tagged
frames to be used for VLANs (Figure 2.23) [184]. Each created VLAN is identifi ed
by its 12 bits VLAN ID (VID). There are two reserved VIDs (0, which means a frame
that is actually not a VLAN frame and tagging is used just for assigning priority, and
0xFFF, which is reserved for implementation use). Thus, there are 4094 (i.e., 212-2)
possible VLANs in a network. This is quite enough to include all the LANs in even
a big enterprise, but it is far from enough for public use, or carrier class Ethernet.
Solutions are described in the following.

Hosts are assigned to different VLANs either according to the port of the VLAN
equipment they are connected to (port-based), the host’s MAC address (MAC-
based), the applications (protocol-based), or otherwise. Having many VLANs allows
the physical separation of LANs, since each VLAN is a broadcasting domain, and
hosts across the VLAN are normally inaccessible to one another. Figure 2.24 is an

Source
Address
(6 bytes)

Destination
Address
(6 bytes)

TL
Data

(42-1496 bytes)
FCS

TP
ID

TC
I

VLAN ID, identifying 4094 possible VLANs

S
FD

Inserted Fields

12 bits

Preamble—7 bytes of 0�AA
SFD—Start Frame Delimiter (1 byte, always 0�AB)
TPID—Type ID (Ethertype), 2 bytes (always 0�8100 for 802.1q)
TCI—Tag Control Information, 2 bytes
CFI—Canonical Format Indicator
TL—Type / Length (2 bytes)
FCS—Frame Check Sequence (4 bytes of CRC-32)

Preamble
(7 bytes)

User Priority

3 bits
802.1p

CFI

1 bit

FIGURE 2.23

Ethernet II tagged VLAN frame (from right to left)

2.6 Data Networks 49

example of a VLAN network composed of three virtual LANS (A, B, and C) to which
hosts are connected; each host belongs to one of the three LANs. These LANs can
be functional, organizational, geographical, or simply match the assigned IP subnet-
working. In some cases such as protocol-based VLAN, a host can be connected to
several VLANs, as each application in the host can be assigned to a different VLAN
according to the upper-layer protocol it uses. Trunks in VLANs are segments of the
LAN that carry the tagged frames (the thick connections in Figure 2.24), and usu-
ally connect network nodes (VLAN equipment).

Access and trunk ports are two port modes that are defi ned for each port of
the VLAN equipment. Hosts are connected through the access ports, and usually
use untagged Ethernet frames. The trunks between the VLAN equipment are con-
nected to the trunk ports of the equipment.

2.6.1.4.2 Bridging and Switching
Bridges and switches27 were introduced for two purposes: (1) allowing scalability
in terms of having as many hosts as required share the LAN, as was noted above,
and (2) reducing the number of hosts on a shared medium so that collisions can

27Bridges are switching devices by function, so the term “switch” is widely used to describe what the
IEE802.1 calls bridges (the term “switch” is not used in any of the IEE802.1 standards).

C

B

A

VLAN A, B, C

VLAN A, B

VLAN B, C

C

B

C

A
C

B
A

C
A

B

A C
B

A

C A

A

VLAN A, B, C

VLAN A, C

FIGURE 2.24

VLAN example

50 CHAPTER 2 Networking Fundamentals

be avoided and the result will be better utilization of the LAN. (The number of
hosts on a shared medium can be as low as one, connected to the switch, in what
is called micro-segmentation.) Scalability and better utilization of LANs were
achieved by creating a network of LANs in the second layer (it was also done by
IP in the third layer, creating a network of networks, as described in the follow-
ing). In order to achieve a network of LANs in the second layer, bridges with two
ports or more are used to connect the LANs together (even heterogeneous LANs
based on different LAN technologies). Bridging28 is done at the second layer (L2)
of the networking stack by duplicating frames from one side of the bridge to one
of its other sides. In other words, a bridge is made between one “leg” (a connec-
tion the bridge has on one LAN), to another “leg,” or connection to another LAN
(e.g., LAN A and LAN B in Figure 2.25 are connected by Bridge A, using its ports
1 and 2, respectively).

Switching is used sometimes in a broader sense than bridging, to indicate
the switching of frames or packets not only for bridging but for other purposes

28There are basically two types of bridging—Source-Routing and Transparent Routing. This subsec-
tion describes only transparent bridging. Source-routing bridging is based on a specifi c route that
is appended to each of the frames at and by the source, so that bridges know how and where to
forward the frame. Transparent bridging relays the native frames, based on spanning tree algorithms
and protocols that are described in this subsection. Source-Routing Transparent (SRT) bridging is a
mixed operation of the two types [185].

LAN B

LAN D

Bridge B

Bridge C

LAN C

Bridge A

LAN A

Port 2

Port 1

Port 2

P
or

t
2

Port 1

P
or

t
1

Port 3

FIGURE 2.25

Bridged LAN

2.6 Data Networks 51

as well; for example, optical switching described in the telecommunication
equipment. Two basic switching mechanisms exist: store-and-forward, and cut-
through. In store-and-forward switching, the entire frame or packet is received,
buffered, analyzed and then switched, or forwarded. In cut-through switching, on
the other hand, the frame or the packet is switched as soon as it enters the switch,
delayed just long enough to allow the switch to analyze the head of the incoming
frame and to identify where to forward it.

Going back to the basic bridging mechanism described previously, one can note
that there might be a problem. In a network with many bridges or switches, some
topologies might create multiple paths between a source node and its destination.
Although multiple paths may be good for avoiding redundancy and for creating
alternative paths between sources and destinations, they can also pose the prob-
lem of loops. Since frames are copied from one side of the bridge to its other side,
frames may be duplicated and start looping in the network, multiplying themselves
further on, until a broadcast storm may happen.

An example of such a broadcast storm can be seen in Figure 2.25, where frames
received from LAN B by port 1 of Bridge B are copied into LAN D, then to LAN C by
Bridge C, and again to LAB B by port 2 of Bridge A, and then they continue looping
endlessly.

To prevent this, a spanning tree must be constructed over the network in
order to eliminate and disable such “loops” (rings, or closed paths). A spanning
tree should be confi gured and maintained throughout the entire life of the net-
work, and all bridges should take part in it. The resulting tree, based on the net-
work nodes and links, is called the active network. The Spanning Tree Protocol
(STP) is used for establishing the active network, and has many variants. Since
the spanning tree is an important algorithm and protocol for networks of LANs
(actually, bridged networks), it deserves elaboration, and is described in the next
subsection.

In principle, bridging contains three main processes: (a) establishing and main-
taining the spanning tree, (b) learning MAC address locations, and (c) forwarding
frames accordingly. A spanning tree is created with all bridges and LANs in the net-
work by assigning (or confi guring) a state to each port (port state) in every bridge
in the network; the fundamental port states are discarding, forwarding, or learn-
ing,29 where the forwarding state includes learning activity. Then each port of each
of the bridges either forwards the frames from an incoming port to another port
(by simply relaying the frames), or it discards the incoming frames. This bridging
decision is based on fi ltering information that is kept in a fi ltering repository
(called a fi ltering database) and is an outcome of the learning process and admin-
istrative confi guration. The learning process is based on the source MAC address of

29Several other port states exist for the sake of the spanning tree mechanism to function, some of
which were used by STP and are no longer used by Rapid STP (RSTP). They are also recognized by
the IETF Bridge MIB description [95]. Such states include disabled, blocking, listening, and broken,
which describe various reasons for the discarding state.

52 CHAPTER 2 Networking Fundamentals

the incoming frames and the port they came through, so the bridge knows which
hosts are reachable from this port; that is, where hosts with certain MAC addresses
reside.30 If the frame is not fi ltered, then the frame is forwarded to the port from
which the destination host is reachable (if its MAC address is found in the fi lter-
ing database; otherwise, it is broadcasted to all ports). The fi ltering information is
either static (explicitly confi gured) or dynamic (collected by the learning process
during normal operation of the bridge). In order to prevent data explosion in the
fi ltering database, as well as to enable updated operation of the bridge, there is an
aging process that erases old entries that exceed some age threshold. This fi lter-
ing information enables the forwarding process to query about the bridge’s out-
bound port for an incoming frame with a given destination MAC (or to discard the
frame).

An extension of the fi ltering services enables registration of a group of MAC
addresses by the Multiple Registration Protocol (MRP) [182] used by the MRP MAC
Address Registration Protocol (MMRP) described in this chapter’s Appendix A.
MRP creates, updates, and removes groups of MAC addresses from the fi ltering
database once allowed to do so by the bridge management services.

In a bridged LAN, broadcasting is still required and happens when frames with
broadcasting addresses are used, or when frames with unknown (or aged) MAC
addresses enter the bridged LAN. In a big network, when thousands of hosts are
connected, big fi ltering databases are required for each of the bridges to allow
unicast relaying of frames. In other words, a MAC destination address will be used
in each of the bridges along the path to relay the frame to its destination, without
the need to broadcast it. This becomes unmanageable, if not impractical, when a
bridged LAN becomes large enough, or broadcasting of frames happens more fre-
quently than required, which decreases LAN utilization.

Bridging can change, since there are many forces that can cause current bridg-
ing techniques to be insuffi cient. Frame forwarding has to consider priorities, class
of service and drop eligibility,31 as well as various types of higher IP layers’ classes
of service (e.g., Integrated Services, IntServ; Differentiated Services, DiffServ, as
described in the following). The concept of “network span” is also modifi ed, and
VLANs separate the network to subnetworks that enclose traffi c and allow cus-
tomer separation not only in the enterprise, but also for service providers. Finally,
learning from source addresses also changes from learning from every port
and frame to independent learning in each VLAN, and eventually, for scalability
 purposes, learning only when forwarding decisions are affected (as described in
the carrier class Ethernet).

30This assumes a symmetric traffi c; that is, if a host with a MAC address X sends a frame, it is “regis-
tered” to some port in every bridge along the frame’s path, and then, any other frame returning to
this host will use the same path to access this host. In other words, frames from address A to B use
the same path that frames from B to A use.
31These issues are detailed in Chapter 6.

2.6 Data Networks 53

2.6.1.4.3 Spanning Tree
The basic spanning tree algorithm assigns the following roles to bridges and
bridges’ ports:

� Identifying a unique Root Bridge (RB) for the entire network,
� Identifying a unique Root Port (RP) on each bridge (a specifi c port through

which the bridge is connected to the RB), and
� Identifying a Designated Bridge (DB) and its Designated Port (DP) for each

LAN (a specifi c port of a bridge that is connected to the LAN, through which
the LAN prefers to be connected to the rest of the LANs).

Once these roles are established, a spanning tree is created with a unique
path from each LAN to the RB (through the designated bridge and port and
then through the root ports of every bridge along the path). This, then, obvi-
ously creates a unique path between any LAN to any other LAN, with no loops
(closed paths). For example, the bridged LAN of Figure 2.25 would look like
the network shown in Figure 2.26 after assigning the right roles to the bridges
and to the ports, and deciding on the right states of the ports (forwarding and
 discarding).

LAN B

 LAN C

LAN D

Bridge A

Bridge C

Bridge B

 Port 3

LAN A

P
or

t
1

P
or

t
2

Port 1

Port 1

DP DP

DP

RP

RP

DP

RB

RB—Root Bridge
RP—Root Port
DP—Designated Port

Port 2

Port 2

FIGURE 2.26

Spanning tree of the bridged network depicted in Figure 2.25

54 CHAPTER 2 Networking Fundamentals

There are, however, many possibilities for establishing the above roles and
the resulting spanning tree, and several protocols exist to carry the required
 information, synchronize all of the bridges, and respond to modifi cations, failures,
and other events in the networks.

The fi rst and most important protocol was the STP [183, 350]. This protocol
is a distance-vector32 type protocol and is pseudo-static; that is, it is based on a
timer used to change states. It requires almost a minute to reconfi gure. STP was
replaced by the Rapid Spanning Tree Protocol (RSTP), which was specifi ed previ-
ously in IEEE802.1w (which was later incorporated into IEE802.1D), and is prin-
cipally quite similar to STP, although it has some substantial modifi cations. Since
STP is only used in legacy systems, and RSTP is backwards compatible to STP,
we focus on describing RSTP in Appendix B. The main differences are that RSTP
uses timer-free reconfi gurations in point-to-point bridge connections (which are
very common in current LAN deployments), and communicates ports’ roles and
states, thus allowing reconfi guration in as little as a few milliseconds.

2.6.1.4.4 Bridging, Switching, and Virtual Local Area Networks
Bridging or switching and LAN separation into VLANs can coexist, and usually
they do; in other words, bridging is done in most networks that are composed of
many VLANs. In principle, there are two basic possibilities for spanning trees in the
bridged VLAN: a per-VLAN spanning tree, or a common spanning tree. IEEE802.1Q
[184] describes the essential changes required in VLANs and in bridging in order to
enable both functions, and suggests a compromise solution; that is, several VLANs
using one of several active topologies. The entire network works as a collection of
many bridged VLAN networks, working in parallel. VLAN hosts can interact through
specifi c points where cross-VLAN network transmission is allowed (e.g., in the
third layer, or the IP).

Bridged VLAN networks determine the active topologies and the assignments
of VLANs to these active networks by using a modifi ed STP. Multiple Spanning
Tree Protocol (MSTP, known as IEEE802.s, which was later incorporated into
IEEE802.1Q), defi nes several active networks, such that each of the active networks
is used by several VLANs as a loop-free topology. This creates multiple spanning
trees in the VLAN trunks, and therefore multiple forwarding, independent paths
for data traffi c, and load balancing and redundancy in the bridged network. MSTP

32Without going too much into graph theory, there are basically two types of network connectivity
or routing approaches: distance-vectors and link-states. In distance-vector, each node knows only its
neighbors and the distance to them, and publishes this information to its neighbors. Eventually, a con-
sistent mapping is created at each node, telling it which link it should use in order to reach any node
in the network (without knowing the entire path). In link-state (sometimes referred to as Dijksta’s
algorithm), every node knows the entire topology of the network, and maintains a consistent view
of the network topology by exchanging its distance information—that is, its link states—with all the
other nodes.

2.6 Data Networks 55

actually extends the RSTP algorithm to handle multiple spanning trees, and uses all
RSTP improvements.

In a Multiple Spanning Tree (MST) bridged VLAN network, the learning pro-
cess of MAC addresses, and ports, described previously, is also infl uenced by the
VLAN association of the port, protocol, or whatever defi nes the VLAN. The learn-
ing process can either be used for each VLAN independently (called Independent
VLAN Learning, IVL) or shared between VLANs (called Shared VLAN Learning, SVL).
Additionally, the fi ltering database includes Filtering Identifi ers (FIDs). Each FID
identifi es a set of VLAN Identifi ers (VIDs) that share the same learning process of
MACs and ports and each is assigned to one of the spanning trees, called Multiple
Spanning Tree Instance (MSTI).

An MST region is identifi ed by all of the bridges that participate in the MST defi -
nitions (by sharing the MST and being confi gured within it), and each of the bridges
in an MST region is identifi ed by a MST Confi guration Identifi er (MCID) specifi c
to this MST region. All MST regions and “Single-Spanning-Tree” (SST) networks that
are connected together compose a single Common Spanning Tree (CST). In a CST,
an MST region appears as a single, virtual bridge to its surrounding MST regions
and SST networks. In order to cover all bridges, including those in the MST regions,
and to enable forwarding paths throughout MST regions and SST bridges, a Com-
mon and Internal Spanning Tree (CIST) is established, which is composed of the
spanning tree paths in the CST created by SST bridges (calculated by STP or RSTP)
and internal paths in the MST regions.

The internal connectivity throughout the MST bridges of an MST region is called
the Internal Spanning Tree (IST), and is defi ned by the MSTP as MSTI number 0.
This is a sub-tree that is a logical continuation of the “external MST region” span-
ning tree that connects all bridges in the MST region. The end result, therefore, is
that CIST is a collection of the CST, SST bridges, and all ISTs of the MST regions,
and correlates to every IST inside an MST region and the CST outside the MST
regions.

This entire confi guration is demonstrated in Figures 2.27 and 2.28. Figure 2.27
shows a four-region case, in which two regions are MSTs and two are SSTs. The
dashed lines indicate links that are not used for the spanning tree. In each MST the
IST is shown, and for MST Region A, two more examples of MSTIs are shown (MSTI
1 and 2). Figure 2.28 shows the CST (on the left) and the detailed CIST (on the
right) of the same MST shown in Figure 2.27.

Detailed explanations of MSTP are beyond the scope of this book, and inter-
ested readers can refer to the standard [184] or the vast literature describing MSTP.
Further development of spanning trees and other means to scale up the bridged,
switched network happens continuously, and some of it is revisited later in this
chapter when we discuss the carrier-class Ethernet.

2.6.1.4.5 LANs Networking Evolution
There has been continuous effort by the IEEE802.3 standards committee to
keep updating the Ethernet networking protocol suite. As of 2008, the following

56 CHAPTER 2 Networking Fundamentals

 standards were completed; some are integrated into the current IEEE802.1D-2004
and IEEE802.1Q-2005 standards:

802.1D (1998)—MAC bridges and Spanning Tree Protocol.
802.1D (2004)—MAC bridges and Rapid Spanning Tree Protocol.
802.1G—Remote MAC bridging.

MST Region A
SST Region

MST Region B

ST

ST

MSTI 0 (IST)

MSTI 0 (IST)

MSTI1
MST Region A

MST Region A
MSTI 2

ST—Spanning Tree
MST—Multiple ST
SST—Single ST

MSTI—MST Instance
IST—Internal ST

SST Region

FIGURE 2.27

Multiple spaning tree example

(a) CST

(b) CIST

CIST root

CST—Common Spanning Tree
CIST—Common and Internal Spanning Tree

FIGURE 2.28

The CST and CIST of the MST of Figure 2.27

2.6 Data Networks 57

802.1p— Traffi c Class Expediting and Dynamic Multicast Filtering (Priority tags,
published in 802.1D-1998).

802.1Q (2005)—Virtual LANs.
802.1s—Multiple Spanning Trees (published in 802.1Q-1998).
802.1v—VLAN Classifi cation by Protocol and Port (published in 802.1Q-1998).
802.1w— Rapid Reconfi guration of Spanning Tree (fast spanning tree, published

in 802.1D-2004).
802.1X—Port Based Network Access Control (authentication).
802.1AB—Station and Media Access Control Connectivity Discovery.
802.1ad—Provider Bridges (link aggregation control protocol).
802.1AE—MAC Security.
802.1af— MAC Key Security (Authenticated Key Agreement for MACSec, incor-

porated into 802.1X).

As of 2008, there are also still several study groups working on various issues
and drafts that are in process, as follows:

� Interworking
– 802.1AC—Media Access Control Service revision (VLAN tagging).
– 802.1ag—Connectivity Fault Management.
– 802.1ah—Provider Backbone Bridges.
– 802.1aj—Two-port MAC Relay.
– 802.1ak—Multiple Registration Protocol.
– 802.1ap—VLAN Bridge MIBs.
– 802.1aq—Shortest Path Bridging.
– 802.1Qaw— Management of Data-Driven and Data-Dependent Connectivity

Faults.
– 802.1Qay—Provider Backbone Bridge Traffi c Engineering.

� Security
– 802.1AR—Secure Device Identity.

� Audio/Video Bridging
– 802.1AS—Timing and Synchronization.
– 802.1Qat—Stream Reservation Protocol.
– 802.1Qav— Forwarding and Queuing Enhancements for Time-Sensitive

Streams (correlates to 802.1Qaz).

� Data Center Bridging
– 802.1Qau—Congestion Notifi cation.
– 802.1Qaz— Enhanced Transmission Selection for Bandwidth Sharing

between Traffi c Classes (correlates to 802.1Qav).

2.6.1.4.6 Layer 2 (Ethernet) Summary
In this subsection, we described the Ethernet, which provides layer 2 communica-
tion that enables two (or more) hosts to communicate in a local network by using
the MAC addresses to reach each other. In order to do so, MAC addresses must

58 CHAPTER 2 Networking Fundamentals

be known to both of the participating hosts. This creates two problems: (a) it is a
huge scalability issue, as it is simply impractical to maintain a database of all MACs
of all network interfaces of all servers and all applications running on them as well
as peer computers and their applications, and (b) it is a highly infl exible solution
even in small-scale networking. For example, each time a server-application or a
client-application changes its MAC address (e.g., replaces a hardware platform), a
new MAC address must be associated with it and distributed to all peers that want
to communicate with it.

To solve this issue, layer 3 offers IP addresses that can be confi gured easily to the
hardware platform running the application, thus binding the required MAC addresses
needed for layer 2 communications. It is important to note that L3—or, specifi cally,
using IP—is effi cient, even required, not only for internetworking, but also inside
LANs (without L3 routing), as it deals with the isolation and independent use and
addressing of upper layers applications. This is described in the next subsection.

2.6.2 Internet Protocol
Internet Protocol is the most common platform for data-communications appli-
cations (e.g., e-mail, fi le-transfer, WWW), and recently even for many telecommu-
nications services (e.g., Voice over IP [VoIP] and TV over IP [IPTV]). The fourth
generation of the cellular phone system (4G) is also supposed to be based on IP
infrastructure. From being a data communication network-of-networks, as it was
until 2000, IP has become a multiservice network that is used for web applications,
triple-play platforms (3-play: Internet, telephony, and TV) or quadruple-play plat-
forms (with additional enterprise-class data applications, such as storage access),
Peer-to-Peer (P2P) services, and more.

Internet Protocol is also the dominant inter-networking standard, or layer 3
protocol, just as the Ethernet dominates layer 2 networking. IP emerged at the
beginning of the 1980s as a result of internetworking research at the U.S. DoD.
Although there is an “IP” standard [355], the IP network we usually refer to is based
on thousands of standards, but only very few of them actually defi ne most of the IP
network operations. The Internet suite of standards, IP, or TCP/IP as it is sometimes
called, is being standardized by the Internet Engineering Task Force (IETF), which
is the protocol engineering and development arm of the Internet Society.33 The
IETF publishes Requests for Comments (RFCs) that arrive from Internet experts,
companies, and research institutes, and some of them become standards.

33The Internet Society (ISOC) is a professional membership organization of Internet experts who
comment on policies and practices and oversee other boards and task forces dealing with network
policy issues. These include the Internet Assigned Numbers Authority (IANA), which is in charge of
all “unique parameters” on the Internet including IP addresses, and the Internet Architecture Board
(IAB), which is responsible for defi ning the overall architecture of the Internet, providing guidance
and broad direction to the IETF.

2.6 Data Networks 59

The Internet is not one homogenous network, but rather an aggregation of
many thousands of networks of all types—wireline and wireless, LANs and core
networks—that are used for data communications, multimedia, and telecommuni-
cations applications and services.

2.6.2.1 Internet Protocol Overview
The idea of the Internet is to append a header in L3 to the frame of L2, which will allow
routers in the IP network to route packets from network to network and from host to
host. IP network uses a connectionless, packet-switched, hop-by-hop routing mecha-
nism of datagrams. Layers above the IP are responsible for creating various connection
types for many applications (e.g., HyperText Transfer Protocol [HTTP] for web surfi ng
and more). The two connection types defi ned in the transport layer (L4) are Transmis-
sion Control Protocol (TCP) and User Datagram Protocol (UDP), as described in the
following. TCP is a connection-oriented transport service that provides reliability and
fl ow control. UDP is a connectionless (datagram) transport service.

The Internet Protocol uses 32-bit address fi elds in IP version 4 (IPv4) [355], or
128 bits in IP version 6 (IPv6) [98]. These addresses are easily confi gured, and each
host can have one or more IP addresses. IPv4 addresses are known by their four
numbered “dotted decimal” notation; for example, 132.71.121.67. The motivation
for using a 128-bit address resulted from a lack of addresses for current needs; how-
ever, intermediate solutions for IPv4 address shortages caused IPv6 to be adopted
slowly. IP addressing is discussed in more detail in Chapter 5.

The Internet Protocol binds IP addresses to L2 MAC addresses (for transmitting
packets on the Ethernet L2) by using Address Resolution Protocol (ARP) [352], which
runs directly on the Ethernet (EtherType is 0x806). The transmitting host broadcasts
an ARP packet, asking for the L2 MAC address of the receiving host that has the destina-
tion IP address. Either the MAC address of a host on the local network is returned (and
the L3 IP packet is directly transmitted to it), or the MAC address of a router is returned
(and the L3 IP packet is transmitted there for further routing in the IP network).

2.6.2.2 Internet Protocol Packet Routing
When the L3 IP packet leaves the local network at the beginning of its journey in
the Internet or in the IP network, it is forwarded by a router toward its destination
host. It’s crucial to understand the router function in a nutshell, as the router is the
principal instrument that enables the Internet. Routers are used to connect islands
of local networks, whether they be tiny or enormous, that broadcast and bridge L2
frames internally.

Each router maintains a routing table that contains as many entries as required to
perform routings in the IP network. Each entry contains at least a destination network
address and the router’s egress interface that matches this destination (the egress
interface is the actual router’s port through which packets leave the router). In other
words, a routing table is no more than a road sign that shows which road to take in
order to get to a destination. There is also one default entry, which dictates which
egress interface to take if there is no matched destination in the routing table.

60 CHAPTER 2 Networking Fundamentals

Packet forwarding is quite simple: each routing node examines the IP header,
and a routing decision is made according to the Destination IP address (DIP) and the
routing table maintained in that node. Based on this decision, the packet is routed
to the next hop router or to its host destination. However, the processing required
for such a routing decision might be quite demanding, especially since it has to be
done for each packet individually. In the simplest case of a “leaf” router—that is, a
router that connects a network to just one other network—there is no problem in
routing, and all packets are forwarded to the “default” next-hop. However, as rout-
ers become more central and have many destination addresses to handle and many
egress interfaces, it can become a problem to choose (best match) among the inter-
faces for the appropriate destination address. IP addressing itself is not trivial, and
the entire issue of IP addresses and the way they should be matched to the routing
tables is discussed in more detail in Chapter 5.

Since the Internet is huge and growing, and includes hundreds of thousands of
networks, a hierarchy approach is used for routing and networking. Autonomous
Systems (ASs) are defi ned as aggregations of networks (and routers), and used to
build an “overlaid” IP network of AS “nodes.”34 This overlaid network enables Inter-
net scalability by dividing the Internet into partitions, with each handling the
routing internally and independently (using routing protocols called Interior Gate-
way Protocols—IGPs), while using AS routing protocols (called Exterior Gateway
 Protocols—EGPs) between them.

Most IP operations (actual routing) are done in the data plane. In other words, IP
forwarding using routing tables at routing nodes in the network is part of the data
plane mechanism. As mentioned before, this might be a heavy computation burden
on the equipment in the critical data plane, and several solutions exist to assist;
for example, network processors in the routing equipment, and other forwarding
mechanisms—usually switching-based mechanisms—that allow routing to be done
faster and less painfully (such as Multi-Protocol Label Switching—MPLS, described
later). Maintaining the forwarding databases (e.g., the IP forwarding tables) is a con-
trol plane process. Routing protocols for IP, both IGPs and EGPs, are used to build
and maintain these databases, and are described in the following subsection.

2.6.2.3 Internet Protocol Routing Approaches and Protocols
There are many routing approaches and protocols that can answer the required
packet routing described in the preceding subsection. These approaches and proto-
cols can be classifi ed according to various criteria. We describe here a few protocols
and approaches that we fi nd relevant to network processing. We begin with plain,

34Every Internet Service Provider (ISP) as well as major organizations maintain their own Autono-
mous System (AS) or several ASs. Each Autonomous System is identifi ed by a unique number that,
until 2007, was 16-bits long (i.e., approximately 64 K ASs were possible in the Internet). In 2007, the
length was extended to 32-bits long (enabling 4 G unique ASs). This was done due to the growth of
the Internet, the consumption of ASs (about 10 a day), and the expectation that the 16-bit AS range
would be exhausted by 2010.

2.6 Data Networks 61

unicast routing protocols, continue to selective packet routing approaches (i.e., in
which packets are not equally treated), and conclude with multicasting protocols. It is
important not to confuse routing protocols (in the control plane) with packet routing
(in the data plane), despite the fact that we describe them in this subsection together.

2.6.2.3.1 Shortest-Path Routing Protocols
Routing algorithms are based on shortest-path algorithms, either vector distance
or link state algorithms. A vector distance algorithm is based on the distributed
Bellman–Ford algorithm, according to which every node exchanges updates of its
routing table with its adjacent neighbors. Based on the distance (“cost”) of the
link between the updating node and the receiving node, the receiving node can
calculate the best routing table to all nodes, and transmit the updates further on to
its adjacent neighbors. In link state algorithms, each node exchanges its distances
(“costs”) to its adjacent neighbors with all participating nodes (and not just its adja-
cent neighbors). This allows each node to calculate its routing table independently,
according to shortest-path algorithms such as Dijkstra, for example.

The results of the routing protocols, the “best” route from each network to
every other network, are kept in the routing tables in each of the routers connect-
ing the networks. In the data plane, the routers forward each packet according to
these routing tables; hence, packets coming from any network are routed to their
destinations along the shortest path possible.

The common routing protocols for IGP are Routing Information Protocol (RIP)35
[167, 293, 294] and Open Shortest Path First version 2 (OSPF2) [325], which are
based on distance vector and link state algorithms, respectively. The common pro-
tocol for EGP is the Border Gateway Protocol 4 (BGP-4)36 [365], which is a distance
vector algorithm based protocol.

These routing protocols use various layers and transport means in the IP net-
work: RIP uses port 520 of UDP, OSPF runs directly on the IP using protocol 89, and
BGP uses port 179 of TCP (ports and protocols are described in subsections 2.6.2.5
and 2.6.2.4, respectively).

2.6.2.3.2 Selective Packet Routing
The IP routing protocols described before are insensitive to the packets’ identity
and type, and as a result, they forward all packets similarly. However, it is clear that
not all packets should receive the same treatment by routers in the IP network,
because different kinds of packets represent different applications (e.g., e-mail versus

35There are actually three versions of RIP, the earliest routing protocol used in the Internet and
its preceding Arpanet. The fi rst version, RIPv1, does not support classless addresses (described in
Chapter 5), or subnets. RIPv2 includes the subnets issue and adds authentication to improve routing
security, and RIPng extends the RIP to handle IPv6.
36BGP is an extremely important protocol for interconnecting all networks, and it makes the Internet
a network of all networks. BGP principle is also widely used in protocols for other purposes than
interconnecting the ASs. BGP is described in the Appendix of the next chapter.

62 CHAPTER 2 Networking Fundamentals

real-time telephony). A comprehensive discussion of service types, requirements,
and handling is given in Chapter 6. At this point, it is important to note that the
need to differentiate between types of packets according to their “importance” or
service requirements has resulted in several routing models and approaches, which
can be categorized as: relative priority marking, service marking, label switching,
Integrated Services, static per-hop classifi cation, and differentiated services. These
are described next. It is also important to note, however, that the actual routing
protocols do not necessarily change in selective packet routing; it is the packet
handling in each of the routers that may be modifi ed. This is in contrast to non-
selective treatment, where just comparing the destination address with the routing
table is suffi cient for routing.

Relative priority marking is used when an application simply selects the rel-
ative priority (“precedence”) for the packet and marks the packet accordingly.
Examples of this model include VLAN tagging in Ethernet with a user priority indi-
cating relative precedence (IEEE802.1p, as can be seen in Figure 2.23), or the fi rst
three bits of the Type of Service fi eld of the IP header in the IP protocol standard
[15, 355].

Service requirement marking is another way to differentiate between packets.
In this model, explicit service requirements are marked in each packet; for exam-
ple, the four bits following the three precedence bits of the Type of Service fi eld of
the IP header in the IP protocol standard [15, 355]. These bits indicate “minimize
delay,” “maximize throughput,” “maximize reliability,” or “minimize cost” service
requirements.

The label switching model enables different treatment for each stream of pack-
ets by using a forwarding tunnel or a path that represents a specifi c service require-
ment from the network. This model is implemented in the layer under the IP layer
in the network that can carry IP traffi c, such as Frame Relay, Asynchronous Transfer
Mode (ATM) and Multi-Protocol Label Switching (MPLS).

An Integrated Services (IntServ) model [60] maintains the legacy routing mech-
anism, but adds a Resource Reservation Protocol (RSVP) [57, 432] that dictates
to each router how to handle each packet according to its classifi cation and the
reserved resources. IntServ is complicated and does not scale well, since there
should be an updated record in every router for each fl ow or stream of similar
packets with regard to their profi le and demands. The RSVP protocol that reserves
resources (usually bandwidth), maintains a resource database and keeps it updated.
RSVP requests resource reservation in one direction. Despite the fact that RSVP is
not a routing protocol,37 it is important, as it is used as a base for other protocols
for call set-up and traffi c engineering (e.g., RSVP-TE in MPLS, as described in the
following).

37RSVP runs at the same layer as IP, although it is encapsulated in IP packets (the IP protocol fi eld is
46 for RSVP).

2.6 Data Networks 63

The Static per-hop classifi cation model is a variant of the Integrated Services
model, where packet classifi cation and forwarding are static, and are only updated
by periodical administrative operations.

Differentiated Services (DiffServ) [54] is a refi nement of the relative priority
marking model. It is a simple model, according to which each packet is classifi ed
at the boundaries of the IP network and assigned to a “behavior” aggregate. Each
behavior aggregate is identifi ed by a code point that replaces the Type of Service
fi eld in the IP header. Routers follow a per-hop behavior (PHB) that is associated
with the code points, and is used by the router to forward the packets according
to their assigned behavior.

2.6.2.3.3 Multicast Routing
Multicasting is becoming more important as IPTV applications seem to become the
next “killer applications” of IP networks. In the 32-bit long IP address space (detailed
in Chapter 5), there is a range of group addresses, called class D IP addresses, that
start with “1110” as the high-order four bits. In IP address standard, the “dotted deci-
mal” notation, group addresses then range from 224.0.0.0 to 239.255.255.255. Sev-
eral of the fi rst addresses in this range are reserved; that is 224.0.0.0 to 224.0.0.255
is reserved for routing protocols, topology discovery, and so on where 224.0.0.1 is
used for the permanent group of all IP hosts in the directly connected network, and
224.0.0.2 is used only for the multicasting routers.

In the lower layer, 2L, the Ethernet also has multicasting addresses that map to
a group of Ethernet hosts, as mentioned before. One-to-one mapping can be done
between an Ethernet multicast MAC address and an IP multicast address by using
the same lower 23 address bits (and having the upper 3 bytes of the Ethernet MAC
address be 01-5E-00).

Multicast routing in the data plane is similar to unicast routing; in other words,
instead of forwarding a packet by a router to one destination (the best one, accord-
ing to the routing table), packets may be forwarded to a number of destinations,
depending on the multicasting group. In the control plane, however, multicasting
is concerned fi rst with defi ning the multicasting groups (assigning, joining, leaving,
and releasing hosts to and from these groups), and then with routing protocols to
create the appropriate routing tables for packets to be multicast later to the proper
multicasting groups.

Multicasting groups are handled by the Internet Group Management Proto-
col (IGMP) [66, 97, 126], which runs at the IP layer, although it looks like an
upper layer protocol, encapsulated in the IP packet (the IP protocol fi eld is 2 for
IGMP).

Multicasting protocols are mostly experimental, and are based on two appro-
aches: Source-based trees and Group-shared trees. A source-based tree approach
extends the unicast protocols of OSPF and the distance vector principle to support
multicasting. Each router has a shortest path tree for each group. This approach
is used by multicast extensions to OSPF (MOSPF) [324], Distance Vector Multicast

64 CHAPTER 2 Networking Fundamentals

Routing Protocol (DVMRP) [424], and Protocol Independent Multicast38—Dense
mode (PIM-DM) [7]. The group-shared tree approach assumes a core router that has
a shortest path tree to all groups, and is the only one doing the multicasting. This
approach is used in the Core Based Tree (CBT) protocol [42] and in Protocol Inde-
pendent Multicast—Sparse mode (PIM-SM) [116].

2.6.2.3.4 Internet Control Message Protocol
A control mechanism for an IP network is implemented in the Internet Control
Message Protocol (ICMP) [356]. IPv6 introduced a matched version of ICMP, called
ICMPv6 [87]. ICMP is used mainly by routers to indicate network and routing
errors. ICMP runs at the same level as IP in terms of networking layers, although in
terms of packet structure (header and packet encapsulation) it looks like a higher
layer protocol (the Protocol fi eld of the IP header is 1 for ICMP).

2.6.2.4 Internet Protocol Headers
Internet Protocol packets have two versions (IPv4 and IPv6); the structure of an
Internet IPv4 packet is shown in Figure 2.29. The fi elds of the IPv4 header are in
the table that follows.

38PIM runs at the same layer as IP, although it is encapsulated in IP packets (the IP protocol fi eld is
103 for PIM).

Version 4 bits Indicate the header version (4)

Internet Header
Length (IHL)

4 bits Length of the header in 32 bits words, points to the IP payload

Type of Service 8 bits Used for quality of service desired (described in Chapter 6)

Total Length 16 bits Total length of the packet in bytes

Identifi cation 16 bits Sequence number of the packet, used to identify the packet or its
 fragments

Flags 3 bits Fragmentation fl ags (described in Chapter 5)

Fragment Offset 13 bits Indicates the position of this fragment in the original packet, if it is
 fragmented, in units of 8 bytes (described in Chapter 5)

Time to Live
(TTL)

8 bits The maximum hops the packet can stay in the network, decremented by
one in each routing, and if zero, the packet is discarded. This helps avoid
loops in bad routing situations.

Protocol 8 bits Indicates the upper layer protocol,* for example, 6 for TCP or 17 for UDP
(although some protocols may be at the same logical layer as IP, like ICMP, as
described in subsection 2.6.2.3.4)

Header
Checksum

16 bits Checksum of the header (described in Chapter 5)

2.6 Data Networks 65

Version

0 4 12 16 24

Traffic Class Flow Label

Payload Length Next Header Hop Limit

8 2820

Destination Address

Source Address

FIGURE 2.30

IPv6 header

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

12 160 4 248 20 28

FIGURE 2.29

IPv4 header

Source Address 32 bits Source IP address (SIP)

Destination
Address

32 bits Destination IP address (DIP)

Options and
Padding

Variable Optional information and options in the packet, padded to the 32 bits
boundary

*A complete list of all protocols is can be found at: http://www.iana.org/assignments/protocol-numbers.

66 CHAPTER 2 Networking Fundamentals

In IPv6, there are additional, optional headers as well—some of which replace
fi elds of the IPv4 header and some of which enhance the IPv6 functionality. Such
headers include fragmentation information, routing directives, and options. Each
extension header contains a Next Header fi eld that eventually indicates the end of
the headers and TCP or UDP payload beginning.

2.6.2.5 Upper Layers
As mentioned previously, there are mainly two types of connections defi ned in
the transport layer (L4): Transmission Control Protocol (TCP) [357] and User
Datagram Protocol (UDP) [354]. Upper layer (L5) application protocols use these
transport services, and the receiving application is identifi ed by the destination
port fi eld in the TCP or UDP header. (e.g., HyperText Transfer Protocol uses TCP
port 80; File Transfer Protocol uses TCP port 21, etc.). The sending application
is identifi ed by its source port, and a session between the applications is identi-
fi ed by the two pairs of source and destination IP addresses, and the source and
 destination ports.

TCP is a connection-oriented transport service that provides reliability and fl ow
control. The TCP header is shown in Figure 2.31 and described in the table that
follows it.

User Datagram Protocol is a connectionless (datagram) transport service, and
has a simple header that does almost nothing. (Its main function is to indicate

The structure of an Internet IPv6 packet is as shown in Figure 2.30. The fi elds
of the IPv6 header are shown in the table that follows.

Version 4 bits Indicate the header version (6)

Traffi c Class 8 bits Used for quality of service desired (described in Chapter 6)

Flow Label 20 bits Flow label, used to indicate handling instructions of a stream of
packets (e.g., real-time packets)

Payload Length 16 bits Length of packet’s payload in bytes (not including IPv6 header)

Next Header 8 bits Identifi es the type of header immediately following the IPv6 header,
and uses the same values as IPv4 Protocol fi eld in case the next
header is a higher-layer protocol.

Hop Limit 8 bits The maximum hops the packet can stay in the network, decremented
by one in each routing, and if zero, the packet is discarded. It is
equivalent to the Time to Live fi eld in IPv4, and helps avoid loops in
bad routing situations.

Source Address 128 bits Source IP address (SIP)

Destination Address 128 bits Destination IP address (DIP)

2.6 Data Networks 67

Source Port

0 4 12 16 24

Destination Port

Data

Sequence Number

Acknowledgement Number

Data Offset Reserved Control Bits Window

Checksum Urgent Pointer

Options Padding

8 20 28

FIGURE 2.31

TCP header

Source Port 16 bits The Source Port number (identifi es the sending application)

Destination Port 16 bits The Destination Port number (identifi es the receiving application)

Sequence Number 32 bits The sequence of the fi rst data byte in this segment

Acknowledge
Number

32 bits The next sequence that the sender of the segment expects to receive;
that is, acknowledging data received up to this value

Data Offset 4 bits The number of 32 bit words in the header (indicates the beginning of
the data)

Control Bits 8 bits From left to right:
 CWR: Congestion Window Reduced
 ECE: ECN-Echo
 URG: Urgent Pointer fi eld signifi cant
 ACK: Acknowledgment fi eld signifi cant
 PSH: Push Function
 RST: Reset the connection
 SYN: Synchronize sequence numbers
 FIN: No more data from sender

Window 16 bits Window size (number of bytes beginning with the one indicated in
the acknowledgment fi eld that the sender of this segment is willing to
accept)

Checksum 16 bits Checksum of the header and the pseudo header (detailed in Chapter 5)

Urgent Pointer 16 bits Value of the urgent pointer to urgent data, a positive offset from the
sequence number in this segment

Options and
Padding

variable Optional information and options in the packet, padded to the 32 bits
boundary

68 CHAPTER 2 Networking Fundamentals

the destination port number, to provide the source port of the calling application,
and to identify a session like in the case of TCP.) The UDP header is shown in
 Figure 2.32 and is described in the table that follows it.

2.6.2.6 Internet Protocol Summary
Internet Protocol is the main platform for data communications and telecommunica-
tions, used for computer communications, telephony, videoconferencing, entertain-
ment, business applications, news, and more. IP therefore is used on many transport
layers, not just the common Ethernet, to serve as the communication platform. IP
over ATM (IPoA), IP over SONET (IPoS), and IP over MPLS (IP/MPLS) are just few
examples.

As described in this subsection, the basic data packets that fl ow through the
Internet have many headers, each of another layer; these packets are usually Ether-
net packets that encapsulate IP packets that encapsulate TCP or UDP packets that
carry data payload (application layer data). The general picture that the network
processor sees when it receives a data packet of, for example, an HTTP type, is
depicted in Figure 2.33.

Source Port 16 bits The Source Port number (identifi es the sending applications)

Destination Port 16 bits The Destination Port number (identifi es the receiving application)

Length 16 bits Length of the header and data

Checksum 16 bits Checksum of the header and the pseudo header (detailed in Chapter 5)

Ethernet Header

Type

IP Header

MAC Dest MAC Source Dest IP

TCP Header

tp vh Len ID Frag ttl Source IP chks sport L+C dport Sequece Ack wind chks Uptr

HTTP
Payload S

0800
for IP

06
for TCP

80
for HTTP

FIGURE 2.33

HTTP Packet

Source Port Destination Port

Length Checksum

Data

0 4 12 16 248 20 28

FIGURE 2.32

UDP header

2.7 Summary 69

2.7 SUMMARY
In this chapter we discussed network fundamentals, and tried to generalize as much
as possible in order to cover the essential networking concepts that are relevant
to network processing. We described network models, the connection-oriented,
streamed traffi c-oriented telecom networks, and the connectionless- oriented,
bursty traffi c-oriented data networks, especially Ethernet and IP networks. In the
next chapter we dive further into network technologies, and describe how data
networks and telecom networks are being converged and used in the core and in
the metro networks.

70

APPENDIX A
REGISTRATION PROTOCOLS

In order to distribute and manage information in an orderly manner among bridges,
there are several registration protocols that are based on the Generic Attribute
Registration Protocol (GARP), which was replaced by the Multiple Registration
Protocol (MRP) [182] in 2007. MRP, known as IEEE802.1ak, specifi es procedures
and “managed objects” that allow participants to register various attributes with
other participants of the MRP based applications.

GARP and MRP distribute (declare, register and withdraw) information (for
example, about attributes and their values) among a group of participants within
the GARP or MRP application. They are used for distributing bridging information
between bridges of a network of LANs. One MRP application, for example, is MRP
MAC Address Registration Protocol (MMRP), which distributes group MAC addresses
and Group service requirements attributes, replacing the GARP Multicast Registra-
tion Protocol (GMRP). In GARP and MRP, attribute values are states, and GARP/MRP
applications behave as state machines. Every change in the state of a GARP/MRP
application triggers a GARP/MRP message for attribute distribution.

MMRP and GMRP addresses are universal addresses, 01-80-C2-00-00-20, and
are used as a MAC destination address to carry MMRP/GMRP PDU between MRP/
GARP entities. A MRP/GARP VLAN Registration Protocol (MVRP/GVRP) address is
01-80-C2-00-00-21 and it is used exactly like MMRP/GMRP, as described in the fol-
lowing. IEEE802.3 frames are used for carrying MRP/GARP frames; that is the LLC
sublayer and header are used. The address of GARP in the LLC layer is 01000010,
like the address of the STP, and the GARP PDU is encapsulated in the information
fi eld of the Unnumbered Information (UI) LLC type 1 command PDU. The GARP
PDU contains a Protocol identifi er (PID), equal to “1,” to distinguish the GARP PDU
from the Bridge PDU (BPDU) or other, unsupported protocols. MRP PDU is using
specifi c Ethertypes for MMRP (0x88F6) and for MVRP (0x88F5).

In GARP, six operations, called events, dictate what should be done with the attri-
butes; they are: leave all, join empty, join in, leave empty, leave in, and empty. The
attributes distributed and managed by the GARP application are indexed and known
to the GARP entities (there are 256 possibilities). A formal description of the GARP
PDU structure is given in the following, using BNF [183]:

GARP PDU ::= Protocol ID, Message {, Message}, End Mark
Protocol ID SHORT ::= 1
Message ::= Attribute Type, Attribute List
Attribute Type BYTE ::= Defi ned by the specifi c GARP Application
Attribute List ::= Attribute {,Attribute}, End Mark
Attribute ::= Ordinary Attribute | LeaveAll Attribute
Ordinary Attribute ::= Attribute Length, Attribute Event, Attribute Value
LeaveAll Attribute ::= Attribute Length, LeaveAll Event
Attribute Length BYTE ::= 2-255

Appendix A: Registration Protocols 71

Attribute Event BYTE ::= JoinEmpty | JoinIn | LeaveEmpty | LeaveIn | Empty
LeaveAll Event BYTE ::= LeaveAll
Attribute Value ::= Defi ned by the specifi c GARP Application
End Mark ::= 0x00 | End of PDU
LeaveAll ::= 0
JoinEmpty ::= 1
JoinIn ::= 2
LeaveEmpty ::= 3
LeaveIn ::= 4
Empty ::= 5

A schematic description of the GARP PDU structure is given in Figure A2.1. The
MRP PDU structure is similar but not back-compatible. The operations are different,
the 2-bytes PID is replaced with 1-byte Protocol version, and the attribute structure
is replaced with a vector attribute. Since MRP was fi nalized after writing of this
appendix, GARP is detailed here, and the interested reader is referred to [182].

The exponential growth of Ethernet networks in size, spread, and connectiv-
ity requirements, especially in the Provider Bridged Networks (discussed in the
next chapter), greatly increases the use of bridges. This, however, also dramatically
increases the number of VLANs and Group MAC addresses used. The performance
of GVRP and GMPR, in terms of time and resource consumption (e.g., bandwidth),
has become a dominant factor in fault recovery time for these big networks. GARP
also may cause disruption of traffi c in a very large network, when a topology change
happens. MRP, which replaced GARP, improved performance and reduced traffi c
disruption by localizing the topology change to a small portion of the network.
MVRP also improves GVRP by rapid healing of network failures without interrupt-
ing services to unaffected VLANs.

EOM =
00

...Message 1PID = 1

Attribute List Structure

2 bytes

Attribute Structure 1

Message N

... Attribute Sturcture M

Attribute Value
(not in LeaveAll Event)

1 byte

Attr
Type

Attr
Length

Attr
Event

1 byte 1 byte
(0–5)

1 byte

1 byte

EOM =
00

FIGURE A2.1

GARP PDU format

72

APPENDIX B
SPANNING TREE PROTOCOLS

Spanning Tree Protocol and Rapid STP (RSTP) are used to defi ne the ports’ states
(e.g., forward or discard) and roles (e.g., root or designated), and to create the
active topology of a spanning tree based on these states and roles. STP and RSTP
also respond quickly by reconfi guring the active topology in case of changes or
failures, and they maintain a connected spanning tree. These activities are done
in a transparent operation, and are minimal in resource consumption (bandwidth,
processing, and memories). RSTP was specifi ed in IEEE802.1w, and superseded STP
in IEEE802.1D-2004. RSTP is backwards-compatible with STP or, more precisely, it
can work with legacy bridges that still run STP.

In this appendix we refer mainly to RSTP, as it is more relevant today; however,
many of the features and operations described here are relevant to STP as well, and
where differences exist, they are mentioned.

RSTP OPERATION
For RSTP to operate, every bridge should have a unique identifi er,39 all bridges
should recognize and response to a unique Group MAC address, and a unique port
identifi er should be defi ned for each port in a bridge.40 In order for RSTP to create
an effi cient41 active topology, the relative priority of each bridge in the network
should be preconfi gured, as well as the relative importance of every port in every
bridge, and the relative cost of using each port (Port Path Cost [PPC], which typi-
cally relates to the speed of the attached LAN, and can never be 0).

39The bridge identifi er is eight bytes long, where the fi rst two bytes are used to indicate bridge
priority and the remaining six are the bridge MAC address (usually the MAC address of its lowest
port number). However, as of 802.1D-2004, only the four most signifi cant bits of the fi rst two bytes
are used for priority, and the remaining 12 bits of these two bytes are used as a locally assigned ID
Extension. This fi eld allows a Multiple Spanning Tree (MST, defi ned in 802.1Q) to generate a distinct
bridge ID per VLAN, and although still used for priority, these 12 bits cannot be set.
40The port identifi er is two bytes long, where the fi rst byte (8 bits) serves as priority. It should be
noted, though, that as of 802.1D-2004, the 12 least signifi cant bits are used for the port number
(instead of the eight bits that were used previously) and only the four most signifi cant bits can be
set for priority.
41Many assume wrongly that STP and RSTP produce a minimum spanning tree. This is not the case
and, in effect, a shortest path to the root bridge is calculated. Even this, however, is subject to debates
about whether it is effi cient, or whether there is any “optimal” spanning tree in such a network.
It should be said here that an alternative algorithm for spanning trees is considered for bridging,
instead of—or side-by-side with—the RSTP, namely the Shortest Path Bridging (SPB), IEEE802.1aq.
SPB calculates many active topologies; that is for each bridge, it calculates its shortest paths to des-
tination bridges.

Appendix B: Spanning Tree Protocols 73

Rapid STP uses a basic structure of information, called the priority vector, which
contains four fi elds,42 and can be ordered by priorities.

The fi rst two components describe the Root Bridge (RB) identifi er (or what the
bridge believes to be the RB identity, and initially it uses its own identifi er as the
RB identifi er) as well as the root path cost from that bridge to the root (initially, it
is zero, of course). This cost is the sum of all costs of ports (PPC, as defi ned previ-
ously) along the shortest path from the sending bridge to the RB. The next two
components identify the sending bridge and its sending port.

The priority vector can be ordered; the order is determined by comparing the
fi elds one by one, starting from the RB identifi er, and the “better” priority vector is
the one that has a lower value in it (if two values in a fi eld are the same, then the
next fi eld is compared). Rapid STP works as follows:

1. Initially, each bridge declares itself as a Root Bridge, and sends a Confi gura-
tion Message (CM) through each of its ports in the Bridge Protocol Data Unit
(BPDU, described as follows). The CM contains the priority vector and, as
mentioned before, initially points to itself as the RB.

2. If a bridge receives a CM, and the received Root Bridge is “better” than the
known Root Bridge (i.e., lower), then (i) the received RB is selected as the RB,
(ii) the root path cost (RPC) is calculated (the new RPC is the sum of the
received RPC and the port path cost, PPC), and (iii) appropriate CMs are sent
to the bridges around it, if they had previously transmitted a “worse” priority
vector.

3. For every CM that the bridge receives, it calculates the “best” cost to the RB
(i.e., the lowest) along the shortest path (comparing its current RPC with the
received RPC plus the PPC of each port). The port43 that has the lowest cost
to the RB, is assigned as the Root Port (RP) of the bridge.

4. For every LAN, one bridge that has the “best” route to the RB (i.e., the lowest
RPC), is assigned as the Designated Bridge (DB).44 The port that connects this
LAN to the bridge is assigned as the Designated Port (DP).

5. Designated Ports periodically transmit CMs as “keep alive” messages, in order
to detect failures.

42There are actually fi ve fi elds, but the last fi eld (the receiving port ID) is not always used and is not
relevant to the explanation.
43If two ports have the same cost, then the port with the lower port identifi er is selected.
44Since all bridges send CM BPDUs when they have a better path to the RB, all bridges connected to
a LAN can know each other’s RPC, so the bridge with the lowest RPC, through which other bridges
assume a path to the RB, is considered as the designated bridge. If two bridges have the same cost,
then the bridge with the lower bridge identifi er is selected as the DB.

Root
ID

Bridge
ID

Port
ID

Root
Path
Cost

74 CHAPTER 2 Networking Fundamentals

6. A port that is neither the RP nor the DP is assigned as a Backup Port (BP)
if the bridge is the designated bridge (DB) to the LAN through this port, or
as an Alternate Port (AP) otherwise. These ports are then used in cases of
an RP or a DP failure, where an AP replaces an RP (connecting the bridge
to the RB via a different path than the one the RP uses), and a BP replaces
a DP (since it is connected to the same LAN or segment, it therefore backs
up the DP).

All root ports and designated ports (DPs) are put in the forwarding states. The
initialization and creation of the spanning tree in RSTP is like in STP, which means
that the fi rst four steps of the previous description apply to STP as well. The major
change is that the process of the RSTP convergence is faster than the STP. When
there is some failure of a link or a bridge, the spanning tree becomes invalid (usually
disconnected, but loops might be created, especially in recovering attempts). The
fi ltering database ages relatively slowly, and temporary loops or back-holes might
be created. To avoid this, a topology change mechanism is incorporated into the
STP and RSTP protocols, which enable faster aging of the fi ltering database, and
faster recovery of the spanning tree.

It should be noted that in order to prevent temporarily loops, RSTP changes the
ports’ states after some delay, and even sets ports to discard states temporarily. RSTP
speeds up the spanning tree reconfi guration by allowing RPs and DPs that are con-
nected in point-to-point connections (dedicated links) to change to forwarding
states quickly, without having to wait for protocol time-out events to happen. In
addition, RSTP defi nes bridges’ ports that are alone on their attached LANs as edge
ports, and sets them as designated ports.

Rapid STP allows a DP that is attached to a point-to-point LAN to change to a
forwarding state when it receives an explicit role agreement from the other bridge
on that attached LAN. Using a port handshake to negotiate roles means faster con-
fi guration and reconfi guration, rather than waiting for the protocol time-outs to
happen.

BRIDGE PROTOCOL DATA UNIT
A Bridge Group Address is a universal address, 01-80-C2-00-00-00, and is used as a
MAC destination address to carry BPDUs between STP entities. IEEE802.3 frames
are used for carrying BPDU frames (Figure B2.1), that is the LLC sublayer and header
are used. The address of STP in the LLC layer is 01000010, and BPDU is encapsu-
lated in the information fi eld of the Unnumbered Information (UI) LLC command
PDU. The BPDU contains a Protocol identifi er, PID, to distinguish BPDU from GARP
PDU or other, unsupported protocols.

The fi elds of the BPDU are divided into three parts: the fi rst part identifi es the
protocol, the BPDU, and its roles. The second part is the priority vector described
in the preceding subsection. The last part of the BPDU is a group of fi elds that are
related to the STP and RSTP mechanism, as described in the following.

Appendix B: Spanning Tree Protocols 75

Rapid STP communicates the port role and state in the fl ags fi eld of the RSTP
BPDU. These were not communicated in the STP, and they are helpful for faster
spanning tree reconfi guration.

The BPDU contains several timer values that are required by the STP and RSTP
protocol, such as the “Message Age,” “Max Age,” “Hello Time,” and “Forward Delay.”
These fi elds are fi lled by default values (usually in seconds) and by bridges, accord-
ing to the ongoing protocol status.

In STP, the RB sends CM BPDU every “Hello Time” with zeroed “Message Age,”
and triggers CM BPDU messages in the bridged LAN. Any bridge that does not
receive a CM within the “Max Age” assumes that the RB is dead, declares itself
RB, and start transmitting CMs around until the bridged LAN reaches stabilization
again. In RSTP, on the other hand, every bridge sends RSTP BPDUs as “keep-alive”
messages, and an adjacent neighbor bridge is considered disconnected after three
“Hello Time” if no RSTP BPDU was received.

When a BPDU is relayed (informing other bridges through the designated ports
about a better RB received by the bridge), the “Message Age” increases (usually by
1 s), and the BPDU is treated only if the “Message Age” is less than the “Max Age”
of the BPDU. This ensures the decay of the BPDU in a nonstabilized spanning tree.
Bridges not only relay received BPDUs from their RP to all their DPs, but they also
reply to a received BPDU in any of their DPs, with their own BPDU, causing the
other bridges connected to the DPs to potentially update their ports’ roles and
states. Any transition to forward state occurs only after the bridge waits for the
“Forward Delay” to avoid too-rapid changes that may lead to intermediate loops.

In STP, Topology Change Notifi cation (TCN) BPDUs (Figure B2.2) are sent by the
bridges that sense a topology change, toward the root bridge (RB). The RB acknowl-
edges the TCN BPDU, and informs all other bridges of the topology change. Follow-
ing a topology change, all CM BPDUs sent from the RB will be fl agged by a Topology
Change fl ag in the CM BPDUs, for a duration of “Forward Delay” plus “Max Age.”

PID
= 0

P
ro

to
co

l V
er

si
on

B
P

D
U

 T
yp

e
Fl

ag
s Root Identifier

(8 bytes)

Root
Path
Cost

(4 bytes)

Bridge Identifier
(8 bytes)

P
or

t
Id

en
ti

fi
er

M
es

sa
ge

 A
ge

M
ax

 A
ge

H
el

lo
 T

im
e

Fo
rw

ar
d

D
el

ay

Protocol Version ID = 0 (STP), 2 (RSTP)
BPDU Type = 0 (STP BPDU), 2 (RSTP BPDU)

Version 1 length (only in RSTP BPDU) = 0

Ve
rs

io
n

1
 L

en
gt

h

Flags bit 8 = topology acknowledgment, bit 1 = topology change, bit 2 = proposal (in RSTP),
bit 3–4 = port role (in RSTP, 0-unknown, 1-alternate or backup, 2-root, 3-designated),
bit 5 = learning (in RSTP), bit 6 = forwarding (in RSTP), bit 7 = agreement (in RSTP)

FIGURE B2.1

STP and RSTP BPDU (from left to right)

76 CHAPTER 2 Networking Fundamentals

In RSTP, every bridge that senses a topology change sends a RSTP BPDU and
sets the Topology Change fl ag. Every bridge that receives a RSTP BPDU with the
Topology Change fl ag set, forwards this RSTP BPDU.

Lastly, an RSTP port handshake (described previously) for deciding on ports’
roles locally is done by using the RSTP BDPU fl ags bits of “proposal” and “agree-
ment” (bits 2 and 7, respectively). In STP, when a port becomes a designated port
(DP), it has to wait twice the “Forward Delay,” to shift to a forwarding state (usually
about 30 seconds). In RSTP, it simply sends a proposal RSTP BPDU, and the receiv-
ing bridge sets its port to a root port (RP) and sends an agreement RSTP BPDU.

PID
= 0

P
ro

to
co

l V
er

si
on

B
P

D
U

 T
yp

e
=

1
2

8
Fl

ag
s

Protocol Version ID = 0

FIGURE B2.2

Topology change notifi cation BPDU

CHAPTER

3
In the previous chapter we described basic networking, which includes everything
from concepts to data networks (e.g., Ethernet and Internet Protocol networks)
and telecommunications networks (e.g., PDH and SDH/ONET networks).

This chapter focuses on converged networks. In these networks, data and
 telecommunications applications interface and mix, despite their very different
natures. Data networks are bursty, and oriented toward connectionless traffi c,
whereas telecommunications networks are streamed, and connection-oriented.
We divide this chapter into two parts, each of which corresponds to a particular
path of evolution: the fi rst, from telecom networks to converged networks, and the
 second from data networks to converged networks.

We briefl y describe a legacy networking technology called Asynchronous Transfer
Mode (ATM), which was used for about a decade in the 1990s as a solution for
mixed data, video, and telephony network. We deal with ATM since, fi rst of all, ATM is
still with us—and in several places even dominates networking implementations—but
more importantly, because ATM has had a signifi cant impact on networking algorithms,
standards, and development. The most important technology that absorbed ATM ideas
is the Multiprotocol Label Switching (MPLS), which is also described in this chapter.

Metro technologies and Next Generation SONET/SDH technologies are then
described, as they seem to be the main transport backbone networks of the future
(at least in the view of the telecom industry). Metro technologies as well as IP and
Ethernet evolutions are then described, as they seem to be the main information
backbone of the future (at least in the view of the datacom industry).

In the next chapter we describe access and home networks. These networks
also use converged technologies, and connect customers and their devices to the
long-haul networks.

3.1 INTRODUCTION
After describing network fundamentals, models, and pure telecom networks and data
(enterprise) networks, we turn to converged networks; that is, data networks that

Converged Networks

78 CHAPTER 3 Converged Networks

are used for telecommunication applications and, conversely, data communication
networks that are used for telecommunications applications.

Network technologies that are most likely to use high-end Network Processors
applications in network nodes (devices) are Ethernet (enterprise and carrier class),
MPLS, and IP. Therefore, most of the description in this chapter is focused on
these networks, with some discussion of other network technologies required for
an overview of how networks are combined, relate to each other, and evolve.

3.2 FROM TELECOM NETWORKS TO DATA NETWORKS
As noted before, one convergence approach between data networks and
 telecommunications networks is to adopt various techniques that enable transmis-
sion of data-patterned traffi c over telecommunications networks. The idea of such
convergence has also led a move toward more data-centric traffi c in traditional
telecommunications networks, equipment, and services.

As of today, SONET/SDH is the technology that has the greatest chance of
 dominating data and telecommunications networks, mainly due to the huge installed
base and investments made in these networks. Nevertheless, the supporters of
this technology are seriously threatened by the alternative Ethernet-based core
 networks, mainly due to their low-cost, simplicity, and natural extension from the
residential and enterprise networks, as described in the next subsection.

We start with a discussion of the Asynchronous Transfer Mode technology
despite the fact that it is hardly in use now, since it still carries several important
services, and contributed important networking concepts. We continue with next
generation SONET/SDH, which, as mentioned previously, is the main telecommuni-
cation platform, and end with Resilient Packet Ring (RPR), which some categorize as
a data network platform. We present the general concept of Multiservice Platforms
(MSPs) that are referenced in the telecom industry for coping with data services
alongside telecommunications.

3.2.1 Asynchronous Transfer Mode
The Asynchronous Transfer Mode introduced a new concept of cell switching (or
relaying) that defi nes an architecture, protocols, cell formats, services, and interfaces.
The idea was to allow data and video services to be transmitted over circuit-switched
networks together with traditional voice services, and to integrate the three into
one network technology. A fi xed cell size of 53 bytes was defi ned to carry 48 bytes
of payload,1 with a 5-byte header. The fi xed, small-sized cells supported high-speed
and low-cost switching equipment, but created diffi culty in interfacing with the
variable-length, long packets that are common in packet-switching networks.

1Some say the size was determined by choosing the average of 25 � 32 and 26 � 64 bytes, or by
 compromising between long packets for data requirements and short packets for voice requirements.

3.2 From Telecom Networks to Data Networks 79

ATM was promoted by the telecom industry, and standardized by the ITU-T [221,
222] as a Broadband Integrated Services Data Network (B-ISDN) at the beginning of
the 1990s. As such, ATM fi t smoothly into the SONET/SDH framework and its frames’
structures. Another important contribution to ATM standardization came from the
ATM forum (now part of the MFA forum, which combines the ATM, Frame-relay,
and MPLS forums). However, despite the huge investments, interest, research, and
publications, it received relatively little attention from the Internet community, and
although ATM was offered for data networks infrastructures, and even used for a
while, it was rejected eventually by the datacom industry. As of today, ATM technol-
ogy has almost vanished (except in Asymmetric Digital Subscriber Line [ADSL] infra-
structure). Nevertheless, it is important to understand ATM concepts because they
were used for similar approaches in data networks such as MPLS, which is described
in the following.

ATM is a connection-oriented technology, like most telecom technologies,
according to which a call set-up and the establishment of a connection must take
place prior to data transfer. The connection-oriented approach and supporting pro-
tocols allow a Quality of Service (QoS, explained in Chapter 6) to be used for each
of the ATM sessions, which enables voice, video, and real-time data to be supported.
The connections are called Virtual Channels (VC), and they are bundled into Virtual
Paths (VP), which are groups of VCs that share a common link with the same end-
points. These two layers of connections, which are called ATM layers, are places in a
Transmission Path (e.g., fi ber), which belong to the physical layer. Each cell’s header
uses a VC identifi er (VCI) and a VP identifi er (VPI) to indicate to which VC and VP
it belongs. In other words, VCI identifi es the particular VC link for a given Virtual
Path Connection (VPC), whereas VPI identifi es a group of VC links that share the
same VPC (see Figure 3.1).

There are two main applications of VPCs; the fi rst is the User-to-Network VPC and
the second is Network-to-Network VPC. ATM headers are defi ned according to the
interface used: User–Network Interface (UNI) or Network–Network Interface (NNI).

The Generic Flow Control, which appears only in the UNI header, is by default
0, and is used for protocol procedures in controlled equipment. The VPI and VCI
fi elds are used for routing and switching, with some preassigned VCI values for

FIGURE 3.1

ATM connections

VP

VP

VP

Transmission Path

VP

VP

VP

VCs

VCs

VCs

VCs

VCs

VCs

80 CHAPTER 3 Converged Networks

specifi c uses (e.g., various signaling types). The Payload Type (PT) fi eld specifi es
the type and some attributes of the cell (e.g., Operation and Maintenance [OAM],
user cells with or without congestion experience). The Cell Loss Priority (CLP) fi eld
indicates how cells should be handled when network conditions request that cells
should be dropped (e.g., in congestion); if CLP contains a ‘1’ bit, then this cell should
be dropped before cells with CLP � 0. The last fi eld of the header is the Header
Error Control, which contains the calculated Cyclic Redundancy Check (CRC) of
the header fi elds, for validating the header by the receiving node (see Figure 3.2).2

The usage of VPI/VCI in the header tremendously simplifi es the cell forward-
ing and switching in an ATM network. At set-up time, a path is constructed by a
routing protocol,3 such that each switching node in the routed path maintains a
“routing table” that associates the incoming VPI/VCI with an outgoing port, and
potentially with a new VPI/VCI path identifi er that is known to the next switching
node along the path. In this way, each switching node knows how to relay cells
rapidly during the session time according to their VPI/VCI content (while writing
their new VPI/VCI for the next hop). This principal is used in MPLS, and is detailed
in subsection 3.3.1.1.

The ATM layer by itself defi nes only the data link layer functionalities. In order to
use ATM for applications and services, there is another layer above the ATM, which
is called the ATM Adaptation Layer (AAL). Various types of AAL mechanisms are used
to match the applications’ data frames/packets and service requirements to that of
the ATM cells. There are such fi ve mechanisms, called AAL1 to AAL5, defi ned by the

2The HEC is based on x8 � x2 � x � 1 CRC (or 0x07); CRC is explained in Chapter 5.
3The common routing protocol used for ATM signaling is called ATM Private Network–Network
 Interface (PNNI), which is defi ned by the ATM-Forum (today MFA forum) [30].

FIGURE 3.2

ATM cell structure; for all fi elds, the fi rst bit sent is the MSB

UNI—User-Network Interface
NNI—Network-Network Interface
GFC—Generic Flow Control
VPI—Virtual Path Identifier
VCI—Virtual Channel Indentifier
PT—Payload Type
P—Cell Loss Priority (CLP)
HEC—Header Error Control

VPI
VPI VCI

VCI
VCI PT

HEC

Payload
(48 bytes)

8 7 6 5 4 3 2 1

NNI Structure

P

GFC VPI
VPI VCI

VCI
VCI PT

HEC

Payload
(48 bytes)

8 7 6 5 4 3 2 1

UNI Structure

P

3.2 From Telecom Networks to Data Networks 81

ITU-T. AAL1 is used for voice and other TDM E1/T1 circuit emulations, characterized
by a Constant Bit Rate CBR and connection-oriented type of traffi c. At the other end
of the spectrum, AAL5 is used for IP and LAN data type traffi c, characterized by a
connectionless orientation and Variable Bit Rate (VBR) type of service. In between,
AAL2 was used for real time VBR data traffi c (usually compressed TDM data such
as video and voice), while AAL3 and AAL4 target data services with VBR and asyn-
chronous connection and connectionless-oriented types of traffi c such as frame
relay, X.25, and Switched Multimegabit Data Service. AAL3 and AAL4 were used
only rarely, while AAL5 was the main platform of most data services and protocols
for carrying IP and LAN over ATM (e.g., classic IP over ATM [273], LAN Emulation—
LANE [28], and Multi-Protocol Over ATM—MPOA [29]). As mentioned before, ATM
is not used for high-speed networks any more, but still it can be found in the Mbps
range WANs, mainly in ADSL and wireless (cellular) infrastructure.

3.2.2 Next Generation-Synchronous Digital Hierarchy/
Synchronized Optical Networks

The data applications that drove most of the traffi c in the core networks forced
SDH/SONET architecture to be upgraded to better serve this type of traffi c. The
enhancements offered, collectively called next-generation SDH/SONET (NG-SDH/
SONET) [247], include Generic Framing Procedure (GFP) [206], Link Capacity
Adjustment Scheme (LCAS) [207], and Virtual Concatenation (VCAT) [208]. These
were standardized by the ITU-T as G.7041, G.7042, and G.7043, respectively, and are
integrated into recent versions of G.707 [195] and G.803 [197] (SDH standards), as
well as in G.709 [196] (Optical Transport Networks—OTN Standard). These solu-
tions are only implemented at the source and the destination equipment, leaving
the core network equipment intact, and therefore offer advantages in terms of
costs and implementation, but some disadvantages in terms of network utilization.

Returning to the discussion of SONET/SDH that we began in the previous
 chapter, contiguous concatenation of containers was used to carry higher band-
widths of data. For a TDM environment, this contiguous concatenation is quite
effi cient. However, continuous, fi xed rates of data streams, mapped directly to SDH/
SONET, might waste the space of SDH/SONET containers (tributaries). For exam-
ple, putting a Gigabit Ethernet (GbE) in SDH containers requires the use of C-4-16c,
which carries 2.4 Gbps, as the C-4-4c is not enough; therefore, 1.4 Gbps out of the
2.4 Gbps are wasted (58% of the bandwidth). If it is not continuous data stream, as
is often the case with bursty Ethernet or IP traffi c, the waste can be even higher.4

In order to solve the problem of wasted space, a fl exible concatenation of
SONET/SDH payload is used, called VCAT (in contrast to contiguous concatenation).5

4Further analysis of data usage effi ciency over SDH, with and without VCAT, is provided in RFC 3255,
“Extending PPP over SONET/SDH” [241].
5Concatenation can be regarded as “inverse multiplexing,” since it uses many channels for one session
between a pair of entities. This is the inverse operation of multiplexing, where one channel is used
for many sessions between many pairs of entities.

82 CHAPTER 3 Converged Networks

First, the data streams are segmented into groups of virtual containers (VCs) that
are smaller than the data stream rate, and then sent in “VC paths.” For example,
the GbE is mapped into seven C-4 containers (each of 150 Mbps). These groups of
VCs, called Virtual Concatenated Groups (VCGs), are then transmitted in the SDH
network, each VC in its own path. In other words, each member of the VCG (that is,
each VC) may be transmitted over some STM-n/OC-n link, not necessarily contigu-
ously in the same link, and maybe even in different links. The source node arranges
these VCGs, and after their arrangement, only the destination node is aware of the
VCGs and is responsible for building the original data streams. Intermediate nodes
are not required to be aware of any of this. However, due to the potential use of
multiple paths by these VCGs, the destination equipment may encounter unor-
dered VCs, as well as differences in delays, and must be prepared to handle this.

VCGs are notated in the SDH terminology as VC-m-nv, where m is the VC con-
tainer number, n is the number of VCs used in the VCG, and v signifi es the use of
VCAT rather then contiguous concatenation. In the case of GbE, for example, the
VCG is called VC-4-7v (which means 7 VC-4’s).

VCGs can also be arranged with PDH channels; for example, E1-nv, where n
stands for the number of E1 channels (each of 1.98 Mbps) concatenated together
(up to 16). VCAT can also be implemented over OTN, and Optical Payload Unit
(OPU) frames can be concatenated; for example OPU3-nv, where n stands for the
number of OPU3 channels (each of 43 Gbps) concatenated together (up to 256),
yielding a 10 Tbps link.

The LCAS is a protocol based on VCAT. Its purpose is to add fl exibility to the
VCG-created links by dynamically changing the SONET/SDH pipes used for VCGs
(i.e., increasing or decreasing VCG capacity) [51]. This is done without affecting the
 existing VCG services. The source and destination nodes exchange LCAS messages;
for example, to cope with bandwidth-on-demand requirements (according to
time of day, special events, service granularities, etc.) by requesting the addition
of more VCs to the VCG in one direction (capacity control is unidirectional). It is
 possible to save unused bandwidth (e.g., resulting from a failure of some member of
a VCG, or from “right sizing” bandwidth for some application) by using LCAS, which
automatically reduces the required capacity. LCAS can be used also to enhance load
sharing functionalities, as well as QoS differentiation, or traffi c engineering (TE),
described in Chapter 6.

The GFP is a traffi c adaptation protocol [172] that provides a mechanism for
mapping packets and circuit-switched data traffi c onto SONET/SDH frames, while
accommodating diverse data transmission requirements. Traffi c mapping is done
at the source node into general-purpose GFP frames, and then the GFP frames
are mapped into VCs or VCGs and onto the SDH network. The intermediate
modes are not aware of the GFP mapping, and only the destination node de-maps
the original traffi c. GFP uses two modes, referred to as Frame-Mapped GFP (GFP-F)
and Transparent-Mapped GFP (GFP-T). GFP-F is optimized for a packet-switching
environment and a variable-length packet, whereas GFP-T is intended for delay-
 sensitive traffi c, bandwidth effi ciency, and transparency to the line code data.

3.2 From Telecom Networks to Data Networks 83

Typical applications of GFP-F are Point-to-Point Protocol (PPP), IP, Ethernet,
MPLS, RPR, or Digital Video Broadcast (DVB) (according to ITU-T G.7041 [206]).
The entire data frame is mapped into one GFP-F frame, and the resulting GFP-F
frames are variable in size.

GFP-T is used for Storage Area Networks such as Fiber Channel, Enterprise Sys-
tems Connection, and Fibre Connection, or video applications such as Digital Visual
Interface and DVB, or even GbE (according to ITU-T G.7041 [206]). The data may
span over many fi xed-length GFP frames. It is mapped into the GFP-T frames byte
by byte and organized in N 536-bit superblocks, each of which is constructed from
eight 65-bit blocks and 16-bit CRC.6 For optimal usage of SDH link capacities (i.e.,
minimum GFP-T overhead), ITU-T recommends using a minimum number of super-
blocks in a GFP-T frame. For example, for a 3.4 Gbps Fiber Channel on a VC-4-24v
VCG path size, at least 13 superblocks per GFP-T frame are required, or for GbE on
VC-4-7v, at least 95 superblocks per GPF-T frame are required.

The structure of the GFP frame is shown in Figure 3.3. The two transport
modes are different in the information fi eld of the payload area. These two trans-
port modes can coexist in a transmission channel. Generic Framing Procedure is
a very useful adaptation layer, and one that is not necessarily restricted to SONET/
SDH or OTN.

6The organization of the superblock and its coding is beyond the scope of the book, and can be
reviewed in ITU-T.7041 [206] and [172].

FIGURE 3.3

GFP frame structure (from left to right)

Core Header

4 bytes

Header

Payload Area

FCSInformation, 0−65,531 bytes for GFP-F,
N*(8*65+16) bits for GFP-T

Optional Extension
Headers

2 bytes

Length

Type tHEC

cHEC

2 bytes Optional
4 bytes

4−64 bytes

2 bytes 2 bytes 0−58 bytes

eHEC

0/2
bytes

HEC—Header Error Check (CRC-16)
cHEC—Core HEC
tHEC—Type HEC
eHEC—Extension headers HEC
FCS—Frame Check Sequence (CRC-32)

84 CHAPTER 3 Converged Networks

3.2.3 Resilient Packet Ring
Resilient Packet Ring (RPR) was standardized by the IEEE (IEEE 802.17) [190] for
enabling packet-oriented data networks to function effi ciently on optical rings.7 RPR
offers a new Medium Access Control (MAC) scheme that provides effi cient band-
width utilization, a fast protection mechanism, distributed fairness algorithms, differ-
ential QoS, and network survivability similar to SONET/SDH (on which RPR resides).
RPR can work above SONET/SDH or Ethernet links, and can support up to 10 Gbps
bandwidths, up to 255 station attachments on rings that can span up to 2000 km,
and it is scalable and interoperable. Scalability is achieved by using bridges attached
to the ring, as well as specifi c support of RPR in bridging (and remote stations).

RPR’s MAC is based on spatial reuse; in other words, at every segment of the
ring topology, data can be transmitted simultaneously with other data over other
segments, and is stripped at its destination. Data is transmitted in a dual, counter-
rotating ringlet; that is, two close unidirectional rings, each forming a path of an
ordered set of stations and interconnecting links.

The physical layer underneath RPR’s MAC layer, as well as the upper layers
above RPR’s MAC, are agnostic to RPR, since well-defi ned interfaces are used. RPR
addressing is 48 bits wide (the usual IEEE addressing scheme), of which 24 bits
make up an Organizationally Unique Identifi er. RPR addressing supports unicasts,
multicasts, and broadcasts. An additional mode of addressing is to fl ood the frames
to a set of bridges that are possibly associated with an individual MAC address. This
is like multicasting to all bridges, but where the destination address is a unique
station’s address rather than a multicast address.

Each station controls two ringlets (called west and east) in its MAC layer, which
are both used for data transmission, protection, and congestion avoidance. The sta-
tion’s decision about which ringlet to send the information on is subject to the ring
condition and known state, and obviously the destination address. Each station can
add information to the ring (in either direction), copy the incoming information
(for its upper layers, and retransmit it further on), strip it (i.e., take it off the ring;
stop transmitting it further), or discard it (retransmit it to the next station). In case
of a ring failure, the information is quickly wrapped or steered according to the
failure location on the ring (see Figure 3.4).

Some traffi c management modules exist in each station’s MAC. One of these
mechanisms is a fairness control that is aware of the ring usage and congestions
(due to periodical broadcasted fairness control frames). These fairness modules
control some of the stations’ traffi c by shaping it, such that they will inhibit the
 stations from disproportional usage of the ring, which would prevent “downstream”

7Although we categorize RPR as technology that goes from telecom to data networks on the
road to convergence, many categorize RPR as data network technology that goes to the tele-
com for the same purpose (and remember its origin—the IEEE802). We position it here, since
the telecom industry that traditionally manufactures, operates, or are used to optical rings,
pushes RPR.

3.2 From Telecom Networks to Data Networks 85

stations from using it. Each station maintains two such fairness modules, one for
each ringlet. Each of these fairness modules sends its control frames to its upstream
neighbor via the opposing ringlet. In other words, each RPR station processes the
incoming fairness control frames, and adjusts the rate at which its active queue is
drained onto the ring. It further monitors its sending queues, and when they start
to be congested, the node notifi es the “upstream” stations to slow down by using
the other ringlet.

There are three service classes defi ned for RPR:8 Class A is for real time applica-
tions; this class receives a guaranteed bandwidth, has a low jitter, and is not subject
to the fairness control mechanism. Class B is for near real time applications, and
has two subclasses: Committed Information Rate (CIR) and best effort transfer of
the Excess Information Rate (EIR) beyond the CIR. The CIR subclass receives a
guaranteed bandwidth, has a bounded jitter, and is not “fairness eligible” (subject to
the fairness control), while the EIR subclass receives the same treatment as Class C.
Class C is a best-effort class, which has no guaranteed bandwidth and is subject to
fairness control.

There are fi ve RPR frame formats, as depicted in Figure 3.5, which are:

� Data frame, which has two formats:
– Basic data frame (used for local-source frames)
– Data-extended frame (used for remote-source frames)

� Control frame (used for various control tasks)
� Fairness frame (used for broadcasting fairness information)
� Idle frame (used to adjust rate synchronization between neighbors)

As noted previously, RPR can reside on top of Ethernet, on SONET/SDH directly, or
in the GFP adaptation layer. RPR architectural positioning, layers and interfaces are
depicted in Figure 3.6.

To conclude, RPR has the potential of being an important and effi cient transport
mechanism, residing on top of the very common SDH rings or on future OTN rings.

8Service classes are described in more detail in Chapter 6.

FIGURE 3.4

RPR failure protection

B

A D

C

Normal Steer Wrap

B C

A

B

A D

C
D A B A D C B A

D

86 CHAPTER 3 Converged Networks

However, as of today, it is not widely adopted, and it might either end up like Fiber-
Distributed-Data-Interface or be accepted extensively for packet data networks.
NG-SONET/SDH technologies are certainly not helping RPR’s acceptance, since
they are not only more familiar to the carriers, but they can also potentially provide
an answer to the data-centric traffi c for their already existing SONET/SDH rings,
with less investment.

FIGURE 3.5

RPR frame formats (from right to left)

Fr
am

e
C

he
ck

S
eq

ue
nc

e

4 bytes

Fr
am

e
C

he
ck

S
eq

ue
nc

e

TT
LB

as
e

(b) Extended Data Frame
(Remote-source MAC PDU)

Source
Address

2
 b

yt
es

1
 b

yt
e

1
 b

yt
e

1
 b

yt
e

1
 b

yt
e 6 bytes 6 bytes

(a) Basic Data Frame
(Local-source MAC PDU)

Service Data Unit
(0-1592/9192 bytes for
regular/jumbo frames) P

ro
to

co
l

Ty
pe

H
E

C

E
xt

en
dC

TL
TT

LB
as

e

Source
Address

Destination
Address

B
as

eC
TL

TT
L

InformationTrailer 802.17 MAC Header

2
bytes

Service Data Unit
(0-1592/9192 bytes for
regular/jumbo frames) P

ro
to

co
l

Ty
pe Destination

Address H
E

C

E
xt

en
dC

TL

Source
Address

Destination
Address

B
as

eC
TL

TT
L

Fr
am

e
C

he
ck

S
eq

ue
nc

e

TT
LB

as
e

E
xt

en
dC

TL

H
E
C Source

Address

Source
Address

Source
Address

Destination
Address

B
as

eC
TL

B
as

eC
TL

B
as

eC
TL

TT
L

TT
L

TT
L

(c) Control Frame Control Data Unit
(0-1592 bytes)

C
on

tr
ol

 V
er

C

on
tr

ol
 T

yp
e

Fr
am

e
C

he
ck

S
eq

ue
nc

e

Fr
am

e
C

he
ck

S
eq

ue
nc

e

Fa
ir

ne
ss

H
ea

de
r

(d) Fairness Frame

(e) Idle Frame

Fa
ir

 R
at

e
Id

le
 P

ay
lo

ad
(4

 b
yt

es
)

TTL—Time to live (Hop count to destination)
BaseCTL—Frame type, service class, and baseline controls
ttlBASE—Snapshot of TTL, for computing hop count to source
ExtendCTL—extended flooding and consistency checks
HEC—Header Error Check (CRC-16)
FCS—Frame Check Sequence (CRC-32)
Control Ver—Control version

FIGURE 3.6

RPR architectual positioning

Media Access Control (MAC) datapath

MAC Control (Fairness, Topology and protection, OAM)

Logical Link Control (LLC)

Ethernet
Packet PHY

802.1

802.2

802.17

MDI

System Side

PMA

MDI

GFP
adaptation

HDLC-like
adaptation

Higher Layers

D
at

a
Li

nk
P

hy
si

ca
l

GFP reconciliation
sublayerPRS-1 or PRS-10

GFP—Generic Framing Procedure
GMII—Gigabit Media Independent Interface
HDLC—High-Level Data Link Control
MDI—Medium Dependent Interface
OAM—Operation and Maintenance
PHY—Physical layer
PMA—Physical Medium Attachement
PRS-1—1 Gbps Packet PHY reconciliation sublayer
PRS-10—10 Gbps Packet PHY reconciliation sublayer
SPI—System Packet Interface
XAUI—10 Gbps Attachment Unit Interface
XGMII—10 Gbps GMII

GMII,
XGMII,
or XAUI

SPI-x

SONET/SDH
reconciliation sublayer

Medium Medium

3.3 From Datacom to Telecom 87

FIGURE 3.7

Networking technologies over transport networks

IP IP/MPLS

Optical Infrastructure–DWDM

OTN

Ethernet

WIS GFP-TPDHATM
PPP

(POS)

EthernetRPR ESCON

GFP-F

SONET/SDH

3.2.4 Multiservice Platforms
Although Multiservice Platforms (MSPs) do not present any specifi c technology,
the term MSP is widely adopted by carriers and vendors, and is often mentioned
in relation to data services in the telecommunications environments. MSPs are net-
work elements (NEs)—Multiservice Provisioning Platforms (MSPP), Multiservice
Transport Platforms (MSTP), or Multiservice Switching Platforms (MSSP)—which
are actually composite, SONET/SDH based equipment, geared for packet-oriented
 services as well as TDM-oriented services. MSPP is associated with NG-SONET/SDH,
and can be regarded as its implementation; MSTP is basically MSPP plus DWDM
 capabilities, while MSSP is MSPP that integrates cross-connect and other high-end
switching capabilities. MSPs function as an important interim phase in the migra-
tion process from telecommunications infrastructures toward data (and TDM)
 service infrastructures.

In general, MSPs are NEs that essentially implement NG-SONET/SDH, support
CWDM and DWDM, and offer diverse optical and electrical interfaces, including
GbE, IP, OTN, DS-n, and E-n PDH signals.

The shift from telecommunications networks to data networks through
NG-SONET/SDH technologies and MSPs can be summarized in Figure 3.7, where
all relations between technologies are shown. The abbreviations used in this fi gure
are explained throughout this chapter.

3.3 FROM DATACOM TO TELECOM
The second convergence approach between data networks and telecommunica-
tion networks is to use data networks (i.e., frame- or packet-oriented networks)
as core global and national carrier networks, as metro carrier networks, and for
metro access networks, carrying both TDM and data applications.

This subject is quite new and, as of this writing, is only a couple of years old.
The fi eld is still quite unstable, with many changes and new approaches and many
standards being offered by many standardization bodies—not all of which will be
adopted. This part tries to provide the most relevant and stable information.

88 CHAPTER 3 Converged Networks

3.3.1 Internet Engineering Task Force Approach
The Internet Engineering Task Force (IETF) is obviously Internet-centric, and it
is mainly concerned with IP for data networks that operate in layer 3, strength-
ened by higher layer protocols and applications (e.g., TCP, HTTP). IP networks
and backbone IP networks are deployed extensively today, providing remark-
able answers for most data sharing and usage requirements. IP networks are also
adapted for plenty of other types of networks, channels, and technologies, and
support many protocols above and under the IP layer. IP is principally used above
Ethernet networks by enterprises, as well as above many other channels, links, and
transport networks (e.g., Frame Relay, ATM, leased lines, dial lines, SONET/SDH).

The industry (and IETF) have extended pure IP-based networks to other tech-
nologies in response to requirements for bridging multiple networking technolo-
gies and protocols, interoperability, and integrated support of multi-protocols,
including “telecom” type of communications (i.e., streaming, as well as real-time,
scalability, reliability, and manageability demands from these networks, and the
associated QoS). One major result is the introduction of a shim layer between all
kinds of layer 2 networks and other layer 2 and layer 3 networks (hence multi-
 protocol). This shim layer uses switching instead of routing (resulting speed and
scalability) in preassigned “tunnels” in the network (hence, the ability to engineer
the traffi c and assure QoS). This shim network, the MPLS [370], became a funda-
mental concept, a network, and a tremendously successful IETF solution for carri-
ers and service providers, mainly in their core and long haul networks.

Carriers and service providers enable virtual separation of their Packet Switch
Networks (PSN)—their IP or MPLS networks—by providing seemingly private net-
works for their customers. These Provider Provisioned Virtual Private Networks
(PPVPNs) are provided according to several techniques suggested by the industry
and standardized by the IETF.

This part focuses on two main technologies: MPLS and PPVPN. Just before
 diving into these two technologies, however, it should be noted that current
IETF-based networks are actually interoperable combinations of technologies and
architectures: PSNs (such as IP or MPLS) and other networks (such as ITU-T’s
SONET/SDH, IEEE802’s Provider Backbone Bridged Networks [PBBN] and Pro-
vider Backbone Bridges-Traffi c Engineering [PBB-TE], both of which are described
in the next part). IETF-based carrier networks mostly originated from a routing
standpoint rather than bridging and switching,9 as in the case of IEEE 802 driven
networks.

3.3.1.1 Multiprotocol Label Switching
MPLS [370] is a forwarding paradigm for label switching, which came about as
an effort to speed up IP datagrams in backbone networks. Instead of handling,

9Considering where IEEE802 and IETF came from (i.e., layer 2 LANs, bridges and switched Virtual
LANs, and layer 3 Internet Protocol, respectively), their networking approaches are quite obvious.

3.3 From Datacom to Telecom 89

 routing, and forwarding each IP datagram separately at each node (router) along
the datagram path to its destination throughout the network, MPLS suggests imple-
mentation of label-switched paths, or tunnels in the backbone networks, over the
various existing link-level technologies, through which similar IP packets can fl ow.
MPLS is a transmission mechanism that incorporates IP and ATM ideas into a new
sublayer, under the third layer and above the second one. In other words, it is a 2.5-
layer protocol, or a shim layer, which can carry IP, Ethernet, ATM, or TDM sessions
(hence, the Multi-Protocol), and it can be implemented on top of L2 SONET/SDH,
Ethernet, Frame-relay, ATM or Point to Point links. MPLS allows precedence han-
dling (Class of Service, CoS), QoS assignments, TE, and Virtual Private Networking
(VPN) services, as described in the following.

MPLS merges the connectionless type of traffi c with traditional connection-
 oriented transmission, thus allowing streaming and multimedia applications to
coexist with legacy IP applications.

3.3.1.1.1 Multi-Protocol Label Switching Overview
The basic idea in MPLS is that packets can be classifi ed into Forwarding Equiva-
lence Classes (FECs), where each FEC contains packets that can be forwarded in
the same manner (for example, they have similar destinations, similar paths, or
similar service requirements from the network). When packets enter the MPLS
network, they are classifi ed by the edge, ingress router (called Label Edge Router,
LER) and assigned to an appropriate FEC, which is represented by a short, fi xed-
length label. This is referred to as a Label Push, in which a label is attached to the
packet by either replacing a fi eld that exists in the L2 frame (e.g., the VPI/VCI fi elds
in ATM cell), or as an additional fi eld between the L2 header and L3 headers (e.g.,
IP), as shown in Figure 3.10. The labeled packet is forwarded (switched) by the
core routers (called Label Switching Routers, LSRs) according to the label; that is,
the label is used to point both to the next hop and to a new label that replaces the
incoming (original) label for the next hop (this is called Label Swapping). In other
words, a label is a result of an agreement between any two consecutive routers
on the path of the packet, and it represents the original FEC along the entire path,
despite the label swapping in each hop. Each LSR maintains a Label Information
Base (LIB) for each FEC that includes the next hop (to which the packet is for-
warded) and the swapped label to be used (an example is given later). At the edge,
egress router (the LER), the label is removed (Label Pop) and the packets continue
to their destination outside the MPLS network. The route that was used in this pro-
cedure is called a Label Switched Path (LSP). The architecture of the MPLS network
can be seen in Figure 3.8, which gives an example and is further described.

Figure 3.8 provides an example of two packets, A and B, that enter the MPLS
network with destination addresses 132.72.134.2 and 143.34.2.121, respectively.
The LSP starts at LER1, ends at LER4, and goes through LSR2 and LSR3. The packets
are processed fi rst by the ingress LER (LER1), which has to decide with which
FEC each of the packets should be associated. This is a complex task that involves
 classifying each incoming packet and associating it with an allocated, appropriate

90 CHAPTER 3 Converged Networks

FEC (or potentially creating a new FEC if there is no adequate one). Let us assume
that in this example there is such an FEC, to which a “binding” of label 6 is agreed
by LER1 and LSR2, as indicated by the LIB that LER1 maintains. (This label value, 6,
is arbitrarily chosen by LER1 and LSR2, and it is local; that is, it can be used in other
segments by other LSRs to indicate this or another FEC.) In other words, packets
A and B are sent from LER1 to LSR2 carrying label 6, which indicates that these
packets belong to a specifi c FEC—one that carries packets toward IP networks
132.72/16 and 143.34/1610 in this example. LSR2 is called the upstream router
in this segment for these packets, and LER1 is called the downstream router. The
downstream router (LER1 here) is responsible for setting the label. It can use a
label associated with the FEC as it fi nds fi t, or it can use a label provided by an
upstream router, either after requesting it (“downstream-on-demand”), or as an
initiative of the upstream server (“unsolicited downstream”).

A packet can carry a “label stack” of several labels that are organized as last-in,
fi rst-out. The label at the bottom of the stack is considered a level 1 label, and the
label at the top of the stack is level m label, where m is the stack’s depth. In any
MPLS network, the top level label is considered fi rst, which allows several MPLS
network hierarchies to coexist in a packet’s path. An example of this is given in
Figure 3.9, where we show MPLS subnetworking inside an MPLS network.

The result of MPLS’s use of label hierarchy is the creation of MPLS tunnels at
each level of the hierarchy (including the very fi rst, level 1, label hierarchy). There
are situations in which one router needs to send packets to another router, but
the second router neither follows the fi rst router on the path of the packet, nor is

10IP Network addresses in IP packets are further described in Chapter 5.

FIGURE 3.8

MPLS network (from right to left)

A
6A

6B

B

5
A

A

B

3

2

1

3

2

3

LSR3

LER1

LER4

LSP � LER1->LSR2->LSR3->LER4

1
LSR2 2

5
B

2
A

DIP 132.72.134.2

DIP 143.34.2.121

121.34.34.3

IF
out

Label
out

IF
in

Destination

2 65 132.72/16
2 64 143.34/16

IF
out

Label
out

Label
in

3 21 6

IF
out

Label
out

IF
in

1 52 2
15

4 2
3

2
1 5

4

3

IF
out

Label
in

IF
in

Destination

463 132.72/16
563 143.34/16

132.72/16

143.34/16

IF
in

Label
inB

3.3 From Datacom to Telecom 91

it the ultimate destination of the packet. Such a situation may occur, for example,
when routers are using different networking mechanisms. The created path is a
tunnel through which packets are sent. Every LSP, by this defi nition, is a tunnel.
Tunnels, on the other hand, can be comprised of networks other than MPLS (such
as LSPs), routers, or MPLS network segments. When tunnels in an MPLS network
are made of several MPLS routers (i.e., a sub-MPLS network), then a hierarchy of
MPLS networks is created, as in Figure 3.9. Instead of using an LSP that is com-
posed of just one level (for example, LER1-LSR2-LSR3-LER4, which is a level 1 LSP),
an additional sub-LSP, or level 2 LSP, is used between, say, LSR2 and LSR3, and
is composed of LSR2-LSR21-LSR22-LSR23-LSR3, so that the entire path would be
LER1-LSR2-LSR21-LSR22-LSR23-LSR3-LER4. The second level LSP would then use
double labels, or a label stack of depth 2.

The Router LSR23, which is called the penultimate router in the level 2 LSP,
pops the level 2 label from the label stack, handing the level 1 labeled packet to
LSR 3 to continue the packet’s journey in the level 1 LSP. Since the last router
usually requires no label at all, it makes sense to have the penultimate router—the
one before the last—pop the label rather than swap it. The penultimate router
forwards the packets to their destinations based on non-MPLS network addresses,
or else on higher label and LSP levels in MPLS networks. The label’s purpose is
to point the LSP up to the last router, and once the packet is sent by the penul-
timate router to the last one, there is no longer any need for the label, unless, in
some cases, the last router does in fact use information from the label to make
forwarding decisions (e.g., based on the FEC). Because of this, when setting up the
LSP, the penultimate router receives clear indication from the egress LER, through
the Label Distribution Protocol (LDP), as to whether it should do penultimate
hop popping, or leave the label to the last router (LER). Penultimate hop popping
improves forwarding effi ciency by allowing the egress LER to avoid performing

FIGURE 3.9

MPLS hierarchy

A

6A
6B

B

A

B
DIP 132.72.134.2

DIP 143.34.2.121

121.34.34.3

132.72/16

143.34/16
LER1

LSR3

LSR2

LER4A
5

9

9

LSR21

LSR22

LSR23

5
B

92 CHAPTER 3 Converged Networks

both an MPLS forwarding table lookup and an IP forwarding table lookup for each
packet exiting the LSP. LSR3, in the example previously, is the penultimate router
in the level 1 LSP, and may send unlabeled packets to LER4, which functions as a
regular IP router and distributes packets according to IP addresses.

Most MPLS is done in the data plane. In other words, label-swapping-based for-
warding is part of the data plane mechanisms. Maintaining the forwarding databases
(e.g., the LIBs) is a control plane process. Signaling protocols for MPLS, which are
used to build and maintain these databases, are called LDPs. LDP is used to distrib-
ute and exchange label/FEC bindings among LSRs, as well as to negotiate MPLS
capabilities between LSRs. LDPs are described briefl y in a following subsection.

The label-switching concept—that is, attaching a label to every packet—has
several important advantages. The most signifi cant one is that routing decisions
are simplifi ed and sped up at the core network, since the only thing required to
forward a packet is to swap the label and to switch the packet according to the
packet’s label and the LSR’s LIB. Second, label-switching allows the forwarding
mechanism to further classify and prioritize packets by more than their IP headers;
for example, by their originating ports. Third, the label can be used to indicate a
desirable, specifi c path for the packets to traverse the network (sort of a “source
routing”11 mechanism), for various traffi c considerations. Fourth, the label carries
precedence information, or “CoS,” that allows the NEs (e.g., routers, queues) to
apply appropriate scheduling disciplines, overfl ow discarding thresholds, and so
on. Finally, label-swapping allows scalability of the MPLS network since there is no
need to “globalize” the labels throughout the entire MPLS network.

3.3.1.1.2 Multi-Protocol Label Switching Label
An MPLS label (Figure 3.10) [369] is 4 bytes long, with a 20-bit label fi eld, which
is the actual label value.12 The Time-to-Live (TTL) fi eld is similar to the TTL in the
IP header,13 and is used for loop-avoidance (in each swap operation, the TTL is
decremented by 1, and when it reaches 0, the packet is discarded). The last fi eld
was originally left as an experimental-use fi eld of 3 bits, but usually it is used as a

11In source routing, each packet carries with it a list of nodes that it should pass while traversing the
network toward its destination, and each node along the path complies with this “instructions list”
by forwarding the packet to its next hop and removing itself from node-list (like a pop operation).
12Values 0–15 are reserved for specifi c uses, as defi ned in http://www.iana.org/assignments/
mpls-label-values: A value of 0 indicates that the label stack must be popped, and the packet should
be forwarded based on the IPv4 header (called “IPv4 Explicit NULL Label”). This value is valid only
at the bottom of the label stack (the last label). A value of 2 is the same for IPv6. A value of 3 is used
only in the LDP and is not actually sent as a label in any frame; instead, it indicates to the LSR the
use of a “null” label. In other words, it instructs the LSR to POP a label rather than to SWAP it when
applied (hence, it is called “Implicit NULL label”).
13Actually, the TTL in the label in the ingress LER is taken from the TTL fi eld of the IPv4 or the hop
limit fi eld of IPv6, as the case may be. The TTL result in the egress LER then replaces the TTL or hop
limit fi elds in the IPv4 or the IPv6.

3.3 From Datacom to Telecom 93

CoS fi eld indicating the service requirements of this labeled packet. Field S indi-
cates the bottom of the stack (the last label) when it is set to “1.”

3.3.1.1.3 Label Information Base
MPLS uses information stored at each LSR and LER to determine which labels the
LSR or LER should be using for the forwarded packets in their next-hop, and what
to do with the labels. These tables are manipulated by the LDPs, as described
before; in other words, they indicate whether the labels should be swapped,
popped, or pushed. This information repository, called the LIB in the MPLS termi-
nology, is not standardized, and can be designed and built in many ways. There are
three defi ned terms in the MPLS standard that are necessary for constructing the
LIB: Next Hop Label Forwarding Entry (NHLFE), Incoming Label Mapping (ILM),
and FEC-to-NHLFE (FTN).

The NHLFE is an entry in the LIB. It contains the information required for the
packet to be forwarded: the packet’s next hop and the operation that the LRS
router has to perform on the packet’s label stack. The operations could be swap-
ping the label, popping it, pushing a new one, or a combination of these.

The question of how the LSR assigns a packet with a specifi c label to a NHLFE is
answered by the ILM, which actually assigns a set of possible NHLFEs, from which
just one entry is chosen based on specifi c requirements. Being able to consider
multiple entries is useful, for example, for load balancing, backup transmission, or
TE applications.

An analogous mapping of packets without labels to NHLFE is done by the FTN
mapping, which is usually done in the ingress LER. Again, FTN can map packets,
classifi ed and assigned to some FEC, to a set of suitable NHLFEs, from which just
one entry can be used.

An example of an LIB can be seen in Figure 3.8. Each LSR in the LSP uses the ILM
to fi nd the right NHLFE and, according to it, decides on the next hop and opera-
tion (usually to swap with a new label). The LER has to analyze the packet fi rst,
determine its FEC, and then use the FTN to fi nd the right NHLFE and execute the
operation in the entry (usually to push a new label).

FIGURE 3.10

MPLS header (from right to left)

Layer 2
Header

MPLS
header

Layer 3 (IP)
HeaderPayload

Label

4 bytes

CoSTTL S

20 bits8 bits 3 bits

1
 b

it

94 CHAPTER 3 Converged Networks

Once again—it is important to understand that LIB, along with its parts and
implementations, is used in the data plane (while packets are being forwarded), but
it is constructed and maintained in the control plane, usually by LDPs, as described
in the following subsection.

3.3.1.1.4 Label Distribution Protocols
There are several LDP standards that can be classifi ed according to various param-
eters, such as who decides which labels to use (LSP control for the required FECs)
and how it is done (routing). More specifi cally, there is the ordered versus indepen-
dent LSP control, and hop-by-hop versus explicit routing, as described as follows.

In ordered LSP control, the egress LER binds a label to an FEC, and every down-
stream LSR (a preceding LSR on the LSP) binds a label only after receiving the label
binding for the specifi c FEC. Ordered LSP control can be initiated by any LER; that
is, the ingress LER can ask the egress LER to start with the label binding process.
In independent LSP control, each LSR (or LER) binds a label as it fi nds it necessary
to do so for a specifi c FEC; thus segments of the LSP can be built while the packet
is forwarded.

Hop-by-hop routing is similar to IP routing; that is, each node along the path
(LSR in the case of MPLS) decides independently what will be the next hop. Explicit
routing is similar to source routing.14 The difference from traditional source routing
is that packets remain as they are (apart from attaching a label for each hop), and
are carried in an explicit LSP tunnel that was created by LER (usually by the ingress
LER). The route is created by the LER by specifying the sequence of LSRs in the LSP
and manipulating the LIBs in each LSR along the LSP such that labels along the LSP
will forward the packets through the required explicit route.

Although we refer in this subsection to LDP as a generic name for a group of
 protocols, there is one specifi c LDP protocol [22] (its origin [21] was introduced
together with the MPLS, and is briefl y described in Appendix A of this chapter).
A simple LDP (“Vanilla” LDP) is based on creating a “tree” of unidirectional paths that
connects a destination to every possible source, by hop-by-hop routing. It uses the
existing IP forwarding tables to route the control messages required to build the LSP
(“Vanilla” LSP). Another LDP mechanism can build an Explicitly Routed LSP (ER-LSP)
by following a path that the source initially chooses, on which the control messages
required to build the ER-LSP are routed.

Other techniques and protocols are used for TE in MPLS, by extending topol-
ogy databases to include constraints, and then running an LDP that does not vio-
late the topology constraints. There are two common ways to do this: (1) by
extending the LDP to Constraint-based Routed LSP using LDP (CR-LDP) [235],
which is LDP with additional explicit routes and constraints, and (2) by using
Resource Reservation Protocol—Traffi c Engineering (RSVP-TE) [38], which adds
label distribution to the RSVP.

14See footnote 11 for more about source routing.

3.3 From Datacom to Telecom 95

3.3.1.1.5 Multi-Protocol Label Switching Layering
Up until now we described a “clean” layered network model, according to which
each layer is used above or under another layer, in proper order. However, to make
things more complicated, MPLS can be used not only above Layer 2 and underneath
Layer 3. MPLS can also carry L2 frames above it, or be carried above L3 packets.15

Carrying MPLS over IP: It is possible to encapsulate MPLS packets (which are of
layer 2.5) into IP packets in IP-based networks (which are layer 3), for example, this
can be done to interconnect two MPLS networks by an IP network. Two IP-based
encapsulations are offered [431]: MPLS-in-IP and MPLS-in-GRE. MPLS-in-IP is done
by replacing the top level label with a “regular” IP header (with protocol number
137, which indicates an MPLS unicast payload), and the result is that an MPLS
tunnel is replaced by an IP routing. Similarly, MPLS-in-GRE is done by using an IP
header followed by a Generic Routing Encapsulation (GRE) [120] header.16

Carrying L2 over MPLS: A set of drafts, called the Martini-drafts, defi ned how to
transport L2 frames; for example, Frame-Relay, ATM AAL5, ATM cells, Ethernet,
Packets over SONET (POS), TDM, HDLC and PPP, across MPLS network. “Draft
Martini” was known as Cisco’s Any Transport over MPLS (AToM), or sometimes
also as Any Protocol over MPLS (APoM). These drafts were standardized for his-
torical and documentation purposes as RFC 4905 [306] and RFC 4906 [307], and
were superseded by the Pseudo Wire Emulation Edge to Edge (PWE3) Working
Group specifi cations [309] and related standards (described in the following).

3.3.1.2 Using Packet Switched Networks
Initially enterprises used point-to-point links between their sites, and between their
sites and service providers. These links were based on dedicated telecom lines (low
rate TDMs, like T1/E1 or T3). These point-to-point links were used for providing point-
to-point services, and to create private networks for these enterprises. However, using
dedicated telecom lines, especially for private network setup, was extremely expen-
sive (and still is). The next phase, then, was to use the public network infrastructure
of Service Providers (SPs) (i.e., the PSN), and to create a VPN as an overlay network
to which the enterprises are connected. When the VPN service, or interface, is based
on Layer 2 frames (e.g., ATM, Ethernet), the VPN is called L2VPN, and when the VPN
service (i.e., interface) is based on Layer 3 packets (e.g., IP), it is called L3VPN.

15It should be said, however, that this is not just an MPLS capability; IP (Layer 3) packets can encapsu-
late and carry L2 frames, such as Ethernet, even though these IP packets are encapsulated in some L2
frames. In other words, it can happen that L2 frames carry L3 packets, which contain other L2 frames
again for their end-point applications. Some examples of this, which we’ll describe in the following, are
Layer Two Tunneling Protocol (L2TP) [409], Generic Routing Encapsulation (GRE) [120], and more.
16Generic Routing Encapsulating is used to encapsulate an arbitrary network layer protocol over
another arbitrary network layer protocol. In the case of GRE over IP, the IP header’s protocol fi eld is
47, indicating a GRE payload, and the GRE header’s protocol fi eld contains the Ethertype of unicast
MPLS, 0x8847, or multicast MPLS, 0x8848, as the case may be.

96 CHAPTER 3 Converged Networks

The IETF approach to carrier-provisioned PSNs covers the two basic services of
point-to-point and VPN (in addition to the PSN networks themselves). These two
service models are the result of several working groups of the IETF, and the two
relevant working groups are described next.

The fi rst working group, Pseudo Wire Emulation Edge to Edge (PWE3), offers
a set of standards for a point-to-point link emulation over a PSN (e.g., IP or MPLS).
Using PWE3 technologies, layer 2 interconnections are done transparently between
any two edge nodes of the PSN.

The second set of working groups, PPVPN, provides a set of standards for net-
working that relies on the three layers of PPVPN.17 VPN is a subnetwork of either
a private or public network whose group of users (customers or sites) are sepa-
rated from other groups (and subnetworks). This group shares this network, and
its users communicate among themselves in a subnetwork and maintain it. The
method and extent of the separation between the groups’ VPNs result from the
 technology used; that is, the isolation between traffi c belonging to different groups
can be achieved by using mechanisms such as Layer 2 connections (Frame relays,
ATM, Ethernet, etc.), or Layer 3 tunnels (IP, MPLS, etc.).18

3.3.1.3 Pseudo Wire Emulation Edge-to-Edge
Pseudo Wire Emulation Edge to Edge19 specifi es the encapsulation, transport, con-
trol, management, internetworking and security of services that are emulated over
IETF PSNs (mainly IP and MPLS networks). A pseudo-wire (PW) emulates a point-
to-point link, which appears to be a private link, or a circuit of some service to
its users. As its name implies, PWE3 is an edge-to-edge facility that has nothing to
do with the underlying PSN control. Several technologies can be used by PWs;
for example, Ethernet, Frame-Relay, PPP, HDLC, ATM, or SONET/SDH, which
are defi ned as PW types.20 PW setup, confi guration, maintenance, and tear-down
require specifi c control and management functions that are described in the PWE3
and are based on tunneling protocols; for example, LDP [309] or Layer two Tun-
neling Protocol version 3 (L2TPv3)21 [272].

The reference model of PWE3 contains the main elements used in the IETF ter-
minology for PSN: A piece of Customer Edge (CE) equipment (e.g., router, switch,
or host) is connected to the network’s Provider Edge (PE) device by the Attachment

17Instead of the PPVPN working group, there are Layer 2 VPN (L2VPN), Layer 3 VPN (L3VPN) and
Layer 1 VPN (L1VPN) working groups, each dealing with a different layer than the one on which the
VPN can be based.
18It should be noted though, that traditional IP (Layer 3) VPN services emerged from security needs;
that is, VPN-based IPsec [249].
19PWE3 is the third evolution made by IETF, following Pseudo-wire over Transport (PWOT), which
itself followed Circuit Emulation over Transport (CEOT).
20RFC 4446 [301] defi nes a 15-bit coding of PW types (e.g., 1 for Frame-Relay, 4 for Tagged Ethernet
[VLAN], 5 for Ethernet, 7 for PPP).
21The L2TP extensions (L2TPext) workgroup defi nes L2TP specifi cs for L2TPv3-based PW.

3.3 From Datacom to Telecom 97

Circuit (AC; e.g., Ethernet port, Frame-Relay or ATM VPI/VCI). Figure 3.11 shows
this reference model.

The PEs create PSN tunnels among themselves, and establish PWs inside
these tunnels to convey the emulated service PDUs through these PWs. The
CE is unaware of the emulated service it receives from the PE, and sees it as a
native service. The frame, or the bit stream, that originates with the CE, trans-
verses the AC and is received by the PE. The PE uses an internal forwarder that
matches a PW to the incoming frames either according to the AC they were
received from, the frames’ attributes (payload content, address, etc.), or stati-
cally/dynamically confi gured forwarding information. The PW protocol is based
on three layers:

� Emulated service (e.g., TDM, ATM),
� Pseudo-wire (PW, i.e., Payload Encapsulation), and
� PSN Tunnel (PW demultiplexer, PSN Tunnel, and PSN and Physical layers).

The Emulated service is maintained between the two CEs, the pseudo-wire is
maintained between the two PEs, and the PSN tunnel is maintained only in the
PSN, from the PE to the other edge PE. The tunnel header takes the PDU across
the PSN, from PE to PE. The PW demultiplexing fi eld distinguishes between
different circuits in a tunnel (e.g., MPLS label). The PW encapsulation layer is
comprised of three sublayers, that encapsulates the service PDU payload, adds
timing information (e.g., for real time or synchronized channels), and carries
sequencing tasks (i.e., it ensures ordered and unduplicated frame delivery). The
PW identifi cation/demultiplexing layer enables the usage of one PSN tunnel for
multiplexed PWs. The PSN convergence layer provides a consistent interface
to the PW, making the PW independent of the PSN type. The protocol-layering

FIGURE 3.11

Pseudo-wire reference model

PE2
FW

PE1
FW

CE2

CE1

CE4

CE3

PW2

PW1

ES1 ES1

ES2ES2

Packet Switched Network

CE—Customer Edge
PE—Provider Edge
FW—Forwarder

PW—Pseudo-wire
AC—Attachment Circuit
ES—Emulated Service

PSN Tunnel

PSN Tunnel

Pseudo-wire
Emulated Service

AC1

AC4AC2

AC3
PW1

PW2

98 CHAPTER 3 Converged Networks

model, with the resulting PDU that is exchanged between the pair of PEs, is
depicted in Figure 3.12.

As mentioned before, PW can use several types of PSNs (or ride over them
[328]): MPLS (LSP is used for tunneling the PW packets), MPLS/IP (MPLS-in-IP
tunneling [431] is used, with the MPLS shim header as a PW demultiplexer), and
L2TP-IP (where L2TPv3 [272] is used for tunneling the PW packets).

The exact service-PDU encapsulation depends on the PSN used, and a mapping
between any of the above mentioned PWE3 layers and those of the underlying IP or
MPLS tunnel layers is defi ned in PWE3 and related RFCs. For example, Figure 3.13
shows the Generic PW MPLS Control Word (PWMCW) that is required for PWE3
over MPLS PSN [62], and the resulting packet. The tunnel label is the MPLS outer
label, and the PW label is the MPLS inner label. MPLS distinguishes between IP pack-
ets and PW packets according to the fi rst four bits of the PWMCW (which are 0),
whereas the IP packet starts with the 4-bit Version fi eld (which is either 4 or 6).

It should be noted that establishing the tunnel in the PSN and establishing the
PW are separate and independent tasks, even though, for example, they might both
be done by using LDP.

Although PWE3 is used for PPVPN (described as follows), PWE3 is very
 important by itself, since it enables many heterogeneous technologies to utilize
the many deployed PSNs, especially MPLS-based PSNs. For example, Ethernet

FIGURE 3.12

PWE3 protocol layering model with the resulting PDU

MAC/Data Link

Media

PSN

PSN Convergence*

PW Identification/
Demultiplexer

Emulated Service

PW

PSN Tunnel

Physical

Sequencing

Timing

Payload Convergence

Payload

Service

MAC/Data Link

PSN

PSN Convergence*

PW Identification/
Demultiplexer

Physical

Sequencing

Timing

Payload Convergence

Payload

Service

Media

*may be empty
**according to the underlying tunnel

E
nc

ap
su

la
ti

on
La

ye
r*

Packet Switched Network

Emulated
Service

Pseudo-
Wire

Payload (e.g.,
Ethernet)

Control
Word**

PW
Label

Tunnel
Label

Data Link
Header

Physical
Header

Service PDU

PW PDU

PSN PDU (e.g., MPLS)

3.3 From Datacom to Telecom 99

 services can be provided over these PSN networks using encapsulation of the
 Ethernet frames22 [308]; PDH circuits (T1/E1 and T3/E3 TDM) can be emulated
over PSNs [415]; PPP, HDLC and Frame-Relay can be transported over PSN [305,
310]; ATM services can use PSN infrastructure [304]; and even SONET/SDH ser-
vices can be offered over PSN, using PWE3 [292].

By employing the PWE3 mechanism [302], Ethernet frames can use PSN net-
works as a backbone infrastructure, even for the IEEE802 solution for metro Ether-
net described in the next subsection (i.e., PBBN, 802.1ah). In other words, PWE3
service can be used to encapsulate PBBN-tagged frames and carry them over MPLS
networks. This enables providers to connect “islands” of PBBNs by MPLS links, and
to offer “emulated” Ethernet services.

It should be noted that PWE3 is backward-compatible with the so-called “draft-
martini” protocol [307], which describes the transport of Layer 2 frames over
MPLS PSNs (discussed briefl y in the MPLS section). “Draft-martini” is used in many
deployed implementations, but it was superseded by the PWE3 specifi cations
described previously [62, 292, 302, 304, 305, 308–310, 415].

22See also footnote 20. Two distinct types of Ethernet PW are defi ned: a raw mode (PW type 5) and
an 802.1Q-tagged mode (PW type 4).

FIGURE 3.13

PWE3 over MPLS

Payload PW
Label

Outer
Label

DataLink
Header

Physical
HeaderRTP

frgLengthSequence Number Flags 0000

RTP—Real Time Protocol header (RFC3550)
Flags—per payload signaling
frg—used when fragmenting a PW payload

01631 410 8

MAC/Data Link

Media

PSN

PSN Convergence

PW Identification/
Demultiplexer

Physical

Sequencing

Timing

Payload Convergence

Payload

4
bytes

Generic PW
MPLS Control

Word (PWMCW)

4
bytes

100 CHAPTER 3 Converged Networks

3.3.1.4 Provider Provisioned Virtual Private Network
From a service point of view, Provider Provisioned VPN (PPVPN) is the second
generation evolution of enterprise networks. First, enterprises used to lease point-
to-point links from service providers to build their private networks. VPN later
allowed enterprises to exploit the public, shared networks infrastructure. The tra-
ditional VPN networks were based on layer 2 virtual circuits (e.g., Frame Relay,
ATM), and offered lower cost, higher security, QoS support, and the use of well-
known technologies. Their limitations were poor scalability of provisioning and
management, as well as low IP network integration.

Virtual Private Networking is based on either network-wise, PE to PE tunnels, or
on end-to-end, CE to CE tunnels (see Figure 3.14). PE–PE tunnels can use various
IP/MPLS technologies (e.g., L2TP, IPSec, GRE, MPLS, etc.), and allow layer 2 or layer
3 connectivity and services to the customers by packet forwarding based on L2
or L3 header information, respectively. In CE–CE VPNs, the service provider (who
owns the VPN) offers either layer 2 services (virtual circuits, as in traditional L2
VPNs), or layer 3 services (e.g., IP), by creating end-to-end, CE to CE link layer tun-
nels or IP/MPLS tunnels, respectively. These CE–CE tunnels may use independent
PE–PE tunnels that the VPN maintains.

Provider Provisioned VPN [329] refers to a VPN provisioned and managed by
a Service Provider (SP), or several SPs or operators, to which the customers are
connected and from which they receive VPN services, as described in the follow-
ing. According to IETF PPVPN, the entire networking model is based on tunneling
(e.g., PWE3) in a Provider Provisioned PVN, as depicted in Figure 3.14. The entities
in the reference model include:

� Customer edge equipment—May be any customer device; for example, a router
or a host that has no VPN-specifi c functionality but to access the PPVPN services.

� Provider edge equipment—A device that supports one or more VPNs and
interfaces with customers; for example, a router or a switch.

FIGURE 3.14

IETF provider provisioned virtual private network reference model

Service Provider
Backbone NetworkPE

PE

CE1

CE2

CE3

CE4

Operator
Domain Operator

Domain

P
Access

Network

CE—Customer Edge
PE—Provider Edge
P—Provider Equipment
AC—Access Connection

AC

Access
Network

AC

AC

AC

Customer
Interface

Network
Interface

3.3 From Datacom to Telecom 101

3.3.1.4.1 Layer 3 Provider Provisioned Virtual Private Network
L3VPN uses layer 3 information (e.g., headers and addresses), so the shared network
infrastructure (VPN backbone) must be an IP or MPLS network. This implies that
the SPs determine either at the PEs or at the CEs how to route the VPN traffi c,
and they control the QoS that the customer’s traffi c receives. It also means that
the customers are restricted by the L3VPN to just one protocol (IP) that they
can use.23

L3VPN can be as simple as a backbone L2 or L3 network that is owned
by some SP, that interfaces with its customers by L3 (e.g., IP), and is used by

23As mentioned before, IP can be used to carry L2 frames, which relieves this limitation.

PPVPN

Layer 2 Layer 3

P2MP PE-based CE-based

VPLS IPLS BGP/MPLS
IP VPNs

IPsecVirtual
Router

P2P
VPWS

� Provider equipment—A provider device (usually a router) within a provider
network that interconnects PE and other P equipment, and does not have any
VPN functionality.

� Service provider network—A network administered by a single service
 provider (operator), but which can use networking facilities of several SP
networks.

� Access connection, or attachment circuit—An isolated layer 2 link between
a CE and a PE; for example, a dedicated physical circuit, a logical circuit
(such as Frame-Relay, ATM, and LAN’s MAC), or an IP tunnel (such as IPsec,
or MPLS).

� Access network—A network that provides the ACs. It may be a TDM network,
a layer 2 network (e.g., Frame Relay, ATM, or Ethernet LAN), or even an IP
 network over which access is tunneled (e.g., MPLS).

The terminology of PPVPN is suggested in RFC4026 [19], which clarifi es the
various technologies and services used in PPVPNs. L2VPN services include Point-
to-Point (P2P) Virtual Private Wire Service (VPWS), Point-to-MultiPoint (P2MP) Vir-
tual Private LAN Service (VPLS), and P2MP IP-only Like Service (IPLS), while L3VPN
[68, 71] offer services that interconnect equipment based on their IP addresses
(e.g., IP-based VPN [148]). L1VPN services include connections set-up between
CE devices [402], and are not treated in this context of carrier networks.

102 CHAPTER 3 Converged Networks

these customers as an “overlay network.”24 This solution is hardly suffi cient,
as scalability issues, confl icts in cross customers’ address spaces, and massive
administrative work in confi guration and modifi cations prevent practical usage
of this solution for carrier class infrastructure. A better solution is suggested by
Border Gateway Protocol (BGP)/MPLS IP VPN defi ned in RFC436425 [368], using
MPLS tunnels in the SP infrastructure network, which is isolated from the cus-
tomers’ VPNs that use it.

It should be also noted here that L3VPN, a successor of the original PPVPN con-
cept, was tremendously successful in service providers’ core networks, particularly
since 2000. A very common infrastructure network is the BGP/MPLS IP VPN.

L3VPN technologies such as Virtual Router [259] (which did not catch on) and
IPsec [249] (which is used extensively in secured scenarios) will not be discussed
here. BGP/MPLS IP VPN [368], however, deserves description due to its massive
deployment.

BGP/MPLS IP VPN—General Description BGP/MPLS IP VPN (RFC4364) [368] net-
works are so named because CE routers26 sends IP datagrams to the PE routers,
and because BGP [46, 365] is used to distribute the VPN information, while MPLS is
used to forward the VPN traffi c across the provider’s VPN backbone.

BGP/MPLS IP VPN terminology defi nes a VPN as a collection of sites, connected
through a backbone, that have IP interconnectivity. Sites that have no VPN in com-
mon cannot communicate across that backbone. The owners of the sites are the
customers, and the owner of the backbone is the Service Provider (SP). Each site
is connected to the backbone’s PE routers by its CE router.

To establish a VPN, the CE routers send their local VPN routes to the PE rout-
ers. These are either manually confi gured (i.e., static routing), or they use an IGP27
or EGP28 dynamic routing protocol (e.g., OSPF,29 RIP,30 eBGP31). The PE routers
then use BGP to distribute the routes of the required VPN, along with MPLS labels,
among all the PE routers that are attached to that VPN. The PE routers then distrib-
ute the remote VPN routes to the attached CE routers that belong to those VPNs
(again, by using any dynamic routing protocol).

24An overlay network is built on top of an underlying network in such a way that the overlay-
 network’s nodes represent one or more nodes of the underlying network, and these overlaying
nodes are interconnected by virtual (logical) paths, which are composed of one or more physical
links of the underlying network.
25RFC4364 [368] used to be known as RFC2547bis [11], which replaced the RFC2547 network
[367].
26In BGP/MPLS IP VPN, any L2 CE (e.g., switch) is not regarded as part of the CE, rather it is considered as
part of the Attachment Circuit (AC), between the SP VPN’s PE routers and the customer’s CE routers.
27Interior Gateway Protocols.
28Exterior Gateway Protocols.
29Open Shortest Path First.
30Routing Information Protocol.
31External Border Gateway Protocol (BGP connection between external peers).

3.3 From Datacom to Telecom 103

The customer’s data packets are encapsulated with the MPLS label that
matches the route of the packet’s destination in the customer’s VPN. The result-
ing MPLS packet is again encapsulated for tunneling it across the service provid-
er’s backbone toward the egress (exit) PE router (e.g., by another level of MPLS
or GRE encapsulation). By doing this, we have a two-layer label stack of MPLS,
and the backbone routers are unaware of both the VPN they serve and its routes
(as they are represented by the inner, bottom label).

The CE routers are peered only with the PE routers, not among themselves; that
is, they do not exchange routing information with each other. This means that the
CE does not manage the backbone or handle any inter-site routing. It further means
that the created VPN is not an “overlay” network on top of the service provider’s
backbone network. Extended addressing mechanisms and unawareness of the core
routers of the VPNs, allows participants of nonoverlapping VPNs to use whatever
addressing scheme is required in each of the VPNs, even if the address spaces may
overlap. This creates a very scalable and fl exible solution for the customers and the
service providers, as well as a very simple network for usage and confi guration.

BGP/MPLS IP VPN—Internal Operation There are two basic operational modes in
BGP/MPLS IP VPN: the control plane fl ow of routing and forwarding information,
and the data plane fl ow of traffi c. Control plane operations can be further cat-
egorized into four main tasks, which are required to achieve BGP/MPLS IP VPN
functionality:

� Separation and distribution of VPNs’ forwarding tables.
� Extended addressing, for overlapping IP addresses in different VPNs.
� Distribution of routing information.
� Managing the MPLS forwarding mechanism.

Separation and Distribution A PE router maintains several VPN Routing and
Forwarding (VRF) tables, one of them being a “default forwarding table.” ACs
between the CEs and the PE (usually identifi ed by the physical incoming PE
ports) are mapped to the PE’s VRFs. The destination IP of any packet coming
through such an AC is compared with the associated VRF to determine its route
to the egress (outlet) PE. Careful building and maintenance of the entries in
these VRFs keeps the VPNs separated as required. Clear identifi cation of the
AC on which each packet enters the PE is mandatory for choosing the correct
VRF, and sometimes it is even important to distinguish between “virtual ACs”
(e.g., different incoming VLANs or classifi cation by the source IP addresses),
in order to choose the “right” VRF. A BGP/MPLS IP VPN example is shown in
Figure 3.15.

PE1 in Figure 3.15, for example, maintains two VRFs—one for each VPN it is
attached to (VPNA and VPNB), each through a different AC. VRFB contains all the
IP addresses and their forwarding addresses (next-hop), as in any routing table, in
order to allow routing in VPNB. PE1 distributes the routes of VPNB by using BGP to
all other PEs that are attached to VPNB (just PE3 in this case).

104 CHAPTER 3 Converged Networks

Extended Addressing The potential overlapping of IP address spaces (used by
 different VPNs) might “confuse” BGP when distributing the VPN routes in the
SP backbone (since the same IP address can be used for different VPNs, and
the BGP might treat it as one address, neglecting the other VPNs). In order to
solve this, a separation between VPN address spaces is achieved by taking advan-
tage of the BGP Multiprotocol Extensions [46], which extend IPv4 addressing
to multiple “address families.” This enables generalized VPN-IPv4 addresses to be
advertised as a special address family by BGP Multiprotocol Extentions. Every
VPN-IPv4 address is 12-bytes long, composed of an 8-byte Route Distinguisher
(RD) (which is just a number), and ending with a 4-byte IPv4 address. The VPN-
IPv4 address is shown in Figure 3.16.

The Type fi eld of the RD (which contains 0, 1, or 2) determines the length
and meaning of the two other fi elds of the RD; for example, Type 0 determines
that the administrator subfi eld is 2 bytes long, containing an Autonomous Sys-
tem Number (ASN), and the 4-byte Assigned Number subfi eld contains any
number assigned by the service provider to whom the ASN belongs. No two
VPNs have the same RD. BGP, however, disregards this structure, as it simply
compares address prefi xes.

It should be emphasized again here that the VPN-IPv4 addresses are used only
in the control plane by BGP, only in the SP backbone, and only to disambiguate

FIGURE 3.15

BGP/MPLS IP VPN example

L3 VPN AAC

Access
Network

AC
AC

VRFA

VRFA

VRFA

VRFB

VRFB

Service Provider Backbone

PE2

P2

P3

P1PE1

PE3

L3 VPN B
CE5

CE3

L3 VPN A CE2

L3 VPN B

CE4

Customer A Network

Customer A Network
Customer B Network

Customer A Network

L3 VPN A

CE1

Customer B Network

CE—Customer Edge
PE—Provider Edge
P—Provider Equipment
AC—Access Connection/Attachment Circuit
VRF—VPN Routing & Forwarding Table

3.3 From Datacom to Telecom 105

IP addresses—not for constrained distribution of routing information (route
 fi ltering).

Distribution of Routing Information IP routes from any given CE to its attached
PE must be associated, in the PE confi guration, with a particular RD. The IP
routes that the PE “learns” from its attached CEs (as described before, by manual
confi guration or by any dynamic routing protocol) are inserted into the PE’s
VRFs. These routes are then translated to VPN-IPv4 routes (with the associated
RDs) and routed by BGP to all other relevant PEs. At the receiving PEs, the VPN-
IPv4 routes are converted back to IP routes, and inserted into the relevant VRF
tables of the PEs (and possibly also sent to the attached CEs).

The question of how to decide which of the PEs are relevant is answered
by using Route Target (RT) attributes, which are analogous to the Route Dis-
tinguisher (RD), and have a similar structure. These attributes defi ne a set of
sites, customers, or VPNs, and are assigned to VRFs and to distributed VPN-IPv4
routes. A VPN-IPv4 route, carrying an RT, is distributed to all PE routers by BGP,
along with an MPLS label. BGP distribution inside the backbone can be fully
meshed, or it can be done by the BGP refl ectors concept, which saves BGP mes-
sages and assists in scalability (see this chapter’s Appendix A).

At any rate, only those PE routers that possess VRFs associated with the
 transmitted RTs can use these routes to update their VRFs. The mechanism for
 updating is, on the one hand, to use a set of “import route targets” that the PE
 maintains for fi ltering the routes received from other PEs and potentially to
“import” them into the VRF, and, on the other hand, to use a set of “export route
targets” that the PE attaches to routes belonging to a site (a VPN). In some cases,
customers are allowed to provide route targets to be used by the PEs, thus enabling
the customers to have some control over the distribution of VPN routes.

For example, when a set of VPN sites and their corresponding VRFs are assigned
with a unique RT value, which is both the import route and the export route and
not used by any other VPN, a closed user group (i.e., one that no outside customer
can communicate with), is created over the SP backbone. This becomes a fully
meshed network (i.e., one in which each site communicates directly with any
other). Another example might be a “hub and spoke” VPN network topology that

FIGURE 3.16

VPN-IPv4 address (from left to right)

IPv4 Address
(4 bytes)

Type
(2 bytes)

• Administrator (autonomous
 system number or IP)
• Assigned Number

Value (6 bytes)

Route Distinguisher

106 CHAPTER 3 Converged Networks

is created by using two RT values, in which one is the “hub” and the other is the
“spoke.” At a hub site, the VRF’s export target value is the “hub” and the import
 target value is the “spoke.” At a spoke site, the VRF’s export target value is the
“spoke,” and the import target value is the “hub.”

Managing MPLS Forwarding All routing information described before was
exchanged between CEs and their attached PEs using static or dynamic routing,
and among PEs across the SP’s backbone using BGP.

When a PE advertises a VPN route (from its VRF, converted to a VPN-IPv4
address) using iBGP, it attaches an MPLS label and assigns its loopback address as
the BGP next hop for the route. This attached MPLS label (“VPN route label”[368])
is used as the next-hop by this PE when it later receives data packets; for example,
for forwarding the packets back to the correct CEs.32

Following this, LSPs are established by LDP between the PEs at the SP’s VPN
edges, across the backbone, and using another MPLS label (“tunnel label” [368]).33
 Several LSPs can be established between any two PEs for TE by specifi c LDP
 protocols, to enable various classes of QoS between those PEs. In non-MPLS SP
backbones, the customer’s packet carrying just the VPN route label is tunneled to
the BGP next-hop using other tunneling techniques; for example, encapsulating
MPLS in IP or GRE [431].

The result is that every customer’s packet gets an inner (bottom) label (which
is the VPN route label, for remote PE forwarding) and an outer (upper) label (which
is the tunnel label, for the SP’s VPN tunneling).

Data Plane Flow Customers’ packet forwarding is simple once the VPN routes
are established, and the SP’s backbone is only dealing with internal tunnels
between PEs that connect the customers’ VPN. In other words, each packet
that arrives at the PE from some CE is compared (according to longest prefi x,
as described in Chapter 5) with the appropriate VRF (according to the AC the
packet arrives through), and the matched entry is used to:

� Attach the VPN route label of the route that was advertised by the destination PE.
� Attach the tunnel label, according to the advertised “BGP next-hop” (the

 loopback address of the destination PE).
� Forward the packet on the interface port of the PE that is pointing to the

right path.

32This is necessary, since in the data plane fl ow, packets do not carry VPN-IPv4 addresses. When the
PE receives two packets that belong to different VPNs that have overlapping IP addresses, it will not
be able to forward them to the correct CE unless there is some mechanism to distinguish between
their VPN belonging. VPN-IPv4 addressing is required only for the control plane, for the BGP to adver-
tise correctly the IP routes of different VPNs among all PEs.
33The reason for another, outer label is the requirement to separate the “VPN knowledge” from the
backbone; that is, the PE–PE paths are maintained by the SP backbone, and are independent from any
VPN modifi cations that are done in the CEs and PEs by the customers and the SP.

3.3 From Datacom to Telecom 107

The MPLS labels and the “next hop” are fi rst installed in the VRF when the PE
receives the iBGP advertisements from the remote (destination) PE (and when
it was advertised, it used VPN-IPv4 VPNs routes). The packet is then tunneled to
the egress PE, using the outer, upper tunnel label. There, the packet is further for-
warded to the appropriate CE, according to an inner, bottom VPN route label.

The SP’s VPN P routers are simply used as Label Switching Routers (LSRs)
in an MPLS network, completely unaware of any VPN. Only the PE routers
 (acting as LERs) are aware of VPNs, and then only those VPNs that are attached
to them, thereby allowing scalability, fl exibility, and ease of confi guration and
 management.

3.3.1.4.2 Layer 2 Provider Provisioned Virtual Private Network
L2VPN uses Layer 2 information (e.g., headers and addresses) to separate between
VPNs, and to interconnect users within VPNs. This means that any Layer 2 shared
network infrastructure (e.g., ATM, Ethernet, or Frame-Relay) can be used as a VPN
backbone, or can at least be interfaced. This grants the customers total control on
their networks, including routing, QoS, prioritization, and bandwidth control. It
further allows customers to use any protocols they want, provided they are encap-
sulated in Layer 2 frames that are forwarded by the PPVPN (according to the L2
addresses and information; for example, MAC, VPI/VCI). L2VPN uses the encap-
sulation mechanisms defi ned by the PWE3, and is targeted mainly toward defi n-
ing three services, as noted previously: VPWS, VPLS, and IPLS. An example of an
L2VPN network is shown in Figure 3.17.

Provider Edges are interconnected in the L2VPN by Pseudo-wires (PWs) that are
carried in tunnels. These tunnels can be MPLS LSPs, Layer Two Tunneling Protocol
(L2TP) [409], IPsec, MPLS-in-IP tunnels, and so on, and they all must be able to

FIGURE 3.17

L2VPN network example

Access
Network

Service Provider
Backbone

L2VPN A PE

PE

PE

CE1

L2VPN B

CE2

L2VPN A

CE4

L2VPN B

CE5

L2VPN A

CE3

Logical Switching
Instance

108 CHAPTER 3 Converged Networks

 multiplex and demultiplex the PWs that use them. Specifi c auto-discovery34 and
signaling protocols (for set up and tear down) are used for the PWs. These Point-to-
point PW auto-discovery and signaling protocols can be based on LDP [271, 309],
L2TP, or BGP [264].35 A short summary of both LDP and BGP protocols is given in
Appendix A of this chapter.

It should be noted, however, that the VPN tunneling signaling protocols (that
setup and maintain the tunnels in the VPN) are absolutely independent of the
 signaling protocols of the services offered over them (e.g., P2P PW setup for VPLS
use, as described below, can use LDP, and the tunnels in the utilized MPLS VPN
can also use LDP for setting up the tunnels).

Resiliency can be achieved in L2 PPVPN by assigning a provisioned protection
PWs, and switching to these protection PWs when a fault is detected. (A more
detailed discussion of Operation, Administration and Maintenance, OAM, in
L2 PPVPN and in general, is provided in a following subsection and in [321]).

Virtual Private Wire Service Virtual Private Wire Service [20] is a L2VPN service. It
is also Metro Ethernet Forum’s (MEF’s) E-Line service type described in the follow-
ing; that is, it is a point-to-point service, connecting two CEs. Frames received on an
AC from a CE are forwarded by a PE’s “VPSW forwarder” to a PW that connects this

34Provisioned confi guration is a possibility; however, it might be an extensive management task,
 particularly in a fully meshed network with a large number of PEs. Protocol-based auto-confi guration
is based on auto-discovery protocols.
35Two L3 control plane protocols, BGP-based and LDP-based, are used by L2PVN. There is a dispute
in the industry regarding these two approaches. In a nutshell, these approaches originated from
either the PWE3 framework, which is based on draft-Martini and is LDP-oriented, or from the L3VPN
 framework—such as BGP/MPLS IP VPN (RFC4364 [368])—which is based on BGP and is referred
to as draft-Kompella. Both approaches are used quite similarly to create a fl at network by different
 routers.

There are, however, some basic differences between these two approaches. Luca Martini, a
Cisco fellow, sees VPNs as a composition of virtual channels identifi ed by point-to-point Virtual
Circuits ID tags, which are distributed by LDP. Kireeti Kompella, a distinguished engineer at
Juniper, sees VPNs as a composition of point-to-point and point-to-multipoint circuits, advertised
by BGP. Since LDP signals labels for circuits, whereas BGP can signal label-blocks for sites, this
means that LDP maintains many FECs (two per circuit), while BGP maintains one NLRI per
site, therefore requiring fewer protocol states. It further means that adding a site to the VPN
requires a reconfi guration of every PE in the VPN when the LDP-oriented approach is used,
while only the PEs that are attached to the new site must be reconfi gured in the BGP-oriented
case. BGP-based protocol serves full mesh VPN architecture better than LDP-based protocol
does (particularly by using the “router refl ector” principle, as outlined in RFC 4456 [44], which
also supports point-to-multipoint PW signaling in a way that might save control-plane messages
for fully meshed PW signaling). BGP also scales better in the case of using multi-autonomous
systems.

On the other hand, the BGP-oriented approach is more complex than the very simple protocol
offered by the LDP-oriented approach. The LDP-oriented approach saves the advertised reachability
information distributed via the control plane as BGP requires, and converges more quickly than BGP
using the standard data plane bridge learning, and in a more secure way.

3.3 From Datacom to Telecom 109

ingress PE to the egress PE in the VPN, and then the frames are forwarded to the AC
that is connected to the other CE.

Virtual Private LAN Service Virtual Private LAN Service36 [20, 37, 264, 271] is a L2VPN
 service, and is a MEF’s Ethernet LAN (E-LAN) service type (described in the follow-
ing). This service emulates the full functionality of a LAN across the relevant PEs and
CEs, and enables the operation of several remote LAN segments as if it they are one
single LAN. A VPLS instance supports one emulated LAN; that is, a single LAN or VLAN,
or multiple VLANs, and each VPLS must be assigned a globally unique identifi er.

VPLS can thus be perceived as being used as a bridged LAN service over
 networks (some of which are MPLS/IP), as the LAN itself, the underlying MPLS/
IP network to which other LANs are attached, or as LAN and VLAN emulation
[321].

Frames received on an AC from a CE are fi rst handled by a bridge module at
the PE, and then are forwarded by a “VPLS forwarder” module to the required
PEs through PWs, using a mapping between MAC addresses and PWs. Unicast
frames are forwarded on a single PW to a single PE, while broadcast frames
and frames with unknown destination MAC addresses are broadcasted to all PEs
in the emulated LAN. At the egress PE, the VPLS forwarder learns the frames’
source MAC address for the future forwarding decisions, and the frames are for-
warded to the AC that is connected to the other CE that is part of the same LAN
(see Figure 3.18).

The PEs’ “VPLS forwarders” and the PWs among them compose the emulated
LANs. An emulated LAN instance consists of a set of forwarder modules (one per
PE per VPLS instance) interconnected by the PWs, that goes through PSN tunnels,

36Other names of VPLS are Transparent LAN Service (TLS) and Private Switched Network Service.

FIGURE 3.18

VPLS and E-LAN reference model

Service Provider
Backbone Network

CE3

CE4

P
CE—Customer Edge
PE—Provider Edge
P—Provider Equipment
AC—Access Connection

Emulated LAN
Interface

PE

B
ri

dg
e

VP
LS

 f
or

w
ar

de
r

PE

VP
LS

 f
or

w
ar

de
r

Emulated LAN
Interface

Access
Network

Emulated LAN

 Routed
Backbone

B
ri

dg
e

CE1

CE2

Access
Network

AC

AC

110 CHAPTER 3 Converged Networks

over a routed backbone. This set of PWs, interconnecting the PEs, can form a fully
meshed topology or a tree structure topology of an “overlay network” (or combi-
nations of the two topologies).

A VPLS PE behaves like any bridge or switched bridge; that is, it learns and ages
out MAC addresses and makes forwarding decisions accordingly.37 This, plus the
requirement of potentially fully meshed PWs connecting many PEs in the PPVPN,
creates a scalability issue.

In order to solve the scalability issue resulting from the fully meshed PWs
 topology and the massive PW signaling involved, Hierarchical VPLS (H-VPLS) is
used [271]. There are two basic usage scenarios that can use H-VPLS:

Hierarchical connectivity A two-tier H-VPLS, based on a hub and spoke model
is used for cases of hierarchical connectivity. A hub (core) made of PW inter-
connects the central PEs in the VPN (creating a basic, full mesh VPLS). Access
devices such as aggregation PEs or Multi-Tenant Units (MTUs) are connected
by spoke PWs to the central PEs. The spoke PWs use encapsulation tech-
niques (or Q-in-Q logical interfaces, described in the next part); therefore,
each access device can create a single, tunneled PW to the single PE it is
attached to in the core and not have to create many PW connections to each
of the PEs in the VPN.

Multidomain VPLS H-VPLS (two tier or more) can be used either to divide a
large, single domain, or to create a large scale VPLS domain that spans over many
VPLS domains that have sparse interconnections between themselves. The prin-
ciple here is to connect two fully meshed VPLS domains using a single tunnel
between VPLS “border” devices. All domains are interconnected by a higher-
level hierarchy of fully meshed tunnels; that is, each of the connected VPLS
domains is connected to all other VPLS domains. An example of this kind of
usage is connecting many Ethernet Provider Bridged Networks (PBN, described
in the following), each providing a VPLS services to its customers using Q-in-Q
double tagging technology, to a large-scale VPLS network, which is based on a
core MPLS/IP network that connects all these Ethernet islands.

It should be noted that there are two VPLS versions, resulting from the two L2VPN
signaling approaches: BGP-based (RFC 4761) and LDP-based (RFC 4762).

IP-only Like Service IP-only Like Service [20] is also an L2VPN service even
though it is a subset of VPLS, which handles Layer 3 packets (IP and other IP sup-
porting packet types such as ARP and ICMP). The reason for mentioning it here is

37Usually, a spanning tree topology is not required between the PEs, since their connections are
manually confi gured and do not contain loops in the VPN. However, if “backdoor” connections are
allowed—that is, CEs that are connected to two PEs (in a “multiple-homing” arrangement) and that
run bridging functionalities among them—then STP must be done, as with any other bridges.

3.3 From Datacom to Telecom 111

that IPLS may use other PE platforms that are simpler than the VPLS-enabled PEs,
and when it does, it might become a full-fl edged service on its own, including its
own architecture and protocols.

3.3.2 Carrier Class Ethernet
Carrier Class Ethernet (CEN) refers mainly to standardized services that offer
 scalability, reliability (i.e., the resiliency to protect customers against network
 failures), CoS (i.e., assurance of a service level agreed on by the carrier and
its customers), and management capabilities. Although CEN mainly addresses
Metro Ethernet Networks (MENs), it is not confi ned just to metro networks,
and can be used also in access and core networks. There are four standard-
ization players in CEN that try to coordinate standards and services for the
CEN: The MEF, the IEEE802 LAN/MAN Standards Committee, the International
 Telecommunication Union (ITU)—Telecommunication Standardization Sector
(ITU-T), and the IETF.

CEN are not just Ethernet: some use of MPLS or IP routing might be included
in various versions, approaches, or implementations of CENs. Moreover, there are
many terminologies that overlap in meaning, resulting from the various approaches
to CENs (e.g., [157]). The main theme of CEN is providing and supporting “ser-
vices”; that is, applications at higher layers than the CENs, which relate to various
 technologies. As usual with networking, many of these services are “virtual” or
use virtual facilities. We shall try to put some order in all this virtualization by
 transforming it into actual, concrete terms and services.

Ethernet, described in the previous chapter, and referred to as “Enterprise
 Ethernet,” is excellent for enterprise LANs and WANs, but when it comes to
“ public,” multi-enterprise and disjoined Ethernet services, Enterprise Ethernet
is not suffi cient. To begin with, maintaining bridging system for millions of users
is impractical, if not impossible, and having 4094 VLANs is far from enough for car-
rier class service. Then, the Ethernet infrastructure should have the service assur-
ance of carrier class services, such as 99.95 to 99.999% availability and sub-50 ms
protection (i.e., in case of a connection fault, fi nding and using an alternative con-
nection within 50 ms).

We start with the MEF approach, since it summarizes and describes the services
and the architecture of the MEN, rather than its technology. As a matter of fact, MEF
focuses on the usage perspective of the network, and does not provide details of
implementation.

3.3.2.1 Metro Ethernet Forum Approach
Metro Ethernet Forum (MEF) models the network in three service layers (Trans-
port, Ethernet, and Application) and three planes (data, control, and management).
Although MEF refers to access networks, metro networks, and core networks, the
standards of MEF relate to MENs.

112 CHAPTER 3 Converged Networks

The Ethernet layer (ETH layer) is the main focus of the MEF approach, and is
responsible for the Ethernet-MAC oriented connectivity and the delivery of Eth-
ernet frames throughout the network. The transport layer (TRAN layer) supports
the connectivity among ETH layer elements. Various technologies may be used
to support the transport requirements for the ETH layer. The application layer
(APP layer) supports various applications that are carried on the ETH layer, across
the network. The MEF network model, with sample decomposition into layer net-
works and protocol stacks, is depicted in Figure 3.19.

As we discussed in the previous chapter, the data plane defi nes the means of
transporting information across the network. The control plane defi nes the means
for the Customer (subscriber) and the Service Provider (the network) to com-
municate in order to make use of the data plane; that is, connection, signaling
and control. The management plane defi nes the means to confi gure and monitor
the operation of the data and control planes; that is, service provisioning, static
 service discovery, service load balancing, service protection and restoration, and
 Operations, Administration, and Maintenance (OAM) services. MEF assumes noth-
ing about how to implement the network, or its details, and it can be either a single
switch or multiple networks of many different technologies.

Each customer is attached to the network at the CE via User-to-Network
 Interface (UNI), which must be standard IEEE802.3 Ethernet PHY and MAC.
 Providers are connected to the network at the PE by PE equipment. NEs,
 autonomous networks (and service providers) are connected in the network
by using Network-to- Network Interfaces (NNI). A schematic diagram of the MEF
 network is shown in Figure 3.20.

FIGURE 3.19

MEF network model with sample decomposition into layer networks and protocol stacks

Management Plane

Control Plane

Data Plane

Application Services Layer
(e.g., IP, MPLS, PDH, etc.)

Ethernet Services Layer
(Ethernet Service PDU)

Transport Services Layer
(e.g., IEEE 802.1, SONET/SDH, MPLS)

VolP

RTP

TCP/UDP

IP
MPLS

Others
Protocol
Suites

Other
APPsPDH

Ethernet 802.3

Ethernet
P802.1ad

MPLS VC LSP ATM VC

ATM VP

High Order Virtual Containers (VCs)

SONET/SDH STM

Medium (Fiber, Copper, Coaxial, Wireless, etc.)

Low Order
VCMPLS Tunnel LSP

802.3 PHY

ODUk

OTUk

OCh

OTM-n

Other
TRANs

3.3 From Datacom to Telecom 113

The UNI is a fundamental concept through which MEF actually focuses on the
user’s perspective of the CEN. Three UNI types are defi ned, with various func-
tionalities: in UNI type 1, the CE equipment is manually confi gured for network
connections, where type 1.1 is used for nonmultiplexed services and type 1.2
is used for multiplexed services. In UNI type 2, the network may automatically
provision, confi gure, and distribute a network connection’s information to the
CE, and in UNI type 3, the CE equipment may request and negotiate connections
in the network.

The second fundamental concept is the Ethernet-Virtual-Connection (EVC)
in the Ethernet layer. EVCs are established between two (point to point) UNIs
or more (multipoint to multipoint, or rooted-multipoint).3 8 The EVC actually
defines the association between UNIs, and Ethernet frames are exchanged only
among these UNIs. EVCs are used for end-to-end subscriber services across
one or more service providers’ networks, and are represented by instances of
the Ethernet Services Layer of the MEF model. Two types of service attributes
are used for the connections—those that apply to UNIs and those that apply
to EVCs.

MEF maintains IEEE802.1 bridging concepts and IEEE802.3 Ethernet frames’
 format and functionality, including addressing and dedicated addresses,39 and Virtual

38Rooted-Multipoint EVC was defi ned in MEF 10.1 standard [317], to allow point-to-multipoint con-
nections; that is, one or more Root UNIs to or from many Leaf UNIs.
39By dedicated addresses we mean bridge and MRP/GARP blocks of addresses (described before, i.e.,
Bridge Group Address, 01-80-C2-00-00-00 through 01-80-C2-00-00-0F, and 01-80-C2-00-00-20 through
01-80-C2-00-00-2F for MRP/GARP applications), as well as the “All LANs Bridge Management Group
Address” (01-80-C2-00-00-10).

FIGURE 3.20

MEF network model; reproduced with permission of the Metro Ethernet Forum

UNI

APP Link

ETH Trunk Link

NNI

Physical Connectivity

Subscriber Network 1

TRAN Access Link TRAN Access Link

ETH Access Link

TRAN Trunk Link

Network 2

Logical Connectivity

114 CHAPTER 3 Converged Networks

LANS (VLANs, where the IEEE802.1Q VLAN tag is termed by MEF as CE-VLAN Tag).
VLANs are supported end-to-end by assigning VLANs to the EVCs. Several VLANs
may be mapped into one EVC (termed bundling40 by MEF), if they share the same
path and service attributes. In addition, Layer 2 control frames (e.g., BPDUs frames)
can be tunneled through the network by using a dedicated EVC, which can fi lter
some of the control frames as the service provider determines. UNIs identifi cations
(UNI-ID) and EVCs identifi cations (EVC-IDs), as well as the UNI-EVC-ID (concat-
enated UNI-ID and EVC-ID strings that identify an EVC at the UNI) are used solely
for control and management purposes, and are not used anywhere in the frames
for transport purposes.

Each UNI, its EVCs, and their assigned VLANs can have a predefi ned ingress
bandwidth profi le, as depicted in Figure 3.21, and a predefi ned egress bandwidth
profi le per UNI or EVC, as shown in Figure 3.22 for EVC.

MEF defi nes Ethernet Local Management Interface (E-LMI) protocol based on
the ITU-T Q.933 standard, and uses it to communicate the EVC status (along all
its assignments, service attributes, etc.) to the CE [318]. Two basic service types
are defi ned by MEF: Ethernet Line (E-Line) service and Ethernet LAN (E-LAN)
service.

� E-Line is point-to-point EVC, that can be used for Ethernet Private Line (EPL,
for connecting nonmultiplexed UNI type 1.1, using the same EVC;41 for
example, for replacing a private TDM line), or Ethernet Virtual Private Line
(EVPL, or virtual wire service, for connecting multiplexed UNI type 1.2,

40All to One Bundling means that all VLANs are mapped onto the same EVC. This is defi ned for all
UNIs that use this EVC.
41EPL is expected to be transparent, and to have a high quality of service parameters; that is, low
Frame Delay, low Frame Delay Variation, and low Frame Loss Ratio. EPL uses a dedicated UNI (physical
 interface), and because of its transparency, all CE-VLAN ID are mapped to a single EVC at the UNI.

FIGURE 3.21

Ingress bandwidth profi les per UNI, EVC, or CoS identifi ers

UNI 1

EVC 1

EVC 3

CE-VLAN CoS x

CE-VLAN CoS y

Bandwidth Profile
per CoS

Bandwidth Profile
per EVC

Bandwidth Profile
per UNI EVC 2

CE-VLAN CoS 1

CE-VLAN CoS 2

CE-VLAN CoS 3

CE-VLAN CoS n

3.3 From Datacom to Telecom 115

using several EVCs;42 for example, two routers at the enterprise net-
work). E-Line can also be used for Ethernet Internet access, or upper layer
point-to-point services (for example, Layer 3 Virtual Private Network; that
is, IP-VPN). EVPL is used for MP2P (multipoint-to-point), or more correctly,
multiple P2P.

� E-LAN is a multipoint-to-multipoint (MP2MP) EVC, creating in effect an
 Ethernet LAN over the carrier Ethernet network. E-LAN can be used for
 multipoint Layer 2 Virtual Private Network (VPN), Transparent LAN service
(TLS), or multicast networks (point-to-multipoint [P2MP], for video and IPTV,
for example).

Since the network should serve telecommunications applications, there are three
major service requirements that are critical for operator adoption: (a) supporting
TDM traffi c (e.g., telephone services), (b) supporting protection, and (c) supporting
OAM. MEF’s OAM model is described in a subsequent subsection that describes
 carrier Ethernet OAM support.

42EVPL does not provide full transparency like EPL does. Layer 2 Control Protocol (L2CP) frames (e.g.,
BPDU containing STP/RSTP/MSTP packets, authentication, MRP/GARP, etc.) should be discarded in
EVPL, whereas most of theses control frames must (some should) be tunneled by EPL (with one
exception, the IEEE802.3x PAUSE frame, that should be discarded in both cases).

UNIk
(ingress)

UNIj
(ingress)

UNIi
(ingress)

UNIn
(egress)

EVC1

EVC1

EVC2

EVC3

EVC1

EVC3

EVC2

EVC3

to Other
Egress
UNIs

EVC2

FIGURE 3.22

Egress bandwidth profi le per EVC; reproduced with permission of the Metro Ethernet Forum

116 CHAPTER 3 Converged Networks

Circuit Emulation Service (CES) is used to “tunnel” TDM traffi c (e.g., PDH and
SONET/SDH signals, from DS0 to OC-12/STM-4). CES should be transparent to the
TDM source and destination equipment, even though it uses a packet network. CES
runs on E-Line service that should provide a certain (strict) level of service quality
to ensure proper operation of the CES. CES uses the network as a “ virtual wire.”

Circuit Emulation Service over Ethernet (CESoETH) is used to provide a TDM
Line (T-Line) service (e.g., least line replacement), or a TDM Access Line Service
(TALS) (e.g., access to a remote Public Switched Telephone Network, PSTN).

MEF defi nes sub-50 ms protection in hop-by-hop and end-to-end schemes. Two
protection types are defi ned: the 1 � 1 protection type (replicating resources and
traffi c, and selecting one copy of the frames at the protection merge point for
further forwarding), and the m:n protection type (using m protection resources to
back up n working resources).

3.3.2.2 IEEE 802 Approach
As was described in our discussion of the Enterprise Ethernet, the LAN grew into
WAN by combining several LANs in Layer 2 bridges and switches, to have a large
enterprise network. However, using such a network in the “public” domain is
impractical, particularly using it instead of and for telecommunications services.
It is important to note, however, that the Ethernet-based network a la IEEE802 is
based on several Ethernet frame mutations.

The Ethernet IEEE802.3 frame starts at the CE enterprise (or home) equipment,
which is connected through the IEE802.3ah (now part of the IEEE802.3) access
 network (called Ethernet First Mile, EFM, or Ethernet Passive Optical Network,
EPON). The frame then goes through the access interface (e.g., OLT) into the metro
network, which is defi ned by IEEE802.1ad (now part of the IEEE802.1Q) technology,
the PBN. From the metro network, the frame continues to the core network, defi ned
by IEEE802.1ah technology (which is still under work), the PBBN.

The general topology of the CEN, described before, is depicted in Figure 3.23. In
the next subsection, each of these network’s technologies will be described briefl y.
(Access networks, both the xDSL with its DSLAM interface, and the IEEE802.3ah,
are described in the next chapter).

3.3.2.2.1 Provider Bridged Network
The natural step in expanding Ethernet into the public domain was to allow service
providers to use their own bridged network to interconnect their customers’
 Ethernets (enterprises as well as SOHO and residential customers). The major
issue here is to allow each customer to manage its own networks, including its
virtual LANs (VLANs), and to create an Ethernet cloud that is transparent to the
 internal MAC services and internal VLAN management of each of these customers’
 networks. Furthermore, it must segregate each customer’s MAC and VLAN ser-
vices and management from those of the other customers, and from those of the
 provider’s Ethernet network. This, plus the fact that only 4094 VLANs are allowed
in the entire Ethernet space (according to IEEE802.1Q), which is nowhere near

3.3 From Datacom to Telecom 117

enough to support hundreds or more customers, suggested the usage of another
hierarchy of virtual-LANs. The result was the IEEE802.1ad standard, in which a
Service VLAN (S-VLAN) tag (S-Tag) is added to the customer VLAN (C-VLAN) tag
(C-Tag) in the Ethernet frames, in a way termed Q-in-Q, double tagging, or VLAN
stacking. Using this double tagging, a PBN is constructed, comprised of Provider
Bridges (S-VLAN bridges and Provider Edge Bridges) and attached LANs, under the
administrative control of a single service provider [179].

The PBN behaves internally as a “LAN” by itself; that is, maintains its spanning
tree, its VLANs, and all MAC layer services. Frame forwarding is based on MAC
addresses and the S-Tag, exactly in the same way as any 802.1Q virtual bridged net-
work. The S-Tag is assigned by the provider at the ingress edge bridges (the interface
 equipment in Figure 3.24), and is attached to the customer frame before the C-tag
(see Figure 3.25). Every incoming frame, from every customer, must go through a
“customer” port of a Provider Bridge (PB), or through a Provider Edge Bridge, and
must be pre-appended by the assigned S-Tag. Upon departing, the egress PB strips

FIGURE 3.23

IEEE802 metro Ethernet

MPLS Core

Service Provider
 Metro Network

Q-in-Q "island"

Customer A
Customer B

Provider Backbone Bridged
Network (802.1ah)

Provider Bridged
Network (802.1ad)

Provider Bridged
Network (802.1ad)

Provider Bridged
Network (802.1ad)

DSLAM

DSL
Subscribers

xDSL
EPON (802.3ah)
 OLT

EPON
Subscribers

ONU

ONU

MAC-in-MAC
Network

Subscriber Access
Network (802.3ah)

118 CHAPTER 3 Converged Networks

FIGURE 3.25

PBN (802.1ad, Q-in-Q) frame format (from right to left)

Preamble
(7 bytes) S

FD
 Destination

Address
(6 bytes)

Source
Address
(6 bytes)

Le
ng

th
/T

yp
e

(2
 b

yt
es

)

MAC Client Data +
Padding

(42−1496 Bytes) Fr
am

e
C

he
ck

S

eq
ue

nc
e

(4
 b

yt
es

)

VLAN ID, identifying 4,094 possible VLANs

Customer
Tag

(C-TAG)

12 bits

SFD—Start Frame Delimiter (1 byte)
S-Tag TPID—Service Tag Identifier, 2 bytes, always 0x88-A8
C-Tag TPID—Customer Tag Identifier, 2 bytes, always 0x81-00
TCI—Tag Control Information, 2 bytes
DEI—Drop Eligible Indicator

Priority Code
Point (PCP)

3 bits

DEI

1 bit

TC
I

TP
ID

=
8

1
-0

0

TC
I

TP
ID

=
8

8
-A

8

Service
Tag

(S-TAG)

FIGURE 3.24

Basic provider network model and interfaces

PB

PB

PB

PB

PB

Customer
Equipment

CE

CE

CE

CE

PB

PEB

PB

PB

PB

BEB

BEB

BEB

PB/
BCB

PB/
BCB

Provider Bridged Network
Provider Backbone Bridged

Network Interface Equipment Provider Network core

Customer
LANs

(Interfaces)

Access
LANs

Service Provider
LANs and Provider

Bridges

Backbone LANs and
Provider Backbone

Bridges

Boundary
LANs

CE

Customer
Bridge

PEB

Provider
Edge Bridge

PB

Provider
Bridge

BEB

Backbone
Edge Bridge

PB/
BCB

Backbone
Core Bridge

Customer Network Port
(receives and transmits frame

for a single customer)

3.3 From Datacom to Telecom 119

off the S-Tag, leaving the customer frame as it was in the PBN ingress point, and
forwarding the frame to the customer VLAN network.

Roughly speaking, in the PBN, each VLAN represents a customer. This is
 important to understand, as in the next subsection we describe a higher level of
hierarchy in which the VLANs have different meanings.

In addition, in order to ensure that the customers’ VLANs are indeed separated
from the PBN and cannot impact the PBN, any customer frame that arrives at a
PBN ingress port and is addressed to any of the common bridge addresses (the
Bridge Group Address or any MRP/GARP application address) must be conveyed
transparently to the egress port of the PBN, to the destination LAN, and it cannot
be used by any of the PBs. A new PB Group Address (01-80-C2-00-00-08) and a new
PB MRP/GARP VLAN Registration Protocol (MVRP/GVRP) address (01-80-C2-00-00-
0D) have been defi ned to allow independent PBN MAC service operations.

The Provider Bridged VLAN thus supports two tags, the Customer VLAN tag
(C-Tag) for a customer’s internal networks, and the S-Tag for the provider VLAN,
indicating the customer ID. The S-Tag is used to identify the customer’s traffi c and
to separate it from other customers and the internal provider bridged “LAN.” It
means, by the way, that up to 4094 customers can be supported by any PBN, hence
the need for an additional hierarchy level, described in the following subsection.
Moreover, although the PBN can reduce the requirement for learning end station
MAC addresses, every switch in the PBN must still maintain a huge MAC address
learning-table, which leads to another scalability issue.

3.3.2.2.2 Provider Backbone Bridged Network
Adopting the hierarchy principle and adding another, higher level, solves the
 limitations of the PBNs mentioned previously. However, the additional hierarchy
is achieved according to a slightly different mechanism, which is more aggressive
in terms of the bridging concept. The IEEE802.1ah proposed mechanism43 [181]
tunnels each service provider’s traffi c (frames) throughout the PBBN in backbone
VLANs (B-VLAN). In addition, and more importantly, this mechanism assigns a spe-
cifi c Backbone MAC (B-MAC) address to each Point of Presence (POP) in the pro-
vider network (the interface point between the PBN and the PBBN). This allows
PBBN to see each and every provider network (PBN) separately as one entity, to
build a PBBN spanning tree, and to relate to the PBBN internally as a “regular”
bridged LAN. To this end, the PBN’s frame is encapsulated by a higher layer of Eth-
ernet frame, or it can be regarded as if another Ethernet shim is added to the PBN’s
frame, making the customer and the service provider Ethernet frames just payloads
in the PBBN’s Ethernet.

The result is IEEE802.1ah, in which Backbone MAC (B-MAC) addresses are added
(source and destination), as well as a Backbone VLAN tag (B-Tag) and a service
instance tag (I-Tag). This procedure is called MAC-in-MAC, or tunneled MAC.

43As of the beginning of 2008, the standard is still under discussion; thus, we are still using principles,
terms, and quantities from various earlier drafts.

120 CHAPTER 3 Converged Networks

To illustrate the difference in the hierarchy models, we can think of 802.1Q
enterprise Virtual LANs and subsequently 802.1ad provider VLANs as mechanisms
that were used just to partition the forwarding plane of the common, single Ethernet
layer network. The 802.1ah divides the Ethernet layer into two very similar Ethernet
(MAC) layers, each partitioned into virtual networks.

B-Tag is identical in its format and its tag identifi er to S-Tag, since the Backbone
Core Bridges (BCBs) of the PBBN are essentially the Providers Bridges (PBs)
described previously; hence, B-Tag has a role similar to that of S-Tag in PBN net-
works. The service instance tag (I-Tag) includes a service instance identifi er (I-SID),
24 bits in length, which is used to extend the limited VLAN space the PBNs have,
which might be insuffi cient for the service providers in order to support all their
 customers. The resulting frame may be of various formats, as it is used by various
components and interfaces in the PBBN bridges, sometimes without some fi elds or
tags. The full format is shown in Figure 3.26.

As far as the PBBN is concerned, all the devices and networks supported by
the PBN, including their spanning trees, MAC services, MAC addresses, VLANs, and
so on can be ignored (or the relevant PDUs are transparently transported over
the PBBN). This can save the requirement of learning all the MAC addresses of all
the devices as well as saving the requirement of maintaining a huge MAC address
table. As for the provider networks and customers, they can regard the PBBN as
one internal, bridgeless LAN connecting their bridges; hence, the VLANs they use,
MAC addresses, spanning trees, MAC services and everything these services do, is
transparent to the PBBN and isolated from each other.

Another consequence is that instead of focusing on creating a PBBN Ethernet
LAN that is topologically loop-free, a carrier-class-centric infrastructure, controlled by
 provisioning and control plane options, can be deployed. This is done by letting the

FIGURE 3.26

PBBN (802.1ah, MACinMAC) frame format (from right to left)

Preamble
(7 bytes)S

FD

Customer
Destination

Address
(6 bytes)

Customer
Source
Address

(6 bytes) Le
ng

th
/T

yp
e

(2
 b

yt
es

) MAC Client Data +
Padding

(42-1496 Bytes)Fr
am

e
C

he
ck

S
eq

ue
nc

e
(4

 b
yt

es
)

Service Instance Identifier (I-SID)
Identifying 16M possible Backbone Service Instances

Customer
Tag

(C-TAG)

24 bits

SFD—Start Frame Delimiter (1 byte)
B-Tag TPID—Backbone Tag Identifier, 2 bytes, always 0x88-A8, identical to S-Tag TPID
S-Tag TPID—Service Tag Identifier, 2 bytes, always 0x88-A8
C-Tag TPID—Customer Tag Identifier, 2 bytes, always 0x81-00
I-Tag TPID—Service Instance Identifier, 2 bytes, always 0x88-E7
TCI—Tag Control Information, 2 bytes for B-Tag, S-Tag and C-Tag (B-TCI is identical to S-TCI defined in 802.1ad)
I-Tag TCI—16 bytes for priority, drop eligibility, and addressing parameters (of which 12 bytes are C-DA and C-SA)
I-DEI—Instance Drop Eligible Indicator
NCA—No Customer Address (if 1, C-DA and C-SA don’t contain valid addresses)

Instance
Priority Code
Point (PCP)

3 bits

I-DEI

1 bit

TC
I

TP
ID

=
8

1
-0

0

TC
I

TP
ID

=
8

8
-A

8

Service
Tag

(S-TAG)

Backbone
Destination

Address
(6 bytes)

Backbone
Source
Address

(6 bytes)

Service
Instance Tag

(I-TAG)

.1
ah

 I
-T

ag
TC

I/
S

ID
(4

 b
yt

es
)

TP
ID

=
8

8
-E

7

TC
I

TP
ID

=
8

8
-A

8

Backbone
Tag

(B-TAG)

NCA

1 bit

Reserved

3 bits

3.3 From Datacom to Telecom 121

PBBN bridges independently learn MAC addresses coupled with the PBBN VLANs,
using various control plane and management utilities, rather than the common fl ood-
ing mechanism (the way spanning trees and MAC address learning are done). Then,
forwarding frames using the created paths, or tunnels, can support resilience and traffi c
engineered infrastructure (this will be developed further in the next subsection).

Internally, PBBN works exactly like PBN; that is, its core bridges (BCB) are Provider
Bridges. The main difference lies in the Backbone Edge Bridges (BEB), which are
of two types (plus a hybrid one): The I-Type BEB encapsulates customer’s frames
and assigns each to a backbone service instance, with both a backbone destina-
tion address and a backbone source address. The B-Type BEB relays encapsulated
frames to other BEBs. The PBBN network model is shown in Figure 3.27.

The service instance tag, I-Tag, is used for a new type of tagged frame introduced
by PBBN which is not a VLAN. The service instance tagged frame is identifi ed

FIGURE 3.27

Basic provider backbone bridged network model and interfaces

PB/
SB

PB/
SB

I
BEB

PB/
SB

CE

CE

CE

CE

c

c

c

c

PB/
SB

PEB

A

P

P

I+B
BEB

I+B
BEB

B
BEB

B

B

B

Customer
LANs

Access
LANs Backbone LANs and

Provider Backbone
Bridges

Boundary
LANs

A

A

CE

A

c

B

B
BEB

PB/
BCB

PB/
BCB

I

s B

B

B

I
BEB

B
BEB

B

I

B
BEB

Customer Equipment

Provider Bridged Network

Provider Backbone Bridged
Network

Interface
Equipment

Provider Network
Core

Other Provider Backbone
Bridged Networks

Boundary
LANs

I

Peer
PBBN

Hierarchical
PBBN

Customer Backbone Port
(receives and transmits I-tagged
frames for multiple customers)

Customer Instance Port
(receives and transmits frames

for a single customer)

I
I-Tagged
Boundary

LAN
s

S-Tagged
Boundary

LAN

CE
PB/
SB

Customer
Bridge

Provider
Edge Bridge

Provider Bridge
(S-VLAN
aware)

I-Type
Backbone

Edge Bridge

Backbone
Core Bridge

PEB
I

BEB
B

BEB
PB/
BCB

B-Type
Backbone

Edge Bridge

c A B p Customer
LAN

Access
LAN

Backbone
LAN

Provider
LAN

Provider
LANs &
Provider
Bridges

122 CHAPTER 3 Converged Networks

by the Service Instance Identifi er (I-SID), which is contained in the I-Tag (along
with the customer source and destination MAC addresses). This service instance
is extended service, identifying the Provider Bridges’ Service VLANs (S-VLANs)44
and the customers’ LANs and customers’ VLANs (C-VLANs) that are interfacing
the BEB. The S-VLANs and their Service VLAN Identifi ers (S-VIDs) are local to the
PBNs, while the service instance domains and their I-SIDs are local to the PBBN
and are defi ned by the PBBN operator. In other words, in a given PBBN, the I-SID
uniquely identifi es a set of BEBs and their interconnections that support the
attached service providers’ S-VLANs and customers’ LANs and C-VLANs. This cre-
ates a separate virtual medium for transporting the frames of the attached service
provider S-VLANs and customers’ LANs and C-VLANs. Several such virtual media
(identifi ed by I-SID) may be used by each BEB for each combination of B-MAC
address and VLAN identifi er. The BEB uses a provisioned service instance table that
maps I-SIDs to B-VIDs, to select a B-VLAN that will carry the frames in the PBBN.
A basic scheme of the relations among customer VLANs (C-VLANs), service VLANs
(S-VLANs), Service Instances, and B-VLANs is given in Figure 3.28 for point-to-point
connections of these VLANs.

44It can be either a one-to-one mapping of Service VLAN Identifi er (S-VID) to I-SID, or bundling all
S-VIDs to I-SID.

FIGURE 3.28

Relations between VLANs and service instances for P2P links

PB

Customer
Equipment

CE

CE

CE

CE

Provider Bridged Network

Provider Backbone Bridged
Network A

Interface
Equipment Provide Network Core

Customer
LANs

(Interfaces)

Access
LANs

Provider LANs
and

Provider Bridges

Backbone LANs and
Provider Backbone

Bridges

Boundary
I-LANs

CE PEB PB BEB
PB/
BCB

Customer
Bridge

Provider
Edge Bridge

Provider
Bridge

Backbone
Edge Bridge

Backbone
Core Bridge

Provider Backbone Bridged
Network B

Backbone LANs and
Provider Backbone

Bridges

Boundary
I-LANs

BEB

BEB
PB

BEBBEBBEB

PB

PB

PEB PB
BEB BEB

PB/
BCB

BEBPB/
BCB

BEB
CE

PB

...

C-VLAN

C-VLAN

S-VLAN

B-VLAN B-VLAN

B-VLAN
S-VLAN

S-VLAN

Service
Instance

Service
Instance

Service
Instance

Service
Instance

PB/
BCB

3.3 From Datacom to Telecom 123

To conclude, it is worth noting that although PBBN Ethernet frames are meant to
transverse in Ethernet networks, the IETF defi ned the PWE3 mechanism, described
in the previous subsection, according to which these frames can also use PSN
networks as backbone infrastructure [302]. In other words, PWE3 service is used
to encapsulate PBBN tagged frames and carry them over MPLS networks. This will
enable providers to connect “islands” of PBBNs by MPLS links, and offer “emulated”
Ethernet services.

However, some scalability issues still exist in the PBBN. BEBs have to learn
the customer MAC (C-MAC) and the B-MAC addresses. C-MAC address learning is
required, for example, for encapsulation and de-encapsulation of service frames.
This encapsulation and de-encapsulation is done by BEBs by using the connection
identifi ers that are stored in the bridges’ fi ltering database and correlating
C-MACs to B-MACs addresses. The RSTP/MSTP also limits the size/span of PBBN
(due to overhead required), and the use of ST reduces the available links to be
used (reduce network utilization). PBB-TE emerged to address limitations related
to scalability and reliability of PBBN. PBB-TE may be deployed in place of, or in
 parallel with, PBBN.

3.3.2.2.3 Provider Backbone Bridges—Traffi c Engineering
As discussed in the preceding subsection, using PBBN (defi ned by IEEE802.1ah) for
transport networks makes Ethernet not as simple as it is perceived to be. Moreover,
PBBN does not provide answers to all the requirements of transport networks
that are already solved by the alternative telecom networks (e.g., SONET/SDH)
or MPLS.

One such example is the defi ciency in link utilization provided by the Spanning
Tree Protocol (STP) or the Multiple STP (MSTP) used in PBBN (i.e., STP can result
in unused links when it is just targeted at preventing loops). In order to increase
utilization of the backbone links that the regular STP provides, a better scheme of
Shortest Path Bridging (SPB) is now being standardized by IEEE802. The principle
(under work in IEEE802.1aq) assumes a rooted shortest path tree from each source
toward every destination.

A somewhat alternative approach to Ethernet-based transport networks based
on PBBN (as well as on PBN and VLAN networking, of course) is proposed by
 Provider Backbone Bridges—Traffi c Engineering (PBB-TE,45 or IEEE802.1Qay [375]).
This approach mainly provides a simpler alternative for path creation.

In PBBN, customers’ interconnections are made essentially in a two-layer
 Ethernet model, where C-MAC address learning and spanning trees are done
in the fi rst layer (802.1q and 802.1ad), and backbone paths are assigned in the
second layer (802.1ah) by the operators of the PBBNs. PBBN further suggests
using MSTP and MAC learning to forward the backboned frames between the
BEBs, including fl ooding in cases of unknown destinations, correlating C-MAC

45PBB-TE used to be called Provider Backbone Transport (PBT).

124 CHAPTER 3 Converged Networks

addresses and B-MAC addresses, and mapping of S-VLANs and customers’ LANs
and C-VLANs into service instance domains.

PBB-TE describes an additional way for the provider to assign and deploy
 backbone paths in BPPN (i.e., to determine B-MAC addresses and VLANs
that create the paths in the PBBN), and then to use these backbone paths to
 forward frames. PBB-TE essentially replaces the Multiple Spanning Tree Proto-
cols (MSTP) control plane with a provisioned management plane or control
plane that populates the fi ltering tables of the 802.1ad and 802.1ah bridges
with static entries, creating point-to-point unidirectional Ethernet Switched
Paths (ESPs).

PBB-TE identifi es a method for splitting the B-VLANs between provisioned
control and MSTP control, provides extensions to Connectivity Fault Manage-
ment (CFM) that supports Continuous Check and Loopback protocols on the
provisioned paths, and provides extensions to PBBN (802.1ah) for one-to-one
protection switching [14, 55, 375]. To accomplish that, the active topology of
the networks are not exclusively controlled by Spanning Tree Protocols (STPs)
or Shortest Path Bridging (SPB) agents, but by some external agents that set
up active topology using a specifi c Multiple Spanning Tree Instance ID (MSTID,
which contains 0xFFE). Forwarding does not imply learning any more, when
 forwarding is controlled by the PBB-TE external agent, and frames with unknown
destination addresses are discarded and not fl ooded. The forwarding decision is
based only on preassigned forwarding tables, set up across PBBN bridges that
are on the PBB-TE paths (ESPs), where these tables contain entries that are
composed of backbone addresses and B-VLANs. This is further described in the
 following.

First, it should be noted that PBB-TE uses VLANs in a very different sense than
regular bridged networks do; instead of a global meaning of VLANs, B-VLANs in
PBB-TE have just a local meaning, assigned by PBB-TE.

PBB-TE creates trees that are rooted in the backbone destination MAC address
(B-DA); these routed trees are not spanning trees, as they connect only the
required backbone source MAC address, B-SA. ESP is a path on a tree identifi ed
by a selected B-VLAN (by its B-VID) to a destination B-DA. The number of trees
that access any B-DA is the number of B-VIDs assigned to PBB-TE (up to 212).
Since every tree is identifi ed by the tuple B-DA and B-VID, and B-VID can be
reused for each B-DA, the total number of trees that can exist and be managed
by PBB-TE is the number of B-DA multiplied by the assigned number of B-VIDs.
The result is that a unique tree can be identifi ed by a concatenation of 46 bits of
the B-MAC (allowing for the multicast and local reserved bits in the MAC space)
and all 12 bits of the B-VID. In other words, each B-DA termination can sink 212
different routing trees (which is far more than required, since it is not necessary
to have so many alternate paths to a single destination), and potentially about
258 ESPs can be defi ned. The primary application of the resulting alternate paths
is to allow a protection path in case of failure in the working path. Several such
alternate paths can be reserved for various scenarios of network failures. All the

3.3 From Datacom to Telecom 125

protection and alternate paths are pre-calculated, and the resulting forwarding
tables’ entries are confi gured into the PBB-TE bridges’ forwarding tables that are
relevant on these paths.

For each B-SA that has an ESP to B-DA via one of these trees, PBB-TE creates a
reverse path that does not necessarily have the same B-VID, and uses it for CFM to
monitor the ESP (described in subsection 3.3.2.3). Once faults are detected (e.g.,
loss of Continuity Check) and forwarded to the B-SA, this triggers a swap of the
faulty B-VID with the already reserved alternate B-VID in the frames’ MAC (leav-
ing the B-MAC intact), and the subsequent frames use the alternate, protection
path immediately (it can be in few milliseconds, less than the required 50 ms).

An example that clarifi es the principle behind PBB-TE is provided in the
 following. Assume that two backbone-VLANs, B-VIDs 52 and 98, are allocated
to PBB-TE in a PBBN that runs PBB-TE together with internal PBBN MSTP (on
other B-VIDs). PBB-TE set up all B-VIDs 52 and 98 forwarding tables in the BEBs
and BCBs that are part of the PBBN that runs PBB-TE, as shown in Figure 3.29.
 PBB-TE also causes these BEBs and BCBs not to fl ood frames anymore, and to use
the static entries provided; that is, not to learn any new MACs for these VIDs. The
rest of the B-VIDs are used for parallel, regular PBBN MSTP operation, even in the
BTT-TE assigned bridges.

The tuples <B-DA, B-VID> that were set up by PBB-TE in the forwarding tables
described before are used to access BEBs identifi ed by the B-DA and to forward
frames throughout the PBBN in the PBB-TE created ESPs, identifi ed by the
<B-DA, B-VID> pair. Figure 3.29 shows such three ESPs, terminated at two B-DAs,

FIGURE 3.29

PBB-TE example

Customer
Network

Customer
Network

Customer
Network

Customer
Network

BEB
X

BCB
A

BCB
E

BCB
F

BCB
B

BCB
C

BCB
D

BEB
W

BCB
G

BEB
Z

BEB
Y

�B-MAC � Y, B-VID � 52�

�B-MAC � Y, B-VID � 98�

�B-MAC � Z, B-VID � 52�

ESP1

ESP2

ESP3

�B-MAC�
Y, B-VID

�
52�

�B-MAC�Z,B-VID�52�

�
B-M

AC�
Y,

B-VI
D�

98�

ESP1

ESP1

ESP1

ESP2

ESP2

ESP3

ESP3

PBB-TE Service and Network Management

126 CHAPTER 3 Converged Networks

BEBs Y and Z. The two B-VIDs that are used (52 and 98) in creating these three
ESPs, two for BEB Y and one for BEB Z, have no traditional VLAN meaning any-
more, and generally in PBB-TE they can be regarded as a path number <B-VID> to
a B-DA. It results that the BCB node F in Figure 3.29 can distinguish between two
paths terminating at the same destination B-DA (BEB Y), even though the two paths
cross it, and forward frames to two different BCB nodes, depending on the B-VID.
Figure 3.29 also shows how two ESPs that are targeted to the same B-DA (BEB Y)
diverge at BCB node F into two different paths, since they use different B-VLANs,
and two other ESPs that use the same B-VID (52) also diverge at node A, since they
are targeted to different B-DAs.

3.3.2.2.4 IEEE 802 Summary
IEEE 802 is currently working on metro Ethernet quite extensively, so we can
expect more standards and technologies suggested for metro Ethernet that are
based on Ethernet infrastructure, as well as some modifi cations and abandonment
of the technologies described in this subsection.

The goal of IEEE 802 CENs is to provide an Ethernet-based bridged network
 infrastructure, starting from the personal devices and Personal Area Networks
(PANs, 802.15), the desktops and servers, the LANs and Wi-Fi (802.11) or the
Wi-MAX (802.16) connection of a nomadic terminal, down to a peer or to a content
service provider.

3.3.2.3 Carrier Ethernet Operations, Administration,
and Maintenance Support

As CEN gains traction and is considered a real, viable alternative for telecom and
data applications, the management aspects of the network become increasingly
important. Management, or in the telecom “language,” OAM, is expected to provide
functionality equivalent to what carriers are accustomed to in telecom networks
(e.g., SONET). We elaborate a bit here on the subject of OAM, despite the fact that
this fi eld is in its very initial stage in data networks, since processing requirements
of these management aspects will have to be dealt with in network processors, in
the data plane, due to heavy performance demands. Many different standards com-
mittees have become active in this area, but most of the standardization activity
(architectures and terminology) is synchronized:

� MEF16 Ethernet Local Management Interface (E-LMI) [318]
� MEF17 Service OAM Requirements & Framework—Phase I [319]
� ITU-T Y.1731 OAM functions and mechanisms for Ethernet based networks

[229]
� IEEE 802.3ah Ethernet in fi rst mile (Physical Layer OAM) [186]
� IEEE 802.1ag Connectivity Fault Management (per service/VLAN OAM)

[180]
� IETF draft L2VPN OAM requirements and framework [321]

3.3 From Datacom to Telecom 127

FIGURE 3.30

IEEE802.3ah (EPON) OAM frame format

Flags:
 bit 0—Link Fault was detected
 bit 1—Dying Gasp (unrecoverable local failure) occurred
 bit 2—Critical Event was detected
 bits 3&4—Local Evaluating and Stable status
 bits 5&6—Remote Evaluating and Stable status

Code:
 00—Information
 01—Event Notification
 02—Variable Request
 03—Variable Response
 04—Loopback Control

Type:
 00—End of TLV market
 01—Local Information
 02—Remote Information
 0xFE—Organization
 Specific Information

Frame
Check

Sequence
(4 bytes)

OAM data � Padding
(42-1496 Bytes)

Compossed of sequence of
TLVs (for Information and

events) and variables C
od

e
(1

 b
yt

e)

Fl
ag

s
(2

 b
yt

es
)

O
A

M
 s

ub
ty

pe
 (

0
3

)

Le
ng

th
/T

yp
e

(2
 b

yt
es

,
8

8
-0

9
)

Source
Address
(6 bytes)

Destination
Address
(6 bytes)

01-80-c2-00-00-02

(a) IEEE802.3 EFM (EPON) OAMPDU Format

(b) Generic EPON OAMPDU TLV Format

Value

Le
ng

th
(1

 b
yt

e)
Ty

pe
(1

 b
yt

e)

Starting from the access networks, we describe the OAM used in EPONs, and
then we go to the aggregation networks, metro networks, and backbone, core
 networks.

Link level OAM in Ethernet First Mile (EFM), or EPON (IEEE802.3ah), is used
for monitoring link operations, such as remote fault indication and remote
 loopback control. OAM control and information is conveyed in “slow- protocol”
Ethernet frames, with a MAC destination address 01-80-c2-00-00-02, slow- protocol
Ethertype (which is 0x88-09), and OAM subtype (which is 03), as shown in
 Figure 3.30(a).

The information and link events are carried in a Type, Length, and Value
(TLV) type format, as shown in Figure 3.30(b), whereas variables requests and
responses use the branch and leaf sequence numbers in the relevant Manage-
ment Information Base (MIB) structure to handle these variables. We shall also
see use of TLVs in other OAM PDUs, as described in the following. We turn now
to the aggregation, metro and core networks, going from the link level OAM to a
network level OAM.

128 CHAPTER 3 Converged Networks

MEF describes OAM requirements and framework [319] and Ethernet Local
Management Interface (E-LMI)46 [318] without detailing the implementations of
OAM; that is mechanisms and protocols. The IEEE802.1ag CFM project [180] and
the ITU-T defi nition of OAM functions and mechanism [228, 229] detail implemen-
tations, protocols, frame formats, and so on. IETF provides an OAM framework and
requirement for Layer 2 Virtual Private Networks (L2VPN), but this is surely just the
beginning of many more OAM standards of IETF services.

The main functions of OAM that are covered by these standards are fault
 management, performance monitoring, and auto-discovery. Some standards
only focus on fault management, while others also focus on performance
 monitoring.

Each OAM entity that requires management in one Maintenance Domain is
defi ned as a Maintenance Entity (ME); this OAM entity (ME) is essentially an asso-
ciation between two maintenance endpoints that each requires management. MEs
that correspond to the ETH layer are shown in Figure 3.31, at different levels: the
subscriber, the service provider, and the network interfaces (user and network). If
the service provider uses two different network operators, each of the operators
manages its own OAM domain, using operator MEs.

Maintenance Entities (ME) are grouped into a ME Group (MEG) if they belong
to the same service (in point-to-point, it is just one ME, but there are many MEs
in multipoint connections). MEGs are also called Maintenance Associations (MA)

46MEF defi ned E-LMI messages that are transferred across the Ethernet User-Network-Interface (UNI),
encapsulated in untagged Ethernet frames, using MAC destination address 01-80-C2-00-00-07, and
Ethertype 0x88-EE.

FIGURE 3.31

Point-to-point MEs at ETH layer (reproduced with permission of the Metro Ethernet Forum)

1 2 3 4 5 6 7 8

Subscriber
Equipment Operator A NEs Service Provider Operator B NEs

Subscriber
Equipment

ETH

TRAN

UNI ME

Operator A ME

Subscriber ME

EVC ME

NNI ME

Operator B ME

TrCP

UNI ME

TrCP

3.3 From Datacom to Telecom 129

(by IEEE802.ag CFM). OAM frames are imitated and terminated at the MEG End
Point (MEP), shown as triangles in Figure 3.31 (two MEPs in point-to-point; many
in multipoint connections). OAM frames can be treated and possibly reacted to at
the MEG Intermediate Points (MIPs), represented by “circle” symbols in Figure 3.31.
Figure 3.31 shows the MEGs organized in various levels to distinguish between
OAM frames that belong to different nested MEs.

ITU-T Y.1731 and 802.1ag defi ne three common fault management functions
that are described in this subsection: Continuity Check (CC), LoopBack (LB), and
LinkTrace (LT).47 The CC function is a proactive fault management utility, aimed
to detect loss of continuous link between any pairs of MEPs. It can also be used
to detect mis-linkages and other confi guration defects. Loopback function is an
on-demand utility that is used to verify bidirectional connectivity between any MEP
to another peer MEP or MIP. It can also be used to diagnose peer MEPs connections;
for example, out-of-service, throughput, or bit-error-rate. Link Trace function is also
an on-demand utility that is used to retrieve adjacency relationships between a MEP
and a remote MEP or MIP, that include a sequence of MAC addresses of the MIPs
and MEPs hops on the path. This can be used, for example, for fault localization; that
is, in case of a fault, the retrieved sequence of MIPs and MEPs can provide informa-
tion about what went wrong and where the error occurred.

The function of the CC is highly resource-demanding, as described in the following,
and thus requires extremely fast processing. The other functions—loopback and link
trace—are on demand, expecting replies within fi ve seconds, and therefore demand
fewer resources than the CC function.

Each function is executed by sending an OAM PDU message either periodically
or on demand, and expecting an OAM PDU reply in the case of LB and LT functions.
This results in three main types of OAM frames:

� Continuity Check Messages (CCM), exchanged between MEPs
� Loopback Messages and Replies (LBM/LBR), exchanged between MEPs and

between MIPs
� Link Trace Messages and Replies (LTM/LTR) exchanged between MEPs and

between MIPs

These OAM frames are encapsulated into standard Ethernet frames with a maximum
message length of 128 bytes. A specifi c Ethertype (0x89-02) is defi ned to identify
the OAM packets. The OAM message frames can have either unicast or multicast
destination addresses, whereas replies can have just unicast addresses. The payload
of the Ethernet frame—that is, the OAM frame—has the format as shown in
 Figure 3.32. The Maintenance Level (or Maintenance Association Level) is 3-bits
long, which means that seven layers can be used to distinguish between nested
 layers of OAM entities (the relevant MEPs and the MIPs are confi gured as the

47There are other fault management and performance measurement functions that are beyond
the scope of the book; for example, performance measurement functions include Frame Loss and
Frame delay.

130 CHAPTER 3 Converged Networks

expected maintenance level, and intercept these OAM frames; lower levels OAM
frames are dropped, and higher levels are forwarded).

The CC function deserves more description here, since it is expected to be
 executed by network processors, in data plane processing. CCM messages are gener-
ated periodically, per session, at a rate determined by the relevant application (either
fault management, performance monitoring, or protection switching). There are
seven transmission periods that are defi ned for CCM, from 3.33 ms (300 frames/s)
to 10 min (6 frames/h). The recommended (and default) transmission period for
protection switching is 3.33 ms, for performance management it is 100 ms, and
for fault management it is 1 s. An MEP detects a loss of connection when it does
not receive an expected CCM from a peer MEP within an interval of 3.5 times
the transmission period (roughly the expected time to receive three consecutive
CCMs). Given that the transmit period can be as low as 3.3 ms, this can result in
a very high frequency, if we consider thousands of connections or more. Thus,
supporting CCM transmission and monitoring on a per VLAN basis, for example,
requires processing to be performed on a network processor, in its data plane
processing.

Tunnels in PBB-TE are monitored through CCM messages, which enable protection
switching to back-up tunnels (protection paths) within tens of milliseconds, much

FIGURE 3.32

Common OAM PDU format (from left to right)

16 8 3 0 24 31

16 8 0 24 31

Version(�0) OpCode First TLV Offset

EndTLV (� 0)

MEL Flags 0

4

8

byte

byte

last

. . .

Type Length Value (optional) 0

last

. . .

(a) Common OAM PDU Format

(b) Generic TLV Format
MEL—3-bit MEG level (or MA level)
TLV—Type, Length and Value

Types:
 End TLV—0
 Data TLV—3
 Reply Ingress TLV—5
 Reply Egress TLV—6
 reserved for ITU-T—32–63
 reserved for 802.1—all the rest

OpCodes:
 Continuity Check Message (CCM)—1
 Loopback Reply (LBR)—2
 Loopback Message (LBM)—3
 Link Trace Reply (LTR)—4
 Link Trace Message (LTM)—5
 reserved for 802.1—0, 6–31, 64–255
 reserved for ITU-T—32–63

3.3 From Datacom to Telecom 131

like in the SONET infrastructure. This increases the criticality of fast transmission and
time-out detection times for CCMs, and hence the sensitivity for rapid OAM processing.
Poor or slow handling of OAM frames will cause network topology outages.

It should be noted that ITU-T distinguishes between protection and restoration
of connections [198, 212]. The differences could be summarized as:

� Protection makes use of preassigned capacity between nodes (also known as
make before break).

� Restoration makes use of any capacity available between nodes (also known
as break before make).

3.3.3 International Telecommunication Union-T Approach
Generally speaking, the Telecommunication Standardization Sector of the Inter-
national Telecommunication Union (ITU-T) is well aware of the IETF and IEEE
initiatives with regards to next generation telecommunications networks, mainly
transport networks, and synchronizes its standards with these bodies.48 The two
study groups (SGs) of ITU-T that are relevant to our discussion here are SG13 and
SG15; SG13 deals with next generation networking, while SG15 focuses on optical
and other transport network infrastructures.

In most of the technologies described previously, we also mentioned ITU-T
 contributions with references to its standards; however, there is one specifi c ITU-T
SG15 contribution that deserves a description of its own. This is MPLS over trans-
port networks, called Transport MPLS (T-MPLS) [214–216].49

T-MPLS is a subset of IETF MPLS that is tailored for and aligned with ITU-T
G.805 and G.809 defi nitions of transport-layered network. This reduced MPLS
 creates a connection-oriented subset of the MPLS packet-switched network, which
 signifi cantly simplifi es MPLS, and fi ts the connection-oriented world of the tele-
com industry. This means that L3 issues (e.g., IP) are not part of the T-MPLS, which
means cheaper equipment and a further reduction of deployment costs to the
carriers.

In a sense, T-MPLS is an evolution of Ethernet over SONET/SDH, in which packet-
centric traffi c is required to support a variety of services, including Ethernet, IP, and
real time TDM. T-MPLS is supposed to support existing applications as well as the
rapid mobile back-haul growth. It is well integrated into SONET/SDH, and its main
“clients” are Ethernet and IP/MPLS services, as T-MPLS provides these services with

48More specifi cally, Y-Series standards deal with Global information infrastructure, Internet protocol
aspects and next-generation networks (in which Y.1000–Y.1999 deal with Internet protocol aspects
and Y.2000–Y.2999 deal with Next Generation Networks). G-Series deal with Transmission systems
and media, digital systems and networks (in which G.600–G.699 are Transmission media and optical
systems characteristics, G.700–G.799 deal with Digital terminal equipments, G.800–G899 deal with
Digital networks, and G.8000–G.8999 are for Packet over Transport aspects, where the fi rst G.80xx
are for Ethernet over Transport aspects, and G.81xx are for MPLS over Transport aspects).
49SG13 contributed to T-MPLS and standardized the Operation and Maintenance aspects.

132 CHAPTER 3 Converged Networks

an end-to-end “tunnel,” much like PWE350 (see Figure 3.33). In other words, T-MPLS
is intended to be a separate layer with respect to MPLS. This “tunneling” feature
confl icts with other approaches taken by IEEE and IETF for provider backbone
networks.51 It means, among other issues, that plain MPLS cannot peer directly with
T-MPLS, that is, an LSP initiated from one of these types of networks will have to be
encapsulated when it transits the other type of network. It also means that the con-
trol plane of each of these types of networks will work independently of the other.
This layering principle means also that T-MPLS can support any packet-oriented
services, including higher hierarchies of T-MPLS itself.

T-MPLS retains the essential nature of MPLS, and works pretty much like MPLS,
including DiffServ treatment, for example, which is essential for supporting CoS.
 However, it also lacks some of MPLS’ capabilities (not just L3 and connectionless sup-
port), such as the Penultimate Hop Popping,52 Equal Cost Multiple Path (ECMP),53 and
LSP merging.54 Since transport connections can hold for very long times (in contrast

50For a complete discussion, the reader is referred to Appendix I of ITU-T Rec. G.8110.1/Y.1370.1
(11/2006) [215, page 22].
51And, as a matter of fact, both Cisco Systems and Juniper Networks expressed reservations concern-
ing the work on T-MPLS and the approval of it [215].
52Penultimate Hop Popping provides the option of popping the label one hop before the last Label
Switched Router (LSR), to ease the egress router processing (usually, it does not require this label
anymore).
53This option makes it possible to split traffi c that belongs to one LSP path into many routes of equal cost.
54This option makes it possible to merge several labels, belonging to different streams that travel at
the same path, to one label.

FIGURE 3.33

IP/MPLS via Ethernet over T-MPLS network [215]

IP/MPLS

T-MPLSPE1

PE2

LSR—Label Switch Router
PE—Provider Edge
PW—Pseudo-wire

802.3

802.3

LSR2

LSR1

T-MPLS (PW) Trail

IP/MPLS Link

Ethernet Trail

3.3 From Datacom to Telecom 133

to data communications), T-MPLS includes features that traditionally are associated
with transport networks, such as protection switching and OAM functions.

It should be noted that as of this writing, the control plane of T-MPLS has not
been defi ned yet, but it can use the same SONET/SDH provisioning mechanism,
that is management plane systems, such as Generalized Multi-Protocol Label
Switching (GMPLS) [234, 297, 408] or Automatically Switched Optical Network
(ASON) [212, 213], which are both mentioned in the previous chapter.

T-MPLS is a transport network that can interface directly with upper L3 layers
such as IPv4 and IPv6, or it can serve upper L2 layer clients through common inter-
networking functions (convergence, timing, and sequencing) such as Ethernet,
PDH,55 SDH/SONET, ATM, Frame-Relay, HDLC and PPP. T-MPLS interfaces also with
lower layers such as T-MPLS over PDH (MoP) or over SDH (MoS) through GFP
or PPP in HDLC, T-MPLS over OTH56 (MoO) through GFP, T-MPLS over Ethernet
(MoE) or T-MPLS over RPR (MoR). The relation between these layers as it appears in
the frame encapsulation structures is shown in Figure 3.34, which depicts several
 protocols at each layer.

55Plesiochronous Digital Hierarchy.
56Optical Transport Hierarchy.

FIGURE 3.34

T-MPLS frame structure and layers (from right to left) [215]

OAM
Header

TT
L

OAM Payload

(Ethernet)

Payload
T-MPLS Labeled

Packet

IPv4, IPv6

Ethernet Encapsulation

PW
Encapsulation

Client

IP
HeaderPayload Payload

Header

T-MPLS OAM

Label
E
X
P

S

T-MPLS Labeled Packet

Ty
pe S
A

D
A

S
FD P
A

FC
S

GFP-F Encapsulation

T-MPLS Labeled Packet
C

or
e

he
ad

er

FC
S

pa
yl

oa
d

he
ad

er

OAM—Operations, Administrations, and Maintenance
PW—Pseudo-wire
Label—T-MPLS 20-bit label
EXP—T-MPLS Experimental 3-bits
S—T-MPLS Bottom of Stack 1-bit
TTL—T-MPLS Time to Live 8-bits

PA—Ethernet Preamble
SFD—Start of Frame Delimiter
DA—Destination Address
SA—Source Address
FCS—Frame Check Sequence
GFP-F—Generic Frame Procedure-Frame mapped

134 CHAPTER 3 Converged Networks

T-MPLS labels are assigned according to the IETF conventions, that is, 0–15
are reserved for specifi c MPLS usage, whereas label 14 is reserved for OAM alert
according to ITU-T Y.1711 and RFC 3429 [227, 338].

3.3.4 From Datacom to Telecom—Summary
There are clearly two technologies in data networks, each currently dominating
a separate realm of networking: Ethernet in LANs and IP/MPLS in WANs. As a
cost-effective, strong, and viable technology, Ethernet networks dominate the
enterprises, with enhancements that enable carrier network implementations in
connecting to core networks. IP/MPLS networks dominate carriers and service
provider networks, and are the natural choice for carrier network implementations,
in connecting enterprise networks. The in-between networks, the metro networks
or the aggregation networks, are a clear and desirable target for the industries
that are behind each of the IEEE and IETF standardization bodies to push their
 technologies.

3.4 SUMMARY
In this chapter we went through telecommunication networks and technologies
that adopted packet traffi c in order to fi t the next generation networks, and we also
described how the data communication networks were modifi ed to become carrier
class, for telecommunication applications. Both types of networks are continuously
merging and converging into one global PSN, that serve applications that are using
the IP or the Ethernet model as underlying transport mechanism.

Mobile, cellular wireless networks are excellent examples of how these two
technologies and applications are converging. These networks, along with other
access and home networks are described in the next chapter.

135

APPENDIX A
ROUTING INFORMATION DISTRIBUTION PROTOCOLS

There are two important protocols that are used for distribution of routing and
forwarding information: BGP and LDP. BGP is more comprehensive than LDP and
is used for routing in L3, whereas LDP is simpler, and is aimed to support MPLS
and other tunneling protocols in L2 forwarding. These two protocols are described
in this appendix since they both are used in various inter- and intra-networking
mechanisms. Although they are very different in their goals, readers will fi nd many
similarities, particularly in the protocol formats.

BORDER GATEWAY PROTOCOL
BGP is an inter-Autonomous System (AS) routing protocol, which is used primar-
ily to interconnect TCP/IP networks to the entire Internet. Its principles are used
also for other networking purposes that either require inbound communications
between edge devices (e.g., BGP/MPLS IP VPN), or outbound information exchange,
mainly routing information.

BGP has four versions, starting with BGP-1 [288], followed by BGP-2 [289], BGP-3
[290], and fi nally BGP-4 [364, 365]. BGP-4 has gone though a number of improvements
and extensions for wider and better operation, and it can be regarded as a “core pro-
tocol” (RFC 4271 [365]), enhanced by extensions,57 and applied along with routing
policy and inter-domain routing management.

BGP allows the Internet to decentralize and work with distributed architecture,
by supporting the AS separation. Every AS in the Internet has a unique identi-
fi er, called AS-ID.58 BGP routers exchange network reachability information with
other BGP routers (called BGP speakers). The communicating BGP routers can
be either in a different AS (where they are referred to as external peers), or in
the same AS (when there is more than one boundary BGP router in the AS, and
where they are referred to as internal peers). Internal and external BGP sessions
(iBGP and eBGP) have different functions; iBGP synchronizes data among the
BGP speakers themselves, whereas eBGP exchanges network reachability routing
 information. A BGP speaker advertises to its peers the routes that it uses (i.e., the
most preferred routes that are used for forwarding). A route in BGP is defi ned as

57The two most important enhancements are Multi-protocol extensions and Route Refl ection. Multi-
protocol extensions (MP-BGP) mean the ability to interconnect not only IPv4 networks, but other
kinds of networks and addressing schemes as well (e.g., IPv6), including overlapping IPv4 address
spaces [45]. BGP Route Refl ection (BGP-RR) [44] relieves the required full-mesh connectivity of
BGP routers in an AS TCP/IP network. Other extensions include Route Flap Damping [421], AS
Confederations [410], BGP Support for 4-byte AS Number Space [422], and Extended Communities
Attribute [376].
58AS IDs are termed AS numbers, and are in accordance with RFC 1930. AS numbers are assigned
by IANA (http://www.iana.org/assignments/as-numbers).

136 CHAPTER 3 Converged Networks

the information that pairs a set of destinations that have the same prefi x of IP
address, with a set of identical parameters (called attributes in BGP) of a path to
those destinations. Routes that are exchanged between BGP routers using the BGP
protocol are stored in the Routing Information Bases (RIBs) in the BGP routers.

BGP is a vector-based algorithm, which carries the complete AS path vector
between the communicating BGP routers, that is, the list of the AS-IDs that creates
the path. This allows BGP to detect loops (when an attempt is made to reenter
an existing AS-ID into the AS path vector). This enables BGP routers to maintain a
routing map of the network, assuming the Internet is a set of ASs, but it does not
provide the exact path a packet travels within an AS. Figure A3.1 demonstrates
several AS networks connected by AS paths, for accessing destinations whose IP
address prefi x is 132.72 (for a detailed description of IP addressing, please refer to
Chapter 5.

BGP uses TCP (port 179) as its transport protocol, which offers reliable
 transmission of BGP transactions. It is important to note that BGP targets specifi c
IP addresses when it is used, that is, messages are exchanged between specifi c
BGP routers, using IP destination addresses, obeying some routing protocol that
affects the created paths. BGP-4 supports the Classless Interdomain Routing (CIDR)
 addressing scheme [140, 363], and the aggregation of routes and AS paths.

Border Gateway Protocol originally supported AS identifi cations (AS-ID) that
were 16-bits long (i.e., up to 64 K AS IDs were allowed), and this is clearly insuffi cient
nowadays. Therefore, AS-IDs have been extended to 32-bits long, and BGP supports
the extended AS numbers alongside the “old” 16-bits AS numbering [422].

The BGP protocol contains fi ve message types, each with its own packet
 format. The protocol also defi nes about 20 different parameters of paths, called
path attributes, each of which consists of encoded list in the <Type, Length, Value>
(TLV) format.

FIGURE A3.1

BGP network example with AS networks and AS paths

AS 122

AS 44

AS 33

AS 45

AS 32
The Originator

NLRI � 132.72/16
AS_Path � AS32

AS 221
132.72/16

AS33, AS32

132.72/16
AS45, AS33, AS32

132.72/16
AS44, AS32

132.72/16
AS122, AS44, AS32

NLRI � 132.72/16
AS_Path � AS221, AS44, AS32

Prefix AS_Path
132.72/16 122, 44, 32
132.72/16 44, 32

NLRI—Network Layer Reachability Information
AS—Autonomous System

NLRI � 132.72/16
AS_Path � AS32

132.72/16
AS33, AS32

132.72/16
AS44, AS32

Appendix A: Routing Information Distribution Protocols 137

Border Gateway Protocol Message Formats
BGP message can be anywhere from 19 bytes (just the header) to a maximum of
4096 bytes, as shown in Figure A3.2.

The Marker is a 16-byte fi eld, set to ones. The Length is a 2-byte fi eld indicat-
ing the total length of the message in bytes. The Type fi eld is 1-byte long, and
indicates the purpose and format of the message, as follows:

� Open message (message type 1)—starts a BGP session.
� Update message (message type 2)—exchanges information about the routes.
� Notifi cation message (message type 3)—is sent when an error is detected

and the BGP connection should end.
� KeepAlive messages (message type 4)—periodic messages that verify the

continuous connection of the BGP peer.59

The BGP formats for the various messages are described in the following.

Open
The Open message (see format in Figure A3.3) is the fi rst message sent by both
BGP routers (called BGP speakers) when a TCP connection is established.

59Additional message type 5, “Route Refresh,” was proposed in RFC2918 [77], and is not discussed here.

FIGURE A3.2

BGP header

0 1 2 3

Marker

TypeLength

0
4
8

12
16

0 1 2 3

Marker

Type�1 Length

0
4
8

12
16 Version

Hold TimeMy Autonomous System

Opt parm len

20
24
28

Optional Parameters

BGP Identifier

FIGURE A3.3

Notifi cation message format

138 CHAPTER 3 Converged Networks

In addition to the header fi elds, the Open message contains the following fi elds:
Version is a 1-byte fi eld that indicates the version number of the message protocol
(currently 4). My Autonomous System is a 2-byte fi eld that indicates the AS sender
number (AS-ID). Hold Time is a 2-byte fi eld that indicates the maximum elapsed
time between successive KeepAlive message and/or Update message receipt (in
seconds). BGP Identifi er identifi es the sender by its IP address, and Optional
Parameter Length is 1-byte long and indicates the length of the following Optional
Parameter fi eld in bytes. The Optional Parameter fi eld consists of an encoded list
of parameters in the < Type, Length, Value> format, as shown in Figure A3.4.

Update
The Update message advertises routes to a set of destinations that have the same
prefi x of IP address. The message is used by a BGP speaker to advertise a previ-
ously received route, to add or modify the path attributes before advertising it, or
to “delete” (withdraw) an already advertised route.

The update message is shown in Figure A3.5, and includes a variable number
of fi elds in two parts of the message; some of the fi elds are themselves of vari-
able length. After the header there is a part that defi nes the withdrawn routes,
which is followed by the second part that describes the new or updated routes.
This latter part is also composed of two subparts, the fi rst of which describes the

FIGURE A3.4

Optional parameters

Parm Type Parm Length Parameter Value
0 1 2 3

FIGURE A3.5

Update message format

0 1 2 3

Type = 2Length

0
4
8

12
16

Path
AttributesNew or

Updated
Routes

Withdrawn
Routes

Attr#1 type flags

pref#1 len Withdrawn route#1 prefix (0-4 bytes), according to pref len

Attr#1 type code Attribute#1 Length (1 or 2 bytes)
Attribute#1 Value (variable length, according to type)

Total Path Attributes length (0-…)

Withdrawn Routes Length (0-…)

Network Layer
Reachability
Information

pref#m len Withdrawn route#m prefix (0-4 bytes), according to pref len

19

Attr#n type flags Attr#n type code Attribute#n Length (1 or 2 bytes)
Attribute#n Value (variable length, according to type)

21

NLRI pref#1 len NLRI#1 prefix (0-4 bytes), according to pref len

NLRI pref#k len NLRI#k prefix (0-4 bytes), according to pref len

Marker

Appendix A: Routing Information Distribution Protocols 139

common path attributes of these routes, while the second defi nes the IP address
prefi x that all target destinations have.

Withdrawn Routes Length is a two-byte fi eld that indicates the total length
of the Withdrawn Routes part of the message in bytes (if 0, no withdrawn routes
exist in that message). Each of the Withdrawn Routes entries is a variable-length
 description of an IP address prefi x to be withdrawn, consisting of a pair of <length,
prefi x>. Length is one byte that contains the prefi x-length (in bits) of the IP address,
and Prefi x is the prefi x of the IP addresses (which is 0–4 bytes long, depending on
the prefi x length).

Total Path Attributes Length is a two-byte fi eld that indicates the total length
of the Path Attributes fi eld in bytes (if 0, neither Path Attributes nor Network Layer
Reachability Information [NLRI] are distributed by this message). Path Attributes
are the common path parameters that are distributed in the Update message, and
they are represented in the <Type, Length, Value> format. Each is of a variable
length according to its type. Attribute Type is two bytes long; the fi rst byte contains
the Attribute’s Flags60 and the second byte is the Attribute Type Code, described as
follows.

Attribute Length is one or two bytes long (according to the Extended Length
fl ag), indicating the length of the Value fi eld in bytes, and the attribute’s Value fi eld
is interpreted according to the Attribute Type Code. The three well-known and
mandatory attributes are:

� ORIGIN (Type code 1)—defi nes the origin of the prefi x (0 means from inte-
rior routing in the originating AS; 1 means for NLRI acquired from inter-AS
routing, or 2 from somewhere else).

� AS_PATH (Type code 2)—describes the associated AS path vector, which is
composed of a set or sequence of AS path segments through which routing
information has passed. Each segment is described by the TLV format.61

� NEXT_HOP (Type code 3)—provides the IP address of the border router that
should be used for the next hop to reach the destinations listed in the NLRI.

The NLRI fi eld consists of a list of IP address prefi xes. IP address prefi xes
are defi ned by one byte containing the length of the network mask in Classless

60The fl ags are 8 bits, where just the fi rst four most signifi cant bits are currently used. The fi rst, the
high-order bit, is the optional (1) or well-known (0) attribute, and in the case of an optional attribute,
the second bit instructs the BGP receiver to accept the path and distribute it if it is transitive (1),
and to set the next, third bit, the partial bit. This partial bit indicates to BGP routers that somewhere
along the path there was at least one BGP router that wasn’t familiar with the optional attribute.
The last bit, the fourth high-order one, is the extended length fl ag that is used to indicate a long
attribute, and the Length fi eld is two bytes long (rather than just one) for Value lengths greater than
255 bytes.
61The AS_PATH attribute is composed of a set or sequence of AS path segments; each segment is
 represented by Type, Length, and Value parameters. Type is a 1-byte fi eld, containing “1” (indicating
an unordered set of AS’s in the path) or “2” (indicating an ordered sequence of AS’s in the path).
Length is a 1-byte fi eld, containing the number of AS’s in the Value fi eld, and the Value fi eld is one or
more AS’s in a 2-bytes long fi eld for each of the AS numbers.

140 CHAPTER 3 Converged Networks

 Interdomain Routing (CIDR) terminology, and up to four bytes that contain the
address prefi x itself (IP addressing, including CIDR, is described in Chapter 5.The
NLRI has no explicit encoded length in the message, and should be calculated
by subtracting 23,62 the Withdrawn Routed Length and the Total Path Attributes
Length from the Update Message Length.

Notifi cation
The Notifi cation message is sent before terminating the BGP connection, to notify
that an error condition was detected. Three fi elds exist in the notifi cation message,
as shown in Figure A3.6; Error Code is a 1-byte fi eld that indicates the primary
error condition (containing 1 to indicate an error in the message header, 2 for an
error in the Open message, 3 for an error in the Update message, 4 for expiration
of the Hold Time, 5 for a BGP state machine error, or 6 for an unexplained session
termination). Error Subcode is a 1-byte fi eld that provides more details about the
error. The Data fi eld is of variable length, and it is used to diagnose the reason
for the Notifi cation message. No explicit, encoded length of the data exists in the
message, and it must be calculated by subtracting 21 from the Notifi cation mes-
sage length.

KeepAlive
The KeepAlive message is used for keeping the Hold-Time from expiring, thereby
maintaining a keep-alive mechanism that ensures peers’ reachability. The KeepAlive
message format is just the header, with type of message equals 4.

Broader Gateway Protocol Implementation Issues
As noted previously, BGP avoids AS looping by watching the AS_Path vector, and stop-
ping when reaching an AS that is in the AS_Path. However, with iBGP sessions this
method will not work (since all transmissions are within the same AS), and routes

62There are 19 bytes for the header, a mandatory two bytes for the Withdrawn Routed Length fi eld,
and a mandatory two bytes for the Total Path Attributes Length fi eld, totaling 23 bytes.

0 1 2 3

Marker

Type = 3Length

0
4
8

12
16 Error Code
20 Error Subcode Data

FIGURE A3.6

Notifi cation message format

Appendix A: Routing Information Distribution Protocols 141

received via iBGP must not be distributed to any other iBGP session, or a loop may be
created. This creates a need for full mesh connections between all BGP routers, which
in turn results in a huge number of iBGP sessions (for n routers, n(n-1)/2 peering ses-
sions are required). This poses a serious scalability issue, let alone the load problem and
the diffi culty in adding a new BGP router and confi guring all BGP routers as a result.

Route refl ectors (RR) were introduced to solve the full-mesh iBGP connections
and load problem. A route refl ector is a standard BGP speaker at the core of the AS
that is allowed to re-advertise the incoming iBGP sessions to its Client peers after
 summarizing the routes and picking only the best ones (refl ected routes). Together,
they form a cluster [44] (see Figure A3.7).

Alternatively, an AS can be subdivided into smaller sub-ASs, where each sub-AS
can use a route refl ector (or not use it). However, the federation of the sub-AS’s
works as one homogeneous AS to the other ASs.

Support in protocols other than just the IPv4 protocol was added in the
 Multiprotocol Extensions for BGP-4 (MP-BGP) [45]. Attribute types Next-Hop,
Aggregator, and NLRI had to be defi ned differently in order to support other
Address Families (of other protocols). Last, BGP had to support 32-bit AS numbers
[422], and new attribute types were added, for example, AS4_Path.

LABEL DISTRIBUTION PROTOCOL
Label Distribution Protocol [22] is a protocol that originated and is mainly used
in MPLS, as described in this chapter. LDP distributes label binding information
between Label Switched Routers (LSRs). The protocol maintains incremental

RR

RR

RR

FIGURE A3.7

Route refl ectors in a BGP network

142 CHAPTER 3 Converged Networks

updates of the LIB, when only the differences are exchanged. Its principles, however,
are used in other systems in which tunnels or end-to-end paths are required. LDP
includes a set of procedures and messages that enable LSRs to exchange information
about the labels that are used to forward traffi c between and through these LSRs.
In other words, LDP enables LSRs to set up LSPs, which are Layer 2 (data-link)
switched paths that refl ect Layer 3 (network) and upper layers’ routing information
and other constraints.

In MPLS, the labels that LDP distributes are associated by LDP with FECs [370],
which are groups of similar packets, that is, they have the same destinations, or treat-
ment, or priority. Therefore, LDP enables mapping of specifi c packets to specifi c
LSPs, by their FECs, or labels.

Label Distribution Protocol Message Format
Label Switched Routers exchange LDP messages between them that can be
 categorized into four types:

1. Discovery messages—Announcing the presence of an LSR in the network by
sending periodic UDP Hello messages.

2. Session messages—Establishing, maintaining, and terminating LDP sessions
between LDP peers (including Initialization and KeepAlive messages).

3. Advertisement messages—Creating, changing, and deleting label mappings
assigned to or associated with FECs.

4. Notifi cation messages—Providing information (about the session or the
 status of a previously received message) and error signaling.

Following the discovery process, an LSR can establish an LDP session with a
 discovered LSR by using the LDP initialization procedure over TCP. The LSRs that
maintain an LDP session are known as “LDP peers.” LDP protocol is bidirectional,
that is each LDP session allows both peers to exchange and learn label mappings
from the other.

Label Distribution Protocol uses TCP (port 646) for the session, advertisement
and notifi cation messages for reliability demands and in-order delivery of mes-
sages. For the discovery mechanism, LDP used UDP (port 646) in order to distrib-
ute the LDP Hello messages without the requirement to establish a TCP session
ahead.

Each LDP PDU63 contains an LDP header followed by one or more LDP messages.
LDP header is described in Figure A3.8. Version is a two-byte fi eld that indicates the
protocol version. PDU Length is also a two-byte fi eld that indicates the total length
of the PDU in bytes (excluding the fi rst four bytes of the Version and PDU Length
fi elds). LDP Identifi er is a 6-byte fi eld that is used for assignment and distribution of

63All message types, as well as TLV information types, are detailed and updated in http://www.iana.
org/assignments/ldp-namespaces.

Appendix A: Routing Information Distribution Protocols 143

0 1 2 3
Version PDU Length

4
8

0
LDP Identifier

FIGURE A3.8

LDP header format

0 1 2 3
U0

4
8

Message Type Message Length
Message Identifier

Mandatory Parameters

Optional Parameters

FIGURE A3.9

LDP message format

labels. The fi rst four bytes of the LDP Identifi er identify the LSR (e.g., its IP address),
and the other 2-byte fi eld (called label space)64 can be used to identify an interface
within the LSP platform.

An LDP message is described in Figure A3.9. Message Type indicates the type
of message, and is a two-byte fi eld, starting with a U (Unknown message) bit. If
the received Message Type is unknown, and the U bit is set to “1,” the message is
silently ignored, otherwise, if the U bit is set to “0,” a notifi cation is sent to the LSR
that originated the unknown message. Message Types and their classifi cations are
grouped into the following categories, which are detailed in Table A3.1.

� General message types are 0x0001 to 0x00FF.
� Neighbor discovery message types are 0x0100 to 0x01FF.
� Initialization phase message types are 0x0200 to 0x02FF.
� Address message types are 0x0300 to 0x03FF.
� Label distribution message types are 0x0400 to 0x04FF.
� Connection-related messages have message types of 0x0500 to 0x05FF.

Message Length is a two-byte fi eld specifying the length of the message in bytes,
excluding the fi rst four bytes of the Message Type and Message Length. The Message
ID is a four-byte fi eld that identifi es the message in cases of notifi cations that refer to
this message. Mandatory Parameters and Optional Parameters are variable length
fi elds of required and optional sets of parameters. Parameters are specifi ed in LDP by
the TLV encoding scheme.

LDP’s TLV has a typical structure as shown in Figure A3.10.An U (Unknown TLV)
bit is used similarly to the U bit of the message; that is, the message is silently

64The label space is used to identify interfaces of the LSR (which is called per interface label space), or it
contains zero for interfaces that can share the same labels (which is called platform-wide label space).

144 CHAPTER 3 Converged Networks

Table A3.1 LDP Messages

Message Name Message Type Type Description

Notifi cation 0x0001 Notifi cation Informs LDP peer of a signifi cant
event

Hello 0x0100 Discovery Part of the LDP Discovery Mechanism

Initialization 0x0200 Session Part of the LDP session establishment

KeepAlive 0x0201 Session Part of a mechanism that monitors the
LDP session transport connection

Address 0x0300 Advertisement Advertises the LSR interface address

Address
Withdraw

0x0301 Advertisement Used by an LSR to withdraw previously
advertised interface addresses

Label Mapping 0x0400 Advertisement Advertises LSR FEC-label bindings to
the LDP peer

Label Request 0x0401 Notifi cation LSR requests binding for a FEC from a
LDP peer

Label Withdraw 0x0402 Notifi cation Used by LSR to notify a LDP peer that
it cannot use previously advertised FEC
label mapping

Label Release 0x0403 Notifi cation Used by a LSR to notify a LDP
peer that a previously requested or
 advertised FEC label mapping is no
longer needed

Label Abort Request 0x0404 Notifi cation Used to abort a Label Request message

Call Setup 0x0500 LDP extensions for ITU-T’s Automatic Switched
 Optical Network [5]

Call Release 0x0501

Vendor-Private 0x3E00-0x3EFF Used to transport vendor-private
 information between LSRs

Experimental 0x3F00-0x3FFF

0 1 2 3
U

Value

F LengthType0

4

FIGURE A3.10

TLV encoding

Appendix A: Routing Information Distribution Protocols 145

ignored when the received Type is unknown and the U bit is set to “1”; otherwise, if
the U bit is set to “0,” a notifi cation is sent to the message originator. An F (Forward
unknown TLV) bit is applied only when the U bit is set and the Type is unknown,
and it determines that the message is to be forwarded with the contained message
(when the F-bit is set to “1”), or not forwarded (when the F-bit is “0”).

The Type fi eld is 14 bits defi ning the Value, and Length is a two-byte fi eld
specifying the length of the Value fi eld in bytes. Value is a variable length
fi eld that contains information according to the Type fi eld. The Value fi eld may
 contain nested TLV information. The most commonly used TLVs that are defi ned
in the LDP protocol are listed in Table A3.2, although there are additional TLVs

Table A3.2 TLV Types and Usage

TLV Type Contained in messages

Forwarding Equivalence Class (FEC) 0x0100 Label Mapping, Label Request, Label Abort
Request, Label Withdraw, and Label Release

Address List 0x0101 Address, Address Withdraw

Hop Count 0x0103 Label Mapping, Label Request

Path Vector 0x0104 Label Mapping, Label Request

Generic Label 0x0200

ATM Label 0x0201 Initialization

Frame Relay Label 0x0202 Initialization

Status 0x0300 Notifi cation

Extended Status 0x0301 Notifi cation

Returned PDU 0x0302 Notifi cation

Returned Message 0x0303 Notifi cation

Common Hello Parameters 0x0400 Hello

IPv4 Transport Address 0x0401 Hello

Confi guration Sequence 0x0402 Hello

IPv6 Transport Address 0x0403 Hello

Common Session Parameters 0x0500 Initialization

ATM Session Parameters 0x0501 Initialization

Frame Relay Session Parameters 0x0502 Initialization

Label Request Message ID 0x0600 Label Abort Request

146 CHAPTER 3 Converged Networks

in other LDP protocol enhancements, as described in the following subsection.
The most commonly used TLVs are FEC, Address List, Hop Count, Status, and
Path Vector.

Label Distribution Protocol Implementation Issues
As noted previously, LDP defi nes a set of procedures, which include peer dis-
covery, session initialization and management, label distribution and handling
events (i.e., sending and receiving various messages), and notifi cation of errors
and other information. The LDP Discovery process, for example, enables an LSR
to discover potential LDP peers. The process is such that LSR periodically sends
Hello messages to “all routers on this subnet” group multicast address (in the
Basic Discovery process), or to a specifi c address (in the Extended Discovery
process). The Basic Discovery process discovers LSR neighbors that are directly
connected at the link level. LSR uses the received Hello message to identify a
potential LDP peer, either at the link level (if it was a Link Hello message in
Basic Discovery) or at the network level (if it was a Targeted Hello message in
Extended Discovery). Following the discovery process, an LSR can establish a
session with another LSR learned via the Hello message, by using the LDP initial-
ization procedure. During an LDP session, various label distribution procedures
take place (such as sending labels for FECs to an LDP peer), as well as procedures
for handling events (such as receiving label mappings). All these procedures are
based on message exchanges.

In addition, Loop Detection in LDP is required in order to prevent Label
Request messages from looping, and to avoid loops in LSPs. Path Vector and Hop
Count TLVs that are carried in Label Request and Label Mapping messages are
used for loop detection. Any LSR that transmits a message adds its LSR identi-
fi er to the Path Vector TLV if the message contains a Path Vector TLV, and incre-
ments the Hop Count TLV if the message contains a Hop Count TLV. An LSR that
receives a message that contains its LSR identifi er in its Path Vector detects a loop.
If the maximum allowable Path Vector length is reached when the LSR tries to
add its LSR identifi er, or the Hop Count has reached a predefi ned threshold value,
then the LSR assumes that a loop was detected.

Label Distribution Protocol Enhancements
Label Distribution Protocol uses the network topology in order to discover LDP
peers, among whom it establishes LDP sessions for label exchanges that are used
later for traffi c forwarding by MPLS or other tunneling protocol. This, obviously,
does not assume any specifi c traffi c pattern or requirement or other constraints,
and in fact ignores TE practices.

Label Distribution Protocol, however, can be enhanced such that it can create
tunnels in a controlled way, using TE requirements, network constraints, and so on.
This enhancement is known as Constraint-based LDP (CR-LDP) [235]. Other

Appendix A: Routing Information Distribution Protocols 147

routing protocols were also enhanced to allow the creation and maintenance
of tunnels by MPLS or other tunneling protocols such as Extensions to RSVP
for LSP Tunnels (RSVP-TE) [38] and Open Shortest Path First Traffi c Engineer-
ing (OSPF-TE) [248]. We briefl y describe Constraint-based LDP (CR-LDP) in this
subsection.

CR-LDP [235] is a signaling protocol that establishes and maintains explicitly
routed LSPs. This protocol extends the LDP protocol with information used for
 setting paths by specifi c constraint-based routing, using additional TLV param-
eters and procedures. The additional parameters and procedures provide sup-
port for:

� Strict and Loose Explicit Routing
� Specifi cation of Traffi c Parameters65

� Route Pinning66

� CR-LSP Preemption67

� Handling Failures
� LSP Identifi ers (LSPID)68

� Resource Class69

The protocol is usually used after a calculation of the route is done at the edges
of the network (providing an explicit route by specifying the hops along the route).
It can carry predefi ned traffi c requirements (a set of edge traffi c conditioning
 functions) that should be met and various other parameters that affect the required
CR-LDP, as well as, the existing CR-LDP. CR-LDP has the following additional TLV
parameters (types 0x800-0x8FF), as described in Table A3.3.

Since CR-LDP can use explicit routing, call set up can be a simple two-phase
protocol: a Label Request and a Label Mapping. A Label Request message in CR-LDP
may contain LSPID, Explicit Route, Traffi c, Pinning, Resource Class, and Preemption
TLVs (in addition to the FEC TLV used in LDP). The Label Map message in CR-LDP
may include additional LSPID and Traffi c TLVs.

There are additional extensions for LDP that are used for Pseudo-wire [303,
309], as discussed in the chapter. There are, however, many other LDP extensions
and enhancements that are beyond the scope of this book that deal with a variety
of network aspects or a wider operation of LDP, such as fault tolerance protection

65Traffi c parameters include: Peak Data Rate (PDR), Peak Burst Size (PBS), Committed Data Rate
(CDR), Committed Burst Size (CBS), and Excess Burst Size (EBS).
66Route pinning is used when it is undesirable to change the path used.
67If a route with suffi cient resources that were signaled by CR-LDP cannot be found, existing routes
are rerouted so that resources will be reallocated, potentially enabling the required route. Priorities
are assigned to the existing and the required routes.
68LSPID is a unique identifi er of a CR-LSP within an MPLS network, which is composed of the ingress
LSR Router ID (or any of its own IPv4 addresses) and a locally unique identifi er. This local identifi er
relates to the way this CR-LSP is recognized in the Ingress LSR, the one that originated this CR-LSP.
69Resource classes are also known as “colors” or “administrative groups.”

148 CHAPTER 3 Converged Networks

[121], VPLSs [271], signaling unnumbered links [265], Maximum Transmission Unit
(MTU) signaling [53], optical UNI signaling [360], Inter-Area LSP (multiple IGP-
areas within an AS) operation [96], and many others. There are important CR-LDP
extensions for control systems, such as for ASON [5] and for GMPLS [26].

Table A3.3 CR-LDP TLVs

TLV Type

Explicit Route* 0x0800

IPv4 Prefi x ER-Hop 0x0801

IPv6 Prefi x ER-Hop 0x0802

Autonomous System Number ER-Hop 0x0803

LSP-ID ER-Hop 0x0804

Traffi c Parameters 0x0810

Preemption 0x0820

LSPID 0x0821

Resource Class 0x0822

Route Pinning 0x0823

*The Explicit Route TLV specifi es a path, defi ned by a sequence of nested Explicit-Route-Hop TLVs. Each
may be one of the 0x0801 to 0x0804 TLV types.

4
In the previous chapter, we described converged networks technologies that are
used mainly in the core networks. In this chapter, we discuss access and home net-
works, those networks that are attached to the networks described in the previous
chapter. Access and home networks are the simplest in term of technology and
complexity, yet they are the most expensive part of the entire infrastructure. These
networks also use converged technologies, and they make the connections between
customers and their devices with the long-haul networks. We dedicate a chapter to
these networks because equipment in these networks is increasingly based on net-
work processors, as bandwidth and complexity reach a degree that justify it. This
chapter is divided into two parts—access networks and home networks.

4.1 ACCESS NETWORKS
Access networks include many kinds of networks and various technologies that
enable customer-to-network connection. These networks provide legacy tele-
communications services (e.g., telephony) as well as data services (e.g., Internet).
Historically, access networks were always the most expensive segment of the tele-
communications facilities due to the huge physical spread and the potential diffi -
culty of accessing the Customer Premises Equipment (CPE) or the users’ terminals
(e.g., mobile phones). However, since access networks used to be on the “low”
bandwidth spectrum of networking, their networking process demands were rela-
tively low, and they did not have such complicated processing technologies.

This is changing rapidly, as access bandwidth has risen sharply (from the Kbps
range to the Gbps range) and some networking functionalities have been pushed
downwards to the terminal ends of the networks (e.g., routing and tunneling,
scheduling and Quality of Service [QoS], security and fi rewalls). To cope with the
increasing processing demands of access aggregation equipment, access network
processors are now used more frequently in various places and equipment in the
access network.

Access and Home
Networks

CHAPTER

150 CHAPTER 4 Access and Home Networks

Access networks use wireless (fi xed and mobile), and wire-line technologies
(fi ber, coax, power-line,1 and regular, two-wire copper telephone connections). In
the following, we describe both wired and wireless access networks so the reader
can understand the requirements for implementing access network processors.

4.1.1 Wired Access Networks
The very fi rst access networks were deployed for the telephone services (on the
Public Switched Telephone Network, PSTN), and then for the cable TV (CATV)
services. Later on, these networks were utilized for additional and advanced digital
services, along with dedicated fi ber access networks—Passive Optical Networks
(PONs). Wired access networks are schematically described in Figure 4.1, and
briefl y discussed in this chapter. Please note that terminology is not always consis-
tent, despite the fact that these networks are many decades old. In the following
subsections we describe the three media used for access networks (coax, twisted
pairs, and fi ber-optics), and we fi nish with data services.

1Power-Line Communications (PLC) will not be described here, since they are not common as of
this writing.

FIGURE 4.1

PSTN and CATV wired access network

Central Office (CO)
End or Class-5 Office

Demarcation Point

CPE
Drop or
Service

Wire

Toll Tandem or
Class-4 Office

Trunk

Secondary or
Distribution

Cable

Primary or
Feeder Cable

PABX

Headend

Traditional Coax Trunk Cable

C
oa

x
Fe

ed
er

C

ab
le

Coax Distribution Cable

Trunk/bridger
amplifiers

Line extenders/
amplifiers

Tap

Drop Cable

Drop Cable

Coax Distribution Cable

Tap

Line extenders/
amplifiers

HUB

node

Hybrid Fiber/Coax
(HFC) Fiber Feeder

Cable TV
(CATV)

Distribution

Telephony
Distribution

Feeder Network Distribution Network
Local loop, last mile, or outside plant

4.1 Access Networks 151

We begin by discussing cable television (CATV) access networks (used mainly
for CATV services) and PSTN Access network (used mainly for telephony ser-
vices). Both of these networks are also used for data services, mainly Internet
access to the residential customers and the Small Offi ce Home Offi ce (SOHO)
customers.

Then, we discuss Fiber-in-the-Loop (FITL), which is used mainly for data access,
but also for telephony services and TV services. It should be noted that both Voice
over IP (VoIP) and TV services over the IP (IPTV) are technologies that are also
used for telephony and TV services, but they are part of, and ride above, the Inter-
net access, rather than being dedicated services such as digital telephony or digital
CATV. We end the section on wired access networks with a discussion on data
 services, primarily Internet access.

4.1.1.1 Cable Television Access Network
Cable TV has its own cable plant, which is analogous to that of the PSTN cable
plant. Traditionally it was based on all coax cables, but current networks are based
on hybrid fi ber and coax (HFC) cables. From the Headend (the television main dis-
tribution point), trunk cables drive the feeder cables, which then split to distribu-
tion cables, and are again split to drop coax cables. In a modern CATV cable plant,
there is a transport network composed of primary hubs connected by a ring to the
Headend. Each primary hub is connected to distribution hubs through secondary
rings. The distribution network starts at these distribution hubs, and is composed
of the feeders, distribution, and drop cables.

Cable TV access networks are also used for data communications, using
Cable Television Laboratories2 Data over Cable Service Interface Specifi cations
(DOCSIS) standards [64, 65], which were also approved by the ITU-T [224–226].
 DOCSIS version 3, released in 2006, allows IPv4/IPv6 Internet at high speed, both
uplink and downlink, reaching an approximately usable speed of 150 Mbps and
110 Mbps, respectively, per channel (instead of a TV channel).3 These bandwidths
are shared by several customers that are connected to the same CATV cluster.
Customer equipment (cable modems, CM) is connected to the coax demarca-
tion point at one side of the access network (usually with an “F” type connector),
and a Cable Modem Termination System (CMTS) is connected at the other side
of the access network, working similarly to the Digital Subscriber Line Access
Multiplexer (DSLAM) in the DSL systems used for twisted pair that is described
as follows.

2Cable Television Laboratories, Inc. originally standardized Data over Cable Service Interface Speci-
fi cations (DOCSIS).
3CATV uses the 5 to 860 MHz frequency spectrum of the cables. In North America, the NTSC TV
 format is broadcast over 6 MHz channels, whereas in Europe the PAL format is broadcast over 8 MHz
channels. Therefore, the usable downlink speed in Europe reaches 200 Mbps due to the wider
channel. The Upstream (Reversed) channels usually are allocated in the 5 to 42 MHz frequencies,
whereas the Downstream (Forward) channels use the 54 to 860 MHz frequencies.

152 CHAPTER 4 Access and Home Networks

4.1.1.2 Public Switched Telephone Network Access Network
Access networks of the traditional Public Switched Telephone Network (PSTN)
started at the carriers’ network edge, that is, at the Central Offi ce (CO) of an
Incumbent Local Exchange Carrier4 (ILEC) or at the Point-of-Presence (POP) of a
Competitive Local Exchange Carrier (CLEC). These access networks were based
on the twisted pair wire system,5 in the local loop (also called the last mile) to
the demarcation point. The demarcation point is where the telephone company’s
network ends and the wiring of the customer begins. The demarcation point is
connected to the Customer Premises Equipment (CPE), which is usually a telephone
or Private Branch eXchange (PBX), providing Plain Old Telephone Service (POTS).

The twisted pair access network is utilized not just for the POTS, but for digi-
tal services such as Integrated Services Digital Network (ISDN), using Digital Sub-
scriber Loop/Line (DSL) technologies. ISDN was used mainly for telephony, but
also for low-speed data communications. Other DSL technologies,6 however, enable
high-speed services, while utilizing the vast twisted pair outside the cable plant.
DSL enables 24 Mbps or more, according to the specifi c DSL technology used and
the distance between the demarcation point and the DSL termination point in the
carrier’s network. At the demarcation point, the customer equipment is connected
to the DSL network through a DSL “modem,” 7 and at the other end of the access net-
work (the central offi ce), there is the DSL Access Multiplexer (DSLAM). The DSLAM
is connected to the data networks, that is, the aggregation and core networks. Fol-
lowing the introduction of Digital Loop Carrier (DLC), optical fi bers penetrated to
the outside cable plant in several ways, as described in the next subsection.

4.1.1.3 Fiber-in-the-Loop
Optical fi bers were introduced fi rst into the interoffi ce trunks, and then into the
outside cable plant. Fiber-in-the-Loop (FITL) can appear in many ways, starting
from Fiber-to-the-Home/Premises (FTTH/FTTP), to Fiber-to-the-Building (FTTB),
Fiber-to-the-Curb/Cabinet (FTTC), Fiber-to-the-Zone (FTTZ); these are more
 generally referred to as FTTx. All FTTx technologies usually use PONs, which are

4Local telephony companies in the United States are referred to as ILECs, or Local Exchange Com-
panies (LECs) as a result of the breakup of AT&T into seven Regional Bell Operating Companies
(RBOCs), known as “baby bells,” according to the Telecommunication Act in the 1980s.
5The 2-wire cable system starts with feeder cables that include hundreds and thousands of
2-wires, split into distribution cables to which the drop wires connect the demarcation points of the
customers.
6There are several DSL technologies, collectively called xDSL, that are continuously evolving and
improving. The important ones include: Asymmetric DSL (ADSL), which uses the available bandwidth
in an uneven way (more for downlinks than for uplinks), High bit rate DSL (HDSL) or Symmetric DSL
(SDSL), and Very-high-speed DSL (VDSL). These technologies were standardized by the ITU-T; HDSL
or SDSL is G.991 [203], ADSL is G.992 [204], and VDSL is G.993 [205]. VDSL defi nes several profi les;
for example, one can handle 100 Mbps downstream and upstream on a 30 MHz bandwidth used for
very short lines, and another is 50 Mbps downstream and 12 Mbps upstream for up to 2 km lines.
7 The DSL modem is connected to the same twisted pairs used for POTS, through a splitter that fi lters
and separates the frequencies used for telephony (below 4 KHz) from those used by the DSL system
(100 KHz to 1 MHz).

4.1 Access Networks 153

point-to-multipoint and support up to 32 customers, or sometimes even more. For
FTTZ, FTTC, or FTTB, complementary DSL access is required from the fi ber end
to the demarcation point, and electro-optic conversion is done in an active Remote
Digital Terminal (RDL). Optical fi bers, especially FTTP, allow high data bandwidths,
reaching Gbps.

At the central offi ce (CO) point, the PON is connected by an Optical Line
Termination (OLT), while at the customer side (or near it) there are several Opti-
cal Network Units (ONUs) or Optical Network Terminations (ONTs), as shown
in Figure 4.2. From the ONUs, there are various access channels (e.g., xDSL over
copper) that reach the customers and are terminated by a Network Terminator
(NT). The Optical Distribution Network (ODN) contains the fi bers that connect
the OLT to the ONUs and the ONTs, and it may use WDM to carry both transmis-
sion directions on the same fi ber, in two wavelengths. There are several underlying
technologies used in PON, and several generations of PONs. The common practice
is to use Time Division Multiple Access (TDMA) in the upstream direction (from
the customers to the CO), where the ONU is time synchronized to use these time
slots properly. Other possibilities are WDM Access (WDMA), Subcarrier Division
Multiple Access (SDMA), and Code Division Multiple Access (CDMA) [274]. WDMA
seems to be the most likely future technology for PONs.

The fi rst generation of PON was based on the Asynchronous Transfer Mode and
thus called APON, which was standardized by ITU-T (ITU-T G.983). This standard
evolved and was later called Broadband PON (BPON), which offered 155 Mbps,
622 Mbps, or 1.2 Gbps downstream and 155 Mbps or 622 Mbps upstream (but usu-
ally was used for 155 Mbps/622 Mbps upstream/downstream). Later, Gigabit PON
(GPON) was standardized (ITU-T.984), and offered 1.2 Gbps or 2.4 Gbps down-
stream, and 155 Mbps to 2.4 Mbps upstream, encapsulating not just ATM as APON
and BPON did, but also Ethernet and TDM (PDH). GPON also supports up to 128
splits in the ODN, but practically, its deployment is less in the reach and split ratio,
depending on the optical link quality (called link budget) [111]. Therefore, up to

Central Office

NT

ONU

OLT

ODN

OLT—Optical Line Termination
ODN—Optical Distribution Network
ONT—Optical Network Terminal
ONU—Optical Network Unit
NT—Network Termination
*Splitter—Passive power in TDM-PON, passive
 wavelength in WDM-PON

Metro Splitter*

ONU

NT

NT

NT

ONT

FIGURE 4.2

Passive optical network

154 CHAPTER 4 Access and Home Networks

128 logical ONUs can be supported by the GPON transmission convergence layer,
as defi ned in ITU-T G.984.3 [202]. The span of the GPON can reach up to 60 km
(with a 20 km differential reach between ONUs).

The GPON frame is standardized, and is generalized to cope with multiservice
needs (i.e., telephony, Internet, etc.). Every frame lasts 125 µs and can contain
19,440 bytes in a 1.24 Gbps system or 38,880 bytes in a 2.48 Gbps system.

Gigabit PON Transmission Convergence (GTC) is a sublayer in GPON, which
defi nes a basic control unit called Transmission Container (T-CONT) that is iden-
tifi ed by Allocation Identifi er (Alloc-ID).8 T-CONT is multiplexed into the ONUs,9
which are multiplexed into the PON. T-CONT includes TDM blocks and data frag-
ments that are encapsulated according to the GPON Encapsulation Method (GEM),10
as well as ATM cells. To be more specifi c, the TDM and data traffi c (e.g., Ethernet)
are multiplexed into Ports (identifi ed by Port-ID), which are in turn multiplexed
into the T-CONTs. Similarly, ATM’s Virtual Circuits (VC) are multiplexed into Virtual
Paths (VP), which are in turn multiplexed into the T-CONTs.

Gigabit PON’s downstream frames (those that fl ow from the OLT to the ONU or
ONT) contain multiplexed ATM, TDM or Ethernet data for the ONUs/ONTs, as each
of the Physical Control Block downstream (PCBd) headers of the frames defi nes in
its physical length downstream (Plend) fi eld (see Figure 4.3).

The GPON upstream frames contain multiplexed data from the ONUs for the
OLT, where the allocation of each piece of the ONU’s data is determined by the
Upstream Bandwidth Map fi eld in the PCBd of the downstream GPON frame, as
shown in Figure 4.4. Each of the allocated data slots for an ONU contains ATM data
and GEM frames; each encapsulates Ethernet or TDM data.

In parallel to GPON, Ethernet PON (EPON) was standardized by the IEEE as
IEEE802.3ah [186], and is considered to be the “fi rst mile” Ethernet. EPON offers
dynamic bandwidth allocation at 1 and 10 Gbps. Some view it as the ultimate TDM-
PON, while others see GPON as the ultimate TDM-PON (at least if the anticipated
100 Gbps symmetric links are made) [274].

Ethernet for subscriber access networks, also called Ethernet in the First
Mile (EFM) [186], defi nes the Physical and MAC layers of Ethernet to be used over
voice grade copper or optical fi ber cable. When used over optical fi bers with
 passive splitters in a point-to-multipoint (P2MP) topology, EFM is called Ethernet
Passive Optical Network (EPON). In such a topology, there is one Optical Line
Terminal (OLT; attached to the access network) connected to one or more Optical
Network Units (ONUs; near the subscribers). This is depicted, for example, in the
hybrid (P2P and P2MP) EPON topology shown in Figure 4.5 (see page 157). EPON
can contain at least a 1:16 split ratio, up to even 64 splits, depending on the optical
path components’ quality (the link budget) [111].

8Allocation ID values 0 to 253 are used to address the ONUs directly, and if more than one allocation
ID is required for an ONU, values 255 to 4095 are used.
9Identifi ed by ONU-Identifi er (ONU-ID).
10GEM’s concepts and format is similar to the Generic Framing Procedure (GFP) [172], described in
the previous chapter.

4.1 Access Networks 155

FIGURE 4.3

GPON transmission convergence—downstream frame (from right to left)

GTC—GPON Transmission Convergence
PCBd—Physical Control Block downstream
Psync—Physical Synchronization
PLOAMd—Physical Layer OAM downstream
OAM—Operations, Administration and Maintenance
BIP—Bit Interleaved Parity
Plend—Payload Length downstream

Preamble
(7 bytes)

Destination
Address
(6 bytes)

Source
Address
(6 bytes)

Le
ng

th
/T

yp
e

(2
 b

yt
es

)

MAC Client Data
(64–1500 bytes) Fr

am
e

C
he

ck

S
eq

ue
nc

e
(4

 b
yt

es
)

GEM Payload

C
R

C
/H

E
C

(1

3
 b

it
s)

P

TI
 (

3
 b

it
s)

P

or
t-

ID

(1
2

 b
it

s)

GEM Header
(5 bytes)

GEM Header
(5 bytes)

P
LI

(1

2
 b

it
s)

C
R

C
/H

E
C

(1

3
 b

it
s)

P

TI
 (

3
 b

it
s)

P

or
t-

ID

(1
2

 b
it

s)

P
LI

(1

2
 b

it
s)

Ethernet Frame

Ethernet Payload

TDM and Data Fragments
over GEM part (size is determined from the Plend field)

Times 5 125 ms
(19,440 bytes in 1.24 Gbps, 38,880 bytes in 2.48 Gbps GPON systems)

Bytes are the transmitted from right to left

Bits from each field of the frames are transmitted MSB first

Psync
(4 bytes) B

IP
 Plend

(4 bytes)
PLOAMd

(13 bytes)
Ident

(4 bytes)
Plend

(4 bytes)

Upstream Bandwidth Map
(M x 8 bytes, M is defined in

the Plend field)

GPON Frame
(GTC)

G
P

O
N

 D
at

a
(E

th
er

ne
t,

 T
D

M
 o

r
A

TM
)

G
P

O
N

 E
nc

ap
su

la
ti

on

of
 E

th
er

ne
t

an
d

TD
M

“Pure” ATM Cells Part
(N x 53 bytes, N is

defined in the Plend field)

PCBd
n

TDM Data

ATM Data

GEM
Payload

S
FD

ATM—Asynchronous Transfer Mode
TDM—Time Division Multiplexing
SFD—Ethernet’s Start of Frame Delimiter
GEM—GPON Encapsulation Mode
PLI—GEM’s Payload Length Indicator
PTI—GEM’s Payload Type Indicator
HEC—GEM’s Header Error Control

A Multipoint MAC Control Protocol (MPCP) is used to control the multipoint
access between any ONU and the P2MP OLT. An MPCP frame format is shown in
Figure 4.6, where the Op-Code,11 TimeStamp, and data fi elds contain the required
messages, timers, and statuses. Point-to-Point (P2P) emulation is achieved by the
MPCP, to enable higher protocol layers to see the P2MP network as a collection
of point-to-point links. This is done by replacing three bytes of the preamble with

11For instance, Op-Code 00–02 is used for the “GATE” command, which the OLT uses to allow ONUs
to transmit frames at a specifi c time and for a specifi c duration.

156 CHAPTER 4 Access and Home Networks

GTC—GPON Transmission Convergence
PCBd—Physical Control Block downstream
Alloc-ID—Allocation Identifier of the
 upstream T-CONT
T-CONT—Transmission Container
SStart—Starting time of the allocation
 (in byte offset of the GPON frame)
SStop—Stopping time of the allocation
 (in byte offset of the GPON frame)

DBRu
Y

GEM Payload

GEM Header
 (5 bytes)

GEM Header
 (5 bytes)

C
R

C
/H

E
C

(1

3
 b

it
s)

P

TI
 (

3
 b

it
s)

P

or
t-

ID

(1
2

 b
it

s)

C
R

C
/H

E
C

(1

3
 b

it
s)

P

TI
 (

3
 b

it
s)

P

or
t-

ID

(1
2

 b
it

s)

P
LI

(1

2
 b

it
s)

P
LI

(1

2
 b

it
s)

GEM Payload

Payload Y Payload X

Time 5 125 µs
(19,440 bytes in 1.24 Gbps, 38,880 bytes in 2.48 Gbps)

PCBd
n11

PCBd
n

Bytes are transmitted from right to left

Bits from each field of the frames are transmitted MSB first

PCBd Fields
(30 bytes)

Downstream Payload n Downstream Payload n11

A
llo

c-
ID

(1

2
 b

it
s)

Fl
ag

s
(1

2
 b

it
)

S
S

ta
rt

(1

2
 b

it
s)

S
S

to
p

(2
 b

yt
es

)

C
R

C
 (

1
 b

yt
e)

A
llo

c-
ID

(1

2
 b

it
s)

Fl
ag

s
(1

2
 b

it
)

S
S

ta
rt

(1

2
 b

it
s)

S
S

to
p

(2
 b

yt
es

)

C
R

C
 (

1
 b

yt
e)

A
llo

c-
ID

(1

2
 b

it
s)

Fl
ag

s
(1

2
 b

it
)

S
S

ta
rt

(1

2
 b

it
s)

S
S

to
p

(2
 b

yt
es

)

C
R

C
 (

1
 b

yt
e)

Access n Access 1 Access 2
Upstream Payload k

PLOu
PLOAMu

(13 bytes)
PLSu

(120 bytes)

DBRu
X

(2, 3, or
5 bytes)

From ONT/
ONU n

Upstream
GPON Frame

(GTC)

Upstream Bandwidth Map

Time 5 125 µs (19,440 bytes in 1.24 Gbps, 38,880 bytes in 2.48 Gbps GPON systems)

From ONT/ONU 2 From ONT/ONU 1

Downstream
GPON Frame

(GTC)

CRC—Cyclic Redundancy Check-8 (x8+x2+x+1)
ONT—Optical Network Terminator
ONU—Optical Network Unit
PLOu—Physical Layer Overhead upstream
PLOAMu—Physical Layer OAM upstream
OAM—Operations, Administration and Management
PLSu—Power Leveling Sequence upstream
DBRu—Dynamic Bandwidth Report upstream

FIGURE 4.4

GPON transmission convergence—upstream frame (from right to left)

a two-byte Logical Link Identifi cation (LLID) fi eld, and a one-byte CRC-812 fi eld
 (Figure 4.7). The frame’s preamble is restored when the frame is used outside of
the link between the OLT and the P2MP ONU.

12The CRC is computed from the 3rd byte of the preamble through the LLID fi eld, the 7th byte of
the preamble, and its generating function is x8 1 x2 1 x 1 1. For a description of Cyclic Redundancy
Check (CRC), see Chapter 5.

4.1 Access Networks 157

Downstream frames are broadcast by the OLT, and each ONU discards the
frames that are not addressed to it (using the LLID fi eld). The upstream frames are
transmitted by the ONUs, using the time slots assigned to them by the OLT (nego-
tiating it with the MPCP).

An optional Operations, Administration, and Maintenance (OAM) sublayer may
also be included in the EFM, to support network operations and troubleshooting

FIGURE 4.5

Hybrid EPON example

Central Office
ONU1

1:8
Splitter

P2MP
OLT

ODN

ONU—Optical Network Unit
ODN—Optical Distribution Network
P2P OLT—Point-to-Point Optical Line Termination
P2MP OLT—Point-to-Multipoint Optical Line Termination

Feeder
Drop

...P2P
OLT

1000BASE-PX

1000BASE-LX

Metro ONU2

ONU8

ONU9

FIGURE 4.6

Generic MPCP frame (MAC control frame, from right to left)

Le
ng

th
/T

yp
e

=
 8

8
–0

8

O
p-

C
od

e

Ti
m

eS
ta

m
p

Data/Reserved/Pad

Fr
am

e
C

he
ck

S
eq

ue
nc

e

4 bytes 2 bytes4 bytes

Source
Address

2 bytes

6 bytes

40 bytes

6 bytes

Destination
Address

FIGURE 4.7

EPON frame format (from right to left)

46–1500 bytes

C
R

C
8

Le
ng

th
/T

yp
e

MAC Client Data +
PaddingFr

am
e

C
he

ck
S

eq
ue

nc
e

4 bytes 6 bytes

LL
ID

S
LD

 =
 0

xD
5

0
x5

5
0

x5
5

0
x5

5
0

x5
5Source

Address

2 bytes
6 bytes

Destination
Address

8 bytes
Preamble + LLID

158 CHAPTER 4 Access and Home Networks

in the link-level (in addition, IEEE802.1ag [180] standardized a network level
OAM, which is the Connectivity Fault Management [CFM]). The link level OAM
(of EPON) and the network level OAM are described in the previous chapter’s
 subsection 3.3.2.3.

As of the beginning of 2008, a 10 Gbps EPON is currently underway, proposing
a fourfold speed increase over the current 2.5 Gbps GPON. The Ethernet-centric
usage of networks naturally supports EPON; however, performance comparisons
show that GPON is more effi cient than EPON in the 1Gbps region. First, EPON line
coding of 8B/10B (which requires 10-bit transmission for each 8-bit byte) causes
a 25% overhead. Second, the upstream burst multiplexing is diffi cult in EPON, and
larger overhead is required than in GPON (more than ten times the guard time
between frames, preamble, and delimiter times) [330]. Third, any PON control in
EPON requires an MPCP Ethernet frame, which is not the case in GPON. However,
as can be easily seen, EPON is simpler than GPON, and in an all Ethernet network,
EPON eliminates the need for the convergence sublayer and the required mappings
and conversions.

4.1.1.4 Data on Wired Access Networks
There are three main types of customers for wired access networks: residential
customers who use the Internet (usually through connections to Internet Service
Providers, ISP); residential customers who are connected to their corporate
 networks (intranet); and corporations, usually Small and Medium Enterprises
(SMEs) or Small Offi ce Home Offi ce entities that are using both Internet and
intranet. Large corporations usually bypass the access networks and connect
directly to the carriers’ networks, that is, to their regional networks, beyond the
CO or the POPs.

The DSL forum [105, 107, 108],13 Cable Television Laboratories, Inc., [64, 65],
ITU-T [224–226], and the IETF [25, 340] describe many Internet Service Providers’
(ISPs) and Application Service Providers’ (ASPs) deployment scenarios over the
access networks, using various technologies and protocols.

A reference model for the access, regional, and service provider networks
includes the Customer Premises Equipment (CPE),14 Access Node, Aggregation
point, and the Edge Router that connects the core network and the service pro-
vider network, as shown in Figure 4.8.

Access networks are Layer 2 networks, providing point-to-point connectivity,
from the CPE to some aggregation point. Layer 2 networking in the access networks
must deal with service requirements such as security, QoS, routing, address assign-
ments, and more. In order to respond to these requirements, many implementation

13The DSL forums’ TR-025 is the basic, traditional DSL network architecture. TR-059 is basically about
BRAS/DSLAM collocation, and it specifi es the next generation DSL network architectures in terms of
multiservices, support of QoS, and IP services. TR-101 suggests the next evolution by upgrading the
access network to support Ethernet transport and switching capabilities.
14CPE usually includes hosts and Customer Premises Networks (CPN), attached to a network inter-
face device (e.g., modem, Ethernet switch or ONU) that is attached to the access network.

4.1 Access Networks 159

scenarios are used, some more common than others, and they vary between operators
and countries. All these scenarios can be grouped into three basic models15 for data
transport over the various types of Layer 2 access networks:

� A bridged network that transfers plain Ethernet frames from the customer
across the network to an Aggregation Point or the Edge Router. As is the case
usually with Ethernet, a bridged network simply bridges the Ethernet frames.

� A Point-to-Point Protocol (PPP) Terminated Aggregation (PTA) model, in which
the old, common, and mature PPP remote-access method is used to connect
the customer to an Aggregation Point. IP traffi c completes the link and con-
nects the Aggregation Point and the Edge Router.

� A Layer 2 Tunneling Protocol (L2TP) Access Aggregation (LAA) model, in which
a PPP tunnel is created between the customer and the Edge Router. An L2TP
tunnel is established between the Aggregation Point and the Edge Router.

Bridged networks are very common in CATV and Ethernet deployments, and the
other two models are used in DSL deployments, although they are also used for
CATV and Ethernet deployments, due to the advantages that tunneling offers (e.g.,
greater security).

4.1.1.4.1 Bridged Model
This is the simplest way to transport Ethernet frames from the customer to the
 service provider, as bridging and plain routing are the only network functions
required. In Ethernet access networks, where the entire access network is Ethernet-
based, it is clear that bridging should be used. CATV access networks use cable
MAC, which can easily carry the Ethernet frames, so it is also quite simple. However,
DSL access networks impose the most diffi cult bridging mechanism, since they
usually use the ATM on top of the physical DSL links. For these networks, Ethernet

15DSL Forum’s TR-025 [105], which defi nes the network architecture, groups access networks into
four categories: Transparent ATM Core Networks, Layer 2 Tunneling Protocol (L2TP) Access Aggrega-
tion (LAA), Point-to-Point Protocol Terminated Aggregation (PTA), and Virtual Path Tunneling Archi-
tecture (VPTA). We describe two of these models in this chapter, as the other two are end-to-end
ATM-Based, and are either not scalable or not commonly used.

FIGURE 4.8

Access network reference model

SP
Interface

Node

Customer Site

CPE
Access
Node

Regional NetworkAccess Network

Regional and Access Networks

Aggregation
Point

Service Provider
Network

Edge
Router

loop

CPE—Customer Premises Equipment
SP—Service Provider

160 CHAPTER 4 Access and Home Networks

frames are bridged on top of the ATM, using the Multiprotocol Encapsulation over
ATM Adaptation Layer 5 method (known as RFC 2684 layer) [154]. The architec-
tures of the bridged models in the DSL, CATV, and Ethernet-based access networks
are shown in Figure 4.9.

In DSL access networks, Permanent Virtual Circuits (PVCs) for ATM cells are
established from the DSL modem through the Access Node, which is the DSLAM,
and to the aggregation point, which is the Broadband Remote Access Server
(BRAS). ATM cells are then used to transport the customer’s Ethernet traffi c, by
using the Multiprotocol Encapsulation over ATM Adaptation Layer 5 (RFC 2684)
[154] method. Finally, the BRAS aggregates the customer’s traffi c, and transports
the customers’ L2 or L3 traffi c (IP) to the Edge Router, to the core network, and to
the service provider.

In the case of CATV, Ethernet frames are carried in an easier way, as noted before,
with minimal conversions and encapsulations. CATV uses DOCSIS’ MAC to carry
the Ethernet frames from the Cable Modem (CM) to the Cable Modem Termination
System (CMTS), which aggregates the customers’ traffi c and uses IP packets to
access the Edge Router, the core network, and the service provider.

Recently, Ethernet-to-the-Home/Business (ETTx) has become more and more
popular, mainly in dense areas where Ethernet links are possible, such as multi-
 tenant buildings, large offi ce buildings, or hotels. ETTx enables high bandwidth L3
(IP) and VPN services, and is highly effi cient. Current ETTx deployments are based
on either Ethernet in the First-Mile (EFM), FITL, or DSL-like Ethernet (DSL genera-
tion 3), such as Cisco’s proprietary Long Reach Ethernet (LRE). Ethernet frames are
aggregated in several levels of Ethernet aggregation switches, and are sent to the
Broadband Network Gateway (BNG).16 BNG can be used instead of the Edge Router,
and it includes some of the BRAS functionalities. The difference between BRAS
and BNG is that BRAS aggregates all ATM PVCs from the CPE through the DSLAM,
while the BNG aggregates Ethernet frames through many Ethernet aggregation
switches. Another difference results from service segregation, that is, allowing sev-
eral, specifi c BNG for various services, such as Video-BNG, and so on [108].

There are, however, some permutations in these confi gurations, for example, in
“DSL generation 2” (defi ned by TR-101 [108]), where the DSLAM terminates the
ATM PVCs, and transmits Ethernet frames to a BNG, or more than one BNG.

4.1.1.4.2 Point-to-Point Protocol Terminated Aggregation Model
This model is the result of the vast use and experience gained with Point-to-Point
Protocol (PPP)17 [387] for remote access applications, which has been very common
since the days of dial-up connections. PPP offers a mature and rich control-plane

16A BNG is an IP-edge router where bandwidth and QoS policies are applied; the functions performed
by a BRAS are a superset of those performed by a BNG [108, 296].
17PPP [387] is based on the ISO 3309 HDLC [193] protocol and frame format [388]. HDLC is a well-
known data-link layer protocol that includes a sliding window mechanism for Automatic Repeat
Request (ARQ) handshake. PPP followed many protocols that were used to enable dial-in access and
other applications, such as Serial Line Internet Protocol (SLIP).

4.1 Access Networks 161

FIGURE 4.9

Bridged data access network architectures

SP—Service Provider
CATV—Cable TV
HFC—Hybrid Fiber Coax
CM—Cable Modem

FITL—Fiber in the Loop

BRAS—Broadband Remote Access Server
BNG—Broadband Network Gateway
CPE—Customer Premises Equipment

CMTS—Cable Model Termination System
ETTx—Ethernet to the home/business/x

VLAN—Virtual Local Area Network (LAN)
Agg Eth SW—Aggregation Ethernet Switch

IP—Internet Protocol
ATM—Asynchronous Transfer Mode
AAL5—ATM Adaptation Layer 5
L2—Layer 2
Eth—Ethernet
LLC—Logical Link Control
Phy—Physical layer
DSL—Digital Subscriber Loop/Line
DSLAM—DSL Access Multiplexer
TP—Twisted Pairs telephone wires
eDSL—Ethernet DSL
RG—Residential Gateway

IP

IP

RG/DSL
Modem

IP

Eth
ATM

DSL

2684

AAL5

DSL PHY

ATM

PHY

ATM

PHY

IP

AAL5
L2

Aggregation Point
BRAS

Access Node
DSLAM

2684

IP

PHY

L2
Eth

Edge Router

CPE

Customer Site Regional NetworkAccess Network

Regional and Access Networks
Service Provider

Network

TP

Eth Eth
DSL

SP

IP

RG/CM

IP

Eth Cable PHY

LLC

Cable

IP

L2

Aggregation Point
CMTS

IP

PHY

L2

Eth

Edge Router

CPE CATV

SP

HFC

Eth

LLC

IP

Eth SW

IP

Ethernet

Eth Eth PHY

VLAN

Eth

IP

L2

Aggregation
Router BNG

IP

PHY

L2

Eth

Edge Router

CPE ETTx

SP

FITL/eDSL

Eth

VLAN

Agg Eth
SW

IP

Eth Eth

VLANVLAN

Ethernet over RFC 2684 over ATM

Eth

IP

IP

Ethernet over DOCSIS

162 CHAPTER 4 Access and Home Networks

technology that is widely adopted for access networks, even though it is a bit
more complex than the bridged model described previously. Two protocols are
 suggested to enhance PPP for access networks: PPP over Ethernet (PPPoE) [295]
and PPP over ATM (PPPoA) [153]. Both are used to create a PPP session between
the CPE and an aggregation point, which in access networks are the BRAS, BNG
or the CMTS. It should be noted that due to its advantages (e.g., security), PPPoE
is widely used for CATV, ETTx, and DSL access networks, despite the fact that the
bridged model is simpler.

For Ethernet, which is a broadcast network, PPP cannot be established and
used by itself; it requires enhancements, at least for discovering the other party
and establishing a link with it. Thus, PPPoE includes a pre-PPP discovery stage and
link establishment phase between the CPE and the aggregation point (which is
termed Access Concentrator in the standard). The end result is that PPP packets
are encapsulated into the Ethernet frames, with Ethertype equal to 0x88-63 at the
discovery stage, or 0x88-64 at the PPP session stage. These Ethernet frames are
used to carry the PPPoE on the access network in the bridged model described
earlier. In other words, for CATV and ETTx access networks, the Ethernet frames
are bridged between the CPE and the aggregation point (CMTS and BNG, respec-
tively), and connect them. These two ends, the CPE and the aggregation point, are
then used for the PPP connection.

In DSL access networks, things with PPPoE are a bit more complicated, as
they are ATM-based. However, the bridged model can apply in this case also,
optionally using the Multiprotocol Encapsulation over ATM Adaptation Layer 5
(RFC 2684) [154] layer. In other words, the Ethernet frames that encapsulate the
PPP frames are packed into ATM cells (using AAL5) according to RFC 2684, in
what is called PPPoE over Ethernet (PPPoEoE). Alternatively, the PPPoE frames
can be segmented directly into ATM (using AAL5), in what is called PPPoE over
ATM (PPPoEoA).

Point-to-Point Protocol over ATM offers a simpler protocol and deployment sce-
nario for DSL, in which the PPP link is established directly above the ATM using
AAL5. PPPoA does not use discovery, for example, and therefore requires one less
convergence function.

In order to clarify this multilayer encapsulation and links, several possible archi-
tectures of the PTA model in the DSL and the CATV access networks are shown in
Figure 4.10. Many other deployment scenarios are possible and are, in fact, used;
these can easily be understood following the principles outlined earlier and shown
in Figure 4.10. It should be noted, though, that in the PTA model used for ETTx,
PPP connections may begin in the CPE equipment and can be terminated either at
the BNG, at the BRAS, or at the Edge Router, depending on the specifi c deployment
scenario used for the ETTx.

As noted above, PTA models are often preferred over the bridged model despite
their relative complexity, since they offer a better and simpler security scheme,
authentication services, IP Quality of Service (QoS) control, accounting support,
and possible dynamic address assignment, among many other advantages.

4.1 Access Networks 163

FIGURE 4.10

PTA model deployment examples

DSL—Digital Subscriber Loop/Line
TP—Twisted Pairs telephone wires
DSLAM—DSL Access Multiplexer
BRAS—Broadband Remote Access Server
CATV—Cable TV
HFC—Hybrid Fiber Coax
CM—Cable Modem
CMTS—Cable Model Termination System
RG—Residential Gateway
CPE—Customer Premises Equipment

IP—Internet Protocol
ATM—Asynchronous Transfer Mode
AAL5—ATM Adaptation Layer 5
L2—Layer 2
Eth—Ethernet
Phy—Physical Layer
SP—Service Provider
PPP—Point-to-Point Protocol
PPPoE—PPP over Ethernet
PPPoA—PPP over ATM

IP

IP

RG/DSL
Modem

Eth

IP

Ethernet (possibly over RFC 2684)

Eth
ATM

DSL

2684

AAL5

DSL PHY

ATM

PHY

ATM

PHY

IP

AAL5

L2

Aggregation Point
BRAS

Access Node
DSLAM

2684

IP

PHY

L2
Eth

Edge Router

CPE

Customer Site
Regional NetworkAccess Network

Regional and Access Networks Service Provider
Network

TP

Eth Eth

PPPoE
in DSL

SP

IP

IP

RG/CM

IP

Ethernet over DOCSIS

Eth Cable PHY

PPPoE

Cable

IP

L2

Aggregation Point

CMTS

IP

PHY

L2

Eth

Edge Router

CPE
PPPoE

in
CATV

SP

HFC

Eth

PPPoE

ATM PVC

PPP

PPPoE PPPoE

PPP

IP

IP

RG/DSL

Modem

Eth

IP

Eth
ATM

DSL

AAL5

DSL PHY

ATM

PHY

ATM

PHY

IP

AAL5 L2

Aggregation Point

BRAS

Access Node

DSLAM

IP

PHY

L2
Eth

Edge Router

CPE

TP

PPPoA
in DSL

SP

ATM PVC
PPP

PPPoA PPPoA

164 CHAPTER 4 Access and Home Networks

RG/DSL
Modem

LAC-BRAS
(Aggregation Point)

DSLAM
(Access Node)

LNS
(Edge Router)

IP—Internet Protocol
PPP—Point-to-Point Protocol
L2TP—Layer 2 Tunneling Protocol
ATM—Asynchronous Transfer Mode
AAL5—ATM Adaptation Layer 5
PVC—Permanent Virtual Circuit
L2—Layer 2
Eth—Ethernet
Phy—Physical Layer

DSL—Digital Subscriber Loop/Line
TP—Twisted Pairs Telephone Wires
DSLAM—DSL Access Multiplexer
BRAS—Broadband Remote Access Server
LAC—L2TP Access Concentrator
LNS—L2TP Network Server
RG—Residential Gateway
CPE—Customer Premises Equipment
SP—Service Provider

L2TP
IP

Eth

IP

ATM
DSL

AAL5

DSL PHY
ATM

PHY
ATM
PHY

PPP

AAL5
L2

IP

PHY
L2

Eth

PPP
L2TP

IP IP

PPP

Eth

IP

ATM PVCCPE

Customer Site Regional NetworkAccess Network

Regional and Access Networks
Service Provider

Network

TP
SP

PPP
L2TP

FIGURE 4.11

L2TP-based VPN using PPPoA for DSL access network

4.1.1.4.3 Layer 2 Tunneling Protocol Access Aggregation Model
This model is very similar to the PTA model described previously, but it contains one
major difference in the way the connection is made to the Edge Router: the PPP tunnel
is created between the CPE and the Edge Router rather than the Aggregation Point.
An L2TP tunnel is established between the Aggregation Point and the Edge Router.

In this model, Layer 2 Tunneling Protocol (L2TP) [409] and L2TP version 3
(L2TPv3)18 [272] are used. LAA enables dynamic service selection by extending
the PPP (that is created by the CPE) into a L2TP tunnel that ends at a chosen ser-
vice provider. The L2TP Access Concentrator (LAC) resides in the Aggregation
Point (the BRAS), and the L2TP Network Server (LNS) resides in the provider’s
network (the Edge Router). The created L2TP tunnel can use any L2 or L3 (IP)
network between the two L2TP Control Connection Endpoints (LCCEs). A typi-
cal deployment scenario of LAA is shown in Figure 4.11.

18L2TP operates between two L2TP Control Connection Endpoints and tunnels traffi c across a packet
network. On one side, a L2TP Access Concentrator (LAC) receives traffi c from an L2 circuit, which it
forwards via L2TP across an IP or other packet-based network. On the other side of the L2TP tunnel,
a L2TP Network Server (LNS) logically terminates the L2 circuit locally and routes network traffi c
to the ISP network.

4.1 Access Networks 165

4.1.1.4.4 Additional Access Networks Implementations
There are many other access network implementations, mainly for tunneling the
data from the access and regional networks to the service provider networks. This
can be done either through core networks that require tunneling, or for enabling
dynamic service selection (e.g., between several ISPs, ASPs, or corporate services), or
both. An example of such implementation is the Point-to-Point-Tunneling Protocol
(PPTP) [166] (used mainly in Europe), in which a tunnel is created between the CPE
and a PPTP server. Another example is a VPN usage, for example, MPLS, as demon-
strated in Figure 4.12.

4.1.1.4.5 Ethernet Demarcation
Ethernet access networks seem to be the ultimate solution for connecting the Ethernets
of enterprises, campuses, and multitalented buildings and houses with that of the pro-
viders’ Ethernet. After all, the vast majority of data traffi c originates and terminates in
Ethernets, and all-Ethernet systems can simplify a lot networking, decrease costs, and
increase functionality. In such an End-to-End Ethernet scenario, the access networks
merge with the metro and the core networks, as can be seen in Figure 4.13.

As mentioned earlier, there are several technologies that, as of this writing,
support this Ethernet-to-the-Home/Building/Offi ce (ETTx) trend. In such ETTx
deployments, the demarcation point becomes Ethernet Demarcation. Ethernet
demarcation, however, is more than just the plain physical interface box used in
the traditional demarcation point. That is, Ethernet demarcation is still the point

FIGURE 4.12

MPLS-based VPN using PPPoA for DSL access network

IP

RG/DSL
Modem

Eth
DSL PHY

ATM

DSLAM
(Access Node)

CPE

Customer Site Regional Network Access Network

Regional and Access Networks

MPLS VPN

TP

Service Provider
Network

SP

IP IP
IP

Eth
ATM
DSL

PPP
AAL5

PHY
ATM
PHY

IP

AAL5
L2

PHY
L2

Eth

PE-BRAS
(Aggregation Point)

Edge Router

PPP
MPLS
VPN-L

PHY

IP

L2

PE Router

MPLS
VPN-L

PHY
L2

MPLS VPN
PPP over ATM

ATM PVC

IP—Internet Protocol
PPP—Point-to-Point Protocol
VPN—Virtual Private Network
VPN-L—VPN Label
ATM—Asynchronous Transfer Mode
AAL5—ATM Adaptation Layer 5
L2—Layer 2
Eth—Ethernet
Phy—Physical Layer

DSL—Digital Subscriber Loop/Line
TP—Twisted Pairs Telephone Wires
DSLAM—DSL Access Multiplexer
BRAS—Broadband Remote Access Server
PE—Provider Equipment
MPLS—Multiprotocol Label Switching
RG—Residential Gateway
CPE—Customer Premises Equipment
SP—Service Provider

IP

166 CHAPTER 4 Access and Home Networks

Metro Access, Aggregation WAN

IP/MPLS

ASPs
(e.g., Video)

CPE Metro Core

BRAS /
BNG

IP MPLS
Edge

ISP

Voice

Global
Internet

FIGURE 4.13

End-to-end Ethernet

where the provider’s Ethernet ends and the customer’s Ethernet begin. However,
separating these two networks requires management of the operational and admin-
istrative aspects of these networks as well as the interface between them. Ether-
net demarcation functions may even be attributed to an Ethernet Demarcation
Device (EDD), which might be a CPE, a User-Network-Interface (UNI), an ONU/
ONT, and so on.

The functions of the Ethernet demarcation device depend on the services that
the customer requires from the provider, as well as on both the customer’s and
the provider’s Ethernet deployment architecture. A simple EDD might be one that
offers a clear point-to-point Ethernet channel with possibly just rate provisioning.
A more complex EDD would also offer L2 Quality of Service and VLAN capabili-
ties that enable multiple ports, each with a differentiated services (i.e., for voice or
data) and traffi c separation between the ports. EDD can support not just L2 differ-
entiated services (i.e., Port and VLAN-based), but also L3- to L7-based differentiated
services. This enables the EDD to support different protocols with matched QoS,
and provide advanced services such as security (i.e., fi rewall) or Network Address
 Translation (NAT). Lastly, another category of EDD may interface the customer’s
 Ethernet with MPLS or VPLS networks (described in the previous chapter), enabling
the providers to reach their customers directly with their core networks.

4.1.2 Radio Access Networks
In mobile communications, Radio Access Networks (RANs) usually refer to the part
of the cellular networks that interacts directly with the mobile equipment (and is

4.1 Access Networks 167

sometimes also called the Base-station subsystem, BSS). The other part of these
 networks is called the core network (or the network subsystem, NSS), and is the
part that is directly attached to the telecommunication network, for example,
the Public Switched Telephone Network (PSTN), or the Internet.

Mobile communications began purely for voice applications, then data appli-
cations were added, and then these two converged to the point where voice
has become just another data application of the converged network. Mobile
communications has undergone several generations, and is still evolving; these
generations are known as 1G, 2G, 2.5G, 3G, and 4G. The fi rst generation, 1G,
introduced analog cellular systems that only enabled voice telephony,19 and used
circuit switching. The second generation, 2G, revolutionized these networks by
using digital communications.20 The next generation was called 2.5G; it added
packet switched based data transfer using the 2G infrastructure.21 The third gen-
eration, 3G, signifi cantly improved data services and offered higher spectral effi -
ciency.22 3G is still evolving (as of this writing),23 and offers interoperability with
IP Multimedia Services (IMS) [69, 353] and with unlicensed mobile radio network
(Wi-Fi, which is based on IEEE 802.11 standards, and is described in the next
 subsection—home networks).

The forthcoming fourth generation, 4G, is expected to offer higher data speeds
that support real-time TV and video streaming, and is based on an all-packet network
(voice and data).24 4G is also expected to support IMS and roaming to noncellu-
lar systems (Satellite, Wi-Fi, etc.) according to the Generic Access Network (GAN)

19The standards typically used for the fi rst generation were the Nordic Mobile Telephone (NMT),
C450, radiocom 2000, RTMI, Total Access Communications System (TACS) (used in the United King-
dom), Japan Total Access Communications System (JTACS), and Advanced Mobile Phone System
(AMPS) along with its derived Narrowband Analog Mobile Phone Service (NAMPS) (both used in
the United States).
20Known standards that were used for the second generation were Time Division Multiple Access
(TDMA), Global System for Mobile (GSM), Digital AMPS, which were all based on time and frequency
multiplexing, as well as Code Division Multiple Access (CDMA), known as Interim Standard 95
(IS-95), which was based on code multiplexing.
21Standards used for this intermediate generation were the General Packet Radio System (GPRS),
Enhanced Data rates for GSM Evolution (EDGE), enhance GPRS, and 1xRTT, which is the CDMA data
service.
22The standards implemented in the 3G originated mainly from two sources: the European-headed
third Generation Partnership Project (3GPP) and the American-headed 3GPP2. The 3GPP’s standards
are Universal Mobile Telecommunications System (UMTS) or Wideband CDMA (WCDMA) with High-
Speed Packet Access (HSPA), while 3GPP2 standards are CDMA2000 with Evolution-Data Optimized
(EV-DO).
23The 3GPP, for example, published several releases of standards for 3G; for example, UMTS rel. 99, rel.
4, 5, 6, and 7 (the numbers refer to the years they were published; for example, rel.4 was published
in 2004). UMTS Rel. 8, termed Long Term Evolution (LTE) is 3GPP’s fi rst 4G standard to come, which
is estimated to be fi nished by 2008.
24Standards developed for the fourth generation are UMTS Rev. 8 (Long Term Evolution, LTE) by the
3GPP, Ultra Mobile Broadband (UMB) by the 3GPP2, and WiMAX, which is based on IEEE 802 stan-
dards (802.16 working group).

168 CHAPTER 4 Access and Home Networks

architecture (also known as Unlicensed Mobile Access UMA), which evolved under
3G. ITU-T organized and standardized the various 3G and 4G standards in its ITU
Mobile Telecommunication (IMT-2000).

4.1.2.1 2G, 2.5G, 3G
Figure 4.14 depicts a generic architecture of RAN and the core network for 2G,
2.5G, and 3G (Global System for Mobile [GSM],25 General Packet Radio System

25GSM originally stands for Groupe Spécial Mobile (in French), a body which was created in 1982 by
the European Conference of Postal and Telecommunications Administration (CEPT). Later, in 1988,
CEPT created the European Telecommunications Standards Institute (ETSI), and GSM, along with
other standards’ committees, was transferred to ETSI. GSM was changed to Global System for Mobile
by ETSI in 1991, when the fi rst GSM system became operational. In 1998, ETSI established the third
Generation Partnership Project (3GPP) with other standardization bodies, to which GSM and its
related standards were moved.

Uu, Um, A, Abis, B, C, D, E, SS7, Gb, Gn, Gc, Gr,
 Gi, Iub, Iur, Iu-CS, Iu-PS—Various Protocols
UMTS—Universal Mobile Telecommunication
 System (3G)
GSM—Global System for Mobile (2G)
GPRS—General Packet Radio System
PSTN—Public Switched Telephone Network
RAN—Radio Access Network
BTS—Base Transceiver Station (2G)

RNC—Radio Network Controller (3G)
BSC—Base Station Controller (2G)
GSN—GPRS Support Node
SGSN—Serving GSN
GGSN—Gateway GSN
MSC—Mobile Switching Center
GSMC—Gateway MSC
HLR—Home Location Register
VLR—Visitor Location Register

Gb

Node B

Node B

BTS

RNC

BSC

Iub

Iub

Abis

Iu-CS E

Gn

SGSN

Packet
Data

Network

PSTN

MSC
SS7

Gi

Uu

RAN

GPRS Core Network

GSM/UMTS Core Network

Core Networks

Uu

Um

Iu-PS

A

HLR VLR

D C

Gr

RNC

Iur B

GMSC

GGSN

Gc

FIGURE 4.14

GSM/GPRS/UMTS network architecture

4.1 Access Networks 169

[GPRS], Enhanced Data rates for GSM Evolution [EDGE], and Universal Mobile
 Telecommunications System [UMTS]). The equivalent U.S. networks for 2G, 2.5G,
and 3G, that is, the Code Division Multiple Access (CDMA) based Interim Standard
95 (IS-95) and CDMA2000, are principally similar, and we focus on the 3GPP net-
works since they are used more than their U.S. counterparts (about 85% of cellular
networks worldwide are 3GPP based).

The network is based on GSM/EDGE Radio Access Network (GERAN), or on
 Universal Terrestrial Radio Access Network (UTRAN) in the case of UMTS, and a
core network. A Mobile Station (MS), sometimes called Mobile Terminal (MT) or
User Equipment (UE), is connected to base stations of the cellular network via
a radio link, which is the only wireless channel in the cellular network.26 A base
station is termed Base Transceiver System (BTS) in GSM and Node B in UMTS;
its controller is called Base Station Controller (BSC) in GSM, and Radio Network
 Controller (RNC) in UMTS. All these network elements can be interoperable in
one cellular network, connected to the core network. Circuit Switching (CS) is
carried by the Mobile Switching Center (MSC), which interfaces the PSTN through
a Gateway MSC (GMSC). Packet Switching (for data) is handled by a Serving GPRS
Support Node (SGSN), which interfaces the public Packet Data Network (PDN),
for example, the Internet, through the Gateway GPRS Support Node (GGSN). The
cellular system uses repositories that contain all customer information for authen-
tication, authorization, billing, location, and other tasks. There is a Home Location
Register (HLR) for keeping all local (home) customer information, and a Visitor
Location Register (VLR) that serves roaming customers.

There are many more network elements that are omitted from the schematic
description for clarity. The network elements run many protocols that are used for
lots of control-plane tasks such as call set-up, messaging, circuit switching, radio-
channels management, localization, billing, authentication, and OAM. Discussion of
these tasks goes well beyond the scope of this book; however, as network proces-
sors reach the cellular networks for data applications, a description of the packet
forwarding in the user plane is necessary.

For the sake of completeness, it should be noted that GSM evolved to UMTS
release 99, which was updated to Release 4 (to include ATM or IP-based connec-
tions between network elements, and to separate the MSC into the MSC server—
which does the control functions—and the Media Gateway, MGW—which provides
media switching functions). Release 5 interfaces IP Multimedia Services (IMS),
offers High Speed Packet Access (HSPA), and enables multimedia sessions, while
Release 6 incorporates Generic Access Network (GAN) and uses Multiple Input
and Multiple Output (MIMO) antenna arrays for doubling HSPA data rates.

26Additional microwave channels in the cellular network can be found for connecting various net-
work elements of the cellular network, such as among the base station or between them and their
controllers. These links are part of the cellular back-haul in the RAN. Other microwave links are pos-
sible between the base station controllers and the Mobile Switching Center (MSC).

170 CHAPTER 4 Access and Home Networks

Figure 4.15 demonstrates some of the protocol stacks that are used in the main
network nodes that carry the User Equipment’s (UE) packets to the Public Data
Network (PDN), for example, the Service Provider (SP). It should be noted that
since the systems are compatible, cross protocols and equipment can be used; for
example, Abis protocol can be served on an RNC, thus allowing a UMTS system to
work with GSM base stations. The edge protocol, that is, Gi, connects the Gateway
GPRS Support Node (GGSN) to the Internet, ISP or to an IP Multimedia System
(IMS) core for VoIP or other streaming applications.

FIGURE 4.15

GSM/EDGE/UMTS user plane data protocols

BTS

Um

Core Network

SP

Edge RouterUE SGSN

Gb

GERAN/UTRAN

GGSN

Gn Gi

BSC

Abis

PDN

IP

L2
IP

Tunnel

Eth
L1

IP

L2
IP

UDP
GTP-U

L2
IP

Tunnel

L1L1
NS

LLC
BSSGP

L2
IP

UDP
SNDCP GTP-U

L1L1bis
NS

BSSGP
MAC
RLC

L1bisL1
MAC
RLC

MAC
RLC

L1GSM RF

IP

L2

L1
MAC
RLC
LLC

SNDCP

GSM RF

IP

Node B

Uu

SP

Edge RouterUE 3G-SGSN

Iu-PS

GGSN

AAL5

GTP-U
IP/UDP

L2
IP/UDP
GTP-U

Gn Gi

RNC

Iub

L2

L1
MAC
RLC

PDCP
IP

L2
IP

Tunnel

Eth
L1

L2
IP/UDP
GTP-U

IP

L2
IP

Tunnel

L1L1L1ATM
MAC
RLC

MAC
RLC

ATMWCDMAWCDMA
AAL5

IP/UDP
MAC
RLC

ATMATM

GTP-UPDCP

G
S

M
/E

D
G

E
U

M
TS

Uu, Um, Abis, Gb, Gn, Gi, Iub, Iur, Iu-PS—Various Protocols
UMTS—Universal Mobile Telecommunication System (3G)
GSM—Global System for Mobile (2G)
EDGE—Enhanced Data GPRS
RAN—Radio Access Network
UTRAN—Universal Terrestrial RAN
GERAN—GSM/EDGE RAN
BTS—Base Transceiver Station
RNC—Radio Network Controller
BSC—Base Station Controller
GSN—GPRS Support Node
SGSN—Serving GSN
GGSN—Gateway GSN
PDN—Packet Data Network
SP—Service Provider
IP—Internet Protocol
UDP—User Datagram Protocol

ATM—Asynchronous Transfer Mode
AAL5—ATM Adaptation Layer 5
L1—Layer 1
L2—Layer 2
PHY—Physical layer
MAC—Medium Access Control
RLC—Radio Link Control
LLC—Logical Link Control
RF—Radio Frequency
BSSGP—Base Station System GPRS Protocol
NS—Network Service
SNDCP—Subnetwork Dependent Convergence Protocol
PDCF—Packet Data Convergence Protocol
RLC—Radio Link Control
GTP—GPRS Tunneling Protocol
GTP-U—GTP—User plane
WCDMA—Wideband Code Division Multiple Access

4.1 Access Networks 171

4.1.2.2 4G-Long Term Evolution
A generic architecture of the forthcoming 4G Long Term Evolution (LTE), is defi ned
as shown in Figure 4.16. In this architecture [2, 3], the evolved Node B’s (eNBs)
of the evolved UTRAN (E-UTRAN) provide the user plane and control plane pro-
tocol termination on the side of the User Equipment (UE). The eNBs are con-
nected to the Evolved Packet Core (EPC) (by the S1 protocol [4]) and are also
interconnected among themselves (by the X2 protocol). The User Equipment
(UE) communicates with the eNBs by Wideband Code Division Multiple Access
(W-CDMA) radio links.

The Serving Gateway (S-GW) and the Packet Data Network (PDN) Gateway
(P-GW) forward and route the user plane data. The S-GW is the mobility anchor-
ing point, and the P-GW allocates UE IP addresses and enables service-level charg-
ing, gating, and rate enforcement. Therefore, network processors might become a

FIGURE 4.16

4G (LTE) network architecture

S1-U

eNB

eNB

S1-MME

S5/S8a

S-GW P-GW

PDN,
IMS

MME

SGi

Uu

E-UTRAN EPC

Uu

Uu

HSS

X2

Uu, Um, X2, S1, S2, S3, S4, S5, S6a,
S7, S8a, SGi—Various Protocols
GPRS—General Packet Radio System
GSN—GPRS Support Node
SGSN—Serving GSN
RAN—Radio Access Network
UTRAN—Universal Terrestrial RAN
E-UTRAN—Evolved UTRAN
GERAN—GSM/EDGE RAN
eNB—Evolved Node B

MME—Mobility Management Entity
S-GW—Serving Gateway
P-GW—PDN Gateway
HSS—Home Subscriber Server
PCRF—Policy and Charging Rules Function
IMS—IP Multimedia System
EPC—Evolved Packet Core
W-LAN—Wireless Local Area Network (Wi-Fi)

S1-MME
S1-U

PCR

S6a

S11

S7

SGSN of
UTRAN/GERAN

S3 S4

W-LAN

S2

Uu

172 CHAPTER 4 Access and Home Networks

necessity in P-GW devices, particularly when wideband and complicated IP tasks
are involved. The S-GW and the P-GW can be on the same physical server, collo-
cated, or on different and even distant servers. The Mobility Management Entity
(MME) is responsible for signaling, selecting S-GW and P-GW, roaming, handover,
and authentication. The function of the HLR of the GSM/GPRS networks is done in
LTE by a Home Subscriber Server, which maintains all the customer information.
Legacy networks (e.g., GSM) and non-3GPP networks (e.g., Wi-Fi) are interoperable
with the LTE by means of protocols that tie them into the LTE network.

For the sake of clarity, many network elements and protocols are omitted from
this schematic description, as in the GSM/GPRS scheme above. Protocols for packet
forwarding in the user plane are described in Figure 4.17 in the same way as they
were described above for the GSM/GPRS networks. In the case of LTE, however,
the entire traffi c is packet-based, rather than just the GPRS part (the voice traffi c
of GSM/UMTS networks is circuit-switched through the MSC and the GMSC). The
packet network of LTE is called Evolved 3GPP Packet-Switched Domain, which is
also known as the Evolved Packet System (EPS) [1].

Figure 4.17 demonstrates some of the protocol stacks that are used in the main
network nodes that carry the User Equipment’s (UE) packets to the Public Data
Network (PDN), as well as to the Service Provider (SP). Note that S8a is the S5
protocol variant for inter-Public Land Mobile Network (PLMN), and both are based

FIGURE 4.17

LTE user plane data protocols

eNB

Uu

EPC

MAC
WCDMA

PDCF
RLC

MAC
WCDMA

PDCF
RLC

L2
PHY

UDP/IP
GTP-U

UE S-GW

S1-U

E-UTRAN

L2
PHY

GTP-U
UDP/IP

L2
PHY

UDP/IP
GTP-U

P-GW

L2
PHY

GTP-U
UDP/IP

L2
PHY

IP
Tunnel

IP IP

S5/S8 SGi

L2

L1

SP

Edge Router

IP

L2
IP

Tunnel

Eth
L1

LT
E

PDN

Uu, S1-U, S5, S8, SGi—Various Protocols
RAN—Radio Access Network
E-UTRAN—Evolved Universal Terrestrial RAN
EPC—Evolved Packet Core
PDN—Packet Data Network
SP—Service Provider
UE—User Equipment
eNB—Evolved Node B
S-GW—Serving GW
P-GW—PDN GW
L1—Layer 1
L2—Layer 2

IP—Internet Protocol
WCDMA—Wideband Code Division Multiple Access
PDCF—Packet Data Convergence Protocol
RLC—Radio Link Control
MAC—Medium Access Control
GPRS—General Packet Radio System
GTP—GPRS Tunneling Protocol
GTP-U—GTP—User Plane
UDP—User Datagram Protocol
PHY—Physical Layer
Eth—Ethernet
LTE—Long Term Evolution

4.1 Access Networks 173

on the GPRS Tunneling Protocol (GTP). Since S4 is based on Gn protocol (which is
also GTP), S4 can be used to attach legacy 2G and 3G networks to the LTE’s S-GW
instead of to the SSGN in the legacy networks (see Figure 4.16 for the protocol
references).

4.1.2.3 4G-WiMAX
WiMAX was used to stand for Worldwide Interoperability for Microwave Access
and is defi ned as a “standards-based technology enabling the delivery of last mile
wireless broadband access as an alternative to wired broadband like cable and
DSL.”27 Actually, WiMAX is perceived today more as an alternative to cellular systems,
particularly 4G networks, and not so much as wireless fi xed access. The WiMAX
Forum, like other industry-based organizations promoting standards-based technol-
ogy (such as Wi-Fi), defi nes a set of specifi cations that are based on standards devel-
oped by the IEEE 802.16 Working Group and ETSI’s HiperMAN. The main purpose
of the WiMAX Forum is to defi ne and conduct conformance and interoperability
testing to ensure WiMAX-certifi ed products for the market. In addition, since most
of the WiMAX Forum members are also members of the 802.16 working group, the
WiMAX Forum implicitly affects the actual standardization process of its baseline
standard.

The real ramp up of the WiMAX activity began with the IEEE 802.16-2004
standard [187] that promoted the Orthogonal Frequency Division Multiplexing
(OFDM) for fi xed technology, and then the Orthogonal Frequency Division Mul-
tiple Access (OFDMA) for mobile technology, which is based on IEEE 802.16e-
2005 [188]. Both implementations concentrated at below 11 GHz bands. OFDM is
a multiplexing technique that subdivides the bandwidth into multiple frequency
subcarriers. The input data stream is divided into several parallel substreams of
reduced data rate (thus increased symbol duration) and each substream is modu-
lated and transmitted on a separate orthogonal subcarrier, that is, the subcarriers
partially overlap but do not interfere with one another. OFDM modulation can be
realized with effi cient Inverse Fast Fourier Transform (I-FFT), which enables a large
number of subcarriers (up to 2048 in IEEE 802.16e-2005) with low complexity. In
an OFDMA system, resources are available in the time domain by means of OFDM
symbols and in the frequency domain by means of subcarriers. The time and fre-
quency resources can be organized into slots that represent a combination of time
symbols and groups of subcarriers called subchannels, for allocation to individual
users. Hence, OFDMA is a multiple-access/multiplexing scheme that provides a
multiplexing operation of different streams to and from multiple users over time
and frequency access units. OFDM is used also for ADSL, Wi-Fi, and Digital Video
Broadcasting (DVB), for example, OFDMA is used also in DVB-RCT (return channel
terrestrial) and recently in LTE.

27As stated in the WiMAX Forum site at http://www.wimaxforum.org/technology/. WiMAX is a
 registered trademark of the WiMAX Forum.

174 CHAPTER 4 Access and Home Networks

The baseline standards for WiMAX, as mentioned above, come from the IEEE
802.16 working group, specifi cally its published standards IEEE 802.16-2004 and
IEEE 802.16e-2005. As of early 2008, the IEEE 802.16 working group is working on
a revision project (Revision 2), which is supposed to be fi nished by the end of 2008
and that includes corrections (corrigendum) and some performance optimization.
In addition, in October 2007, the ITU approved the inclusion of WiMAX technology
in the IMT-2000 set of standards. The specifi c implementation, known as “IMT-2000
OFDMA TDD WMAN,” is the version of IEEE 802.16 supported in a profi le developed
for certifi cation purposes by the WiMAX Forum. Other future projects of the IEEE
802.16 include the relay task group (IEEE 802.16j), which focuses on developing the
extension of IEEE 802.16 that supports multihop relay topology. Another project is
handled by Task Group m (IEEE 802.16m or TGm [189]), which is charted to develop
Advanced Air Interface specifi cation. The TGm group mainly focuses on the approval
of the IEEE 802.16 technology as part of the IMT-Advanced standards. Hence, its main
charter is to provide performance improvements to the IEEE 802.16 standard that
are necessary to supporting future advanced services and applications such as those
described by the ITU in Report ITU-R M.2072. In practice, the requirements of the
TGm group are very similar to the 3GPP’s 4G Long Term Evolution (LTE) standard.

The IEEE 802.16-2004 standard was approved in July 2004. IEEE 802.16-2004
includes previous versions of the IEEE 802.16 standards (802.16-2001, 802.16c in 2002,
and 802.16a in 2003) and covers both Line of Sight (LOS) and non-LOS (NLOS) applica-
tions in the 2-66 GHz frequencies. The IEEE 802.16-2004 was mainly focused on fi xed
and nomadic applications in the 2-11 GHz frequencies and supported two multi-carrier
modulation techniques: OFDM with 256 carriers, and OFDMA with 2048 carriers.

The IEEE 802.16e-2005 amendment provided extensions and improvements
to the IEEE 802.16-2004 to support combined fi xed and mobile operations. This
amendment extended the OFDMA physical layer by supporting additional FFT
sizes (also called scalable OFDMA). It provided improved support for Multiple
Input Multiple Output (MIMO) and Adaptive Antenna Systems (AAS). In addition,
the Medium Access Control protocol was extended among other features, with
power-saving capabilities for mobile devices, better security features, support of
idle mode, support of hard and soft hand offs and specifi c network entry optimiza-
tion procedures for optimized mobility support.

WiMAX architecture is based on a packet-switched framework, and apart from the
above mentioned IEEE 802.16, it is based on IETF’s IP and IEEE Ethernet standards
[430]. The WiMAX Network specifi cation targets an end-to-end all-IP architecture,
optimized for a broad range of IP services and, as such, adopts IP packets for all its
interfaces and protocols. This allows WiMAX to be highly modular and “open,” such
that WiMAX components, network elements, and mobile stations can interact and
interface with many other systems and various players that support WiMAX’s IP inter-
faces [239]. It means, for example, that WiMAX’s AAA (authentication, authorization,
and accounting) is based on IETF standards, such as RADIUS [366] and Diameter [67],
and that the WiMAX control plane is based on the standardized Type-Length-Value
(TLV) message primitives that are carried on UDP/IP port 2231 (the WiMAX port).

4.1 Access Networks 175

The WiMAX Forum extends the traditional Layer 1 and Layer 2 (PHY and MAC
 layers) defi nition of IEEE 802 standards with network architecture issues for mobile
networks. The focus of the fi rst network architecture specifi cation (Release 1.0) is
on delivering wireless Internet service with mobility.

Release 1.5 will add support for telecom-grade mobile services, supporting full
IMS interworking, carrier-grade VoIP, broadcast applications such as mobile TV, and
over-the-air dynamic provisioning.

The network reference model of WiMAX defi nes a logical representation of
the WiMAX architecture and includes its entities and their reference points. The
main logical entities are the Mobile Stations (MS), the Access Service Network
(ASN), and the Connectivity Service Network (CSN). Figure 4.18 depicts the gen-
eral network reference model of WiMAX. In addition, two main business entities
are used in the context of WiMAX network architecture: Network Access Provider
(NAP) and Network Service Provider (NSP). NAP provides WiMAX radio access
infrastructure (using one or more ASNs) to one or more WiMAX NSPs. NSP pro-
vides IP connectivity and WiMAX services to WiMAX subscribers by establishing
 contractual agreements with one or more NAPs, or roaming agreements with
other NSPs.

FIGURE 4.18

WiMAX network reference model

BS

BS

R6

R6

R6

R1

RAN

CSN

R1

R1

R4

R1, R2, R3, R4, R6, R8—Various Protocols
RAN—Radio Access Network
ASN—Access Service Network
ASN-GW—ASN Gateway
BS—Base Station
CSN—Connectivity Service Network

AAA—Authentication, Authorization, and Accounting
MIP—Mobile IP
FA—Foreign Agent
HA—Home Agent
PF—Policy Function
IMS—IP Multimedia Subsystem

ASN

ASN

BS R8 R3

AAA
Server

MIP
FA/HA

IMS
Services

Billing Support
Systems PF

Internet

R2

R3

ASN-GW

ASN-GW

176 CHAPTER 4 Access and Home Networks

The MS is the end-user equipment, which, using the 802.16 protocol,
 communicates with the Base Station (BS) and, specifi cally, its OFDMA PHY layer (in
the case of mobility).

The Access Service Network (ASN) is defi ned as a complete set of network
functions needed to provide radio access to a WiMAX subscriber. The ASN is a logi-
cal boundary that represents the functional entities and the reference points neces-
sary for access services. The main functions that must be implemented by the ASN
are: WiMAX Layer-2 (L2) connectivity with WiMAX MS, transfer of AAA messages
to WiMAX subscriber’s Home Network Service Provider (H-NSP) for authentica-
tion, authorization, and session accounting for subscriber sessions, network discov-
ery and selection of the WiMAX subscriber’s preferred NSP, and relay functionality
for establishing Layer-3 (L3) connectivity with a WiMAX MS and radio Resource
Management. In addition, among other functionalities, the ASN supports the ASN
anchored mobility, which refers to the set of procedures associated with the move-
ment (handover) of an MS between two Base Stations (referred to in the IEEE
802.16 as Serving and Target BS), without changing the traffi c anchor point for the
MS in the serving (anchor) ASN. The Target BS may belong to the same ASN or to
a different one. The ASN comprises network elements such as one or more Base
Station(s), and one or more ASN Gateways. An ASN may be shared by more than
one Connectivity Service Network (CSN).

The CSN is defi ned as a set of network functions that provide IP connectivity
services to the WiMAX subscriber(s). A CSN may be comprised of network ele-
ments such as routers, an MS IP address and endpoint allocation, an AAA proxy
or server, policy and admission control servers, WiMAX subscriber billing, and
interoperator settlement, Inter-CSN tunneling for roaming and WiMAX services
such as location-based services, connectivity for peer-to-peer services, provision-
ing, authorization and/or connectivity to IP multimedia services and facilities to
support lawful intercept services. A CSN may be deployed as part of a Green-
fi eld28 WiMAX NSP or as part of an incumbent WiMAX NSP.

An ASN Gateway is a logical entity that represents an aggregation of control
plane functional entities (paired with corresponding functions in its ASN or another
ASN, or the resident function in the CSN). The ASN-GW may also perform bearer
plane routing or a bridging function.

The bearer plane between WiMAX network entities such as two Base Stations
or ASN Gateways is established by a Data Path. Each Data Path function is respon-
sible for instantiating and managing the data bearer between it and another Data
Path function. There are two types of Data Path Functions: Type 1 and Type 2.
The Type 1 data path carries user payloads, either in IP packets or in Ethernet
frames, tunneled or tagged (e.g., IP-in-IP, MPLS, GRE, or 802.1Q), between peers
within the ASN or between ASNs. Like the Type 1 path, the Type 2 data path is
also a generic Layer 3 tunnel (e.g., IP-in-IP or GRE) that carries a Layer-2 data
packet, which is defi ned as an 802.16e MAC Service Data Unit or part of it.

28Greenfi eld means a new infrastructure deployment for service provisioning.

4.1 Access Networks 177

WiMAX is an all-IP system, and as such, adopts IP packets for all its interfaces
and protocols. The Mobile IP (MIP, RFC 3344, and related RFCs for IPv4 and IPv6)
is adopted as the mobility management protocol for all applicable usage/deploy-
ment scenarios requiring seamless inter-subnet/inter-prefi x layer-3 handovers. For
CSN Anchored Mobility Management, Client MIP and Proxy MIP protocols are
 supported.

The data plane in a WiMAX network consists of the transport encapsulation
of the user payload within the mobile WiMAX network. Release 1.0.0 of the
mobile WiMAX network specifi cation assumes a routed transport infrastructure
for all of the exposed network reference points. Therefore, user payload packets
are encapsulated within IP packets when they are carried over the reference
points R3, R4, and R6. User payload packets are encapsulated in 802.16 MAC
frames when carried over R1. Data plane packets over R3 are encapsulated using
IP-in-IP (in accordance to RFC 2003) or, optionally, using GRE encapsulation (in
accordance to RFC 2784 and the extensions of RFC 2890). In addition, the GRE
 encapsulation is used as tunneling protocol for data plane packets over reference
points R4 and R6. Figure 4.19 depicts the generic protocol layering of the data
plane when applying the IP convergence sublayer in the 802.16 data transport
reference.

4.1.2.4 Radio Access Network Summary
The bandwidth of each of the radio access technologies, that is, the radio capacities
and the CE capabilities in terms of data transfer rates, is usually defi ned in “classes” of
terminals. The peak data rates for LTE are 50/100 Mbps (uplink/downlink for class
A) and 2 Mbps (for class C). Just for comparison, GSM was capable of transferring

FIGURE 4.19

WiMAX IP protocol layer architecture

R1 R6 R3

ASN-GW BS MS

IP

PHY

L2

IP

IP IP

R1, R3, R5, R6—Various Protocols
ASN—Access Service Network
ASN-GW—ASN Gateway
CSN—Connectivity Service Network
L2—Layer 2

IP—Internet Protocol
MAC—Medium Access Control
PHY—Physical Layer
GRE—Generic Routing Encapsulation
CS—Convergence Sublayer

Network Access Provider

L2

IP

GRE

PHY

IP

CSN

L2

PHY

IP

PHY

L2 802.16
PHY

802.16
PHY

802.16
MAC

802.16
MAC

Eth

Edge Router

L2

PHY

Network Service
Provider Service Provider

L2

IP

GRE

PHY

178 CHAPTER 4 Access and Home Networks

just 9.6 Kbps; GPRS, 171 Kbps; EDGE, 553 Kbps; and UMTS, almost 2 Mbps data
rate. High Speed Downlink Packet Access (HSDPA) is a packet-based data service
in W-CDMA downlink with data transmission of 1.8, 3.6, 7.2, and 14.4 Mbps over
a 5 MHz bandwidth. High Speed Uplink Packet Access (HSUPA) supports up to
almost 6 Mbps in the W-CDMA uplink. Evolved HSPA reaches 11/28 Mbps uplink
and downlink data rates.

Ultra Mobile Broadband (UMB) is the 4G evolution of CDMA2000, defi ned by
the 3GGP2 and the CDMA Development Group (CDG). UMB uses the Orthogonal
Frequency Division Multiple Access (OFDMA) multiplexing method, MIMO anten-
nas, and beam forming. UMB is an all-TCP/IP network that is designed to deliver
at an ultra-high-speed (up to 288 Mbps), it is latency insensitive, and has increased
spectral effi ciency and increased range. It should support full mobility, multicasting
and circuit switching, as well as a large number of VoIP users.

All RAN technologies are slowly replacing the traditional wireline and “tradi-
tional” access networks, and their impact on the network is signifi cant, mainly due
to the additional functionality of mobility, security, all IP network, and ultra-high
bandwidth at their edge.

4.2 HOME AND BUILDING NETWORKS
Home networks are currently beyond the scope of the network processors, but as
these networks are attached to access networks and equipment that might con-
tain network processors, we shall describe them very briefl y. Home networking
originated with the need to attach printers to PCs, or to provide Internet access
to home computers. It evolved to combine game and entertainment platforms that
carry multimedia content such as video, TV, or music from a variety of sources, for
example, cameras and consumer electronics, media and fi le servers, set-top boxes,
or Internet and content providers. Home networking is defi ned by ITU-T as “the
collection of elements that process, manage, transport, and store information, thus
enabling the connection and integration of multiple computing, control, monitor-
ing, communication, and entertainment devices in the home.”

The DSL forum [106] outlined rough estimates of downstream bandwidth
required by various home-applications. TV-focused services include MPEG2
based broadcast TV, Pay-per-view (PPV), Personal Video Records (PVR), and Video
on Demand (VOD) (which requires 2–6 Mbps), High Defi nition TV (HDTV)
(which requires 12–19 Mbps), and Interactive TV (which requires up to 3 Mbps).
PC-focused services include live TV on PC and other video applications (such
as VOD, games, remote education, and video conferencing), which require up to
750 Kbps, while all-purpose high speed Internet access requires up to 3 Mbps
downstream bandwidth.

Like access networks, we can classify home networks as either wireless-based
and wireline-based. Wireless Personal Area Networks (WPANs), which are defi ned

4.2 Home and Building Networks 179

by the IEEE 802.15 working group,29 are not part of home networks, although some
may consider them relevant.

Wireless networks include Wi-Fi and home-cellular networks, as well as sev-
eral other proprietary wireless networks. Wi-Fi is an alliance that promotes Wire-
less Local Area Networks (WLANs) that are based on IEEE 802.11 standards. IEEE
802.11 standards defi ne wireless technologies for data capacities ranging from 1
to 258 Mbps links, using various modulation techniques over 2.4 or 5 GHz carrier,
security schemes, and Quality of Service standards. The range of a Wi-Fi access
point is tens of meters in buildings (in an “indoor” environment), and up to a few
hundred meters outside (an “outdoor” environment).

There are two basic confi gurations for Wi-Fi: infrastructure and Ad-Hoc. In an
infrastructure confi guration, mobile clients (such as laptops or IP phones) are con-
nected to Access Points (APs), and all their communications are done through these
APs (which function as Base Stations). In an ad-hoc confi guration, there are no APs,
and the clients communicate among themselves, with some relaying information
to other clients.

Wi-Fi may be used in public areas such as restaurants and airports (in infra-
structure confi guration), to allow Internet access to bypassers, in a setup called
“hot-spots.” Recently, there have been attempts to create Wi-Fi coverage for larger
areas (achieved by multiple access points), which are used as a sort of RAN that is
attached to the 3G or 4G infrastructure.

Femtocells are tiny, residential “base-stations” of the cellular network, which
resemble the access points of the Wi-Fi. Femtocells are extensions of the RANs and
are attached to the cellular networks through the Internet links, with either DSL or
the CATV infrastructure.

Wireline networks include LAN technologies (mainly Ethernet) in buildings and
a variety of cable technologies in residential homes. These include Home Phone-
line Networking Alliance (HPNA)30 and Multimedia over Coax Alliance (MoCA)
standards for data over the telephone’s copper twisted pairs or TV’s coaxial cables,
and HomePlug standards for data over the electric wires (power lines). Other
 technologies include FireWire cabling for multimedia applications. Recently, the
ITU-T initiated a Joint Coordination Activity (JCA) on Home Networking, called

29IEEE 802.15 includes several task groups that defi ne wireless personal networks (WPANs) of vari-
ous types: 802.15.1 defi nes Bluetooth, and 802.15.3 defi nes high-rate WPAN, which is referred to as
Ultra Wideband (UWB). UWB includes various standards for Wireless Universal Serial Bus (USB) and
wireless FireWire (IEEE 1394 serial interface), and is basically based on either the WiMedia alliance’s
Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB or the UWB forum’s
Direct Sequence-UWB (DS-UWB). 802.15.3c, for example, defi nes a millimeter wave (57–64 GHz)
based UWB, that is supported by the WiHD consortium, for delivering High-Defi nition (high band-
width video) over WPAN. 802.15.4 defi nes low-rate WPAN, such as ZigBee. 802.15.6 defi nes even
smaller range networks, called Body Area Networks (BANs).
30HPNA specifi cations were approved by the ITU-T [217–220].

180 CHAPTER 4 Access and Home Networks

JCA-HN31 that targets a unifi ed standard for home networking over coax cables,
twisted pairs, or power lines.

4.3 SUMMARY
This chapter describes access and home networks and completes our brief descrip-
tion of networks. These networks use converged technologies in terms of data and
telecom applications, and serve as the last link between the core networks and the
customers. Access and home networks are becoming faster and more complicated,
as they integrate with aggregation networks (metro networks) and multiservice plat-
forms, and require network processors for effi cient functioning and implementation.

The Metro Ethernet Forum describes network integration and service convergence
very clearly in its depiction of networks and architecture, as shown in Figure 4.20. By
now the reader should be familiar with the terminology, technologies, and elements,
as well as the way they interact and are interoperable.

31JCA-HN drafts several standards, such as G.hn—“Next generation home networking transceivers,”
G.hnta—“Generic Home Network Transport Architecture,” H.ghna—“A generic Home Network
architecture with support for multimedia services,” J.290—“Next generation set-top-box core
 architecture,” and X.1111 (formerly X.homesec-1), which describes a security framework for identi-
fying threats and the necessary security functions in the home network security model.

FIGURE 4.20

The Ethernet services delivery chain; reproduced with permission of the Metro Ethernet Forum

E-LAN & E-LINE
Scalability

PON Dynamic
Bandwidth Behavior

UNI Services
Compliances

ONUs

High Availability
via Spanning Tree

Protocols

OLT

DSLAM

Ethernet
Switches

MSPP

Edge
Router

ADMs
Service Interruption and

BER Measurements

Access Network

Aggregation Network
Core IP & MPLS

Network

Optical Transport

Edge
Router

Et
he

rn
et

 A
cc

es
s

In the previous part of this book, we described networks. Here, we turn to
processors and processing and discuss the theory behind network proces-
sors. No specifi c network processors are described or mentioned, except
when required as an example to clarify the theory.

This part begins with frame and packet processing, the algorithms used,
data structures, and the relevant networking schemes required for packet
processing. These include, for example, network addressing, classifi cation,
and look-up schemes. It then describes Class of Service (CoS) and Quality
of Service (QoS) schemes, and the way that the network, the equipment,
and the chips handle packet traffi c accordingly (e.g., buffering and sche-
duling packets along network paths).

After dealing with packet processing and handling algorithms, this part
turns to processors themselves. It begins with hardware (architecture),

2Processing

PART

182 PART 2 Processing

moves on to software (programming models, languages, and development
platforms), and concludes with network processors’ peripherals—devices
that are usually adjunct to network processors.

This part contains the following chapters:

■ Chapter 5—Packet Processing
■ Chapter 6—Packet Flow Handling
■ Chapter 7—Architecture
■ Chapter 8—Programming Models
■ Chapter 9—Network Processors’ Peripherals

After the fi rst two parts, which examined the two terms of the title sepa-
rately, in the third part we turn to integrating the two subjects, networks
and processing, with a concrete example of a network processor.

5
The fi rst part of the book provided a general description of networks, including
specifi c protocols that are important to the understanding of network processing.
From a networking and applications perspective, the requirements, challenges, and
motivation of network processing should now be clear.

In this part of the book, we approach the network processor fi rst by attempt-
ing to understand how a packet is processed and delivered, and then by looking at
which architectures can feasibly carry out the tasks according to required speed
and functionality.

This chapter discusses packet structure and all the processing functions that
the packet must go through in order for the network tasks (i.e., framing, parsing,
classifying, searching, modifying, etc.) to be performed.

The two main functions of network processing are searching (lookups) and clas-
sifi cation. These two subjects are treated in this chapter in a detailed manner, and
the knowledgeable reader can skip the introductory section.

5.1 INTRODUCTION AND DEFINITIONS
In this chapter, we shall concentrate on Ethernet packets carrying VLAN, IP, or
MPLS1 information, although the discussion here can be applied very easily to any
packet processing.

As we discussed in the previous chapters, processing packets at wire speed
imposes impractical constraints on general purpose CPUs, even with several multi-
core CPUs combined. Just for the sake of demonstration, consider the case of a
1 Gbps Ethernet, running about 1 million packets per second. For each packet, clas-
sifi cation based on complex parsing must be executed; for instance, getting the
destination IP address, destination port, and in some cases, for some destination
ports—also getting some fi eld in layer 7 Protocol Data Unit (PDU), at an offset

1Virtual LAN (VLAN), Internet Protocol (IP) and Multi-Protocol Label Switching (MPLS) were
described in Part 1 of the book, in the Networks chapter.

Packet Processing

CHAPTER

184 CHAPTER 5 Packet Processing

depending on the destination port. Then a search (or two) must be executed to
retrieve a destination IP address and port; the search must be conducted among
hundreds of thousands of possible addresses, and a longest (or best) prefi x match
is desired. All these parsing and searching activities must take no more than 1 �s, if
we ignore packet modifi cation and forwarding processing time. How much work,
in terms of CPU instructions and memory accesses, can be done in 1 �s? Is one
microsecond enough to carry all the work required by the tasks mentioned above
for that packet processing? Now, what about 10 Gbps links? How much work can
be done in, say, 50 ns?

Packet processing can be described in various ways, and often the same ter-
minology is used to mean different things. Moreover, the trade press, the industry,
and academic researchers not only use the terms in contradictory ways, but also
categorize functions in different ways. In this chapter we examine three aspects of
packet processing, focusing specifi cally on: tasks, path, and direction.

Packet processing tasks (or functions) include:

■ Framing.
■ Parsing and classifi cation.
■ Search, lookup, and forwarding.
■ Modifi cation.
■ Compression and encryption.
■ Queueing and traffi c management (measurement, policing and shaping).

Packet processing can follow one of two paths:

■ Data path (fast path).
■ Control path (slow path).

Packet processing can be discussed according to direction:

■ Ingress (entering the equipment or the network processor, from the
 network).

■ Egress (exiting the equipment or the network processor, to the network).
■ Combinations of Ingress and Egress.

As mentioned before, processing functions are separate tasks, each following
the other. The process starts with the packet entering the network processor
and immediately goes through framing, whose function is to make sure that the
packet arrived correctly. (In the other direction, framing is the last task, and is
targeted to ensure valid packet output.) The second phase is to parse and clas-
sify the packet, which simply means that the network processor must under-
stand what the packet is, what type it is, and then must classify it according to
the application requirements. Usually for this classifi cation function, searching is
required. Searching might also be required for other functions that the applica-
tion dictates. The last function that the network processor carries is the required
modifi cation of the packet, which includes dropping the packet if required, multi-
plying it, or altering its content as required. Finally, transmitting the packet usually

5.1 Introduction and Defi nitions 185

involves an extra function of queuing, prioritization, and traffi c management of
the packet to make sure that the receiver can receive the transmitted packet
at traffi c patterns that it expects. Queuing and traffi c management sometimes
happens inside the network processors and sometimes happens outside the net-
work processors. Optionally, compression and encryption tasks are utilities that
packets sometimes undergo and usually they are done outside of the network
processor, although there are some network processors that contain an embed-
ded security functional unit.

The main processing functions are classifi cation of the packet (at real time
or at wire speed), and searching for various values (e.g., next hop address) that
correspond with some fi elds in the packets (e.g., IP address). These two func-
tions have received extensive treatment in the industry, to the extent of special-
 purpose search engine coprocessors, and the development of parsing and
classifi cation languages. Due to their importance, these two functions receive
more attention in this chapter than the other packet processing functions, and
are outlined below.

A general framework of the three primary aspects of packet processing is
depicted in Figure 5.1 [278]. The packets enter from left, in the ingress direc-
tion, and take either the slow path (through some kind of upper level process-
ing, for example, updating routing tables of the network processor), or the fast
path (going through the network processor functions of searching, modifi cation,
etc.). The packets are then forwarded either to a switch fabric or to the network
(line interface) again, in the egress direction. Ingress and egress directions will be
described in more detail in the next section, as they are a bit more complicated
than described here.

FIGURE 5.1

A general framework of packet processing

Slow Path Processing

Host Processing Functions

Switch
Fabric

PHY
Layer

System SideNetwork Side

M
od

if
ic

at
io

n

P
ar

si
ng

 /
C

la
ss

if
ic

at
io

n

Fr
am

in
g

S
ea

rc
h

/ L
oo

ku
p

Fast Path Processing

Q
ue

ui
ng

C
om

pr
es

si
on

 /
E

nc
ry

pt
io

n

186 CHAPTER 5 Packet Processing

Although we are discussing the processing of “packets” here, it is important
to note the formal definitions and differences between datagrams, frames,
and packets—terms that are sometimes used interchangeably. We already
 discussed it briefly in Section 2.3 of Chapter 2 and described in Figure 2.8.
RFC 1661 [387] provides good definitions:

Frame The unit of transmission at the data link layer. A frame may
include a header and/or a trailer, along with some number of
units of data.

Packet The basic unit of encapsulation, which is passed across the
interface between the network layer and the data link layer.
A packet is usually mapped to a frame; the exceptions are
when data link layer fragmentation is being performed, or
when multiple packets are incorporated into a single frame.

Datagram The unit of transmission in the network layer (such as IP).
A datagram may be encapsulated in one or more packets passed
to the data link layer.

In essence, “packet” is a generic term for data that travels independently in the
network, and is limited in size. “Datagram” is the data unit that applications use,
packed in packets. “Frames” are sometimes defi ned as packets understood by hard-
ware. In network processing we actually talk about and process frames, as we start
working at layer 2 (the data link layer), although what we mean here is packets
(and eventually datagrams).

5.2 INGRESS AND EGRESS
Ingress and egress processing are not as clearly separated in the architectures of
today’s network processors as they were in the past, although they still play an
important role in some current network processors and equipment. The reason the
categories can be regarded as fuzzy is that in some contemporary implementations
of network processors, there is one processing direction, from packet input to its out-
put (sometimes on the same interface), or there are no distinguishable elements that
specifi cally target ingress or egress processing. However, the ability to separate ingress
processing from egress processing in network processors is still very important if we
want to be able to use network processors in various situations and equipment, that
is, to be able to distinguish between packets coming from the line interfaces, on the
way in, or from the switch fabric after some processing, on the way out.

Figure 5.2 outlines the basic implementation schemes of network processors, in
order to understand the ingress and egress functions and importance. Figure 5.2(a)
demonstrates a two-part equipment: in the fi rst part there are line cards for receiv-
ing and transmitting packets to the network, while the second part is composed of
switch fabric, service cards, and other forwarding and processing mechanisms that

5.2 Ingress and Egress 187

packets undergo internally. Figure 5.2(b) shows a plain in-line packet processing
equipment that has one stage, and one direction of processing.2

Half-duplex processing, such as shown in Figure 5.2(a), can be done by two
network processors, each dedicated to one of the directions, or it can be done
by one network processor that works in both directions (such as shown in Figure
5.2(b), which is full-duplex processing). In half-duplex processing, we can dis-
tinguish between functions that a network processor executes on packets when
they are in the ingress path, or those it executes on the packets when they are
on their way out to the line again (egress). In some network processors, there
are separated paths and functions in the architectures for ingress and egress, and
in others they are combined.

Now, going back to packet processing in terms of functions, we can distinguish
between typical ingress tasks and typical egress tasks. Usually, ingress processing
can include the following tasks [86]:

■ Error checking.
■ Security checking and decoding.
■ Classifi cation (or demultiplexing).
■ Traffi c management (measurement and policing).
■ Searching (usually address lookup).
■ Header manipulations.
■ Packet reassembly.
■ Packet prioritization and queueing.
■ Packet forwarding.

2Usually this kind of equipment comes in a “pizza box”-like packaging (form factor).

FIGURE 5.2

Network processors implementations

PHY

Ingress
Processing

PHY

Egress
Processing

PHY

Switch
Service

Processing

(a)

PHY

Packet
Processing

(b)

188 CHAPTER 5 Packet Processing

Egress processing can include [86] the following tasks:

■ Calculating and adding checksum (or any error detection and correcting codes).
■ Address lookup.
■ Packet forwarding.
■ Segmentation and fragmentation.
■ Traffi c management (shaping, timing, and scheduling).
■ Packet prioritization and queueing.
■ Security processing (e.g., encoding).

Not all of the functions are required, nor do their names defi ne exactly what
they are doing (i.e., some classifi cations include searching, or traffi c management
may be defi ned as something else, as described in the next chapter). In the follow-
ing sections, the important functions will be described, with a focus on search-
ing and classifi cation. Traffi c management issues (measuring, policing, shaping,
 queueing, buffering, scheduling, and prioritization) are sometimes handled by a
unique processing element (a functional unit of the network processor or a dedi-
cated coprocessor for traffi c management). These functions are described in the
next chapter due to their importance and complexity.

5.3 FRAMING
Received or transmitted frames should receive “framing” treatment, in order to assure
that the correct and full packets or datagrams can be extracted from these frames. This
means that incoming frames should undergo correctness tests (to make sure that the
entire frames’ bits are received without error), correcting attempts if required (i.e.,
using redundant information to fi x incorrect bits, if there is enough information to
do it), and integrity checks (to make sure that all packets’ content arrived). Outgoing
packets should be fragmented or segmented as required and “framed” correctly, that is,
adequate headers should be attached or altered, proper terminators (trailers) should
be appended or modifi ed, and error detection and correction information should be
added, when applicable, to enable later correctness tests and correcting attempts.

In case packets have to be transmitted in fragments, these packets should be
fragmented, segmented, and reassembled again. There is a need to segment and
reassemble proper headers to each of the layers, so that the end result is valid
 datagrams and packets.

There are situations where incoming and outgoing packets have to go
through mapping procedures, as well as segmentation and reassembly, to meet
specifi c standard interfaces, and these functions are done as part of the fram-
ing phase. Examples include IP to ATM, Packets Over SONET/SDH3 (POS), or

3Synchronous Optical NETwork (SONET) is the North American and Japanese standard for synchro-
nous data transmission over fi ber-optic networks, while Synchronous Digital Hierarchy (SDH) is the
ITU-T (usually European) standard.

5.3 Framing 189

packet over Plesiochronous Digital Hierarchy (PDH).4 Some of these “mappers”
(or “framers”) are described in Chapter 7, where we discuss external interfaces
(subsection 7.6.3).

There are many implementations of “framers” in hardware circuitry that are
attached to the network processors (or to any other communication block), which
perform a variety of framing functions, for example, error-detection and correction,
or segmentation and reassembly (SAR).

The following subsections describe in more detail several kinds of algorithms
for framing with regards to error detection and correction, as well as to segmenta-
tion, fragmentation, and reassembly.

5.3.1 Error Detection and Correction
Error detection is based on several algorithms, from complex Cyclic Redun-
dancy Code (CRC) algorithms (briefl y described below) to simple checksums.
In the case of Ethernet, for example, the Frame Check Sequence (FCS) fi eld of
the packet is based on CRC, but it is usually done in Medium Access Control
(MAC) circuitry and in dedicated chips external to the network processors. In
the case of IP, on the other hand, the error detection is based on simple check-
sum, and must be done inside the network processors as part of the packet
processing tasks.

5.3.1.1 Cyclic Redundancy Code
Error detecting codes are based on polynomial coding, known as CRC, and
modulo-2 arithmetic (similar to XOR operations). These codes assume that the
packet can be represented by a polynomial with coeffi cients of 0 and 1, as the
packet’s bit string. A k-bit packet is thus represented by a polynomial of degree
 k�1, having k terms at most, where its high order bit (the leftmost) is the coef-
fi cient of x k�1. The next bit (the second after the leftmost) is the coeffi cient of
x k�2, and so on. The packet 101101, for example, represents a six-term polyno-
mial that looks like x5 � x3 � x2 � x0.

The CRC idea is based on computing the checksum as the remainder of a
 modulo-2 division of the packet appended with r zero bits at the low-order end
of the packet by some agreed-upon generator polynomial (of degree r, smaller
than the original packet). This remainder, or checksum, is appended to the packet
by the sender. The receiver, on the other side of the channel, then divides the
received packet (appended by this checksum) with the same agreed-upon generator
polynomial, and if the reminder is 0, can assume that the packet arrived with no
errors. Otherwise, it is wrong.

4Plesiochronous Digital Hierarchy refers to networks that are almost synchronous (e.g., same clock
rate but different clock source), like T1/J1 lines in North America/Japan, E1 lines in Europe, as
described in Chapter 2.

190 CHAPTER 5 Packet Processing

It can be quite complicated to do this computation for each packet (either
for checksum generation or for checking the packet), as well as demanding of
 processor power and memory resources. Because of this, special hardware assists
have been used for decades now [351], based on shift registers like the one in
 Figure 5.3, which offl oads CRC calculations from the processors.

For Ethernet packets, for example, the last fi eld of the packet, the Frame Check
(FCS), is CRC based. IEEE802.3 determines that the generator polynomial (or what is
usually called CRC-32) is x32 � x26 � x23 � x22 � x16 � x12 � x11 � x10 � x8 � x7 � x5
� x4 � x2 � x � 1 (or 0x04C11DB7).

5.3.1.2 IP Checksum
Checksum, contrary to the CRC algorithm, is simpler to implement in software,
although it also burdens the processing unit [59]. The main idea is to sum all the
1-byte, 2-byte, or 4-byte words in the packet or in the header into a byte, 2-byte,
or 4-byte checksum, correspondingly. The calculated checksum is sent with the
packet, and at the other end the receiver calculates the checksum again and com-
pares his result with the checksum received from the sender. If the two are equal,
the receiver can assume that the packet arrived with no errors. Otherwise, it is
wrong.

IPv4 header [355], for example, uses a 16-bit checksum of the header (one’s
complement sum of all the 16 bits words in the header). For the purpose of cal-
culating the IPv4 header checksum, the value of the checksum fi eld in the IPv4
header is considered to be zero.

The TCP checksum fi eld in the TCP header [357] is also computed by simple
16-bit one’s complement sum of all 16-bit words in the header and the payload.
(If the number of bytes to be summed is odd, which means that the last byte
cannot be added by 16-bit sum, this byte is padded, just for the checksum calcu-
lation, by one more byte of zero to its right.) As with the case of the IPv4 header
checksum, the checksum fi eld itself is considered to be zero for the purpose

FIGURE 5.3

CRC calculation

Q D Q D X Q D Q D X Q D X

x5 x4 x3 x2 x1 x0

Polynomial
P(x) � x5 � x4 x2 � � 1

Input bits when creating CRC:
1010001101 00000

Input bits when checking CRC:
1010001101 01110

Message M: 1010001101
Polynomial (pattern) P: 110101
FCS F: 01110 (calculated)

5.3 Framing 191

of calculating the checksum. Just to complete the description, for TCP check-
sum calculation purposes, a “pseudo” header is conceptually prefi xed to the TCP
header (but it is not transmitted). This pseudo header (see Figure 5.4) is 12 bytes
long, and includes the 4 bytes of the IP source address, the 4 bytes of the IP
destination address, one byte of zeros, one byte of the IP protocol fi eld (for TCP
the value is 6), and 2 bytes of the TCP length (header and payload, without the
pseudo header).

One last word on checksums—that of the UDP [354]; it is optional, and in most
cases no one uses checksum in UDP (its value is zero, indicating no use). However,
if used, it functions exactly like the TCP checksum, where the pseudo header is
included.

5.3.1.3 Error Detection Summary
It is important to note here that IP checksum as well as TCP or UDP checksum
are traditionally done by software when packets are handled by software, or by
network processors when packets are handled by processors. Lower level (layer 2)
mechanisms are done externally, usually by specifi c hardware circuitry that per-
forms the detection or the correction (or creates the codes for enabling detection
and correction later).

5.3.2 Segmentation, Fragmentation, and Assembly
Fragmentation and segmentation are actually the same thing. The term “fragmen-
tation” has traditionally been used in the IP world, whereas “segmentation” is the
term used in the ATM world. In both cases, when we have longer datagrams than
the network can transfer, then the datagram has to be sent in parts. In the case of
IP, it happens when the datagram exceeds the Maximum Transmission Unit (MTU).
In the case of ATM, it is (almost always) when the packet is larger than the cell
size (which is 48 bytes of data allowed in the call payload). At any rate, once the
original datagram has been fragmented or segmented, it must be reassembled at
the other end of the transmission path.

In the fragmentation (or segmentation) process, a header containing all
 necessary information must be added to each fragment (or segment) to enable
it to travel independently through the network, that is, making each fragment
(or segment) a valid packet. It must also contain information that enables the

FIGURE 5.4

TCP/UDP pseudo header for checksum

Source Address
Destination Address

Zero Protocol Length

192 CHAPTER 5 Packet Processing

other end of the path to reassemble the fragments (or segments) back into one
 complete datagram. In IP, it means that the entire IP header of the original data-
gram is copied almost completely into each of the datagrams’ fragments (apart
from IP datagram length, checksum, and fragmentation information, as described
in the following).

5.3.2.1 IP Fragmentation and Reassembly
The IP protocol supports such fragmentation by including information and
instructions in the IP header, for allowing or disallowing fragmentation down
the packet’s path, along with instructions as how to reassemble the packet at the
other end of the transmission path (see Figure 5.5). In the FLAGS fi eld of the IP
header (3-bit fi eld at offset of 6 bytes), there are two meaningful bits: DF (Don’t
Fragment, the second bit), which directs the equipment along the path whether
this packet may (0) or may not (1) be fragmented, and MF (More Fragments, the
third bit), which indicates whether this fragment is the last fragment (0) or there
are more (1). The next IP header fi eld that contains information is the FRAGMENT
OFFSET fi eld (following the FLAGS fi eld in the IP header), which indicates the

FIGURE 5.5

IP fragmentation and reassembly

...

Version IHL Type of Service Total Length � X
Identification Flags�0 Fragment Offset � 0

Time to Live Protocol Header Checksum � n
Source Address

Destination Address
Options Padding

Payload (TCP/UDP…)

IP
 H

E
A

D
E

R

160

0

0 4 8 16 19 24 31

Version IHL Type of Service Total Length�Y
Identification Flags=1 Fragment Offset�0

Time to Live Protocol Header Checksum=m
Source Address

Destination Address
Options Padding

Segment 1 of Payload
(offset � 0 � 8 � 0)

IP
 H

E
A

D
E

R

0 4 8 16 19 24 31

Version IHL Type of Service Total Length�Z
Identification Flags=0 Fragment Offset� 0x14

Time to Live Protocol Header Checksum � p
Source Address

Destination Address
Options Padding IP

 H
E

A
D

E
R

 Last Segment of Payload
(Offset � 20 � 8 � 160)

0 4 8 16 19 24 31

5.3 Framing 193

position of this fragment in the original datagram, measured in units of 8 bytes. In
other words, if, for example, there is “10” in the FRAGMENT OFFSET fi eld, it means
that this fragment begins at offset 80 bytes in the original datagram. Except for
the last fragment, all IP fragments must therefore be multiples of 8 bytes. When
a datagram is not fragmented, then both the FLAGS and the FRAGMENT OFFSET
fi elds are zeroed.

To complicate things, there might be a situation where fragments have to be
fragmented themselves. This can happen when a fragment crosses a path in which
its MTU is smaller than the fragment’s size (for example, if not all the path’s MTUs
were known when the datagram was originally fragmented). In this case, all sub-
fragments have a More Fragments (MF) bit set to 1 (including the last sub fragment,
unless this fragment is the last one, in which case all subfragments contain 1
in their MF bit, but the last subfragment that contain 0). Additionally, all FRAG-
MENT OFFSET fi elds of the subfragments are not related to the fragment they are
fragmenting, but to the original datagram (i.e., the fi rst subfragment FRAGMENT
OFFSET fi eld contains the same FRAGMENT OFFSET content of the fragment it is
fragmenting).

When it comes to the reassembly of fragments back into one datagram, the pro-
cess is quite simple if we ignore implementation issues, that is, if fragments arrive
correctly, in order, and simply identifi ed. In real-life situations however, fragments
might appear duplicated (due to networking traffi c issues, sometimes not even
equal duplicates, for example, some fragments are further subfragmented), frag-
ments might be lost, and above all—fragments might appear out of their original
order. This requires the receiving side to maintain suffi cient space in their buffers
to receive and process all incoming fragments either until the datagrams can be
reassembled from the out-of-order, duplicated fragments, or fragments are cleared
once there are missing fragments or lack of room in the buffers. One additional
issue is to identify those fragments that belong to the original datagram, and this is
done by examining the identifi cation fi eld of the IP header (2 bytes fi eld, at offset
of 4 bytes, just before the FLAGS fi eld), which, as mentioned above, is copied to
all fragments headers, and identifying each fragment as belonging to a specifi c
datagram. Because of the rare cases in which two IP sources use the same iden-
tifi cation number for their original packets, fragment identifi cation should also
use the source address fi eld of the IP header (4 bytes at offset of 12 bytes), with
conjunction to the identifi cation fi eld.

5.3.2.2 ATM Segmentation and Reassembly
Since ATM is not detailed in this book, segmentation mechanisms related to ATM are
covered very briefl y, and just one common use of IP over ATM is described, which
involves ATM mapping and segmentation/reassembly. The ATM framework includes
an ATM Adaptation Layer (AAL), which isolates the ATM layer (which includes the pro-
tocol and functions) from the upper, or higher layer protocols and applications (like IP
datagrams). These two layers (the ATM and the AAL) are together equivalent to layer 2
(data link layer). In some cases, the AAL layer is itself divided into two sub-layers: the

194 CHAPTER 5 Packet Processing

convergence sublayer (CS), which performs datagram identifi cation, padding, time/
clock recovery, and so on, and the SAR sublayer, which segments or reassembles the
higher layer datagrams received from or transmitted to the CS sublayer. The ATM lay-
ers and how they relate to SAR of higher layer datagams are depicted in Figure 5.6.

AAL type 5 (AAL5) is specifi cally designed to handle and transmit IP pack-
ets through an ATM network, and is the most popular AAL, sometimes called
 Simple and Easy Adaptation Layer (SEAL). Its convergence sublayer simply adds
an 8 bytes trailer fi eld to the incoming datagram, which contains CRC-32 and the
datagram length,5 and pads this datagram to be 48 bytes boundary. The resulting
Common Part Convergence Sublayer PDU is then segmented by the SAR sublayer
into 48 bytes-long PDUs, which are sent to the ATM layer for transmission (after
appending the ATM headers). The ATM layer uses the third bit of the Payload-Type
(PT) fi eld of the ATM 5-byte header to notify whether this cell is the last cell of a
segmented datagram (1) or not (0). When the cells are received at the other end,
they are reassembled back into the IP datagram in exactly the same steps, except
in reverse.

5Although this 16-bit length indicator fi eld allows using up to 64 K bytes IP datagrams, the standard
limit for an IP datagram is 9180 bytes. If more than 9180 bytes have to be transmitted, IP must
 fragment the datagram before passing it to AAL5.

FIGURE 5.6

ATM layers and AAL5 SAR functionality (from left to right)

Common Part
(CP)

Service Specific
(SS) Convergence

Sublayer (CS)

Segmentation and Reassembly
Sublayer (SAR)

Fo
r

A
A

L5
:

ATM
Adaptation
Layer (AAL)

ATM Layer

Higher Layers

PHY

48 bytes ATM Payload

0-65535 bytes CPCS Payload
(higher layer PDU)

0-47
bytes
pad

1
byte
UU

1
byte
CPI

2
bytes

length

4 bytes
CRC-32

48 bytes SAR PDU ...

...

0-65535 bytes Datagram ...

CPCS Trailer

ATM Layers

PDU—Protocol Data Unit
CPCS—Common Part Convergence Sublayer
UU—User-to-user Indication
CPI—Common Part Indicator
CLP—Cell Loss Priority

VPI VCI
P
T

C
L
P

HEC
GFC

5 bytes ATM Header

53 bytes ATM PDU (cell) ...

GFC—Generic flow control, only in User-Network-Interface (UNI)
VPI—Virtual Path Identifier
VCI—Virtual Channel Identifier
PT—Payload Type
HEC—Header Error Control

ATM PDUs

48 bytes SAR PDU 48 bytes SAR PDU

0 4 13 28 3132 39

5.4 Parsing and Classifi cation 195

ATM is not commonly processed by network processors anymore, certainly not
at the cell level. There are still, however, some traffi c managers that include SARs
that handle ATM networks and ATM traffi c.

5.4 PARSING AND CLASSIFICATION
After a complete, valid packet is received and verifi ed, the next step of packet
processing is to look at the incoming packets in order to classify them for various
treatments, as the processing requirements dictate. This step involves two com-
bined subtasks: parsing and classifi cation. Sometimes, searching and look-ups are
combined with the parsing and classifi cation task and are considered as one step,
as classifi cation requires some search operations; other times, searches and look-
ups are considered separate issues, due to their complexity, implementation, and
uses.6 Here, these subjects are separated, although we leave algorithmic and imple-
mentation issues of classifi cation to be described later, after we cover the searching
and look-ups algorithms.

Packet processing has two basic architectures, or design philosophies, that
are crucial for parsing and classifi cation implementation; these architectures are
store-and-forward and cut-through. These two architectures are fundamental, and
require a short defi nition here.

In store-and-forward architecture, packets are fi rst received in their entirety,
stored temporarily, examined, analyzed, processed, and then, after a decision is
made regarding them, transmitted, and the memory is cleared. Store-and-forward
allows a complete, even complex treatment of the packet, before the packet is
injected back into the network. This comes, however, at the expense of having to
deal with buffering issues (hence, higher implementation costs), and delaying the
packet, that is, adding end-to-end delay to the packet fl owing from the ingress of
the processing unit to its egress, due to the increased latency incurred by the buff-
ering time that is required before processing starts.

The shortcomings of the store-and-forward are remedied by the cut-through
architecture, where processing begins as packets fl ow into the processing units,
and continues as bits continue to come in. The packet is transmitted after the
required analysis, and the decision and processing is done “on-the-fl y.” This can be
accomplished by examining specifi c bit patterns in various fi elds of the incoming
packet, that is, parsing and classifying, as well as other decision and processing
tasks that must be carried out in real-time. Although cut-through saves buffering
and latencies, it allows only simple analysis, decision and processing tasks, and
might even cause network overhead (e.g., transmitting a packet that eventually

6In [278] classifi cation refers to two separate issues: (a) search (lookup) and forwarding, and
(b) classifi cation (sometimes referred to as deep packet classifi cation, or deep packet inspection).
Here we leave search (lookup) and IP forwarding to a separate section, and discuss classifi cation in
 general, which includes generic forwarding.

196 CHAPTER 5 Packet Processing

turned out to be invalid, bad CRC, or, because a premature decision was made
based on the fi rst bits of the packet, the output-channels were loaded in vain, forc-
ing packet retransmits).

Examples of these two architectures are, on the one hand, in low-end routers
that use store-and-forward architecture (no “wire-speed” constraints), and on the
other, VLAN or MPLS switches that use cut-through architecture, based on a tag in
the beginning of the frame that allows forwarding decisions to be made instantly,
while the packet is still infl owing.

5.4.1 Parsing
Each incoming packet must go through some sort of parsing to examine and
understand what it is as well as its requirements, and then it must be classifi ed,
or handled according to its type and its required processing. Parsing therefore
is the fi rst analysis and action done on the packet content. Parsing can be very
simple, trivial, and unnoticed during packet processing, or it can be a real and
complex task that sometimes requires a unique language to describe the process.
The task of parsing is sometimes even carried by a unique, dedicated processing
element.

Parsing is basically identifying the relevant fi elds in the incoming packets,
according to their place and type, and picking the fi eld’s values for continuing
the parsing process, or using these values for classifi cation. Therefore, parsing and
 classifi cation, as described in the following, are tied together, and sometimes are
not separated.

A simple parsing example in an IPv4 packet would be to detect its destina-
tion IP address, which is easy, since it is a fi xed length fi eld in the IP header,
always at the same offset of the packet. A more complicated parsing example
would be to detect the URL string of characters in the packet, which is a vari-
able length fi eld that exists only in some IPv4 packets, that is, several TCP pack-
ets running HyperText Transfer Protocol (HTTP). A complex parsing example
would be to detect some Management Information Base (MIB) variable in some
of the IPv4 packets, containing UDP packets running Simple Network Manage-
ment Protocol (SNMP).

5.4.2 Classifi cation
Classifi cation means categorizing packets into “fl ows,” in which they are processed
in a similar way by the network entities. These fl ows are defi ned by rules that the
packets obey, and the collections of these rules are called clas sifi ers [161]. The rule
database contains many entries, each of which is composed of a pair of a specifi c
rule description and its appropriate action. These specifi c rules are matched with
the incoming packets, and the best match determines the appropriate action to
be taken on the incoming packet. Very often, the action is to mark the incoming

5.4 Parsing and Classifi cation 197

packet with a notation, so that a subsequent process will take the appropriate
action, based on this notation.

A specific case of packet classification is packet forwarding,7 which deals
with searching and packet lookups, and is described in a following subsection.
In packet forwarding the rules are represented by the packet destination
address fields, and the action is simply to forward the packet to its appro-
priate destination. In traffic management literature (as described in the next
chapter), classification is sometimes considered part of the traffic manage-
ment process, when it classifies packets solely for traffic management pur-
poses (e.g., classifying incoming packets with regards to some threshold rate
of arriving packets).

Classifi cation is sometimes used interchangeably with demultiplexing, which
is a different process, although both distinguish packets from one common
incoming stream of packets. In multiplexing several fl ows of packets from dif-
ferent sources (applications or originators), are multiplexed, by identifying each
packet in the resulting stream of packets by its source. This way, at the other end,
packets can be demultiplexed to their appropriate targets. Such a multiplexing
process, for example, happens very frequently when we use the port fi eld of the
UDP (or TCP) to defi ne what application generated this packet at the origin, and
to what application this packet should be sent at the destination.

In classifi cation, the destination classifi es the received packet based on a set of
rules that it decides on, which may use several packet fi elds, the packet content,
as well as one or more other parameters, regardless of the source’s intentions
(although it can consider source information supplied in the received packet).
Thus, classifi cation is much more abstract than demultiplexing. Another differ-
ence is that no “multiplexing” entity exists in the classifi cation process on the
packet originating side. More important, the classifi cation is dynamic, operates on
multiple layers of the packet (many fi elds, which might be of variable size and be
based on other fi eld’s content), and can depend on the status of the system, or
some status determined by a sequence of packets. None of these characteristics
holds for the demultiplexing process.

Classifi cation can be based on simple, quick indicators, such as the 3 bits of the
Type of Service (TOS) fi eld of the incoming IP packet, or the VLAN fi eld in the Eth-
ernet frame (e.g., the packet should be classifi ed according to the VLAN or the TOS
fi elds in the packet, which are compared with some values, or range of values,
either constants or variables, which are the classifi cation parameters). Classifi cation
can also be a result of calculation, for example, of the incoming rate of packets. Or,
it can be the outcome of a complex set of rules applied to some pattern, which can
be composed from several fi elds and subfi elds of the incoming packet. An example

7Sometimes the term packet classifi cation is used interchangeably and ambiguously with packet
forwarding, which is different.

198 CHAPTER 5 Packet Processing

of the latter case is given in Figure 5.7, which shows a classifi cation of a packet
based on its Ethernet Type fi eld taken from the MAC layer, the IP Type fi eld, IP
Source and Destination addresses fi elds taken from the IP layer, and the TCP Source
and Destination ports fi elds taken from the TCP fi eld. The resulting classifi cation is
calculated, or searched, and put into the TOS fi eld of the IP layer in the packet.

Complex classifi cations like the one just described are often called deep packet
inspection (or deep packet classifi cation). Deep packet inspection requires a
store-and-forward architecture of packet handling, while simple classifi cations (like
using just the TOS fi eld, for example) can also be used in cut-through architecture.

Classifi cation can be thought of as working at the single packet level, that is,
deciding whether a packet belongs to this or that category, which is essentially
a selection process rather than a classifi cation one, or asking whether a packet
holds some property, or what are its attributes, which are examples of analysis
processes. Classifi cation can also be applied to a stream of packets (i.e., marking
every packet in the stream according to its destination, required priority, or ses-
sion type). To clarify this difference, let’s take an example of a classifi cation in the
processing of a single packet (a selection): if a packet is an IP packet, and is a TCP
type, and is of a Telnet session, then mark this packet as one that matches the clas-
sifi cation (selected). Otherwise, mark it as not matched. The process of classifying a
stream of packets would look like this: if the incoming packet is not IP type, then
mark it as type 1 (and later forward it accordingly, or discard it), otherwise, check
if it is of TCP type and of a Telnet session; if it is, mark it as type 2 (and forward
it), and if not, mark it as type 3. Thus, in the later example, we’ll end up with three
streams of classifi ed packets, those that are not of IP type, those that are of some
Telnet session, and those that are of IP type but don’t belong to a Telnet session.

The two types of classifi cations are important: some network processors, for
example, analyze (classify) each packet as it enters the processor, usually through
a general classifi cation, and assign some attributes to it. Later on, during proces-
sing, the stream of packets goes through a specifi c classifi cation, according to the
desired application. The mechanism for classifi cation in both cases, though, can
be very similar.

Search and Classify

Ethernet Header

Type

IP Header

Source Dest

TCP Header

tp vh Len ID Frag ttl Source chks sport L�C dport Sequece Ack wind chks Uptr
Payload

Ty
pe

 o
f

S
er

vi
ce

Dest S

FIGURE 5.7

Searching and classifying

5.4 Parsing and Classifi cation 199

Searching in the rule database for a possible match between the specifi c
 incoming packet and the relevant rules (composing the classifi cation), involves
some knowledge of data structures and search algorithms. Applying rules might
even require multiple searches in the packet and in the database rules, to fi gure out
how to classify the packet. Since searching is described in the next section, we’ll
postpone the discussion of complex packet classifi cation (i.e., based on searching)
to the end of next section.

5.4.2.1 Classifi cation Issues
There are several types of classifi cation, based on the required packet processing.
This subsection outlines some of the issues that are important in designing, imple-
menting, and using classifi ers and classifi cations.

5.4.2.1.1 Stateless and Stateful Classifi cation
Stateless classifi cation is any classifi cation that is determined solely by the content
of the packet it classifi es, that is, it is independent of any previous packet fl ow
or packet instances. It means that the stateless classifi cation process is memory-
less, or does not rely on states that should be maintained and stored in an orderly
 manner. Stateful classifi cation is just the opposite, and requires keeping a state that
is calculated or taken from previous packets, from the system’s state or from other
relevant state information (e.g., neighbors’ congestion). One should be aware that
stateful classifi cation might result in different classifi cations when previous packets
are reordered, and, of course, depends on the time of packet arrival, compared to
other events that might infl uence the classifi er state.

5.4.2.1.2 Different Kinds of Classifi cation
The classifi cation process can be subject to some pre-classifi cation process, and
different classifi cation rules should be applied to a packet once it is found to be
of a certain type. Clearly, IP packets should be classifi ed in a different way than
non-IP packets, although both types of packets might arrive in the same stream
to the classifi er. A WEB stream might also be classifi ed differently than a TELNET
stream, for instance, and rules that require examination of some fi eld in one case,
can be replaced by other rules that examine other fi elds in another case.

In some cases, the various classifi cations can be chained into one complex,
multistage classifi cation process, while in other cases that would be too com-
plex or impractical; sometimes it calls for recursive classifi cations once some
criterion is met. For example, classifying a packet as belonging to a specifi c
fl ow might result in a decision that the incoming packet should eventually be
classifi ed as another type (belonging to another fl ow), or as a default packet
(and may be reclassifi ed). Another example might be a process that classifi es
a packet, determines its priority, and continues with the forwarding stage that,
as mentioned before, is a classifi cation process in and of itself; the forwarding
might be based on the priority and the destination in order to map a proper
output queue.

200 CHAPTER 5 Packet Processing

5.4.2.1.3 Variable Field Lengths and Offsets
In headers with all fi elds at predefi ned positions and of predetermined length, the
classifi cation process is straightforward with regards to accessing the various fi elds
required from the header. When the examined fi elds are not at predetermined,
fi xed offsets, or they are of variable size, it creates a burden on the classifi er that is
supposed to get the required information rapidly and fi nish classifi cation at wire
speed.

In cases of variable fi eld offsets or length, the classifi er has to calculate the
proper position it takes information from, and its length. For example, accessing
the URL8 in an HTTP9 packet for a classifi cation might be quite complicated. This
is because part of the URL is in the IP destination address, and part of it is in the
 payload of the HTTP packet after a “GET” command, which comes after the IP
header (which might have an option fi eld that can determine its size), and the TCP
header (which also might have an option fi eld with variable size). And once the
URL offset is determined (calculated), there is another diffi culty in that the URL
fi eld itself is a variable length fi eld, which is terminated by a CR character and an
LF character (0x0D0A).

5.4.2.1.4 Static and Dynamic Classifi cation
Static classifi cation means that all classifi cation criteria are predefi ned, and all rules
are fi xed. This allows easier implementation of classifi ers, as some of the rules
can be indexed and cached, and be used later quickly. Forwarding, for example,
can simply use a fl ow classifi cation index to access a port destination, priority,
and next-hop address, all cached. Static classifi cation is used for very clear distin-
guished fl ows that never change, for example, voice and video, different TOS fi led
contents, or different applications. However, in many cases, static classifi cation is
not good enough, as varying conditions may force change in the classifi cation rules
and actions. For example, imagine a source that is allowed to use the network
up to some threshold, and once it exceeds this threshold, a different set of clas-
sifi cation rules should be applied. Or, at different times, or under different loads,
the classifi cation rules and actions should again be modifi ed. Another category is
when the rules or the actions are computed, and are thereby subject to conditions
that are dynamic by nature, or are the results of incoming packets, systems’ state,
and so on. A simple and common example of this might be a routing table that is
 continuously updated and, as a result, causes new types of fl ows to be recognized
and classifi ed accordingly.

Frequent and dynamic changes in classifi ers are, of course, easy to implement
by software means. Dynamic classifi ers are hard to implement by hardware, even
though the parameterization of hardware classifi ers is possible, as shown in the
following subsection.

8Uniform Resource Locator, that is, the compact string representation of a resource available via the
Internet.
9HyperText Transfer Protocol.

5.4 Parsing and Classifi cation 201

5.4.2.2 Classifi cation Mechanisms
Classifi cation can be done in various ways and by various means. It can be as simple
as plain or complex software processes, hardware circuitry, or a combination of
all means. However, coping with the various classifi cation issues detailed above,
as well as with the basic requirement of classifying packets at wire-speed, at rates
above millions of classifi cations per second, requires special mechanisms.

5.4.2.2.1 Simple Software Classifi cation
Simple software classifi cation is actually very similar to the description of the example
given previously about the packet and stream classifi cation (see page 198). Using the
same example, we can write a pseudo-code describing the required classifi cation:

if (Ethernet.type = = IP && IP.protocol = = TCP && TCP.dest_port = = Telnet)
 then classifi ed OK

else
 not OK

This example compares the packet’s fi elds (Ethernet.type, IP.protocol, and
TCP.dest_port) to constants that represents the required types (IP � 0x0800,
TCP � 0x06, and Telnet � 23).

Clearly, when executing such a comparison with these instructions, it is a good
practice to start by examining the most uncommon condition, so as to cease the com-
parison as soon as possible, and get to the next packet. In the preceding example, it is
obvious that Telnet is part of TCP traffi c, which is in turn a part of the IP traffi c, so it
is better to start comparing the TCP.dest_port with Telet value. Telnet traffi c is a small
fraction of IP traffi c, so in most cases, comparison will execute just one instruction.

Another common way of dealing with such classifi cation is to create one variable
that is an aggregation, side by side, of all the fi elds, and to compare this variable once
by one comparison statement like the one shown in the example above, that is,

if (composed.variable= =composed.value) then

This variable can also be compared by using some search operation in a dedicated
process, as described in the following subsection.

A pseudo-code describing the required classifi cation for the preceding second
example—stream classifi cation—looks like this:

if (Ethernet.type != IP) then
 mark this frame 1
 else
 if (IP.protocol = = TCP && TCP.dest_port = = Telnet) then
 mark this frame 2
 else mark this frame 3

Simple software classifi cation is very fl exible in setting and modifying classifi ca-
tion criteria as the application changes, or some conditions on the application

202 CHAPTER 5 Packet Processing

are changed. In other words, simple software classifi cation enables dynamic
 classifi cation criteria, thresholds, and values of classifi cation parameters. The prob-
lem, though, is that simple software classifi cation is not practical for high-speed
packet stream, certainly not classifi cation at wire speed when 1Gbps is used. For
that, other mechanisms are required.

5.4.2.2.2 Complex Software Classifi cation
Complex software classifi cation should be used for deep packet inspection
 generally, or when there are multifi eld criteria for classifi cation. Imagine there is a
need to classify a priority of each packet, as described above, based on source or
destination IP, application (port), and time of day. In software, it will look something
like this:

if (Ethernet.type = = IP && IP.protocol = = TCP && TCP.dest_port = =
Telnet && (IP.SIP = = 192.168.0.12 || IP.SIP = = 192.168.0.22 ||
IP.SIP = = IP_list) && (IP.DIP != 192.168.1.45 && IP.DIP != 192.34.4.5)
&& (time > 8am && time < 2pm) ...) then
 if we did not receive a "time-out" (most unlikely), set this

packets' priority to "1"
else
 ...

This is, of course, ridiculous.
A more appropriate way of executing such classifi cation would be to arrange

the rules’ database we mentioned at the beginning of this subsection in a structure
that will speed up the classifi cation process. Some structures will even enable hard-
ware classifi ers to work on them.

The simplest structure is a linked list of all the rules, or a table of them, ordered
(or sorted) by their priority (i.e., what rule, if matched, should apply fi rst). Then,
a linear search is done by comparing the incoming packet fi elds with each of
the rules sequentially, until a match is achieved. This, of course, is not so different
from the example of the software code given above, which means that linked list
structure is not practical, nor scalable, despite its simple and effi cient memory
requirements.

More adequate data structures can be used to support classifi cation at wire
speed. The later Sections—5.5.3 and 5.5.4—describe such advanced data struc-
tures, so we postpone the discussion of deep packet inspection (or classifi cation)
until after these two subsections.

In the meantime, some insight into these types of classifi cations and the
 complexity of the problem can be obtained by using a simple two-dimensional
 geometric interpretation of a two-fi eld packet classifi cation [161].

A one-dimensional classifi er can be represented by a number line, divided
into several continuous intervals (each of range of values); each interval repre-
sents a distinguished classifi cation rule and an assigned value (action). A packet’s
header content that matches an interval’s rule (i.e., is in the range of that interval)

5.4 Parsing and Classifi cation 203

is a point on this line (at the interval) and is classifi ed by the interval’s assigned
value. This representation can be adopted for the multidimensional case. A two-
 dimensional rule can be represented by a rectangle, and a d-dimensional rule can
be represented by a d-dimensional hyper-rectangle. A classifi er is the collection of
all the hyper-rectangles, ordered by their priority; classifi cation is done by match-
ing the packet’s headers to the values of all d dimensions, thus creating a point in
the d dimension that represent this packet. The classifi cation value (action) is thus
the attribute of the hyper-rectangle in which the packet (point representation)
resides (the representation of the point).

An example can clarify the two-dimensional case: consider a classifi er that has
four rules, based on two fi elds of the packet, as described in Table 5.1.10 Figure 5.8
represents, geometrically, this classifi er, in which higher priority rules cover are
 actually covering lower-priority rules. A packet that contains, for example, values of
1 and 6 in its fi elds, is a point P(1,6) in Figure 5.8, which obey rules A, C, and D, but
since rule A is the highest priority, this packet would be classifi ed as A type.

10In this example, the rules are ordered by their priority, from the highest to the lowest.

Table 5.1 A Two-fi eld Example Classifi er

Rule Field 1 Field 2 Action

1 0–7 6–7 A

2 4–7 0–7 B

3 0–7 4–7 C

4 0–1 0–7 D

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

D

C

B

AP.

FIGURE 5.8

A geometric interpretation of the prioritized classifi er of Table 5.1

204 CHAPTER 5 Packet Processing

Now, for estimating this problem’s complexity, let us use the point location
geometry problem, which fi nds the enclosing region of a point [161]. The best
bounds, given nonoverlapping N rectangular regions and d > 3 dimensions are
O(log N) time and O(Nd) space, or O((log N)d�1) time and O(N) space [344]. Since
rectangles can overlap in packet classifi cation, the complexity is at least as hard as
point location, making the classifi cation problem either huge in size or too slow
to execute.

It is worth noting here that this complexity resulted in the offering of many
special purpose processors (and coprocessors) that are specialized in classifi ca-
tion. Coprocessors are described in Chapter 9.

5.4.2.2.3 Hardware Classifi cation
If software classifi cation mechanisms are at the one end of the spectrum of
 classifi cation speed, then hardware classifi cation mechanisms are at the other end:
they are extremely fast, but, at the same time, extremely infl exible. Classifi cation
 criteria can at most be parameterized (i.e., values of some criteria can be changed
during operation). Hardware classifi ers are circuits that constantly compare certain,
predefi ned fi elds of the packets, to some values (predefi ned constants, or recon-
fi gurable, or programmable parameters). These classifi ers can just decode some
predefi ned fi elds of the packets, to generate some classifi cation information, or
attributes describing the packet.

An example of this type of classifi er is depicted in Figure 5.9. The classifi er can
analyze the packet while it is in the incoming packet memory, where the classi-
fi er actually copies the headers (or the required fi elds) into a packet-register (by
a wide bus, so that it will not stall the packet memory). It can also, in some cases,
even analyze the packet in a “cut-through” manner, that is, as the packet fl ies into
the packet memory, it goes through a shift register in the hardware classifi er, and
get analyzed “on the fl y.” Some network processors or classifi cation coprocessors
(as defi ned in Chapter 9), have this kind of circuitry for pre-analysis (classifi cation)
of the incoming packets.

Ethernet Header

Type

IP Header

DestSourceDest

TCP Header

tp vhSLenIDFragttlSource chkssportL�C dportSequeceAckwindchksUptr
Payload

Register of
Parameters

Comperator (or Decoder)
Classification

Results

Packet in memory, copied into classifier’s register, or shift-registered through the classifier

FIGURE 5.9

Classifi cation by hardware circuitry

5.5 Search, Lookup, and Forwarding 205

Complex hardware circuitries can pre-analyze or classify many fi elds of variable
sizes and offsets, depending on the incoming packet instances.

5.4.2.2.4 Hybrid Classifi cation Systems
In order to gain the benefi ts of hardware classifi cation (speed) and software (fl exi-
bility), some hybrid solutions are used, whereas the classifi cation process is divided
into phases where the hardware classifi er is doing some preliminary analysis, fol-
lowed by more detailed, tailored-made software classifi cation.

5.4.3 Parsing and Classifi cation Languages
Defi ning exactly what rules should apply and how, to each of the arriving pack-
ets, as well as defi ning the rules themselves and the various parts of packets to be
inspected, requires a detailed description, procedure, some sort of a database defi ni-
tion (for the rules), and access to this database, or a combination of these elements.
Some classifying engines use procedural programming language that is the same as
the programming language used by all of the NP processing units, while others use
special-purpose classifying or parsing language that is specifi c to the classifi cation
task. Sometimes, a combination of a special purpose high-level classifying language
that is pre-compiled into the general purpose NP language is used.

Two examples of unique parsing and classifi cation languages are Intel’s
 Network Classifi cation Language and Agere’s (now LSI’s) Functional Program-
ming Language. These two languages are described briefl y in Appendix A of
 Chapter 8 for the sake of giving the reader some insight to parsing and clas-
sifi cation complexity, requirements, defi nitions, and how these languages cope
with it, as well as a closer look for those who need to implement parsing and
classifi cation techniques.

5.5 SEARCH, LOOKUP, AND FORWARDING
Search is one of the most important, complex, and common operations done in
packet processing. Search is not a phase by itself in packet processing, like the other
operations mentioned in this chapter (e.g., framing, parsing, classifying, forward-
ing, modifying, encrypting, and queueing); rather, it is an atomic operation. Search,
or lookup, can be called in the classifi cation phase or during forwarding, or even
multiple times during any of the operations that are used for packet processing.

5.5.1 Introduction
Before dealing with search methodologies, this introduction describes the main
requirements for IP lookups (which are IP address lookups) as well as describing
what we are usually looking for. In order to understand IP address lookup, which is
one of the main search targets, a detailed description of IP addressing is given.

206 CHAPTER 5 Packet Processing

5.5.1.1 IP Lookup—Background
The importance of rapid IP lookup cannot be exaggerated in the context of packet
processing. IP packet forwarding, for example, is executed in any router or switch,
where forwarding decisions have to be made in order to fi nd the address of the next
hop router and the egress port to be used to send the packet through. Although
the most common IP lookups are done for forwarding, IP lookups are required also
for classifi cations or other applications, for example, billing, access lists, and so on.
In most cases, IP forwarding is based on IP addresses (but not always, e.g., some
Quality of Service parameters). IP address lookups are obviously based on the IP
address, that is 32-bit or 128-bit keys (IPv4 or IPv6, respectively), whereas other
lookups can have much wider keys that can reach hundreds of bits, composed
from multiple fi elds in the IP (or layer 2) packet.

Almost every packet processing activity starts with an IP-lookup, and therefore, in
high-speed networks, the speed of IP-lookups is critical. Huge efforts are made to accel-
erate this specifi c task in any network processor or, as a matter of fact, in any network-
ing device. In a 10 Gbps network, for example, the required time to forward a packet
of minimal size is <50 ns; therefore, this is the maximum allowed time for looking for a
match (or a longest match) of a specifi c IP address in a table of hundreds of thousands
of entries (as well as doing some other things in this time frame). Other line-speeds
(or the resulting range of packets per second, from minimal size to maximal size) and
number of searches per packet, require search speeds as depicted in Figure 5.10.

Number of searches per packet can vary from one search for plain packet
forwarding to numerous searches for additional IP lookups that are required for
access control list checkups in fi rewalls, priority assignment for QoS demands (see
next chapter), and network management tasks that are functions of the IP address,
and so on. Number of packets per second depends on the technology used and
the average packet size; for OC-768, for instance, the line speed is 40 Gbps, so the
smallest 64-byte packets to the largest 1518-byte packets yield a rate of approxi-
mately 3 to 78 million packets per second, if we ignore the framing overhead, inter-
packet gaps and packets preamble, and if we assume a continuous packet stream.

100Base-T 1000Base-T

Technology

OC-192 OC-768

100Ksps 1Msps 100Msps

Packets per seconds
100M10M1M100K10K

S
ea

rc
he

s
pe

r
pa

ck
et

1

2

3

4

5
3Msps

10Msps
30Msps300Ksps

FIGURE 5.10

Searches per second

5.5 Search, Lookup, and Forwarding 207

5.5.1.2 IP Addressing, Routing, and Forwarding
In most cases of IP lookups, address searches are conducted. Sometimes, IP-lookup
refers specifi cally to IP routing and forwarding. In order to understand IP addres sing,
routing, and forwarding, a brief rehearsal is suggested here.

IPv4 [355] addressing is based on a 32-bit address fi eld. The 32 bits of the IPv4
address are usually represented by the decimal value of each of the bytes in this
32-bit address, separate by a dot, that is, 131.44.2.1 means: 100000110010110000
00001000000001, or 832C0201 (hex). The IP address is further broken down to
network address (or netID) part, subnetwork (or subnet) part, and host address
(or host ID, which is the physical machine connected to the network); routing and
forwarding takes place among the networks and the subnetworks.

The principal of routing and forwarding is quite simple: A routing table main-
tains all the addresses of the next hop and interfaces (ports) that should be used
to forward an incoming packet. The chosen interface and next-hop address are
functions of the incoming IP packet (its destination network address, as it appears
in the IP destination address fi eld of the header of that packet).

The network address part in the IP header went through some changes over
the last decades of Internet use. Up until 1993, in what was later called classful (or
class-based) networks, the IPv4 address was categorized in four address classes (A
to D), with one reserved class (E). Originally,11 the network address part of the IP
address was defi ned by the IP class. A Class A address always starts with a “0” bit
in its MSB, that is, addresses 0.0.0.012 to 127.255.255.255,13 and the network ID is
defi ned by the remaining 7 bits of the fi rst byte of the IP address (i.e., a total of 128
networks). Class B addresses start with a “10” bit pattern in the MSB bits, and the
remaining 14 bits of the fi rst two bytes are the network ID, that is, class B contains
addresses 128.0.0.0 to 191.255.255.255, and about 16 thousands networks. Class C
address starts with a “110” bit pattern, and the remaining 21 bits of the fi rst three
bytes of the address defi ne the network ID. Class C addresses thus are in the range
of 192.0.0.0 to 223.255.255.255, organized in roughly 2 millions networks. Class D
is used for multicast addresses, and their IP addresses always start with an “1110” bit
pattern, followed by the remaining 28 bits for the multicast address. This class there-
fore is in the range of 224.0.0.0 to 239.255.255.255. The last class, E, is reserved, and
its IP addresses start with an “11110” bit pattern. Some IP addresses (networks) are
nonroutable, and are reserved for specifi c use (as outlined later in Table 5.3).

The rapid use and growth of the Internet and the consumption of IP addresses
resulted in a severe shortage of IP networks and addresses with unique IP network
addresses. Two million networks, most of them containing about 250 hosts, were
 simply not enough. To cope with this unbearable situation, many solutions were

11At the very beginning of the Internet, in the 1980s, the network address was simply the fi rst byte of
the IP addresses; that is, there were just 256 networks in the Internet …
12An IP address that ends with a “0” as its host ID means a subnet and not a specifi c host.
13An IP address that ends with all bits “1” in its host ID means a broadcasting address of all hosts in
the subnet and not a specifi c host.

208 CHAPTER 5 Packet Processing

suggested, starting from many intermediate solutions to extending the IP address
to 128 bits (IPv6 [98]). These intermediate solutions turned out to be so effi cient
that IPv6 was no longer required so desperately. However, the use of these vari-
ous mechanisms to expand the original IP address space makes things a bit more
complex. These mechanisms may include Border Gateway Protocol (BGP) [364],
Classless Inter Domain Routing (CIDR) [363], and Network Address Translation
(NAT) [395]. The most infl uential mechanism in solving the shortage of IP net-
works is NAT, but it is not impacting addressing mechanism, routing or forwarding.
The most infl uential change in addressing, routing and forwarding is due to CIDR,
which is described in the following.

Classless Inter-Domain Routing added hierarchy to the network addresses
by defi ning subnets with a prefi x length noted /n (where n defi nes the number
of initial bits in the IP address that should be considered as the network ID and
 subnetwork), or using a network mask.14 This hierarchy also allows aggregation
(also called summarization or supernetting) or defi nes a range of networks by a
simple notation and thereby shrinks the routing tables, and reduces routing adver-
tises throughout the Internet. It also created the potential of overlapping address
ranges, or more importantly, inclusions of address ranges within broader address
ranges, a situation we call exceptions. This makes it possible to specify a broad
range of addresses in a routing table in one entry, and to defi ne networks that
are exceptions within this range by additional entries in the routing table (that
are providing specifi c routing rules, which are different from those defi ned by the
entire range).

An example will clarify this concept: IP address 192.168.16.0/20 (or 192.168.16/20
for short, or 192.168.16.0 with a network mask 255.255.240.0) means all IP addresses
from 192.168.16.0 to 192.168.31.255 (the fi rst 20 bits of the address are masked,
which leave the last 12 bits unspecifi ed):

Obviously, 192.168.16/20 also contains 192.168.24/21,15 192.168.16/2116
(which are two subnetworks having together the same span of 192.168.16/20),
and 192.168.27/24.17 Actually, any IP address with network mask bigger than

14For the sake of historical correctness, network masks were used before CIDR, in 1985 [320], to
specify subnetworks within the classful categories (i.e., the remaining bits of the masked address,
after considering the network address, left the subnet address). Later on, in 1987, Variable Length
Subnet Mask (VLSM) was used [58], to allow variable sized subnetting.
15192.168.24/21 includes 192.168.24.0 to 192.168.31.255
16192.168.16/21 includes 192.168.16.0 to 192.168.23.255
17192.168.27/24 includes 192.168.27.0 to 192.168.27.255

IP Address Network Mask

Regular notation 192.168.16.0/20 255.255.240.0

Hexadecimal presentation C0 A8 1X XX FF FF F0 00

5.5 Search, Lookup, and Forwarding 209

255.255.240.0, or prefi x length bigger than 20, of the same initial IP address
C0 A8 1x xx, will be part of this network range. This means that in a routing table,
a specifi cation of a route (next-hop and interface) can be defi ned to a small range
of IP addresses within the range of another group, having another specifi cation
route (next-hop and interface).

Assume, for example, a small routing table as shown in Table 5.2. IP destination
address 192.168.156.5, for example, matches only row 4, by defi nition, the default rout-
ing. IP destination address 192.168.1.3 matches only row 3 (and row 4, by defi nition).
IP destination address 192.168.18.1 matches rows 1 and 3 (and row 4), and IP destina-
tion address 192.168.27.56 matches all rows. This overlapping, or network exception,
raises the question of how to route packets of IP destination 192.168.27.56.

Here comes the longest prefi x match (LPM), or actually, the best matched pre-
fi x search. The longer the match is (with regards to the prefi x length), the better
the routing that will be chosen for this packet. In other words, a router needs to
search more than just the right (matched) prefi x; the router has to fi nd the most
specifi c match, which is the longest matching prefi x in our case. The algorithm
used to search for the best match is a bitwise comparison of the addresses, or more
 specifi cally:

Assume the routing table like the one given in Table 5.2 (always, the
last row [entry] should be the default route, that is entry 0.0.0.0/0), and
an IP destination address, for which a next hop and interface is searched.
Make sure the routing table is sorted by the network mask (the prefi x
length), from the most specifi c (the longest prefi x) to the least specifi c
network (the shortest prefi x).

For each row (entry) in the routing table do
{

 if (IP destination address AND entry's network mask = = entry's IP address)
 {
 Use the entry's next-hop and interface
 Exit
 }

}

Table 5.2 Example of Routing Table

Row IP Address Next hop Interface

1 192.168.16/20 10.10.1.1 2

2 192.168.27/24 10.16.54.2 3

3 192.168.0/17 10.16.1.6 1

4 0.0.0.0/0 10.1.1.0 7

210 CHAPTER 5 Packet Processing

Please note that the above algorithm will always stop at the last row of 0.0.0.0/0.
One of the biggest issues in maintaining such routing tables is the need to keep
these tables sorted by the prefi x lengths. In a large routing table, adding an entry
of /31 for example (close to the top of the table), might require a shift for large
portions of the table.

IPv6 addressing is based on an address fi eld of 128 bits long, allowing 3.4·1038
IP addresses (compared to the 4.3·109 IP addresses of IPv4). An IPv6 address is
presented by 8 groups of 4 hexadecimal digits (16 bits) each, in a notation like
0123:4567:89AB:CDEF:0123:4567:89AB:CDEF.18 The fi rst 64 bits usually refer to
the network (or subnet) address, whereas the last 64 bits are the host ID (usually
drawn from the MAC address of the machine). IPv6 addressing uses the CIDR con-
cept, that is, a range of addresses can be written by an address with a prefi x length
(/n, where n is the length of the network prefi x). IPv4 addresses are recognized by
an IPv6 addressing mechanism, for backwards compatibility, by attaching the IPv4
address to the ::/96 IPv6 prefi x (all zeros), for example, ::192.168.0.1.19

Table 5.3 summarizes all unique and special addresses that usually are not
routable, in IPv4 and IPv6.

5.5.2 Search Engines
In order to cope with demanding search operations—the many search operations
per packet in complex applications carried out in high speed communication trunks
that can end up in billions of operations per second, and the necessity to search
at wire speed—search engines appeared for our salvation. Search engines here are
by no means Internet search engines, like Google or the like. Search engines are
software processes, hardware circuitry, or a combination of the two, sometimes
designed as a functional unit on the network processor, and sometimes packed
in a designated chip, search processor or coprocessor (as detailed in Chapters 7
and 9). The search engine functionality is simple: it returns a value (a result) when
presented with a value (a key).

The simplest search engine is plain memory, where it returns a value when
presented with the address of that value. As a matter of fact, memory returns a
value contained in an address when presented with that address. The opposite
operation happens with a special type of memory, called associative memory, or
Content Addressable Memory (CAM), which, when presented with a value, returns

18The following rules apply to IPv6 address notation:
 (a) A sequence of one or more “0000:” can be replaced with a “::”, but just once.
 (b) The leading 0 can be omitted in any of the groups.
 (c) The last four bytes can be represented by the decimal dotted notation, for example,
 ::DEF:192.168.0.1 is 0000:0000:0000:0000:0000:0DEF:C0A8:0001
19Another way is to map IPv4 addresses into IPv6 address by ::FFFF:192.168.0.1, so that IPv6 applica-
tions can handle IPv4 addresses, mapped into the IPv6 address-space.

5.5 Search, Lookup, and Forwarding 211

a value that is the address of the presented value. CAM, and the ways of using it,
are described later in this chapter.

More complex search engines, as mentioned above, are special hardware assists.
These search engines are internally based either on CAM memories, or on search
algorithms materialized by hardware circuitry20 that use regular memories inside
these search engines, or are attached to them.

These external search engines (sometimes called network search engines [NSE],
or search accelerators) can support, as of 2008, billions of searches per second,
with search keys of hundreds of bits wide among millions of entries. These search
engines can interface with the network processor like a regular memory, and work
transparently with the network processor, or by using the standard LA-1 interface
(described in Chapter 7).

20ASIC, FPGA or embedded processors, as described in Chapter 7.

Table 5.3 IPv4 and IPv6 Nonroutable Addresses

Addresses CIDR Purpose

0.0.0.0–0.255.255.255 0.0.0.0/8 Zero addresses

10.0.0.0–10.255.255.255 10.0.0.0/8 Private IP addresses

127.0.0.0–127.255.255.255 127.0.0.0/8 Localhost/Loopback Address

169.254.0.0–169.254.255.255 169.254.0.0/16 Zeroconf/APIPA

172.16.0.0–172.31.255.255 172.16.0.0/12 Private IP addresses

192.0.2.0–192.0.2.255 192.0.2.0/24 Documentation and examples

192.88.99.0–192.88.99.255 192.88.99.0/24 IPv6 to IPv4 relay Anycast

192.168.0.0–192.168.255.255 192.168.0.0/16 Private IP addresses

198.18.0.0–198.19.255.255 198.18.0.0/15 Network Device Benchmark

224.0.0.0–239.255.255.255 224.0.0.0/4 Multicast

240.0.0.0–255.255.255.255 240.0.0.0/4 Reserved

0000:0000:0000:0000:0000:0000:0000:0000 ::/128 Any address

0000:0000:0000:0000:0000:0000:0000:0001 ::1/128 Localhost/Loopback Address

FC00::/7 Unique local unicast address

FE80::/10 Local address (like zeroconf)

FF00:/8 Multicast addresses

212 CHAPTER 5 Packet Processing

As we have made clear, the most important factor in searching is fi nding
an entry among hundreds of thousands of entries at maximum speed. How-
ever, the question of maintaining and modifying the data, mainly by inserting
or deleting an entry, is of signifi cant importance as well, as is the size of the
data structure used to store all the entries. So when designing or using search
engines, all of this must be carefully considered and despite the fact that it is not
emphasized in this book, it plays a very signifi cant role in network processing
performance.

For our purposes, searching is done in network processors either in memory
(internal or external) or by some hardware assist (internal or external). The sim-
plest way, of course, is to run a search on data stored in the internal memory of the
network processor or interfaced to the network processor in a transparent way.
There are several types of memories that can be used in a network processor; they
are described in Chapter 7.

Various kinds of searches are required in different situations. Table 5.4 [425]
provides a summary. It is important to distinguish between different kinds of
searches, as they require different data structures and algorithms. Full match means
that the entire searched key must match the required data, either in full (exact
match) or in part (classifi cation, e.g., some of the fi elds of the required data must
match the entire searched key). Partial search means that part of the searched key
should match the required data, matching either all of the required data (i.e., pat-
tern search), or part of it (best match).

To understand the way data is organized and stored, as well as how opera-
tions on that data are performed (e.g., search, insert, delete, or modify), some pre-
liminary knowledge of data structure and algorithms is essential. In the following
subsection, such an introduction is given; the knowledgeable reader can skip the
next subsection.

5.5.3 Data Structures and Algorithms: Theory,
Defi nitions, and Rehearsal

Data structure has signifi cant importance for search time operations (searching,
updating, etc.); thus, a great deal of research, patents, and literature cover this
topic. This subsection describes the very basics of data structure, to remind and

Table 5.4 Classifi cation of Matching Techniques

Data entries in the table

Full Partial

Search item Full Exact match Classifi cation

Partial Pattern match Best match

5.5 Search, Lookup, and Forwarding 213

enable the reader to evaluate its importance, to match it to the data types and
 operations required, and to intelligently use the various options available in using
or designing search engines, memory spaces, and procedures. The interested
reader, or the one who is required to develop his or her own search mechanisms,
can use the classical references on algorithms (e.g., [89, 260]) as well as the vast
literature in this area.

Given a set of elements (values), each is identifi ed by a key, organized in a data
structure. The fundamental operations for handling the data are as follows:

� Search—the most important operation, in terms of time: Query the data struc-
ture and return the value associated with the given key. There are several
ways of searching—exact (or full) match, longest prefi x match, or pattern
matching search.

� Insert—adding an element (value) to the set of the already maintained
 elements.

� Delete—extracting an element (value) from the data structure.
� Modify—changing the value of an element in the data structure.

Data structures in “plain” memories that can be used for lookups are based on lists,
direct address tables, sorted tables, hash tables, skip lists, or various kinds of trees,
as described below.

5.5.3.1 Metrics
In order to evaluate the data structure, three main metrics are used: (a) time
complexity21 to perform an operation (search or update); (b) size effi ciency; and
(c) scalability. Time complexity can be expressed by a function of the size of the
data (or some constant if it is independent of the size of the data). Size effi ciency
is simply the ratio between the required space to maintain the data structure and
the size of the data itself. Usually, time and space (size) complexities are trade-
offs, that is, effi ciency in one parameter causes defi ciency in the other. Scalability
refers to the ability to increase and scale up the data structure for varying require-
ments of data problems.

For network processing purposes, search time is of utmost importance, and size
is of secondary importance. Since memory is expensive, especially fast memory, and
since in most cases, memory size is restricted physically in a network processor,

21Complexities are often noted by a notation of O (g), which means that the magnitude of the analyzed
function has an asymptotic upper bound in terms of the function g, usually a simpler function. This
means that for any n bigger than some n0, the analyzed function is bounded by (i.e., less than) some
constant c times the function g(n). Formally, f ∈ O(g) ⇒ (�c � 0, �n0, �n � n0) { f(n) 	 cg (n)}. O(n),
for example, means that g(n) � n, and the complexity is linear with n, or, in other words, the analyzed
function f is not growing faster than n.
(n) means that for any n bigger than some n0, the complexity
is bounded by c1 times n and c2 times n, (i.e., between them) where c1 and c2 are some constants. �(n)
means that for any n bigger than some n0, the complexity is bounded (i.e., greater than) by some con-
stant c times n.

214 CHAPTER 5 Packet Processing

it is important to use highly effi cient data structures without compromising the
search time.

5.5.3.2 List Structures
A data structure that is extremely ineffi cient in carrying out most search operations
in network processors is the linked list structure. Elements are ordered linearly
with pointers to their next elements. Although the insert operation is extremely
effi cient (takes O(1) time), all other operations (search, delete or modify) are very
slow, and in the worse case it takes
(n) time for full match or any other search.

Skip lists are more effi cient than linked lists for network processing purposes,
but they are also not widely used since so many other lookup data structures are
better. The principle of skip list is maintaining ordered linked lists, but with addi-
tional, randomly assigned, forwarding pointers that enable a search operation to skip
quickly over parts of the linked lists. Several linked lists are constructed in parallel
layers, starting with the lowest, fully sorted linked list; the probability for an element
in linked list layer i to exist also in layer i � 1 is p. Searching is done by going from
the upper layer linked list to the lowest one, scanning each layer for the element
that is less than or equal to the target. The performance of any operation using this
data structure, on the average, is O(log n), and in the worst case, it is linear, O(n).

5.5.3.3 Table Structures
Direct addressable tables are simply arrays of the elements, addressed by their keys.
These structures are the most effi cient for full match (exact) searches, given the
fact that all operations are of O(1) time complexity (the value is available for any
operation with one access attempt). The problem in this type of structure is that it
requires a space (memory size) of the size of the potential key range, for example
for possible key values of 232 bits, like an IP address, a table of size 232 entries must
be maintained, regardless of how many entries actually exist. This type of table is
effi cient only for exact matches where a small range of keys are maintained, and for
most keys there are associated values to be manipulated. Direct addressing look-
ups, in packet processing, can be applied in limited cases where the key range is
relatively small, or the table size is small as a result. Such cases may include protocol
classifi cation, port assignments, VLAN determination, and so on.

To reduce the memory size (space), the elements can be placed in a table,
in a sequence, sorted by their keys (resulting in a sorted table). Accessing the
sorted elements is then done according to the required key, either through a sim-
ple linear search, which is ineffi cient,22 through a binary search,23 or through
other methods (e.g., Fibonaccian search or interpolation search). In a binary

22Linear search in a sorted table will take on the average
(n/2) execution time, or
(n) in the
worst case.
23Binary search has the best (most minimal) search time complexity in the worst case scenario,
O(log n).

5.5 Search, Lookup, and Forwarding 215

search, the required key is compared to the key of the element positioned in
the middle of the table, and continues by ignoring the half whose values are
irrelevant, repeating the search in the remaining relevant half in the same way
until the element is found, if it is in the table. The other methods determine the
relevant part of the table for the subsequent searches by other mechanisms, but
the results are pretty much the same. All operations take longer for execution
than in direct addressing, of course, and are of O(log n) time complexity on the
average,24 where n is the number of maintained elements. This data structure is
very effi cient in terms of memory size (space), and is very compact. However, it
is not effi cient enough in terms of operation time (search or update), and there
are better ways to manipulate the elements.

5.5.3.3.1 Hash Tables
Hash tables are a compromise between direct addressable tables and sorted tables.
Hash tables are very effi cient in operations; the most advanced techniques yield
operations of O(1) time, on the average, while keeping the table size (space) fairly
compact.

The principle behind hash tables is to create a direct addressable table in
which the keys of the elements are expressed in such a way that there is an
almost 1:1 relation between any required key and the address of its element in
the table. The function that computes this transformation is called the hashing
function. The problem in this idea is that a 1:1 relation is very complex to
achieve, and some “ collisions” may occur, that is, two keys might produce the
same hash value. To overcome this problem, either a better hashing function
can be utilized, or a solution to the expected collision must be provided. In
order to improve the hashing function and to make it simple uniform (i.e.,
spreading the results uniformly over the space of the table), one has to know
the key distribution, which is not always available. At any rate, apart from per-
fect hashing (described in the following), collisions are inevitable. For example,
 following the birthday paradox, there is a 99% chance of a collision when a
simple uniform hash key is used in a 1-million-entry-sized table that is fi lled with
just 3000 entries.

There are two basic methods for achieving hash functions: division and multipli-
cation. The more common practice is the division method, where the key is divided
by the table size m (or preferably by some prime close to it, defi nitely not a number
close to 2n for any n), and the remainder is used as the hash key k (i.e., the hash
function h(k) � k mod m).

In the multiplication method, the key k is multiplied by some fraction A, and
the fraction part is multiplied again by some m. The resulting integer is the hash

24Interpolation search, called sometimes also extrapolation search, takes on the average O(log log n)
execution time, assuming the keys are uniformly distributed. Worst case for any distribution in this
case is O(n).

216 CHAPTER 5 Packet Processing

number h(k) � ⎣m(kA mod 1)⎦.25 A affects the hash function, and one very good
choice is a special case called the Fibonacci hashing, where A is the inverse of
the “golden ratio,”26 equal to (�� 5 � 1)/2 � Fibi�1/Fibi, where Fibi is the i-th
Fibonacci number.

When there is a collision, there are two methods of resolving it. The sim-
plest collision resolution algorithm in hash tables is to maintain a linked list (as
described before) for any of the table entries where a collision occurs. In this way,
the insert operation has a worse case time of O(1), but, depending on the number
of collisions on any single entry in the hash table, the worst case search, delete or
modify can be
(n). In the case of a simple, uniform hashing function that distrib-
utes all keys evenly among all table entries, the average time to search, delete or
modify will be O(1).27 In order to decrease the chance of having the worst case of
chaining, binary-trees, dynamic arrays, and other techniques can be used.

The other collision resolution technique is open addressing. In open addressing,
all elements are kept in the hash table (not as a linked list), and an effi cient way to
resolve collisions is by probing for another, available place in the table (for insert
operation), or for the required key (when searching). In linear probing the other
place is simply the next entry in the table; in a cyclical way, that is modulus the table
size, or h(k, i) � (h’(k) � i) mod m for any i < m. In quadratic probing, the next
place examined is increased in a quadratic way—that is, h(k,i) � (h’(k) � c1i �
c2i2) mod m for any i < m. Another way, double hashing, probes the next place
in a distance that is a function of the key, like the hash itself—that is, h(k, i) �
(h1(k) � i h2(k)) mod m. Linear probing performs well in terms of locality (cache
performance) but is sensitive to clustering. On the other hand, double hashing has
no clustering effects, poor locality, and requires a bit more computational effort.
Quadratic probing is a good answer to these trade-offs. The performance of the
open addressing collision resolution techniques is O(1) on the average.28

Perfect hashing is possible when the entire set of keys that will be used is
known ahead of time, during the design of the hashing function. In perfect hash-
ing no collisions will occur, since every key is mapped to a different place in
the table by the perfect hash function. Minimal perfect hashing guarantees that

25R mod 1 means the fraction part of R, that is, 5.762 mod 1 � 0.762
26The golden ratio for two integers x and y is �, that is, � � x/y, when x/y � (x � y)/x. Putting it in
another way: � � (� � 1)/� = > �2 � � � 1 � 0. The irrational value of the golden ratio is � � 1.618
. . . It is interesting to note that this “magical” ratio appears in many natural and artistic phenomena,
and has many mathematical characteristics. Among them, for example, is that the reciprocal of the
golden ratio is the golden ratio minus 1, that is, 1/� � � � 1 (equal to 0.618 . . .) and that the square of
the golden ratio is the golden ratio plus 1, that is, �2 � � � 1 (equal to 2.618 . . .), as it results directly
from the defi nition of �.
27More precisely, the time complexity is
(1 � n/m), where the hash table has m entries and occupies
n elements (n/m is often called the load factor), since m � O(n) in most cases.
28More precisely, the average number of probes in a collision is 1/(1-n/m), where the hash table has
m entries and occupies n elements, and therefore, given constant n/m, the time it takes to resolve
a collision is O(1).

5.5 Search, Lookup, and Forwarding 217

the hash table is minimal in size, that is every location of the table will be used.
Perfect hashing also guarantees a constant time in the worst case for a lookup
or key insertion.

5.5.3.3.2 Associative Arrays
The last type of data structure in this category is an abstract data structure called
an associative array. Associative arrays are essentially defi nitions of lookup tables
that are built by hash tables, self balancing search trees (described in the following
section), skip lists, and so on, and their purpose is to fi nd a value that is associated
with a key. Association is a mapping, a function, or a binding, and there is a 1:1 rela-
tion between any key and any value in the associative table. As described in the
following, special purpose hardware is available to offer associative table function-
ality, according to various mechanisms.

5.5.3.4 Tree Structures
Another category of data structures is the tree-family, although representation of
various trees can also be done in tables. Some basic defi nitions are necessary to
begin: A set of elements is organized in a graph G, where each element is a node
in the graph, and the relations (or binary relations) between the elements are the
edges in that graph. A free tree is a connected graph (i.e., a path between any two
nodes in the graph) where no loops exists in any of the graph’s paths (i.e., there is
exactly one path between any two nodes).

A rooted tree is a free tree where one node is identifi ed and is called the root.
In rooted trees, there are relations between the nodes that result from their posi-
tion in the tree: Father and child are two connected nodes where the father is
closer to the root on the path from the child to the root. A node without any chil-
dren is called a leaf (or external node). Nonleaf nodes are called internal nodes.
Any node on the path from a node to the root is called an ancestor, and any node
from a node away from the root is called a descendant. The height of the rooted
tree is the longest path (in number of hops) from the root to the leaves. The
depth of a node is its length of path (in number of hops) from the root. A level
contains all nodes of the same depth. The degree of a node in a rooted tree is the
number of children the node has (and not, as in a free tree, the number of con-
nected nodes). An ordered tree is a rooted tree where the order of the children
is important.

A binary tree is an ordered tree, where each node has a degree of maximum 2,
and the right and left children are identifi ed (and each child has a clear identifi ca-
tion of being right or left even if it is the only child). A full binary tree is a binary
tree that has no nodes of degree 1. A perfect binary tree (or a complete binary
tree) is a full binary tree where all the leaves are at the same depth, and it always
has n-1 internal nodes and n leaves.

Now we reach the fi rst data structure that maintains a binary tree: The
binary heap, which is often used for priority queues. This structure is an array
that represents a complete binary tree (or almost); the last (lowest) level can be

218 CHAPTER 5 Packet Processing

empty in its rightmost leaves. The array contains the values of the tree’s nodes,
level after level, in the order of the nodes of the tree. The heap property is main-
tained, which means that a node can have a value that equals, at most, its father’s
value. Some results of this data structure are as follows: The place in the array of
the parent of a node x is ⎣x�2⎦, its left child is 2x and its right child is 2x � 1.29
Inserting a value to the binary heap has a time complexity of O(log n), where
n is the number of elements in the binary heap, but searching is not effi cient in
this structure at all.

A much better way to handle searches in terms of effi ciency is with the binary
search tree (BST). In BST representation, every node in the binary tree is kept in a
structure, along with pointers to its parent node and the left and the right children
nodes. In a BST, the keys always maintain the property that if x is a node and y is a
node in the left sub-tree of x, then key(y) < key(x), and the other way around; that
is, if y is a node in the right sub-tree of x, then key(x) 	 key(y).

Searching for a key in BSTs starts in the root and at every level a comparison is
done on the node’s key and the search may continue in one of the branches to a
lower level. Thus, the search has a time complexity of O(h), where h is the height
of BST. If the binary tree is full, then the time complexity of conducting a search
in the worst case will be of
(log n), where n is the number of nodes in the tree,
since h in this case is O(log n). However, if the BST is not representing a full tree,
the time complexity is worse than of
(log n), and in the case of a linear “chained”
tree, it can reach the complexity of
(n). In case of a randomly built BST, that is
every added node has a randomly chosen key, then the height of the tree h is again
O(log n), and the search complexity is of
(log n).

In order to better cope with the tree height problem (i.e., to minimize it as
much as possible), a category of data structures called balanced BSTs (or self-
adjusted balanced BSTs) is used. This type of tree contains more indications (bits,
“colors,” etc.) in each of the elements that are used to build the tree in a balanced
way, that is making sure that the heights of the two child sub-trees of any node can
differ by at most one. In a complete binary tree, there are exactly 2h nodes in the
h-th level, and exactly h levels. Balanced BSTs are not necessarily precisely bal-
anced, since it involves repeated and expensive computation to keep the tree at
minimum height at all times. Balanced BSTs keep their heights within a constant
factor from the optimal height (it was shown that the height will never exceed
45%). Therefore, in this category of trees, the search time, as well as other opera-
tions on the trees, takes O(log n) execution time.

Examples of balanced BSTs include AVL trees (where the AVL stands for Adel-
son-Velsky and Landis, who, in 1962, suggested the use of two more bits per node
[8]), red–black trees, and many others. They all possess the same attribute of search
and other operations on the structure in an execution time of O(log n).

29Provided, however, that the root’s index (position in the array) is 1.

5.5 Search, Lookup, and Forwarding 219

A generalization of the binary tree is multiway search tree (m-way tree or
m-ary tree), where each node can have m children, rather than just two, as in
case of the BST. The most commonly used balanced tree among these multiway
search trees is the B-tree, usually used in fi le systems or disk and other external
 storage systems. Most of these trees are suitable for various needs, but not really
for packet processing; therefore, only the suitable category will be described in
the following. It is worth noting that any m-ary tree (or even a forest) can be
treated with a binary tree representation (where the leftmost child of a node in
the m-ary tree becomes the left side child of the binary tree, and the right side
child of the binary tree represents the next sibling node of the m-ary tree, as can
be seen in Figure 5.11).

5.5.3.5 Tries
One category of multiway trees that is heavily used in networking applications is
the tries [136], or prefi x trees. Trie (which sometimes is pronounced like “tree” and
sometimes like “try”)30 is an ordered tree that is used to represent strings, where the
tree’s edges are labeled by the characters of the strings, and the strings are repre-
sented by the leaf nodes (see Figure 5.12, for example). The internal nodes are used
to “spell out” the strings following the path from the root to the nodes (up to the
leaves, to defi ne the represented strings).

An example of a trie holding a list of strings containing IP addresses given in
Table 5.5, can be seen in Figure 5.12; please note that for the sake of explanation,
the addresses are strings, spelled out character by character (and not as the usual IP
4-bytes representation). An exact match search is done by comparing one character
at a time, level by level, between the searched string to the edges of the trie. This
goes on, until the searched string is exhausted, the trie ends during the search, or
there is no suitable edge to follow. If the search ends in a leaf simultaneously with
the last character of the searched string—there is a match. For LPM purposes, the

30 The term trie was derived from the ward “retrieve.”

A

B DC

E F G H J KI

A

B

D

C

E

F

G

H

J

K

I

FIGURE 5.11

Binary representation of m-ary tree

220 CHAPTER 5 Packet Processing

FIGURE 5.12

IP addresses trie

$

2

$

$

7 4

1

3

1

0

$

9
3 0

0 12

81

89$

$

89.10.1.3$

3

$

10.1.1.3$

4

2

$

131.44.2.1$

1

2

6

5

132.72$

132.72.56$

130.2$

1

Table 5.5 List of Strings

IP addresses or prefi xes

132.72$

132.72.56$

89$

10.1.1.3$

89.10.1.3$

131.44.2.1$

130.2$

terminator at the end of any string (at the edge leading to a leaf) indicates that the
string, up to the node from which a terminator edge exits (dark node in Figure 5.12)
is used as a prefi x. This can be demonstrated, for example, in Figure 5.12: The string
“89.10” will match “89$,” since the last terminated node was “89.” The string “132.7”
will not match any of the strings in the trie, because no terminator was crossed.

Updating a trie is quite simple: Inserting starts with a search, and when a node
with no correct edge to follow appears, then a node is added with the remaining
string on the edge to this node. If, for example, “89.10.1.5$” is to be added, then
the trie is searched until “89.10.1” node arrives, and an extra node with an edge
equal to “5” is added. Deleting also starts with a search, until a match happens,
and the matched node is either deleted (if a leaf, along with all its preceding
nodes that remain without a terminating node) or unmarked as prefi x node.

Trie is essentially a lexicographic order of strings, that is one can look at it
as if it is a dictionary. The search complexity, in the worst case, is O(m), where
m is the key length. In the example of Figure 5.12, it is evident that this trie
is not very effi cient in terms of its search operation, due to its long strings.
A better representation is a compressed trie or compact trie. A compressed, or

5.5 Search, Lookup, and Forwarding 221

 compact31 representation of a trie is one that merges all chains of edges that
have no branches (the nodes between these edges are of degree one) to one
edge, labeled with the string of characters of the merged edges, or labeling the
resulting path. In the specifi c case of a compact binary trie, the total number of
nodes is 2n�1, like in a full binary tree, where there are n strings that the trie
represents. An example of a compact trie is given in Figure 5.13, which repre-
sents the (nonbinary) trie shown in Figure 5.12 (again, for the sake of explana-
tion, addresses are spelled out character by character and not as the usual IP
4-bytes representation). Searching for an exact match is similar to the search in a
trie, as detailed above. For LPM purposes, the terminator at the end of any string
indicates that the string, from the root to the node from which a terminator edge
exits, can be used as a prefi x. A prefi x can also be the string created from the root
to the leaf that has an incoming edge with a string terminated by the terminator
(e.g., the dark node in Figure 5.13).

For networking applications, tries have the advantage of being able to help with
LPM, that is searching for a value having the longest possible prefi x similar to a
given key. Tries can also be used for determining the association of a value with
a group of keys that share a common prefi x. Although tries are used mainly for
searching (which is what we discuss here), they can also be used for encoding and
 compression.

Specifi c types of tries include the bucket trie (a trie in which leaf nodes are
buckets—usually of fi xed size—that hold several strings), and the suffi x trie (a
trie corresponding to the suffi xes of given strings). Compact suffi x tries (some-
times called Pat-tries) are suffi x tries where all nodes with one child are merged
with their parents). Suffi x trees and compact suffi x trees are very often used in
fast, full text searches. Internet search engines use these techniques frequently,

31Sometimes compressed and compact representations are distinguished by the way edges are
labeled and treated. The technique of compressing the one-child nodes is also known as path
 compression.

FIGURE 5.13

Compressed trie

$

.10.1.3$

$3
0.1.1.3$

0.2$

1.44.2.1$
2.72

891

89$

89.10.1.3$

10.1.1.3$

131.44.2.1$

.56$

132.72$132.72.56$

130.2$

222 CHAPTER 5 Packet Processing

as opposed to network processor search engines, which use hashing techniques
and prefi x tries.

Tries occupy O(n) space, where n is the number of objects represented, and
operations on the tries take O(km) time, where m is the string length and k is the
“alphabet” size, that is the maximal degree of a node. Although it seems that O(km)
is effi cient, in most cases a binary search is equivalent or better, since O(km)
O(logk n) (for binary “alphabet,” where n, the number of objects, is less than 2m,
the potential number of objects of length m). Tries, however, are simpler to handle
than binary trees, especially balanced BSTs. Tries can even be considered a good
alternative to hash tables, since usually they work faster, and simpler since they
have no collision treatments, hash functions, and so on.

There are many advanced data structures based on tries that employ partitioning,
hashing, heaps, links, and pointers, and other techniques in the tries, to make them
faster and smaller (e.g., van Emde Boas tree [418, 419],32 Willard’s X-fast, Y-fast,33 P-fast
and Q-fast tries [428, 429]).

When keys in the trie are strings made of bits, as is usually the case, the trie
becomes a binary trie, and searching becomes simple (so called digital tree
search [84, 260]): If no match is established at some level, then, depending on
the next bit, the search branches right to the next level if the next bit is 0, or
branches left if it is 1. This is in contrast to the binary tree search, where compari-
sons have to be executed at each level. In the context of networking, where LPMs
are desired, this data representation and searching is very useful. Binary tries were
studied quite extensively, and the performance characteristics of these tries are
known. The expected average depth of an element in the trie is
(log n) if there
are n elements in the trie and the trie was built randomly. This means that opera-
tions on binary tries perform similarly to those of the BSTs.

5.5.3.5.1 Patricia Tries
Another way to handle bit strings is through a Patricia tree34 [163, 323], which is a
binary compact trie,35 where any node that has only one child is merged with its child.
Patricia tries are therefore full binary trees. Patricia stands for “Practical Algorithm To
Retrieve Information Coded In Alphanumeric.” A Patricia trie, in its simplest form, does
not store keys in its nodes; rather, the idea is to maintain in the nodes the number of
bits that should be skipped over (in the case of an unmatched situation), to get to the
bit according to which the next decision must be made, as shown and explained in

32van Emde Boas structure (known also as vEB tree or vEB priority queue) assumes a fi xed known
range of possible elements {0,1,2, … , u-1}, sometimes referred to as the universe size, and achieves
time complexity for search and update operations of O(log log u) and size complexity of O(u).
33Y-fast is a randomized algorithm that improves van Emde Boas size complexity to O(n), and has
similar time complexity for a search or update operation, that is, O(log log u).
34Patricia Trie is often called Patricia tree, radix tree, or crit-bit tree (which means critical-bit, as can
be understood from the way the tree works).
35There are defi nitions and algorithms that use m-ary Patricia tries in the literature, but we’ll use the
binary Patricia trie as the Patricia trie.

5.5 Search, Lookup, and Forwarding 223

the following example. There are many ways to implement Patricia trees and related
algorithms, depending on the need, but they all share the same concept. The concept
of Patricia tries is also used for routing table lookup in the BSD kernel UNIX.36

An example will clarify the Patricia trees concept. Suppose we maintain a list of
strings as described in Table 5.6. (These are the same IP addresses that we used in
Table 5.5 and Figure 5.12; the addresses are the bit value of the IP strings, spelled out
character by character, just for the sake of explanation, and not according to the usual
4 bytes IP representation.)

The Patricia trie that describes these entries is illustrated in Figure 5.14, where
at every internal node there is the bit number that should be examined in order to
make the next decision (turning to the right or the left child, 1 or 0, respectively). A
more detailed description of the Patricia trie data structure and algorithm is given
in Figure 5.15 and explained afterwards.

The data structure can be a linked-list or an array, where every node contains
a pointer to the string list, right and left pointers to other nodes, and the bit posi-
tion to be examined in this node. We begin the search from the header node (in
this case, the one that points to P6), by going to the fi rst node (in our case, the
one pointing to P3). Every node we reach from now on tells us what bit position
to check in the required value string. If this bit is 1 we go to the right node, and
if this bit is 0 we go to the left node. Once we reach a node where the bit posi-
tion to be examined is less than or equal to the bit position in the node we came

36The original Patricia [323] did not support longest prefi x matching, and the scheme adopted for
UNIX [389] modifi ed Patricia to handle LPM and noncontiguous masks. Current UNIX-BSD imple-
mentations (called BSD Tries) are extensions of the Patricia to handle LPM [374]

Table 5.6 IP Addresses

Bit position of the IP address in some bit representation

Pointer
String

(IP address) 1234 5678
 111
9012

1111
3456

1112
7890

2222
1234

2222
5678

2333
9012

3333
3456

3334
7890

4444
1234

P1: 132.72$ 0001 0011 0010 1011 0111 0010 1100

P2: 132.72.56$ 0001 0011 0010 1011 0111 0010 1011 0101 0110 1100

P3: 89$ 1000 1001 1100

P4: 10.1.1.3$ 0001 0000 1011 0001 1011 0001 1011 0011 1100

P5: 89.10.1.3$ 1000 1001 1011 0001 0000 1011 0001 1011 0011 1100

P6: 131.44.2.1$ 0001 0011 0001 1011 0100 0100 1011 0010 1011 0001 1100

P7: 130.2$ 0001 0011 0000 1011 0010 1100

224 CHAPTER 5 Packet Processing

from, we stop, and compare the value we are searching for with the value that the
node is pointing to. If it is a match, then we found the value, and if it is not, then
the value is not in the trie. So, if, for example, we look for “132.72$” (0001 0011
0010 1011 0111 0010 1100, pointed to by P1), then we start at the node after
the header, check bit 1 (which is 0) and go to the left. Next, we examine the 7th
bit, which is 1, so we go to the next right node. There we have to examine bit 11,
which is again 1, so, we again go right to the next node, and there we check bit
26, which is 1. Moving to the right, we are brought back to the same node, ask-
ing us to examine bit 26 again. This tells us to stop and compare the value we are
searching for (“132.72$”) to the value pointed to by this node, that is P1, which is
what we are looking for.

FIGURE 5.14

Patricia trie of the IP addresses

0xxx xx1x xx00

0xxx xx1x xx1x xxxx xxxx xxxx x1

1xxx xxxx x0 1xxx xxxx x1
0xxx xx0

0xxx xx1

0xxx xx1x xx01

0xxx xx1x xx10xxx xx1x xx0

1…0…

P3P5
P4

0xxx xx1x xx1x xxxx xxxx x0

P1P2P6

1

107

11

2612

P7

FIGURE 5.15

An example of patricia trie of the IP addresses

0

Header
(P6)

1
(P3)

7
(P4) 10

(P5)

12
(P7)

26
(P1)

11
(P2)

0 1

1

1

1

1

0

0 0

0

1

5.5 Search, Lookup, and Forwarding 225

It is interesting to note, that by using a presentation such as Figure 5.15, one can
look for any or all keys starting with a particular value. Suppose, for example, we
want to fi nd all keys starting with “13” (0001 0011). We start as before, take the fi rst
node after the header, examine bit 1, take the left path since the bit was 0, check bit
7 and turn right (the bit was 1). Now, at the node pointing to P2, we are requested
to check bit 11, which we don’t have. So, if the value pointed to by this node
matches the string we are looking for, then this node and all of its descendants (up
to the header) are pointing to strings that start with “13” (and indeed, P2, P7, P1,
and P6 all start with “13”).

The behavior of Patricia tries for uniform-distribution has been studied exten-
sively, and the average depth of the Patricia trie is �(log n) [18].

To handle LPM with Patricia trees, prefi xes are stored in the internal nodes
and the leaves of the Patricia tries, in contrast to what was explained above. Since
prefi xes can be located on several one-edged nodes of some path of the trie before
being compressed into Patricia, then some nodes in the Patricia presentation can
contain a list of prefi xes. Searching (and inserting new nodes or deleting nodes fol-
lowing the search) can be executed in one of the following two ways: (a) For each
node that stores a prefi x or a list of prefi xes that is crossed as the trie is traversed,
a comparison is done between the searched string and the prefi x or prefi xes, and
is remembered if matched; this continues until termination (reaching a leaf or an
unmatched node), and the last remembered prefi x (if there was one) is the LPM.
(b) The trie is traversed as much as possible, and then backtracked to fi nd the
longest matched prefi x among the crossed prefi xes. Again, an example will clarify
this. A list of string prefi xes is given in Table 5.7 (this time in normal, standard bit

Table 5.7 A List of Prefi xes

Bit position of the prefi x (IP address presentation)

Pointer String (prefi x) 1234 5678
 111
9012

1111
3456

1112
7890

2222
1234

2222
5678

2333
9012

P1: 132.72* 1000 0100 0100 1000

P2: 132.72.56* 1000 0100 0100 1000 0011 1000

P3: 89* 0101 1001

P4: 10.1.1.3* 0000 1010 0000 0001 0000 0001 0000 0011

P5: 89.10.1.3* 0101 1001 0000 1010 0000 0001 0000 0011

P6: 131.44.2.1* 1000 0011 0010 1100 0000 0010 0000 0001

P7: 130.2* 1000 0010 0000 0010

P8: 132.72.57* 1000 0100 0100 1000 0011 1001

226 CHAPTER 5 Packet Processing

1xxx x0x0 ...1

1xxx x0 1xxx x100... 01...

1xxx x0x1

1…0…

P3,P5

P2

P4

...0

P1

P8P6

1

62

248

P7

FIGURE 5.16

A Patricia prefi x path compressed trie

presentation of IP addresses), and the Patricia trie that describes these prefi xes is
illustrated in Figure 5.16. Every internal node is the skip bit count, and nodes that
contain a prefi x or list of prefi xes are darkened.

5.5.3.5.2 Multibit Tries, LC-tries, and LPC-tries
Other structures that are often used in networking applications are multibit-tries
and LC-tries [18, 334–336], due to what is, on the average, their superior search per-
formance over the Patricia trie. Extending the principle of the binary tries, Multibit
and LC tries inspect not just one bit but several bits simultaneously at each step
(at each node down the trie). Having said that, it is worth noting that due to their
strict and complex data structure, most of these structures and algorithms increase
the diffi culty of frequently updating the data maintained. Nevertheless, they are
frequently used in networking for IP lookup applications.

In multibit tries (or multi-digit tries), there are fewer branching decisions
than in a binary trie because each branching decision is based on a multibit
digit called a stride. In practice, there will also be fewer memory accesses,
since the nodes’ data is read from memory in access width, which is usually
in multiple bytes. So, for example, a three level multibit-trie can be used for
an entire IPv4 address (32 bits) by using a 16-8-8 stride pattern; that is 16 bits
stride at the first level access, then 8 bits stride at the second level, and again
8 bits stride at the third level. The trie can be either fixed stride, if it has the
same stride size at all nodes of the same level of the trie, or it can be variable
stride. Any internal node in a multibit trie is of degree 2i, i > 1 (i is the stride),
and is a sub-multibit trie containing all the i-suffixes elements that start with
an i-prefix digit. Multibit tries constructs, however, can yield empty-leaves if
they are not built carefully, which means less efficient searches and bigger,
unutilized storage.

Generally speaking, fixed stride tries are less efficient in memory
 utilization than variable stride tries. If the number of leaves of the multibit
trie is the same as the number of leaves of a corresponding binary-trie, it is
called a dense trie. Dense tries enjoy the desired properties and benefits of

5.5 Search, Lookup, and Forwarding 227

binary tries with respect to space efficiency and proximity operations, while
improving the cost of search operations when the branching factors are sig-
nificantly high.

Nilsson’s Level-compressed trie (LC-trie) is a dense trie, in which the degree of
the root is 2i, where i is the smallest number such that at least one of the children
is a leaf. This is true for every child down to the leaves, so eventually every child
and the entire tree become a level-compressed trie. An LC-trie is interchangeable
with a binary trie, when the highest i complete levels of the binary trie (where in
the next level there is at least one leaf) are reduced to a single 2i-degree node in the
corresponding LC-trie, and this reduction is executed top-down. In other words,
LC-tries are recursive transformations of binary tries into multibit tries. An example
is given in Figure 5.17, where the compressed levels are indicated by rectangles.

The expected depth of an element in the LC-trie is O(log*n) where log*n is the
iterated logarithm function,37 or O(log log n) [18, 334] for an independent random
sample taken from the uniform distribution. The behavior of LC-tries is better than

37The iterated logarithm function is used in computer science for algorithm analysis, and it is the
number of iterations the logarithm function is applied before the result is less than or equal to 1.

It is defi ned as follows: { log*n � 1 � log* (log n) if n > 1
log*n � 0 otherwise

The iterated logarithm function increases extremely slowly, and for all practical purposes can be
considered as a constant.

Binary Trie

LC-Trie

FIGURE 5.17

Binary trie and its equivalent LC-trie

228 CHAPTER 5 Packet Processing

Patricia tries in terms of search time, at least for uniformly distributed data, and
shows a signifi cant improvement in terms of scalability.

Several variations of LC-tries were suggested [335] to optimize their use in IP
address lookup. Level and Path compressed trie (LPC-trie) refers to the dynami-
cally compressed level and path trie, that is, it is a level compressed trie of a path
compressed trie. Since LC-tries are so effi cient in reducing the depth of the tries,
and, hence, the searching time, the level compression concept was used also to
create nondense LC-tries by compressing levels in the tries even when they are
not complete, that is, when there aren’t 2k nodes to create an k-branches node. In
other words, some empty nodes are “added” to the nonfull levels to complete the
levels and to create a trie that is almost full. The “fi ll-factor” (x) is used to describe
the highest degree of branching factor for a node covering k strings, where the
branching produces at most k (1 � x) empty leaves.

LC-trie is used for routing lookup algorithm in the recent Linux implementa-
tions (e.g., Fedora Core 5, released in 2006, using Kernel 2.6). It is intended for
large routing tables and shows a clear performance improvement over the original
hash implementation in previous Linux kernels, at the cost of increased memory
consumption and complexity.

Updating LC-tries is more complex than the other structures described earlier.
There are additional compression techniques for tries that are also complex to
update [374] and are not described here; for example, the full expansion/compres-
sion scheme [90], the Lulea University algorithm [99], and others. There are more
techniques for handling IP address lookups that based on the structures described
above, and that are specifi cally aimed for prefi x search or LPMs; these are described
in [374].

5.5.3.6 Conclusions
Tries and self-balancing BSTs are generally slower in operations than tables—since
their lookup time is O(log n), compared to the O(1) that can be reached with hash
tables—and are rather more complex to implement than hash tables. Nevertheless,
various kinds of trees are used for specifi c search purposes, mainly tries, where
string or nonexact matching (usually longest prefi x) is required.

5.5.4 Hardware Search
In the previous subsection, we discussed data-structures and algorithms that are
used for “software” search engines. In this subsection, we now turn to hardware
search engines. As we have mentioned, there are many NSEs that look like hard-
ware search engines to the network processor. These can be categorized into
 algorithmic NSE and those that indeed have hardware-based schemes that carry
the searches within a few clock cycles. Some of these hardware-based schemes
might also be used inside the network processor. Content Addressable Memory
(CAM) is by far the most common way to execute searches by hardware; therefore,
this subsection is focused around CAMs.

5.5 Search, Lookup, and Forwarding 229

Before discussing CAMs, however, another word about search engine metrics:
the hardware search engines (CAM included) have the same performance metrics
that we used before (that is size of the data store and the number of searches
per second that can be achieved). Nevertheless, hardware-based search engines
should also be examined by their power consumption and the additional chip
count required for their implementation. In CAM’s case, for instance, power con-
sumption is a real challenge.

CAM is a hardware search component that enables searching in a single clock
cycle [346]. It is a memory composed of conventional semiconductor memory
(usually like the static random access memory). CAM simultaneously compares
a key (the searched data) against all of the table’s entries stored in the CAM, and
is thus capable of returning the address of the entry that matches the key in one
single clock cycle. Although CAMs are fast, effi cient, and fl exible in terms of lookup
functionality, they are also big energy consumers due to the large amount of paral-
lel active circuitry. They are also big physically due to the large silicon area required
for the memory cells and logic; they are small in terms of capacity compared to
other types of memories; and they are very expensive.

A simplifi ed scheme of a CAM having m words, each consists of n bits, is
depicted in Figure 5.18. The CAM core cells are arranged into the horizontal words,
where each bit is a CAM core cell that contains storage (the bit value) and the
comparison circuitry. Typical implementations of CAMs have 36 to 144 bits per

FIGURE 5.18

Simplifi ed CAM scheme

C C C C

C C C C

C C C C

C C C

Search Data Registers and Drivers

Key (searched word)

n bits

SL1 SL2 SL3 SLn

ML1

ML2

ML3

MLm

Stored Word 1

Stored Word 2

Stored Word 3

Stored Word m

E
nc

od
er

Log2m bits

Match
Location

Search
Lines

Match
Lines

Match Line
Sense

Amplifier

...

...

...

...

...

C

230 CHAPTER 5 Packet Processing

word, and as many as from 128K rows (words) to 512K rows in recent CAMs.
A key (a searched word) is broadcasted vertically on the CAM core cells, through
the search lines. Each stored word has a horizontal match line that indicates
whether the stored word is identical to the searched word (activated match line)
or not (a mismatch status). This indication is the result of a logic “and” between all
comparisons of the searched word bits with the CAM core cells of a row (stored
word); any mismatch in any of the core cell of a row causes the match line of that
row to be pulled down to indicate mismatch. All match lines are sensed and ampli-
fi ed separately, and fed into an encoder that produces the location (address) of the
matched key (the searched word) in the table.

There are two kinds of CAMs, that is regular (or binary) and ternary. Binary
CAMs (BCAMs) store and compare binary bits, that is zero or one. Ternary CAMs
(TCAMs) support an additional don’t care bit, which causes the match line to
remain unaffected by the do not care CAM core cell, regardless of the searched
bit. This ability of TCAM can be used for masked searches, and is perfectly useful
for IP lookup applications [439], or complex string lookups, as described in the
following.

It is possible in a BCAM to fi nd more than one match between the search
word and the stored words. In such a case, instead of using a simple encoder,
as depicted in Figure 5.18, a priority encoder is used, which selects the highest
priority location, usually defi ned by its address in the table (a lower position
in the table grants higher priority). TCAM, on the other hand, works a bit dif-
ferently. First of all, masking of bits usually creates more hits, as the chance of
hits increases when fewer bits are compared. Second, multiple priority mecha-
nisms can be used, emphasizing not only location, as in the BCAM case, but
also the number of consecutive matched bits in each of the hits (and whether
this number of matched bits is the LPM of the word), or the total number of
matched bits along the entire word width. Figure 5.19 provides an example for
clarifi cation.

The search operation begins with putting all the match lines temporarily
in the match state (high). Then the search line drivers broadcast the key 01011 on
the search lines to all CAM core cells, which then compare their stored bit with the
bit on their corresponding search lines. Cells with a mismatch put the match line
in the mismatch state (pulling it down). The match line sense amplifi er gets the
word match result, that is if the match line was pulled down by any bit, it has at
least one mismatch. In our example Figure 5.19, match lines 2 and 3 remain acti-
vated (high), indicating a match, while the other match lines were pulled down
(both because of bit 0), indicating a mismatch. The encoder receives two matches,
and produces the search address location of the matching data. In the case that
the encoder chooses the fi rst match line, it will generate the match address 2. In
the case that it chooses the longest prefi x, it will also generate 2. But if it chooses
based on the number of hits, then it will generate the address 3. In the two later
cases, the encoder requires more circuitry to enable counting the hits and the
places of the hits.

5.5 Search, Lookup, and Forwarding 231

In most implementations, the output of the CAM is used to drive a regular
RAM for receiving a value attached to the key that was searched in the TCAM.
A common example, shown in Figure 5.20 is IP address lookup, using an IP address
as an input key to the TCAM, while the resulted TCAM address location of that IP
address is used to look in a RAM for a forwarding port and next hop IP address,

1 1 X 1

0 1 X X

0 X X 1

1 X X

Search Data Registers and Drivers

Key (searched word) � 01011

5 bits

SL1� 0 SL2� 1 SL3� 0 SL5� 1

ML1

ML2

ML3

ML4

Stored Word 1

Stored Word 2

Stored Word 3

Stored Word 4

E
nc

od
er

2 bits

Match
Location

� 2

Search
Lines

Match
Lines

Match Line
Sense

Amplifier

X

X

1

X

SL4� 1

X

FIGURE 5.19

TCAM priority mechanism

TCAM

D
ec

od
er

A
dd

re
ss

5, 132.72.5.84

8, 10.1.1.9

1, 136.34.3.111

3, 192.168.0.1

Data

RAM

8, 10.1.1.9

1 1 X 1

0 1 X X

0 X X 1

1 X X

Search Data Registers and Drivers

Key (searched word) � 01011

5 bits

SL1� 0 SL2� 1 SL3� 0 SL5� 1
ML1

ML2

ML3

ML4

E
nc

od
er

2 bits

Match
Location

� 2

Match Line
Sense

Amplifier

X

X

1

X

SL4� 1

X

FIGURE 5.20

CAM/RAM system for IP address lookup

232 CHAPTER 5 Packet Processing

which match that IP address. The output data from the RAM (forwarding port and
next hop address), addressed by the match location of the TCAM, is associated
with the TCAM key (IP address in our example). The combination is very power-
ful, enabling a single cycle searching, and two cycles updating of this dictionary
lookup system.

Using TCAMs for IP lookup is done by storing all routing prefi xes in decreas-
ing order of their prefi x length, padded with “don’t care” bits in the rightmost
side of the stored words. For example, a routing prefi x 132.72.0.0/16 will be
stored in the TCAM after routing prefi xes that are longer than 16 are stored, and
it will store the fi rst 16 bits of this routing prefi x and another 16 “don’t care” bits
to their right.

As of 2008, CAMs can execute hundreds of millions of searches per second
(Msps) and are tens of Mbits in size. The key size, according to which a search
is done, is usually 72 bits long or 36 bits long, for double clock rate. CAMs are
usually interfaced with a 72-bit proprietary interface, or the standard LA-1 inter-
face, defi ned by the NP forum. (This, as well as other interfaces, are discussed
in Chapter 7.)

5.5.5 Summary of Using Search
Data structures and the algorithms described in the previous subsections are used
for any types of data and any searching requirements. However, in packet process-
ing environments, the data distribution and their required key searches make a
huge difference when choosing the optimal structure and algorithms (i.e., direct
addressing, BST, and so on). The most obvious example of the impact of data distri-
bution and required key searches is IP addresses and IP address lookups, where IP
routing tables are not composed from random entries evenly distributed over the
entire IP 32 bits or 128 bits range of the IPv4 or IPv6, respectively, but are grouped
in several IP address clusters.

Several examples and recommendations are given in the following subsections,
although, as mentioned above, circumstances will dictate the optimal search and
data structure to be used. The purpose of describing it here is to give some tools
to the users or designers of a network processor, and to enable them to choose the
optimal solution.

5.5.5.1 Simple Switching and Forwarding
When a simple decision is required for switching, forwarding, or queuing a
packet, based on few numeric keys of a small range, then a small table resid-
ing in memory (RAM) is suffi cient to make such decisions. This table can be
direct addressable if the number of entries is about the same as the key-range, or
hash table if the number of entries is small compared to the range of the keys.
An example for using a direct addressable table for look-up is VLAN (Virtual
Local Area Network) forwarding, for example, assigning an output port based
on the VLAN. An example for using a hash-table for look-up is MAC addresses

5.5 Search, Lookup, and Forwarding 233

based-decisions, for example, assigning MAC addresses to specifi c VLANs, bridg-
ing devices operating in layer 2, and so on.

5.5.5.2 URL and Packet Content (L7) Lookup
URL lookup is usually done in layer 7 applications, like load balancers, and is usu-
ally based on nonexact matches, longest-prefi x matches, or some pattern search
(i.e., masked searches or keys that include “don’t care” characters in the URL).
There are many other applications that require content lookups at layer 7, such as
the identifi cation and targeting of specifi c phrases in packets, XML applications,
access control applications, virus protection, intrusion detection systems, intrusion
 prevention systems, and the like.

In most of these cases, trees and tries are used for the searches and comparisons,
although hashing tables can be used if the searches are carried on fi xed-length,
nonmasked keys. Since many of these applications generally use wildcards and pre-
fi xes, require a huge amount of data, and conduct multidimensional searches, then
trees and tries residing in DRAM can be the only viable solution.

5.5.5.3 IP Address Lookup
This is the most common usage of searching in network processing. Generally
speaking, there are several reasons for IP address searches. Based on the purpose of
the search, a suitable data structure and algorithm should be used. If, for example,
IP address search is conducted to match a specifi c decision to some specifi c IP
address, and there are not many such IP addresses, then a hash-table can be used
(e.g., for access control). If, on the other hand, a decision has to be made based on
a range of IP addresses (e.g., for IP forwarding or routing algorithms) or partial IP
addresses (i.e, prefi x or pattern match of some IP addresses), then an exact match
will not be effi cient, and a routing table has to be constructed by some tree (or
CAM), and will need to use LPM.

Searching in the routing table in the classful IP network environment was straight-
forward: In order to receive the next hop and the output interface, an exact match
search of the fi xed length network ID (according to the address class) should be
performed. These tables were not very dynamic, that is they were not changed very
often. Hash tables were very effi cient in performing this task. The impact of CIDR
on IP address lookup, however, was enormous; from fi xed sized, hash table lookups,
search took place in variable length prefi xes of aggregated entries. The focus shifted
to tree, tries, and LC-tries data structures, algorithms and their variants that best
matched the IP address lookup in terms of data distribution and design, simultane-
ously with using TCAMs and other hardware search engines (coprocessors).

TCAM and other external search engines are targeted in IP lookup searches,
and usually can provide an answer within one or two clock cycles, that is several
nanoseconds.

For memory searches, M-tries is the best access method, since, as was mentioned
above, bit access in memory for binary tries representations is very ineffi cient,
since usually a byte is the natural, minimal access width anyway. In most cases,

234 CHAPTER 5 Packet Processing

then, common M-trie-based searches require three memory accesses for a full IPv4
32-bit address search (using a three-level 16-8-8 stride pattern, that is 16 bits search,
then 8 bits and lastly 8 bits of the stride pattern used for routing). These memory
accesses determine the lookup latency and the number of lookups per second.
Usually, however, IPv4 addressing is based on 24 bits or less, so just two memory
accesses are required. Implementing a routing table in a memory—for example,
for a 10 Gbps Ethernet running 75 bytes per packet—requires 10 ns access time
memory, assuming two searches per packet.

IPv6’s forwarding lookups are not different from today’s IPv4 with CIDR, that is
big routing tables, longest (the most specifi c) prefi x match, and all the complexity
involved. Here again, implementation of M-trie-based searches requires a 16 bits
stride pattern for searches, which might be conducted up to eight times (using a
eight level 16-16-16-16-16-16-16-16 stride pattern), and which might end up with
eight memory accesses. Implementing a routing table in a memory for a 10 Gbps
Ethernet running 98 bytes per packet, for example, requires about 5 ns access time
memory, assuming again two searches per packet.

In both cases of IPv4 and IPv6 look-ups, the challenges are to cope with the update
requirements of the routing tables, and to perform IP lookup for classifi cations (or other,
nonforwarding tasks, that is those that are based not only on the IP address). These
challenges require huge amounts of data being moved in the memory (for updates)
and the use of wide keys for lookups. For example, just the average 100 route changes
per second in the backbone routers, as reported in 1999 [267], yield enormous update
burden and massive data moves in the routing tables of these routers.

The required bandwidth between the network processor and the memory in
which the tables reside is another related issue that infl uences the design of net-
work processors. Internal memory (on the network processor silicon) can work at
aggregated bandwidth of terra bytes per second range, whereas external memory
requires hundreds of I/O interface pins to achieve this bandwidth. This infl uences
the design and cost of network processors, as silicon space becomes more and
more effi cient (in terms of logic, storage, and channels), while the I/O interface
pins become the main factor for die size and its price.

A useful taxonomy for IP address lookup [425, 427] is based on a trie repre-
sentation of IP addresses, and distinguishes between prefi x length (the trie depth)
and prefi x value (the trie’s leaves span) as possible search space, and between
linear and binary searches in the search space. Searches are further distinguished
by parallelism (that is either they are fully paralleled, or they are pipelined, which
means that several different stages of the search are conducted in parallel, or they
are serialized, which means that they are not parallel at all) and memory optimiza-
tion (which includes caching, or using the most frequently required data in a faster
memory, compression, so that the data requires less memory space and compact-
ing, by using more effi cient data structures). Similar taxonomy [374] for IP address
lookup algorithms distinguishes between search-on-values approaches, and search-
on-length approaches. This taxonomy is useful in classifying trie-based schemes, as
described in the following.

5.5 Search, Lookup, and Forwarding 235

IP address lookup schemes can be arranged in the following way [75, 374].

1. Cache-based schemes.
2. Trie-based schemes.

� Simple, standard trie structures.
� Path-compressed tries (Patricia) [323, 389].
� Multibit tries.
� Level-compressed tries (LC-tries and LPC-tries).
� Other compact presentations of tries.

– Lulea Algorithm [99].
– Full expansion/compression [90].
– Full tree bit map [109, 110]

� Binary search on trie levels [426].
� Prefi x range search.

– Binary range search.
– Multiway range search [270].
– Multiway range trees [400].

� Two trie structure [24].

3. Hardware-based schemes.
� DIR-24-8-Basic scheme [162].
� SRAM based Pipeline Scheme [175].
� CAM and TCAM.

Additional categories [412]—modifi cations to exact matching schemes, protocol-
based solutions, and so on—were suggested.

5.5.5.4 Packet Classifi cation
When choosing the right packet classifying scheme, it is not suffi cient to consider
only performance metrics attributes and those attributes that are necessary for
a lookup. Additional metrics to be considered include the ability to handle large
real-life classifi ers as well as fl exibility in specifi cation [161].

Packet classifi cation can be based on several fi elds or subfi elds of the packets, as
described above. The keys, generated from the packet’s fi elds, are used to search for
rules in a database of packet classifi cation rules. The resulting rule (indexed, num-
bered, or otherwise identifi ed) is used for later decisions and actions. This rule-data-
base is generally made from some sort of look-up table that allows exact match of a
fi xed length and format key, or partial match (best, longest, wildcard) of any key cre-
ated from the packet’s fi elds. Simple classifi cation that is based, for example, on packet
type or protocol, can be based on a direct addressable table. When the classifi cation is
based on several fi elds, or on a long key, then it is usually based on a hash-table. When
the classifi cation is somewhat fuzzy, or requires complex algorithms for classifi cation,
or is based on parts of the IP addresses, then nonexact matches and various schemes
and algorithms based on trees and tries, or m-dimensional trees and tries (where m is
the number of classifi cation parameters), are often used to classify the packet.

236 CHAPTER 5 Packet Processing

A taxonomy of classifi cation schemes [75, 161] categorizes the various algo-
rithms and data structures as follows:

1. Basic data structures
� Linear search.
� Hierarchical trie.
� Set-pruning trie [412].

2. Geometric algorithms
� Grid of tries [394].
� Cross-producting scheme [394].
� 2-D Classifi cation scheme [269].
� Area-based QuadTtree (AQT) [63].
� Fat Inverted Segment tree (FIS-tree) [122].

3. Heuristics
� Recursive Flow Classifi cation (RFC) [159].
� Hierarchical Intelligent Cutting (HiCuts) [160].
� Tuple space search [393].

4. Hardware-based algorithms
� Bitmap intersection [269].
� TCAM.

5.6 MODIFICATION
In all applications other than packet forwarding, modifi cation of the packets is
eventually the purpose of packet processing. Sometimes, some packet modifi cation
is required even for forwarding applications (which make up a substantial part of
the applications), for example, changing the IP header may be required in the time-
to-live (TTL) fi eld, as well in the IP addresses, hence recalculation of the checksum
header is also required, and so on.

Packet modifi cation can include all of these operations:

� Modifi cation—Changing the contents of a packet (usually changes in its
header, or changes both in the header and in the payload, as a result of some
processing, e.g., compression or encryption described in the next section)

� Deletion—Some of the packet contents or headers are deleted (e.g.,
de-encapsulation of packets)

� Adding—Additional information is added to the packet (e.g., encapsulation,
authentication information)

� Canceling the entire packet—Simply removing the packet from the system
(e.g., exceeded traffi c, wrong addressing)

� Duplicating the packet—Copying the entire packet (e.g., multicasting, port-
copy operations)

5.7 Compression and Encryption 237

Since checksum is often changed in packet processing, some network processors
contain an internal checksum functional unit to assist with maintaining the right
checksums.

In addition, traffi c analysis, some management tasks (e.g., accounting) and other
applications can be performed in the modifi cation phase, although most of these
operations are expected to be performed in the control path. Statistics collection,
however, must be done in the fast path, at the modifi cation phase, to accommodate
the packet rate.

5.7 COMPRESSION AND ENCRYPTION
Compression and encryption processing are optional phases in packet process-
ing that are more typical to access network processors than to high-end net-
work processors. The reason is that packets do not undergo any compression
or encryption in the main trunks of the core and the metro networks, whereas
these processes might happen at the edges of the network, at the access points.
Usually, compression and encryption is executed by specifi c coprocessor, or in
the mid-range and access network processor that contains an encryption func-
tional unit.

Compression is used mainly in places where bandwidth is critical (mainly
wireless applications), and most of the compression efforts focus on TCP/IP
header (many protocols run very small packets, while most of these packets are
just predictable headers) [326]. Other implementations where payload compres-
sion might be helpful are WEB services and HTTP applications, as well as the
evolving XML-based protocols. When compression is used, it is usually based on
the Lempel-Ziv algorithm (LZ) [443, 444] or derivatives of it, which take advantage
of the recurring patterns of strings. The concept of LZ is to maintain a dictionary
of the most used string patterns in the stream, and replace these string patterns
by the dictionary index, when they occur again. In other words, as the data stream
fl ows, character by character, LZ keeps track of repeating patterns in the stream,
places them in a dictionary (it keeps the most frequent patterns), and replaces
these patterns when they occur again with pointers to the place where they
previously were transmitted in the stream. Upon arrival, these pointers are substi-
tuted with the already known string patterns, and the original stream is accurately
reconstructed. For massive pattern matching, most implementations typically use
CAM-based approaches.

Encryption is used for privacy, data integrity, and authentication to confirm
the communicating parties’ identities. There are many standards for security
in the IP world; the main standard is Internet Protocol Security (IPsec) [249]
framework, operating at layer 3, and SSL/TSL [102] operating above this layer
(thus enjoying the TCP/UDP services in the connection, but leaving them
 unsecured). IPsec is used mainly in Virtual Private Networks (VPN), whereas
SSL/TSL is used typically in client server applications (mail, web browsing,
 telnet, and so on).

238 CHAPTER 5 Packet Processing

The security protocols primarily use encryption for confi dentiality, where
encryption simply transforms unsecured information (“plaintext”) to coded infor-
mation (“ciphertext”), using some key and a transformation algorithm. The other
components of the security suit are to make both sides know what encryption
algorithm to use, and what key to use, and some specifi c protocols are doing just
that. For our purposes, network processors that are involved in secured transmis-
sion have to take part in the various protocols, and the most demanding issue is
that they have to execute the transformation from plaintext to ciphertext and vice
versa at wire speed. Since SSL/TSL works above the network layer, network proces-
sors usually are not involved (unless deep packet processing or L7 processing is
required). As for IPsec, there is one mode of IPsec, transport mode, in which only
the payload (the data portion) is encrypted, therefore, most of the packet process-
ing functions can be done without the need to encrypt any packet along the path,
that is those packets that require only header manipulations like forwarding. Again,
deep packet inspection or L7 applications will force the network processor to be
involved in the encryption/decryption. The more secured mode of IPsec, the tun-
nel mode, encrypts the entire packet and encapsulates the encrypted packet in
a tunneling packet, so in some network applications the network processor can
avoid the involvement, while in others, obviously for deep packet inspection and
L7 applications, the encryption/decryption is unavoidable [138].

5.8 QUEUEING AND TRAFFIC MANAGEMENT
Finally, the processed packet ends its quick journey in the network processor, and
is about to leave. The last small but very complicated task is to decide how to
get rid of this packet, or, more precisely, how to pass it on to the receiving party
(equipment or communication link) on its way to its fi nal destination.

As previous stages in the network processor (classifi ers, modifi ers, and so on)
determined the output path (port), priority, and some handling parameters, the
traffi c management process forward this packet to an appropriate queue, and
schedule it for transmission according to the conditions of the lines, the receiv-
ers, and the parameters that this packet has (e.g., priority). This process also
meters the packets, and shapes the transmission pattern to a desired rate and
burstiness. The traffi c management process is complicated enough to be imple-
mented in many network processors externally, by a dedicated traffi c manager
coprocessor. There are, however, some network processors that integrate the
traffi c management internally, thereby saving chips, power, and cost at implemen-
tation time, but more importantly, allowing faster and more integrated service to
the packets.

In many cases, incoming packets also have to go through traffi c management
(metering, queuing, prioritization, and so on, which are determined by incoming
port or communication lines or other parameters) in order to be processed in the
network processor according to predefi ned scheduling scheme.

5.9 Summary 239

Since traffi c management is a kind of fl ow handling and it involves defi nitions
of traffi c patterns and service quality that are beyond the processing of the single
packet, this entire subject is discussed in the next chapter.

5.9 SUMMARY
This chapter discusses the theory behind network processors. Packet processing is
the heart of network processing, and the various phases and operations that pack-
ets undergo in most of the network elements, are the subject of this chapter.

The next chapter is still theory, but it focuses on packet fl ow handling, which
was only mentioned very briefl y in this chapter.

This page intentionally left blank

6
In the previous chapter, we dealt with the need to process packet content. Of
 similar importance, we have to manage the packet fl ow in the network. Moreover,
very often we have to consider packet fl ows in designing equipment, in order to
make the equipment function.

In this chapter, we address various aspects of packet fl ows, traffi c management,
buffers queueing, and other issues that impact equipment design and component
functioning, as well as networking issues and functioning. The chapter is divided
into two main parts: (1) Quality of Service (QoS) and related defi nitions, and
(2) QoS control mechanisms, algorithms, and methods.

Handling packet fl ows is a key issue in providing services over the network.
Not only is it important in network functioning, it is also crucial in the design and
architecture of networking equipment, as well as, further on, in the chips and pro-
cessors that handle packets.

Before diving into the issue of handling packet fl ows, we have to be aware of
two basic kinds of traffi c requirements—traffi c that is sensitive to packet delays
and traffi c that is sensitive to packet losses. For example, packet delays can have a
strong impact on voice quality, but if a few packets are lost, voice quality will not
be seriously harmed. On the other hand, e-mail cannot tolerate any packet loss, but
packet delays are more acceptable. These two very different traffi c requirements
are answered by various mechanisms, algorithms, processes, and methods that are
defi ned to handle proper packet fl ow throughout the network, the equipment, or
the chip.

It is not the intent of this chapter to provide an exhaustive review of all possible
scheduling, buffer management, forwarding, or QoS schemes. Instead, this chapter
provides theoretical background on packet fl ow, which will be used later in describ-
ing the internal architecture of network processors, and for functions of the net-
work processors with regard to network requirements. Many of the algorithms and
schemes discussed here rely on research papers and books that are cited in the
reference pages at the end of the book.

Packet Flow Handling

CHAPTER

242 CHAPTER 6 Packet Flow Handling

6.1 DEFINITIONS
There are many terms in use in relation to packet and traffi c fl ows, and they are
sometimes contradictory. There are also multiple terms for the same thing, or the
same term is used to defi ne different things, both specifi c and broad. In the follow-
ing, in the interest of clarity, I adopt terminology that I feel is appropriate, although
some might argue for the use of alternative terminology.

Traffi c management (sometimes called traffi c conditioning, or traffi c access
control) usually refers to measuring, policing, and shaping the traffi c, mainly
to avoid congestion in networks. Transmit priority, bandwidth allocation, Call
Admission Control (CAC), congestion avoidance, and selective packet loss can
be associated with traffi c management as well.

Traffi c policing usually refers to handling the incoming traffi c and allowing it into
the network, or otherwise tagging it and handling it separately (discarding the
traffi c in certain circumstances, or allowing it in others). Traffi c policing some-
times includes traffi c measuring as part of handling it, as well as traffi c admis-
sion control.

Traffi c shaping means regulating the volume of packets released into the network
by using buffering techniques, so that the transmitted traffi c will fi t a defi ned
traffi c behavior pattern. Traffi c shaping is sometimes called traffi c metering or
traffi c smoothing.

Flow control, or pacing, is a technique that makes sure that no receiving entity will
overfl ow. It is sometimes also called congestion control. Usually fl ow control
refers to handling the packet stream in the transport layer.

Traffi c engineering refers to the ability to control traffi c paths in a network, while
avoiding and reducing congestion, and best utilizing the network resources. It
usually refers to choosing nondefault routes for the traffi c, for example, opti-
mized routes in a congested network.

Network fl ows is a term used in graph theory to represent various algorithms for
checking fl ows in a network; for example, measuring the capacity of possible
fl ows, maximizing the fl ows in a given network, or calculating the cut capacities
in a network.

Quality of Service (QoS) indicates the performance of a network (or equipment,
or chip), and signifi es its transmission quality. This defi nition will be elaborated
more fully in the following subsection.

Traffi c Conditioning Agreement (TCA) expresses the traffi c management para-
meters and rules that are applied to the traffi c streams generated by the user or
the application, and are acceptable to the network (or the network providers).
The agreement describes the various networking mechanisms required in order
to handle packets according to the required QoS. TCA should be subject to the

6.2 Quality of Service 243

Service Level Agreement (SLA), as defi ned in the following, and to the service
level the network can provide [54].

Service Level Agreement (SLA) refers to the level of service the user is guaranteed
to receive from the network, expressed in terms of QoS parameters over time,
allowed exceptions, durations, and so on. SLA is usually a contract between a
service provider and its customers, specifying the forwarding service that the
customer should receive. SLA can be static (predetermined QoS parameters
that can be modifi ed periodically) or dynamic (negotiating Quality of Service
parameters by some signaling protocol). Traffi c conditioning rules and param-
eters that constitute part of the entire TCA may be part of the SLA [54]. SLA can
be extended to describe and defi ne more than just QoS parameters, but this is
beyond the scope of this discussion (for example, service type and nature, avail-
ability, responsiveness, monitoring, accounting, etc.).

 Class of Service (CoS), or Type of Service (ToS), refers to the requirements of
the application (or service) layer from the network layers underneath it.
More generally, it defi nes how an upper-layer protocol requires a lower-layer
protocol to handle its messages. This will be discussed more fully in the
 following.

6.2 QUALITY OF SERVICE
Quality of Service is an aggregate of measures that varies depending on the CoS
requirements. It indicates how well packets behave when transmitted through the
network, looking at issues such as packet loss, packet delay, and throughput. QoS
determines how well we can run applications across the network; for example, the
quality of voice transmission over IP networks (VoIP, or Internet telephony), the
quality of TV service over IP (IPTV), how long it will take to retrieve a large fi le, or
how much “real time” is indeed real time.

The International Telecommunication Union (ITU-T) defi nes QoS as “a set of
quality requirements on the collective behavior of one or more objects.” The ATM1
forum defi nes QoS as “a term which refers to a set of ATM performance param-
eters that characterize the traffi c over a given virtual connection.” The Internet
 Engineering Task Force (IETF) defi nes QoS as capabilities of network infrastruc-
ture services and source applications to request, setup and enforce deterministic
delivery of data. The European Commission (RACE D510 project) defi nes QoS as
“the measure of how good a service is, as presented to the user. It is expressed in
user understandable language and manifests itself in a number of parameters, all of
which have either subjective or objective values.”

1ATM (Asynchronous Transfer Mode) was described in Chapter 2, and refers to the entire concept
of ATM networking.

244 CHAPTER 6 Packet Flow Handling

Quality of Service became important and received systematic and comprehen-
sive treatment since multimedia appeared on the network. Since then, QoS has
developed and is integrated into any network. QoS is dependent on the statistical
behavior of the network.

There are many parameters for QoS. The most commonly used are performance
parameters, which include:

� Bandwidth and throughput—how many packets per second can fl ow
through the network;

� Packet loss ratio—how many packets are lost due to discards, errors, and
so on;

� Delay—what is the delay of a packet in the network, in various measurements
(link, end-to-end, start-up [set-up], maximum round trip, etc.);

� Delay variations (jitter)—how stable the delay is;
� Bit Error Rate (BER)—how good the links are.

Quality of Service can be marked and treated in layer 2 and layer 3 by different
mechanisms, as described in the following.

6.3 CLASS OF SERVICE
Class of service describes the characteristics of the network, or the nature of the
traffi c patterns required to carry some services (applications). There are various
defi nitions of CoS, coming from the various network technologies. The main dif-
ference between QoS and CoS is that QoS specifi es quantitative parameters, and
any device that is compliant to QoS can act based on these parameters—even to
the extent of discarding packets. CoS usually refers to the qualitative nature of the
traffi c, and can serve as guidelines on how to treat packets. In the following sub-
sections, various types of CoS are described, separated according to the network
technology with which they are associated:

6.3.1 ATM Services
Asynchronous Transfer Mode was described in Chapter 3, Section 3.2.1. ATM dis-
tinguishes between several classes of services, as described in the following sub-
sections.

6.3.1.1 Constant Bit Rate, or Deterministic Bit Rate
Constant Bit Rate (CBR) (the ATM forum terminology), or Deterministic Bit
Rate (the ITU-T terminology [223]), means a fi xed bit rate, where data is sent in
a steady stream. This CoS guarantees low packet loss ratio and defi ned delays.
This CoS is expensive in terms of network resources, since it is a real time

6.3 Class of Service 245

service, and it grants bandwidth to the application regardless of whether it is
actually used or not. It is typically used for circuit emulation by applications
that require constant delay and throughput, such as uncompressed audio or
video information.

6.3.1.2 Variable Bit Rate
Variable Bit Rate (the ATM forum terminology) means an average bit rate and
throughput capacity over time, where data is not sent at a constant rate. Like
CBR, this CoS also requires low packet loss ratio, but delays can be variable and
larger than in CBR. Real-time VBR (rt-VBR) is used for isochronous applications,
like compressed audio and video; nonreal time VBR (nrt-VBR) is used for all other
applications. The nonreal time VBR is termed SBR (Statistical Bit Rate by the ITU-T
[223]). The difference between the two lies in their delay characteristics.

6.3.1.3 Available Bit Rate
Available Bit Rate (ABR) refers to the minimum network capacity available. When
the network is free, higher capacity is used. The application that uses the network
and uses ABR is required to control its rate, based on signals received from the
network in cases of congestion. It is desirable to have minimal delay and packet
loss in ABR, although it is not guaranteed. Although similar to nrt-VBR, ABR usually
provides better throughput than VBR, and is less expensive than the CBR. ABR is
the only service category (CoS) that uses fl ow control by the application and the
network.

6.3.1.4 Unspecifi ed Bit Rate
Unspecifi ed Bit Rate (UBR) is a best-effort service. Nothing is guaranteed by
the network, and higher layer services are required by the applications, such
as fl ow and congestion control. UBR can be used by applications like fi le trans-
fers, e-mails, and the like, which can manage with the leftover capacity of the
 network.

6.3.1.5 Guaranteed Frame Rate
Guaranteed Frame Rate is a combination of ABR and UBR (and has also been called
UBR�). It acts like ABR without fl ow control, and like UBR with a minimal guaran-
teed transfer rate. The frame-based traffi c is shaped by the network, and frames that
are above the guaranteed traffi c rate are treated like UBR (best effort). Packet loss
is low when the traffi c rate is below the guaranteed rate.

6.3.2 Integrated Services
Integrated Services (IntServ) is the best way to provide QoS in IP networks,
although complicated and resource-demanding. It works on packet fl ows, as
detailed in Chapter 2, Section 2.6.2.3.2. IntServ defi nes three CoS, as follows.

246 CHAPTER 6 Packet Flow Handling

6.3.2.1 Guaranteed Service
This service [384] guarantees an upper bound on end-to-end packet delay. Traffi c
using Guaranteed Service (GS) is typically bound by packet peak rate and maxi-
mum packet size. This service guarantees both delay and bandwidth.

6.3.2.2 Controlled-Load Service
Controlled-Load Service, also known as predictive service, provides a service level
similar to the one that will be experienced by the same packet fl ow crossing an
unloaded network. This service [433], however, uses capacity (admission) control
to assure that packets will receive this level of service even in an overloaded
 network.

6.3.2.3 Best Effort
Best effort—as the name implies—is a “service” where no guarantees whatsoever
are provided, not even an admission control to examine the network status and to
allow or disallow the service.

6.3.3 Differentiated Services
Differentiated Services (DiffServ) is the simplest way to provide QoS in IP
networks, based on different treatment of packets of different classes, as was
described earlier in Section 2.6.2.3.2. DiffServ defi nes three basic service levels,
or CoS, as follows.

6.3.3.1 Expedited Forwarding
Expedited Forwarding (EF) is used for premium service, and provides a low loss,
low latency, low jitter, and assured bandwidth end-to-end service. The expedited
traffi c is not affected by any other traffi c streams in the network [232]. It appears as
a “virtual leased line,” point-to-point connection to the applications at the network
boundaries.

6.3.3.2 Assured Forwarding
Assured Forwarding (AF) is the second-level service in DiffServ, between EF and
default forwarding. AF offers four independent subclasses of packet delivery ser-
vices. In each of these subclasses, packets are prioritized into three levels, which
have different levels of drop precedence. The service level of a packet is deter-
mined by the AF subclass the packet receives, the available resources in the net-
work to this subclass, and to the drop precedence of the packet in case of network
congestion [170].

6.3.3.3 Default Forwarding
Default Forwarding (DF) means neither EF nor AF. In short, it is a best-effort service
level, dependent on the leftover capacity of the network.

6.3 Class of Service 247

6.3.4 Specifying CoS
The following subsections describe the specifi cation of CoS as it appears in the
packets, organized by network layers:

6.3.4.1 Layer 2 CoS
Ethernet protocol, IEEE 802.3, which is the data link layer protocol, was
amended to include 802.1Q VLAN (virtual LAN), which contains the 802.1p
priority (or CoS) bits. As described in Section 2.6.1.4.1, four bytes were added
between the source address fi eld and the Type/Length fi eld (Figure 6.1). The
fi rst two bytes (TPI) are type and always contain the value of 0x81-00h. The TPI
is then followed by the 802.1Q tag bytes, which are headed by the 802.1p three
bits of CoS.

The 802.1p CoS three bits are used by the network internally; these three bits
simply indicate CoS superiority (000 is the lowest priority, 111 is the highest).
Assigning these bits is the responsibility of the internal LAN, and usually refl ects
upper layer CoS (like the DTR bits of the TOS fi eld of the IP header, as described in
the following subsection).

6.3.4.2 Layer 3 CoS
The earliest implementation of CoS in layer 3, that is, in the IP layer, was suggested
in the fi rst IPv4 specifi cation (RFC 791, 1981 [355]), in the TOS 1-byte fi eld of the

FIGURE 6.1

Ethernet CoS (from left to right)

Destination
Address

(6 bytes)

Source
Address

(6 bytes)
TL

Data
(42-1496 bytes)

FCS

TP
ID

TC
I

VLAN ID, identifying 4094 possible VLANs

IEEE 802.1Q Ethernet II Tagged Frame

Preamble
(7 bytes) S

FD

User Priority CFI

Inserted

3 bits
802.1p

1 bit 12 bits

Preamble—7 bytes of 0xAA
SFD—Start Frame Delimiter (1 byte, always 0xAB)
TPID—Type ID, 2 bytes (always 0x8100 for 802.1q)
TCI—Tag Control Information, 2 bytes
CFI—Canonical Format Indicator
TL—Type/Length (2 bytes)
FCS—Frame Check Sequence (4 bytes of CRC-32)

Fields

248 CHAPTER 6 Packet Flow Handling

IP header. TOS referred to CoS by indicating the abstract parameters of the desired
QoS. The priority of the packet indicates how the network should treat the pack-
ets in case of high load, according to its precedence. Precedence in TOS is defi ned
in three bits, in increasing importance, as shown in Figure 6.2. In addition to the
precedence, TOS defi nes a three-way trade-off between low delay, high throughput,
and high reliability (DTR bits).

It was modifi ed slightly by RFC 1349 in 1992 [15], so the TOS fi eld of the IP
header (Figure 6.2) is defi ned as a four-bit fi eld, as follows (bits 3–6):

 1000 - minimize delay
 0100 - maximize throughput
 0010 - maximize reliability
 0001 - minimize monetary cost
 0000 - normal service

Later, IPv6 (RFC 2460, 1998 [98]) used the Traffi c Class byte for CoS, similar to the
usage of the TOS fi eld in IPv4.

Then, at about the same time as IPv6, DiffServ [333] redefined the TOS byte
of the IPv4 header and the Traffic Class byte of the IPv6 header to become
the Differentiated Service (DS) byte. It superseded the “old” definitions, and
defined the first six bits of the DS field as the Differentiated Services Code-
Point (DSCP) to be used in the network. The DS field structure is presented
below:

 0 1 2 3 4 5 6 7
 �---�---�---�---�---�---�---�---�
 | DSCP | CU |
 �---�---�---�---�---�---�---�---�

 DSCP: differentiated services codepoint
 CU: currently unused

R 0 0

0 1 2 3 4 5 6 7

PRECEDENCE D T

Precedence codes:
111—Network Control
110—Internetwork Control
101—CRITIC/ECP
100—Flash Override
011—Flash
010—Immediate
001—Priority
000—Routine

Bit D: 0— Normal Delay, 1—Low Delay
Bit T: 0— Normal Throughput, 1—High Throughput
Bit R: 0— Normal Reliability, 1—High Reliability
Bits 6–7: Reserved

FIGURE 6.2

IP TOS fi eld

6.4 QoS Mechanisms 249

The Codepoint values of the AF CoS are presented in the following table:

 Class 1 Class 2 Class 3 Class 4
 �---------------�---------------�---------------�---------------�
Low Drop Precedence | 001010 | 010010 | 011010 | 100010 |
Medium Drop Precedence | 001100 | 010100 | 011100 | 100100 |
High Drop Precedence | 001110 | 010110 | 011110 | 100110 |
 �---------------�---------------�---------------�---------------�

Codepoint 101110 is used for EF CoS.

6.4 QoS MECHANISMS
In this section, a more detailed description of QoS mechanisms is provided. The
service of different kinds of QoS requirements is accomplished along two axes:
control path and data path [155]. It is important to distinguish between NP defi ni-
tions of these two terms2 and their meaning here, although the analogy is very obvi-
ous. The packet fl ow handling functions introduced in this section are data path
mechanisms, on which network QoS is built. Control path mechanisms deal with
service defi nitions, the identifi cation of entitled users to these services, network
resource allocation to meet these requirements, and they also sometimes include
signaling in cases of on-demand services rather than provisioning services.

Quality of Service mechanisms include many functions, such as traffi c classifi -
cation, fl ow control, traffi c control, call admission, regulation, policing and shap-
ing (or reshaping), signaling, routing, and more. Provisioning of a CoS, controlled
by QoS mechanisms, requires coordinated use of all QoS mechanisms, specifi cally
admission control, traffi c policing and shaping, packet scheduling, and buffer
management, coupled with fl ow and congestion control and routing [76]. The
QoS functions that are described in this section include the main data path QoS
functions (see Figure 6.3).

� Admission control (allowing connections into the network)
� Traffi c management (measuring and regulating data fl ows by policing and

shaping)
� Packet queueing (dropping, buffering and servicing packets along the network’s

path buffers). Packet queueing contains:
– Buffer management functions (queueing or dropping packets along the

 network paths), and
– Packet scheduling functions (service disciplines of the packets from the

queues into the network segments).

2In network processors, data path, or the fast path, refers to packet analysis, modifi cation and
 forwarding, while control path, or the slow path, refers to processing the packet content for
 administrative purposes (e.g., updating routing tables).

250 CHAPTER 6 Packet Flow Handling

Packet classifi cation is considered by some researchers to be also a function of
packet handling, but we covered this topic while discussing packet processing. All
other functions (e.g., routing, signaling, resource allocation, etc.) are beyond the
scope of this book.

The above-mentioned functions are the building blocks of QoS treatment, and
are based on many algorithms that are used for a variety of cases, circumstances
and goals. These building blocks can be joined together, or they can be used in any
order to result in the desired behavior of packets and traffi c.

Packet fl ow handling is done at the edge and at the core of the network.
 Mechanisms of admission control and traffi c access control (policing and shaping)
are more prevalent at the edge of the network, while mechanisms of scheduling
and buffer management are more dominant at the core. It should be noted, how-
ever, that shaping and regulating can also be found in the core, and buffer manage-
ment can also be found in the edge (see Figure 6.4).

Admission Control and Classification

Traffic Management

Buffer Management

Packet Scheduling

Discard

Discard

FIGURE 6.3

QoS functions (based on [278])

6.4 QoS Mechanisms 251

It must also be noted again that this section is not an exhaustive review of
all possible shaping, policing, scheduling, and buffer management schemes. The
 purpose here is to enable the reader to understand the basic NP terminology, as
well as the various classes of QoS schemes that are described in the research litera-
ture, in order to adopt them wisely.

6.4.1 Admission Control
Admission control restricts applications from requesting new or additional services
(connections, or fl ows) from the network, at a time when the network is over-
loaded or the service is beyond the allowed usage permits for these applications.

A CAC function is executed whenever there is a new connection call, to
determine whether to accept or reject that request. The parameters used by
CAC to make a decision are the applications’ description of the required QoS,
as well as the available resources in the network that can meet those QoS
 requirements.

Signaling protocols are associated with CAC, by checking and notifying all
 network resources of the expected call, making sure that the resources are avail-
able and the call request can be admitted (while network resources are reserved
by the network elements). Such an example is Resource Reservation Protocol [57]
that was described in Chapter 2.

Ingress
Edge

Router

Core
Router

Egress
Edge

Router

Access
Network

Classifier
Marker

and
Policer

Shaper Scheduler

Traffic
Meter

Classifier

Queuing

Admission
Control

Access
Network

Application

Transport

Application

Transport

FIGURE 6.4

End-to-end QoS mechanisms

252 CHAPTER 6 Packet Flow Handling

6.4.2 Traffi c Management
As previously mentioned, traffi c management is traditionally used to describe three
functions: traffi c measurement, traffi c policing, and traffi c shaping. It is also some-
times called traffi c conditioning (e.g., in the DiffServ environment).

This subsection describes traffi c access control mechanisms that together are
called traffi c management. A brief theoretical background is provided in the subse-
quent subsections, followed by formal descriptions of these mechanisms.

6.4.2.1 Theory
The following subsections describe a few basic concepts of traffi c management
and specifi cations.

6.4.2.1.1 Leaky and Token Bucket
Leaky and token bucket are very often used to model or to control traffi c, as the
 following describes. This subsection describes these models, in order to better
understand the traffi c models and control algorithms. Leaky bucket [413], or Sim-
ple Leaky Bucket (SLB), is the simplest approach to specify required bandwidth
and limit users to their allocation.

The principle is this: imagine a leaky bucket (as in Figure 6.5), from which a
fl ow of fl uid (or packets) drains at some fi xed rate. Fluid (or packets) can be poured
in (or added) to this leaky bucket at the same rate of the drained fl ow. From time to
time, after periods of slow or no pouring, there is room in the bucket, and fl uid (or
packets) can be added quickly, up to the bucket’s capacity. If liquid is poured (or
packets are added) beyond the drained rate for long enough periods, the bucket
will eventually overfl ow, and the liquid (or packets) will be lost.

The SLB mechanism is as follows: SLB increments a counter whenever a packet
is sent (into the bucket) and decrements the counter periodically, according to the
rate (r) in which packets leaves the bucket. If the counter exceeds some threshold
(the “bucket size”) (b), the packet is discarded. The user specifi es b as well as the

Size:
b

Leak Rate: r

FIGURE 6.5

Leaky bucket

6.4 QoS Mechanisms 253

rate r at which the counter is decremented. r therefore determines the average
bandwidth, and b defi nes a measure of burstiness (how many packets can be sent
at once, or very quickly, to the “bucket”). These two parameters defi ne the required
bandwidth and limit the fl ow of packets into the network.

The resulting (output) traffi c after the SLB is a fl ow that is bounded by r, even
when bursts of traffi c enter the SLB. Token Bucket (TB) is based on the principle
of SLB and is very similar to it, except in the terms of the resulting output traffi c,
which can be bursty (not bounded) as described below.

The principle of the TB is to allow packets into the line when there are enough
“tokens” (credentials) accumulated at a controlled rate (r) in a “bucket” of size b.
Imagine a bucket of tokens at the entrance to a subway station, where tokens are
falling into the bucket (size b) at the rate r (see Figure 6.6). If there are enough
tokens in the bucket, people take one when they arrive, and use it to pass through
the stile and into the subway. Thus, for each outgoing packet, one token is removed
from the bucket. If there aren’t enough tokens for all arriving passengers (or pack-
ets), then those who can’t get a token simply “overfl ow” and vanish. During idle
periods when no passengers are arriving, the bucket will start to fi ll again.

Like the SLB, the TB allows incoming bursts of packets that can build up during
idle periods or periods of low-rate packet arrivals. But unlike the SLB, the rate of the
output traffi c is not bounded always to r, and follows the input traffi c rate (up to
the overfl ow point, when there are no more tokens, and then the traffi c is clipped
and leaves the TB at a rate of r).

In some circumstances, multiple buckets are used in tandem (concatenated)
to model or to control traffi c. When buckets are concatenated to control mul-
tiple rates, the resulting rate will be the minimal rate across all buckets (where

Token Generation
at Rate � r

Token Bucket
Size � b

FIGURE 6.6

Token bucket

254 CHAPTER 6 Packet Flow Handling

the bucket sizes should be in increasing order). The most common use of
tandem buckets is the Dual Leaky Bucket (DLB)—also called the Dual Token
Bucket—which is used mainly to control the incoming burst rate (p) when
the second bucket has vacancy. In this case, a small bucket (that can hold one
token, for example), with high token generation or leak rate p, is concatenated
to the “normal” bucket of size b, which runs at rate r. The (b, r) bucket controls
the average rate, whereas the (p, 1) bucket controls the peak rate, as depicted
in Figure 6.7.

The resulting effect of DLB is that users or source applications are allowed,
over the long term, to transmit at a rate r while preserving their right to burst at
a higher rate p for limited periods—up to b/(p � r) time units when the bucket
of size b is initially empty. This can be seen in Figure 6.8 (since at the maximum
burst duration t, the number of packets that enter and exit the buckets are equal,
or pt � b � rt).

When it is not a 1-byte traffi c, but a packet nature of traffi c, then at the maxi-
mum burst duration t we have M � pt � b � rt, where M is the maximum packet
size and p is the peak rate of the burst. The maximum burst duration is therefore
(b � M)/(p � r) time units, as can be seen from Figure 6.9.

The maximum amount of traffi c (in bytes) is expressed in terms of a traffi c
envelope A(t). A(t) indicates the upper bound traffi c allowed in time t, and main-
tain A(t) � min(M � pt, b � rt).

6.4.2.1.2 Traffi c Specifi cation
Traffi c specifi cation is commonly defi ned by TSpec [384]. TSpec takes the form of
a token bucket where the bucket rate is r and the bucket size is b, plus an addi-
tional peak rate (p). There is also a minimal policed unit (m), in which any packet
size less than m will be considered as of size m with regards to resource allocation

P token/sec r token/sec

Size � b

Size � 1

FIGURE 6.7

Dual leaky bucket

6.4 QoS Mechanisms 255

and policing, as well as a maximal packet size (M). All rates are in units of bytes
per seconds and all sizes are in bytes. Traffi c specifi cation is used to characterize
traffi c enforcement (policing) and traffi c shaping, as described in the following
 subsections.

t

pb
p � r

b
p � r

b
Token Bucket

Peak Rate
p

Size

Maximum Burst
Duration

Maximum
Burst Size

Token Rate
r

Token Rate
r

FIGURE 6.8

Burst rate and period

t

b �M
p �r

b
Token Bucket

M

Size

Maximum Burst
Duration

Maximum
Burst Size

A(t)

Token Rate
r

Peak Rate
p

p (b �M)
p � r M �

Maximum
Packet Size

FIGURE 6.9

Token bucket rate

256 CHAPTER 6 Packet Flow Handling

X�� X � r (ta(k) � LCT)

X�� 0

Nonconforming
Packet

X � X�� pkt
LCT � ta(k)

Conforming

X�� 0

X�� pkt � B

X—running count of token deficit
X�—potential deficit, including
 accumulated credit since last
 conformant packet
LCT—Last Conformance Time
ta(k)—arrival time of packet k
pkt—packet size
B—bucket size
r—credit accumulation rate
 (leak rate)

Y

Y

N

(no
deficit)

(allowed N
deficit)

(too
much)

FIGURE 6.10

“Continuous state” leaky bucket

6.4.2.1.3 Packet Conformance
When traffi c does not conform to its specifi cations, various QoS mechanisms
have to respond by, for example, dropping packets, buffering the packets (or
some of them), or shaping the traffi c. There are two kinds of packet conformance
 methods—plain or three-color marking. Plain conformance is simply marking each
packet as conforming or not. Three-color marking adds an additional intermediate
marking, as described in the next subsection.

The continuous-state leaky bucket algorithm is an example of a simple con-
forming method. The algorithm is depicted in Figure 6.10. In this algorithm, the
level (X) of the bucket decreases at a rate of r bytes per “time-unit.” When a packet
arrives at time ta, the bucket has already lost r(ta � LCT) from its level (where LCT,
the Last Conformance Time, is the last time the bucket level was updated). If, at
that time, there is enough space in the bucket for this packet (that has size pkt),
the packet is conformed, and the level of the bucket is raised by this packet’s size.
If there is no room—the packet is nonconformed, and the bucket’s level keeps
decreasing.

6.4 QoS Mechanisms 257

Another algorithm, which is not based on buckets, is the Virtual Scheduling
Algorithm (VSA), and is described in Figure 6.11 (where I is Increment, the
packet size equivalence, and L is Limit, equivalent to the bucket size minus the
packet size). Here, it is assumed that at a sustained rate, the arriving packets (or
cells, in the original algorithm), are evenly spaced, and coming in at every I units of
time. Obviously, if a packet appears after it was expected, then it will be confi rmed.
If it appeared L unit-times before it was expected (which refl ects the tolerance
dictated by the “buffer size” L), then it is also confi rmed. Once the packet is con-
fi rmed, then the next expectation time (the Theoretical Arrival Time) is updated by
an additional I time-units.

These two equivalent algorithms are used in the defi nition of the Generic
Cell Rate Algorithm (GCRA) defi ned in Annex A of ITU-T I.371 [223], where I
is the inter-arrival time of a packet (or a cell in GCRA case), and L is the time
tolerance.

6.4.2.1.4 Three Color Markers
Three Color Markers (TCM) use green, yellow, and red to indicate packets’ confor-
mance. A “green” packet means a conforming packet, a “yellow” packet means a
nonconforming packet that might eventually be handled according to “best-effort”
treatment, and a “red” packet means a nonconforming packet that probably cannot
be handled.

TAT � ta(k)

Nonconforming

TAT � TAT � I

Conforming

TAT � ta(k)

TAT �
ta(k) � L

Y (late cell)

Y

N

N
(early cell)

TAT—Theoretical Arrival Time
ta(k)—time of arrival of a cell
I—Increment, cell size
L—Limit, bucket size – I

(too early)

FIGURE 6.11

Virtual scheduling

258 CHAPTER 6 Packet Flow Handling

Each of the Three Color Markers described below is composed of two functional
modules: one meters the traffi c (or estimates its rate), and the other marks the pack-
ets according to some criteria.

srTCM Single-Rate Three Color Marker (srTCM) [168] meters the packet stream,
and marks3 the packets as green, yellow, or red by extending the burst size limit and
allowing two priority levels. The marking is based on the Committed Information
Rate (CIR) and two burst levels, a Committed Burst Size (CBS) and an Excess Burst
Size (EBS).

The srTCM uses the token bucket model, where tokens are generated at rate
CIR. When packets enter the TB, the Committed Token Count (Tc) and, in some
cases, the Excess Token Count (Te), are examined. Packets are marked green if the
Committed Token Count (Tc) does not exceed the CBS (these packets conform),
yellow if they exceed the CBS but the Excess Token Count (Te) doesn’t exceed
the EBS (these packets do not conform, but are within the limits of the excess
burst), or red otherwise (these packets do not conform, and are beyond the excess
burst). The srTCM algorithm is as follows:

Two token buckets C and E are initially (at time 0) full, i.e., the committed
token count Tc(0)�CBS and the excess token count Te(0)�EBS.

Thereafter, the token counts Tc and Te are updated CIR times per second
as follows:
if Tc < CBS, Tc is incremented by one, else
 if Te < EBS, Te is incremented by one, else
 neither Tc nor Te is incremented.

When a packet of size s bytes arrives at time t, the following happens:
if Tc(t)— s >� 0, the packet is green and Tc is decremented by s down to 0, else
 if Te(t)— s >� 0, packet is yellow & Te decrements by s down to 0, else
 the packet is red and neither Tc nor Te is decremented.

trTCM Two-Rate Three Color Marker (trTCM) [169] meters the packet stream,
and marks the packets as green, yellow, or red by separating control for peak rate
and committed rate with individual burst sizes. The marking is based on Peak
 Information Rate (PIR) and CIR, as well as on two burst levels: CBS and Peak Burst
Size (PBS).

The trTCM also uses the token bucket model, where tokens are generated
at rates CIR and PIR into two buckets. When packets enter the TB, the Peak
Token Count (Tp) and in some cases also the Committed Token Count (Tc) are
examined. Packets are marked red if the Peak Token Count (Tp) exceed the PBS

3In [168] there are actually two marking schemes, the Color-Blind mode and the Color-Aware mode.
Only the Color-Blind mode, which we describe here, is important for our purposes; the Color-Aware
mode, which recolors already marked packets, is another variant.

6.4 QoS Mechanisms 259

(nonconformant packets), yellow if the Committed Token Count (Tc) exceeds the
CBS but the Peak Token Count (Tp) does not exceed the PBS (nonconformant pack-
ets, but within limits of the peak burst), or green otherwise (conformant packets).
The trTCM algorithm [169] is as follows:

Two token buckets C and P are initially (at time 0) full, i.e., the committed
token count Tc(0)�CBS and the peak token count Tp(0)�PBS.

Thereafter, the token counts Tc and Tp are updated CIR and PIR times per
second, respectively, as follows:
if Tc < CBS, Tc is incremented by one
if Tp < PBS, Te is incremented by one

When a packet of size s bytes arrives at time t, the following happens:
if Tp(t)— s < 0, the packet is red, else
 if Tc(t)— s < 0, the packet is yellow and Tp is decremented by s, else
 the packet is green and both Tc and Tp are decremented by s.

 A modifi ed trTCM was proposed [6] to handle in-profi le traffi c differently, that
is, to save conformance tests for the green packets (and sometimes to save these
packets from being marked red despite their eligibility for green). Furthermore,
the modifi ed scheme does not impose peak-rate shaping requirements on edge
devices, but rather checks the Excess Information Rate (EIR) for in-profi le traffi c.
The modifi ed trTCM algorithm [6, 169] is as follows:

Two token buckets C and E are initially (at time 0) full, i.e., the
committed token count Tc(0)�CBS and the excess token count Te(0)�EBS.

Thereafter, the token counts Tc and Te are updated CIR and EIR times per
second, respectively, as follows:
if Tc < CBS, Tc is incremented by one
if Te < EBS, Te is incremented by one

When a packet of size s bytes arrives at time t, the following happens:
if Tc(t)— s > 0, the packet is green and Tc(t) is decremented by s, else
 if Te(t)— s > 0, the packet is yellow and Te(t) is decremented by s, else
 the packet is red and neither Tc nor Te is decremented.

tswTCM The Time Sliding Window Three Color Marker (tswTCM) [119] is dif -
ferent from the srTCM or trTCM in that it does not use the token bucket model
at all, nor does it use the two functional modules that srTCM and trTCM are
composed of—metering and marking. Instead of metering, tswTCM uses rate
estimation, and instead of marking according to deterministic criterion, it marks
 probabilistically.

tswTCM estimates the packet stream rate based on simple control theory
principles of proportionally regulated feedback control. Then, it compares the
traffic stream against the Committed Target Rate (CTR) and the Peak Target
Rate (PTR).

260 CHAPTER 6 Packet Flow Handling

tswTCM uses a rate estimator that provides an estimate of the running average
bandwidth. The rate estimator takes into account burstiness and smoothes out
its estimate to approximate the longer-term measured sending rate of the traffi c
stream.

tswTCM marks with green the packets that contribute to a sending rate not
above the CTR. Packets that contribute to the portion of the rate between the CTR
and PTR are marked either with green or with yellow according to a probability
that is based on the fraction of packets contributing to the measured rate beyond
the CTR. Packets causing the rate to exceed PTR are marked red according to a
probability that is based on the fraction of packets contributing to the measured
rate beyond the PTR, or yellow or green in the complementary probabilities.

Using a probabilistic function in the marker is benefi cial to TCP fl ows, as it
reduces the likelihood of dropping multiple packets within a TCP window. An
example of one realization of tswTCM [119], using one form of rate estimator (time
based) is as follows:

Initially assign:
AVG_INTERVAL � a constant; // Time window over which history is kept
Avg_rate � CTR; // Avg_rate averages the Arrival Rate of traffi c stream
 (initially it is the Committed Target Rate)
t_front � 0;

Thereafter, when a packet of size s bytes arrives at time t, the following
happens:

Rate estimation:
Bytes_in_win � Avg_rate * AVG_INTERVAL;
New_bytes � Bytes_in_win � s;
Avg_rate � New_bytes/(t — t_front � AVG_INTERVAL);
t_front � t;

Coloring:
if Avg_rate <� CTR the packet is green; else
 if Avg_rate <� PTR, then

 {
 p0�(Avg_rate — CTR)/Avg_rate;
 packet is yellow with probability p0;
 packet is green with probability (1 — p0);
 } else

 {
 p1�(Avg_rate — PTR)/Avg_rate;
 p2�(PTR — CTR)/Avg_rate;
 packet is red with probability p1;
 packet is yellow with probability p2;
 packet is green with probability [1�(p1�p2)];
 }

6.4 QoS Mechanisms 261

6.4.2.2 Measurement and Metering
There are basically three simple ways to measure traffi c, which were used in the
preceding subsections. More particularly, traffi c measurement can be executed by
one of the three mechanisms:

� Point samples, which are measures taken periodically or sporadically, and
which are simply sampling the traffi c at specifi c moments.

� Time-window samples, which means that several measures are taken within
a time window, and traffi c representation is computed according to either the
average or the maximum measure.

� Exponential averaging is done when averaging a time window is not
enough, and instead the average is computed based on weighted previous
measures and current measures. The weight infl uences the adaptive nature
of the resulted measure and its smoothness.

6.4.2.3 Policing
The theoretical background in the previous subsections should clarify both what
traffi c policing is and how it works. When traffi c can be described and specifi ed
(e.g., peak and sustained rates, required delay bound and variations, or loss toler-
ance), then violating or conforming packets, as well as the extent of the violation
or conformance, can be identifi ed and treated. Policing (and shaping, as described
below) can be regarded as an open-loop control mechanism on the network traffi c.

The policing function is to monitor the traffi c and to take corrective steps when
the measured traffi c deviates from its specifi cation. Policing means allowing or
disallowing packets (traffi c) into the network (links), or prioritizing their right to
enter the network. Policing can be executed by actually dropping packets, delay-
ing packets or marking packets according to priority for other mechanisms in the
 traffi c handling modules that will decide what to do with these packets later on.

Policing is sometimes defi ned as either simple policing or as a reshaping
 mechanism [384]. In this subsection we refer to just simple policing, and in the
next subsection we refer to shaping mechanisms. Generally speaking, it is assumed
that policing is done in the network edge, whereas shaping is executed in all net-
work branches and merging points.

Policing mechanisms can be classifi ed according to three of the mechanisms
previously described, Leaky Bucket, Virtual Scheduling, and Windows (i.e., the
moving window that was described in tswTCM, exponentially weighted moving
average, etc.). Policing can be done by the TCM methods or by simple conforming
tests (i.e., marking whether a packet conforms or not), as described earlier.

6.4.2.4 Shaping
Traffi c shaping is essentially another way of looking at policing, that is, it means
arranging traffi c to meet its specifi cation. Shaping is done by reducing rates or
burstiness, smoothing excessive peaks, delaying packets until they can enter the

262 CHAPTER 6 Packet Flow Handling

line, or generally making the packets conform to the expectations of other QoS
mechanisms in the network.

Shaping mechanisms usually use buffers to hold or delay excessive packets
until they are allowed into the network (link), and decisions about when to
allow the packets in are very similar to the policing mechanisms. For example,
the most common shaper is a buffer in front of a token bucket, so that packets
are buffered until they are allowed into the network, when tokens are avail-
able, according to the traffi c specifi cation. Another implementation of a shaper,
which is not based on the leaky bucket but on the virtual scheduling algorithm,
demonstrates how every policing mechanism can also act as a shaper, as shown
in Figure 6.12.

6.4.3 Packet Queueing
Buffers (in the network, in equipment, or in chips) play a crucial role in packet
behavior and traffi c nature in terms of packet loss, shaping capabilities, delays,
and delay variations. In the next two subsections, two aspects of queueing will
be discussed: (1) handling packets on their way into the buffer and inside the
 buffer, and (2) policies of how these queues—or actually the packet inside these
queues—are served or scheduled.

To design and implement a system (or equipment, or a chip) with adequate
buffers to provide the required QoS, some queueing theory knowledge and usage
is recommended; however, such theory goes beyond the scope of this book. For
our purposes, it is suffi cient to know that queueing theory models arriving packets

TAT � ta

Discard

TAT � TAT � I

Accepted

TAT < ta

Policing

Y

Y

N

N

TAT � ta

TAT � TAT � I
Tt � ta

TAT < ta

Shaping

Y

Y

N

N

TAT > ta � L
TAT � TAT � I
Tt � TAT � L

TAT > ta � L

TAT—Theoretical Arrival Time
ta—time of arrival of a cell
Tt—Transmit time of the cell

I—Increment, cell size
L—Limit, bucket size – I

FIGURE 6.12

I.371 Generic cell rate algorithm (GCRA)

6.4 QoS Mechanisms 263

with random inter-arrival periods; it also models how packets are queued and
 serviced according to a service discipline that has either fi xed or random charac-
teristics. The resulting queueing theory models can then be used to evaluate delays,
buffer sizes, and the relation between packet loss, buffer size, and traffi c character.
For more on this subject, the reader is referred to the vast literature of queueing
theory.

6.4.4 Buffer Management
Buffer management techniques determine how to deal with buffer overfl ows in
cases of overrun packets or congestion (buffers in the network). They drop or
discard packets in order to solve the congestion in the network, equipment, or
chips.

Along with simply having to treat overfl ow situations, buffer management tech-
niques take different approaches to solving them. They must also try to achieve
[123, 125]: (1) minimal packet loss and queueing delay, (2) the avoidance of global
synchronization of packets’ sources, and (3) high link utilization.

There are two primary methods for managing buffers: passive and active. In
 passive queue management, simple techniques are used to avoid queue over-
fl ow, and the queue is handled regardless of the packets’ source, traffi c, fairness,
 network status, and so on. In Active Queue Management (AQM), queue overfl ows
are avoided while such factors as packets’ source, traffi c and network fl ows, fair-
ness, network status and congestion level in the network are also considered in
order to minimize packet losses and network congestion. AQM signals packets’
sources by selectively marking or dropping packets before congestion happens,
thus optimizing packet losses and delays, as well as network throughput and
 utilization.

One way to signal congestion to packets’ sources in AQM is by using the Explicit
Congestion Notifi cation (ECN) mechanism [362], and the other way is through
packet drops. ECN is used by applications that are sensitive to delays or packet
losses, in order to avoid using packet drop as an indication of network congestion.
ECN uses two bits in the ECN fi eld of the IP header (the TOS fi eld in IPv4 contains
the ECN fi eld). One bit is the ECN-capable transport (ECT) bit, and the other is the
congestion experience (CE) bit. ECT is set to indicate that the end-nodes of the link
are ECT-capable, and the CE bit is set in the network’ buffers to indicate congestion
to the end-nodes.

Most of the algorithms described in the following are AQM techniques, apart
from the tail drop and drop on full techniques, which are usually not adequate to
current networks’ QoS requirements. Most of the algorithms described are targeted
for IP networks, or even more specifi cally with TCP congestion considerations in
mind; however, some ATM-based algorithms are also described.

In this subsection, basic techniques are described briefl y. There are many studies
on this subject, many more algorithms, simulations and performance evaluations that

264 CHAPTER 6 Packet Flow Handling

cover all sorts of specifi c conditions or traffi c types, such as, for example, Random
Exponential Marking [27], Proportional-Integral (PI) controller [174], Proportional-
Differential controller [398], Smith Predictor-based PI-controller for AQM [281],
Dynamic Random Early Detection (RED) [39], Gentle RED [371], scalable control
[345], or Adaptive Virtual Queue (AVQ) [266]. More detailed description of buffer
management can be found in many textbooks and research papers—for example,
[76, 128, 130].

6.4.4.1 Tail Drop
This is the simplest way to handle buffer overfl ow: Drop all the incoming packets
when the buffer is full. Simple as it might be, it is obviously not fair, nor is it effi cient
in terms of solving congestion situations [56]. It is not fair since the buffer could
be dominated by one—possibly even low-priority—stream of packets, which send
many packets to the queue. This phenomenon is called lockout. It is not effi cient,
since it causes queues to be completely full for long period of times, and many
packets can be lost before the sources of the packets recognize the full queues.
At that point, the sources will reduce the rate of sending packets, causing periods
of unloaded queues and links. The problem is amplifi ed in networks of buffers,
when many packets will be dropped at some point after using buffers along the
path. Until the sources understand that there is a buffer-full situation (through a
back-propagation of a signal or otherwise), many other packets will be dropped
after occupying resources, and then the network will be drained for a while. This
will eventually cause low link and queue utilization of the network.

6.4.4.2 Random Drop on Full
Random drop on full is one solution to the lockout problem described before
[56]. Instead of dropping the arriving overfl owed packets (tail), randomly selected
packets in the queues are dropped. The full queues problem is not handled in this
method.

6.4.4.3 Drop Front on Full
Drop Front on full is another solution to the lockout problem described in the
tail drop method [56]. Packets at the head of the line (HOL) are dropped rather
than the arriving ones (the tail packets). This method was shown to improve per-
formance in specifi c circumstances (TCP load, for example, [268]), by reducing
the duration of congestion episodes, since the packet loss indicating congestion
reaches the sender earlier during a time of full queue. The full queues problem,
however, is also not handled by this method.

6.4.4.4 Random Early Detection
Random Early Detection (RED) is an AQM algorithm, in contrast to the Tail Drop or
the Drop on Full methods [46]. RED drops the arriving packets randomly, not those
in the queue, as Random Drop on Full does. In principle, as the queue begins to
build up, arriving packets are dropped at a low but increasing probability.

6.4 QoS Mechanisms 265

In its simplest form, RED discards (drops) arriving packets in a probability that
is determined by the queue size at the instant at which the incoming packets
should enter. This probability increases as the buffer gets fuller, starting from some
threshold, and the rate of increase depends on several buffer occupancy thresh-
olds, as shown in Figure 6.13. The resulting curve creates a RED profi le that can be
used for specifi c applications or network environments.

A more sophisticated RED algorithm [128] drops arriving packets in a probabil-
ity that increases as the estimated average queue size grows (rather than one mea-
sured at the precise instant that the packet arrives). This means that RED assigns
low probability (or none) for dropping an incoming packet when the queue was
relatively free for some time before this packet arrives, or high probability if the
queue was relatively full (see Figure 6.14).

The RED algorithm has two phases. In the fi rst phase, for each packet arrival,
RED calculates the new average queue size (avg) using a low-pass fi lter with an
exponential weighted moving average (explained in the following). Then, in the
second phase, it decides whether or not to drop the incoming packet based on
calculated probability (pa), which is a function of the average queue size (avg),
defi ned minimum and maximum thresholds (minth and maxth, respectively), and
load (whether the last packet arrived into a loaded or free queue).

When computing the average per each arriving packet, it is incremented or
decremented by a weighted difference between the existing queue size when the
packet arrives (qsize) and the known average at that time (avg):

avg � avg � w (qsize � avg),

where w is the weighting factor. If qsize � 0—that is, the packet arrived when
the queue was empty—RED reduces the average exponentially by the idle time

50%

50% 100%

100%

1

2 3

Drop
Probability

Q Occupancy

FIGURE 6.13

RED profi les

266 CHAPTER 6 Packet Flow Handling

of the queue, m. This means that avg � (1 � w)mavg, where m represents the
(typically small) number of packets that the queue could have received dur-
ing its idle time. Each of these imaginary packets that could arrive to an empty
queue reduces avg by a factor of (1 � w). That is, when the packet arrives, the
average is computed as if m small packets arrived at an empty queue during the
idle period, just before this packet. The average can be estimated in units of bytes
or of packets.

The probability of dropping a packet (pb) is derived from the average queue
size with regard to the thresholds; if it is below the minimum threshold, minth,
the probability will be zero, that is, the packet will not be dropped. If it is
above the maximum threshold, maxth, the packet should be dropped, or the
 probability is 1 (or some maximum defi ned probability Pmax). If the average
is between the thresholds, the probability will be linearly increased from 0 to
Pmax; that is, Pb � Pmax (avg � minth)/(maxth � minth).

The fi nal drop probability (pa) will be accelerated only if the previous packet
was also above the minimum threshold. It means that successive packets that arrive
to relatively full queues will be assigned higher drop probability than a single
packet that arrives at the same queue size and average occupancy.

Many implementations of and variations to the described RED have been
 suggested and used; the simplest set the dropping probability according to the
queue size and the thresholds, as described in the beginning of this section.

Random Early Detection algorithm maintains effi cient queue utilization, avoids
a full-queue phenomenon, and handles bursts of packets without loss. Using

Pmax

Qavg

minth maxth

100%

Drop
Probability

FIGURE 6.14

Random Early Detection

6.4 QoS Mechanisms 267

 randomness in RED algorithm eliminates synchronized packet streams that cause
the lockout phenomena described in tail drop method.

6.4.4.5 Weighted Random Early Detection
Weighted RED is used for discarding prioritized packets for buffer management,
and is simply achieved by using different RED profi les for each of the incom-
ing packets, according to the packets’ priority. An example of using Weighted
Random Early Detection (WRED) for two priority packet fl ows is shown in
Figure 6.15.

6.4.4.6 RIO (Differential Dropping)
Random Early Detection In/Out (RIO) is a variation of RED and WRED algorithms
[81]. Basically, it is a WRED with two priorities for incoming packets, called in RIO
in-packets (high priority) and out-packets (lower priority). In-packets are packets
that are in their “service allocation profi le,” whereas out-packets are those that are
out of their “service allocation profi le.” Nevertheless, the concept of RIO is general
enough to be described for the two-priority case.

The “out” RED algorithm drops the out-packets much more aggressively than
the “in” algorithm, and starts dropping them at a much smaller queue size. In addi-
tion, in-packets get priority over the out-packets not only by choosing proper
 thresholds, but also by using just the in-packets average queue occupancy for
calculating the in-packets dropping probability, whereas the average queue

30%

100%

100%

Drop
Probability

Q

20%

5%

30% 50% 70%

FIGURE 6.15

Weighted Random Early Detection

268 CHAPTER 6 Packet Flow Handling

 occupancy for the out-packets is calculated based on all packets. The result is
that the out-packets can be controlled before the queue reaches a point where
in-packets might be dropped.

Another way to look at RIO is according to two RED profi les. One drops
the out-packets from some minimum threshold queue-fi ll percentage to a
 maximum threshold, and then tail-drops all incoming out-packets, and the
other profi le begins to drop in-packets from this maximum threshold queue-fi ll
 percentage to 100% queue occupancy in increasing probability, as shown in
Figure 6.16.

6.4.4.7 Stabilized Random Early Detection
Stabilized Random Early Detection (SRED) [343] is another variant of RED, but in
SRED average queue length is not calculated and is not considered for packet drop
decisions. The packet drop probability depends only on the buffer occupancy at
the moment that the packet arrives and on the estimated number of active packet
sources (fl ows).

The main idea behind SRED is to stabilize the instantaneous queue length (its
length at any instant in time). It is assumed that under RED, the number of active
packet sources (fl ows) dramatically impacts the fl uctuations in the instantaneous
queue length.

The estimation of number of fl ows is done in SRED without monitoring all the
input packets, and without collecting state information of the fl ows and storing
them. When a packet arrives, an estimation of the effective number of fl ows [343]
can be made based on the frequency of recently buffered packets that arrived
from the same fl ow, that is, the more packets from the same fl ow arrive at the

100%

100%

Drop
Probability

Q

min max

FIGURE 6.16

Random Early Detection In/Out

6.4 QoS Mechanisms 269

queue, the fewer fl ows are assumed. This estimation is achieved by maintaining
a zombie list that records recent fl ows. When a packet arrives, it is compared
to a packet that is randomly chosen from the zombie list. The result of a hit or
a miss is used to estimate the number of active fl ows, as well as to detect mis-
behaving fl ows for more aggressive packet dropping. Then, the probability of
packet drop is calculated based on the buffer occupancy (grouped into three
 categories—up to one-sixth of the queue, one-sixth to one-third of the queue, or
more than one-third), multiplied by a factored number of the estimated active
fl ows, as described above. The mechanism described above for calculating the
packet drop probability is called “simple SRED.”

A better packet drop probability calculation is suggested (“full SRED,” or
“SRED,” for simplicity) in [343], which modifi es the “simple SRED” by a factor
that accounts for the misbehaved fl ows. These fl ows are assumed to fl ood the
queue, causing a bias in the estimated number of active fl ows, so the suggested
factor simply increases the dropping probability in intensive fl ows (those fl ows
that send large number of packets into the queue, or more than the average
fl ows).

The details, assumptions and formulas are given in [343], for those who would
like to read more on this approach.

6.4.4.8 Flow Random Early Detection
Flow Random Early Detection (FRED) [283] (sometimes called Fair RED) is also
based on RED, however, it is a per-fl ow buffer management technique. FRED tries to
solve the issue of fairness in dropping randomly selected packets, so that packets
coming from slow rate streams (fl ows) will not disappear in the randomly chosen
packets to be dropped. In other words, instead of dropping packets proportionally,
FRED drops packets from a fi ltered set of those fl ows that send larger number of
packets into the queue than the average fl ows.

The entire algorithm is not detailed here (the reader is referred to [283]),
but its principal concept is as follows: FRED works like RED, but monitors every
incoming fl ow for its packets, making sure some packets will be queued, regard-
less of the fl ow intensity (its packet’s frequency in the entire number of incom-
ing packets). In order to do this, FRED maintains a parameter qleni that counts
packets in the queue for each fl ow i, and defi nes a global parameter minq for the
minimum number of packets any fl ow is allowed to buffer unconditionally. FRED
makes sure that any fl ow will have at least minq packets in the queue, and starts
to drop packets from that fl ow randomly, as RED does, when the queue reaches
minth occupancy.

To cope with nonadaptive packet sources (those packet sources that are
not sensitive to the congestion indication created by packet loss), FRED uses
another mechanism. FRED maintains an additional parameter strikei that counts
the number of times a packet is received from source i when there are maxq
 packets in the queue, and where maxq is a global parameter denoting the maxi-
mum number of packets any fl ow (from a packet source) is allowed to queue in

270 CHAPTER 6 Packet Flow Handling

the buffer. FRED makes sure that no fl ow will have more than maxq packets in
the queue, and in cases where the fl ow’s strikei is high, FRED reduces the number
of the allowed queued packets from that packet’s source (fl ow) to that of the
 average fl ow.

Flow Random Early Detection originally assigned values to all parameters, an
algorithm to modify them while working, and a modifi ed way to calculate the aver-
age queue length, but these details are not relevant to the understanding of FRED’s
principle.

6.4.4.9 Balanced Random Early Detection
Balanced Random Early Detection (BRED) [23] is a close variant of FRED. It is also
a per-fl ow buffer management technique, and a very simple algorithm.

BRED maintains per-fl ow accounting for the active fl ows in the queue, and
drops packets based on the queue occupancy for those fl ows. Calculation com-
plexity is limited by the queue size (state information is maintained only for fl ows
having packets in the queue).

Like FRED, BRED maintains a parameter qleni which counts packets in the
queue for each fl ow i, and, in addition, it defi nes three global parameters: (1) minq,
for the minimum number of packets any fl ow is allowed to buffer unconditionally;
(2) thrq, for the number of packets any fl ow can have in the queue before its pack-
ets start being dropped more aggressively; and (3) maxq for the maximal number of
packets any fl ow is allowed to buffer in the queue. Two additional parameters, p1
and p2, denote the dropping probabilities of packets from a fl ow, when the number
of packets from that fl ow exceeds minq (where p1 applies) or exceeds thrq, respec-
tively (where p2 applies), and p2 � p1.

BRED makes sure that any fl ow will be allowed for at least minq packets in
the queue uninterruptedly, and starts to drop packets from that fl ow randomly, at
 probability p1, when the queue contains more packets from that fl ow than minq.
BRED drops the packets of a fl ow if the number of packets from that fl ow exceeds
thrq in the queue with probability p2, and drops all packets of a fl ow if the number
of packets in that fl ow exceeds maxq.

6.4.4.10 Longest Queue Drop and Random Dropping
Longest Queue Drop (LQD) [401] is also a per-fl ow buffer management method,
like FRED and BRED. The difference between LQD and FRED or BRED is that LQD
drops packets within the queue according to some algorithm, whereas FRED and
BRED calculate the dropping probability of arriving packets and drop them accord-
ingly before they enter the queue.

This mechanism works by soft-partitioning the queue, so that every incoming
fl ow gets a partition for its use. The nominal buffer allocation, or partition (bi),
that fl ow i gets is simply B/n, where B is the entire queue size, and n is the
 number of fl ows (packet sources) that send packets to the queue. When fl ow i
requires more than bi at some point of time, it simply uses the unused queue if
there is enough room in it (if the total occupancy is less than B). Once a packet

6.4 QoS Mechanisms 271

from fl ow j arrives to a full queue (i.e., the total current occupancy of the queue
is B), and this fl ow still has room for its packets in “its” partition (i.e., the fl ow’s
current occupancy qj is less than bj), the LQD algorithm clears room for this
packet by dropping, or pushing out, the HOL packet belonging to the fl ow that
most exceeds its quota in the queue (i.e., the fl ow k for which qk � bk is the
 largest of all fl ows).

Simply put, the entire queue is partitioned for the use of each of the incoming
fl ows. Overfl owed packets from some fl ow may be queued on other partitions’
expense as long there is room. When a packet arrives that belongs to a fl ow that
has not yet queued to its full quota, another queued packet that is overquota is
dropped, thereby allowing the entitled packet to be queued.

Dynamic soft partition with Random Drop [401] is identical to LQD, with
one very small modifi cation: When an incoming packet fi nds the queue full (the
queue’s total occupancy is B), then LQD randomly selects such a fl ow from those
that exceed their allocated partitions (i.e., their qk > bk), instead of searching for
the fl ow that most exceeds its quota in the queue (i.e., the fl ow k that qk � bk is
the largest of all fl ows). It then drops its HOL packet, thus clearing room for the
incoming packet.

LQD maintains a partition and a queue status for each fl ow, and requires
running a search among all the queued fl ows to fi nd out which is the longest
overfl ow whenever there is a full queue. This calls for O(log n) complexity, and
O(n) space requirements. Approximated LQD (ALQD) is proposed in [401], similar
to a scheme called Quasi-Pushout [285], to simplify the time and space complexity
of this buffer management scheme to O(1).

6.4.4.11 BLUE
Blue [124, 125] is a simple AQM algorithm that tries to improve RED with regards
to network utilization (along with its queues), and to packet loss.

Blue calculates the incoming packet drop (or mark) probability (p) according
to four predefi ned parameters: L, a threshold to the queue length at the instant that
the packet arrives, inc_delta and dec_delta, the increased or decreased change in p,
respectively, and freeze_time, a minimal time interval in which modifi cations to p
cannot be made. The calculating algorithm is as follows:

Start with some arbitrary dropping probability p. Each arriving packet is dropped
(or marked) at probability p. If the packet is dropped, or the instantaneous queue
length exceeds L, then p is increased by inc_delta, provided, however, that the time
interval since p was last updated exceeds freeze_time. In other words, p is updated
according to the packet loss and queue length, but not too often, as defi ned by
the minimum interval freeze_time. In other words, the changes in p are not too
aggressive. Conversely, if the incoming packet arrives into an empty queue, then p
is decreased by dec_delta (provided, again, that the time interval since p was last
updated exceeds freeze_time).

As a result, instantaneous queue length, packet loss, and link utilization
(empty queue) are used as the indices of traffi c load to determine the dropping

272 CHAPTER 6 Packet Flow Handling

probability, rather than just queue occupancy, as other AQM techniques
usually use.

A variation of Blue [124, 125] ignores L and the instantaneous queue length,
and increases p just when the packet is dropped, and if it exceeds the permitted
update frequency. However, considering the instantaneous queue length in calcu-
lating p makes it possible to leave space in the queue for transient bursts, as well as
to control the queuing delay in large-size queues.

6.4.4.12 Partial Packet Discard
Partial Packet Discard (PPD) is a technique that originated with the concept of ATM,
where packets are partitioned among several cells, and, once a cell is dropped from
the queue, the rest of the packet’s cells become useless. The purpose of PPD is to
identify, from the rest of the incoming cells, those belonging to the same packet
from which a cell was dropped. Once identifi ed, these cells can be discarded, so as
better to utilize the buffer.

This principle can be applied to any sequence of packets that can be identifi ed
as belonging to an entity that is worthless if not received in whole (e.g., at the IP
level, it can be packet segments).

PPD algorithm specifi cally describes the mechanism of identifying the packet
cells in ATM, as defi ned in the AAL5 (ATM Adaptation Layer 5) and the VC (virtual
channel) of the cells. Any dropped cell results in the addition of its VC into a drop
list, and any subsequent cell belonging to the same VC is dropped, until the last cell
of this packet arrives, and its VC is removed from the drop list. The last cell of a
packet is identifi ed as an EOM (end of message) cell by the payload type identifi er
(3 bits) of the cell header.

Some ineffi ciency still exists, since part of the packet is still handled by the
queue, wasting buffer space. Early Packet Discard solves this ineffi ciency.

6.4.4.13 Early Packet Discard
Early Packet Discard (EPD) is also a technique originating with ATM, but it improves
on the PPD just described. The main idea is not to wait until the queue is full and
only then to start to drop cells that belong to the same packet, but rather to begin
doing so before the queue is full. The EPD mechanism sets a buffer threshold, and
when the buffer occupancy exceeds this threshold, EPD begins to drop cells that
belong to new packets (identifi ed by the fi rst cell of a new VC), and add their VCs
to the drop list. The rest of the mechanism is as described in PPD, and until the
EOM cell arrives, cells that carry VCs that are in the drop list are dropped (so that
the entire packet is discarded) until an EOM cell arrives and the VC is removed
from the drop list.

Both PPD and EPD are insensitive to the intensity of the fl ows, that is, to packet
sources that might dominate the traffi c and consume all resources and buffers
due to their intense packet transmit activity. To solve the issue of unfairness, Early
 Selective Packet Discard was introduced.

6.4 QoS Mechanisms 273

6.4.4.14 Early Selective Packet Discard
Early Selective Packet Discard (ESPD) is the last technique described here that
 originated from the ATM world. This technique is an enhancement of the EPD and
PPD, which aim to drop all the cells belonging to a packet once there is congestion,
while at the same time preserving some fairness by dropping more packets from
intense fl ows than from moderate ones.

ESPD simply adds a queue threshold that is lower than the EPD’s threshold, and
removes VCs from the drop list in a different way. Instead of removing the VC from
the drop list when the packet ends (when the EOM cell arrives), ESPD leaves the VC
in the drop list until the lower threshold is reached, thereby allowing new VCs to
enter the queue instead of those that are listed in the drop list.

The drop list itself is limited, so that just a few VCs will be discarded (unless
the queue is full, and VCs are always added to the drop list). Additionally, there is
a drop timer ticking when there are VCs in the drop list that makes sure that the
drop list is refreshed from time to time, when it is expired, to maintain fairness
across sessions.

6.4.4.15 Buffer Management Summary
We discussed in this section various buffer management schemes, and we can sum-
marize them by making distinctions between them along three dimensions [143].
Each of these dimensions is concerned with the question of detecting or anticipat-
ing a congestion situation, handling such a situation, and (optionally) notifying the
end nodes about it. These dimensions are (1) performance objectives, (2) param-
eters used, and (3) policies regarding dropping or marking packets.

Performance objectives can be (1) achieving fairness, or (2) maximizing utiliza-
tion while minimizing packet delay (latency that directly affects queue size) and
packet loss, or (3) stabilizing queues in the network. The parameter used by these
schemes is usually queue length, but input rate or idle link events are used as well,
usually as congestion indices.

6.4.5 Packet Scheduling and Service Discipline
Service disciplines are based on various scheduling techniques, methods, and
 algorithms. Scheduling methods are critical elements in packet networking.
 Scheduling algorithms determine how to solve packet contentions, like which
queue (or packet) to serve (or transmit) next. Priority is often attached to sched-
uling algorithms for handling various QoS parameters associated with different
queues (or packets).

There are many scheduling methods, schemes, and algorithms, for various net-
work confi gurations, implementation complexity, performance, and QoS require-
ments. The scheduling methods can be categorized in many ways. One way to
distinguish between the schedulers [361] is between time stamp-based (or dead-
line-based) algorithms and Round-Robin-based algorithms. Time stamp-based algo-
rithms achieve good fairness and delay bounds, but suffer from computational

274 CHAPTER 6 Packet Flow Handling

complexity, whereas the Round-Robin-based algorithms are usually simpler, but
suffer from large delay bounds.

Another way to categorize schedulers [440] is by their work-conserving nature.
A work-conserving scheduler is never idle when there is a nonempty queue,
whereas the nonconserving scheduler can be idle even when there are packets in
its queues, due to its scheduling algorithms (e.g., each packet has an eligible time
to be served, and even when the server is idle, packets will not be served if they
are not eligible).

Some schedulers are coupled with traffi c shapers, to provide end-to-end delay
guarantees on a per fl ow basis or other QoS requirements. These combinations
are termed Rate-Controlled Service schedulers. This category of schedulers will
not be described in this subsection, and the interested reader is referred to [441],
for example.

There is a vast amount of research and practitioners’ literature that studies
 scheduling methods and proposes many kinds of schedulers and variations of sched-
ulers to meet certain packet or cell networks, interconnection networks, tandem
queues, and so on. This subsection describes only those scheduling techniques
that we would likely fi nd in network processors, traffi c managers, and network
requirements environments. It does not discuss many other scheduling algorithms
such as Stop-and-Go [150], Elastic Round-Robin [244], Prioritized Elastic Round-
Robin [243], Smoothed Round-Robin [80], Stratifi ed Round-Robin [361], Stochastic
Fair Queueing [311], Bin Sort Fair Queuing [78], Leap Forward Virtual Clock [399],
 eligibility-based Round-Robin [279], and Rate-Controlled Static Priority [441], just
to mention some.

Another important category of scheduling policies is hierarchical or aggregat-
ing policies, which are also not described in this subsection. These policies are
also called Class-Based Queueing [130]. Hierarchical Round-Robin [242] and Hier-
archical Packet Fair Queueing (H-PFQ) [49] are examples of policies that belong
to this category. In this group of schedulers, several scheduling policies can be
used for various levels of the hierarchy, or even in-between classes at the same
level (i.e., interactive classes may be serviced by priority-driven schedulers, while
 noninteractive classes may use rate-based schedulers). Scheduling algorithms that
involve multiple nodes are also not treated in this subsection.

Finally, it should be emphasized that we simplify these schedulers for the sake
of clear understanding of what is required. A more detailed description of schedul-
ing can be found in [76], for example.

6.4.5.1 Scheduling Parameters and Fairness
Each scheduling mechanism can be characterized by “performance,” or behavior
that can be evaluated according to several parameters, such as delay, utilization (in
terms of network usage and in terms of overhead), complexity, robustness, fairness,
and starvation. Many of these parameters are trade-offs and the different schedul-
ing schemes sometimes improve one parameter at the expense of another. In the
trade-off among delay, complexity, and fairness, it can be argued that complexity

6.4 QoS Mechanisms 275

and delay are most important, since fairness affects only the short-term distribu-
tion of service. If complexity’s importance is downgraded when using network
processors that handle all scheduling internally and transparently, delay becomes
the most important issue, since it affects burstiness, and as a result, affects buffer
sizes that limit packet losses. Ideal delay behavior of a scheduler will isolate queues
in terms of their mutual sensitivity, and will be bounded independently of number
of queues. Utilization and delay can be represented quantitatively, in absolute or in
relative terms.

Starvation means that in the case of higher priority packets, there is a chance
that low-priority packets will not receive any attention at all. Priority can be
achieved by giving 100% attention to any packet of higher priority, or, to decrease
the likelihood of consequent starvation, by giving that packet a higher chance of
service than all other packets (say, twice).

Fairness means that all packets (of the same class or importance) will receive
equal attention from the scheduler, regardless of history of scheduling, place in the
queue, and so on. This is basically a qualitative measure, and several attempts to
measure and quantify it are presented in the following.

Jain’s fairness index [233] computes the relation between all queues’ service; it
is 1 if it is perfectly fair, and approaches 0 if it is not:

FI �
 � �

n

 x i �

2

 }}}

n �
n

 x i

2

where n is number of sources, and xi is the normalized service for each of the i
queues. Normalized service can be calculated by dividing the actual service by any
criterion to fi nd the fair service.

Another way to obtain fairness is by a Fair Index (FI) (termed “normalized ser-
vice” in [151]) and Service Fair Index (SFI) [396], which are obtained by the ratio
of the service that the scheduler gave to queue i, and the assigned minimal, guaran-
teed service defi ned for that queue (GSi):

 FI i �
 S i (τ1,τ 2)

 }}}} GS i

where Si (τ1, τ2) is the service received by queue i between τ1 and τ2. Then, the
SFI is defi ned by: SFI � |FIi � FIj|. A scheduler is perfectly fair if it always satisfi es
SFI � 0, for any two queues i and j.

A worst-case packet fair [50, 347] is another fairness measure that compares
packet fl ow to ideal fair scheduling (f luid flow). In a fair scheduler, any packet is not
delayed in its queue more than its queue size (at its arrival time) divided by the rate
the queue is being served, Qi/ri. A worst-case fair scheduler is one that maintains for
all its queues an upper bound of additional worst case delay Ci, expressed in absolute
time (i.e., Qi/ri � Ci). This time can be normalized by the relative queues’ weight
(i.e., Ci � Ci ri/r), and the normalized worst-case fair index (WFI) is defi ned to be the
maximal ci among all queues (i.e., WFI = max

i
 {Ci}).

276 CHAPTER 6 Packet Flow Handling

6.4.5.2 Scheduling Methods
The following subsections describe the most important or common scheduling
methods that are used in traffi c managers or in network processors.

6.4.5.2.1 First In, First Out
Also known as FCFS (fi rst come, fi rst served), this is the simplest scheduling mech-
anism, and works exactly as its name implies: the fi rst packet to arrive is handled
fi rst. In other words, packets are handled by their order of appearance. There are
many defi ciencies in this mechanism, such as there being no way to prioritize
incoming packets or to treat various classes of incoming packets, as well as to
 suffer a stall where a very long packet is treated and the other incoming packets
are waiting.

In designing FIFO queues, one must consider the nature of the incoming traf-
fi c, and prepare suffi cient buffer size to accommodate the incoming packets. In
case of overfl ow in the incoming queues, packets must be dropped. When used in
cascade queues, the uncorrelated queueing delays in the chained queues creates a
severe problem of jitter. An example of FIFO scheduler, which handles three packet
sources, is depicted in Figure 6.17, where ta is the packet arrival time and t is the
scheduling time.

6.4.5.2.2 Strict Priority
Also known as Priority Queueing (PQ), this is the second simplest scheduling
algorithm. Taking into account the priority of packets, packets are simply reor-
dered in the queue so that the highest priority packet is placed at the head
of the queue. There are many defi ciencies in this mechanism, such as a poten-
tial starvation of low-priority packets. An example of Strict Priority (SP) scheduler,
which handles three prioritized packet sources, with W = 3 the highest priority, is
depicted in Figure 6.18.

6.4.5.2.3 Round-Robin
This mechanism assumes several queues in which each receives a specifi c type
of packets (for instance, different classes of packets, different sources, etc.). The
Round-Robin (RR) scheduler simply chooses one queue at a time, in a cyclical order.

9 8 7 6 5 4 3 2 1 010111213141516
FIFO

ta 9 8 7 6 5 4 3 2 1 0

134 2

56

8 79

94 6 3 58 2 7 1
t

FIGURE 6.17

First In, First Out

6.4 QoS Mechanisms 277

It picks the fi rst packet in that queue, if there is one, and then goes to the next
queue, and so forth (see Figure 6.19). In this way no starvation can happen, and
each source of a class of packets is responsible for its queue behavior. If all sources
are equal in priority and average packet size, the scheduler will perform reasonably
well. Still, very long packets by one source might cause uneven service utilization.

For cases where sources have priorities, the Weighted Round-Robin (WRR)
scheduler, described in the following, is a better answer. For cases where sources
have variable packet sizes, the Defi cit Round-Robin (DRR) scheduler, described in
the following, provides the best solution.

6.4.5.2.4 Weighted Round-Robin
This scheduler is based on the RR mechanism, and addresses the issue of handling
different priorities of the incoming packets. Each of the queues gets a weight pro-
portional to the priority of the packets it receives and contains, or related to this
priority by some rule or formula. Then, the WRR scheduler picks packets from the
queues relative to their weight rather than one by one, as with the regular RR
scheduler. This means, for example, that in a three-queues system (see Figure 6.20),
where queues A, B, and C have weights of wa � 1, wb � 2, and wc � 3, respectively,
the scheduler will approach queue A 17% of the time (�wa/(wa � wb � wc)),
queue B 33%, and queue C 50%. This can be achieved by approaching the queues
in many ways, for example, through a repeated sequence of AABBBBCCCCCC, or
of ACBCBCACBCBC. Obviously, the latter is better for fairness purposes.

9 8 7 6 5 4 3 2 1 0 10 11 12 13 14 15 16
SP

ta
 9 8 7 6 5 4 3 2 1 0

1 3 4 2

5 6

8 7 9

5 4 6 3 9 8 2 7 1
t

W � 1

W � 2

W � 3

FIGURE 6.18

Strict Priority

9 8 7 6 5 4 3 2 1 0 10 11 12 13 14 15 16
RR

ta 9 8 7 6 5 4 3 2 1 0

1 3 4 2

5 6

8 7 9

9 4 6 3 5 8 2 7 1
t

FIGURE 6.19

Round-Robin

278 CHAPTER 6 Packet Flow Handling

6.4.5.2.5 Defi cit Round-Robin

This scheduler [385] modifi es the RR mechanism to handle uneven packet sizes
that come from different sources, thus hurting the fairness of the scheduling mech-
anism. DRR can be regarded as a type of Packet Fair Queuing (PFQ) scheduler,
described later in a following subsection.

Each queue, if it has packets to be served and in its turn, is served if a “quota”
of service it has accumulated up until that point is suffi cient to handle its
head-of-line (HOL) packet. If the queue cannot be served, its quota for the next
round is increased, and if the queue is served, its quota is decreased by the size of the
packet the queue just released. An algorithm that will implement DRR is as follows
(see also Figure 6.21).

Qi is the allocated quota for queue i for each of the RR iterations.

 DQi is a variable describing the defi cit that queue i has before each of the
RR iterations.

 AQ is a list of queues (by indices) that contains at least one packet to be
served.

 Si(k) is the size of the head-of-line (HOL) packet in queue i, at the RR
iteration k.

 Upon packet arrival to a queue i, and when queue i is not in AQ, then its
index (i) is added to the tail of the AQ.

 In every RR iteration k, the queue i in the head of the AQ is checked for
potential service:

 a) DQi ← DQi � Qi
 b) if Si(k) ≤ DQi then
 1. DQi ← DQi � Si(k)
 2. Serve HOL packet of queue i

 c) if queue i still has more packets to be served, i is moved to the
tail of AQ.

 d) if queue i is empty, then i is removed from AQ, and DQi ← 0.

9 8 7 6 5 4 3 2 1 0 10 11 12 13 14 15 16
WRR

ta

W � 1

W � 2

W � 3

9 8 7 6 5 4 3 2 1 0

1 3 4 2

5 6

8 7 9

9 4 6 3 5 8 2 7 1
t

FIGURE 6.20

Weighted Round-Robin

6.4 QoS Mechanisms 279

A DRR scheduler can be implemented on a regular RR scheduler (without any
priority considerations) or on a WRR scheduler, where in each RR iteration, higher
priority queues are approached more than lower priority queues.

6.4.5.2.6 Earliest Due Date
Also known as Earliest Deadline First (EDF) [287], EDD assigns a deadline by
which each packet must be served, in order to meet latency requirements, for
example. The scheduler is supposed to arrange the packets so as to serve the pack-
ets within their deadlines; however, meeting these deadlines is not always feasible
due to overbooking, and packets then start to miss their deadlines.

There is a fairness problem with this mechanism, since packets that are received
last with some deadline will suffer from a longer delay than packets with the same
deadline that were received before them.

Several extensions exist to the EDD scheduler that reduce or limit delay or jitter.
Delay-EDD [127] is a work-conserving algorithm, intended to guarantee bounded
delay, provided the source of the packets obeys an agreed-on average and peak
packet rates that it sends to the scheduler. Jitter-EDD [420], on the other hand,
is a nonwork conserving algorithm intended to guarantee a bounded delay-jitter
(i.e., a maximum delay difference between two packets) by “holding” packets until
they are eligible in terms of the jitter.

6.4.5.2.7 Processor Sharing and Generalized Processor Sharing
Processor Sharing (PS) is a technique [257, 258] that serves N FIFO queues simulta-
neously by dividing the entire service capacity equally among all nonempty queues
(each gets 1/M of the service capacity, if M queues are nonempty, M � N). Proces-
sor Sharing is not practical for packet processing, because it splits service attention
infi nitesimally between all queues. In other words, PS services each of the queues
for whatever duration it is available for servicing, whereas for packet processing,
this duration must be at least as long as the time required to handle an entire
packet. Generalized Processor Sharing (GPS) is a generalization of PS, to allow non-
even requirements (priorities) from each of the queues.

1 0 1 0 1

2 1 1

DQ 1 0 1 0 1 0 1

9 8 7 6 5 4 3 2 1 0 10 11 12 13 14 15 16
DRR

ta 9 8 7 6 5 4 3 2 1 0

1 3 4 2

5 6

8 7 9

9 4 6 3 5 8 2 7 1

2

2 3
3

2 3 4

Q � 1

t

FIGURE 6.21

Defi cit Round-Robin

280 CHAPTER 6 Packet Flow Handling

GPS is the ideal scheduling mechanism but, unfortunately, it is also impracti-
cal for packet handling. Nevertheless, it is the basis for a whole class of important
schedulers called Packet Fair Queueing (PFQ).4 In short, the GPS scheduler [348]
will grant queue i at time t with a service rate gi (t) of:

 g i (t) �
 w i }}}}

 �j∈B(t)

 w j

 r

where r is the total available service rate, B(t) denotes the set of nonempty queues
at time t, and wi is the relative weight of queue i (or the minimum, or guaran-
teed allocated service rate for queue i, given �i

 w i � r). An example of GPS with
weights of 1/2, 1/4, and 1/4 is shown in Figure 6.22.

A GPS scheduler is perfectly fair, but, as was mentioned above, it is a “fl uid-
input” scheduler that can take from the input as much as it requires to fi ll in
available service space. This is not appropriate for packet input because of the
packet’s structure, which cannot be subdivided as the scheduler is available
(i.e., the scheduler either has available space for an entire packet or it does not).
The next subsections describe various approaches for approximating the GPS for
the packet case.

6.4.5.2.8 Packet Fair Queueing, Packet Approximation of GPS
The problem in using GPS for packets is that packets are quantum units of data, and
either the scheduler services the queue or it does not. In cases where the queue
deserves service but the packet has not yet been received, a problem is created in
which the server is unemployed while it waits for the packet. The decision to wait
itself depends on knowledge that does not yet exist; that is, what will happen in the
queue and for how long it should wait.

The basic idea in handling packets is to emulate the GPS continuous case by
ensuring that packets will receive the same treatment as if they were continuous

4Fair Queueing was introduced by Demers [100] and later its weighted version [348] was intro-
duced, describing the WFQ scheme (described in the following); here we use PFQ as a general
concept, not just WFQ.

9 8 7 6 5 4 3 2 1 0 10 11 12 13 14 15 16
GPS

ta 9 8 7 6 5 4 3 2 1 0

1 3 4 2

5 6

8 7 9

9
6

t

1 7 2 3 4
8

5 1/2

1/4

1/4

FIGURE 6.22

Generalized Processor Sharing

6.4 QoS Mechanisms 281

streams of bits. PFQ or Packet Approximation of GPS (PGPS)5 [348] techniques are
based on GPS in that they maintain a function (the “system’s virtual time,” V(t)), that
follows the progress of the GPS server and tries to stay as close to it as possible.
This function is used to determine the virtual fi nish time of all the HOL packets in
all queues, which represent the time that these packets must leave the system, and
to time stamp these packets accordingly. Packets are then served according to the
increasing order of their time stamps (virtual fi nish time).

Serving the packets according to their virtual fi nish time, by increasing order, is
a policy called “Smallest virtual Finish time First” (SFF) [49], and is very clear and
intuitive.

There is another policy that maximizes the schedule fairness not only by choos-
ing packets according to their time stamps SFF, but that also chooses among the
eligible packets. The eligible packets are those that would have been served at
the same time as their equivalents in the GPS server. This policy is called “Smallest
Eligible virtual Finish time First” (SEFF) [49]. In other words, this PFQ subcategory,
using the SEFF policy, also considers the packets’ virtual start time. This can be
achieved or emulated, among other techniques, by a rate-controller or a shaper
[396] positioned just before the scheduler, or integrated with the scheduler; thus,
this PFQ subcategory is sometimes called shaper schedulers.

Regardless of the policy used, the end result is that the scheduler picks up pack-
ets from queues not only by their priority, but also by their length, that is, a short
lower-priority packet might be picked up by the PFQ scheduler before a longer,
higher-priority packet.

Let us begin to explain the PFQ techniques by assuming, for simplicity, a theo-
retical case where the queues are never empty. After doing this, we will move to
the more general case, in which the queues do not fulfi ll this assumption; that is,
they are sometimes idle or empty. The treatment in this general case differs among
the PFQ techniques, and is described later.

Under the fi rst assumption in which the queues are never empty, we can emu-
late the GPS scheduling mechanism by assuming that each packet receives service
immediately after the packet that arrived prior to it in its queue. Packet k receives
the service rate (ri) of the queue (i) to which it belongs, and the fi nish time (Fi,k)
can be calculated by:

 F i,k � F i,k�1 �
 L i,k

 }} r i

where Li,k is the length of arrived packet k in queue i, and let Fi,0 � 0 for all
queues (i). Now, packets will be served according to the increased value of Fi,k
(if several packets will have the same fi nish time, they will be picked arbitrarily).6

5Here we refer to PFQ and PGPS as a general class of schedulers that tries to “packetize” the fl uid-
based GPS. PFQ and PGPS sometimes refer to a specifi c scheme of this class of schedulers (as
described in the following subsection).
6In a busy server, when all its queues are nonempty always, all packets are eligible; hence, it is right
to use SFF policy.

282 CHAPTER 6 Packet Flow Handling

The end result will be that the server will be fully employed, and packets will be
served packet-by-packet at the server rate r. Moreover, each packet will terminate
its service time at Fi,k, as if it were receiving the GS rate of the queue it belongs to
(ri), exactly like in the GPS case.

In the real world, however, queues are not always busy. In order to prevent the
server from being nonproductive (if the service rate of the empty queue will be
unused), the other queues get increased service rates, at the expense of the empty
queues. On the average, and for long enough periods, all the queues will receive the
reserved service rate. The virtual fi nish time (Fi,k) can now be calculated by using
the system’s virtual time V(t), which takes into account these increased service
times by being a representation of the progress of the work done by the system:

 F i,k � max � F i,k�1 , V(a i,k)� �
 L i,k

 }} r i

where ai,k is the arrival time of packet k into queue i, and V(ai,k) adjusts the work
done by the server for the nonempty queues, while queue i was waiting for this
packet k.

The following subsections describe various algorithms that compute the sys-
tem’s virtual time in various ways, as well as using the SFF or the FESS policies.

Weighted Fair Queueing (WFQ) is a PFQ scheduler [348] that uses the SFF policy
described in the previous PFQ subsection. WFQ uses a system’s virtual time func-
tion that represents the progress of the work done by the server, defi ned by:

 V(0) � 0

V � t j�1 + τ � � V � t j�1 � � τ r }}}
 �i∈ B j

 r i

where Bj is the set of queues that are nonempty in the interval (tj�1, tj), ti is the
time when a packet arrives or departs the system, and tj�1 � τ � tj. The rate of
the progress achieved by the server is ∂V(t)/∂τ � r/ � i∈ Bj r i, and since �i ri � r, this
rate is always bigger than or equal to 1 (i.e., when there are empty queues, the
system’s virtual time runs faster than time τ). In the corresponding GPS scheduler,
the non-empty queue receives more service, and more progress can be achieved in
this queue (at the expense of the empty queues); thus, the virtual time of the entire
system seems to fl y more quickly. Moreover, the reader can verify that the service
granted to each nonempty queue i at time t is the rate of progress achieved by the
server, multiplied by the relative weight of this queue, that is, gi (t) � ri r/ � j∈ B(t)rj,
as defi ned in the GPS schedule.

The resulting fi nish virtual time is: F i,k � max� F i,k�1 ,V(a i,k)� � L i,k / r i . The exam-
ple shown in Figure 6.23 clarifi es this important scheduler.

A packet can depart the WFQ server at a maximum delay of the maximal packet
length served (Lmax) divided by the server’s service rate (r), relative to the equiva-
lent GPS server [348]; that is, d_i,k WFQ � d_i,k GPS � L max /r, where d_i,k WFQ and
d i,k

GPS are the departure times of the kth packet on queue i under WFQ and GPS,
respectively. However, a packet can depart the WFQ server before the departure

6.4 QoS Mechanisms 283

time in an equivalent GPS server. This means that the worst-case packet fair of
WFQ can be more than a packet, and is found to be (see [50]) equal or greater than
((N�1)/2) Lmax/r � O(N), where N is number of queues.

Weighted Fair Queueing scheduler has a complexity of O(N), where N is the
maximum number of nonempty queues, due to the required calculation at each
packet arrival or departure (the system’s virtual time and the set Bj). Other PFQ
algorithms have been developed in order to reduce this complexity, since this is a
major issue in implementing WFQ. Another alternative is, of course, to use network
processors.

Virtual Clock (VC) is also a PFQ scheduler [442], and it also uses the SFF policy
described in the PFQ subsection above. VC tries to ease the complexity involved
in calculating and maintaining the system’s virtual time for each packet arrival or
departure. VC uses real time to approximate the system’s virtual time function, as
defi ned by:

V(t) � t
so,

 F i,k � max � F i,k�1 , a i,k � � L i,k � r i

Since real time is always less than or equal to the system’s virtual time of WFQ,
a VC scheduler will pick packets arriving to empty queues more quickly than WFQ
will pick them. This is due to the gap created between the virtual fi nish time of
the working queues (and the time stamps their packets get), and the slower real
time that will be assigned to the long-idled queues when they fi nally get packets.
As a result, and because of ignoring the work progress done by the server, queues
that have more “busy periods” may receive poorer service from the VC scheduler,
even if those queues did not overburden the server at the expense of the other
queues. In other words, packets from one queue that use the server when there
are no packets in the other queues will be stalled when packets arrive to the other
queues; these later packets will get unfair priority before the packets of the fi rst
queue. This is shown in the example in Figure 6.24.

3
1 22 15 13 10 6 2 0

16 15 12 10 6 2 29

29 13 12 8 6 2

16 8 9 8 7 6 5 4 3 2 1 0 10 11 12 13 14 15 16
WFQ

ta

1 / 2

1 / 4

1 / 4

9 8 7 6 5 4 3 2 1 0

1 3 4 2

5 6

8 7 9

9 4 6 3 5 8 2 7 1

13 9 8 6 2 0 V (t)

t

3
1 14

3
1 18

3
1 18 3

1 20 3
1 22 3

2 23

3
1 24

3
1 30

3
1 24 3

1 30

FIGURE 6.23

WFQ scheduler

284 CHAPTER 6 Packet Flow Handling

The normalized WFI of a VC algorithm can be arbitrarily large, even in a simple
two queue case [348, 397]. The complexity of VC, however, is relatively small,
O(log N), where N is the maximal number of nonempty queues.

Self-Clocked Fair Queueing (SCFQ) is another PFQ scheduler [151] that uses the SFF
policy. It also simplifi es the maintenance of the system’s virtual time by assigning
the fi nish time of every processed packet to the system’s virtual time. The most
important aspect of SCFQ is that it is better than a VC scheduler in terms of fairness
because it keeps the system’s virtual time closer to the work progress done (the vir-
tual fi nish time of the processed packets). It avoids the time gap in the case of a long-
idled queue that receives packets and time stamps based on an “old” system’s virtual
time that makes them prioritized. This is shown in the example in Figure 6.25.

While this scheduler is simpler than most PFQ schedulers, it still suffers from
larger delay bounds than WFQ [440], although its WFI is similar to WFQ.

Worst-Case Fair Weighted Fair Queueing (W 2FQ) As was explained for the WFQ,
the maximum delay between the times a WFQ scheduler will serve a packet
and the time a GPS will serve it is equal to the processing time of the largest
packet. However, a packet can fi nish service in a WFQ system much earlier than
in an equivalent GPS one, and create an unfair situation for some of the packets

25 11 9 0 11 8 6 5 2 23

23

11

25 9 9 5 5 1

11 11 3

9 8 6 6 2 2 0

9 8 7 6 5 4 3 2 1 0 10 11 12 13 14 15 16
VC

ta� V (t)

1/2

1/4

1/4

9 8 7 6 5 4 3 2 1 0

1 3 4 2

5 6

8 7 9

9 4 6 3 5 8 2 7 1
t

FIGURE 6.24

Virtual Clock

19 18 14 10 6 2 31 32

31

32

34 18 14 10 6 2

19 18 10

31 19 18 10 6 2 0

9 8 7 6 5 4 3 2 1 0 10 11 12 13 14 15 16
SCFQ

ta

1/2

1/4

1/4

9 8 7 6 5 4 3 2 1 0

1 3 4 2

5 6

8 7 9

9 4 6 3 5 8 2 7 1

31 31 18 18 18 14 10 6 2 0 V (t)

t

FIGURE 6.25

Self-Clocked Fair Queueing

6.4 QoS Mechanisms 285

(see for example in [50]). W2FQ implements the SEFF policy and is a shaper
scheduler subcategory of PFQ.

As in the WFQ case, a packet can depart the W2FQ server at a maximum delay
of the maximal packet length served (Lmax) divided by the server’s service rate (r),
relative to the equivalent GPS server [50]; that is, d i,k

W 2FQ � d i,k
GPS � L max /r, where d i,k

W 2FQ
and d i,k

GPS are the departure time of the kth packet on queue i under W2FQ and
GPS, respectively. However, the SEFF policy reduces the time difference between
packet departures in the W2FQ server and the equivalent GPS server. This means
that the WFI of W2FQ is better than that of WFQ, and found to be [50] equal to
Lmax/r. The WF2Q algorithm has the same WFQ complexity (O(N)), and is also not
easy to implement.

Starting Potential-based Fair Queue, WF 2Q1 Despite the name, WF2Q� [49] is very
different from WF2Q, and the common things they share are: fi rst, the fact that both
are PFQ algorithms; second, the fact that both are trying to improve the WFI; and
third, that they both implement SEFF policy, albeit in a very different way. Starting
Potential-based Fair Queue (SPFQ) [397] was suggested in parallel with WF2Q, and
proposes the very same algorithm.

WF2Q� and SPFQ offer low implementation complexity, and, at the same time,
have the same bounded delay of a packet compared to the GPS scheduler and the
WFI of the WF2Q. The system’s virtual time in these algorithms is defi ned as:

V (t � τ) � max(V(t) � τ, min
i∈B(t)

 (S i
 h i (t)))

where hi(t) is the sequence number of the HOL packet in queue i, S i
 h i (t) is the vir-

tual start time of that packet, and B(t) is the set of nonempty queues at time t.
This defi nition of the system’s virtual time guarantees that it is equal to or bigger

than the minimum of all virtual start times of all HOL packets. Any arriving packet
will have a virtual starting time at least equal to one of the queued packets. This
defi nition also makes sure that at least one packet in the system has a virtual start-
ing time that is lower than the system’s current virtual time, thus making this
packet eligible to be served and enabling the SEFF policy to be implemented and
to be work-conserving.

To decrease implementation complexity, the start and fi nish virtual times are
redefi ned. Instead of calculating start and fi nish virtual times for each packet, a pair
of start (Si) and fi nish (Fi) virtual times is calculated for each queue i, whenever a
packet k arrives to the HOL according to:

 S i � � F i
max { F i , V(t)}

 if packet k was in a nonempty queue

 if packet arrived to empty queue

 F i � S i �
 L i

k
 } r i

where L i
k is the length of packet k in queue i (the one that became the end-of-line

packet). Maintaining the set of eligible queues sorted by their virtual fi nish time and
the system’s virtual time can be accomplished with O(log N) complexity [49].

286 CHAPTER 6 Packet Flow Handling

6.4.5.3 Packet Scheduling Summary
A taxonomy of service disciplines was proposed [440] that summarizes the differ-
ent kinds of schedulers. According to this taxonomy, there are two dimensions by
which schedulers can be categorized: one axis is the work conserving property
(either work conserving or nonwork conserving), and the other axis is whether
the server contains a rate controller or not, in addition to a scheduling scheme.

Many packet schedulers were described in this subsection, covering two main
classes of schedulers: simple schedule schemes, and more complicated schemes
that aim to provide fairness by trying to approximate the GPS “classical” algorithm
for continuous, nonquantifi ed, resource sharing. Although some of these schemes
might look complicated, and the number and the variety of them might look redun-
dant, all of them are used by many applications, depending on the network condi-
tion and the requirements. Many address TCP optimization, where packet loss (of
particular fl ow) might cause performance issues; others address end-to-end delay
and jitter, and so forth.

In packet fl ow handling, these complicated algorithms can be addressed by
using the processing power of the network equipment (this method is diffi cult and
not fl exible), or by using traffi c managers. These traffi c managers can be either part
of the network processors (or other processing elements), or network processors
already implement traffi c management as an integral part of them. These traffi c
managers can cope with the network and application requirements in a transpar-
ent way, although they differ according to the algorithms they implement.

6.5 SUMMARY
This chapter is the second to discuss the theory behind network processors.
Network constraints and packet fl ow handling mechanisms are described, in order
to understand how network devices should treat packets and fl ows, to achieve QoS
 differentiation.

The chapter fi rst discusses service differentiation defi nitions and descriptions,
and then it describes the QoS mechanisms in more detail. These mechanisms are
also subdivided into three groups, according to their roles and place in the network
devices: admission control, traffi c management, and packet queueing (which
itself is subdivided into buffer management functions and packet scheduling
functions).

The next chapter continues the theoretical discussion, but it comes closer to
the network processors themselves, and discusses possible architectures for imple-
menting these devices.

CHAPTER

In the previous two chapters, we described what each packet goes through in
networks, networking equipment, and chips. In this chapter, we describe the basic
architectures and defi nitions of network processors that process and handle those
packets in the network. The main idea in this chapter (and in network processors)
is that when it comes to high-speed networking environments, a single processing
unit is not suffi cient for carrying out the processing tasks of packets, and various
ways of parallel processing and multiprocessor architectures must be considered.

This chapter describes various computation schemes, as well as network pro-
cessing architecture in general. Beside the processing element, other architectural
components (e.g., input/output [I/O] and memories) as well as interface standards
are described at the end of this chapter in order to provide a comprehensive
understanding of network processors design and interface, both at the system level
(board and equipment), and at the networking level.

This chapter also outlines advantages and drawbacks of programmable
and Application Specifi c Integrated Circuit (ASIC) devices, which are used for
 networking devices, and discusses the trends and technologies that are available
for designing network processing devices. It is important to note, however, that
as technology moves quickly, these trends, available technologies, and tools are
rapidly changing, and will inevitably offer new ways to solve the networking
 challenges. The next chapter provides a description of the implications of multi-
processing for programming (what is called “programming models”).

The knowledgeable reader who knows basic computer architectures can skip
the background section (Section 7.2). On the other hand, those who require more
information than is provided in this background section are encouraged to turn to
other references such as [104, 171] or [94].

7.1 INTRODUCTION
Network processors can be categorized according to their use and the way they
have evolved. These categories can signifi cantly impact the architecture of the

Architecture 7

 network processors, or sometimes, inversely, are characterized by the architecture.
The three main categories of network processors are:

Entry-level network processors, or access network processors, which process
streams of up to 1 to 2 Gbps packets, and are sometimes used for enterprise
equipment. Applications for such access network processors include tele-
phony systems (e.g., voice gateways and soft switches), xDSL1 access, cable
modems, wireless access networks such as cellular and WiMAX, other nar-
rowband and broadband wireless networks, and optical networks (in the
access network, that is, FTTx,2 PONs, etc.). A few examples of such network
processors are EZchip’s NPA, Wintegra’s WinPath, Agere, PMC sierra, and
Intel’s IXP2300.

Mid-level network processors (2–5 Gbps) contain two subgroups of network pro-
cessors (NPs): legacy NPs and multiservice NPs, which usually are used for ser-
vice cards of communication equipment, data center equipment and Layer 7
applications (security, storage, compression, etc.). In the legacy subgroup, one
can include the classical, multipurpose NPs like AMCC, Intel’s IXP 1200 and
2400/2800 NPs, C-port, Agere, Vitesse, and IBM’s NP (which was sold to Hifn).
Examples of multiservice and application (Layer 7) network processors are
Cavium, RMI, Broadcom, Silverback, and Chelsio.

High-end network processors (10–100 Gbps) are used mainly for core networking
and metro networking, usually on the line cards of the equipment. Examples
of such network processors are EZchip’s NPs, Xelerated, Sandburst (who was
bought by Broadcom), and Bay Microsystems.

Each of these categories was either designed for specifi c applications and thus
has specifi c architecture patterns that support these applications (e.g., matched
accelerating functional units), or was designed using almost general-purpose pro-
cessing elements in their cores. Legacy network processors, designed around 2000,
are an example of the latter case, and include the three major processor manufac-
turers—Intel, IBM, and Motorola.

The architecture of network processors can be described in many ways, and the
three ingredients common to computers (processing unit, memory, and I/O) are
not suffi cient to comprehend it fully. An extended general framework for classifying
network processors was suggested in [381], which includes the following fi ve
dimensions.

1A reminder from Chapter 4: Digital Subscriber Loop (DSL) interfaces include many variants for
speed and range, such as Asymmetric DSL (ADSL), High speed DSL (HDSL), Very high speed DSL
(VDSL), and more. As a group, these are commonly notated as xDSL.
2A reminder from Chapter 4: FTTx refers to Fiber to the Home (FTTH), or to the Zone (FTTZ), or to
the Curb (FTTC), or any place in the access area.

288 CHAPTER 7 Architecture

� Parallel processing approach
– processing element level
– instruction-set level
– bit level

� Hardware assistance
– coprocessors
– functional units

� Memory architectures
� Network processor interconnection mechanisms (i.e., on-chip

 communications)
� Peripherals

This chapter, as well as the rest of the book’s chapters, is based on the preced-
ing dimensions. For network processors, the fi rst point—parallel processing—is
crucial. We saw in previous chapters how many tasks have to be achieved dur-
ing the packet processing period. It means that much work—analysis, decisions,
modifi cations and data movements—has to be executed within nanoseconds.
A single “conventional” processor cannot meet these requirements. Even when
considering Moore’s law3 and the clear trend of dramatic increase in processor
power over the years (a trend that is not likely to change), networking require-
ments are increasing even faster. Therefore, the necessity of basing networking
equipment on network processors that use multi-processing or parallel architec-
tures is clear.

The next section, therefore, provides a background and defi nitions for
 computing models, mainly parallel processing. Sections 7.3 through 7.5 describe
the processing level: fi rst, the general question of hardwired processing versus
 programmable devices; second, parallel processing topologies; and fi nally, the
instruction set architecture (ISA) level. The chapter ends with a detailed descrip-
tion of network processors’ components—memories, internal busses, and exter-
nal interfaces.

7.2 BACKGROUND AND DEFINITIONS
This section provides a very basic introduction to processor architectures, dealing
mostly with parallel processing and multiprocessors. Microarchitecture (which
goes into the processing element level) is hardly treated here, as it is extraneous to
an understanding of network processors’ architecture for those who need to evalu-
ate the various alternatives.

3Moore’s law is an interpretation of the 1965 statement of Gordon Moore of Fairchild and a founder
of Intel, which relates to the doubling of the number of transistors on a chip, or the chip perfor-
mance, every 18 to 24 months.

7.2 Background and Defi nitions 289

7.2.1 Computation Models
Before we discuss the various options of network processor architectures, some
very basic defi nitions of processing architectures are required. The common
architecture we use for General-Purpose Processors (GPPs) is the control fl ow
(or instruction fl ow) architecture, also called Von-Neumann architecture. Accord-
ing to this architecture, instructions are fetched sequentially from the memory to
the Central Processing Unit (CPU), in which they are executed, followed by some
loads and stores of data from and to the memory.

There are also some parallel, multiprocessing architectures that are based on
the basic multiple Von-Neumann architecture, as described next. Another archi-
tecture, the data-fl ow, is an exotic architecture that seems to fi t network process-
ing requirements and sometimes is used for network processors, but it is usually
used for marketing purposes more than as an accurate architecture description.
According to this architecture, fl ow of processing is determined by data availabil-
ity; in other words, this is a data-driven model of computation where processing
is enabled only when data for all input operands become available by predeces-
sor processing. Packet and network processing can be seen as having a datafl ow
nature; thus, datafl ow architecture can fi t network processing.

7.2.2 Multiprocessing—Flynn Typology
Using parallelism is an obvious way to achieve speedup when it is required, and
multiprocessing is used to achieve parallelism. Network processors use many
forms of multiprocessing and parallelism. In order to cover the parallelism issue
systematically, we will use Flynn’s terminology and taxonomy [131, 132]. This
 taxonomy is based on two axes that are simultaneously allowed in the archi-
tecture: the number of instruction (or control) streams and the number of data
streams (see Table 7.1). The term stream refers to a sequence of either instruc-
tions or data that the processor uses for operation. The four basic types of archi-
tectures are as follows:

1. SISD architecture (Figure 7.1), in which a single instruction stream controls
a single data stream—that is, classical Von Neumann architecture in which
instructions are fetched from the memory to the CPU and are executed. Some
of these instructions may load and store data from and to the memory.

Table 7.1 Flynn Taxonomy

Single instruction stream Multiple instruction stream

Single data stream SISD MISD

Multiple data stream SIMD MIMD

290 CHAPTER 7 Architecture

FIGURE 7.1

SISD architecture

Control Unit

Processing Unit

Memory

Data Stream
In

st
ru

ct
io

n
S

tr
ea

m

2. SIMD architecture (Figure 7.2), in which a single instruction stream controls
multiple data streams. This architecture includes vector and array proces-
sors. The idea is that one control unit manages multiple processing elements
 (arithmetic function units, for example), simultaneously carrying many data
operations from and to the memory.

FIGURE 7.2

SIMD architecture

Memory

Control Unit

MUMUMU

PUPUPU

Data Streams

PU—Processing Unit
MU—Memory Unit

In
st

ru
ct

io
n

S
tr

ea
m...

...

7.2 Background and Defi nitions 291

3. MISD architecture (Figure 7.3), in which multiple instruction streams control
a single data stream. Although commonly recognized as an experimental,
nonpractical or exotic category, some references include systolic arrays,
pipelined vector machines, and data-fl ow architectures in this category.

4. MIMD architecture (Figure 7.4), in which multiple instruction streams con-
trol multiple data streams. Most multiprocessor systems and multicomputer
systems use this architectural category.

D
at

a
S

tr
ea

m

D
at

a
S

tr
ea

m

PUPUPU

CU

Data Stream Data Stream

CU CU

Instruction Streams

CU—Control Unit
PU—Processing Unit

Memory

...
FIGURE 7.3

MISD architecture

Memory

MUMU

PUPU

DS DS

CU—Control Unit
PU—Processing Unit
MU—Memory Unit
IS—Instruction Stream
DS—Data Stream

CU CU

In
st

ru
ct

io
n

S
tr

ea
m

IS IS

MU

PU

CU

...

...

DS

FIGURE 7.4

MIMD architecture

292 CHAPTER 7 Architecture

The MIMD category is subdivided into two major classes:

� Shared memory multiprocessors—architectures that share a common
 memory (see below) and are said to be tightly coupled.

� Distributed memory (or message passing) multicomputers—architectures
that use distributed memory between the processing modules, and are said
to be loosely coupled.

Shared memory can be implemented in various ways, although usually it
is done according to either the Uniform Memory Access (UMA), the Nonuni-
form Memory Access (NUMA), or the Cache Only Memory Architecture (COMA)
 models. Under the UMA model, the physical memory is shared equally and uni-
formly by all the processors (although the processors can possess local cache
memories). Tightly coupled architecture usually refers to UMA implementa-
tions. NUMA implies the opposite; it means that some processors share their
local memory, and the collection of all local memories create the global memory.
It also means that access to memory is not equally shared (local processors have
the advantage). A subclass of NUMA is COMA, which means that the collec-
tion of all local caches creates the global memory. Some variants of these mod-
els are in use, like the Cache Coherent NUMA (CC-NUMA) or Cache Coherent
UMA (CC-UMA) which means that all processors are aware of any update of any
memory by any processor.

Multicomputer systems, usually loosely coupled MIMD architectures and
sometimes called Multiple SISD (M-SISD), use distributed or private memory,
and include Massively parallel processors that are composed of grids and hyper-
cubes, and Clusters of Workstations or Network of Workstations that are beyond
our scope.

Multiprocessor systems can be further subdivided according to various other
criteria, but the most notable subcategory is the Symmetrical Multiprocessors
(SMP). The SMP is a tightly coupled architecture of similar processors that have the
same priority and share the same memory. Another subcategory is the asymmetric
processors and coprocessing, which have a tightly coupled architecture of specifi c,
dissimilar processors, and that usually share the same memory. These subcategories
are further detailed in the next subsections.

Other categories were defi ned after Flynn’s taxonomy, among them being the
single program over multiple data streams (SPMD), and the multi-program over
multiple data streams (MPMD). Some position SPMD between MIMD and SIMD
architectures, since SPMD can imply similar programs running on several comput-
ing nodes. These categories actually refer more to parallel granularity, as described
later, and more to computing style or programming models (detailed in the next
chapter) than architectures.

Modern implementations of MIMD are hybrid with respect to shared memory
and distributed memory, that is, there are several distributed nodes of multipro-
cessors sharing common memory, as shown in Figure 7.5. This is a very common
practice when it comes to some network processor architecture implementations,
as described in the following.

7.2 Background and Defi nitions 293

7.2.3 Multiprocessing—Practical Implementations
There are many other issues in multiprocessing that are not covered by the plain
Flynn typology (or implied by this typology), and which are very much relevant
to network processing. This subsection relates to the main considerations in
the implementation of chip multiprocessors (CMP, which are chip-level multi-
processors), multicore processors (MCP, or multiple processors cores that share
caches and the chip interconnect network) or multiprocessors systems on a chip
(MPSoC).

We start with some defi nitions of terms and descriptions of parallelism levels,
continue with a discussion of basic symmetrical and asymmetrical confi gurations
as well as of types of the processing elements themselves, and conclude with an
observation summary.

7.2.3.1 Some Basic Defi nitions
A scalar processor is the simplest form of CPU, which is SISD. It can consist of
many internal functional units, for example, an Arithmetic Logic Unit (ALU), or
it can be assisted by external hardware assists or coprocessors that are attached
to the CPU. Co processors execute their instructions after they are triggered
or dispatched from the CPU, and work asynchronously with the CPU. These
coprocessors can be vector processors (i.e., SIMD architectures) for various
vector arithmetic, imaging or signal processing or other applications (like security

...

Interconnection Network (LAN)

Memory

PP P

Memory

PP P

Memory

PP P... ...

Shared Memory (UMA)

PP P...

Interconnection Network (LAN)

MM M

...P P P

(a) Shared memory (b) Distributed memory

(c) Hybrid memory sharing

FIGURE 7.5

MIMD memory usage

294 CHAPTER 7 Architecture

encoding/decoding, pattern and key searching, and so on, in the case of network
processors). Coprocessors usually cannot use I/O (unless they are I/O coproces-
sors), and are restricted to using the main memory (i.e., they have to be synchro-
nized with the CPU).

When dealing with processor performance, some metrics are used. The com-
monly used terms are outlined here:

� The number of instructions issued (i.e., commence execution) in one cycle is
called the issue width (IW), and in scalar processors is always 1. IW is called
also instruction issue rate, or the degree of the processor.

� The number of executing instructions per cycle (IPC), and its reciprocal—
cycles per instruction (CPI)—measures the complexity of the instruction set
and the parallelism in its execution.

� Performance is correlated to the IPC multiplied by the clock rate of the
 processor, and today is proportional to IW0.5.

To understand what multiprocessors can parallelize, a brief description of the
“processed material” units might be required.

At the highest level, processors execute programs, or actually instances of
the programs (called processes) that reside in the processors’ memories. Parts
of programs, for example, subprograms, procedures, subroutines, functions
or methods can be further identifi ed, and are relatively independent parts of
the larger program, performing some specifi c task. The processes can be par-
titioned into multiple interrelated tasks, which are sets of instructions resid-
ing in the processor’s memory (sometimes, “tasks” imply real time processes).
Threads are lightweight streams of processes (or tasks); they are dependent
splits that run simultaneously with other threads, and are handled differently
than processes and tasks that are run by the processors’ operating system. There
are several ways for threads to be scheduled on a processor (i.e., to create a
context switching,4 deciding how and when to switch between them), but the
most effi cient way is the Simultaneous Multithreading (SMT).5 SMT refers to
the processor’s or the multiprocessor’s execution of instructions from a num-
ber of threads simultaneously (in Intel’s case, it is called hyper-threading rather
than multithreading). The lowest level of the “processed material” is the instruc-
tion level. A parallelism level, based on these levels of “processing material,” is
described in the next subsection.

4Context switching usually refers to process switching, changing one context to another, and it means
storing and loading the states of the processor in the current and the switched processes.
5Context switching in threads can be done at every cycle, which is called fi ne grained multithreading
(FGMT) or interleaving multithreading, and the processor that uses it is called a barrel proces-
sor. This guarantees real time properties, but is not effi cient in cache utilization and single thread
performance. The other extreme is coarse grained multithreading (CGMT), which lets a thread run
until some stall occurs that yields a context switching.

7.2 Background and Defi nitions 295

7.2.3.2 Parallelism Levels
There are three basic mechanisms that are relevant to implementations of
 parallelism in processing elements: Instruction level parallelism (ILP), thread-level
parallelism (TLP), and data-level parallelism (DLP). ILP means that more than one
instruction is executing at the very same time, in various technologies, as described
briefl y below. TLP implies multiple threads that are running simultaneously or
pseudo-simultaneously, as described in the previous subsection. MCP exploit TLP
techniques, and achieve high performance in a simpler way than ILP. Obviously,
this is effi cient when the applications are threaded, or can be threaded. DLP means
that the same instruction is repeatedly used for multiple data instances, for exam-
ple, loops. DLP is less common and less general than ILP or even TLP. DLP works for
very specifi c applications that can benefi t from its implementation, for example,
imaging or scientifi c applications, where SIMD (vector and array) architectures are
effi cient for these applications.

Fine grained parallelism usually refers to ILP in a single processing element,
and is achieved mainly in superscalar, pipelining, Very Long Instruction Word
(VLIW), and Explicitly Parallel Instruction Computing (EPIC), as described in the
next subsections. Medium grained parallelism refers to multithreading and mul-
titasking levels and usually refers to TLP, and coarse grained parallelism refers
to the program level parallelism. TLP, medium-, and coarse-grained parallelisms are
achieved mainly in multiprocessors and multicomputers. It is worth noting though,
that SMT actually brings the TLP to the ILP, as several instructions (from different
threads) are running simultaneously.

The fi ner the grain of the parallelism, the higher will be the level of parallelism
achieved, but it is by far more complex in terms of the mechanisms, communication,
scheduling, and overhead circuitry requirements.

7.2.3.3 Symmetric Parallelism
Symmetric multiprocessing, as described before, refers to systems in which
their processors have equal access rights to the systems’ components, memory,
 peripherals, and so on. Usually, in SMP we mean also multiprocessors of the same
kind, and furthermore, these processors are general-purpose processors. Most tra-
ditional parallel processing is done in symmetric parallelism, that is, using SMP,
and there are many network processors (or their core processing units) that are
basically composed of symmetric parallel processing units. The emerging CMP (or
the MCP) are mainly TLP engines that obviously also work in symmetrical parallel-
ism. The main advantage of SMP is that it is easy to write code, since all processors
run the same instruction set. The main drawback is that synchronization must be
accounted for, meaning adding specifi c means and instructions to handle resource
sharing in a proper way (mainly memory).

Symmetric multiprocessing can be done by tightly coupled architecture, shar-
ing one memory, or it can come in a loosely coupled architecture. In both cases
synchronization has to be watched, but it can be done on various levels. Sharing

296 CHAPTER 7 Architecture

a memory requires strict synchronization, but allows more parallelism on the
same data by separate threads. Several programming models are described in the
next chapter.

7.2.3.4 Asymmetric Parallelism, Functional Units and Coprocessors
Asymmetrical or heterogeneous processors are usually found when there are
very different processing needs in various stages of the application, for example,
the use of a graphic or video processor in a personal computer or a gaming
platform, side by side with the GPP. The purpose of asymmetric processing is
to increase performance by matching application requirements, or parts of the
applications, to a suitable processor. Such a processor should be architectur-
ally optimized to handle the tasks that the applications require, for example,
 number crunching, vector processing, signal processing, video raster graphics,
and so on.

In network processing, where distinct tasks can be defi ned during packet
 processing, heterogeneous processing can contribute very much to increasing pro-
cessing performance. Heterogeneity can be expressed in many ways; for example:

� Very dissimilar parallel processors, each responsible for a part of the packet
processing phases, which have different architectures, instruction sets, and
programs;

� Additional, supportive coprocessors, executing internal procedures, written
in their own instruction sets, which are used for compression, security, look-
ups, and so on;

� Various functional units that are attached to the processors and are triggered
by special purpose instructions (that are part of the processors’ instruc-
tion sets, in contrast to the coprocessor case), and that are executed by the
processors. These functional units are considered as part of the processors as
far as programming is concerned.

7.2.3.5 Processor Families
Network processors use the entire range of major processor families: Complex
Instruction Set Computing (CISC), Reduced Instruction Set Computing (RISC), pipe-
line, superscalar, systolic, VLIW, data-fl ow, and combinations of the above. In this
 subsection, a short description of each of the main processor families is described.

7.2.3.5.1 Complex Instruction Set Computing
Complex Instruction Set Computing is based on an ISA that allows multiple and
complex addressing modes for hundreds of complex instructions, using variable
instruction formats, and usually executed by a microprogram (low-level operations)
control in the processor. The term was coined only after RISC computing was intro-
duced, to distinguish between the two families of architectures. CISC was originally
designed to allow programmers and compilers to produce small-sized programs,
using many options of coding. The CPI for CISC is dependant on the instruction,

7.2 Background and Defi nitions 297

and is very long compared to RISC ISA (up to 20) since it involves lots of decoding and
executing cycles. It has proved to be ineffi cient, since most of the complexities
are not even used in regular coding, but the complexity of the processor micro-
 architecture nevertheless remains high.

7.2.3.5.2 Reduced Instruction Set Computing
In RISC, lots of the complexities of instructions and addressing modes were
 abandoned for the sake of simplicity, higher processor clock, and much smaller CPI
(up to 4). RISC instructions are usually executed by hardwired control, in a fi xed
number of cycles and fi xed instruction format for all instructions, which allows sim-
ple architectural improvements, like superscalars and so on (described later).

7.2.3.5.3 Pipelining
Pipelining is a mechanism that allows ILP by overlapping processing stages of
 different instructions (usually sequential). If we assume an instruction that has four
stages (i.e., Fetch, Decode, Execute, and Memory), then in a four-stage pipeline, when
the fi rst instruction enters its second phase (decode), the successive instruction
enters its fi rst phase (Fetch), and so forth, as can be seen in Figure 7.6.

The number of stages in an instruction pipeline can be as small as a few in
some architectures, to as many as tens of stages in others. The advantage in long
(or deep) pipelines is that a higher ILP, or IPC, can be achieved, but one prob-
lem lies in overhead. An even bigger drawback to long pipelines is the potential
for resource confl icts and stalls in the pipeline, which can happen when specifi c
instruction sequences or instances that are dependent cause some parts of the
pipeline to stop functioning and to enter a wait state for several cycles. These stalls
can be relieved by out-of-order instruction issuing,6 or other avoidance techniques.

6Instructions that are issued not according to their order in the program (what is called dynamic
scheduling). It is possible when the instructions are totally independent (they use independent data
and have no impact on the fl ow of the program). This is in contrast to in-order instruction issuing
(or static scheduling).

F D X M

Successive
Instructions

Cycles
(time)

F—Fetch
D—Decode

X—Execute
M—Memory

F D X M

F D X M

F D X M

1 2 3 4 5 6 7

Instruction i

Instruction i + 1

Instruction i + 2

Instruction i + 3

FIGURE 7.6

Instruction pipelining

298 CHAPTER 7 Architecture

Also, every branching instruction causes the pipeline to be fl ushed and to restart
in the new program location, unless a branch prediction or other mechanisms are
used to alleviate this fl ushing ineffi ciency. The end result is decreasing the IPC.
In pipelining, these instruction and data dependencies are called hazards. These
 hazards can be categorized as follows:

� Structural hazards that occur when two instructions are about to use the
same structure (unit).

� Data hazards that are caused when two instructions are trying to use the
same memory location.

� Control hazards, when an instruction affects whether another instruction
will be executed.

Unless the hardware is handling these hazards, it is the programmer’s (or the
 compiler’s) concern. Handling hazards is described in the next chapter, when dealing
with programming models. Without any stalls, the speedup7 of k-stage pipelining is k.

Finally, pipelining can be used not just for ILP. It can be used conceptually for
processor pipelining for processes and tasks. Vector processors are an example
of pipelining arithmetic functional units that compute one vector operation, as
depicted in Figure 7.7.

We can categorize the aforementioned pipelining concept by various levels of
pipelining, ranging from (a) instruction pipelining within a single processor, to (b)
processor pipelining in a multiprocessor system, a vector processor, or an array
processor, to (c) program or task pipelining, which divides the programs or tasks
between various stages, as can be seen in Figure 7.8.

7Speedup is the ratio of the time to execute N instructions on a simple implementation of a scalar
processor and the time to execute these N instructions on the processor in hand (in this case,
a k-stage pipeline).

Cycles
(time)

X

F D X M

F D X M

F D X MX

X

X

X

X

X

X X

X

X

X

1 2 3 4 5 6 7 8 9 10 11 12 13
Successive
Instructions

F—Fetch
D—Decode

X—Execute
M—Memory

Instruction i

Instruction i + 1

Instruction i + 2

FIGURE 7.7

Vector processor pipelining

7.2 Background and Defi nitions 299

There are several variants of pipelining (linear and nonlinear, synchronous and
asynchronous, etc.), that are beyond the scope of this book, but the most important
one is the super-pipelining. In super-pipelining of degree n, the k-stage pipeline
starts a cycle every 1/n of the pipeline cycle, as shown in Figure 7.9.

It means that an instruction runs in the pipeline for k cycles, as in the regular
pipeline, but in each cycle there are n pipelines commencing a stage, in a time shift
equal to 1/n. This produce n times more instructions in the super-pipeline at any
stage, and ILP equal to n. The total speedup of k-stage super-pipeline of degree n,
is therefore kn.

7.2.3.5.4 Superscalar
Superscalar is a mechanism that allows ILP by issuing and running multiple instruc-
tions at each stage simultaneously (see Figures 7.10 and 7.11). Superscalar is said

P S R M

Successive
Programs
(packets)

Time

4 phases (processors) pipeline

P—Parsing
S—Searching

R—Resolving
M—Modifying

P S R M

P S R M

P S R M

FIGURE 7.8

Program pipelining

F D X M

Succesive
Instructions Cycles

(time)

F—Fetch
D—Decode

X—Execute
M—Memory

F D X M

F D X M

F D X M

1 2 3 4 5 6 7

Instruction i

Instruction i � 1

Instruction i � 2

Instruction i � 3

Instruction i � 4

Instruction i � 5

Instruction i � 6

Instruction i � 7

F D X M

F D X M

F D X M

F D X M

FIGURE 7.9

Super pipeline of degree 3

300 CHAPTER 7 Architecture

to be of degree m, when m instructions are issued at the same time to m k-stage
pipelines (or, in other words, the issue width is m). The speedup of superscalar of
degree m compared to scalar k-stage pipeline is m (or mk compared to nonpipe-
line scalar processor).

When superscalar implementations use super-pipelining techniques, the end
result is k-stage, m-degree superscalar, n-degree super-pipeline, which yields very
high ILP (and a speedup of kmn).

In practice, however, due to cache misses, data dependencies, and mispredicted
branches,8 superscalars are not fully utilized, and it is quite common to achieve only
50% of these theoretical speedups. Multiplexing threads on the various pipelines
(in multithreading techniques) improves these speedups, due to the reduced
potential of data confl icts.

7.2.3.5.5 Very Long Instruction Word
Another method of achieving parallelism is the VLIW architecture, where more
 functional units are usually employed than the number used in superscalar
 architecture. VLIW is based on “horizontal microcoding,” and thus uses micro-
programmed control for its instructions that can be hundreds of bits long (in
contrast to common RISC architectures, which use hardwired control). The VLIW
instruction groups several instructions for each of the functional units in the pro-
cessor, that is, for the ALU, memory operations, branching instructions, and so on.
In other words, the VLIW instruction is quite fi xed in its format, and typically is

8As mentioned before, pipelining ineffi ciency can result from pipeline fl ushes caused by branch
 instructions. One mechanism that reduces this ineffi ciency is to feed the pipeline with instructions
that are fetched from the predicted branch location. Mispredicted branches cause pipeline fl ushes,
as is the situation with unpredicted branches.

F D X M

F D X M

F D X M

F D X M

F D X M

F D X M

Successive
Instructions

Instruction i

Instruction i � 1

Instruction i � 2

Instruction i � 3

Instruction i � 4

Instruction i � 5

F—Fetch
D—Decode

X—Execute
M—Memory

1 2 3 4 5 6 7 Cycles
(time)

FIGURE 7.10

Superscalar of degree 2

7.2 Background and Defi nitions 301

“slotted” such that the fi rst instruction must be ALU instruction, the second one is
a movement instruction, and so on.

Very Long Instruction Word architecture is comparable to superscalar archi-
tecture, since the two employ several processing units in parallel, albeit in very
diffe rent ways, as shown in Figure 7.11. VLIW is much simpler to implement in
hardware terms, uses static scheduling of instructions and worst case scheduling,
that is, it must wait until all instructions are done before issuing the next instruc-
tion, in contrast to superscalar, where dynamic scheduling is feasible, as is coping
with variable execution latencies of instructions.

Very Long Instruction Word cannot run more than one instruction that relates
to a specifi c functional unit in the same cycle (the same VLIW instruction), that is,
there cannot be two ALU instructions in one VLIW instruction. Moreover, differ-
ent functional units that are employed during one cycle must be used so that no
data confl icts may arise. The end result of all this is that sometimes the functional
units are not utilized, or extra nops (no-operation instructions) are used, wasting
memory bandwidth and space.

Conventional programs written with “normal” instructions must be compacted
effi ciently into the VLIW instructions, without resource confl icts, data or control
hazards, and with maximum utilization of the functional units.

It is important to stress that in the pure VLIW architecture, the programmer or
the compiler must guarantee that instructions within a VLIW group are indepen-
dent (or slots are fi lled with “no-operations”). Since it runs many instructions at
one time, it has a very low theoretic CPI. VLIW architecture is also very simple to
implement in hardware, and higher clock rates are possible as a result.

PE PE PE PE PE

Decoding &
Dispatching

PE—Processing Element (Functional Unit, Execution Unit, Pipeline, etc.)

Superscalar VLIW

Instruction i � n

Instruction i � 2

Instruction i

Instruction i � 1

PE

Instruction i � n

Instruction i

...

... ...

...

FIGURE 7.11

VLIW and superscalar architectures

302 CHAPTER 7 Architecture

Current VLIW implementations are based also on superscalar processing, so the
end result can be seen in see Figure 7.12.

As can be understood from the description of this architecture, VLIW instructions
and architecture force very strict programming and compiling that cannot be used
except for the very specifi c VLIW architecture they were written for. Any modifi -
cation of the architecture, for example, adding functional units, causes a rewrite
of the entire code. This means that pure VLIW is a software centric architecture,
and that the programmer, or the compiler, or both, are responsible for parallelism
and data movements and dependencies. Dynamic, run-time resource scheduling is
impossible in VLIW architecture.

Pure VLIW developed into tainted VLIW architectures, which are more realistic.
In tainted VLIW, intergroup checks are also done by hardware, and the program-
mer or the compiler does not schedule stall cycles. Pipelines of varied numbers of
stages can be used by the tainted VLIW architecture. This tainted VLIW architec-
ture, however, evolved to what is called Explicitly Parallel Instruction Computing,
which is described next.

Very Long Instruction Word architectures were abandoned for decades due to
their problematic implementation and usage, and despite their academic sound-
ness. However, since it is now being used again in some network processors, it is
described here briefl y.

7.2.3.5.6 Explicitly Parallel Instruction Computing
Explicitly Parallel Instruction Computing (EPIC) was derived from VLIW, or at
least its roots are from VLIW concepts. It can be regarded as Variable Length

Successive
Instructions

Instruction i

Instruction i � 1

Instruction i � 2

F—Fetch
D—Decode

X—Execute
M—Memory

1 2 3 4 5 6 7 Cycles
(time) F D X1 M

F D M

F D M

X2

X3

X1

X1

X2

X3

X2

X3

FIGURE 7.12

VLIW architecture

7.2 Background and Defi nitions 303

VLIW. Currently, Intel’s Itanium is using this architecture, which indicates this
 architecture’s signifi cance. The basic idea in this architecture is to overcome the
drawbacks of the VLIW architecture, mainly in its infl exibility about using existing
code for extended architectures (e.g., additional functional units). Instructions are
bundled into EPIC instruction, prefi xed by a tag (several explicit dependence bits)
that is added by the compiler to indicate the type of the instructions, dependen-
cies and interrelated operations, and dependencies between bundles (EPIC instruc-
tions). This information can be used by the hardware at a later stage to reorder the
instructions according to the existing architecture, in a better way, to maximize
parallelism. The result is a reduced code size (nops are no more required), that can
be executed on succeeding processors. EPIC still suffers from cache missed, and
since it supports dynamic scheduling to some extent, a more complicated decod-
ing and dispatching mechanisms are required by EPIC than in VLIW.

7.2.3.5.7 Systolic Processing
Systolic processing is an extension of the pipelining concept, where multidimen-
sional pipelines are connected to form a pipenet [177] that implements fi xed
algorithms. The processing is done in the interconnecting processing elements, on
multidimensional fl ows of data streams. The layout of the interconnected network
can be fi xed or programmable, but at any rate it calls for strict programming and is
not used commonly.

7.2.3.5.8 Datafl ow Processing
Data-fl ow processing is an entirely different computing paradigm, as noted at
the beginning of this section. Instead of program (or control) fl ow, processing is
dictated according to data and results availability. This data-driven processing is
achieved by tagging the data, specifying its “belonging” to instructions, and once
all required data for some instruction are ready the instruction is triggered and
executed. In this way, data tokens (results) are roaming between the instructions,
duplicated according to the number of instructions that require them for execu-
tion, and vanishing once the instruction “consumes” them. The control-processing
is done by a mechanism that matches ready data tokens with starving instructions,
in contrast to the Von-Neumann control-processing that runs instructions fetched
from memory as pointed to by the program counter.

An example of the data-fl ow computing paradigm at the application level (rather
than the architectural level) is a spreadsheet, where any change of data is refl ected
in many data items (cells) and causes a recalculation of the entire workspace.

It is very tempting to think of packet processing as a kind of data fl ow, since
packets can fl ow from one processing element to another, and intermediate pro-
cessing tasks (searches, for example) are also fi nished and everything is ready to
continue processing in the next processing phase. However, it is very hard to imple-
ment data-fl ow architecture and there are no current implementations of network
processors based on data-fl ow architectures. Nevertheless, there are some market-
ing efforts to present some network processors as such.

304 CHAPTER 7 Architecture

A high degree of parallelism can be achieved in this kind of architecture,
since data-fl ow execution is driven by the availability of the data (equivalent to
the operands in the Von-Neumann architecture’s instructions), limited by data
 dependencies and the number of functional units or processing elements.

7.2.4 Basic Chip Design Alternatives
In the previous subsections, computing models, processors, and multiprocess-
ing taxonomy was briefl y described, and multiprocessing and parallelism were
presented as a means of getting the high performance architecture required for
contemporary packet processing. However, there is an alternative option for get-
ting the required performance; that is, with special purpose hardware, hardwired
circuitry, or “custom silicon.” In this subsection a very short description of this
option is described. It is important to understand that eventually, a mixed solution
based on both processors and customized silicon circuitries, as well as customized
 processors, is probably the answer for high-speed networking requirements.

In order to understand the impact and signifi cance of choosing processing
 elements for network processing equipment, we must fi rst delve into chip design
and characterization. In a nutshell, chips are Integrated Circuit semiconductor
devices, which began as a few simple logic circuits that were integrated on one
piece of silicon (called a “die”), and progressed to Large Scale Integration (LSI)
and to Very Large Scale Integration (VLSI) on a die. Application Specifi c Integrated
Circuits (ASIC) is a customized chip for particular use. Complex programmable
logic devices and Field Programmable Gate Arrays (FPGA) are programmable
logic devices of different mechanisms; both include many programmable logic
circuits and programmable interconnections. ASICs are designed and FPGAs are
programmed using hardware description languages like VHDL and Verilog, and
require later verifi cation, simulation, and many other design processes to ensure
their proper functioning before fabrication.

To ease the design of ASICs and FPGAs, there are many hardware libraries of com-
mon functions (usually called IP-blocks, or intellectual property blocks) as well as
many tools and utilities (commonly referred to as electronic design auto mation, or
EDA). ASICs and FPGAs were used in the 1980s as small to medium “glue-logic” chips
(integrating logic circuitry between onboard components), and they evolved into very
complex, huge chips that can include several full-scale embedded processors (in the
form of IP-blocks). In fact, there are many GPPs and special purpose processors (SPPs)
that are designed and implemented using ASICs. A more recent type of customized
chip/processor is the confi gurable processor. A confi gurable processor is a predefi ned
processor core with design tools that enable adaptation of parts from the processor
core with additional instructions that highly customize the processor and its ISA for
a specifi c appli cation. The result is usually an IP-block that is used by FPGA or ASIC
developers to create an optimized embedded processor for some application.

Since ASIC is specifi cally designed and optimized, and its circuits, modules, and
interconnect are aimed at a specifi c task, it is generally faster than FPGA, and faster

7.2 Background and Defi nitions 305

than GPPs. However, designing ASIC is a very long and costly process, with no
fl exibility to make changes that may be required during the long designing phase.
Moreover, ASIC can almost never be reused in further revisions or generations of
the products, which makes it very specialized.

A chip platform is an abstraction used to provide a comprehensive,
 multilevel perspective of a chip that incorporates its modules, modules inter-
connection, design methodologies, design tools (EDA), and library of hardware
and software common functions (IP-blocks). A platform-oriented approach
 provides a system perspective, and develops in isolation from the VLSI or logic
levels of the chips.

A programmable platform is a chip platform that can be modifi ed, confi gured
or programmed at various times and rates, and at various granularity levels,
both in terms of hardware components and in terms of changes. Changes may
include the chip’s modules (like logic circuits for encoding or ciphering, or ALUs
or other functional units for varied algorithms), interconnects and data paths
(like cascading or paralleling functional units, modules or processors, for varied
 algorithms or tasks), or control circuitry (like confi gurable processors for var-
ied applications or tasks). Changes can be made at many points in time: at the
design phase only (e.g., in fi xed devices such as ASIC or a confi gurable proces-
sor), at fabrication time or when beginning to use the device (e.g., in confi gu-
rable devices such as FPGA), between various application periods during the
lifetime of the device (in reconfi gurable devices), or as the application runs, at
every cycle, as in any traditional processor. Like chip platform abstraction, pro-
grammable platforms include all the programming languages, tools, models, and
so on as part of the abstraction.

During recent years, many technologies for speeding up design and get-to-
 market have been suggested, and some of them have had signifi cant impact on
the architecture of network processors, or network processors-to-be. The most
notable trend is the System-on-Chip (SoC), which started in the mid-1990s. SoC is
a signifi cant portion of an end application that integrates many diverse functional
units (processors, memory, analog and digital circuits, and peripherals), all on one
chip, single die, including the software (fi rmware) that runs it. SoC became a cor-
nerstone in embedded systems and, like ASICs that were used for product differen-
tiation at the chip level, SoC is used for product differentiation at the level of the
embedded system. Obviously, SoC has economic and performance advantages that
allow this differentiation. MPSoC followed SoCs, to enable better performance and
functionality by using more processors, whether they be homogenous or hetero-
geneous [240].

Current network processors are basically MPSoC, and as MPSoC design
 methodologies continue to improve, we can expect more and better network pro-
cessors to carry network processing tasks in all parts of the network, starting from
the telecom core, through the metro networks, edge networks, enterprise edges
and cores, and even in SOHO (small offi ce and home offi ce) equipment.

306 CHAPTER 7 Architecture

A short reference to Network on Chip (NoC) [48] is in place here, for two reasons:
(a) NoCs are not networking chips, that is, they are not the type of chips that replace
network processors, switches, or any other networking tasks, and (b) NoC offers a
technology of designing chips, particularly SoCs and MPSoCs, that uses structured
inter-module interconnection between the chip’s subsystems (this is sort of micro-
LAN with all required “equipment,” that is, switches and routers, and is usually based
on packet switching). NoCs allow complex chip designs without being sensitive to
signal propagation, clock synchronization, bit-errors, or cross-talks of high-speed par-
allel busses. They also enable easy next-generation designs and scalability and save a
great deal of die space by using serial networking between the chip’s subsystems.

7.2.5 Summary
There are various ways to increase performance in network processors; most, if
not all, are achieved by using multiprocessing through different techniques. An
illustration of this trend can be found in [254, 281]; their fi ndings are summarized
in Figure 7.13.

64

48

32

20

18

16

14

12

N
um

be
r

of
 P

E
s

10

8

6

2

4

0
0 1 2 3 4 5 6 7 8 9 10

 EZchip NP-1

 Cisco PXF

 Cognigine RCU/RSFLexra Netvortex
Motorola C-5

IBM PowerNP

Vitesse IQ2X00

Alchemy
Mindspeed CX27470

16 instrs/cycle

8 instrs/cycle
Clearwater
CNP810

64 instrs/cycle

Issue width per PE

Xelerated

Intel IXP1200

AMCC
np7120

Agere
payloadplus BRECIS

Broadcom 12500

FIGURE 7.13

Trade-offs between number of PEs and issue width [254, 381]. (Courtesy of K. Keutzer et al.,
ICCD ’02, © 2002 IEEE.)

7.2 Background and Defi nitions 307

7.3 EQUIPMENT DESIGN ALTERNATIVES: ASICS VERSUS NP
Before turning to network processor architectures, this subsection provides a short
discussion of processing element choices, and justifi es using network processors
in the fi rst place. As it turns out, in terms of application fi tness and performance,
there are two main alternatives that are used to design and build communication
equipment: ASICs or network processors, which we compare briefl y here. Although
this chapter deals primarily with architectures, some economic considerations are
appropriate here, since, at the bottom line, they dictate not only how solutions are
adopted, but also how architecture is developed.

ASICs governed product design from the 1980s through the mid-1990s, when
other alternatives appeared. The justifi cations for ASICs were the strong demand
for product differentiation, high performance, and inexpensive chip price, using
per- application silicon. As ASIC design became tremendously complex, expensive,
and long, as described in the preceding section, it became crucial to attempt to
reuse the same design for as many chips as could be used for similar applications.
Where an ASIC was used by one vendor, Application Specifi c Standard Products
(ASSPs) are ASICs that were developed for sale to other vendors for similar applica-
tions (hence, the “standard product”), saving these other vendors the expensive
design phase. A revolution came with the development of Application Specifi c
Instruction Set Processors (ASIPs),9 which are essentially programmable platforms.
ASIPs enable the use of a larger quantity of the same chip for multiple related
applications and different versions and generations of applications, [254] thereby
dividing the huge design costs between many chips. ASIPs also allow quicker time-
to-market, they are versatile and fl exible enough to enable some degree of design
modifi cation during the long design process, they extend product lifetime, and
they are generally signifi cantly faster than GPPs. The downside of ASIPs is their per-
formance (several times slower than ASICs) and their power requirements (about
ten times more than ASICs).

The long design phase of ASICs dramatically increases the time-to-market
 pressure. Moreover, during the long design phase, many requirements, technical
specifi cations, or protocols are modifi ed, so the end result is that programmable
platforms become a necessity. This trend of evolving standards and requirements
throughout the design phase is accelerated due to the quick adoption of tech-
nologies and services by the market, and the requirement of vendors and service
providers to be constantly innovative and to start designing products long before
standardization phases are complete.

On the other hand, the economic equation was in favor of ASICs, as long as many
chips were required, and the chips were simple enough. Although the designing

9ASIPs can be classifi ed into two types [254]: (A) Instruction Set Architecture (ISA) based, origi-
nating from classic ISA processors, and (B) Programmable hardware based, originating from
 programmable logic, like FPGA. This classifi cation is quite fuzzy, as many implementations use both
 characterizations.

308 CHAPTER 7 Architecture

was extremely expensive, the chips were very cheap. This is opposed to the case of
network processors, where the designing was (and still is) very cheap, but the net-
work processors’ chips were expensive. However, in recent years, due to advances
in production, the overall trade-off between these two alternatives is shifting to
favor network processors. While ASICs complexity went up, the required die size
became smaller and smaller, due to the fact that chips today are based on sub-
100 nm technology (or even 65 nm), which also results in a reduction in chip
manufacturing costs. However, since both network processors and ASICs must con-
tinuously provide increasing throughput, these two types of devices become I/O
bounded (or pad limited). In other words, the die sizes become dependent on the
number of interfaces and their nature (parallel or serial), as these interfaces may
require many hundreds of pins and larger pads area on the die for these I/Os. Thus,
the pin count becomes a primary factor in the size of the die size in both types of
devices, which brings them to about the same die size, allowing more and more
“free” extra logic on the silicon that is very useful for network processors, and
eventually the price of the two devices becomes quite similar in production. The
difference in designing remains strongly in favor of network processors, and their
fl exibility of design, even during the design phase, clearly makes the network pro-
cessor solution a better design alternative.

Recently, FPGA technology, which has traditionally been slower than ASIC,
 progressed to a stage where it can be considered an option for network processors
vendors as a platform for manufacturing network processors, instead of using ASICs
(at least for some applications). In the future, communication equipment vendors,
may consider using FPGA as an alternative to network processors (surely to ASICs).

It should be noted here, though, that the question of ASICs, FPGAs or network
processors is subject to dispute in the industry among practitioners, and it is often
just a question of “religion” or taste.

7.4 NETWORK PROCESSORS BASIC ARCHITECTURES
Previous sections detailed the need for multiple processing elements in network
processors and basic processing element technologies. This section addresses
basic architectures of network processors in terms of how processing elements
are arranged in the network processors.

The focus here is on the parallel processing dimension of network processor
architectures, specifi cally the processing element level. One way to classify network
processors [152] is by what is called the topologies of the processing elements,
that is, looking at the way they are arranged either in parallel pools, in the shape of
a pipeline, or in some kind of mixed topology, as can be seen in see Figure 7.14. In
the following, a fi ner resolution of this classifi cation is used, in order to distinguish
between the various types of network processors.

As was described in the introduction, there are three categories of network
 processors: entry-level, or access NPs; mid-level, or legacy and multiservice NPs; and

7.4 Network Processors Basic Architectures 309

high-end, line-card NPs. It is important to note that, practically, the two extremes—
the parallel and pipeline confi gurations in Figure 7.14—represent two typical
applications: parallel confi guration is usually used for networking applications of
the higher layers (L5–L7, e.g., security, storage, accounting), whereas pipeline con-
fi gurations are usually used in line cards that require ultra-high processing speed at
the lower layers of networking (L2–L4).

7.4.1 Homogenous Parallelized Processors
In this type of topology, a pool of parallel homogenous processing elements (called
micro-engines or pico-engines) is used to process packets in one stage; each packet
is treated completely by one processing element. Within this type of topology, one
can count the “classical,” fi rst-generation network processors; for example, those of
IBM (which was sold to Hifn), Intel, C-Port (now Freescale). More important, this
topology includes implementations of multicores and CMP that target L4–L7 net-
work processing, such as Deep Packet Inspection (DPI) and security in the access
and aggregation networks.

Examples include access processors, such as Wintegra’s; security and DPI
services processors, such as Raza Microelectronics’ (RMI); Cavium’s, and Cisco’s

N
um

be
r

of
 P

E
s

pe
r

S
ta

ge

Number of PE Stages

8

8

Xelerated Packet Devices

6

6

4

4

2

2

1

1

1 � 8 Pool

8 � 1 Pipeline

2 � 4

4 � 2

Intel (IXP1200)

Uni processor

Vitesse IQ2000

Broadcom 12500

Cisco (PXF/Toaster-2)

Agere (Payload Plus)

Pool of Pipelines

Pool of Pipelines

FIGURE 7.14

Design space for PE topologies annotated with existing NPUs (from Gries, Kulkarni, Sauer, &
Keutzer [152])

310 CHAPTER 7 Architecture

Quantum Flow Processor (QFP) with 40 cores. (Each of these cores, called Packet
Processors Engines [PPE], is a 32-bit RISC that runs 4 threads.) Alcatel-Lucent’s FP2,
which targets core networks (L2–L3), is also multicore with an array of 112 cores.

In this typology, all processing elements are identical, and a balancing and
scheduling mechanism assigns incoming packets into the unutilized processing
elements. This means that it is a pure SMP set-up; however, some additional SPPs, or
hardware assists (coprocessors) may be present to assist the processing elements
with specifi c tasks, on an equal basis (e.g., search engines or traffi c managers).
One clear advantage of using a homogeneous processor is that it requires only one
programming language and one ISA to program the network processor. Network
processors of this topology use high-level programming language and enable each
processor to have a processing period that can vary as required. In the next chap-
ter, we refer to this as a run-to-completion style of programming. If parallelism is
hidden from the programmer by hardware circuitry, mechanisms and schedulers, it
is easy for the programmer to use homogeneous processors, and at the same time
to gain the performance advantage that this parallelism provides.

PU

PU

PU

PU

7.4.2 Pipeline of Homogenous Processors
The pipeline stands at the other extreme of the topology of processing elements.
In a pipeline of homogeneous processors, the processing of packets is conducted
in many stages; at each stage, some of the processing is done by a separate, but
identical processing element. The primary disadvantage of similar processors in a
pipeline, compared to parallel processors, is poor effi ciency if the sub processes
done by each of the processing units in the pipe is not precisely the same.
Arranging all of these similar processors in a pool, like the simple parallel topology
described above, is more effi cient in terms of power (work done per time unit),
since all processors are utilized when there is work to be done, whereas in a pipe-
line one busy processor can stall the pipe and cause idle processors even when
there is work to be done. One solution is having buffers of intermediate results
between the pipe stages, to improve the smooth execution of the workload. The
primary advantage of pipelining with similar processors comes when subprocess-
ing in each of the processing elements can be made precisely equal, so that one
can make sure that the rate of execution is predefi ned and equals that of a pool
of similar processors.

7.4 Network Processors Basic Architectures 311

Xelerated network processors implement this basic type of topology, that is,
chains of similar processing units, although they use several pipelines in a sequence,
to enable some work to be done in between segments of pipelines, to overcome
the primary disadvantage of homogenous pipes.

PUPU PU PU

PUPU PU PU

7.4.3 Pipeline of Heterogeneous Processors
More effi cient pipeline setups use heterogeneous processing elements, where each
of the processing elements is a specialized processor, optimized for executing a
particular stage of the process. It is similar to the instruction pipelining principle,
in the sense that instruction pipelining allows different, special purpose hardware
(decoders, ALUs, memory interfaces, etc.), to perform each phase of the instruc-
tion. A pipeline of heterogeneous processing elements executes various packet
processing subtasks in matched processing elements for these subtasks along the
pipeline.

This topology has clear advantages over homogenous processors, paralleled or
pipelined, since various stages of the processing are done quicker by special pur-
pose, optimized processors. The main disadvantage of this topology is the require-
ment to use different programming models (and tools, languages, etc.) for each
of the different kind of processors. An additional drawback is the requirement to
 balance the stages, that is, to smooth processing, as it is required in the homoge-
neous pipeline. Since each of the processing elements is different, and the subpro-
cessing required for different packets is varied for the same stage and processing
element, there is a need for interstage buffers that will hold the intermediate results
in order to prevent pipeline stalls. Agere’s network processors are an example of
this kind of topology in network processors.

7.4.4 Parallel Pipelines of Processors
A pool of parallel pipelines is the compromise between strict parallel processors
and strict pipeline of processors, in an attempt to benefi t from both extremes.
This topology can be compared to superscalar architecture. This topology means
that at the entrance to the processing, a packet is directed to one of the pipes,
and is processed inside this pipe until it is fi nished. Practical implementations
of parallel pipelines include mostly homogeneous processing elements in the
pipelines. Cisco’s Toaster (PFX) is an example of this topology, where modules
of homogeneous processing elements, each containing four pipelines with four
stages in each pipeline, can be arranged together to have a pool of many pipelines

312 CHAPTER 7 Architecture

with many stages each. Intel’s network processors, as well as Freescale’s C-Port
network processors can be confi gured to work as clusters of pipelines, with few
stages in each of the pipelines.

Obviously, each of the processors in the pipelines can execute different sub-
tasks along the pipeline, and stalling can happen at the pipeline level. Stalling, how-
ever, is reduced in the overall system due to the use of multiple pipes, that is, when
one of the pipelines is busy (even if not fully utilized), another pipeline can be
selected for processing the incoming packet. All the advantages and disadvantages
related to homogeneous versus heterogeneous processing elements, as described
earlier, are valid for this type of topology.

PU

PU PU

PU

PU

PU PU

PU

7.4.5 Pipeline of Parallel Processors
The other way to combine the benefi ts of parallel pools and pipelines, comprised
of heterogeneous processing elements, is to arrange all of the processing elements
in a pipeline of parallel processors. This arrangement is similar to the strict pipeline,
and takes advantage of matching processing elements to the tasks they need to do at
various stages, but instead of having one processing element in each stage, there are
parallel pools of optimized processors for that stage’s work. Interstage buffers keep
intermediate results, and when all required data is ready for the next phase of process-
ing, a scheduler picks up an available (idle) processing element of the next phase, and
triggers this processor with the required inputs.

This topology enjoys the benefi ts of both the pipeline and parallel topologies,
and targets carrier switches and routers that require extremely high throughput
and L2–L3 processing. Like the parallelized topology, this mechanism also allows
the processing period to vary as required, at each processor and at each stage
(run-to-completion), depending on specifi c packets instances. It also reduces the
chances of processes waiting for service, and the need to synchronize, smooth,
and buffer processes and results waiting for a free processing element. EZchip’s
network processors are an example of such a topology.

PU

PU PU

PU

7.4 Network Processors Basic Architectures 313

7.5 INSTRUCTION SET (SCALABILITY; PROCESSING SPEED)
Instruction sets have a major impact on performance, and they are designed very care-
fully by network processor manufacturers. However, the instruction set also impacts
the usability of the network processor, its fl exibility, and at the bottom line its overall
capabilities. There are some examples of network processors that practically do not
use their own programming language due to the diffi culty of using the instruction set,
and many development environments were developed to assist in programming.

At the two extremes of the instruction set range are, at one end, general purpose
CISC or RISC instruction, arranged as VLIW or not, and at the other end, instructions
that are designed for networking. The latter instructions are specifi cally designed
for the kinds of procedures described in the previous chapters, such as check-sum-
ming, scanning, or QoS related instructions. More specifi c instructions are proto-
col-oriented instructions like specifi c header checksum, payload calculations, and
so on. It is important to understand that a general-purpose RISC instruction set
might be too limiting or too weak to describe the required operations on packets,
while an instruction set that was too specifi c might also be wrong, as changes in
the protocols would invalidate these instructions.

Optimized instructions for networking operations are therefore the goal of
every network processor manufacturer, and the designed instruction set should be
examined for its effi ciency and fl exibility. This fl exibility can be determined by try-
ing to see how well the instruction set performs in changed networking tasks and
requirements, and of course, changed protocols.

Another dimension in instruction set design depends on the network processor
confi guration: in homogeneous processing elements there is just one instruction
set, which simplifi es programming and code reuse. When heterogeneous processing
elements are used, then there might be several instruction sets, one for each type
of processing element in the network processor, which make programming a more
complex task. A solution to this problem is the use of a common set of similar
instructions for all processing elements types, with additional specifi c instructions
that these processing elements require for their unique operation.

The last issue in instruction sets is the amount of “work” that each instruction
can actually do (the power of the instructions). This means for example, that an
instruction can move data depending on a condition determined by a fl ag and,
while moving the data, can update fl ags, increment pointers, update checksum
counters, and so forth. Some network processors achieve similar capabilities by
using simple CISC instructions in VLIW architecture.

7.6 NP COMPONENTS
Network processors contain many subsystems and components that together
 comprise their functionality. These components may be internal or external,
depending on the selected architecture, and defi nitions. The following subsections
detail the internal components of network processors that affect its functionality

314 CHAPTER 7 Architecture

and performance the most: memory, interfaces (external and internal), and control
and synchronization mechanisms. The external, peripheral components, such as
coprocessors and hardware assists, host processors, switch fabrics, and traffi c
 managers are described in Chapter 9.

7.6.1 Memory
Memories are used inside the network processor at several levels, as well as outside
the network processor. In network processors, memory serves many functions,
like storing the program and registers’ content, buffering packets, keeping inter-
mediate results, storing data that is produced by the processors while working,
holding, and maintaining potentially huge tables and trees for look-ups, maintain-
ing statistical tables, and so forth. In addition, memory access time should match
the wire speed at which packets are processed; thus, network processors require
very fast memories. These two factors, size and speed, are the main constraints
that memory imposes on the network processor. Additionally, one expects to have
cheap memory chips that are not power consumers. Another dimension to con-
sider in memories is their technology, which infl uence all the above factors. Very
often, memory structure and architecture makes one network processor fi t for an
application while another is incapable of executing the required application. This
may result from inadequate table sizes or program sizes, or frame buffers that are
not enough.

Using internal memory is obviously the best solution from the point of view
of speed, since no time-consuming interfacing circuitries are used, very wide
memory access is possible, and memory can run at the internal processor clock.
On the other hand, using internal memory severely limits the possibility of using
a large amount of memory, or scale in memory size (not to mention it might
be a “waste” of processing silicon space). Therefore, as always, a compromise is
used: some memory is located internally, while external memory is interfaced.
This creates a memory hierarchy in terms of speed and size, as well as in terms
of technology.

In order to understand what can be achieved from memories, a short over-
view of memory technology and architecture is required. We already described
Content Addressable Memory (CAM) in Chapter 5. The more common mem-
ory is the Random Access Memory (RAM), a memory that returns the value
stored in a given address (or stores a value in a given address). There are
two basic implementations of RAM: Static RAM (SRAM) and Dynamic RAM
(DRAM). The static and dynamic notations refer to the ability of the RAM to
sustain its stored values, that is, in SRAM, contents remain as long as the SRAM
receives power. In DRAM, on the other hand, the contents of the DRAM ele-
ments decay over time, and in order to maintain them, the DRAM must be
refreshed (by pseudo-block-read operations) every few milliseconds (usually
up to 32 or 64 ms).

Static RAM reads contents faster than DRAM, because (a) DRAM requires peri-
odical refreshes that might collide with a read operation, (b) SRAM internal cell

7.6 NP Components 315

structure allows quicker reading than the DRAM’s cell structure, and (c) commod-
ity DRAM requires additional time to access the required cell, because the cell
address is multiplexed (i.e., fi rst the higher address bits are given to the DRAM
and then the lower bits), while SRAM accepts all its address bits at once. SRAM
also required less power than DRAM (depending on the clock frequency), and is
easier to work with (simpler control, addressing, and interfacing in general). The
drawbacks of SRAM are that it is a bit more expensive than DRAM, and it contains
far fewer data cells than DRAM of the same die size. This is because in a DRAM
cell only one transistor and one capacitor are required, compared to about 6 tran-
sistors in SRAM cells. The main trade-off therefore between DRAM and SRAM is
density and speed.

7.6.1.1 Static RAM Technologies
There are several types of SRAM chips that can be classifi ed according to the
architecture they use. First of all, there are Synchronous SRAM and Asynchro-
nous SRAM; where in synchronous SRAM, a clock signal synchronizes all address,
data, and control lines, in asynchronous SRAM, the data lines are synchronized
with address transition. Then, there is Zero Bus Turnaround architecture (also
known as No Bus Latency), in which the switching from read to write access
or vice-versa has no latency. Synchronized burst architecture means that syn-
chronous bursts of read or write operations can be executed by a sequence of
addresses that are determined by the SRAM (in which the address bus is not
used for accessing the subsequent data content). This can be done either lin-
early, that is, in increasing order of addresses, or in an interleaved mode (which
some processor may fi nd useful). Pipeline architecture means that data is latched
in pipeline operation, so that a subsequent read operation can initiate while
data is being read from the pipelined SRAM simultaneously. This enables a bit of
higher throughput, at the expense of one extra clock cycle latency. Flow-through
architecture is a bit slower (in terms of throughput), but with no read latencies
(see Figure 7.15).

High-speed SRAMs use Double Data Rate (DDR) technique, which means that
data is transferred both on the rising edge of the clock and on its falling edge,
thereby doubling the data bandwidth at the same clock rate. Quad Data Rate (QDR)
is used for even higher bandwidth rates, and is achieved by having the SRAM use
two separate ports to access the memory, one for data input and the other for data
output. Each uses a DDR interface.

As of this writing, SRAM can reach tens of Mbits per chip, at an access time of
a few nanoseconds. Data access width is from 8 to 32 bits wide and some SRAMs
support 18, 36, and even 72 bits wide data buses for specifi c uses.

7.6.1.2 Dynamic RAM Technologies
There are many DRAM technologies, and only the most common are described here.
The most common DRAMs for networking applications are Synchronous DRAM
(SDRAM), Double Data Rate (DDR SDRAM), Quad Data Rate (QDR SDRAM), and

316 CHAPTER 7 Architecture

Reduced Latency DRAM (RLDRAM). Some of the technological terms for rate inter-
faces are also used in SRAM, and were described above. DRAM is architecturally
different from SRAM, not only due to its electronic basis; DRAM’s memory array
is arranged in banks (typically 4 or 8), and each cell is addressed by its bank, row,
and column position. Row and column are determined by splitting the address bus
into two—half of it used to determine the row address and half of it for the column
address (see Figure 7.16).

Synchronous DRAM simply means that all data, address, and control signals are
synchronized by the clock signal (where asynchronous DRAM reacts as fast as it
can, following the control signals).

Using a pipeline mechanism in DRAM means that a couple of instructions can
be processed simultaneously by the DRAM (provided it is synchronous DRAM). In
other words, a read or write request can be accepted in the middle of executing
the previous read or write. For example, a read can be done from one address, and
while the data is presented on the output bus, the next address for read can be
presented on the address bus.

Double Data Rate (DDR) DRAM (sometimes called SDRAM2), are SDRAMs that
use the rising edge of the clock and its falling edge for data transfer, like DDR SRAM,

Memory
Array

Data
Control

Address

Clock

Write
Register

Flow-through SRAM

Control and
Registers

Memory
Array

Data
Control

Address

Clock

I/O
Registers Memory Cell

Pipeline SRAM

Control and
Registers

FIGURE 7.15

Pipeline and fl ow-through SRAM

7.6 NP Components 317

thereby doubling the performance (in throughput) at the same clock frequency. In
other words, two bits are read from the memory array at one clock cycle, and mul-
tiplexed on the I/O at a double rate clock. DDR2 DRAM is another jump in DRAM
performance, that is, doubling bandwidth at the same DRAM clock. This is achieved
by clocking the internal bus of the DRAM at a speed double that of the incoming clock
(at which the memory array also works), enabling data transfers from two different
cells to be done at one cell cycle. This and using rising and falling edges of the clock
increase the bandwidth by four, compared to a SDRAM at the same clock. In other
words, four bits are read from the memory array at one clock cycle, and multiplexed
by the busses and the I/O at quadruple rate. However, this is achieved with a serious
drawback—the latency increases by a few clock cycles. It means that rate increases
as well as latency, and in some scenarios (particularly in low clock frequencies), DDR
may have greater throughput than DDR2. DDR3 DRAMs are considered the generation
after DDR2 DRAMs, working at higher clock rates than that of the DDR2 DRAMs, by
reading eight bits (a byte) from the memory array at each clock period, and multiplex-
ing them on the busses and I/O at eight times the clock rate. Obviously, the latency
issue gets worse.

The Joint Electron Device Engineering Council (JEDEC, the organization that
standardizes all memories) standardized DDR-200 to DDR-400 (for a memory clock
of 100 to 200 MHz that produces 200 to 400 million data transfers per second),
DDR2-400 to DDR2-800 (for a memory clock of 100 to 200 MHz and a bus clock of
200 to 400 MHz, that produce 400 to 800 million data transfers per second) [237],
and DDR3-800 to DDR3-1600 (for a memory clock of 100 to 200 MHz) [238].

Another family of DRAM is Direct Rambus DRAM (DRDRAM) and its follower,
XDR DRAM. DRDRAM has extremely high bandwidth, but suffers from very
long latency and very high power consumption, which XDR DRAM solved. XDR
DRAM is targeted to the high-end graphics market, thus it is beyond the scope
of this book.

Memory
Array

Bank 0

Data

Control

Address

Clock

I/O
Registers

Memory CellControl Registers

Column Decoder

R
ow

 D
ec

od
er

Column Address Register

Row Address Register

...

FIGURE 7.16

Pipeline DRAM structure

318 CHAPTER 7 Architecture

Specifi c DRAMs that fi t networking are the Fast Cycle RAM (FCRAM) and the
Reduced Latency DRAM (RLDRAM). FCRAM is a DRAM with a memory array, which
is not typical to DRAMs, and which enables the use of addressing the cell like in
SRAMs. This means that column and row addresses of the accessed cell are pro-
vided together, unlike in the regular DRAM, in which row addressing10 precedes
column addressing11 by a couple of clock cycles. FCRAM also uses pipeline archi-
tecture, and has DDR interface.

As its name implies, RLDRAM has low latency compared to other DRAMs,
while still working at high rate (being a DDR device). This is achieved due to two
factors: (a) using more data banks in the memory array (memory array is orga-
nized in 8 banks, which is twice the number of banks in regular DRAM), thus
decreasing the probability of hitting an inaccessible bank (which happens for a
few clock cycles after accessing a bank), and (b) addressing is like in SRAM or
FCRAM described before. There is QDR like RLDRAM, which is termed separated
I/O (SIO), that is, it uses separate read and write data busses and allows simultane-
ous read and write operations, just like the QDR SRAM operation.

Due to the DRAM cell structure, cells may fl ip, which makes DRAM more sensi-
tive to bit errors. Though this is quite rare (happening several times a year in a 256-
mbyte size memory), it is recommended to use some sort of mechanism to check, or
correct, such errors. The most common ways to check or correct are by using a par-
ity bit (a 9th bit for every byte, for example), or Error Correcting Code (ECC). There
are several schemes for ECC, and the most frequently used is Single Error Correcting,
Double Error Detection (SECDED). For a 64-bit word, eight more bits are required
for SECDED,12 and for a 128-bit word, an additional nine bits are required. Every time
a word is accessed for read or write, a SECDED ECC mechanism computes the ECC
bits, and either stores them side-by-side with the word, corrects the retrieved word,
or sets off an alarm, as the case may be. This mechanism is usually part of the DRAM
controller, and can be turned on or off, according the requirements.

As of this writing, DRAM can reach several Gbits per chip (ten times more than
SRAMs), at an access time of about 15 nanoseconds (which is slower than SRAM).
Data access width is from 4 to 36 bits wide, with bandwidth reaching several Giga-
bytes per second.

7.6.1.3 Conclusion
Choosing the right memory type is a matter of how it is intended to be used, since
in some usage patterns, one technology results in better throughputs than another
technology, and it can be the other way around in other cases. Among the criteria
to consider in choosing the right memory is the read/write interleaving ratio, the

10Row addressing is done by using the Row Address Strobe (RAS).
11Column addressing is done by using the Column Address Strobe (CAS).
12SECDES requires n � 2 ECC bits for a 2n bits word. For 64 (26) bits words, n � 6, so we need 8 ECC
bits. However, just seven bits are enough to correct a single bit; it is not enough to detect a second
bit failure. For correcting two bits in a 64 bits word, 12 bits are required.

7.6 NP Components 319

sequential/randomness of addressing, burstiness of read/write operations, simulta-
neous read and write operations, size (density of the memory), power, and so on.

7.6.2 Internal Connections (Busses)
Due to the many network processor’s processing elements, functional units, on-
chip memories, I/O interfaces, schedulers and so on, there is a need for a vast num-
ber of internal busses that convey data from and to the various units. In order to
move as much data as possible in one clock cycle between the internal units, these
units are connected by parallel busses. The architecture of these internal busses is
one of the major factors that determines network processors’ performance. There-
fore, internal busses not only have a functional role, but they are designed to enable
the high bandwidth of data movements inside the network processor. Busses of
128, 256, or even of 512 parallel bits are quite common, and there are many such
busses. The end result is that the aggregated bandwidth of the internal main busses
exceeds 1T bytes/s (1013 bps). For the sake of example, a bus of 512 bits, clocked
at 250 MHz, is capable of moving 128 Gbps, and there are many such busses. Three
major problems emerge with these busses: (a) much of the chip area is “wasted”
by busses, (b) there is a lot of potential “noise” that has to be considered by the
chip designer, and (c) due to the long paths resulting from the large chip size,
synchronization problems are exacerbated (signal competition, delays, and clock
synchronization).

One technology that potentially can ease network processors’ design is NoC.
In a nutshell, instead of using a huge amount of very large busses, NoC uses a
network inside the chip to interconnect all the internal units, that is, a sort of
LAN (where the local is very local—the die itself). NoC has switching and rout-
ing elements to enable the transmission of data packets between the chip’s units.
The problem with this approach, however, is that the serial links between the
units may not be suffi cient to stand up to the wire-speed processing of packets by
the network processor. However, NoC can reduce the number of busses, where
 performance is less of an issue.

7.6.3 External Interfaces
External interfaces are very important in the network processor, since they
 practically dictate its maximum performance, whether through ingress or
egress rates, interfaces with essential memories, coprocessors, or other external
circuitry. The most important interfaces are the packet input and output interfaces
in terms of aggregated rate, and memory interfaces in terms of aggregated rate,
types, and addressable memory. External memory is required for holding statistics,
counters, and lookup tables.

External interfaces are made by internal circuitry or external chips (that inter-
face with the network processor). Usually, when standard interfaces are involved,
they can be achieved by using IP blocks internally (as described in Section 7.2.4),

320 CHAPTER 7 Architecture

or as attached chips (ASSPs) externally. There are two basic interfaces—serial and
parallel. Serial interfaces are usually used for I/O, whereas parallel interfaces are
used for memory interfaces.

Serialization de-Serialization (SerDes) devices may be used around the network
processor and inside it, to drive interfaces across distances and reduce the number
of signals (and pins) that need to be routed across the system’s boards and back-
plane. SerDes chips are transceivers that convert serial to parallel and vice versa
at rates of above 10 Gbps, and most of them are capable of full-duplex operation.
SerDes chips (which come as ASSPs) are used often in SONET/SDH, XAUI, Fiber
Channel (FC1, FC2, and GbFC), and Gigabit Ethernet applications. SerDes circuit-
ries are usually used in some of the chip interfaces, mainly in packet interface,
PHYs, mappers, and so on.

External interfaces can be grouped into two functional groups: (1) intercon-
nection interface between network processing devices (which can be further sub-
divided into those that interface with the network, e.g., PHY devices, and those
that interface with the switch fabric), and (2) interfaces with nonnetwork pro-
cessing devices that contain interfaces with external memories, coprocessors, and
host computers. The fi rst type of interface is called a streaming interface by the
Network Processing Forum,13 and the second type is called a look-aside interface
(see Figure 7.17). The most commonly used interfaces between IP networks run at
1Gbps and above, and the network processors are XAUI, GMII/XGMII, and System
Packet Interface (SPI); the most commonly used interfaces between switch fabrics
and network processors are SPI and XGMII (and also a legacy CSIX, described
in the following). Other common interfaces are those that interconnect external
memories (SRAM and DRAM) with network processors, such as the DDR and QDR.
In the following subsections all these interfaces are described, as well as several
other less commonly used interfaces. Many interfaces that are rarely used with net-
work processors (as of this writing) are not included here (e.g., Infi niBand, Fiber
Channel, Serial ATA, RapidIO,14 just to name few familiar standards) although some
processors may use these or other, less familiar interfaces (storage coprocessors,
for example).

7.6.3.1 Packet Interfaces
Packet interfaces are interconnection interfaces between any network process-
ing devices, such as switch fabrics, other network processors and dedicated net-
work coprocessors (e.g., classifi cation coprocessor), or line (PHY) interfaces
and framers. As mentioned above, the Network Processing Forum refers to this

13The Network Processing Forum (NPF) had merged into the Optical Internetworking Forum (OIF)
by mid-2006.
14FreeScale (Motorola at the time) intended to use RapidIO for its next generation C-Port network
processor, the C-10, which was eventually not developed. RapidIO was also a candidate for the
Network Processing Forum’s next version of its Look Aside interface (LA-2); as of the writing of this
book, this also did not happen.

7.6 NP Components 321

Network
Processor

PHY Layer
Device

(SONET
framer or
Ethernet

MAC)

Network
Processor

PHY Layer
Device

(SONET
framer or
Ethernet

MAC)

S
I

S
I

SI
MemoriesLAI

CoprocessorLAI

LAIMemories

SICoprocessor

Tr
an

sc
ei

ve
r

Tr
an

sc
ei

ve
r

Tr
an

sc
ei

ve
r

Tr
an

sc
ei

ve
r

Tr
an

sc
ei

ve
r

Tr
an

sc
ei

ve
r

Tr
an

sc
ei

ve
r

Tr
an

sc
ei

ve
r

SI
Network

Processing
Element

Nonnetwork
Processing
Element

LAI Look-Aside Interfaces (between NPE and Non-NPE)

Streaming Interfaces (between NPE)

Switch Fabric

S
I

S
I

FIGURE 7.17

The Network Processing Forum reference model for external interfaces

type of interface as streaming interfaces. They also standardized the entire group
by creating subgroups according to their usage (as described in the following).

When the interfaces are between the network processors and the line (PHY),
the network processors usually contain all the packet logic down to the data-link
layer, and the PHY interfaces are done externally. Sometimes MAC layer circuitry
can be found also outside the network processor. At any rate, all the interfaces are

322 CHAPTER 7 Architecture

usually done by using IP blocks (inside the network processor), or specifi c ASSPs
that handle the required interfaces.

Since packet interfacing is of utmost important in network processing (which is
packet centric), packet interfaces will be described in somewhat more detail than
the average user may need. This, however, will enable the reader to understand net-
work processors specifi cations, and evaluate their limitations in packet I/O.

7.6.3.1.1 Network Processing Streaming Interface
and Scalable System Packet Interface

There are two standards that describe packet interfaces: (1) the Network Processing
Streaming Interface (NPSI)15 [332], and (2) the Scalable System Packet Interface
(SPI-S)16 [341], which is actually based on and is the successor to the fi rst. Both
defi ne a framework specifi cation of point-to-point data path interfaces with the
support of addressing and fl ow control (for multiple framer channels, switch fab-
rics and/or coprocessor destinations and classes). NPSI defi nes the interconnec-
tion between network processing devices (e.g., framers, switch fabrics, network
processors, classifi cation coprocessors, encryption coprocessors, traffi c manager
coprocessors, or any other network coprocessors), targeting data transfer rate of
10 Gbps (OC192). It contains three main modes of operation (or group of inter-
faces): switch fabric interfacing, framer interfacing, and network processor-to-
coprocessor interfacing.

Network Processing Streaming Interface is a unidirectional, 16-bit-wide data
path (with additional clock and control signals, and fl ow control that is two-bits
wide and a clock in a reverse bus), running at 622 Mbps17 per bit lane, and is based
on SPI-4.2 (or SPI-5, as described in the following), with protocol concepts taken
from CSIX-L1 (also described in the following). The NPSI switch fabric mode sup-
ports 4096 egress ports, with 256 classes, and network processor (or coproces-
sor) interfacing mode that supports up to 256 channels. The NPSI framer interface
mode is simply the SPI-4.2, as described in the following.

Scalable System Packet Interface was introduced after NPSI, and actually
replaced it, and is also a successor of the SPI interfaces (described below). It is a
generic, point-to-point interface, not specifi c to some physical interface or band-
width that is capable of addressing multi-framer channels, switch fabrics, or net-
work processors. SPI-S defi nes the data link level requirements in terms of packet
defi nition, framing, addressing, error detection, and fl ow control. It is used for Eth-
ernet packets (≥ 64 bytes), ATM cells (48 or 53 bytes) or IP packets (≥ 40 bytes), in
a bidirectional, unidirectional or asymmetric manner.

15NPSI was copyrighted by the Network Processor Forum in 2002.
16SPI-S was copyrighted by the Optical Internetworking Forum in 2006.
17The bus clock is actually 311 MHz, but since it is double-edge clocking (both on the rising edge and
the falling edge of the clock, which is called Double Data Rate, or DDR) it runs 622 Mps per bit lane,
where bit lane means a signal in the bus, carrying one data bit (in NPSI case it is one Low Voltage
Differential Signaling (LVDS) pair, see footnote 23). Usually, for busses with single edge clocking, data
rates (in Mbps) will be the bus clock (in MHz) multiplied by its bits-width.

7.6 NP Components 323

7.6.3.1.2 UTOPIA
Universal Test & Operations PHY Interface for ATM (UTOPIA) bus is part of
the ATM world, and is mentioned here briefl y, since there are still some inter-
faces to this bus in a few traffi c managers or other line card chips. UTOPIA [31]
describes the data path interface between an ATM link and PHY devices, that is, it
describes how cells are actually sent from the data link (ATM layer) to the physi-
cal layer (ATM PHY) chips, and vice versa. UTOPIA can use Synchronous Optical
Network/Synchronous Digital Hierarchy (SONET/SDH), fi ber or STP (shielded
twisted-pair) with 8B/10B18 encoding or other physical medium. There are four
versions of UTOPIA, marked 1 to 4, that appeared sequentially as line interface
rates increase. UTOPIA level 1 covers line rates up to 155 Mbps (OC-3), by using
an 8-bit-wide data path and a maximum clock rate of 25 MHz. UTOPIA level 2
[32] supports up to 622 Mbps data rates (OC-12), using a 16-bit-wide data path
and a clock rate of 33 MHz (to meet the PCI bus, described below) and 50 MHz
(to reach 622 Mbps). UTOPIA level 2 also allows interface between the ATM layer
to multiple PHY ports (MPHY), more than the one ATM PHY chip that level 1
allowed. UTOPIA level 3 [33] covers rates of 1.2, 2.4, and 3.2 Gbps, by using a
32-bit-wide data path and a 104 MHz clock. UTOPIA level 4 [34] answers the
10 Gbps (OC-192) requirements by using the same 32-bit-wide data path clocked
at up to 415 MHz (eight times the OC-1 clock rate). UTOPIA is not a peered inter-
face, which means that there should be one end in a master mode and the other
working in slave mode.

7.6.3.1.3 System Packet Interface and Packet-Over-
SONET-Physical Layer

System Packet Interface (SPI) defi nes an interface that “channelizes” packets and
cells between the physical layer and the data link layer, as standardized by the Opti-
cal Internetworking Forum (OIF). SPI is a Packet-over-SONET/SDH (POS) framer19
interface, or Ethernet aggregator interface. It is a full-duplex interface, which has
two familiar levels of rates, level 3 (SPI-3) and level 4 (SPI-4), following the POS-PHY
level 3 and POS-PHY level 4, respectively.20

POS-PHY level 3 interface (which is SPI-3) supports Packet over SONET
 applications using a framer, at 2.5Gbps (OC-48). The interface consists of 8 or 32
signals for data, eight control signals, eight optional multichannel status signals,

188B/10B encoding came from the FiberChannel standards, and is used to minimize error by
“balancing” (averaging) serialized sequences of bits. In other words, in case of 8 bits all “0” (or all
“1”), 8B/10B encodes (by a simple lookup table) the 8 bits to 10 bits made of “1” and “0” that are
said to be “DC-balanced” (i.e., the resulted code almost always has 5 bits of “1” and 5 bits of “0”).
There is frequency bandwidth overhead that is required now for sending 25% more bits, but the
system has fewer errors; thus, the overall performance increases (in terms of throughput).
19The POS framer is at the physical layer, and originates from [377, 378] and is also known as POS-PHY.
20Both POS-PHY levels 3 and 4 originated from the Saturn development group.

324 CHAPTER 7 Architecture

and one clock signal, all per each direction, and all are TTL21 signals, running at
104 MHz.

Packet-Over-SONET-Physical Layer level 4 interface (which is identical to SPI
level 4 phase 2, or SPI-4.2)22 supports multi-Gigabit applications (e.g., 1 � 10 GbE or
16 � 1GbE) using an Ethernet aggregator, or Packet over SONET applications using
a framer; for example, 1 � OC-192 (i.e., 10 Gpbs), 4 � OC-48 (i.e., 4 � 2.5 Gbps), or
16 � OC-12 (i.e., 16 � 622 Mbps). It supports 256 channels (different addresses, each
with its fl ow-control) over its point-to-point connection. The interface consists of 16
LVDS23 pairs for data and a few signals for control, clock, and status, per each of the
directions, and runs at about 700 MHz. SPI-4.2 was designed for interfacing between
the physical layer (PHY) and the data link devices (PHY-link), but it is also used for
PHY-PHY and link-link connections. SPI-3 and SPI-4.2 emerged from PL-3 and PL-4
respectively; both originated at the ATM forum (PL stands for POS Layer).

Two other interfaces are the POS-PHY level 2 operated up to 832 Mbps, which
is no longer common, and the SPI-5, which targets the 40 Gbps (OC-768) interface.
SPI-5.1 is based on a 16-bit-wide bus per direction, running at 2.5 GHz, and is very
similar to SPI-4.2 in all other aspects.

There is one more complementary standard of the OIF that is associated with
SPI, and should not be confused with SPI, namely the SerDes to Framer Interface
(SFI). This standard defi nes the interconnection in the “line side” (as opposed to the
“system, processing side” that SPI defi nes), that is, between the optical module and
the processing chips, or between two different processing chips. In other words,
SFI defi nes the point-to-point interfaces between SerDes components, the Forward
Error Correction (FEC) processor, and the framer. The aggregated rate supported
by SFI level 4 (SFI-4) is 10 Gbps (OC-192), for use in POS, ATM, and 10 GbE, and it
is bidirectional. SFI-4.1 uses 16 channels per direction, each clocked at 622 MHz,
while SFI-4.2 uses a 4-bit-wide bus per direction running at 3.125 GHz. SFI-5.1
reaches 40/50 Gbps by using two (bidirectional) 16 channels with 2.5/3.125 Gbps
per channel, for a total of 40/50 Gbps, while SFI-5.2 reaches 44.4 Gbps per direc-
tion by using a 4-bit-wide bus per direction, running at 11.1 GHz [342].

Figure 7.18 depicts a simple reference model (on the left side of the Figure 7.18),
in comparison with SONET/SDH (on the right) and IEEE 802.3 [186] 10 and 1 Gbps
Ethernet (in the middle of the Figure 7.18). Note that SPI is a boundary interface of
system/physical, as well as being the SPI.

21Transistor-Transistor-Logic (TTL) is a 0-0.8 V or 2-5 V interface for logic “0” or “1.” TTL used to be
very common in discrete logic circuitry, but suffered from power, speed, and distance issues.
22SPI-4.1 is the fi rst phase of SPI-4, targeted at 10 Gbps (OC-192), but works slower than SPI-4.2. SPI-4.1
defi nes unidirectional interface that works with a 64-bit-wide bus, running at 200 MHz, whereas
SPI-4.2 is a bidirectional interface that uses a 16-bit-wide bus per direction, running at 622 MHz.
23Low Voltage Differential Signaling (LVDS) was introduced in the mid-1990s to support very high-
speed interfaces over cheap, twisted-pair copper wires. It is based on transmitting low current
(3.5 mA) in one of the wires according to the logic level (“0” or “1”) through a 100 � resistor, creat-
ing a 0.35 mV difference—hence, the Low Voltage.

7.6 NP Components 325

7.6.3.1.4 IEEE 802.3 Ethernet Interfaces
IEEE 802.3 [186] defi ned several Ethernet interfaces, ranging from 1 Mbps to
10 Gbps rates (as was described in more detail in Chapter 2). In network proces-
sors, the 100 Mbps (“fast Ethernet”) is rarely used (and lower rates are totally irrele-
vant), so these interfaces are not detailed here. More practical and common are the
1 Gbps Ethernet (GbE) and the 10 Gbps Ethernet. Figure 7.18 provides a reference
model of the interfaces, from the MAC (Media Access Control) layer down to the
media (a more detailed description is provided in Chapter 2). The upper layers of
the Ethernet are handled by the network processor software. In this subsection, we
discuss the interfaces of the network processors with regard to Ethernet packets.
These interfaces may include: Media Independent Interface (MII) that is used for
10 and 100 Mbps Ethernet (and is not described here), Gigabit Media Independent

SFI

Data Link Layer
(MAC—Media
Access Control)

Reconciliation
Sublayer (RS)

Physical Coding
Sublayer (PCS)

*WAN Interface
Sublayer (WIS)

Physical Medium
Attachment (PMA)

Physical Medium
Dependent (PMD)

Medium

Data Link Layer
Packets and Cells

10 Gbps
Media Independent
Interface (XGMII)

Data Link Layer
(MAC—Media

Access Control)

Reconciliation
Sublayer (RS)

Physical Coding
Sublayer (PCS)

(8B/10B)

Physical Medium
Attachment (PMA)

Physical Medium
Dependent (PMD)

Medium

32 � 4

SONET/SDH
framer

SerDes

Transceiver

Medium

System-
Physical

Interface (SPI)

SerDes-Framer
Interface (SFI)

Very Short
Reach (VSR)

XGMII Extended
Sublayer (XGXS)

XGMII Extended
Sublayer (XGXS)

10 Gbps Media
Independent

Interface (XGMII)
32 � 4

SPI

System Side

Medium Dependent
Interface (MDI)

Medium Dependent
Interface (MDI)

Line Side

*Optional

10 Gbps
Attachment Unit
Interface (XAUI)

Gigabit Media
Independent

Interface (GMII)
8+3 4

16
10 Gbps

Sixteen Bit
Interface (XSBI)

(P
hy

si
ca

l L
ay

er
 D

ev
ic

e)

10

FIGURE 7.18

SPI-SFI reference model

326 CHAPTER 7 Architecture

Interface (GMII) that is used for GbE, and 10 Gigabit Media Independent Interface
(XGMII) that is used for 10 Gbps Ethernet.

Gigabit Media Independent Interface and Gigabit Media Independent Interface The
GMII interface bus is full-duplex, with 8 data bits, 2 control bits, and a 125 MHz
clock per directions and two more control signal bits, as shown in see Figure 7.19.
The XGMII interface is also full-duplex, with 32 data bits, four control bits, and
a 156.25 MHz clock per direction, which is used in its rising and falling edges
(i.e., DDR, which means 312.5 Mbps per bit lane), as shown in Figure 7.19.

XAUI For XGMII there is an extension block, called XGMII eXtended Sublayer
(XGXS), which permits the extension of the operational distance of the XGMII
and the reduction of the number of interface signals. By using an XGXS at the data
link layer side, that is, the RS end (DTE XGXS), and an XGXS at the PHY end (PHY

Media Access Control (MAC)

Physical Layer Device (PHY)

Gigabit Media
Independent

Interface (GMII)

Medium Dependent
Interface (MDI)

Physical Layer Device (PHY)

Medium Dependent
Interface (MDI)

D
at

a
Li

nk
 L

ay
er

Physical Layer Signaling (PLS)

Reconciliation Sublayer (RS)

TXD
 <

7
:0

>
 (D

ata)

TX_E
N

 (E
nable)

TX_E
R

 (E
rror)

G
TX_C

LK
 (1

2
5

 M
H

z)

C
O

L (collision)

R
XD

 <
7

:0
>
 (D

ata)

R
X_E

R
 (E

rror)

R
X_C

LK
 (1

2
5

 M
H

z)

R
X_D

V (Valid)

P
LS

_D
A

TA
.request

P
LS

_S
IG

N
A

L.indication

P
LS

_D
A

TA
.indication

P
LS

_D
A

TA
.VA

LID
indication

P
LS

_C
A

R
R

IE
R

.indication
C

R
S

 (C
arrier sense)

M
D

C
 (M

ang clock)

S
ta

ti
on

M
an

ag
em

en
t

M
D

IO
 (M

ang I/O
)

Media Access Control (MAC)

10 Gigabit Media
Independent

Interface (XGMII)

P
LS

_D
A

TA
.request

D
at

a
Li

nk
 L

ay
er

Physical Layer Signaling (PLS)

Reconciliation Sublayer (RS)

TXD
 <

3
1

:0
>
 (D

ata)

TXC
 <

3
:0

>
 (C

ontrol)

G
TX_C

LK
 (1

5
6

.2
5

 M
H

z D
D

R
)

P
LS

_S
IG

N
A

L.indication

R
XD

 <
3

1
:0

>
 (D

ata)

R
XC

 <
3

:0
>
 (C

ontrol)

R
X_C

LK
 (1

5
6

.2
5

M
H

z D
D

R
)

P
LS

_D
A

TA
.indication

P
LS

_D
A

TA
.VA

LID
indication

P
LS

_C
A

R
R

IE
R

.indication

Medium Medium

FIGURE 7.19

GMII and XGMII interfaces

7.6 NP Components 327

XGXS), it is possible, for example, to extend the physical separation between the
MAC and the PHY components across a circuit board. The interface between
these two XGXS blocks is called 10G Attachment Unit Interface (XAUI) and is
reminiscent of the old 1 Mbps Attachment Unit Interface (AUI), which was used
to connect the system by its data link layer to a separated medium to which the
PHY was attached. At any rate, XAUI is important in itself, and is used in network
processing interfaces for 10 Gbps Ethernet PHYs instead of the XGMII. This is
because XAUI is simpler, targeted for chip-to-chip interface implemented with
traces on a printed circuit board, and contains four pairs of Low Voltage Differ-
ential Signaling (LVDS)24 per directions, each running at 3.125 MBaud.25

TBI Ten Bit Interface (TBI) is used quite frequently for GbE connections.
Contrary to the GMII, which is an interface between the MAC layer and the
PHY devices, TBI is an interface inside the PHY, between the Physical Coding
 Sublayer (PCS), the upper PHY sublayer, and the Physical Medium Attachment
(PMA). TBI is thus a physical instantiation of the PMA service interface, working
at 125 MHz full duplex, like the GMII. It is nevertheless recommended by the
IEEE802.3 for interfacing since it conveniently separates the high-frequency
circuitry from the logic functions of the MAC and PCS sublayers, it is intended
to be used as chip-to-chip interface, and it provides compatibility between
chips designed by various manufacturers.

Implementation supporting both GMII and TBI, known as GMII/TBI, maps the
TBI’s ten bits (resulting from the 8B/10B coding26 of the convergence sublayer)
on the GMII data and the control signal pins.27 GMII’s COL and CRS signals are not
used in TBI, but there are other control signals of the TBI.28

7.6.3.1.5 MII and GMII Derivatives
Several interfaces derived from the IEEE 802.3 MII and GMII standards were intro-
duced to the market and were accepted by the network processor manufacturers.
Reduced MII (RMII) and Reduced GMII (RGMII) or TBI (RTBI) are interfaces that
reduce the number of pins required to interconnect the MAC and the PHY.

RMII reduces interface pin count per port from 16 in MII to 7, while RTBI
reduces the maximum of 28 pins down to 12 pins. This is accomplished by multi-
plexing data and control signals together on both edges of the clock signals (run-
ning at 125 MHz for GMII). There are two modes of operation for GMII, which are
RGMII and RTBI modes, as indicated by a specifi c input signal.

24See footnote 23.
25Baud is symbol per second, and it is used to measure rate where the coding is not simple bitwise,
that is, there may be several bits per symbol.
26See footnote 18.
27See footnote 28.
28Detailed description of these signals and their function is beyond the scope of the book, and the
interested reader is referred to the standard, IEEE 802.3 [186, clause 36.3].

328 CHAPTER 7 Architecture

Serial MII and GMII (SMII and SGMII) are specifi cations published by Cisco Inc.
(ENG-46080 and ENG-46158, respectively). The basic idea is to use two pins per port,
and, optionally, to connect several PHY devices to one MAC layer, synchronized with
one clock. SMII is composed of a global synchronization signal and a global 125 MHz
reference clock, in addition to the two signals per port (receive and transmit). If a
long trace delay is used (more than 1 ns), than four optional signals may be used
instead of the synchronization signal (two per direction; one is clock and the other is
synchronization). SGMII uses two data signals (receive and transmit) and two clock
signals (for receive and for transmit) to connect the PHY to the MAC. The data signals
run at 1.25 Gbaud, using the clock signals at 625 MHz (which is used in its rising and
falling edges, i.e., a DDR interface). Each of these signals uses a differential pair LVDS.

7.6.3.1.6 Common Switch Interface Specifi cation
Common Switch Interface Specifi cation (CSIX) was defi ned by the CSIX group, which
later became the Network Processing Forum (NPF), together with the Common Pro-
gramming Interface Forum (CPIX) [331]. The fi rst standard (and the only one, to
date), called CSIX-Level 1 (CSIX-L1), defi nes a full-duplex interface between traffi c
managers (and network processors) and switch fabrics for ATM, IP, MPLS, Ethernet,
and so on. It discusses CSIX-Level 2 (CSIX-L2) for carrying information between traf-
fi c managers (or network processors) but this information was not standardized.

Common Switch Interface Specifi cation-Level 1 defi nes a physical interface and a
“directive” header (called CSIX frame, or CFRAME), which carries information as to
how to treat the frame (i.e., to control the behavior of the interface between the traffi c
manager and the switch fabric). Each received frame is classifi ed and forwarded across
the switch fabric (that works according to the CSIX), according to the CFRAME.

Common Switch Interface Specifi cation-Level 1 physical interface is intended
to be used for board-level connectivity (i.e., up to 20 cm trace length), and sup-
ports data rates of up to 32 Gbps. The data path is 32-, 64-, 96-, or 128-bits-wide
per direction, clocked at up to 250 MHz. In addition, several control lines exist (for
each 32 bits of data, and for each of the directions—transmit and receive—there
are parity, start of frame, and clock control pins).

A CSIX-L1 header consists of 2 to 6 bytes, followed by optional payload (up
to 256 bytes) and 2 bytes of vertical parity. The fi rst 2 bytes contain the payload
length, frame type, and ready bits (for link level fl ow control). The frame type indi-
cates whether the frame is idle, unicast, multicast (or carries the multicast mask),
broadcast, or is a fl ow-control frame.

Common Switch Interface Specifi cation-Level 1 supports up to 4096 switching
ports (12 bits destination addresses) for the connected traffi c managers or network
processors. In addition, there are up to 256 distinguished classes, defi ned by the
traffi c manager (or network processor) and by the switch fabric vendor, that is,
the 8-bit class provides a mechanism to handle priorities and QoS services within
the switch fabric. This means that the switch fabric can use the class to differenti-
ate between CFRAMEs that are addressing the same switch fabric port, and handle
them differently, according to their classes.

7.6 NP Components 329

7.6.3.1.7 Access Interfaces
Access interfaces, in the context of network processors, are sub-1 Gbps interfaces.
They include many types of interfaces, and are mainly used by the access network
processors (hence, their separate classifi cation). Packet-based data (e.g., Ethernet),
cell-based data (e.g., ATM), and continuous data (which is often referred to as Time
Division Multiplexing [TDM], e.g., digital telephony) have various interfaces. These
interfaces are described very briefl y in this subsection, since they are beyond the
scope of the book.

Ethernet interfaces are done with the MII, GMII, RMII, and SMII defi nitions
described above. Utopia level 2 (described earlier) is used frequently to interface
cell-based data (e.g., ATM OC-3 and ATM OC-12— i.e., 155 Mbps and 622 Mbps,
 respectively).

Packet-Over-SONET-Physical Layer level 229 [378] is used for packets over SONET/
SDH, to carry IP packets over Point-to-Point Protocol [387], over HDLC protocol
[388], and over SONET [386]. POS-PHY can be also used to carry Frame-Relay data
or even Ethernet packets (although it is quite rare).

Time Division Multiplexing interfaces include the serial T1/J1 and the serial
E1 interfaces,30 which are connected to Plesiochronous digital hierarchy (PDH)31
 networks. T1/J1/E1 can also be interfaced to the network processors by using
xDSL.32 Higher speeds PDH connections are also used, like the T3/E3.33

7.6.3.2 Host Interfaces
Almost all network processors have interfaces with host processors for various
tasks, starting from initializations, confi guration, slow-path packet processing,
management tasks, as well as reporting, maintenance, and other functions that the

29POS-PHY level 2 emerged from UTOPIA level 2 and SCI-PHY, for variable size packets. The interface
is 16-bits-wide per direction, clocked at up to 50 MHz, and, hence, capable of full-duplex, 800 Mbps
connection. It supports multiple PHY interfaces (by a 5-bits address bus), and has seven additional
control signals and three other optional control signals per direction.
30A reminder from Chapter 2: T1/J1 are the North American and Japanese standards of serial
PDH interfacing and framing, that are running at 1.544 Mbps (T1/ J1) and 2 Mbps (E1). These
interfaces multiplex (in time division technique) basic voice (Digital Signal) channels of 64 kbps
(which is called DS-0). T1 is also known as DS-1, as DS-1 is the protocol name that the physical
T1 uses. T1 framing can be of Super Frame (SF) scheme or Extended Super Frame (ESF); both
synchronize the T1 frames by 8 kbps framing channels that are used differently and are not
compatible.
31A reminder from Chapter 2: PDH are networks that are almost synchronous, which means that they
use the same clock rate but from different clock sources.
32A reminder from Chapter 4: See footnote 1. Additionally, it is important to note that the DSL modem,
at the CPE (Customer Premises Equipment) end, and the DSLAM (Digital Subscriber Line Access
Multiplexer) at the other end of the line, that is, at the CO (Central Offi ce), are working on an ATM or
Ethernet infrastructure, which carries Point-to-Point Protocol (PPP), which in its turn encapsulates
IP packets.
33A reminder from Chapter 2: E3 runs at 34.368 Mbps, whereas T3 runs at 44.736 Mbps. T3 is also
known as DS-3.

330 CHAPTER 7 Architecture

 network processor is not optimized to perform (or not capable of doing at all).
Some network processors have an embedded processor that runs some of the
slow-path tasks, management, or maintenance, but even then it is typical to fi nd an
external host processor.

When a host processor is attached, it must be interfaced with the net-
work processor; this can be done either with some proprietary interface,
memory-type interface, or a standard interface used by host systems, thereby
enabling the network processor to be attached to a system and not just glued
to some CPU.

The standard way of achieving such interface is through the use of a PCI
bus, or its followers, PCI-X and PCI express. Peripheral Component Intercon-
nect, or PCI, was introduced originally by Intel around 1990 at the component
level (PCI 1.0), as a way to interconnect devices on motherboards of personal
computers and servers. The purpose was to allow various devices, including
memory, to interconnect directly without CPU intervention. It evolved also to
specifying a connector (for “cards” to be attached to the motherboard) and
a bus that supported up to fi ve devices. Since it supported bridges, each of
these devices could have been used to connect more devices. These advan-
tages—coupled with software features that enabled auto confi guration (Plug
and Play, or PNP) that appeared simultaneously—turned the market around,
and most computer vendors adopted PCI and abandoned previous Industry
Standard Architecture (ISA) and Extended ISA (EISA) busses. The PCI Special
Interest Group (PCISIG) was organized in 1992, and became responsible for the
standard and its derivatives.

The original PCI standard (version 2.0) was a 32-bit-wide bus, running at 33 MHz,
which limits the theoretical throughput to 133 Mbytes/s. Later revisions went up
to 66 MHz (PCI 2.2) while PCI-X supports 133 MHz, and a 64-bit-wide bus that can
reach just above 1 GBytes throughput. PCI-X version 2.0 enables bus clocks of up
to 533 MHz, hence supporting up to 4.3 GBytes/s throughput. PCI-X is also a paral-
lel bus, and is backward pin compatible with the 5 and 3.3 V cards that PCI 2.2 (and
higher versions) supported. Both PCI and PCI-X are bidirectional busses, but work
in half-duplex mode.

PCI Express, or PCIe, was also introduced by Intel (in 2004), and is cur-
rently the fastest bus interface supported by PCISIG. It is an entirely differ-
ent bus architecture than the PCI and PCI-X (and not compatible with these
standards). It is a serial interface, full-duplex, point-to-point bus. While in PCI
and PCI-X, the slowest device dictated the entire bus speed, PCIe enables
speed negotiation by each of the attached devices. PCIe has multiple lanes for
data transfers, and each is a serial channel capable of reaching 250 MBytes/s.34
PCIe runs a layered protocol stack, and is capable of using a PCIe switch for

34PCIe standards defi ne 1, 2, 4, 8, 12, 16, or 32 lanes, and the respective busses are known as PCI-Express/
xN, where N is number of lanes, for example, PCIe/x16 means 16 lanes PCI-Express.

7.6 NP Components 331

 interconnection and routing between several PCIe interfaces.35 Its lowest layer,
the physical layer, has an electrical sublayer that uses two unidirectional serial
Low Voltage Differential Signaling (LVDS)36 pairs, one per direction, running
at 2.5 Gbps, creating a lane of four wires. PCIe 2.0 doubles this bandwidth to
5 Gbps, and the forthcoming PCIe 3.0 brings it to 8 Gbps. At the upper physi-
cal layer, data is framed (one start-of-frame byte, and one end-of-frame byte),
interleaved on all used lanes, and 8 B/10B37 encoded (PCIe 3.0 is not using the
8 B/10 B encoding). The data-link layer of PCIe adds a sequence number to the
packet header (two bytes) and a CRC (4 bytes, called Local CRC, or LCRC) as a
packet trailer, and uses acknowledgments to maintain data integrity, as well as
flow-control protocol, credit-based,38 to make sure that the receiving party is
capable of receiving the sent packets. The upper layer is the transaction layer,
which is used for interfacing with the application. This layer is responsible
for addressing devices and memory and also maintains a handshake with the
peered layer, as well as with the data-link layer. This layer adds a header (16 or
20 bytes) and an optional CRC (4 bytes, called end-to-end CRC, or ECRC) as a
packet trailer. The payload itself is 0 to 4 K bytes. The PCIe packet is shown in
Figure 7.20.

PCIe has the potential to impact network processors, not only in interfacing with
hosts (it is a better interface since it requires fewer I/O pins on the network processor
interface), but also as a platform for data transfers between devices, since it can reach
8 GBytes/s with 32 serial channels (lanes). PCIe 2.0 doubles this bandwidth, having
5 Gbps rate on each of its lanes, and PCIe 3.0 is expected to bring it to 256 Gbps.

35In 2004, the Advanced Switching Interconnect Special Interest Group (ASI-SIG) even published a
standard for switching PCIe busses, called ASI. ASI dissolved into PICMG at 2007, but PCIe switches
are commercially offered as chips for onboard implementations, and as systems for inter-computer
and peripherals PCIe interconnection.
36See footnote 23.
37See footnote 18.
38A device advertises its capacity to receive (i.e., credit), and the sending party knows its limits
in sending packets, while it gets the updated line credit from the receiving party as packets are
 processed. This saves latency and increases throughput.

Payload
0–4096 bytes

Application Layer PDU

Header
16/20 bytes

ECRC
0/4 bytes

Seq#
2 bytes

Presentation Layer PDU

LCRC
4 bytes

Data Link Layer PDU

SOF
1 byte

EOF
1 byte

Physical Layer PDU

FIGURE 7.20

PCIe packet

332 CHAPTER 7 Architecture

7.6.3.3 Memory and Coprocessors Interfaces
Practically, most network processors interface memory chips and coprocessors
according to the requirements and the pin layout and functions of the memory
chips or the coprocessors. However, there is one standard—the Look-Aside (LA)
interface of the Network Processing Forum (NPF), now the Optical Interfac-
ing Forum (OIF)—that is used mainly by search engine coprocessors and CAM
 memories that are used for searching. A few comments on interfacing memories
are required before describing the LA interface.

7.6.3.3.1 Memory Interfaces
Naturally, all SRAM and DRAM technologies that were described in the memory sub-
section above should be considered in interfacing memories with network proces-
sors, that is, QDR, DDR, and so on. This means that some of these interfaces may have
to be multiplexed internally according to the memory interface, in order to work with
the double rate clocking (DDR), for example. Other kinds of interfaces may require
other functions in the network processor internal interface circuitry. For example,
bursting also has to be considered, when it is applicable, as well as bus turnaround.

Additionally, a network processor can interface several memories in parallel,
applying the same address bus and control signals to all of them, and create a data
bus of any width, which is the sum of all the widths of the connected memory
chips data busses. In other words, to create a 64-bit-wide data bus, for example, the
network processor can use four parallel memory chips, each with a 16-bit-wide bus.
This is very useful in increasing the overall memory throughput, and the only limi-
tation is the extent of memory width that the network processor really requires,
or can have in terms of internal busses, amount of pins, and so on. Memory size,
on the other hand, is determined by the chips sizes and their amount, as well as by
the width of the address bus used by the network processor (a 28-bit-wide address
bus can handle up to 256 M addresses, for example). When Error Correction Code
(ECC) is used in DRAMs, extra memory chips might be required to store the ECC
bits, and the data bus should be affi xed with the ECC bits that have to be interfaced
in addition to the data bits (that is, if the ECC mechanism is inside the network pro-
cessor, in a DRAM controller, and is not a part of an external memory circuitry).

It should be noted that SRAM memory chips have similar interface in terms
of pin functions, and are simpler to interface than DRAMs. As mentioned above,
DRAMs usually require a DRAM controller, which might be inside the network pro-
cessor or external to it, and DRAM memory chips also have quite a similar interface
to the DRAM controller.

7.6.3.3.2 LA-1
The Look Aside Interface (LA-1)39 is the Network Processor Forum’s fi rst genera-
tion of look aside interface. Its objective is to interface memories (mainly CAMs)

39LA-1 was copyrighted by the Network Processing Forum in 2002.

7.6 NP Components 333

and coprocessors, or any adjacent device to a network processor that is off-loading
network processing tasks. LA-1 interface is basically a SRAM interface, memory
mapped (8–512M address space), with some modifi cations that are meant to incor-
porate coprocessors, like variable access latency, out-of-order responses, and so on.
The address bus is used for register addressing when appropriate, when interfacing
coprocessors, and an in-band handshake occurs for transferring the required con-
trol and results to and from the coprocessor. LA-1 uses separated read and write
16-bit-wide data busses (SIO), and with 200 MHz DDR interface, it transfers 32 bits,
yielding 800 Mbytes/s bidirectional data transfers. LA-1 enables bursts of two read
or write operations in the DDR scheme, that is, two bytes are transferred from con-
secutive addresses in the fi rst operation, followed by an additional two bytes from
consecutive addresses (the two least signifi cant address bits are not used). There
are four additional parity bits per direction (with two lines per direction using
DDR), which are used for even-byte parity.

A following modifi cation to the standard, known as LA-1B, enhances the LA-1 in
speed (x2.5 bandwidth, that is, 2 GBytes per direction), allows multiple operations
simultaneously (e.g., lookups), and enables bursts of four consecutive operations
(up to 8 byte data transfers from or to consecutive addresses).

LA-2 specifi cation has not been released (although it has been discussed), and it
considered adopting RapidIO, HyperTransport, or derivations of SPI-4 or SPI-5.

7.6.4 Control and Synchronization Mechanism
This mechanism is what makes the network processor work, and, more than that,
determines how it will work. More abstractly, this mechanism is also responsible
for the way the user of the network processor (the programmer who implements
the network processor in its system designs) actually uses it. It can allow the user
to ignore all synchronization tasks (questions such as: Where is the packet? Where
are its results? Can it be sent to the search engine? Are the results ready?), parallel-
ism (What processing element is free? What about packet ordering?), buffer man-
agement (Is this place available? How big is the search data base?), and so forth.

Control and synchronization circuitry is designed fi rst and foremost to make
the processor function properly. In a pipeline confi guration, the control mechanism
handles all the intermediate results, in a way that smooths the pipeline operation
and benefi ts from the pipeline even in situations of imbalanced use of its stages. In a
parallel confi guration, it keeps track of packet ordering and proper use of common
network processor resources (memories, functional units, etc.).

7.6.5 Functional Units
Search engines and traffi c managers are the main processing elements that typically
reside within the network processor. There are, however, many implementations of
search engines and traffi c managers that are external to the network processor
and are working as either a coprocessor or attached as a memory-mapped device.

334 CHAPTER 7 Architecture

The integration of these two types of processors in the network processor adds
substantial advantage, in terms of the rate of data movements and requires fewer
components at the system level.

Any network processor, as any other GPP, must have functional units to
enhance its capabilities. The most obvious one is the ALU. Additional network-
related functional units are those that handle the packet checksums (IP and
TCP), converters that assist in converting packet content from some represen-
tation to another one, scanners that assist in identifying specifi c contents in the
payload, look-aside managers, memory managers, and so on. These functional
units have many materializations, and detailing them is beyond the scope of
this book.

7.6.6 Embedded Processors
Some network processors contain embedded processors such as ARM, PowerPC,
MIPS and the like, or even confi gurable processor cores (such as Tensilica), which
assist the network processor with control functions, in addition to taking some of
the slow-path operations onto themselves.

7.7 SUMMARY
In this chapter, we discussed the basics of network processor architecture from
a theoretical point of view, describing what technologies are available to use, and
how they all integrate in the design of network processor. In addition, the inter-
faces used for connecting the network processor to its working environment (from
both the network side and the system side) are described, to enable the reader to
understand how to plan, design, and build a system with network processors.

The next chapter discusses the programming model, and together, these two
 chapters provide an answer to the challenge of how to cope with the mission of packet
processing in a high-speed, demanding, and complex networking environment.

7.7 Summary 335

This page intentionally left blank

CHAPTER

8
In the previous chapter, we discussed network processor architecture in terms
of the processing element confi guration, other internal units in the network
processor, and interfaces to the network processor. At several points during
this discussion of the architecture, we mentioned possible impacts on and by
programming models. This chapter describes programming models of network
processors, as well as some important principles that are relevant to their pro-
gramming, and concludes by describing the typical programming environment
of network processors.

Programming a network processor is very different from programming any other
processor; some see it as notoriously diffi cult, while others fi nd it very strange.
Some network processors are fairly easy to program, almost like general purpose
processors, while other network processors require specifi c tools to assist with
their programming, which is very complicated. At any rate, developing software
for a network processor is a complex task that requires very careful attention to
multiple areas: the networking environment, demanding performance constraints
within a typical heterogeneous architecture that has many types of processing ele-
ments, search engines, traffi c managers, and other functional units.

This chapter sheds light on the peculiar programming world of network pro-
cessors. It is not the intention of this chapter to provide a general programming
concept (surely not describing a specifi c programming language), but rather to
discuss the relation between network processor architecture and programming, as
well as the typical programming tools and utilities required to program a network
processor. In addition, it should be noted that the wide coverage of programming
issues in this chapter, which touches on the entire spectrum of network proces-
sors as well as conventional equipment, might result in the feeling that program-
ming a network processor is harder than it really is. Once a network processor is
chosen, most of the details in this chapter become irrelevant. However, choosing
the right network processor from among all possibilities, and understanding the
relevant programming issues and tasks, requires the broad overview provided in
this chapter.

Software

338 CHAPTER 8 Software

In the introduction to the previous chapter, Architecture, we categorized the
 network processors according to three groups: entry-level or access network pro-
ces sors, mid-level processors (legacy and multiservice network processors), and high-
end network processors that are targeted for core and metro networking equipment,
usually on line cards. This categorization is obviously important in describing the soft-
ware of network processors, although all three of these groups share many common
attributes. It is important to note, however, that parallel processing and programming,
mainly on symmetrical multiprocessor (SMP), chip multiprocessor (CMP), and
multi-core processor (MCP) architectures, is usually used for networking applications
of the higher layers (L5–L7, for example, security, storage, and accounting). Pipelining
architectures are usually used for ultra-high speed packet processing on line cards, at
the lower layers of networking (L2–L4), and performance is a key issue that impacts
the software and programming of network processors for these applications.

One last remark on the software of network processors: there is usually a host
processor—either embedded in the network processor or interfaced to it—that is
responsible for managing the network processor’s packet processing elements (the
data path1 processing). This is the control path processing, which is not the focus
of this chapter, although in some implementations the two are combined. Writing
software for the host processor (particularly if it is external host) is “usual program-
ming,” which is briefl y described in Section 8.2.

8.1 INTRODUCTION
Designing and programming equipment for networking applications can be done in
a traditional way, with traditional architecture, which means that both the data and
control path tasks are processed by a general purpose processor that uses an operat-
ing system (OS) or a kernel, with the applications (the control-path tasks) running
on top of it. Designing and programming networking equipment can also be based
on network processors, with a minimal amount of highly-effi cient specifi c software
executing the required data path processing. It can also be a combination of the two,
by assigning the control path processing to a host processor that is organized in the
traditional way, and executing the data path processing in the network processor.

There are several terms used when referring to “programming,” with each describ-
ing a different level of abstraction or implementation. These terms are often vaguely
defi ned, and some even overlap, or are used interchangeably: programming models,
programming paradigms, programming languages, programming (or software)
 architecture, as well as the development environment terms that include program-
ming environment, programming tools, and programming utilities.

1As previously defi ned, the data path refers to packet manipulations by the equipment, (primarily
packet forwarding), and the control path refers to control tasks that manipulate the equipment and
its functionality.

8.1 Introduction 339

In essence, a programming model provides an answer to how a programmer
views and uses the hardware architecture; a programming paradigm provides an
answer to how a programmer views the execution of a program; a programming
language provides an answer to how a programmer describes the required algo-
rithm or task; programming architecture provides an answer to how the software
elements are organized; and a programming environment provides an answer to
how a programmer actually codes his program.

8.1.1 Programming Models
A programming model, for our purposes, is the programmer’s view of the com-
puter architecture, which includes the specifi cations of the communications and
the synchronization requirements that are addressed at the programming stage. In
other words, a programming model is what a programmer uses while coding an
application. This means that the communications and the synchronizations primi-
tives are exposed to the user-level, and this is the realization of the programming
model. Having saying that, it is important to understand that a programming model
has to fulfi ll two contradictory requirements: on the one hand, it should be a general,
broad abstraction of the computer architecture, and on the other hand, it should
highlight and provide access to the specifi c attributes and capabilities of the spe-
cifi c computer architecture. A good programming model should provide the right
balance, so as to exploit the maximal benefi ts, power and effi cient implementation
of the platform it relates to, while offering simple programming [382, 404, 405].

There are several other descriptions and defi nitions of programming models,
where the most simplistic one is portraying a layered or modular model of the
various components or the programming levels of an application, a utility or a
tool, for example, Java programming model, C++ programming model, visual
Basic programming model, or XML programming model. We are not using these
 defi nitions here.

Programming models are important for understanding how network proces-
sors’ architectures are used by higher programming layers, or how programmers
must use the network processors during design, or when programming. Usually,
programming models are offered with specifi c programming languages (when
they exist), and distinguishing between the two is not always clear. Programming
models are offered by manufacturers of network processors (e.g., Intel’s micro-
ACE) [192], by software vendors (e.g., IP-Fabric’s Packet Programming Language,
PPL [327], Teja’s Teja-NP), and by academia (NP-Click [383] and NetVM [41]).

8.1.2 Programming Paradigms
Programming paradigms are patterns, or models, that serve as disciplines for
 programming computers. They should not be confused with programming styles
(i.e., how a program is written), or programming techniques (e.g., stepwise
 progress of a program or “divide and conquer” progress). There are four major

340 CHAPTER 8 Software

 programming paradigms: imperative, functional, object-oriented, and logic, as
well as many other paradigms that are described in the vast literature of program-
ming, such as: declarative, procedural, event-driven or fl ow-driven, structured or
unstructured, visual, constraint based, and data-fl ow programming. Some of these
paradigms have common attributes and can be combined, and some are known
by their “taboos” (e.g., never use “go-to” or “jump” instruction in a procedure,
never use states or variables, etc.).

For our purposes, there are two main programming paradigms that are used in
network processors: imperative programming and declarative (mainly functional)
programming.2

Imperative programming means that the program maintains states, which are
modifi ed by a sequence of commands over time. In the simplest terms, it means
a directive concept, that is, “do this, and then do that.” It is the oldest program-
ming paradigm, and most computer hardware (von Neumann architecture based)
and machine-languages (as described in the following subsection) support it natu-
rally. Procedural programming is very similar to imperative programming, but it
combines imperative programming with procedures, methods, functions, routines,
or subprograms (pieces of a program that defi ne a course of action for doing
something).

Functional programming means that the programs evaluate functions and
expressions, and use the results for further evaluations.3 Although this is theoreti-
cally in contrast to imperative programming, where the emphasis is the sequence
of commands, in practice, some mixture happens. The main cause for impure
functional programming is side-effects,4 that is, function evaluations that have
some side effects that result in some state modifi cations, rather than just returning
function values.

One of the advantages of the functional programming paradigm for network
 processors (which are usually made of multiprocessors), is that it is inherently
 capable of running concurrent functions. This is due to the fact that no state is

2Interestingly, these two paradigms are rooted back in the 1930s, when a group of scholars at
 Princeton University, among them Alan Turing and Alonzo Church (Turing’s guide), described the
Turing Machine and the Lambda Calculus (the basis of the imperative and functional program-
ming paradigms, respectively). Ten years later, a third scholar of this group, John von Neumann,
implemented the imperative paradigm in computer architecture, which became known as the von
 Neumann architecture. One important thing to note here is that one formulation of the Church-
 Turing thesis (there are various equivalent formulations), is that these two programming paradigms
are equivalent in power [256, p. 232].
3Functional programming tends to be considered an impractical “academic paradigm,” with lots of
odd terminologies, requiring at least a PhD to work with it or explain it. The truth is that many of us
use functional programming without even noticing it. Network processors defi nitely use this pro-
gramming paradigm, as outlined in this chapter and detailed in its appendix.
4Side-effect is a term that is also used for processing elements, for example, arithmetic logic unit’s
(ALU’s) operation that result in some fl ag modifi cations. Data and control hazards may occur in
 pipelining architectures due to these kinds of side-effects, as detailed in Chapter 7.

8.1 Introduction 341

changed (no side-effects), therefore function execution can be done in parallel,
independently, and to some extent—in any order (this has to be examined and
scheduled though). Also, testing and debugging programs written in functional
programming languages become easy, again, due to the lack of state changes, and
the suffi cient unit-test examination.

Declarative programming sometimes refers to functional, logic, or constrained
based programming. However, declarative programming is actually the opposite of
imperative programming, because it describes what is to be achieved, and not how
to achieve it, like in imperative programming. Various implementations of declara-
tive programming imply how programming happens eventually (sometimes there
are imperative notions encapsulated in the declarative framework, to execute the
required declarative statements). For our purposes, however, declarative program-
ming refers to functional programming.

A very popular use of declarative programming is in “domain-specifi c” environments
(e.g., simulations, mathematics, or packet-processing). In networking environments
there are several languages that fall into this category, as well as being even more
specifi c, for example, packet classifi cation languages. Some examples of these
 languages are described in the following subsection and in the appendices of this
chapter.

8.1.3 Programming Languages
We assume that most of the readers are familiar with programming language,
from low-level, machine languages (assemblers), to high-level languages such as
C, Java, and so on. For our purposes, there are also many functional languages
that are domain specifi c rather than general purpose, which are sometimes
known as very-high-level languages, and among these are several network-
 processing languages. However, all kinds of languages are used in network
 processing. Due to the critical nature and importance of performance, machine
languages (assemblers) are used very often, at least in the critical packet data-
path processing. After assembler languages, the second most commonly used
language is C, or variants of C. For specifi c tasks, like classifi cation, several func-
tional languages have been offered by network processor manufacturers (e.g.,
Intel’s NCL [192] and Agere’s FPL [86]), software vendors (e.g., IP-Fabric’s PPL
[327]), and academia (e.g., NP-Click [383] and NetVM [41]).

8.1.4 Programming Architectures
Programming architecture usually refers to the way software is designed and built,
for example, layers, structure, modules, procedures, macros, interface in general,
application program interfaces (APIs), and so on. We shall not deal with this at all,
as it is entirely out of the scope of this book; however, readers should be familiar
with proper software coding and programming architectures.

342 CHAPTER 8 Software

8.1.5 Development Environments
When we talk about development environments (sometimes called Integrated
Development Environments, or IDEs, or System Development Kits, or SDKs), we
refer to programming environments and frameworks, including utilities and tools
that aid the programmer in designing, coding (editing the source code), compiling,
linking, simulating, debugging, and implementing the required software. A typical
environment works like the programming environment we use for Windows
(e.g., Visual Studio) or for UNIX (e.g., KDevelop or Eclipse). Most development
 environments also contain dependent modules of the network processors architec-
ture, for example, hardware abstraction modules in source code, including fi les of
run-time libraries. Intel’s Internet eXchange Architecture (IXA), packaged in Intel’s
SDKs for their Internet eXchange Processor (IXP) architecture, is an example of
such a system.

There are many development environments, and usually every network processor
provides his own. In addition, there are many others offered by software vendors
(e.g., Teja) to provide better tools to ease the programming of network processors,
or to provide a tool that will be agnostic to any hardware that might be chosen
later. These later types of development environments are called cross IDEs.

Development environments are a critical part of network processor program-
ming. As mentioned before, network processors are often hard to program, and
program-writing is diffi cult without the aid of a very functional development envi-
ronment that can assist in writing, using macros, defi nitions, and later in visualizing
the use of memories, registers, and all processing elements. Moreover, since all
development environments for network processors deal with networking issues,
a very handy functionality is to offer assistance in referring to specifi c networking
terminologies, packet structures, header structures and protocols, as the program-
mer usually needs to refer to these as his raw data.

8.1.6 Summary
In this introductory section we briefl y described how programming models are
relevant for network processors, what programming languages are used, and what
programming environments offer. While this discussion related to network pro-
cessing programming in general, we must also distinguish between data-path and
control-path programming, since they are very different in all respects. The next
sections provide more details on how to handle each.

8.2 CONVENTIONAL SYSTEMS
Although we are dealing with network processors and with data- and control-path
processing, it is more than likely that the system into which network processors
are integrated contains many “conventional” subsystems, at least the control-path

8.2 Conventional Systems 343

processing subsystem. Therefore, a short overview of software of “conventional”
systems can illuminate the entire picture and assist in better design and implemen-
tation of networking equipment based on, or containing, network processors.

8.2.1 Introduction
By conventional systems, we mean all kinds of networking equipment that include
general-purpose-processor-based equipment, and that comprises the majority
of the networking equipment in use today. This includes a very wide variety of
systems, from tiny Small Offi ce and Home Offi ce (SOHO) equipment (gateways,
interfaces, adopters, etc.), Network Interface Cards (NICs) in Personal Computers
(PCs) to peripheral equipment (printers, storage devices, etc.), branch-offi ce inter-
face equipment, data-center equipment, and up to huge core routers and telecom
switches. These systems use various types of microprocessors, multiple processor
systems, and many types of programming models, paradigms, and languages.

In network processor-based equipment, the control-path processing, as well
as the equipment management and maintenance processing, are done by “con-
ventional” subsystems. The software architecture of a conventional system, in a
 nutshell, may take the following layered structure, as shown in Figure 8.1.

The operating system (OS) is the main layer that manages, synchronizes, and
utilizes all hardware and software resources available on the managed platform (the
hardware). Some parts of the OS must reside at all time in the memory, while other
parts can be stored in a storage device and fetched when required. The OS usually
runs in a privileged mode, uninterrupted, and at highest priority. The OS provides
services (like memory management, task scheduling, I/O, access and security man-
agement, fi le systems and networking, etc.) to the applications, and interconnects

Mother Board

Applications

Operating System

Kernel

Device
Drivers

Application
Program
Interface

Application
Program
Interface

Device
Drivers

Firmware
NIC

Hardware

Software

FIGURE 8.1

Software architecture

344 CHAPTER 8 Software344 CHAPTER 8 Software

the user (through the I/O) with all applications and the other I/O devices. There
are several types of OSs, and the relevant type for most networking equipment
is Real-Time OS (RTOS). The core of the OS, the part that always resides in the
memory, is called the kernel.

There are two kinds of kernels—microkernels and monolithic kernels; micro-
kernels contain the most essential components, such as memory and task (and
thread) management, whereas monolithic kernels include everything, including
networking, fi le systems, and so on (e.g., Linux). The kernel is loaded into memory
at the time of initialization (in what is called boot or bootstrapping), and it loads
the rest of the required system. The kernel manages the CPU, the memory and the
I/O, and interacts with the applications and the other parts of the OS by system
calls or inter-process communications (IPC), and with the hardware through the
device drivers by interrupts or timely polling schemes. At the lowest layer, there is
the fi rmware, which is software that is embedded in the hardware components—
either in their Read Only Memory (ROM), Erasable and Programmable ROM
(EPROM), or flash memory. The device drivers, the kernel, and the OS interact with
the hardware by using the fi rmware.

Network interfaces for these hardware platforms are either: (1) embedded inter-
faces, (2) NICs, or (3) line cards in “heavy” network equipment. NICs and line-cards
contain software, and the entire description given above on software is relevant to
them as well.

Some of the conventional network systems’ hardware platforms are just general
purpose computers that are equipped with network interfaces (usually NICs) and
that run some application on top of an OS. This OS can be either a general purpose
type (Linux, for example, is quite popular for this type of system), or a dedicated
type, sometimes RTOS, for example, QNX or VxWorks. Applications interface with
the OS by an Application Program Interface (API)5 or by using system calls. These
systems usually use x86-based architecture microprocessors, or some RISC-based
architectures (PowerPC, MIPS, etc.).

Other conventional network systems’ hardware platforms are embedded sys-
tems (e.g., NICs and line-cards, printers or SOHO gateways). Embedded systems
are designed to perform mainly one predefi ned specifi c application, using micro-
 processors that are integral parts of the devices they control. These systems use 32,
16 or 8 bits data CPUs such as ARM, Xscale, Intel’s 960, Motorola’s 860, PowerPC, or
MIPS, or simpler examples such as 8051 and PIC. Sometimes, as noted in the previ-
ous chapter, the CPU is further embedded inside the SoC, either in ASIC or FPGA
designs. Typically, embedded systems use RTOS, and most of the software, called
fi rmware, is stored in a ROM or in other type of permanent (nonvolatile) memory
(e.g., fl ash).

5The Portable Operating System Interface for UNIX (POSIX) is a well-known open API standard that
emerged from UNIX, was adopted by the IEEE, and is now supported by many OSs.

8.2 Conventional Systems 345

8.2.2 Principles
Operating Systems are used in some of the systems; other systems may use a thin
kernel, or a customized, special-purpose OS, or one based on a developing platform
that eases the application development. Some systems use specifi c, one-layer soft-
ware design that includes device-drivers, kernel functions and the application itself.
Others may use a general-purpose OS that has some middleware (infrastructure
software services) above it, with applications on top. This broad spectrum of sys-
tems makes it diffi cult to categorize the conventional programming model. Embed-
ded systems, as well as other networking applications that use general-purpose
computers, use various programming models to perform the required networking
applications.

Interrupt-driven (or event-driven) software, is used by the kernel (in the case
of layered software architecture, particularly when OS is used), or by an applica-
tion (in the case of one homogeneous block of code that does everything). In
 interrupt-driven software, I/O events, set-up timers, and other events create inter-
rupts, which cause the processor to call a corresponding module in the program
(that matches the interrupt). Software interrupts can be created to have the same
effect; these interrupts are caused by protocol software or events created or calcu-
lated by procedures, so as to prioritize some urgent (or insignifi cant) tasks that the
software wishes to prioritize. Interrupt-driven processing is typically asynchronous
in nature, which means that the program is written in blocks, and events dictate
the fl ow of execution.

Another scheme for running a control program (usually a simple application
used by an embedded system) is to loop indefi nitely, during which time software
states and events are polled, and hardware is polled for status, information, and
events. Tasks are then called according to these events or states to perform
some timely processes. This scheme can be applied in conjunction to a state
machine concept, whereas at every loop, states are examined and procedures are
 triggered and executed according to the states, causing the states themselves to
be modifi ed according to the process results and the events that occurred. This
scheme can be viewed as synchronous, since one can synchronize processing
and event handling by the order of the fl ow of the program. This scheme, how-
ever, can also use interrupt-driven processing combined with the polling, to
ensure some critical real-time event handling, or to prioritize the tasks within
the control loop.

Some systems use an object-oriented programming paradigm, where the appli-
cation is designed and implemented accordingly. This, however, is outside the
scope of this book.

Other, more advanced schemes execute tasks concurrently, either using multi-
processing when it is possible, or using techniques like multiprogramming, multi-
tasking, or multithreading. These were discussed briefl y in Chapter 7 and described
further in the following.

346 CHAPTER 8 Software

8.2.3 Multiprogramming, Multitasking, and Multithreading
Programs, or applications, are copied into memory (what we call processes) and
executed by the processors. Tasks are relatively independent parts of the pro-
grams, for example, subprograms, subroutines, procedures, functions, methods, and
so on. Threads are dependent splits of processes and tasks, and are mainly used for
seemingly simultaneous, inter-correlated execution.

By multiprogramming, multitasking, and multithreading, we usually mean how
to run programs simultaneously, whether from the user perspective (when we
use only one processor) or in actual parallel execution, when we use some MIMD
architecture.

Multiprogramming is quite an old scheme, used primarily on mainframes
in the past, and it simply indicates that several programs run on a unipro-
cessor interchangeably, that is, the programs are switched in execution for
every time slot, interrupt, I/O request, virtual memory management opera-
tion, and so on. In multiprogramming, there is no intercommunication or
 synchronization at the process level, and multiprogramming is therefore not rel-
evant to network processors. From here on, we will focus on multitasking and
multithreading.

When more than one process is executed on a single processor, the proces-
sor picks a process to execute for every short time period (slot), and switches
to another process in the following slot. These slots can be fi xed or varied,
and can be the results of time-outs, interrupts, or resource constraints. What-
ever the reason is for process switching, each replacement of a process in these
slots is called context switching, since the processor changes the context it
executes, and requires some handling, such as storing and retrieving process
status and register contents. These switch contexts create overhead on the
 system, but nevertheless are worth doing (for example, if the alternative is to
wait for an I/O to be completed); moreover, without switch contexts, there can-
not be any multitasking or multithreading. The mechanism of context switch-
ing described above, in which every assigned time slot is preemptive, means
that a scheduler triggers and decides which task or thread is replacing what
and when. Preemptive multitasking is done in most OSs that schedule the
tasks and the threads to be executed. Nonpreemptive multitasking (or coopera-
tive multitasking) is more common in control programs (described before),
where during the infi nite loop, each task schedules the one that follows it
when it fi nds it appropriate to do so (either by limiting itself, recognizing the
importance of another task given a change of state, or simply calling another
task it requires).

Multitasking and multithreading can be applied to uniprocessors as well as to
multiprocessors. In multiprocessors’ architectures, multitasking and multithreading
makes the system much more effi cient, and actually, without multitasking or mul-
tithreading, it is even hard to exploit multiprocessors. Some view the main differ-
ence between multitasking and multithreading as memory usage: Threads always

8.2 Conventional Systems 347

share the same memory (or address space), whereas multitasking can be done also
in separated (or distributed) memories, by using specifi c mechanisms such as the
Remote Procedure Call (RPC).

Multithreading refers to the ability to run many threads simultaneously, as
described previously. It is implemented at two levels: the processor level (described
in Chapter 7), and the software level. The processor level is concerned with how
the processor (the hardware) does multithreading, regardless of the software, and
the software level is concerned with how programmers call for the multithread-
ing capabilities of the processor, and how they write programs that make use of
multithreading.

At the processor level, multithreading can be done in fi ne-grained multi-
threading (FGMT), coarse-grained multithreading (CGMT), or Simultaneous
Multithreading (SMT). FGMT, or interleaving multithreading, switches between
threads every machine cycle, and the processor that does it is called a barrel
processor. This scheme guarantees real time properties, but is not effi cient in cache
utilization and single thread performance. In pipeline architectures it wastes many
cycles due to cache misses, mispredicted branches, and requires many threads to
be effective and many register fi les to handle all context switching. CGMT, on the
other extreme, lets a thread run until a stall occurs that yields a context switching.
It means that in pipelining, the processor can work as effi ciently as possible, and no
thread’s performance is sacrifi ced, although long latencies occur in context switch-
ing. SMT means that the processor (or multiprocessor) executes instructions from
a number of threads simultaneously, and it is like CGMT with an out-of-ordering6
execution that makes the threads’ execution more effi cient (in Intel’s case, this is
called hyper-threading).

At the software implementation level, we have to distinguish between two
sublevels: one is how to use the hardware multithreading architecture of the pro-
cessor, which depends on how multithreading is actually done, and the other is
how to write multithreading programs. The second question, how to write multi-
threading programs, is answered in the next section. As for the fi rst question—it
is done by specifi c calls to the OS or kernel module that handles the processor
scheduling, with a request to create a thread, kill one, schedule it, and so on. Usu-
ally threads relate to each other (and communicate) as part of a parent-task, for
example, one thread fetches and organizes data, a second thread is responsible
for processing the data and putting the results in a buffer, while the third thread
format the results and outputs them. Threads can also be independent, and the
only common thing between them is that they use a shared memory that makes
context switching faster.

6As explained in the previous chapter, instructions can be executed in a different order than they
appear in the program, or out-of-order, if they are totally independent (they use independent data
and have no impact on the fl ow of the program). This is also called dynamic scheduling, and is in
contrast to in-order instruction execution (or static scheduling).

348 CHAPTER 8 Software

 Although we are discussing conventional systems at this point, an example from
network processors can clarify how multithreading is implemented: In Intel’s IXP’s
architecture of network processors, every micro-engine (the basic processing element
that runs in parallel with other micro-engines and executes data-path processing)
runs several identifi ed threads,7 each connected to predefi ned ports, and the threads
are defi ned and used by specifi c software calls at the upper software layer (the appli-
cation). Another example is Cisco’s Quantum Flow Processor (QFP) with 40 cores,
called Packet Processor Engines (PPE); each is a 32-bit RISC that runs four threads.

8.3 PROGRAMMING MODELS CLASSIFICATION
Programming models can be classifi ed according to the underlying architectures,
primarily uniprocessors, multiprocessors, and data fl ow. The various processors’
 confi gurations and processing methods that we described in the previous chapter
lead to the following subclassifi cations:

� Uniprocessors/sequential programming.
– SISD, or von Neumann architectures.
– Multiprogramming.
– Pipelining (at the instructions level).

� Multiprocessors/parallel and concurrent programming.
– Parallel (SMP and not SMP).
 i) Distributed memory.
 ii) Shared memory.
– Pipelines (at the processors level).
 i) Systolic arrays.

� Data-fl ow processing/data-driven programming.

As described in the previous chapters, the last classifi cation, data fl ow, is not really
implemented in network processors, although some vendors claim to do so.

Since most network processors are multiprocessors, or have many processing
elements in their architecture, the two most important classifi cations that are
relevant to network processors are parallel programming and pipelining. How-
ever, pipelining can be done at the processors level (i.e., task-pipelining, when
we have multiprocessors) or it can be instruction-level pipelining (in each of the
processors). As was mentioned in the previous chapter, instruction pipelining is
also very common in high-performance processor architectures, and therefore is
also very common in network processors. Although they are programmed very
differently, they have the same principles, and we shall refer mainly to instruc-
tion pipeline in the following discussion of pipeline programming.

7IXP1200 uses four hardware threads and IXP2xxx uses eight.

8.4 Parallel Programming 349

8.4 PARALLEL PROGRAMMING
Parallel programming has been researched and used for many decades now,
mainly for high-performance fi nancial and scientifi c applications that use very
complex calculations and simulations (such as geophysics, weather and climate,
etc.) and that may even use super-computers. Parallel programming models pro-
vide a bridge, or a mapping, between software and the multiprocessing hard-
ware, as noted above. For our purposes, we need to understand the principles of
parallel programming models that apply to network processors and to multipro-
cessors in networking applications, as these are an important category of net-
work processors. Moreover, an important architectural candidate for executing
specifi c kinds of networking applications, is parallel, general-purpose proces-
sors, grouped together on a chip (CMPs), or MCPs. These are used primarily for
high-level applications that handle layers 5 to 7 (e.g., security, storage, account-
ing) and it is possible that they will be used for next generation network proces-
sor architectures.

8.4.1 Defi nitions
Many defi nitions exist for parallel programming models: some are biased toward
computation models, others describe coding styles and practices, and still others
relate to actual programming techniques and models. All three of these types are
described as follows.

8.4.1.1 Parallel Computation Models
The main parallel computation models are Parallel Random Access Machines
(PRAM) [133], Bulk Synchronous Parallel (BSP) [416], and a model based on Latency,
overhead, gap, and Processors parameters (the LogP model) [133]. Each of these
models has many variants, but for our purposes, it is suffi cient to know the main
principles.

Parallel Random Access Machine is essentially a shared memory MIMD program-
ming model, and it is an ideal parallel computer, according to which there are
p parallel processors that run one application, and use a shared memory with syn-
chronous, simultaneous access. Several subcategories of PRAM describe the way
data is accessed, among them the Exclusive Read Exclusive Write and Concurrent
Read Exclusive Write models. The PRAM model is widely considered to be unreal-
istic for describing multiprocessor architecture, as it lacks, for example, the com-
munications overhead and memory contention [165].

Bulk Synchronous Parallel is a distributed memory MIMD programming model
used for synchronized multiprocessing, according to which there are p nodes
that are each composed of a processor and its local memory. The nodes are all
 connected by an interconnection network, with a barrier synchronizing facility
that enables the processors to interact. It models parallelism by multiple (p)

350 CHAPTER 8 Software

sequences of supersteps, which each consist of three phases: local computation,
 communications, and barrier synchronization. By the end of the synchronization,
the exchanged data is available in all p local memories. The supersteps are param-
eterized by L, the synchronization period, and g, the ratio between computation
and communications throughput.

LogP is a more detailed distributed memory MIMD programming model that
emphasizes the interconnection network, with p processors doing the computing
and an interconnect network over which they communicate by point-to-point
 messages. It is a more constrained message passing mechanism than BSP (message
passing is described in the next section), and it lacks explicit synchronization
[165]. LogP is parameterized by latency (L) of the message from a source processor
to a sink processor, overhead (o) time in which the processor is engaged in I/O, gap
(g) time between consecutive messages, and P, the number of processors. The inter-
connection network is considered to be a pipeline of length L, having a processor
overhead o at each side, and a packet initiation rate g.

8.4.1.2 Parallel Coding Models
There is one important distinction between the various parallel programming
 models that impacts the coding effort signifi cantly, and is expressed in the pro-
gramming languages and development platforms. This is the way synchronization
is defi ned and achieved between the parallel processes accessing shared data and
results (which are not necessarily in the same memory). Explicit parallelism (in
contrast to automatic, implied parallelism) offers full control over parallelism dur-
ing the execution, but with the high penalty of having to defi ne specifi cally when
and where each module or variable can work and interact with another. This is
done by using specifi c run-time libraries that enable the programmer to call the
required system functions (create threads, synchronize data, etc.) that eventually
facilitate parallelism. It can be eased by having compiler directives imbedded in
the C/C++ or assembler source code that advise the compiler about these interre-
lations for creating an executable code that is as effi cient and optimal as possible.
Implied parallelism stands at the other extreme, where parallelism is done either
as a result of hardware-assist or architecture, and the programmer actually thinks
and works on a scalar problem.

In network processing, this distinction comes into effect when many proces-
sors are working on many packets simultaneously. Parallelism can be accomplished
when each packet has to be assigned manually to a processor and may be also to
a thread, and intermediate results and data have to be synchronized with other
threads, processes, processors, ports, and packets. In addition, the programmer has
to be aware of resource sharing, load balancing, and so on. This is the explicit parallel
programming penalty. Alternatively, parallelism can be also accomplished when the
programmer has one copy (single image) of the program to consider, working on
one packet. Actually, the hardware (or a scheduler) takes care of executing multiple
copies of this program on many packets simultaneously, takes care of resource shar-
ing, and takes care of load balancing, critical timing, and so on.

8.4 Parallel Programming 351

8.4.1.3 Parallel Programming Models
Initially, there were just two types of parallel programming models: data parallelism
and message passing. These were generalized, and more fi nely tuned models are
commonly used today. Today we talk about:

■ Data parallelism
■ Message passing
■ Shared memory
■ Thread-based parallelism

The programming models and architectures are not always the same, as, for exam-
ple, message passing can be implemented in shared-memory architectures. The
 following subsections detail these models.

8.4.2 Data Parallelism
Data parallelism is not so relevant to network processors, since it is usually applied
to large data arrays (e.g., matrices representations). Data parallelism is a highly
abstracted approach that has a single-instruction control structure, a global name
space (variables are globally accessible), and synchronous parallel execution on
data variable and arrays. An example of a language extension that uses data parallel-
ism is High-Performance Fortran [137, 261], which is based on the Single Program
Multiple Data (SPMD) model described in the previous chapter.

8.4.3 Message Passing
Message Passing (MP) programming means that each node has its local memory, and
many processes or threads, residing in this node or in other nodes, can access the
memory by receiving and sending messages among themselves (Figure 8.2). The
processes and threads can use their own names for variables, and the variables
have to be sent and received among the processes and threads by some commu-
nications means (e.g., bus or interconnect network). Synchronization is created
by the need for communication, but is also required in each of the processors, to
ensure data integrity and validity.

In order to enable message passing, specifi c protocols are required, especially
the defi nition and structure of the exchanged data, as well as the preparation
of the data that is to be exchanged (loading, formatting, storing, etc.). Although
the message passing paradigm is a simple concept for achieving parallelism, the
 programming that is required to enable it is a bit more complicated than simply
sharing variables in common memory, which is described in the following. The
fi rst implementations of the message passing concept appeared with the parallel
machines of the mid-1980s, as sets of library calls for the Fortran and C languages
that were used to connect processors working simultaneously on partitioned data

352 CHAPTER 8 Software

over a communications network. Later, in the beginning of the 1990s, a de facto
standard for message passing known as the Message Passing Interface (MPI) [316]
was adopted to allow code portability. At about the same time, another paradigm,
the Parallel Virtual Machine (PVM) [146, 359] was offered mainly for interoperability.
Based on these standards and languages, today many scientifi c, engineering, medi-
cal, industrial, Peer-to-Peer (P2P), and grid computing applications use clusters or
 network of workstations or other parallel (distributed) computing used by many
computers.

Remote Procedure Call (RPC) is a computing scheme that is used for paral-
lel, distributed memory computing, and which uses message passing [391]. RPC
enables one procedure to call another procedure with a message (parameters or
information, as described by an external data representation standard, XDR [113,
392]), and to wait for its results (data). Equivalent paradigms are the Open Software
Foundation’s Distributed Computing Environment, Microsoft’s Distributed Compo-
nent Object Model and .NET, and Sun’s Java Remote Method Invocation.

For our purposes, message passing is important in parallel implementations
of multiprocessors in network processors that are not using a shared memory. Its
principles can be applied to the network processor interface to the host- processor,
that is, interfacing the fast-path processing with the slow-path processing. How-
ever, MPI or its derivatives are not used in network processors, and each vendor
uses its own schemes—some of which are software-based, as described above,
some of which are hardware-assisted. Hardware-assisted message passing means
that the processors prepare the messages that carry variables, state information,
packet segments, processing results, instructions, and so on, and once a scheduler
assigns a processor to work on a packet, it attaches the relevant message as well.
In the case of host-NP communications, hardware assists in making the relevant
buffer or pointer available to the processors, and interrupts or otherwise triggers
the message passing.

Memory

Processor Processor

se
nd

re
ce

iv
e

process/
thread

process/
thread

Variable
Memory
Variable

FIGURE 8.2

Message passing

8.4 Parallel Programming 353

8.4.4 Shared Memory
The Shared Address Space (SAS) programming model allows many processes (or
tasks, or threads) to load and store contents using the same variable, whether it has
a different or a common name, as if these activities were done in their own local
memory (Figure 8.3). Data and resource synchronization becomes critical, however,
especially between writes and reads. Various algorithms, programming structures,
and programming means are used to enable this synchronization, by using locking
mechanisms, semaphores, mutually exclusive objects,8 and so on.

Network processors use shared memory very often, and the usage can be clas-
sifi ed into two main patterns: networking data (packets) that are accessed in par-
allel by multiple processors working on the same packet (usually in pipelining
confi gurations), and state and control shared data (e.g., search tables, statistical
tables, state variables) used by multiple processors working on different packets.
Synchronization of access to the shared data (packets or other data) is done either
by software means (as outlined briefl y earlier) or by hardware means (network
processor circuitry, creating mutually exclusive access schemes).

8.4.5 Thread-Based Parallelism
Threads have been described several times in this book from different aspects:
fi rst, in Chapter 7, from the hardware viewpoint, as part of the processors archi-
tectures (i.e., how multithreading is implemented by the CPUs), and then briefl y
from the perspective of the OS (or the kernel) (i.e., how threads are physically
mapped on the processors by the kernel or the OS by specifi c system calls

8A mutually exclusive object is called a mutex, and is a very common way to manage concurrent use
of a shared resource, which can be a variable or a piece of code. The shared resource may have to be
restricted from use at some points of time or states (e.g., interrupts cannot interrupt themselves end-
lessly, or even once if they are not written in a recursive way, that is, they might override variables
that the calling code is using).

Shared Memory
(shared address space)

Processor Processor

W
ri

te

R
ea

d

process/
thread

process/
thread

Variable

FIGURE 8.3

Shared memory

354 CHAPTER 8 Software

that use the specifi c processing elements appropriately). In this subsection, we
 concentrate on the third layer of multithreading, that is, how to use multithread-
ing in the application layer.

Thread-based parallelism usually uses a shared memory model. The focus in
thread-based parallelism is handling multiple threads concurrently, so that the task
will be executed in the most effi cient and organized way. Obviously, synchroniza-
tion is as critical a point in thread-based parallelism as it is in the shared memory
model, but beside the data synchronization that is required to maintain data integ-
rity and consistency, thread synchronization is also important to ensure that tasks
are done in the proper order, and in a complete manner.

A common scheme that is used for thread-based parallelism is the Fork–Join
model. In Fork–Join, there is a master thread running in a sequential region of the
process, and at some point in the beginning of the parallel region, a fork creates
a team of parallel threads that run concurrently and join at the end of the parallel
region. The join occurs after the threads synchronously completed their missions,
leaving the master thread to continue.

There are several standardization efforts for thread-based parallelism, among
them the Unifi ed Parallel C (UPC), POSIX threads (Pthreads), and OpenMP [298].
In UPC, the programmer views multiple threads, each of which seems to have
its own memory and affi nity with some shared memory. But in fact, the threads
can use either SAS or distributed memory, or even the SPMD model (described in
the previous chapter). POSIX threads are C language UNIX-type API for handling
threads, thread attributes, mutexes (which synchronize threads based on access
to data), and conditional variables (which synchronize threads based on data val-
ues). OpenMP stands for open multiprocessing, and is a C/C++/Fortan language
API that is based in a multiple, nested Fork–Join model.9 It is a scalable, portable
model for multithreading, shared memory parallelism. OpenMP defi nes compiler
directives, run-time libraries, and environment variables (that control the execu-
tion of parallel code).

8.4.5.1 Threads in Network Applications
Thread-based processing in networking applications can be done by having differ-
ent threads assigned to handle different layers, different protocols within a layer,
or different packets. It means, for example, that all tasks belonging to a particular
layer (e.g., networking) that usually have the same priority as all other tasks at
this layer, and higher priority than those in the layers above, will be handled by
one or more high-priority threads that are dedicated to this layer. This simplifi es
software design, as threads call each other when interlayer treatments are required
(e.g., threads of the data-link layers call lower-priority threads of the networking

9Nested parallelism means that a thread can be split into several threads at some point. A nested
Fork–Join model means that several threads can undergo the Fork–Join structure in the parallel
region, that is, fork threads that are joined and terminated before the sub-master threads join again
to the master thread.

8.5 Pipelining 355

layer, which call even lower-priority threads in the transmission layer, which call
the lowest-priority threads at the application layer). In addition to simplicity, this
scheme has the advantage of taking care of priorities; however, it suffers from
the high context-switching overhead that is required when a packet is handled
throughout the layers.

Another simplifi cation is when specifi c threads are assigned to specifi c pro-
tocols (e.g., TCP or UPD in the transmission layer, or FTP or Telnet in the appli-
cation layer). Again, the major drawback is context-switching overhead. A better
way of dealing with packet processing is to assign a thread, or a couple of
threads to a packet, from its entry in the system to its emergence out of it, and
to conduct the entire process using these threads perhaps in several stages (see
task pipelining in Section 8.5).

8.4.5.2 Threads in Network Processors
As was mentioned at the end of subsection 8.2.3, Intel’s IXP and Cisco’s QFP archi-
tectures of network processors make use of threads. However, this is quite unique
among current network processors’ architectures, despite the fact that multicore
architectures and multiprocessors systems on a chip (MPSoC) that potentially can
be used for network processing may well be suitable for multithreading [91, 437].
 Other network processors (including Intel’s IXP architecture) use either pipelining
or other parallel computing models. The next section describes pipeline program-
ming in more detail.

It is important to note that threads at the software level should be exercised with
great care, if they are used at all [275]. In many cases, threads are non- deterministic
and make programs unreadable and very hard to use. Furthermore, embedded com-
puting generally avoids using threads [275].

8.5 PIPELINING
As was mentioned in the previous chapter, pipeline architectures and pipeline
programming are often used in the line-cards of networking equipment, where
ultra processing speed is a must. As effi ciency in pipeline programming is a key
requirement, high-level languages, programming models or any programming envi-
ronment that cannot exploit the maximal performance of the pipeline hardware
will probably not be used. Therefore, some pipelining practices are required to
exploit the maximal performance of the pipelining architectures, as described in
the following.

Although there is no formal pipeline programming model, or even pipe-
lining API, many of the parallel synchronization issues described in the parallel
 programming model exist in pipelining. For example, in instruction pipelining—
when we talk about a uniprocessor running one or several threads interchange-
ably during several machine cycles (time)—data hazards can be considered
 synchronization problems. Synchronization is more of an issue when we discuss

356 CHAPTER 8 Software

process pipelining by several processors, where data synchronization can be
problematic in exactly the same ways as in parallel programming. Pipelining,
however, poses additional problems, such as control hazards that have to be
considered.

We introduced data and control hazards in Chapter 7 on architecture; in this
 section, we extend the discussion to the software implications. We will focus here
on instruction pipelining, since it involves programming considerations and is
common to most network processors. However, it is also worth saying a few words
about task pipelining.

Task pipelining appears in several network processors, and implies cross-
 references to the same data, for example, packet, look-up tables, statistical tables,
and so on. These problems are usually handled by the applications (and those who
write the applications must be aware of them, and implement some synchroniza-
tion mechanism). Some network processors avoid synchronization problems with
packet data by “carrying” it across processors along the pipeline; however, the
cost is that data is copied and cannot be cross-referenced or handled. Still, look-up
tables, statistics, and other common data should be synchronized.

Instruction pipelining in processors can be handled by schemes that resolve
hazards; for example, like automatic fl ushing of instructions from the pipe once
there is a control hazard, or insertion of no-operation cycles, stall the pipe, or reor-
der instructions in cases of data or control hazards. These mechanisms (except
instruction reordering) generally waste machine cycles, and in the case of net-
work processors, when every machine cycle counts, it might not be a satisfac-
tory solution. When high-level languages like C/C++ are used, there is always some
waste of machine cycles due to the compiler that cannot take advantage of the
program logic fl ow in order to reorder instructions and use pipelining instruc-
tions wisely. Very high-level languages, such as functional languages, are potentially
capable of reordering instructions, since they are usually designed around the data-
fl ow logic.

Using as an example the case of a four-stage instruction pipeline, the next sub-
section describes how to write effi cient code in assembly.

8.5.1 Instruction Pipeline Overview
For the sake of this example, let’s assume a four-stage pipelined processor, with
each stage lasting one clock cycle. In the fi rst stage (F in Figure 8.4), an instruc-
tion is fetched from the instruction memory block and stored. The instruction is
decoded in the second stage (D in Figure 8.4). The third and fourth stages (E1 and
E2, respectively, in Figure 8.4) are the two execution stages, where E1 is generally
used for reading the instruction source data and E2 is generally used for writing
the destination data.

With each clock cycle, another instruction is fetched and begins its four-cycle
execution. Since source is read at E1 in each instruction, the source data must be
valid at that stage. The destination data is written at E2, and is valid only after E2.

8.5 Pipelining 357

Therefore, the source resource for an instruction cannot be the same as the destina-
tion resource for the previous instruction.

8.5.2 Data and Control Hazards
There are pipeline events where the next instruction cannot execute properly
in the next clock cycle(s). These events are called hazards. With a data hazard, an
instruction depends on the results of a previous instruction still in the pipeline.
A control hazard arises from the delay in determining the appropriate branch
instruction to fetch.

8.5.2.1 Data Hazards
An instruction is actually executed in the two clock cycles of E1 and E2 stages. As
described above, in each of the instructions, the destination data is always written
in the fourth cycle (E2), and cannot be read correctly until the next clock cycle. As
long as the INST#1 destination resource write cycle has not been completed, the
source resource of INST#2 cannot be the same as the destination resource of INST#1
(see Figure 8.4). Only INST#3 can use the destination resource from INST#1. Most
registers (used as destination resources) are undefi ned for the duration of one clock
after being written to.

Instructions must be organized (reordered) so that a nondependent instruc-
tion, which does not read the resource, is added between instructions. A NOP (No
 OPeration) command must be inserted if no useful instruction can be found to
insert between the two resource-dependent instructions, but this is, of course, a
waste of one cycle. Most general purpose pipeline processors are capable of doing
reordering or stalling as required, and the programmer is not bothered by data
hazards. In network processors, this is usually not the case, since every clock cycle
counts, and the programmer is left with the responsibility of dealing with data
hazards. The following sample code is illegal, as it contains a data hazard.

Example of bas code:

 MOV REGA, REGB, 2;
 MOV REGC, REGA, 2; // REGA is not ready

F D
CC2 CC3 CC4

Clock Cycles
CC5 CC6 CC7CC1Program Execution

INST#1

INST#2

INST#3

INST#4

E1 E2

F D E1 E2

F D E1 E2

F D E1 E2

FIGURE 8.4

Instruction pipeline execution

358 CHAPTER 8 Software

8.5.2.2 Control Hazards
Control hazards can be the result of pipeline processing, and arise during branch-
ing. Execution occurs in the third and fourth stages of the four-stage pipeline (see
Figure 8.5). In E1, the branch instruction checks the condition code operand,
decides whether or not to branch, and computes the next address. (If the branch
is not taken, the pipeline continues with the PC+1 address.) No execution occurs
in E2 for branching.

Since the branch is not executed until the E2 stage, two other consequent
instructions (from addresses PC+1 and PC+2) enter the pipeline. Only the instruc-
tion in the fourth cycle (INST#4) fetches the instruction from the branched
address. The result is that all four instructions are executed, despite the fact that
the fi rst instruction was a jump, and the next two instructions were not supposed
to be executed. If these two instructions, following the branch, are nondependent
(and avoid data hazard), one possibility for solving this data hazard is to reorder the
instructions, as explained in the following.

General-purpose pipeline processors usually cope with control hazards by either
fl ushing the pipeline in case of a branch (thus losing cycles), or trying to predict if
and whereto the branch will take place. Then, the processor fetches instructions
from the predicted place immediately following the branch instruction into the
pipeline (and thus, if the prediction was right, no cycles are lost). Some processors
even fetch instructions from several potential branching addresses to a number of
pipelines, and pick the right pipeline after the branch takes place. At any rate, the
programmer is unaware of control hazards in general-purpose pipeline processors,
and can program by ignoring their potential possibility.

In network processors, where each cycle is crucial, programmers are supposed
to deal with the control hazard by either “creating” fl ushing (by adding NOPs) or
by reordering instructions. To make use of the control hazard, instructions should
be organized so that two instructions relating to the program logic are added after
INST#1, before INST#4 is executed, and are executed whether the branch is taken

F
(PC)

F
(PC � 1)

F
(PC � 2)

D E1
(branch

decision)

E2
(no

action)

D

D

E1

E1

E2

E2

E1 E2 F
(PC from
branch)

D

CC1 CC2 CC3 CC4 CC5 CC6 CC7Program Execution

INST#1
@progarm counter � PC

INST#2
(nondependent or NOP)

INST#3
(nondependent or NOP)

INST#4

Clock Cycles

FIGURE 8.5

Pipeline execution of a branch

8.6 Network Processor Programming 359

or not, without infl uencing the branching. If no useful instructions can be added,
NOP commands must be inserted. When no NOPs are inserted, the next two
instructions are executed, as just described. If one NOP is inserted, then just one
instruction, which should be a nondependent instruction, is executed. Otherwise,
two NOPs should be inserted.

Care should be exercised when several jump instructions are sequenced, as the
fi rst jump will happen, but immediately after executing one instruction from the
branched place, the next jump will occur, and the next instruction to be executed
will come from the second branched address.

Example: How branching happens in a four-stage pipeline:

JMP LABELA;
ADD REGB, 4;
MOV REGC, 0x8000;

LABELA:
SUB REGD, REGC;
MOV REGA, 5;

Description: The fi rst jump (to LABELA) will be done, but the two instructions
following the Jmp LABELA will be executed also (i.e., ADD REGB,
4 and MOV REGC, 0x8000) before the instructions at LABELA (i.e.,
SUB REGD, REGC, etc.)

8.6 NETWORK PROCESSOR PROGRAMMING
In this section we integrate all the issues discussed theoretically in the previous
sections, and describe programming models, software practices, languages, and
development environments that are relevant to network processors. We begin by
discussing two major issues that dominate the way programming is done on net-
work processors and relate to pipelining and parallelism. We then discuss program-
ming languages, functional programming, and programming models, as far as they
are relevant to using network processors.

As we have mentioned, we can identify two kinds of network processors
 applications (high- and low-layer networking applications), and their corresponding
architectures (parallel and pipelining, respectively). Each also has correspond-
ing programming practices: high-level applications use high-level languages and
 programming models that simplify and shorten the programming process, ensur-
ing reliability and expressiveness at the expense of performance; and low-level
packet processing (at the line-cards level) rely on low-level assembly language,
probably without programming models or any other overhead that might jeopar-
dize performance.

360 CHAPTER 8 Software

Although network processors use simple processing elements, it is very
 complicated to program them due to their architectural heterogeneity, complexity,
and strict performance requirements. However, some common characteristics of
network processors’ programming can be identifi ed:

■ Real-time programming.
■ Event-driven programming (in which incoming packets are the events).
■ Multiprocessing; parallel programming, pipeline programming, or both.
■ Interupt-driven10 programming is most unlikely to be found.
■ Preemptive multitasking is most unlikely to be supported. Most of the net-

work processors work in “cooperative multitasking,” that is, one task calls
another one.

Additionally, most network processors’ program structures, or program-fl ows, are
of “rule/pattern and action” schemes. This scheme is underneath the complex
assembly code that eventually describes the rules, patterns, and actions. This
scheme can also be directly expressed in functional programming languages, as
detailed in the following. This scheme, “rule/pattern and action,” is also the basis
for most of the existing programming models, as well as those that are now being
developed.

Finally, most network processors come with some development environments
that include many examples for network applications, and allow coding, debug-
ging, simulation, in-circuit emulation, and software uploading.

8.6.1 Run-to-Complete versus Run-to-Timer
As we have mentioned repeatedly throughout this book, network processors
have to process packets at wire speed. There are two fundamental approaches to
achieving this:

� Run-to-timer, hard-pipelining, task-level parallelism,11 or fi xed-processing rate
(which all produce the same rate of performance), or

� Run-to-completion

Run-to-timer, hard-pipelining, task-level parallelism, or fi xed-processing rate of
a packet guarantees a predefi ned packet processing rate, and although latency
might be relatively high, this mechanism ensures that packets can be processed
at wire-speed. According to this method, there is a processor, a task, or a thread
assigned to every micro-phase processing of the packet. They can work in paral-
lel, but the common characteristic of these mechanisms is that they are bound by

10In this discussion, we exclude a category of CMPs and MCPs that are composed of several general-
purpose processors grouped together and that are used for high-level networking applications
(e.g., security). These processors are also sometimes called “network processors.”
11Task-level parallelism does not refer here to general or parallel multitasking, but rather to many
tasks that are running in parallel and have to be synchronized in their execution time.

8.6 Network Processor Programming 361

either by time or number of instructions, and programming has to consider these
constraints. Since the amount of work that can be done on a packet is bounded,
this scheme cannot be used if there is a requirement to manipulate some packets
according to more complex, variable, or fl exible algorithms. Moreover, software
that is written in this way can pose a challenge in later modifi cations, as the
timely execution of each phase might call for large portions of the software to
be rewritten.

Run-to-complete is basically a nonpreemptive mechanism, under which
every task is executed according to its requirements until it is completed, and
wire-speed is achieved by parallelizing the processors that are doing the run-
to-complete tasks. In this method, every packet takes its time, as required, and
therefore, packets that have very simple processing requirements fi nish quickly,
enabling other packets to be processed. Packets that require complex treatment
can receive it and still maintain wire speed processing, by taking advantage of
the processing time of those packets with lighter requirements. In this method,
however, latencies are variable, and should be taken care of either by limiting the
processing when writing the application or measuring processing time. On the
average, the processing time should be such that all packets will be processed at
wire-speed. It is important to understand that run-to-completion actually allows
achieving a fi xed processing rate by simply writing the number of instructions
that will create a fi xed latency, fi xed processing time, and therefore fi xed packet
processing rate.

8.6.2 Explicit Parallelism
Programming languages and models can be distinguished by having either explicit
parallelism, or implied parallelism. Explicit parallelism can also refer to pipelining
considerations, as described above, and is relevant when writing parallel instruc-
tions in a Very Long Instruction Word (VLIW) assembly line, or, to a lesser degree,
in Explicitly Parallel Instruction Computing. It should be clear that there is often a
trade-off between the effort involved in writing each parallelism explicitly and the
achieved performance. However, some hardware mechanisms can be used to ease
and automate the parallelism effort and save it from the programmer. For example,
having a scheduler that picks up a free processing unit, allocates all the required
data and resources, and lets it run in a transparent parallel mode can be of great
assistance and a helpful performance tool.

Parallel programming is also eased by programming models and languages—
specifi cally functional programming, as described in the following sections.

8.6.3 Functional Programming and Programming Languages
Most network processors are programmed by assembly languages. Many network
processor manufacturers are also providing C/C++-like compilers, but these are
rarely used in performance-demanding environment, as discussed above. In the

362 CHAPTER 8 Software

entry and access network processors category, it is more common to use C/C++
and libraries of functions, while such use is rarely found in the high-end, core net-
working line-card network processors.

Many research studies have shown that performance decreases by 10–30%
when using high-level (or functional) languages, compared to using assembly lan-
guages. However, it obviously depends on the application, the network processor,
and the language used.

Most functional languages are based on a model of the processing scheme of
network processors. This processing scheme assumes a task (or multiple tasks)
that examines every incoming packet and potentially uses a data table to look
for a rule or a predefi ned pattern. Following a match, the task then executes an
assigned action on the packet for this rule or pattern. This model, “rule/pattern-
action,” has many syntaxes, parallelism levels, and conditions that are specifi c
for each functional programming language. An example of such “event-action”
rules is the software architecture for programmable lightweight stream handling
[144, 145].

Intel’s Network Classifi cation Language (NCL) is an example of a functional
programming language that is described in Appendix A of this chapter. Other
examples of functional languages that are part of more general programming mod-
els are provided in the descriptions given in this chapter’s Appendices B and C.
These examples make the concept of functional programming clear, and give some
insight to the capabilities of functional programming for network processors.

8.6.4 Programming Models
To begin with, there are no practical programming models for network proces-
sors. Most network processors are quite complex, with many, various, and specifi c
functional units (e.g., search engines), many memory types (e.g., frame buffers,
look up tables, external memories), different degrees of synchronicity, and so on.
On the one hand, this complexity raises the diffi culty of creating a generic, effec-
tive, and effi cient programming model, and on the other hand, it raises the need
for it, if portable, simple, readable applications are to be written. As performance,
reliability and predictability are critical, most implementations sacrifi ce expressive-
ness and readability that can be offered by programming models. This, however,
might change as hardware performance will increase by using more multiprocess-
ing (CMP), multicores (MCP), MPSoC, and other means. After all, performance was
sacrifi ced somehow in custom ASICs in favor of network processors, for the sake
of gaining time-to-market and fl exibility advantages.

There are also no OSs that run on network processors,12 nor are there
 kernels, device drivers, or any conventional software. As mentioned previously,

12Actually, some researchers have proposed operating systems for network processors; for example,
Linux-based OS (PromethOS) for network processors nodes [372, 373].

8.7 Summary 363

network processors usually do not support interrupts or preemptive multitask-
ing, which makes OSs impractical anyhow. This lack of support, however, is
not uncommon in embedded systems; embedded computing usually exploits
concurrency without using threads, and programmers tend to use low-level
assembly code. Despite considerable innovative research, in practice, program-
ming models for embedded computing—network processors included—remain
primitive [275].

However, several generic software, development, and programming environ-
ments have been offered, and some are even called programming models. These
include commercial systems such as Teja-NP (acquired by ARC), or IP Fabric’s PPL
[327]; research systems such as NP-Click [382]; NetBind [70]; OpenCom [276];
VERA [245, 390]; or more general frameworks such as NetVM [41].13 Most of these
programming environments originated from router abstraction and implementa-
tion on generic hardware platforms, sometimes by network processors. According
to these programming environments, a network processing application is written
in a high-level functional or imperative language, and is compiled to be executed
in the most effi cient way, synchronizing all resources it utilizes, performing the
required IO and memory interface, executing RPCs, and controlling all hardware
assists and functional units.

NP-Click and IP Fabric’s PPL are described in Appendices B and C, respec-
tively, of this chapter. These examples provide some insight into the concept of
programming models, as well as their benefi ts and disadvantages for network
processors.

8.7 SUMMARY
In this chapter, we discussed the software aspects of network processors, starting
in programming paradigms, moving through programming languages, and ending
with various aspects of programming models.

A concluding remark should emphasize the fact that in software, there is no
right or wrong: software defi nitions are not absolutely sharp, and software prac-
tices are diversifi ed. Nevertheless, some common attributes and practices do exist,
and this chapter covers their relevance for network processors. In the next chapter,
we concentrate on various components that surround network processors, that is,
switch fabrics, coprocessors, and host-processors.

13Although designed for any packet processing element or system rather than specifi cally for
network processors, this framework can defi nitely be used for network processors.

364

APPENDIX A
PARSING AND CLASSIFICATION LANGUAGES

There are two well-known parsing and classifi cation languages in the industry,
namely, Intel’s NCL (now part of Intel’s IXA), and Agere’s FPL (now LSI logic’s). In
this appendix, we describe NCL, as it is more commonly used.

Network Classifi cation Language runs (NCL) on the Strong ARM processor,
which is used in Intel’s network processors. It is not part of the fast path, that is,
it is compiled by a specifi c compiler prior to running the NP, and the generated
code is used for the classifi cation process itself. NCL is a high-level language, which
mixes declarative (nonprocedural) and imperative (procedural) paradigms, and is
optimized for fi xed-sized header packets. NCL defi nes the classifi cation rules and
their appropriate actions, that is, a function or sequence of steps that are invoked
when a classifi cation is performed. NCL can also be used to defi ne sets (data tables
that associate defi ned data with packets) and searches (to determine if a packet has
a matching element in a set, based on values of specifi ed fi elds).

Network Classifi cation Language statements are composed of protocol
 defi nitions, followed by rules. Predicates (Boolean expressions that can be used in
the conditional part of rules), sets and searches can be defi ned between the protocol
defi nitions and the rules. NCL uses unique names to identify entities like protocols,
protocol fi elds, predicates, sets, searches, and rules. For the purpose of defi nitions
(and not for run-time), NCL allows arithmetic as well as logical and relational opera-
tions such as addition, shifting, bitwise or logical “and,” greater than, and so on.

The following section attempts to describe the essence of NCL, leaving out all
details of syntax, operations, operators, and reserve words, which can be found in
[192] and, to some extent, in [86]. The goal of the following description is to pro-
vide the reader with the ability to read and understand NCL language for packet
processing defi nitions, and to use it suffi ciently for most purposes. In the following,
italics are used to represent variable names in NCL.

PROTOCOL (HEADER) DEFINITION
The protocol statement is the declarative part of NCL, and is used to defi ne naming
conventions used later by the classifi cation process (the imperative part). It defi nes
fi eld names of headers (or protocols), and set Boolean and value expressions. The
syntax of the protocol statement is defi ned in the following example, which clari-
fi es both the protocol statement and the syntax:

protocol p_name {
size {keyword bytes}
fi eld f_name {f_description}
intrinsic i_name {}
predicate c_name {c_description}

Appendix A: Parsing and Classifi cation Languages 365

demux {
 Boolean_exp {np_name at offset}
 default {np_name at offset}
 }
}

The protocol statement defi nes a named protocol entity at a defi ned size that can
include many declared fi elds of that protocol, as well as nested protocol elements
that are demultiplexed (the demultiplexing is detailed by an expression). It may also
include some protocol based intrinsic functions (like TCP/IP’s checksum).

Fields and predicates can be accessed by using the protocol name, a dot, and the
fi eld or predicate name, for example, p_name.f_name or p_name.c_name.

Size Statement
Bytes specifi es the protocol element size in bytes, where keyword indicates the
way size is defi ned (e.g., constant, aligned, etc.). For example, size declaration can
be written as follows: size {const 20}.

Field Statement
Each fi eld in NCL is specifi ed by f_description, which is a tuple composed of an
offset from the same base (label or symbol, usually based on the protocol entity
p_name) and size. Both offset and size are expressed by default by bytes. An
example of f_description of the fi rst four bytes in the TCP payload (after the 20-byte
TCP header) is: TCP [20:4]. If bit addressing and size is required, then the offset
and size are prefi xed by a "<" and terminated by a ">", for example, the specifi ca-
tion f_description of the fi rst four bits in the destination port of the TCP header is:
TCP[<16>:<4>] (the destination port starts at offset of two bytes, i.e., 16 bits). The
entire destination port fi eld of a TCP header is defi ned, for example, by: fi eld DPORT
{TCP[2:2]}.

Intrinsic Statement
Intrinsic functions in NCL can be either chksumvalid or genchksum, and can be
used only in IP, TCP, or UDP headers. Chksumvalid returns “true” if the checksum is
OK, while genchksum calculates the checksum of the IP, TCP or the UDP packet, as
required. An example of defi ning the checking of the TCP header (assuming the pro-
tocol describes a TCP header) is: intrinsic chksumvalid {}, which, by referring
to it at a later stage, for example, tcp.chksumvalid, returns either “true” or “false.”

Predicate Statement
Predicates are logic “variables” (Boolean expressions) that can be used later by
rules; an example of a predicate is: predicate FIX_PORT {DPORT < 0x1000}

366 CHAPTER 8 Software

(where DPORT is a previously defi ned fi eld in the protocol statement). If the TCP
destination port is less than 1000 h, then when using the FIX_PORT predicate,
it returns a “true.” Predicates can use other predicates as part of their Boolean
 expression.

Demux Statement
The last primitive in the preceding defi nition of NCL (and it must be the last in
the protocol defi nition) is the demux statement, which comes from the word
demultiplexing. The demux statement allows the inclusion of nested protocols (or
headers), that is, protocols (or headers) that are contained or wrapped in the main
protocol (or header), forming a logical protocol (or header) tree. An example is
an IP header that may be followed by a TCP, UDP, or ICMP header, depending on
the value of the Protocol fi eld in the TCP header. The demux statement chooses
only one protocol (np_name) from any number of the included protocols in the
demux statement, according to the Boolean expressions (Boolean_exp) associ-
ated with each of the included protocols. If no Boolean expression is “true,” then
the default protocol is selected (the one that is defi ned by a default instead of a
Boolean expression). It works as follows: as packets fl ow in, the parser checks the
expressions according to their order in the demux statement, and in the fi rst “true”
occurrence, the parser uses the nested protocol as defi ned in the corresponding
statement, and continues working (i.e., parsing the incoming packet) by those
nested-protocol defi nitions. An example of an IP header defi nition is given in the
next section, and it clarifi es the demux statement, as well as the entire protocol
statement.

Protocol Statement—Summary
An example of the IP header clarifi es the usage of the protocol statement as follows:

protocol ip {
size { const 20 }
fi eld version { (ip[0:<4>] }
fi eld IHL { ip[<4>:<4>] }
fi eld h_length { IHL << 2 }
fi eld tos { ip[1:1] }
fi eld total_length { ip[2:2] }
fi eld id { ip[4:2] }
fi eld fl ags { ip[6:<3>] }
fi eld frag_offset { ip[6:2] & 0x1fff }
fi eld ttl { ip[8:1] }
fi eld protocol { ip[9:1] }
fi eld chksum { ip[10:2] }
fi eld source { ip[12:4] }
fi eld destination { ip[16:4] }

Appendix A: Parsing and Classifi cation Languages 367

intrinsic chksumvalid {}
predicate broadcast { destination = = 255.255.255.255 }
demux {
 (protocol = = 6) { tcp at h_length }
 (protocol = = 17) { udp at h_length }
 default { otherProtocol at h_length }

}

}

Comments are allowed in NCL, like in the C/C++ style, that is, /*. . .*/ or any line
starting with //. . .

By using the naming convention described before, protocols may be
redefined and extended by adding fields or predicate statements; that is,
defi ned_protocol_name.added__fi eld_name or defi ned_protocol_name.
added_predicate_name. An example of adding a field is: fi eld TCP.SPORT
{TCP[0:2]}.

RULE DEFINITION
The rules are the imperative part of NCL and are actually the core of the classifi ca-
tion language. The rules use the data structure, predicates and intrinsic functions
defi ned in the protocol statements (the declarative part) and, depending on spe-
cifi c values of the analyzed packets, the rules do something with these packets. The
syntax of the rule statement is defi ned as follows:

rule r_name {predicate} {action}

The rule statement defi nes a named rule (r_name) that triggers action when
the predicate is “true” in the processed packet. The action is done by invoking an
action_ function with parameters (arg1, arg2, . . .). The predicate can be any Boolean
expression composed of defi ned predicates combined with Boolean subexpressions.

Conditional execution of a group of rules is defi ned by a clause prefi xed by
“with Boolean_exp”, as follows:

with Boolean_exp {
predicate c_name {c_description}
rule r_name {predicate} {action}
}

Conditional rules are used when some analysis or validation processes are
required during the classifi cation, before creating the rule; for example, process
TCP ports and fl ags only if the TCP packet has a valid checksum (as shown in the
following example). An example for using a rule (CountGoodPackets) and a condi-
tional rule (OpenTelnet) is as follows:

predicate ipValid { ip && ip.chksumvalid && (ip.version = = 4) }
predicate tcpValid { tcp && tcp.chksumvalid }

368 CHAPTER 8 Software

rule CountGoodPackets { ipValid } { add_to_ip_count() }
with (tcpValid) {
predicate NewTelnet { (tcp.fl ags & 0x02) && (tcp.dport = = 23) }
rule OpenTelnet { NewTelnet } { start_telnet(tcp.dport) }
}

SET AND SEARCH DEFINITION
By using predicates and the protocol defi nition, packets could be grouped
(i.e., classifi ed) by their common structure. Sets and searches are additional
mechanisms for classifi cation, which enable grouping of packets that are associ-
ated by their content. Sets and searches use data tables that are required either
for comparison with some predefi ned fi elds in the incoming packets, or for stor-
ing data from the analyzed packets, mainly to carry stateful classifi cations (cross
and interpacket references). An example of stateful classifi cation, that is, using
interpacket content references, is storing the session identifi cations (source
IP address, destination IP address, source port, and destination port) of some
 specifi c packets for further classifi cation of similar packets (e.g., assigning some
priority, egress port, etc.)

The set statement is used to defi ne data entries in a table; each entry is identifi ed by
one or more key values. The syntax of the set statement is as follows:

set t_name
< number_of_keys > {
size_hint {expected_population}
}

The set statement defi nes a named set (t_name) that contains number_of_keys (in
the range of one to seven) per entry, and has about expected_ population entries
at the beginning (it may rise as the table grow, but initially should be power of
two). The content of the set is provided either at initialization time, or by action
references (called by rules).

A search statement identifi es a unique correspondence between some fi elds
of the analyzed packet (according to the protocol statement) and key values of a
given set. The syntax of the search statement is as follows:

search t_name.s_name

(key1, key2, … keyn) {
requires {Boolean_expression}
}

The search statement defi nes a named search (s_name) that uses set t_name.
For each packet, a search is done in the t_name set, using fi elds key1, key2, and
so on . . . keyn. Each key is expressed in the form of a protocol name, a dot, and a
fi eld name (i.e., p_name.f_name). The optional “requires” clause causes the search
either to be done (if the Boolean_expression is “true”), or to be skipped.

Appendix A: Parsing and Classifi cation Languages 369

The search t_name.s_name returns a “true” if the search resulted in a match
between the packet’s fi elds and the set’s contents, or a “false” if there was either
no match, or the search was not done (due to the false condition in the “required”
clause). An example for using a searchable set is given in the following:

set addresses <1> {
size_hint {1024}
}
search addresses.ip_src (ip.source)
search addresses.ip_dst (ip.destination)

predicate red_address { addresses.ip_src || addresses.ip_dst }

The predicate red_address will become “true” if the analyzed packet has an IP
address (source or destination) that is stored in the data table set addresses.

SUMMARY
Network Classifi cation Language provides a rich declarative part that enables
the user to defi ne protocols, headers, and even payloads (with fi xed, predefi ned
 offsets), and an imperative part that enables stateless and stateful classifi cation,
based on packet content and structure. A more complex, summarizing example is
given as follows:

#defi ne TFTP 21 /* port number for tFTP */
set ip_udp <3> {
size_hint { 256 }
}

search ip_udp.udp_dport (ip.source, ip.destination, udp.dport) {
requires { ip && udp }
}

predicate ipValid {
ip && ip.chksumvalid && (ip.h_length > 10) && (ip.version = = 4)
}

rule CountGoodPackets { ipValid } { add_to_ip_count() }

with ipValid {
predicate tftp { (udp.dport = = TFTP) && ip_udp.udp_dport }
rule tftCount { tftp } { Count_tftp_packets() }
}

In this example, one data set is defi ned, ip_udp, that contains an IP source address,
an IP destination address, and the UDP destination port. A search is defi ned such
that every UDP packet searches for both its IP addresses and its UDP destination
port in the ip_udp table. The fi rst rule, CountGoodPackets, always executes, and

370 CHAPTER 8 Software

if the packet is a valid IP packet (determined by the ipValid predicate), then a
 function is activated (add_to_ip_count).

If the packet is a valid IP packet, then, and only then, the rule tftCount is
 executed. It checks the tftp predicate, that is, if the packet is with a destination
port that contains TFTP, and the packet has both its IP addresses stored in the table
ip_udp as well as with the TFTP port in this entry of the table. If this is the case,
then a Count_tftp_ packets function is called.

371

APPENDIX B
CLICK AND NP-CLICK LANGUAGE

AND PROGRAMMING MODEL

Click was developed in about 2000 [262, 263, 322], and was originally intended to
describe routers functionalities and to build fl exible, confi gurable routers. It is a
declarative language that supports user-defi ned abstractions, a software architec-
ture for building confi gurable routers, and it can be used as a programming model
when amended with proper components that bridge the gap between the software
and the hardware. Click is used for many networking applications, including build-
ing Linux-based networking kernels that are based on it. NP-Click, offered in about
2003 [382], was based on Click’s functionality and concepts, and was designed to
build applications on network processors in an easy and effi cient way. NP-Click is
a programming model that was written for the Intel IXP1200 as an alternative to
using its own programming model.

Click and NP-Click are described briefl y in the following sections in order to
give the reader some insight into the various approaches of programming lan-
guages, architectures, and models. This description is not intended to enable the
reader to start programming in these languages, and it might not be relevant to all
readers, depending on the network processor architecture and application they
may choose. However, in discussing programming models and concepts for net-
work processors, these specifi c examples may help familiarize the reader.

CLICK
Click is based on the terminology, abstraction, and components of networking
environments. Networking tasks—for example, queuing, forwarding, classifi cations,
look-up, and any other packet processing modules—are the basic building blocks
of Click and are termed elements. Each element, or task, may have inputs and out-
puts, termed ports. These ports carry the packets between the elements (the tasks)
along the connections, or edges that interconnect these ports. The result can be
described as a directed graph of elements at the vertices, and packets travel on
the connections. There are two types of ports that describe the way the two con-
nected elements at each end of the connections transfer packets: push or pull.
For example, a push output port of a source element can be connected to a push
input port of a sink element, which would mean that the source element initiates
packets to the sink element’s input port, which later acknowledges the receipt of
the packets to the source element. In Figure B8.1 push ports are notated by a black
rectangle for the output push port and a black triangle, for the input push port.

Pull communications means that the sink element pulls packets from the source
element, for example, the scheduler empties a queue, as shown in Figure B8.2
(where pull ports are notated by the empty rectangle or triangle). An agnostic port

372 CHAPTER 8 Software

is a port that complies with the other port’s type, at the other end of the connec-
tion (either push or pull), and it is notated by a double lined port.

In Click, each element is defi ned by a class, which specifi es its data layout and
behavior, that is, how many ports are defi ned for this type of element, what han-
dlers it supports, how it processes packets, and so on. Each element may have some
initialization parameters, called a confi guration string, which is supplied to the
class at initialization time (like constructor arguments in objects), that is, IP address,
state of the element, and so on. Method interfaces (a list of methods that other
elements can access) and handlers (methods that the user can access) are defi ned
for the elements. Click offers both language syntax, which describes the elements,
methods and handlers, ports, and connections, as well as schematic representation
of the elements, their ports, and the interconnections, as defi ned in Figure B8.3.

A Click design is composed of a network of various types of elements and
 interconnections. Click uses a library of such elements that represents about 150
common network components that perform some task or algorithm (e.g., Counter,
Classifi er, Queue, Priority Scheduler, Random Early Detection block, Paint, Shaper,
etc.). An example of a simple, unidirectional IP fi rewall is shown in Figure B8.4.
Elements and their connections are declared as follows:

name:: class (confi g-string); //declaration
name1 [port1] -> [port2] name2; //connection

The IP Firewall in the example would then be defi ned as follows (this descrip-
tion is stored in a confi guration fi le that Click processes):

// Declare the Elements
src :: FromDevice(Eth0); //Read packets from eth0 interface
check0 :: Classifi er (...); //Screen out non-IP packets
check1 :: CheckIPHeader (...); //Validate IP packets
fi lter :: IPFilter (...); //Do the actual fi rewall function

Queue Scheduler

Pull

Return Packet

FIGURE B8.2

Pull communications

FromDevice ToDevice

Push (packet)

Acknowledge

FIGURE B8.1

Push communications

Appendix B: Click and NP-Click Language 373

Shaper (10,30)

Element Class

Input Port
Output Port

Configuration String

FIGURE B8.3

Sample element

FromDevice (eth0)

Classifier (…)
otherIP

Discard

CheckIPHeader (…)

IPFilter (…)

ToDevice(eth1)

FIGURE B8.4

A simple IP fi rewall example

sink :: ToDevice(Eth1); //Put OKed packets to et1 interface
drop :: Discard; //Get rid of non-IP packets
// and defi ne the connections
src -> check0;
check0[0] -> check1;
check0[1] -> drop;
check1 -> fi lter;
fi lter -> Queue -> sink;

One element that is particularly important to network processors is the
 classifi er generic class. At initialization, the classifi er receives a confi guration string

374 CHAPTER 8 Software

according to which it creates a directed acyclic graph—a “decision” tree—that is
used later, at run time, to classify incoming packets. Each incoming packet’s data is
compared to this tree, one word from the packet at a time with the branching-node
content of the decision tree and down the tree nodes, until a leaf is reached that
points to an output port of the classifi er.

In other words, the classifi er has one input (in which it receives the incom-
ing packets) and several outputs, according to the number of pattern clauses
in the confi guration string. A pattern clause is either “offset/value” or “offset/
value%mask,” and several clauses can be used in a pattern (separated by space).
Examples may help clarify: The pattern clause 12/0800 in the confi guration
string means a simple comparison between the 12th and the 13th bytes of the
incoming packet (in the Ethernet header, it is the Ethertype fi eld) and 0x0800
(which is the IP type). The confi guration string (the pattern clause) 33/02%12
means that the 33rd byte is bitwise AND with a 0x12 masking, and then is
compared with 0x02. Note that the offset is decimal, and the value and mask
are hexadecimal.14 For classifying an input stream into several output ports,
the syntax Classifi er (p1, p2, …) is used, where each pi is a pattern matching
clause.

Classifi er(12/0806 20/0001, 12/0806 20/0002, 12/0800, -)

This classifi er is an example of a classifi er element with four output ports: the fi rst
outputs ARP requests (0x0806 in offset 12 of the frame, and 0x0001 in offset 20
of the frame); the second outputs ARP replies; the third, IP packets; and the fourth
port outputs all other types of packets.

IPClassifi er is a subclass of Classifi er, which uses a parser to build this decision
tree. For example, the IPClassifi er clause tcp syn && not ack means classify TCP pack-
ets that have SYN fl ag on, but no ACK fl ag. This is equivalent to the 9/0c 33/02%12
Classifi er clause (where offsets here are from the beginning of the IP header).

A similarly important class is the IPFilter element, which receives a friendlier
confi guration string as a pattern-screening, using allow and deny (or drop) opera-
tors and a pattern. The following example demonstrates this:

IPFilter(drop src 10.0.0.1,
 allow src 10.0.0.2 && dst 10.0.0.1 && tcp && src port www
 && dst port > 1023 && ack,
 allow dst 10.0.0.3 && tcp && src port 23 && dst port > 1023 && ack,
 deny all)

This fi lter allows only HTTP packets coming from 10.0.0.2 to 10.0.0.1, and TELNET
packets going to 10.0.0.3 (if they are not from 10.0.0.1).

14A “?” in the value, as a hex digit, indicates a “don’t care” in the comparison of the relevant nibble
of the packet. A “!” preceding the clause means negation, that is, the clause must not match the
packet. A “-” matches all packets.

Appendix B: Click and NP-Click Language 375

Click is extendable by adding C++ classes that defi ne elements.15 Any additional
abstractions, elements, modifi cations, and so on are added to the Click software,
compiled again, and executed with a proper confi guration fi le.16 The compiled
Click application loads the confi guration fi le, and starts executing it by running
a scheduler in the background that invokes all elements in push and pull paths
as required, in a cyclical order. The scheduler follows each path until stopped in
a queued packet or a discarder packet, and keep invoking all relevant elements
along this path. In multithreaded architecture, several such paths can be executed
concurrently, and due to packet independence, it can work in a consistent way
(although out-of-order processing may result).

NP-CLICK
NP-Click is a programming model that was implemented on Intel’s IXP1200. It
was used to ease the three major problems in this architecture: exploiting parallel-
ism, arbitrating resources, and improving data layout effi ciency [382]. In order to
achieve this, NP-Click uses Intel’s IXP-C language (instead of C++ used by Click),
to cope algorithmically with the major issues that IPX1200, like any paralleled-
based network processor, has to deal with: (a) it must control threads balancing
and allocation (a key issue is assigning the right threads in the right processing ele-
ments); (b) it must map data to the various memories, each with its own character-
istics; and (c) it must handle resource sharing in an optimized way, apart from the
programmer’s use of these resources (in a multithreaded environment, resource
contention might be a severe cause of stalls).

NP-Click is used either to implement elements (like Click elements, but written
in IXP-C language in a simpler way), or to implement the application by assem-
bling and using these elements (creating the “confi guration fi le” equivalence). An
NP-Click element is a functional block, like in Click, that has a type, which defi nes its
functionalities and the semantics of its ports [382]. Multiple elements of the same
type can be used in the application design. An instance refers to an implementa-
tion of these elements in the design, according to the application’s mapping onto
the architecture, and there may be multiple instances of an element in order to
exploit parallelism. The programmer can map application elements onto architec-
ture components; that is, by assigning some tasks to threads on the architecture, or
by defi ning memory allocation for some data variables. At any rate, the application
implementation is separate from the network processor’s architectural consider-
ations (assigning tasks to processing elements, memories, or threads).

15See the detailed explanations in the Click site [82].
16There are some differences when Click is used in User-Level of Linux (usually for debugging),
and when it is used in Kernel-level of Linux (used for production, actually replaces the Linux as an
Operating System).

376 CHAPTER 8 Software

The algorithmic assignment of software (Click) elements to hardware elements
(processing elements, memories, and threads) is a very complex problem,17 which
is solved in NP-Click by 0-1 integer linear program formulation, since the problem
is not so big in the current technology. Among other constraints, the assignment
has to consider the processing elements, the run-time limitations of each of the
tasks, and the instruction memories so that any task length, in instructions, will not
exceed the program memory.

NP-Click was tested in several applications (forwarding and QoS) on IXP1200,
and found to perform approximately 90% of the same applications written manu-
ally with IXP-C. On the other hand, it was three or four times faster to write these
applications using NP-Click than to write them using IPX-C [383].

It should be noted, however, that NP-Click is primarily used to solve the issues of
simplifying the tedious work of programming parallel processing elements, resource
sharing, and arbitration. It fi ts very well for any parallel architecture, provided that
the relevant NP architecture is defi ned to NP-Click. Pipelining architecture is very
different, and although NP-Click might ease the programming by implementing
it on an assembly of elements, it would be meaningless to assign software (Click)
elements to hardware elements when they are pipelined processors. One way to
approach pipelining by NP-Click would be to organize tasks into levels in order to
map packet processing stages to processor element pipelines [383].

17These assignment problems are known to be the hardest in complexity, which are NP (nondeter-
ministic polynomial time decision) problems of NP-complete class.

377

APPENDIX C
PPL LANGUAGE AND PROGRAMMING MODEL

Packet Processing Language (PPL) is IP-Fabric’s [327] language for generic packet
processing; it is hardware independent, and targets any network processor or any
custom designed ASIC or SoC for packet processing (although it was started and
functions on Intel’s IXP architecture). PPL is a very high-level language, or program-
ming model, that enables defi nitions of how packet processing is to be done and
translates it for specifi c hardware without mixing the processing description with
the underlying processor’s complexities. PPL allows the programmer to describe
concepts like pattern searching, encryption, queueing, and so on in a packet-centric
manner (in which the only existing data is packets, and the only valid operations
are packet manipulations), rather than writing assembler or C/C++ instructions.

Packet Processing Language can interact with external code if required, by for-
warding packets or using a RPC mechanism. Some external, proprietary, libraries
that provide extensions for some packet operations exist, and can also be used
for optimized algorithms, for example, searches. After writing the PPL code and
compiling it to a software virtual machine, it is mapped onto specifi c network
processor architecture by runtime environment libraries. The entire development
environment is Eclipse-based user interface.

Using the PPL instead of the native assembler instructions in the most effi cient
way may decrease the performance by about 20 to 30%, as found on the Intel 2xxx
network processor, but at about the same performance as writing with C, which is
more diffi cult and not as portable as the PPL. However, like all programming mod-
els that were described in this chapter, PPL also has the benefi t of using a simpler
language that requires a shorter development time, thus saving time-to-market, ease
on debugging and, later, adaptation to varying requirements.

The PPL language is composed of two main primitives: the rule and the event.
Rules list one or more optional conditions (condition_exp_list) that, if met, trigger
sets of actions (action_list) in the following syntax:

Label: Rule <condition_exp_list> action_list

For example, a rule that if the upper 16 bits of the IP destination address match
entry 1 in array iptable, and if the packet is a TCP packet with only the SYN fl ag set,
then a policy named tcpconn (and defi ned in the following) should be applied:

Rule EQ(IP_DEST/16,iptable(1)) EQ(TCP_SYNONLY,1) APPLY(tcpconn)

Events identify the occurrences that cause a defi ned group of rules to be processed,
such as packet arrival. For example, if a packet arrives on port 1, then execute a rule
according to which the packet should be forwarded unconditionally, as follows:

 Event(1)
 Rule FORWARD

378 CHAPTER 8 Software

Packet Processing Language has additional primitives, like Policy, Run, Wait,
Array, and DeviceMap. Additionally, the Defi ne statement, allows substitutions of
strings in the PPL program during the compile time.

The most important additional primitive is Policy: Policies are labeled func-
tions, usually complex packet oriented tasks, often with an internal state, that are
invoked by the rules statement (by the APPLY action of the rule), and are defi ned by:

Label: Policy function

If a table does not already exist, a policy can be written, for example, that cre-
ates a table of at least 100 entries, searches associatively for a key composed of
IP_SOURCE and L4_SPORT in this table and, if not found, stores this searched infor-
mation associatively in the table:

Traffi c: Policy ASSOCIATE NUMBER(100)
 SEARCHKEYS(IP_SOURCE,L4_SPORT)

Run defi nes a group of statements that can have their actions performed con-
currently with other groups. Wait is used mainly to denote the end of concurrent
actions defi ned in a group of rules. Array is used to defi ne indexable tables, and
DeviceMap is used to defi ne a mapping between the PPL environment and the
specifi c hardware used.

Values in PPL are also packet-centric, as PPL “understands” IP, TCP, and UDP head-
ers and fi elds, and can use the named packet fi elds. It can also use dynamic fi elds
in the packets, for example, PFIELD(n).b defi nes the n-th byte of the packet. It
also recognizes some state variables, that describe the packet’s state; for example,
PS_FRAGMENT is a Boolean indicator of the current packet being fragmented.

The PPL program is structured in groups of rules triggered by events, excep-
tions or “start of program,” and runs in parallel unless there are some synchroniza-
tions declared. It is a quite fl exible language; however, it is restricted to the list of
functions allowed in the policies and rules library. At any rate, this language is a
good example that gives good insight into what can be achieved with functional
language used as a programming mode.

CHAPTER

9
Most of this part of the book has described packet processing algorithms and
functions as well as network processors (hardware and software). Implementing
network processors in network systems, however, requires several additional
 components, which we call network processors’ (NPs) peripherals. Some are
for adjunct processing (e.g., security functions), some are used for higher-level
 processing (e.g., control plane processing), some are for data storage (e.g., memo-
ries), and some are used for interconnecting all of the network system’s components
(of which the network processor is only one).

In this chapter, we describe the two important categories of network processors’
peripherals that are unique to networking: switch fabrics (the interconnection
 functions), and coprocessors (for adjunct functions). Network processors’
 peripherals are changing rapidly, and some of their functions are being absorbed
into the network processors or integrated into the host processors as they become
more powerful. This chapter ends the part on network processing and network
processors with a brief discussion of the network processors’ peripherals.

Again, as with the case of the network processor architecture, no implementation
details are provided, since the actual implementation is of secondary importance
to the goal of this book. More importantly, the reader should be familiar with the
general concepts and behavior of the NP peripherals in order to make effi cient
use of them in the design or evaluation phase.

9.1 SWITCH FABRICS
Switch fabrics have been used for many decades now for many applications; they
are based on many technologies, and have many interpretations. A generic defi ni-
tion of a switch fabric includes hardware and software components that enable
data moves from an incoming port to one or more output ports. Although a switch
seems to be a simple hardware function, a switching fabric contains many such
simple hardware switching units in integrated circuits, coupled with the software

NP Peripherals

380 CHAPTER 9 NP Peripherals

that controls the switching paths. This may involve buffer management, queueing,
or other traffi c management aspects. The term “switch fabric” uses the metaphor
of woven material to portray a complex structure of switching paths and ports.
In general, the term can refer to a wide spectrum of switching applications, start-
ing from inside the integrated circuit, to interconnection chips that switch data
among board components, to all of the switching nodes, collectively, in a network.
In this section, however, we refer only to a subset of switching fabric devices that
are relevant to network processors.

After defi ning what switch fabrics are for, we describe switch characterization
according to how effi ciently they perform switching, which becomes important
for distinguishing and choosing switch fabrics. The main attributes of how they
function have to do with throughput, delay, jitter, loss, and fairness. Other attri-
butes that relate to the implementation of switch fabrics include amount of buffer-
ing, implementation complexity, and interfaces. Obviously, the goal is to maximize
throughput with minimum loss and delay, with a minimum number of buffers and
a minimum degree of interface complexity, as well as a low power consumption
and cost.

9.1.1 Introduction and Motivation
Network processors receive packets from their input ports, process them packet
by packet, and either forward the processed packets throughout their output ports
or discard them. Packets that are sent to a line (i.e., the “network side”) are simply
sent over the network processor interface to the destination network. Packets that
are forwarded to the “system side,” either for further processing or for another
network interface (that is not directly attached to the same network processor),
must go through some kind of switching to access their destination. This switching
can be done through the backplane of the system (possibly by a specifi c switch-
ing card attached to it). Switching may be required even on a single line card or a
system board, when packets are transmitted between several network processors
and other components on the same board.

Switching is the basic underlying technology that enables packets to be trans-
ferred simultaneously and at the required ultra-high speeds among the processing
elements. Switching, in our context, is therefore the function that connects many
packet-outputs to many packet-inputs, in a variety of confi gurations and techniques,
which enable packets to transverse the switching devices. These techniques may
include some traffi c management, priority considerations, and other fl ow handling,
to the extent that traffi c managers (as coprocessors or otherwise) may sometimes
be integrated or treated together with switch fabrics. However, we shall defer the
discussion of traffi c managers to a dedicated section later, and ignore the traffi c
management capability in this subsection, despite its availability in many commer-
cial switch fabrics.

The switch fabric is the chip or chipset that is responsible for the switching
function. It can be as many as 15 to 30 chips; some are subswitch modules that are

9.1 Switch Fabrics 381

interconnected to provide the required switching bandwidth (up to several Tbps),
while other chips may be controllers, and so on.

Switching theory and switch fabric technology are as old as the days of
 telephony, and switch fabrics are fundamental to telecommunications (e.g., tele-
phone exchanges). Switch fabrics also became essential to data communications
(e.g., in Ethernet switches, IP routers, and other network systems). Therefore, a
vast body of research exists on switch fabrics that includes countless algorithms
and performance evaluations of the algorithms, the confi gurations, the traffi c
patterns, and the switching requirements. We shall not enter this fi eld, as using
switch fabrics does not require the knowledge of designing one; however, some
confi gurations and parameters that are used for switch fabrics are detailed in the
following for better utilization of switch fabrics with network processors and
network systems.

In order to defi ne the switching requirements of network systems that are rel-
evant to network processors, it is worth noting that usually network systems deal
with 24 to 96 interconnected channels, running real-time traffi c at 10 Gbps each.
This requires a switch fabric that should be capable of handling 300 Gbps to 1 Tbps
aggregated traffi c, with minimal frame delays and frame losses. The next generation
switch capacities should be 4 to 10 times larger than that.

9.1.2 Models and Operation
Traffi c types and patterns are key factors in determining switch technology,
 architecture, and performance. Basically, we distinguish between packet switches
(usually for data-networks and computer interconnection applications) and
 circuit switches (usually for telecom networks). Packet switches can be sub-
divided into variable length packets (e.g., Ethernet and IP) and fi xed length
packets (e.g., ATM cells).

Switch fabrics are used for interconnecting traffi c from N input (ingress) ports
to M output (egress) ports. Such a switch fabric is denoted by N � M. Traffi c
 interconnection is enabled by traffi c-paths that are created in the switch fabrics for
each fl ow, from ingress to egress. If all possible paths are used, then the switch oper-
ates in its maximum throughput. However, since these paths sometimes overlap
(i.e., have joint segments or use shared elements in the switch fabric), blocking may
occur, and not all of the paths can be simultaneously active, and this degrades the
switch throughput. These blocking situations are the main reason for performance
degradation in switch fabrics; they have been widely investigated for decades, and
are discussed in the next subsection. Generally speaking, buffers are used to avoid
or ease blocking situations, as well as scheduling and arbitration algorithms for
synchronizing the traffi c fl ows between the ingress ports, buffers, switch fabrics
paths, and egress ports.

We can therefore model a switch fabric as a switching core coupled with input
and output buffers, and several mechanisms that map packets to ports, and control,
calculate, route, synchronize or confi gure paths and places in the switching core

382 CHAPTER 9 NP Peripherals

(see Figure 9.1). The control mechanism can use either in-band (part of the traffi c
fl ow) or out-of-band signaling for fl ow control and confi guration, based on the traf-
fi c destination and the switch core’s status.

The input interfaces are used for traffi c reception, error checking, segmenta-
tion, and buffering as required, while routing, switching, and confi guration deci-
sions are made and executed. The output interfaces buffer, assemble, reorder,
prioritize, and schedule the output traffi c as required. The ingress traffi c may be
delayed for enabling the control logic to allocate a free path for it, or possibly
to dictate the required switching function in the switching core to create such
a free path. Attaching buffers to the ingress ports and/or egress ports results in
several models of switches, namely Input Queued (IQ), Output Queued (OQ), or
 Combined Input Output Queued (CIOQ) switches, which are described next.

9.1.2.1 Blocking
There are three main reasons for the blocking condition: (a) output blocking hap-
pens when two traffi c fl ows (or frames) try simultaneously to access an egress port;
(b) internal blocking happens when two traffi c fl ows try simultaneously to use an
internal path or a switching element, or they run into some other internal bottleneck,
and (c) input blocking, or head of line (HOL) blocking, which happens when a
frame at an ingress port is prohibited from crossing the switch (possibly due to inter-
nal or output blocking), and that causes all other ingress frames following it to be
stalled, even if there are clear paths for them to their destinations in the switch.

A switch that operates without internal blocking is called a nonblocking switch.
This nonblocking operation can result inherently from the switch architecture, regard-
less of the traffi c fl ow (or frame) that has to be switched. This switch is called Strictly
Nonblocking (SNB) switch. This operation, however, can also be guaranteed for each
traffi c fl ow entering the switch, if the switch controller assigns or reconfi gures a
free path for this traffi c fl ow, connection, or frame. If the rearrangement includes the
reassignment of already active connections, then this switch is called Rearrangeable
Nonblocking (RNB) switch. If, on the other hand, this rearrangement is just the setup
of a new connection, regardless of the current switching state and without interrupt-
ing existing connections, this switch is called Wide-sense Nonblocking (WNB).

Input Interface &
Buffer #N

Output Interface &
Buffer #M

Switch Control Logic

Switch Fabric . .
 .

Output Interface &
Buffer #1

. .
 .

Input Interface &
Buffer #1

FIGURE 9.1

Switch model

9.1 Switch Fabrics 383

9.1.2.2 Time- and Space-Division Switching
Switching can be performed either by one stage of switches or by multiple stages of
switching. At each stage, switching can be done either in the space domain (using
separated and dedicated paths for carrying traffi c fl ows), or in the time domain
(using time division multiplexing [TDM] techniques). Time-Slot Interchange (TSI)
is a time division switching technique according to which data frames are placed in
time slots so that two goals can be achieved: (a) the order of the time demultiplex-
ing defi nes the destination of each of the data segments,1 and (b) rearranging the
data segments in the “right” order can minimize blocking of the frames when they
are transmitted to a blocking, space division type switch. A confi guration of the lat-
ter case is called Time-Space (TS) switching, and can be demonstrated as follows:
Assume three streams of frames, each of which is time division multiplexed with
each frame destined to one of three egress ports (see Figure 9.2a). The left side
(the fi rst stage) is a time division switch, and the right side (the second stage) is
a space division 3 � 3 switch fabric. At every time slot, the space division stage

1For example, if the frame destinations are 3,1,2,4, a TSI can reorder the frames in the ingress port
according to the destinations. In actual implementations, the frames enter a sequential queue, from
which a control mechanism “picks” the frames according to their destinations.

3 2 3 1

2 2 1 3

1 3 3 2

1

2

3

1

2

3

1

2

3

1

2

3

2 3 1

2 1 3

3 3 2

1

2

3

t � 0

t � 1

(a)

2 2 1 3

1 3 3 2

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

2 3 1

1 2 3

3 3 2

3 2 3 1

1 3

2 3

3 2

1

2

3

1

2

3

1

2

3

t � 0

t � 1

t � 2

(b)

Time Slot Interchange

Connection Conflict

FIGURE 9.2

Time-Space switch

384 CHAPTER 9 NP Peripherals

receives three frames that are arranged (by TSI) in the ingress ports such that no
 connection confl icts and no blocking will happen in the space division switch
fabric (as in Figure 9.2b).

Obviously, confi guring a Space-Time (ST) switch has a little benefi t, since the
space division switch at the fi rst stage would be vulnerable to blockings, and there
would be no use for time division afterwards.

More complex confi gurations of Time-Space-Time (TST) switching allow more
complex and sophisticated algorithms to avoid blocking in the switch fabric by
reordering the frames before the space type switch, and following the space switch-
ing. Time division switching is not favorable, mainly due to latency issues (caused
by the inherent delay in transmitting frames) and the high memory bandwidth
required. However, the TS principle is used for switch arbitration and frame sched-
uling, as described in the following.

9.1.2.3 Addressing, Routing, and Forwarding
Since switch fabrics for network processors are networks for interconnecting
many ingress ports to many egress ports in parallel, an important aspect of switch
fabrics is the way the traffi c transverses the switch fabric. Basically there are two
main schemes for that: self-routing switches and controlled switches. In addition,
for frame-based traffi c fl ow, there are two forwarding schemes that switch fabrics
use: store-and-forward and cut-through.

A self-routing switch is an inherent result of the switch architecture. It means
that the switching elements of the switching fabric behave (forward the frame)
based on the frame’s header contents. Self-routing switches usually refer to multi-
staged, space division switches that are described in the following (e.g., Banyan
networks). In these networks, each switching element, at every stage, changes
its state (and forwarding path) according to the content of the frames’ header
that it has to forward. For example, in the fi rst stage of switching elements, a
specifi c 1-bit in the frame’s header may contain “0” to indicate one egress port
of that switching element, or “1” to indicate another. In the subsequent stage,
the switching element “examines” the next bit of the frame’s header, and if it’s
“0,” forwards the frame to one port, otherwise to the other port, and so forth.
This is explained and demonstrated again when we describe multistage switch
fabrics in the following. In single stage switches, “self-routing” is an outcome of
how the switched traffi c is introduced to the switch fabric; for example, in time
division, it is the slot location in the frame, and in space division, it refers to the
assignment of the traffi c to a specifi c port and path. In other words, self- routing
fabrics use the architectural principles of the switch fabric core to handle frame
forwarding; for example, a bit in the frame’s header dictates the state of a switch-
ing element along the path, or the location (in time or in space) of the switched
traffi c.

Cut-through and store-and-forward schemes of switching were described in
Chapter 2 when we discussed a network’s bridges and switches. The same prin-
ciple applies to switch fabrics; that is, switching can be done after the entire frame

is queued, analyzed, switching decisions are made, and fi nally the frame is switched.
Or, switching can be done “on the fl y” by examining the header of the incoming
frame, making all forwarding decisions in time (“at wire speed”), and allowing the
frame to fl ow throughout the switch fabric without queueing it.

The switch fabric controller maps the ingress port of an incoming frame to
its egress port and tags the frame appropriately. Then the frame transverses the
switch fabric core to its destination port, after the controller ensures that the
path is available (or reconfi gures the core to have such a path, if possible). It
can be done either in store-and-forward, or in cut-through manner, as described
above. The frame can be forwarded in the self-routing switching core, for example,
according to the attached tag (or its header); a specifi c 1-bit in the tag or header
may contain “0” to indicate one egress port, or “1” to indicate another. Lastly, the
switch fabric controller strips off the tags that were used by the frames to trans-
verse the switch fabric core (it can be done at the egress port or throughout the
switch core path).

9.1.2.4 Avoiding Blocking
There are several ways, architecturally and algorithmically, to reduce blocking
and increase throughput of switch fabrics, some of which apply only to frame-
based traffi c fl ows, and some to all kinds of traffi c. We focus on frame-based
 traffi c [13], as this is most relevant to network processors. Some of these ways
include [13]:

� Increasing the internal switch fabric core speed to accommodate several
input traffi c fl ows simultaneously (in time division schemes).

� Using buffers in the input ports, in the switch fabric core, and in the output
ports, in order to reorder the transverse frames in various locations of the
switch fabric for avoiding contentions.

� Running a back-pressure, arbitration, or handshake mechanism between the
various stages, buffers, and ports, in order to synchronize traffi c fl ows in an
optimal way.

� Confi guring a number of switch cores to work together in parallel, to increase
the potential free paths for traffi c fl ows.

� Load-balancing the traffi c fl ows before the switch fabric, to reduce the prob-
ability of blocking caused by bursts with similar patterns.

Some of the techniques are described in more detail in Section 9.1.4. Others, which
relate to switch fabric models and architectures, are described in the following
subsections.

9.1.2.4.1 Output Queued Switches
Even in a SNB switch fabric, blocking might still happen at the egress port—
for example, when two or more traffi c fl ows are forwarded to the same egress
port—and no switch fabric core can solve this. The easiest solution is to place
a buffer in the output port, and to run the switch fabric core faster than the

9.1 Switch Fabrics 385

386 CHAPTER 9 NP Peripherals

aggregated speeds of all its incoming traffi c fl ows. In other words, the switching
core runs at speedup N (where there are N inputs), assuming all frames at the
N ingress ports might be destined to the same egress port, and each of the out-
put ports uses a queue to receive the N potential frames arriving faster than its
speed. The output port will then transmit the traffi c further on, from the output
queue. (OQ) thus, has the highest throughput and lowest guaranteed and average
delay, and is therefore sometimes called an Ideal Output Queued Switch (IOQS).
However, it is quite an impractical solution to use such a high speedup, and it is
used just for modeling and as the highest boundary of performance in compari-
son to other schemes.

9.1.2.4.2 Input Queued Switches
Another way to reduce blocking probability is by queueing all ingress traffi c in a
buffer before the ingress port, so that when there is a clear path from the ingress
port to the desired egress port, the frame at the head of the queue will trans-
verse the switch. However, due to HOL blocking, it is not an effi cient solution.
The HOL blocking, which is the input blocking, happens when successive frames
must be held just because the current frame at the head of the queue is waiting
for a free path, thereby causing a decrease in performance. In IQ, the upper limit
to throughput is 58.6% for large N, when independent and identically distributed
(IID) fi xed-length frames enter the switch at uniform distribution (when the frames
are served from the input buffer by First In First Out—FIFO scheduling) [246]. It
can be slightly higher (63.2%), when a frame-dropping mechanism is applied, and
only when the input ports are highly utilized (>88.1%).

One way to solve the HOL blocking issue is to queue the incoming traffi c in
 separate queues in each of the input buffers, according to the traffi c destination.
This way, a frame that is destined to an egress port with a clear path to it can
be transmitted to the switch fabric core, even if a frame before it is waiting in
another queue for another egress port. In other words, several Virtual Output
Queues (VOQs) are maintained at each of the input ports (see Figure 9.3), such
that separated buffers are reserved for each egress port and frames can be cho-
sen according to path availability (and other Quality of Service considerations,
such as priority).

Input Queued (IQ) requires either self-routing fabrics or some arbitration
 module to handle the injection of ingress frames into the switch fabric core,
and VOQ requires it even more. Such arbitration algorithms are described in
Section 9.1.4.

9.1.2.4.3 Combined Input Output Queued Switches
Once there are buffers at the ingress and egress ports of the switch fabric, there can
be algorithms that can increase switch throughput, reduce frame delay, or dictate
some desired property of the switch. Some of these algorithms are described in
Section 9.1.4.

9.1.3 Architectures
Switch fabrics were introduced fi rst for the telecom industry (telephone exchanges)
and then for parallel computers (interconnection networks) and for data commu-
nications (and ATM boosted the research on switch fabrics). Therefore, an enor-
mous number of switch fabric architectures were described for a vast number of
cases, with various traffi c patterns, frame types, applications, complexity, speed,
and so on. These were modifi ed over the years as technology evolved. The most
common architectures are described in this subsection.

Switch fabrics can be classifi ed into three main architecture categories [406]:
shared memory, shared medium (or shared bus), and space division. Shared memory
and shared medium architectures are time division fabrics, and they work pretty
much according to what their names imply; that is, they use a shared memory or
bus to switch the data from its source port to its destination port in different time
slots. Space division means transmitting the data over a physical, identifi ed, and
reserved path from the source port to the destination port for the duration of the
packet transverse. Space division switch fabrics can be further subclassifi ed into
crossbar fabrics, multistage interconnection networks, and other space division
fabrics that have N2 disjoint paths for N input (ingress) ports and N output (egress)
ports (termed N � N switch).

Although we cover several architectures, we again mention that for the network
processor and network systems needs (particularly the number and the speed of
the ports), a fast switch with minimum delay and more than 1 Tbps capacity is

Switch Control Logic

Switch Fabric . .
 .

Input Interface &
Buffer #N

. . .

#1

#M

. .
 . Input Interface &

Buffer #1

. . .

#1

#M

Output Interface &
Buffer #1

Output Interface &
Buffer #M

FIGURE 9.3

Input Queued with Virtual Output Queue

9.1 Switch Fabrics 387

388 CHAPTER 9 NP Peripherals

required. With VLSI devices that are usually used for packet switching and attached
to network processors, the number of switching elements is less signifi cant in
 fulfi lling these requirements, and the algorithms used for the switch arbitration
and frame scheduling are more important. Nevertheless, we briefl y overview the
common and important architectures, and refer to their complexity in terms of
algorithms and number of switching elements.

9.1.3.1 Shared Memory
The incoming frames are stored in a memory that is shared by all ingress and
egress ports, and is itself the switch fabric core (see Figure 9.4). The switch
fabric has a control mechanism that stores and maintains the frame buffers
location in the memory, decides which frames to output (based on egress port
availability and QoS considerations), and reassembles the frames for output.
Since the memory is, in effect, the switch fabric, its size, and techno logy (access
speed) determine the switch characteristics, that is, throughput, delay, and so
on. The memory access time, for example, has to be N times faster than the
speed R of the incoming frame rates, if N ingress ports feed the shared memory
switch.

This architecture is quite simple and cheap, and requires no complex sched-
uling. Multicasting and broadcasting capabilities are inherently achieved by
this architecture, since shared memory allows the frame to be available to all
required ports simultaneously. This architecture can reach 100% throughput
with minimal buffering to achieve a specifi ed level of packet loss. Scalability of
shared memory is also simple, by using multiple shared memory cores in paral-
lel, and feeding each one of them with a slice of the incoming frames. This tech-
nique is called stripping or byte slicing. This scalability requires no additional
control mechanism, as it uses one control mechanism for all memory cores,
similar to the single shared memory case described before. The main drawback
of this architecture lies in its sensitivity to faults. If one of the slicing lanes fails,
the entire frame is useless, while it still draws resources from the switch. For
these situations, a backup memory is architected, so that when such a failure
occurs, the frame slice or the entire port’s traffi c is switched over to the backup
memory for switching.

FIGURE 9.4

Shared memory

Input Interface &
Buffer #N

Input Interface &
Buffer #1

Output Interface &
Buffer #N

Output Interface &
Buffer #1

Memory Control Logic

Shared Memory

...

Rate R

Rate R

Rate R
Rate R

9.1 Switch Fabrics 389

Shared memory can either have static queues or dynamic queues (in size),
that is, it maintains a buffer for each egress port so that its size is always � M/N
(M is the memory size, and N is the number of egress port) in static queues.
This type of shared memory operates like the OQ switch, as described in the
following.

Memory speed should be at least 2NR when R is the incoming and outgoing
frame rates in bps, and N is the number of ports. For example, with 128 bits wide
bus access to a 1 GHz memory, a 128 Gbps throughput can be achieved. Practically,
shared memory’s throughput is about half that. If interfaces support TDM, then
although the shared memory is inherently a single stage time switch, it can become
a three-stage, TST switch.

9.1.3.2 Shared Medium (or Bus)
Shared medium is a similar approach to shared memory, where all ingress ports
and egress ports are connected through a shared medium or a bus (which may be
a ring, a hypercube, a mesh, a torus, etc.). This architecture is simple, and multicast-
ing and broadcasting are simple to implement, but only an extremely fast shared
medium or bus, or a complex arbitration scheme (bus controller), can be used effi -
ciently while preserving QoS demands (see Figure 9.5). Scalability can be achieved
by adding more busses that work in parallel, for increasing the aggregated bus
speed, and the traffi c is split between the busses.

Shared medium is the simplest interconnection, using the standard interface
and protocols, and multicasting and broadcasting are simple. It limits, however, the
scalability due to bus contention, requires an ultra fast bus, and is limited to aggre-
gated 100 Gbps.

Like in shared memory, if interfaces support TDM, then although the shared
medium is inherently a single stage switch, it can become three-stage, TST switch.
This architecture, however, is relevant more to network systems (such as confi gura-
tion of the systems’ line cards) than to the switch fabrics that network processors
work with.

FIGURE 9.5

Shared bus

Input/Output
Interface & Buffer #N

...

Rate R

Rate R Input/Output
Interface & Buffer #1

BU
S

390 CHAPTER 9 NP Peripherals

9.1.3.3 Crossbar
The simplest space division architecture is the crossbar switch. Crossbar, crosspoint,
or crossover switches are various names that refer to this basic architecture, where
many horizontal inputs may be switched over one or more of many vertical outputs
(see Figure 9.6).

This is the most popular and effi cient architecture, as it enables high throughput,
QoS, low latency, multicast and broadcast, and it is strict nonblocking, modular, and
still very simple. It is not so scalable, as the switch grows in O(N2) for N ingress
ports and N egress ports, has no fault tolerance (once a switching element fails, the
entire crossbar is useless), and it is subject to output blocking.

To cope with the output blocking, one can either run the crossbar core at
a higher speed (N times the rate of the ingress ports), or a buffered crossbar
can be used (see Figure 9.7). Buffered crossbars answer most of the crossbar
blocking issues, at the expense of including large buffers (and therefore hurting
the scalability) and introducing scheduling algorithms and complexity into the
crossbar core.

An additional alternative for coping with blocking is the arbitrated crossbar,
which schedules and synchronizes traffi c fl ows between input buffers, output
buffers, the crossbar’s crosspoints, and the internal buffers (at the crosspoints),
as described in the following. Buffered crossbars may require simpler, separate
 arbitration between the internal buffers and the ingress or the egress buffers.

9.1.3.4 Multistage Interconnection Network
Using one monolithic switch fabric core has the advantage of simplicity and speed,
at the expense of scalability and fault tolerance. In order to improve scalability and

FIGURE 9.6

Crossbar switches

Closed (connected) Open (not connected)

0

1

2

N

. .

.

0 1 2 N . . .

Crosspoint

9.1 Switch Fabrics 391

fault tolerance of switch fabrics, many confi gurations of networks of small switch
fabrics are offered, structured in multistage or otherwise. These networks can offer
various degrees of scalability (in terms of size, e.g., number of ports) and fault
 tolerance, usually at the expense of switching delay.

9.1.3.4.1 Clos Networks
A Clos network [83] is a network composed of three stages of crossbar switch fab-
rics (see Figure 9.8). Symmetric Clos networks are networks in which the last stage
is similar to the fi rst one, and the Clos network has n � m, r � r, and m � n crossbar
switch fabrics, with r crossbar switches at the fi rst and last stage, and m crossbar
switches at the middle stage. These three integers (n, m, and r) defi ne the symmetric
Clos network. Clos networks were proposed in order to reduce the number of
switch elements in the N � N crossbar switch fabric (N � rn), while maintaining

FIGURE 9.8

Clos network

...
1

n ...
1

m
#1

...
1

n ...
1

m
#2

...
1

n ...
1

m
#r (N/n)

...
1

r
...

1

r

#1

...
1

r
...

1

r
#2

...
1

r
...

1

r
#m

...
1

m
...

1

n#1

...
1

m
...

1

n#2

...
1

m
...

1

n#r (N/n)

2

2
2

2

2
2

2
1

N

1

N

0

1

2

N

0 1 2 N . . .
FIGURE 9.7

Buffered crossbar

392 CHAPTER 9 NP Peripherals

nonblocking operation. The saving of crosspoint switch elements can be signifi cant
for large crossbar switch fabrics; instead of the r2n2 crossspoint switching elements
that are required in the N � N crossbar switch fabric, there are r2n � 2rn2 in a sym-
metric Clos network, in the case of m � n (to maintain RNB, as described below).
This is just (r � 2n)/rn of the number of crosspoint switches required in the N � N
crossbar switch fabric. When substituting r � N/n, this ratio becomes 2n/N � 1/n,
which can be optimized (minimized) by setting n � ��� N/2 , and then the ratio
becomes as low as 2 ��� 2/N .

In a symmetric Clos network, the n � m, r � r and m � n crossbar switches
are connected between the stages by a perfect shuffl e exchange. Perfect shuffl e in
this case means that for x � 1, 2, …, p and y � 1, 2, …, q, the xth output of the yth
switch is connected to the yth input of the xth switch.

This architecture supports either a SNB or a RNB operation, at the expense
of latency and complex management techniques. When m � 2n�1, then the
 symmetric Clos network is strict nonblocking (SNB).2 When m � n, then the
symmetric Clos network is rearrangeable nonblocking (RNB).3

Although Clos networks were proposed originally for circuit switching, they are
used also for packet, frame and cell switching [88, 112, 280]. It should be noted that
although Clos networks are composed of three stages of crossbar switch fabrics,
any of these switch fabrics can be implemented recursively by a Clos network.

9.1.3.4.2 Benes Networks
Benes networks [47] are RNB networks of more than three stages, which can be
built recursively from 2 � 2 crossbar switch fabrics. Specifi cally, the N � 2n input/
output Benes(n) permutation network is shown in Figure 9.9.

2In the case of nonsymmetric Clos, the condition for SNB is that m � number of inputs in the
ingress crossbar � number of outputs in the egress crossbar �1.
3In the case of nonsymmetric Clos, the condition for RNB is that m � the largest number between
the input ports of the ingress crossbar and the output ports of the egress crossbar.

FIGURE 9.9

Benes(n)—permutation network of N × N, N � 2n

“0”
(bar)

“1”
(cross)

Benes(n � 1)
B(N/2,N/2)

Benes(n � 1)
B(N/2,N/2)

.

Benes (1)
B(2�2)

Benes (1)
B(2�2)

9.1 Switch Fabrics 393

FIGURE 9.10

The 8 × 8 Benes(3) network

B(2�2)

B(2�2)

B(4�4)

B(2�2)

B(2�2)

B(4�4)

B(8�8)

Benes(n) has 2n-1 stages (or 2log2N-1 stages), and each contains N/2 Benes(1)
(2 � 2 crossbar switches). For example, Benes(3) is an 8 � 8 network that has 5
stages, and is shown in Figure 9.10.

The number of 2 � 2 crossbar switches required in Benes(n) is N(log2N-1/2),
and if we consider each 2 � 2 crossbar switch as having four switching elements
(crosspoints), then the Benes(n) requires 4N(log2N-1/2) crosspoints.

9.1.3.4.3 Cantor Networks
Parallelizing m � log2N Benes networks together by multiplexing and demul-
tiplexing (creating a TST switch confi guration) results in a Cantor network,
which is a SNB network. Cantor networks have O(Nlog2

2N) 2 � 2 crossbar
switches.

9.1.3.4.4 Banyan Switching Networks
The principle of Banyan networks [149] comes from a binary tree of 2 � 2
crossbar switches. A Banyan network is identifi ed by having exactly one path
from the ingress port to the egress port, and the fact that it is a self-routing
 network. At each of its stages, the crossbar routes the incoming frame to one
of the two crossbar outputs; at stage i, the i’th bit of the incoming frame deter-
mines to which output of the crossbar the frame is to be routed. In other words,
if the fi rst bit value is 0, then the frame will be switched in the fi rst stage to out-
put “0” of this crossbar, and if this bit is 1, the frame will be switched to output
“1” of this crossbar.

An example is shown in Figure 9.11. A rectangular N � N Banyan network
is constructed from identical 2 � 2 crossbar switches in log2N stages. A Banyan
 switching network interconnects the two inputs of each of the 2 � 2 crossbar
switches in a variety of topologies, one of which is shown in Figure 9.12. The

394 CHAPTER 9 NP Peripherals

most interesting ones, for our needs, are the rectangular SW-Banyans, which have
the same number of ingress and egress ports, and are constructed from identical
switching elements. Banyan networks are not fault tolerant, as only one path exists
between any input to any output. Although this path is not used for other connec-
tions (so blocking cannot happen on the paths), the 2 � 2 crossbar switches in the
network can be blocked if both input ports of these 2 � 2 crossbars try to use the
same output port.

One way to avoid blocking is to speedup the Banyan crossbars and to add
 buffers to the internal crossbar switches. Another way is to use multiple Banyan
networks in tandem (Tandem Banyan Switching Fabric), so that blocked frames are
routed to the following Banyan network, while unblocked frames are routed to the
output port of the network [407]. The third option is to sort the incoming traffi c,
as explained in the next subsection.

Banyan networks are very effi cient, and introduce O(logN) delay in the frame
routing due to the log N stages of the network. They are easily scalable, since they
have N/2 switching elements at each stage, or a total of (N/2)logN 2 � 2 crossbar
switches.

There are several implementations of the Banyan network. An example of one
is the Omega network shown in Figure 9.12, which connects each stage to the

“0”
“1”
“0”

“0”
“1”

“1”

Output 1
Output 2

Output 3
Output 4

Input

FIGURE 9.11

Banyan network

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

FIGURE 9.12

Omega network

9.1 Switch Fabrics 395

 following one in a perfect shuffl e4; that is, each output port is connected cyclically
to the next switching element in the next stage.

Other subclasses include the Delta networks [349], Flip networks, Cube
 networks, Baseline networks, and Modifi ed Data Manipulator networks, which
are beyond the scope of this short overview. They all are rectangular N � N
networks which are constructed from b � b crossbar switches arranged in
logbN stages. Although these networks were originally designed for circuit
switched fabrics, they have been considered also for packet switching fabrics,
and they all have the same performance for packet switching. They are self-
routing networks, modular, and can operate in synchronous and asynchronous
modes [13, 101, 411].

9.1.3.4.5 Batcher–Banyan Switching Network
Since Banyan switches are internal blocking, other alternatives have been proposed.
Based on the observation that internal blocking may be saved by sorting the frames
according to their destinations, and introducing the sorted frames in a continuous
sequence (without “holes”) to the Banyan ingress ports, a Banyan network is pre-
ceded with a sorter. The Batcher network is such a sorter [43] (see Figure 9.13),
and, when combined with Banyan, results in the nonblocking Batcher–Banyan
 network. Output blocking is still possible, however.

Each 2 � 2 comparing element in the Batcher sorter compares the two
 complete destination port addresses of the frames, and sends the frame with the
higher address to its “up” output port and the frame with the lower to its “down”
output port. Eventually, after logN(1 � logN)/2 stages, the Batcher sorter actually

4Perfect shuffl e in this case means that each output port is connected to the input port that has the
number created by cyclically rotating left the output port number; for example, in 8 ports, port 1 (0012)
will be connected to port 2 (0102), and port 6 (1102) will be connected to port 5 (1012). The ports are
numbered sequentially, from the fi rst crossbar input to the last input of the last crossbar in the stage.

FIGURE 9.13

An 8 � 8 Batcher sorter

396 CHAPTER 9 NP Peripherals

completes a hardware sorting of all frames, according to their destination addresses.
Since at each stage there are N/2 comparing elements, there are NlogN(1 � logN)/4
comparing elements, which, even with the (N/2)logN switching elements of the
Banyan network, are still fewer than the N 2 switching elements required in the
simple crossbar.

To cope with output blocking, various techniques were proposed; one, for
example, is the Sunshine switch (see Figure 9.14). The idea is to parallelize L Ban-
yan switches, so that no more than L frames to the same destination can be handled
simultaneously (with an output port logic that can handle it). In the case of more
than L frames, some of them are trapped and recirculated through a delay buffer,
while the others are sent by the selector to different Banyan switches.

9.1.3.5 Other Space Division Architecture
Many other architectures were proposed for providing N2 disjoint paths among
N ingress ports and N egress ports, avoiding internal blocking. Some examples are
the bus-matrix switching architecture [337] and the knockout switch [436].

The knockout switch, for example, switches fi xed length frames [436] and vari-
able length frames [115]. As noted above, crossbar architecture does not scale well,
since it requires O(N 2) crosspoint switching elements to switch N input ports to
N output ports (N � N). In crossbar, an output port may receive N frames from all
N input ports, although that would be most unlikely. A knockout switch provides a
cheaper architecture, assuming that an output port would be able to accept L � N
frames simultaneously (into its buffers). A knockout switch is composed of packet
fi lters (that recognize frames for an output port), a concentrator (that selects L
frames from N inputs in a fair manner, while knocking out the other frames), and a
queue for L frames per output port. The fairness is accomplished in the concentra-
tor by pairing all inputs and randomly choosing one of each pair, and running this
contest several times among the “winners” and the “losers” until L frames remain
“winners” eventually.

9.1.3.6 Parallel Switching Architectures
Parallelism is used not just for processing, as described extensively in the previous
chapter on network processor architectures, but also for switching fabrics. The

FIGURE 9.14

Sunshine switch

Delay

Batcher Trap Selector
Banyan
Banyan

Banyan
L � n L � n

n n � k n � k

k k

9.1 Switch Fabrics 397

principle is simple: by using multiple “planes” of switching, each plane is a switch
fabric core, and by splitting the incoming traffi c among the switching planes, the
same effect as speeding up the switch fabric core is achieved. There are several
architectures for parallelizing the switch fabric, and we already describe one, the
Cantor switch, which is a parallel Benes network.

Parallelism is used mainly to scale switch capacity, although it can also serve as
a fault tolerance measure. Parallelism can be based on bit or byte slicing (every bit
or byte is sent to a parallel switching plane) with one scheduler that operates on all
switching planes identically. Parallelism can also be done on a cell or fl ow splitting,
based on time slicing (each switching plane treats its frame) with a scheduler that
calculates for each cell or fl ow its switching plane, path, and schedule.

This concept of parallelism has many implementations and derived architectures,
such as the Parallel Packet Switch [230], Parallel Buffered Packet Switches [191], Par-
allel Shared Memory, or Distributed Shared Memory [231], just to name a few.

9.1.4 Algorithms and Performance
The main purpose of switch fabric algorithms is to avoid blocking, reduce packet
loss and packet delay, while keeping the switch fabric as simple as possible, with
a minimal number and size of buffers, switching elements, and switching speed.
As noted previously, speeding up the switching core (relative to the frames’ input
rate, to allow more frames to use the core’s paths), using TSI methods and buffers
(either IQ, OQ or buffered switch) can reduce signifi cantly the blocking probability
 [250, 313]. A redundant confi guration of multiple and parallel switch fabric cores
can also reduce the blocking probability, as well as providing other advantages,
such as load balancing and fault tolerance, at the expense of size, cost, and power
consumption.

A buffered switch can result in 100% throughput, for example, in a crossbar
switch fabric (as N →), when each crosspoint can buffer one frame [236]. This
is achieved without speedup or VOQ, under the assumption of Bernouli IID or
uniform distribution of the incoming traffi c [284]. A buffered crossbar can pro-
vide guaranteed performance (rate and delay, and 100% throughput) with a switch
speedup of 2 [291, 414], and when using scalable scheduling algorithms that oper-
ate in parallel on the ingress and the egress ports [79].

Ideal OQ switches provide the highest throughput at the lowest possible and
guaranteed delay. In order to avoid the required high speedup in OQ architectures
(which is N), IQ is used. However, the maximal throughput for non-VOQ IQ is 58.6%
for large N (for IID fi xed-length frames entering the switch at uniform distribution)
[246]. To solve this HOL performance degradation, VOQ and CIOQ architectures
were introduced to emulate the OQ. This leads to synchronization, scheduling, and
arbitration algorithms for connecting ingress ports to egress ports and buffers.

Many synchronization and scheduling algorithms have been proposed to match
buffers, ingress ports and egress ports, that is, to fi nd a free path for a frame to
transverse the switch toward the egress port while maximizing the throughput at

398 CHAPTER 9 NP Peripherals

a guaranteed packet delay and loss, at an acceptable switch fabric core’s speedup.
Centralized schedulers, which are arbiters, are used to determine the confi gura-
tion of the switch fabric, and to maintain frame order [252]. Some algorithms use
in-band or out-of-band “backpressure” signaling to inform the previous switch
stages (or input buffers) of congestion at the egress port or at internal junctions in
the switch fabric core, and to cause these previous stages to queue frames rather
then to forward them. Other algorithms may use variations of credit-based fl ow
control, according to which the ingress port accumulates “system” credits that it
uses when it forwards frames. Backpressure can be used for controlling the rate at
which credits are generated in the credit-based fl ow control.

Such algorithms are based on matching algorithms in bipartite graphs and the
marriage theorem [139, 164]. Matching algorithms fi nd edges in a graph such that
each edge has no common end-nodes with other edges. A CIOQ switch, for exam-
ple, can be considered a bipartite graph, with ingress ports on one side of the graph
and egress ports on the other, and a matching algorithm can be applied to calculate
the match. Perfect matching happens where every ingress port has a mate among
the egress ports, and vice versa. The marriage theorem states that if the number
of ingress ports equals the number of egress ports and, if for every subgroup of
ingress ports, there is at least the same number of potential egress ports, a perfect
matching is possible.

Maximum Matching algorithms try to match as many ingress ports to egress
ports as they can, and their complexity is O(n3/2 � (m/log n)1/2) [16], where n is
the number of nodes and m is the number of possible paths.

Maximum Weight Matching (MWM) [314] algorithms try to fi nd the “best”
matching among ingress ports and egress ports based on various weighting
criteria, such as queue priority, queue length, waiting time, and so on. The com-
plexity of such algorithms is typically O(n3) [236], although it can be as low as
O(mn � n log n) [137], where n is the number of nodes and m is the number
of possible paths.

The problem with matching algorithms is that they have to be calculated online,
which becomes quite impractical in high-speed switching. Scheduling thus can be
a bottleneck in itself, so speeding up the schedulers becomes an issue, and vari-
ous solutions to that have been proposed (such as [158]). Simpler scheduling algo-
rithms, such as the Weighted Round Robin, fail to provide uniform rate guarantees in
 nonuniform traffi c. Some examples of scheduling algorithms include Parallel Itera-
tive Matching (PIM) [17] and its simplifi ed version, Iterative Round-Robin Matching
[315]; iSLIP [312, 313]; Dual Round-Robin Matching [74]; iterative Longest Queue
First (iLFQ) and Oldest Cell First (iOCF), which are two MWM algorithms [314];
Reservation with Preemption and Acknowledgment (RPA) [300]; Batch [103]; and
FIRM [379]. iSLIP,5 for example, which is very common, achieves 100% throughput

5iSLIP is an iterative version of SLIP, which is a variation of Round-Robin matching and is based on
PIM (which suffers from being complex and unfair).

9.1 Switch Fabrics 399

for uniform traffi c; it is used to confi gure the crossbar switch and decide the order
in which frames will be served. Many of the above examples are distributed sched-
uling algorithms, which ease the online calculations.

An interesting approach for relatively low online scheduling complexity is Birkhoff
von Neumann (BvN), which can be used when the input rate matrix is known apri-
ori [72, 73]. The main idea in this scheduling algorithm is to use a capacity decompo-
sition approach [52, 423], which has a computational complexity of O(N 4.5), but the
online scheduling algorithm6 is O(logN). It provides 100% throughput, and uniform
rate guarantees for each input-output pair, without internal speedup.

Most of these algorithms are designed for cell-based switching, that is, they
work in fi xed-length time slots. Packet mode schedulers bridge the packet/cell
difference by either: (a) segmenting the frame, switching the segments, buffering
them at the output port and reassembling them when all segments comprising the
packet are collected, or (b) by continuous delivery of the frame over the switch
fabric, while blocking the ingress and egress ports of the switching fabrics, as well
as internal junctions, to the frame [36, 156]. It is important to note that packet-
mode CIOQ cannot emulate OQ, whatever the speedup (while the cell-base CIOQ
can). However, a packet mode CIOQ switch can perform like a cell-based CIOQ
(mimicking OQ) with a speedup of 1, when additional, bounded packet delay is
allowed [36]. Packet mode scheduling of IQ crossbar switch fabric, with a speedup
of 1, can achieve 100% throughput in several kinds of arrival traffi c patterns [141,
142]. Similar results on packet-based switching were shown [299] by modifying
the cell-based MWM algorithm, and achieving 100% throughput for ingress traffi c
with IID packet length (having fi nite mean and variance), and that is distributed as
Bernoulli IID.

Another category of algorithms has adopted the principle of load-balancing
ahead of the switching fabric [417] so as to spread the traffi c fl ow uniformly and
to enable smoother operation of the switch fabric. Load balancing is used for the
BvN switch, which decreases online complexity to O(1) [73] while maintaining
100% throughput, guaranteed rate, bounded delays, and packet ordering (using
multistage buffering). Another example is a scheme, in which a frame is sent
twice on a full mesh interconnection switch. The fi rst time it is sent into a VOQ
according to uniform distribution; therefore, it is load-balancing the IQ. Then it
is sent again, from the VOQ to its real destination. In other words, logically, this
is a two-stage mesh switch, where the fi rst mesh load balances packets across all
VOQs by sending 1/Nth of the traffi c to each VOQ, and then the second mesh
redirects the traffi c to its destination by servicing each VOQ at fi xed rate. It turns
out that without any scheduling, it performs extremely well—better than any
other interconnection topology (hypercube, torus or ring), and guarantees 100%
throughput [251, 253].

6This algorithm can be Packet-Generalized Processor Sharing (PGPS), or Weighted Fair Queueing
(WFQ), both of which are described in Chapter 6.

400 CHAPTER 9 NP Peripherals

9.1.5 Implementation and Usage
There are three basic requirements for switch fabrics: interconnecting line cards
across the backplane, packet switching between ports (on a line card and on differ-
ent line cards), and QoS support while switching the packets.

We already touched on the issue of interconnect networks, or switch fabrics
in Chapter 7, when we discussed interfaces and specifi cally PCIe (for interchip or
C2C), Advanced Switching Interconnect7 (ASI, for inter-board or backplane), and
Infi niBand (for interchassis or rack). Advanced Telecom Computing Architecture
(ATCA), which is a part of the PCI Industrial Computer Manufacturers Group
(PICMG) standardized the carrier grade communication equipment, mainly high-
speed interconnect technologies. ATCA proposed mechanical, electrical, and some
functional (e.g., management) interfaces between boards, backplanes, and systems,
including a switch fabric interface (in the data transfer part of the interface, called
“Zone 2”). There are 16 slots in the ATCA chasis; each supports a switch fabric
interface of 15 full-duplex channels to the other slots, each 4 10 Gbps, yielding a
640 Gbps chassis capacity.

The generic line card contains a switch fabric interface, through which the line
card is connected to the chassis and to the other line cards through the switch fab-
ric. Line cards may use backplane connections that are multi-2.5, 3.125, or 10 Gbps
serial lines (“lanes”).

Today interfaces to switch fabrics are based on SPI-4.2 (10 Gbps) or SPI-5.2
(40 Gbps), and future interfaces are expected to rely on Ethernet. Older interfaces
are based on the Network Processor Forum’s (NPS) CSIX-L1 or NPSI (the streaming
interface).

There are many possible confi gurations for using the switch fabric: it can reside
on the backplane and be connected directly with the line cards, or it can reside on
a separate card (or cards) attached to the backplane and be connected through a
mesh to all line cards (see Figure 9.15). It can even be distributed, that is, used in
every line card, and the line cards can be interconnected by a mesh (or shared bus)
through the backplane.

Switch fabric implementations support redundancy that is either passive
(1:1), load-sharing (N�1) or active (1�1). Passive redundancy is the simplest, and
it means that additional switch fabrics are confi gured for backup purposes, that
is, in case of failure, the backup switch fabric becomes active automatically. The
major drawbacks in this confi guration are the ineffi cient utilization of the hard-
ware, and the loss of data in the active switch fabric in case of failure switchover.
Load-sharing is the cheapest and most effi cient, since all switch fabrics are active,
though in the case of a failure, the performance degrades as one of the switch fab-
rics is disabled. Using enough redundant switch fabrics ensures that in the worst

7ASI was defi ned by ASI-SIG, a Special Interest Group that was formed for developing a switch fabric
architecture based on PCI Express technology, and later merged with the PCI Industrial Computer
Manufacturers Group (PICMG) in 2007.

9.1 Switch Fabrics 401

case, there will be enough switching capacity left in the switch fabric. Active
redundancy is the most expensive and ineffi cient confi guration, but guarantees
no data loss, since the two switch fabrics work in parallel, with just one of them
connected to the output ports. In case of a failure of the connected switch fabric,
an automatic switchover disconnects the faulty switch fabric and connects the
backup one, with no loss of data.

9.1.6 Commercial Aspects
Switch fabric chipsets are used for enterprise systems, multiservice provisioning
platforms (MSPPs), or carrier-class Ethernet applications. Enterprise systems con-
tain relatively low-cost and low-scale switch fabrics, mainly for the enterprise data
networks (L2, Ethernet, or L3 IP routers). Some storage networks require these
kinds of switch fabrics, where the requirement here is large packets and low latency
requirements, supporting not only Ethernet and IP, but also iSCSI, Fiber Channel,
and Infi niBand. MSPP applications require a protocol agnostic switch fabric, which
are transport-based (TDM-like) or data-based (fi xed and variable length packets).
Carrier-class Ethernet applications require scalable, redundant, and extremely high-
speed switch fabrics.

Switch fabric chipsets usually include multiple chips to scale to the required
capacity. These are usually arranged as multistage switch fabrics, with several chips
for memory, arbitration, and control.

FIGURE 9.15

Centralized switch fabric and backplane

Controller Memory
Switch

Fabric Card

PHY/MAC/

Host Processor Frame Memory
Line Card

PCI

Switch Fabric

Mult
ipl

e L
ine

 C
ard

s

Switch Card

Connector

Network

Network

Network

Network

PHY/MAC/
Framer

PHY/MAC/
Framer

PHY/MAC/
Framer Traffic Manager

Network
Processor

Host Processor Frame Memory

Switch
Fabric

Interface

Line Card

SPI/
GMII

PCI

SPI/
GMII

Bac
kp

lan
e

PHY/MAC/
Framer

Switch
Fabric

Interface

402 CHAPTER 9 NP Peripherals

Switch fabrics chipsets used to be a core technology that was developed in-house
by ASIC designers. Due to the complexity, high-speed requirements, and multiservice
functionality, in-house development was reduced, and a switch fabric market appeared.
This trend resulted in Application Specifi c Standard Products (ASSPs), which are
general purpose switch fabric chipsets (“Merchant Silicon”) with a wide spectrum
of applications and technologies. Despite the potential, market conditions caused
many of the switch fabrics vendors to cease operations (e.g., PetaSwitch, TeraCross,
Zagross, Tau networks, and TeraChip; ZettaCom was acquired by Integrated Device
Technology [IDT], Sandburst was acquired by Broadcom, and even IBM sold its PRS
switch fabric line to AMCC).

Switch fabric market analysts sometimes distinguish between proprietary
switch fabric vendors (cell, frame, and TDM switching using SPI interfaces) and
 standard switch fabric vendors (RapidIO, Ethernet, PCI Express, Infi niBand).
Another differentiation that is sometimes made is between backplane switching
and High-Speed Interconnect (HSI), used mainly for Chip to Chip (C2C).

Companies that had cell-based switch fabrics in 2004–2008 include, for exam-
ple, Agere (now LSI), Applied Micro Circuits Corporation (AMCC, which acquired
IBM’s PRS fabric line), Broadcom, Mindspeed Technologies, Tau Networks, TeraChip,
Vitesse Semiconductors, and ZettaCom (now IDT). They supported up to 2.5 Tbps
switching using 10 Gbps interfaces, in �4 ms latency (some with 1 ms), up to 16
(64 in some cases) subports and up to 1K fl ows (usually tens). In these systems,
frame payloads are fi xed, can be selected, and are up to 160 bytes. All chips use
8b/10b encoding, hence reducing bandwidth on the serial links; the link over
speed is usually two times, resulting 2 to 3 Gbps link speed on the backplane, and
for 10 Gbps ports 8 links are required. Most of these chipsets require 15 W per
10 Gbps, and their price has been around $300 per 10 Gbps. Most 160 Gbps con-
fi gurations require 15 to 25 chips.

Companies that had packet-based switch fabrics between 2004 and 2008
include, for example, Broadcom, Dune Networks, Enigma, Erlang Technologies, Mar-
vell, and Sandburst. These systems support up to 20 or even 40 Tbps, using 20 Gbps
line interfaces. All chips require four to eight links on the backplane per 10 Gbps
port, consume 10 to 15 W per 10 Gbps, and have cost approximately $300 per
10 Gbps. Most 160 Gbps confi gurations require 15 to 25 chips (like the cell-based
confi gurations) with some exceptions (<10).

Other companies that have been in the business of switch fabrics include, for
example, Fujitsu, Fulcrum, Internet Machines, Mercury Computer, Mindspeed Tech-
nologies, NextIO, PetaSwitch Solutions, PMC-Sierra, Power X Networks, StarGen,
TeraCross, Transwitch, Tundra, and Xyratex.

9.1.7 Switch Summary
Switch fabrics are characterized by their levels of throughput, packet loss, and
packet delay, which are always trade-offs due to switch fabric architectures. In addi-
tion, switch scalability and complexity are of prime importance in selecting a switch

9.2 Coprocessors 403

fabric. In this section, we described the various models and types of switches, their
architectures, capacity (throughput) scalability as well as size (port) scalability, and
some arbitration and scheduling algorithms.

Technical issues in switching include scheduling, routing and reconfi gura-
tion algorithms, arbitration, backpressure for indicating congestions, and so on.
Some scheduling and buffering issues are very similar to those we described
in Chapter 6. For more information, the interested reader may turn to many
books on switch fabrics and interconnect networks [250], as well as articles on
specifi c issues having to do with architectures, algorithms, and performance of
switch fabrics.

9.2 COPROCESSORS
Coprocessors are essential network processors’ peripherals for special purpose
 processing. Due to their importance, some of them are integrated with the net-
work processors or with the switch fabrics (particularly in the case of traffi c manage-
ment). Coprocessors can be categorized into traffi c managers, security processors,
search processors, classifi ers, storage processors, and other application accelerators.

Coprocessors can be attached to network processors in a look-aside scheme,
or in a fl ow-through scheme. In the look-aside scheme, the network processor may
share some functionalities and resources (mainly buffers and frame memory) with
the coprocessor, has a specifi c interface to the coprocessor, and sometimes even
commands the coprocessor (e.g., initiating instructions, events, or procedures).
In the fl ow-through scheme, the coprocessor is a totally independent module,
 carrying specifi c task it is specialized for, and the combination of it with the
 network processor resembles the pipeline architecture.

9.2.1 Traffi c Managers
Traffi c fl ows are one of the most important issues in networking, and traffi c man-
agers are the processing units that are responsible for making sure that traffi c will
fl ow as desired. Some network processors have minimal, superfi cial traffi c manage-
ment capabilities, whereas others have comprehensive traffi c management inte-
grated into the network processing itself. Traffi c management capabilities can also
be found in switch fabrics, due to the complexities of the switches, the existence
of control logic, and the small marginal costs in adding these capabilities to switch
fabric chips, where their die size is dictated by the I/O pads, leaving plenty of room
for buffers and logic required for traffi c management.

Traffi c management basically ties the network side, the system side, the ingress
and the egress ports of the network processor to the processing unit. These con-
nectios are controlled by the fl ow processing functions we discussed in detail in
Chapter 6; that is, measuring, policing, queueing, scheduling, shaping, and statistical
gathering.

404 CHAPTER 9 NP Peripherals

At the core of the traffi c manager there is a queuing system, and around it there
are all the traffi c fl ow handling functions. The number of queues and the ability
to distinguish between the queues and the frames determines the granularity of
fl ow handling. The result is that every frame can receive a different treatment
 according to the Class of Service (CoS) to which it belongs, and every CoS can be
 implemented by various levels and parameters of QoS.

Queues can be arranged in a fl at or multilevel hierarchical organization. Flat
organization is simple and intuitive, and is adequate when the traffi c manager has to
handle a relatively small number of traffi c fl ows from a network with one parameter
that distinguishes its fl ows, for example, destination, priority, and so on. Multilevel
hierarchical queueing system may be required to handle traffi c that originates from
various networks, sources, or applications. Such cases can include access or metro
networks, where traffi c managers are required to treat millions of fl ows, coming
from different sources, and each fl ow may represent the specifi c application of
one user, each with its own CoS. In multilevel hierarchical queueing, queues may
be arranged according to the physical ports where frames arrive, then according to
the virtual ports that represent different networks, then according to the various
classes (e.g., users), and fi nally according to the fl ows (see Figure 9.16).

Traffi c managers can have four or more queues in the multilevel hierarchical
queueing system. Sometimes the second level queueing (virtual ports, in our exam-
ple) can be used for VOQ to a switch fabric.

Commercial traffi c mangers have been offered by companies such as Acron
Networks, Agere (now LSI), AMCC, Azanda Network Devices, Bay Microsystems,
Dune Networks, EZchip, Erlang Technologies, Freescale, Internet Machines, Kichips,
 Marvell, PetaSwitch Solutions, Sandburst (acquired by Broadcom), Tau Networks,
TeraChip, Teradiant Networks, Vitesse, Xelerated, and Zettacom.

9.2.2 Security Processors
Security is a huge area in itself, which touches on or is combined with network-
ing in many applications. Networking applications that involve security become
complex and require special purpose hardware assist to off-load security tasks

FIGURE 9.16

A multilevel hierarchical queueing system

. . .
. . .

. . .

. . .

64K–1M
Flow

Queues

1K–64K
Class

Queues

64–256
Virtual Port

Queues

16–64
Physical Port

Queues

9.2 Coprocessors 405

from the networking devices, or even from the processing devices. However, since
security involves knowledge that is beyond the scope of this book, we have to be
very brief and provide just a system perspective on this subject, while referring
interested readers to the vast literature on security and implementation details. A
very brief description of the security aspects in network processing is provided
in Chapter 5.

The two main security protocols that network processors have to deal with
are IPsec [249] and Secure Sockets Layer (SSL, which was replaced by Transport
Layer Security—TSL [102]). IPsec is the IETF standard for IP security, and it is com-
posed of a suite of RFCs. It provides privacy, authentication and integrity through
encryption algorithms. IPsec runs at the IP layer, whereas SSL/TSL runs above this
layer, thus leaving the TCP/UDP services unsecured, while using them. IPsec is used
mainly in Virtual Private Networks (VPN), whereas SSL/TSL is typically used in cli-
ent server applications (such as mail, web browsing, and telnet).

Due to the enormous computation load required to handle millions of secured
fl ows, network processors usually trigger integrated or look-aside security copro-
cessors, providing them with the required commands, plain text, or the cipher
text and parameters. Alternatively, independent security processors work in the
 fl ow-through scheme, running the security protocols and encrypting/ decrypting
the data stream to and from the network processor. Most security coprocessors
 function as SSL accelerators or IPsec accelerators using one of these schemes.

An additional important application is content inspection, which is carried out
by specifi c accelerators. This application is required for intrusion detection and
prevention, antivirus, antispam, sophisticated fi rewalls, and so on. The growing
complexity of the content inspection, coupled with increasing wire speed require-
ments and the expanding scope of these applications, makes content inspection
accelerators a vital component in the network systems.

There are many kinds of security processors available commercially, which
can be categorized as integrated security processors (part of the network proces-
sor), IPsec and SSL accelerators, or content inspection accelerators. Commercial
integrated security processors have been offered by companies such as Cavium,
Freescale, Intel, Misteltoe, P.A. Semi, Raza Microelectronics, and SafeNet. IPsec and
SSL accelerators were offered by Broadcom, Cavium, Corrent, CyberGuard (which
acquired NetOctave and was acquired later by Secure Computing), Hifn, Layer N
(which became Vritestream Networks and was acquired by nCipher), SafeNet, and
Zyfer. Content inspection accelerators were offered by NetLogic, Seaway (formerly
Camelot Content Technologies, which was acquired by FreeScale), Sensory Net-
works, and Tatari (which was acquired by LSI).

9.2.3 Search Processors and Classifi ers
In Chapter 5, we described in details the classifi cation and searching requirements
of network processing. In many cases, these tasks are performed in the network
processors, but there are situations where specifi c hardware assists, search engines,

406 CHAPTER 9 NP Peripherals

processors, or accelerators are used in a look-aside scheme. It usually happens when
the lookup capabilities of the network processor are limited, or cannot cope with
the specifi c application they are designed for. Classifi cation processors can also be
used in a fl ow-through scheme, if network processor offl oading is required.

Many of the search processors or classifi ers are built around CAM devices, but
when search or classifi cation complexity is high, then a more sophisticated kind of
processing is required, and algorithms can be carried out to perform the required
search or classifi cation. In such cases, the search processor or classifi er may include
a dedicated processing unit for the algorithms, although there are also hybrid CAM/
algorithms search engines.

Cypress (which acquired Lara Networks), IDT, and NetLogic, for example, are
vendors of search engines and classifi ers, but many other vendors, including some
network processor vendors, have offered various kinds of search processors and
classifi ers (HyWire and Silicon Access Networks, for example).

9.2.4 Storage Processors
Storage processors can be either independent processors or coprocessors. The
requirements of storage devices and information fl ow impose specifi c traffi c
 patterns and protocols that make storage processors critical to high-speed storage
applications. These traffi c patterns are, for example, larger blocks (frames), high
speed, and very low latency and jitter. Different protocol suits exist for storage,
such as the Small Computer System Interface (SCSI) and the Fiber Channel, which
are disk block-level protocols. Even storage that is attached through IP networks
has specifi c protocols that use the common networking protocols we discussed
(mainly datacenter types, i.e, Ethernet, IP, and TCP). Such protocols may be at the
disk-block level (similar to the SCSI and Fiber Channel protocols), or at the fi le
 system level (and are thus dependent on the operating system used). Disk-block
level protocols include SCSI over IP (iSCSI) and Fiber Channel over IP (FCIP). File
level protocols include UNIX’s Network File System (NFS) and Microsoft’s Windows
Common Internet File System (CIFS).

All of these above-mentioned storage protocols are beyond the scope of this
book. However, when they are used on top of networking protocols, some network
services are very useful for the storage devices, such as high-speed encapsulation
and decapsulation of storage datagrams, TCP termination (handling the TCP
 protocol in the network device, sometimes called TCP offl oad engines or devices),
tunneling storage sessions, and so on.

Commercial storage processors of various degrees are (or have been) man-
ufactured by companies such as Alacritech, AMCC, Aristos, Astute Networks,
BigSur Communications, Broadcom, Chelsio Communications, Emulex/Aarohi,
 Freescale, Intel, iReady, iStor, iVivity, LightSand Communications, LSI Logic,
 Marvell, P.A. Semi, Platys (acquired by Adaptec), PMC-Sierra, Qlogic, Siliquent
Technologies, Silverback (which was acquired by Brocade), Trebia Networks,
and Vitesse.

9.3 Summary 407

9.2.5 Application Accelerators
These types of coprocessors are rarely used. However, there are some cases in
which look-aside processing is required by the network processor, which is beyond
its capabilities. In such cases, often an FPGA glued circuitry does the required
 application and accelerates it, so that a specifi c complex task is performed at wire
speed (or at the network processor speed). Such applications may include deep
packet analysis, high-level parsing (e.g., XML), look-ahead applications, or some
extended policing, statistics, calculations, and so on.

9.3 SUMMARY
Network processors’ peripherals are important devices that the designer and the
user of network systems with network processors must consider and understand.
We focused here on peripherals that are specifi c to network processing, that is,
switch fabrics and special-purpose and network-oriented coprocessors.

With NP peripherals, we conclude the part on network processors theory. In
the next part, we describe in detail the example of EZchip NP network processor
architecture, programming models and software, and provide application samples
and hands-on experience.

This page intentionally left blank

PART

3A Network
Processor: EZchip

This part of the book provides an in-depth description of a specifi c network
processor, EZchip’s NP, which dominates the metro networks markets. This
NP’s architecture is also used for another version of NP that is targeted for
access network applications.

The requirements for metro networks are very challenging as a result of
the fl exibility requirements of the applications, the instability of protocols
and methods used in the metro environment, and the performance issues
of ultra-high-speed and low-latency requirements. These requirements are
all the more challenging because of the wide range of network devices in
which network processors are used; that is, core equipment, edge inter-
faces, access devices, or CPE equipment, all of which have line-cards and
service cards.

410 PART 3 A Network Processor: EZchip

The purpose of this part is to provide readers with a concrete example of
all the network processing issues described in the fi rst two parts of the book
and to enable them to read and write network processor applications.

We begin with a description of the hardware architecture, and then con-
tinue with the software architecture and programming. Following Chapters
10 and 11, each of the processors and the functional units of the NP is
described in a separate chapter. We conclude this part with a comprehen-
sive example of how to write a program and use the network processor.

EZchip NP-1 is used here for demonstration, although several elements
of the NP-x family are briefl y mentioned (e.g., the embedded traffi c manage-
ment unit). The differences between NP-1 and its successors are also not
discussed because the purpose of this part of the book is not to document
the EZchip network processors, but rather to help readers gain insight and
experience in implementing a real NP that is very common in the metro
Ethernet market. Those readers who would later like to actually use one of
the NPs (or any kind of network processor, for that matter) will fi nd it much
easier after reading this parts’ general concepts and the description of the
practical usage of the NP. This part contains the following chapters:

■ Chapter 10—EZchip Architecture, Capabilities, and Applications
■ Chapter 11—EZchip Programming
■ Chapter 12—Parsing
■ Chapter 13—Searching
■ Chapter 14—Resolving
■ Chapter 15—Modifying
■ Chapter 16—Running the VLAN Example
■ Chapter 17—Writing Your First High-Speed Network Application

The EZmde (Microcode Development Environment) demo program that
can be used to write a code, debug it, and simulate an NP running with
this code (with debugging features turned on) can be downloaded from
http://www.cse.bgu.ac.il/npbook, as well as the EZmde design manual.

CHAPTER

10
EZchip architecture is based on a pipeline of parallel heterogeneous processors,
optimized for packet processing according to the various phases we discussed in
the theory part of the book. Each processor along the pipeline is equipped with
functional units, memory, and internal data buses that support its specifi c function
in the pipeline as a whole.

There are many EZchip network processor types and versions, suited to vari-
ous applications. They all, however, share the common architecture mentioned
before, which will be described in this chapter. The emphasis is on the network
processor chip architecture, in terms of features, applications, interfaces, and
hardware, whereas the next chapter deals with the software conventions and
 programming.

There are many subsystems and functional blocks in the NP, not all of which will
be described here. This chapter describes only those functions that are important
to understand how a network processor is implemented by using EZchip’s NP, as
an example. Furthermore, for the sake of simplicity, not all features, possibilities,
and benefi ts of the EZchip NPs are detailed. In this chapter, we focus on describing
the general architecture of the NP-1, although some elements of NP-2 are men-
tioned very briefl y.

10.1 GENERAL DESCRIPTION
EZchip’s NP-1 is a 10-Gigabit full-duplex network processor providing wire-speed,
seven-layer packet processing. NP-1 integrates search engines and many specifi c
hardware assists that enable the required packet processing at wire speed. In addi-
tion, NP-2 also includes integrated traffi c management units. NP-1 uses internal
and optional external DRAM for all lookup tables and frame buffers, and optional
external SRAM for statistical data.

The NP-1 is based on a fi ve-stage packet processing pipeline (Figure 10.1).
Each stage contains multiple, parallel processors optimized to perform the specifi c

EZchip Architecture,
Capabilities, and
Applications

412 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

tasks required by that pipeline stage. There are four types of such Task-Optimized
 Processors (TOP engines) employed to perform the four main tasks of packet
 processing, that is, parsing, searching, resolving, and modifying.

Each type of TOP processor employs architecture with a customized, function-
specifi c data path, functional units, and instruction set that supports the minimum
number of machine cycles required for complex seven layer packet processing.
Each TOP processor is based on a four-stage instruction pipeline that effectively
results in an instruction executed every clock cycle (1 IPC). Although the TOP
engines are specifi c for each stage, they share a common instruction set that
requires only minor adjustments for operating the specifi c functional units and
capabilities of each of the TOPs. Since there are multiple instances of the TOPs in
each stage of the pipeline, the overall architecture resembles super-scalar architec-
ture of a high degree, with the degree depending on the stage (the number of TOPs
at each stage).

NP-1 uses a simple single-image programming model with no parallel program-
ming or multithreading. Allocation of the TOP processing engines to incoming
frames, passing messages between the TOPs, as well as, maintaining the ordering
of frames is completely transparent to the programmer and is performed in the
hardware.

NP-1 can be programmed to process packets from any source port and to any
destination port (i.e., link, switch fabric or control CPU). Furthermore, processing
can be divided among the ingress and egress paths in accordance with the system’s
architecture.

There are two stages in the NP pipeline that contain multiple instances of
embedded search engines, also based on the TOPs architecture. These are used for

FIGURE 10.1

NP processors architecture

NP-1

link/switch fabric

Queuing

TOPresolve
Engines

TOPsearch 1
Engines TOPparse

Engines
TOPmodify

Engines

TOPsearch 2
Engines

link/switch fabric

MAC

10.2 System Architecture 413

lookups in a combination of tables with potentially millions of entries for imple-
menting diverse applications in layer 2 to 4 switching and routing and layer 5 to 7
deep packet processing. Three types of lookup tables can be used by the NP: direct
access tables, hash tables, and trees—each fl exibly defi ned and used for various
applications. Tables may be used for forwarding and routing, fl ow classifi cation,
access control, and so on. Numerous tables of each type can be defi ned, stored
in embedded memory and/or external memory, and searched through for each
packet. The key size, result size (i.e., associated data), and number of entries are all
user-defi ned per table. Variable length entries, longest match as well as fi rst match
and random wildcards are supported.

Auto learning and updating of fl ow table entries (or other hash tables) is per-
formed entirely by NP’s TOPs with no intervention required by the host. This
makes it possible for several million new or old fl ows to be added to or deleted
from the fl ow table per second.

Result information, statistics counters, and per-fl ow rate limiters can be
automatically associated with new fl ows and recycled when deleting old fl ows.
 Session state can be updated on-the-fl y per fl ow, and new packets can be gen-
erated to implement various stateful functions, such as Transmission Control
Protocol (TCP) session initiation/termination and dynamic TCP port allocation.
Counters are available for collecting highly granular fl ow-based information for
use in accounting and billing applications. NP chips support traffi c management
and Quality of Service (QoS) by various mechanisms that are not described in
this book.

10.2 SYSTEM ARCHITECTURE
In this section, we briefl y describe the main three components of the chip architec-
ture, namely, the processors, the memory access, and the interfaces. We conclude
with a broader discussion of the applications of the NP in network devices.

10.2.1 Task-Optimized Processors
As mentioned before, there are four types of TOP engines, each tailored to perform
its respective function in the various stages of packet processing, that is, parsing,
lookup and classify, forwarding and decisions, and packet modifi cations.

TOPparse identifi es and extracts various packet headers, tags, addresses,
ports, protocols, fi elds, patterns, and keywords throughout the frame. TOPparse
can parse packets of any format, encapsulation method, proprietary tags, and
so on. TOPsearch uses the parsed fi elds as keys for performing lookups in the
relevant routing, classifi cation, and policy tables. TOPresolve makes forwarding
and QoS decisions, and updates tables and session state information. TOPsearch
II optionally performs additional lookups after the TOPresolve decisions have
been made. TOPmodify modifi es packet contents, and performs overwrite, add

414 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

or insert operations anywhere in the packet. The architecture of the NP is shown
in Figure 10.2.

Multiple instances of each TOP type at the same pipeline stage enable simulta-
neous processing of multiple packets. Moreover, at each pipeline stage, each TOP
engine provides the processing power required for seven-layer processing of that
stage’s tasks, at 10-Gigabit wire-speed (full duplex). Pipelining enables the passing
of messages and pointers to packets from one processing stage to the next. Each
TOP performs its particular task and passes its results (e.g., messages, keys, headers,
and pointers) to the next TOP stage for further processing.

All TOP engines of the same type operate independently of each other and
 execute the same code (i.e., a simple single image programming model, with no
parallel or multithreading programming) using their own program storage. All TOP
engines are employed as shared resources without being tied to a physical NP port.
An integrated hardware scheduler dynamically schedules the next available TOP
to the next incoming packet. Ordering of packets is automatically maintained on
a per-port basis.

The resulting parallel processing at each pipeline stage is completely trans-
parent to the programmer. Furthermore, allocation of TOPs to incoming frames
(ingress or egress), passing results, messages, and frame pointers from one pipeline
stage to the next, as well as maintaining ordering of frames is transparent to the
programmer and performed in hardware.

10.2.2 Memory Access
Multiple embedded memory cores are used for packet buffering and queuing and for
storing lookup tables. These cores are accessed in parallel by the various TOPs and
provide the bandwidth required for sustaining seven-layer wire-speed throughput.

FIGURE 10.2

NP architecture

NP

TOPsearch
I

Input
Interfaces

keys

Statistics
Memory

Internal Search
Memory

External
CAM

keys

Packet Processing

TOPsearch
II TOPmodify

*TM is available only in NP-2 and above. location of the two traffic managers depends upon the system configuration.
They may both be after the TOPs processing, or one TM may be before the TOPs processing.

TOPparse

Frame Memory

TM*

search
results

Output
Interfaces

search
results

TM* TOPresolve

learning

optional loopback path

External Search
Memory Frame Memory Control Memory

10.2 System Architecture 415

Arbitration of simultaneous accesses of TOPs to the various memory cores is con-
trolled by an on-chip arbiter, and is completely transparent to the programmer.

Packets are stored and queued in two embedded memory cores (referred to as
“frame memory”). The data bus width provides the required bandwidth memory
accesses for each packet for receiving, classifying, modifying, and transmitting at
wire speed.

Lookup tables are stored in four embedded memory cores (referred to as “search
memory”), interfacing with the NP as described in the following section. Multiple
tables across multiple memory cores can be accessed simultaneously, increasing
bandwidth to speed data lookups.

10.2.3 Ingress and Egress Processing
NP schematically uses two sides, one referred to as the “front” and the other referred
to as the “back.” Usually, the front side is connected to the network and the line
 interfaces, whereas the back side is connected either to the switch fabric, the network
device, the system, or to other line interface ports. One processing direction, from
the front to the back, is called ingress processing, while the other, from the back to
the front, is called egress processing.1 This scheme is depicted in Figure 10.3.

The interface blocks that are used for inputs to the TOPs are the Ingress For-
ward Direct Memory Access (IFDMA), which is connected to the front side (Side B,
usually the network), and used as input on the receive path, and the Egress Back
DMA (EBDMA), which is connected to the back side (Side A, usually the switch
fabric) and used as input on the transmit path.

1Ingress and egress processing traditionally referred to processing direction according to the ingress
or egress packet entrance port. In other words, ingress processing referred to packets arriving from
the network, while egress processing referred to packets going to the network (arriving from the
switch fabric, the system, or network device side). This, however, cannot be always true, as was dis-
cussed in Chapter 5.

FIGURE 10.3

Processing direction

NP

TOPsFront Back

TX

RX

Side B
Interface

IFDMA

EBDMAEFDMA

IBDMA

Side A
Interface

416 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

The interface blocks that are used for output are the Ingress Back DMA (IBDMA),
which is connected to the back side (Side A, usually the switch fabric) and used
as output on the receive path, and the Egress Front DMA (EFDMA), which is con-
nected to the front side (Side B, usually the network) and used as output on the
transmit path.

10.2.4 Interfaces
The NP interfaces with external memories, the host CPU, and various network
or switch fabric interfaces, depending on the NP model. Traffi c is fl exibly routed
or switched between all interfaces after processing. Generally speaking, the NP
 interfaces look like the schematic diagram in Figure 10.4. NP-1 is confi gurable to
one of two link interfaces, and one of two switch fabric interfaces, as shown in
Figure 10.5.

As shown in Figure 10.6, NP-2 has more and faster interfaces, and its two
10 Gbps network or switch fabric interfaces can be confi gured to one of three
options (SPI4.2 with 192 channels for connections to SONET/DDH, SPI4.2 with
32 channels for multi-gigabit Ethernet, or Ethernet interface, either RGMII or
XGMII).

A PCI interface is used for interconnection to a control CPU. Standard SDRAM
or RLDRAM external memory chips can be used via NP’s DDR and DDR2 interface
(depending on the NP type) for external lookup tables. Standard SRAM memory
chips may be employed for statistics counters via DDR or QDR interfaces (depend-
ing on the NP type).

FIGURE 10.4

NP interfaces

network link/
switching fabric EZchip NP

Host CPU

network link/
switching fabric

Memories

10.2 System Architecture 417

10.2.5 Using NP (Applications)
NP can be used either as a stand-alone solution (“pizza box”), in line cards, or
even in service cards for some applications. Line cards in modular chassis may be
used for metro switches, edge, and core routers, aggregation nodes or enterprise

FIGURE 10.5

NP-1 interfaces

Switch
Fabric

OR
10 GbE or

Switch Fabric10 GbE

OR

HOST
CPU

EZchip NP-1

10GbE MAC
10GbE MACXGMII

SPI4.2

XGMII

CSIX

PCI

Lookup
Tables

(optional)

Counters
(optional)

16 channels

SRAM SDRAM/FCRAM

10 GbE/12 x 1GbE
OC-192/4 x OC-48/16 x OC-12

FIGURE 10.6

NP-2 interfaces

OR

8xRGMII

XGMII

OR

8 x 1 G
Ethernet

1 x 10 G
Ethernet

SPI-4.2b

up to 32
channels

SPI-4.2a

up to192
channels

AND

2xRGMII PCI32

OC-192/4 x OC-48/
16 x OC-12/32 x OC-3

OC-192/4 x OC-48/
16 x OC-12/64 x OC-3/

192 x STS-1

Statistical
Counters

Lookup
Tables

Optional
CAM

Traffic
Manager
Memory

SRAMDRAM DRAM DRAM

Host CPU
Host CPU or

Network Ports

EZchip NP-2

2x1GbE
MAC

8x1GbE
MACs

10GbE MAC

418 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

backbone switches. Stand-alone pizza-box solutions include access nodes (GPON/
EPON OLT, DSLAM, wireless), Ethernet to SONET/SDH switches, content inspec-
tion, networking monitoring, or server load balancing switches. These applica-
tions are shown in Figures 10.7, 10.8, and 10.9, respectively. Please note that
NP-1 has no Traffi c Manager (TM) integrated in the chip, whereas the versions

FIGURE 10.7

Stand-alone solution

Pizza Box

NP-3

10 x 1 GbE/
1 x 10 GbE 2 x SPI4.2TOPs

TM

XGMII

memoryhost

2 x1GbE PCI

TM

Metro Ring

10 GbE

10 GbE

FIGURE 10.8

Line card application

Line Card

NP-3

Upto 24 x 1 GbE
or 2 x 10 GbE TOPs

TM

memory host

2 x1GbE PCI

TM

SPI4.2 SPI4.2/
XGMII

Ethernet
aggregator

fabric
interface

Switch
Fabric

FIGURE 10.9

Service card application

Services Card

NP-1

TOPs

memoryhost

PCI

CSIX
XGMII

fabric
interface

Switch
Fabric

10.3 Lookup Structures 419

NP-2 and above do. Although NP-2 is demonstrated here, it is similar to the
NP-1 application in principle, and subject to NP-1 interfaces, as outlined in the
previous section.

10.3 LOOKUP STRUCTURES
One of the main functions of network processors is their searching capability.
Every search component (e.g., processor, CAM) requires a repository that holds all
the information necessary for the required search, and is organized in a fi tted data
structure. EZchip NPs’ search processors (TOPsearch 1 and 2) use such databases,
which are all called “structures” collectively from here on. These structures can
be organized in various ways, and they indicate any tables, trees, or data structures
that are used as information sources for the search engines.

NP’s embedded TOPsearch engines and search memory cores deliver lookup capa-
bilities from embedded and external memory. These embedded search engines enable
lookups in a combination of structures for implementing diverse applications involving
layer 2 to 4 switching and routing as well as layer 5 to 7 deep packet processing. There
are three types of lookup structures that are supported in the NP-1 architecture: direct
access tables, hash tables, and trees. NP-2 supports an additional type of lookup struc-
ture that is based on M-trie, for fast IP addresses searches, but a discussion of this is
beyond the scope of this book. These data structures are used for implementing vari-
ous forwarding, routing, classifi cation, policy, and state tables as required.

Multiple structures may be stored in one or more memory cores to optimize
search performance. The EZchip programming environment provides optimized
allocation of structures to the various memory cores; however, the NP-1 program-
mer may decide on any other allocation. Structure size is restricted only by the
available embedded and external memory resources; hence, large hash tables and
trees with more than a million entries may be defi ned.

10.3.1 Direct Access Tables
Direct access tables are usually used for a small number of entries (up to several
thousand). The search key to a direct table entry is the pointer to the table entry.

Performance of searching in a direct access table is deterministic. A single mem-
ory access, that is, a single clock cycle, is required for accessing the information.

10.3.2 Hash Tables
Hash tables are usually used for fi xed length keys, for example, DA, SA, 5-tuple IPv4/
IPv6 sessions, and they can hold many entries (up to several million). In EZchip
architecture, performance of searching in hash tables is deterministic. Two mem-
ory accesses are required for accessing the information. Memory utilization of hash
tables using EZchip’s algorithms is approximately 80%.

420 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

10.3.3 Tree Structures (Patricia)
Trees are used with variable length entries, for example, IP Longest Prefi x Match
and URLs, and they can hold millions of entries. EZchip implemented trees sup-
port random wildcards (“don’t care” bit or byte values) anywhere in an entry,
that is, in the suffi x, prefi x, or arbitrarily in-between. This simplifi es editing policy
rules and reduces the memory usage of the tree.

Wildcard examples include: IP addresses such as “10.12.*.*”; “10.12.*.7”; “*.*.5.7”;
or URLs such as “www.ezchip.com*******.html”; “***.com****.mpg”.

Performance of searching in trees is a function of N, the number of entries
in the tree, and is directly related to the number of memory accesses (clock
cycles) required to walk down a tree, beginning at the root, down to the leaf
that holds the desired entry and result. The number of memory accesses is
(logN)/3 � 2.

For example, a tree with 256 K entries requires 18/3 � 2 = 8 memory cycles,
and a tree with 2 M entries will be searched in nine memory cycles. This is well
within the cycle budget of a minimum size frame (thus the maximal frames per
second can be processed) fl ying on a 10 Gbps wire, hence allowing sustained wire-
speed searching for minimal size back-to-back frames.

For each tree, one of two search criteria may be confi gured: longest match or
fi rst match. Longest match can be used, for example, when searching through an IP
route table, while fi rst match is useful when searching through an access control
policy table.

Longest match (or fi nest match) is used when there are no common wildcards
among the tree entries. For example, assume these two entries in the tree struc-
ture: “10.12.*.*” with associated result X; and “10.12.15.*” with associated result Y.
In this case, a key “10.12.30.11” will match the entry “10.12.*.*” and produce the
result X. The key “10.12.15.11” will match the entry “10.12.15.*” and produce the
result Y.

First match is used when there may be common wildcards among the tree
entries. It is possible to assign a priority to each entry, to indicate a preference
when multiple entries match the search key. For example, assume these two
entries in the tree structure: “10.12.*.* port*” with associated result X and prior-
ity 2; and entry “10.*.*.* port1” with associated result Y and priority 1 (priority
1 is higher than 2). In this case, a key “10.12.15.20 port2” will match the entry
“10.12.*.* port*” and produce the result X, while a key “10.12.15.20 port1” will
match both entries, but will produce the result Y due to the priority. Memory
utilization of trees using EZchip’s algorithms is approximately 50% (the same as
“regular” Patricia trees).

10.3.4 Learning, Updating, and Aging

NP employs several mechanisms to learn, to update, and to age entries in the
structures of TOPsearch I.

10.4 Counters, Statistics and Rate Control 421

10.3.4.1 Learning and Updating Mechanisms
The control CPU can update entries in all tables and trees upon initialization as
well as dynamically. The hash tables can also be learned and updated by the NP-1,
which provides auto-learning and can update the fl ow tables, Medium Access
Control (MAC) tables, and so on. Millions of sessions per second can be learned,
updated or deleted by NP-1 to off-load the control CPU from these tasks. NP-1 can
also notify the control CPU when it updates, adds or deletes an entry in a hash.

Hash entries can be learned and updated from three sources: the host, the
 TOPsearch hardware learning mechanism (called “low-learn”) and the TOPresolve
state updating mechanism (referred to as “high-learn”):

■ Layers 2 and 3 learning mechanism: TOPsearch learning mechanisms obtain
Layer-2 (L2) and Layer-3 (L3) information from incoming packets and
update relevant tables. The L2 mechanism learns MAC addresses and Filter-
ing Identifi ers (FIDs; mapping of the VLANs). The L3 mechanism learns IP
addresses for stations in the local subnet in a manner similar to the Address
Resolution Protocol (ARP) function.

■ TOPresolve high learning and state updating mechanism: A programmable
TOPresolve learning mechanism learns and updates hash entries on the
fl y. Any hash entry (e.g., 5-tuple) in any hash table can be updated fl exibly.

■ Host interface enables the hash entries to be updated or modifi ed as required
by the control-plane layers.

Trees and Direct tables are only updated by the host.

10.3.4.2 Aging and Refresh Mechanism
NP-1 features an aging mechanism to delete old entries from hash tables. Each
time an entry is matched, the entry is refreshed. The aging process deletes all
entries that have not been refreshed during a user-defi ned time period.

Each hash table may have aging enabled or disabled. If aging is enabled, there
are two user-defi ned timers to choose from. Additionally, specifi c entries may be
marked as static, so that they are not aged.

10.3.4.3 Host Notifi cation and Messaging
The NP-1 notifi es the host when TOPsearch I updates, adds or deletes an entry in a
hash. Add Entry Messages are sent when the TOPresolve learning or hardware learn-
ing adds a hash table entry. A Delete Entry Message is sent when TOPresolve learning
or aging deletes a hash table entry. This may be used for repository tracking or learn-
ing by the control-plane applications, run by the attached remote host processor.

10.4 COUNTERS, STATISTICS AND RATE CONTROL
The NP offers per-fl ow statistics and policing through the implementation of its
counters. There are basically two types of counters: dedicated hardware counters

422 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

and software counters that can be created and used in programming, and are
described in a following subsection. We focus here on the dedicated hardware coun-
ters that are stored in external SRAM (referred to as “statistics memory”). Among
these hardware counters types, there are Ordinary event counters, of varying
lengths, and Token bucket/DiffServ counters. These counters are further divided
into four groups by a programmable range register:

■ Short counters—36 bits, 1 line
■ Medium counters—54 bits, 1.5 lines
■ Wide counters—72 bits, 2 lines
■ Token bucket/DiffServ counters—72 bits, 2 lines

All internal counters are 36 bits, but may be concatenated into 54 or 72 bits. The
use of the 36-bit-size is compatible with Content Addressable Memory (CAM) and
Static RAM (SRAM) standards of data-bus and key widths.

The number of counters of each type depends upon the memory size in use. The
counters can also read by the TOPsearch I block.

NP enables the dynamic allocation and auto association between counters and
fl ows: when NP learns a new fl ow, counters are automatically allocated for the new
fl ow and recycled when the fl ow is aged out.

10.4.1 Microcode Usage
Based on microcode programming, TOPparse, TOPresolve, and TOPmodify (and
the Traffi c Manager in NP-2’s case) may add or subtract values to the counters.
TOPsearch I may use the counters in either of two modes: read only or read/
modify/write. The later enables NP to auto-update a counter’s value. Ordering may
be implemented per counter to support stateful classifi cation. The counter values
may also serve TOPresolve in its decision-making processes.

For instance, TOPparse may be microcode-instructed to build a key indicat-
ing a counter number for a particular type of frame. Using this counter number,
 TOPsearch I reads the counter value from the statistics block and passes it on to
TOPresolve. TOPresolve can then make a forwarding decision based on the coun-
ter value, and it can possibly increment the counter.

Two methods may be used by the host to retrieve counter values: NP-push
or host-poll. The host can poll all counter values, which may be time- consuming,
or notifi cation (NP-push) may be used. Each counter has a threshold that, when
exceeded, causes the NP to send a message to the host via the statistics message
queue. The host has the option of resetting the counters after reading them.

10.4.2 Software Counters
Programmers may implement software counters in the three embedded TOPsearch
I memory cores or in the external memory. The TOPresolve learning mechanism
can update hash tables by forwarding keys and results to TOPsearch I structures,

10.4 Counters, Statistics and Rate Control 423

according to the required application, and increment, decrement or set the result
fi eld of the relevant entries as appropriate. For example, when updating software
counters, the key may be defi ned as the entry address or session number and its
accompanying result as the desired counter value. NP contains a mechanism that
ensures that the counter is incremented accurately even while frames are fl owing
through TOPresolve at wire speed.

The host may read these counters by accessing the search memory cores or the
external memory. The number of software counters can be many millions, and is
limited only by the memory resources allocated for this purpose.

10.4.3 Token Bucket Implementation
The NP-1 uses hardware to implement token bucket per fl ow (e.g., srTCM and
trTCM), that is, it requires no microcode. Token bucket and related algorithms are
described in Chapter 6.

Single Rate Three Color Marker (srTCM) is useful, for example, for the ingress
policing of a service where only the length and not the peak rate of the burst deter-
mines service eligibility. Two Rate Three Color Marker (trTCM) is useful for the
ingress policing of a service in which a peak rate needs to be enforced separately
from a committed rate. In both techniques, a Meter meters each packet and passes
metering results to a Marker, which (re)colors an IP packet according to the results
of the Meter. This color can be coded, for example, in the DS fi eld of the packet in
a Per Hop Behavior (PHB)2 specifi c manner.

Token bucket implementation enables NP to determine the token bucket read-
ing per session. In this application, a session table is maintained in a hash structure
where each hash entry identifi es a session. A portion of the entry result (associ-
ated information) contains the ID of the associated Token bucket/DiffServ coun-
ters. Once a packet in the given session arrives, TOPparse creates a key for lookup
in the session table. Following the lookup, the associated Token bucket/DiffServ
counters are accessed to obtain the current color of the fl ow (i.e., green, yellow,
or red). This information is then passed along to TOPresolve for discard or other
decision making.

10.4.4 Atomic Update of Counters
This mechanism is employed in TOPsearch I to prevent instances of different
resources accessing the same counter simultaneously. It essentially locks the
counter during its read/modify/write stage so that it cannot be overwritten. This
function is useful when back-to-back frames—each being processed by a separate
TOPsearch I engine—are required to update the same counter.

2PHB is a DiffServ term, described in Chapter 2.

424 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

10.5 TRAFFIC MANAGEMENT
There is a difference in the output phase of frame interface between NP-1 and
NP-2 (and above). First and foremost, the NP-2 has an integrated Traffi c Manage-
ment (TM) functional unit. Second, the NP-1 interfaces with the CSIX switch fabric
(or XMGII), whereas NP-2 interfaces with the SPI4.2 switches rather than the CSIX.
Since we focus on demonstration and practical network processing experience in
this book, we describe the NP-2’s TM only very briefl y, and continue with the NP-1
capabilities of traffi c management, programming and usage.

10.5.1 NP-2’s Traffi c Management
NP-2’s integrated TM provides traffi c management and frame queuing on both
the ingress and egress paths through a full-duplex PFQ mechanism on all
NP-2 interfaces. Traffi c transmitted to the network links and the system switch-
ing fabric as well to the host CPU can be queued and assigned with specifi c QoS
settings.

NP-2’s TM enables provisioning of Service Level Agreements (SLAs) by support-
ing DiffServ and IntServ services, as well as many QoS mechanisms (as described
in Chapter 6), through its queuing schemes. Flow-based bandwidth control is facili-
tated through programmable classifi cation of fl ows, enabling Weighted Random
Early Detection (WRED), priority-based and Weighted Fair Queuing (WFQ) conges-
tion management, traffi c metering, marking, and policing, and granular shaping and
scheduling for thousands of queues in multilevel hierarchies.

10.5.2 NP-1’s QoS, Scheduling and Congestion Management
In this subsection we describe how to use the embedded QoS features of NP-1.

10.5.2.1 Virtual Output Queuing
NP-1 implements at its output a Virtual Output Queuing (VOQ) to eliminate
the Head of Line Blocking (HOLB) phenomenon often associated with switch-
ing architectures. VOQ is implemented at the NP interface to the switch fabric.
Up to eight priority levels can be defi ned for each of the switch fabric destina-
tion ports (to other line cards). NP-1 maintains 1032 virtual output queues to
the switch fabric, of which 1024 are unicast queues and eight are multicast
queues. The unicast queues may be used for providing eight priority levels for
128 switch fabric destinations or four priority levels for 256 switch fabric des-
tinations. Multicast frames are queued in the multicast queues, signifying the
eight priority levels.

The VOQ block schedules the frame transmission to the switching fabric. Sche-
duling takes into consideration the fl ow control feedback received from the switch
 fabric. A congested switch fabric port will be masked and frames will not be for-
warded to it. Scheduling has two phases: fi rst, a priority level is selected, and then

10.7 Multicast Frames 425

the queue is selected by, for example, applying a Weighted Round-Robin (WRR)
mechanism. Prior to transmitting frames to the switch fabric, the NP-1 segments
the frames to cells in accordance with the Common Switch Interface Specifi cation
(CSIX) standard.

When packets arrive from the switch fabric, NP-1 reassembles the CSIX cells to a
complete frame at the egress point, and passes it for egress processing as necessary
(from the switch fabric, the network device, to the line interface, the network). The
frame pointer is then transferred to one of eight Egress Classify Frame Descriptor
(ECFD) priority queues. This is explained in more detail in the frame walkthrough
in Section 10.8.

10.5.2.2 Output Queuing
When using the 10 GbE XMGII output port, eight priority queues are provided.
The channeled SPI4.2 interface can be confi gured to support up to eight channels
with eight priorities or up to 16 channels with four priorities. Strict priority,
WRR, or a combination of the two can be enforced independently at each of
these ports.

10.5.2.3 Quality of Service and Random Early Detection
The NP-1 supports Strict Priority, WRR, Random Early Detection (RED), WRED, and
Tail Drop QoS mechanisms.

NP-1 implements RED or WRED by tracking the status of the various queues,
and through TOPresolve programming. Traffi c can be selectively discarded before
a port is congested to provide differentiated performance characteristics for differ-
ent classes of service. TOPmodify implements tail dropping of frames to a queue
that is full, as indicated by its budget expired fl ags.

10.6 STATEFUL CLASSIFICATION
The TOPresolve’s “high-learn” mentioned before enables stateful classifying by
using the learning mechanism to update entries’ states in hash tables. It can be
used for session state tracking by updating the resulting information associated
with individual entries of TOPsearch I memory cores.

In accordance with a given state of a session, the NP can generate and transmit
new frames, replies, acknowledgments, and so on. This can offl oad control-plane
tasks from the control CPU.

10.7 MULTICAST FRAMES
NP offers several strategies for implementing frame multicast. Frames may be rep-
licated at the ingress path before transmission to the switch fabric, or at the egress
path, after traversing the switch fabric. Multiple instances of a frame can be sent

426 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

to any port. These instances can be identical or modifi ed in accordance with their
destination (e.g., different destination VLAN or IP subnet).

Programmers may use the microcode in TOPparse, TOPresolve or TOPmodify
to implement multiple instances of a frame on either the ingress or the egress path.
Registers in each of these blocks indicate the number of copies of the frame that
will be sent.

By using the Halt command (specifi cally halt halt_mulc), a different set of keys
may be generated for each instance of the frame in TOPparse or TOPresolve. The
same halt command in TOPmodify enables the forwarding of multiple copies of
the frame to different queues. The frame pointers are recycled only after all copies
of the frame have been sent.

10.8 DATA FLOW
This section describes the data fl ow through the NP-1 including the internal
blocks of each of the TOPs. It then examines the host interface and several other
 functions.

The NP-1 network processor consists of the following major components, and
is shown in Figure 10.10:

■ Frame memory, with the frames buffered for store-and-forward operations. Addi-
tional memory cores contain search data structures (the search memory).

■ Four types of TOPs to perform the four main tasks of packet processing, that
is, TOPparse, TOPsearch, TOPresolve, and TOPmodify.

■ Direct Memory Access (DMA) controllers and queues for input to (and out-
put from) the chip’s ports, switching fabric or host CPU. The DMA includes
the Ingress Front DMA (IFDMA) and Egress Back DMA (EBDMA) on the
input/receive path, and the Ingress Back DMA (IBDMA) and Egress Front
DMA (EFDMA) on the output/transmit path. It also includes the Host DMA
(HDMA) that serves as an output to the host interface.

■ On-chip MAC controllers for 10 Gbps Ethernet.
■ Other specifi c memory blocks and functional units that assist in various oper-

ations of the network processor (e.g., the input scheduler and the statistics
block).

This section is intended to provide a high-level architectural overview of the NP-1
network processor. It fi rst looks at the overall frame processing and then examines
several of the blocks in further detail.

10.8.1 Frame Processing Walkthrough
The frame processing phases and the path of a frame in the network processor are
described in this subsection. Frames may require only partial processing, depend-
ing on system confi guration, the frame contents, and the microcode.

10.8 Data Flow 427

A frame can enter the NP-1 network processor from either the network or the
switching fabric (see Figures 10.3 and 10.10). A frame is received from the network
by an on-chip 10G MAC or an external framer/aggregator, and the frame is written
using IFDMA to the on-chip frame memory (Rx).

Frames can be received from either a frame-based or a cell-based switching fab-
ric. When a frame is received from a frame-based fabric, the EBDMA stores the frame
in the on-chip frame memory (Tx). For a cell-based switching fabric, the EBDMA stores
the cells in the frame memory (Tx) and reassembles the cells to the original frame.

Once the entire frame is stored, frame descriptors are queued in a Classify
Frame Descriptor (CFD) queue, which points to the frames in the frame memory
and contains additional information about the frame. Frames that arrived via the
IFDMA (from the network) are pointed by frame descriptors that are stored in the
Ingress CFD queue (ICFD_Q). Frames that arrived via the EBDMA (from the switch-
ing fabric) are pointed by frame descriptors that are stored in one of the eight
prioritized Egress CFD queues (ECFD_Q). Weighted Round-Robin can be enforced
on the ECFD_Q. The Input Scheduler is a round robin arbiter that distributes the
frame pointers from the ICFD_Q (RX) and ECFD_Q (TX) queues that enter the
TOPs, to the next available TOPparse engine.

FIGURE 10.10

NP-1 data fl ow diagram

ICFD_Q

ECFD_Q

TOPsearch
I

Input
Interfaces

M
A

C
&

O
th

er
in

te
rf

ac
es

ke
ys

re
su

lt
s

External Search
Memory

External SRAM
Memory

Internal Search
Memory

SRH_Q

VOQ

ETFD_Q

HTFD_Q

HDMA

Output
Interfaces

ke
ys

re
su

lt
s

To
Host

Packet Processing

TOPresolve

frame pointer

TOPsearch
II

IBDMAIFDMA

Statistics
Block

M
A

C
&

O
th

er
In

te
rf

ac
es

(resides in ext.
search memory)

(reside in ext. search memory)

TOPparse
TOPsearch

I

STAT
MSG_Q

Input
Scheduler frame pointer

EBDMA EFDMA

Internal Frame Memory

TOPmodify
TOPsearch

II

428 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

Information (messages, keys, and results) is passed between the various TOP
stages via a double buffer mechanism using dedicated on-chip memory. All NP
internal blocks and queues operate automatically in hardware and do not require
software intervention, except the TOPs which require microcode programs.

The TOPparse engines read the relevant frame data from the frame memory,
according to the respective microcode. TOPparse may parse the entire frame, com-
piling a message with parsed information destined for TOPresolve and passing
extracted fi elds as keys to the TOPsearch I engines.

The TOPsearch I engines search the structures in the memory cores for key
matches. TOPsearch I can read additional frame bytes directly from the frame
memory, such as long URL ASCII strings. Four separate memory cores (three embed-
ded and one external) store the various hash tables, direct access tables and trees,
and are accessed in parallel by the TOPsearch engines. Search results (i.e., matches
found) and associated key data are then passed to TOPresolve.

The Search message Queue (SRH_Q) contains updated messages to the host,
which are created when the network processor adds, deletes or modifi es hash
tables entries in the structures.

TOPresolve is the decision point. Based on previous TOPsearch results and
 TOPparse messages, TOPresolve engines determine the frame’s output port and
queue. Together with the modify instructions, this decision is put into a message
delivered to TOPmodify. Optionally, TOPresolve may also generate search keys to
be used by the TOPsearch II engines.

The TOPsearch II engines search for output port-dependent data mappings,
such as Virtual Local Area Network (VLAN) or Multiprotocal Label Switching
(MPLS) tags, in a separate embedded memory core that stores the relevant egress
information. The TOPsearch II results along with the frame’s modify instructions
are then forwarded to TOPmodify.

The TOPmodify engines read the frame from the frame memory and alter
 content in accordance with microcode and messages from previous TOPs. The
frame is then rewritten to the frame memory. Frame pointers are then delivered
into one or more of three queues:

The Host Transmit Frame Descriptor queue (HTFD_Q) is for frames destined
for an external host CPU, via the PCI interface, and has two priority lev-
els (high/low). This queue is mainly for frames that require a higher-level
 handling/control plane, such as RIP/OSPF messages. The HDMA controller
fetches the frame descriptor from the HTFD_Q in order to read the frame
from the frame memory, and it stores the frame in a look-ahead buffer while
waiting for host access.

The Virtual Output Queue (VOQ) is used for frames destined for the switch-
ing fabric. VOQ supports multiple switch fabric destinations (channels) with
multiple priority levels per destination. The Ingress Back DMA (IBDMA)
reads the frame descriptor from the VOQ in order to read the frame from the
frame memory. It then delivers the frame to the switching fabric. Frames are

10.8 Data Flow 429

segmented into cells for cell-based fabrics. VOQ eliminates the Head-of-Line
Blocking associated with several crossbar architectures in order to produce
a nonblocking switching matrix. VOQ also provides an entry point for frames
from the host.

The Egress Transmit Frame Descriptor queue (ETFD_Q) is used for frames des-
tined for the network. Eight priority levels are supported for each output port.
The Egress Front DMA (EFDMA) uses the frame descriptor from the ETFD_Q
in order to read the frame from the frame memory. It then forwards the frame
to the on-chip Ethernet MAC controller or the external POS framer/Ethernet
aggregator.

The NP-1 supports frame fragmentation on the egress data path. Frames may
be fragmented; for example, jumbo frames (i.e., up to 9 KB long) are segmented
into standard Ethernet frames (1518 bytes long) before being transmitted to the
 network.

The statistics block contains counters for collecting statistical data at vari-
ous stages during the packet processing. The statistical data is stored in external
SRAM. The statistics message queue is an event-driven mechanism for notifying
the host when statistical counters exceed a threshold, thus saving the host from
polling for the counter information. A full Token Bucket counter implementation
is performed inside the NP-1. A Received Frame Descriptor (RFD) table contains
pointers to free buffers and to buffers containing frames in the frame memory.

All NP-1 queues are retained in the control memory (i.e., ICFD_Q, ECFD_Q,
SRHQ_Q, Statistics queue, HTFD_Q, VOQ, and ETFD_Q). Frame ordering is main-
tained throughout the packet processing fl ow.

10.8.2 TOPparse Block
TOPparse decodes incoming packets and analyzes these packets. TOPparse can
extract frame headers and other signifi cant fi elds corresponding to all seven lay-
ers of the IP packet, for example, MAC addresses, VLAN tags, Ethernet frame types,
MPLS tags, IP options, IP addresses, or ports. The extracted information is then
delivered as keys to TOPsearch 1.

TOPparse is a programmable processor that executes a microcode command
for each clock. Microcode downloaded to TOPparse defi nes the structure of the
various layers, headers, and applications. New applications utilizing new data
formats and protocols are supported simply by downloading new microcode to
 TOPparse. The TOPparse block diagram is illustrated in Figure 10.11.

Frame pointers are queued in the CFD queues of the TOPparse engines
(see Figure 10.10). “In parse” dynamically distributes the frames to the available
TOPparse engines. Each TOPparse engine parses an entire frame.

The hardware decoder (HW_Decoder) automatically preprocesses the frames up
to the IP Options before microcode execution begins. It is designed to support IPv4
and IPv6 with or without MPLS using Ethernet or PPP encapsulation. The information

430 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

is placed in a register (HD_REG) that may be read like any other register. Using the
frame offsets, the microcode program may obtain additional information from the
frame by reading from the frame memory (FMEM).

In accordance with its microcode lines, the TOPparse engine classifi es the entire
frame, storing extracted fi elds as keys in the associated key memory (KMEM). The
key memory is a double buffer that holds new keys from the current frame while
the keys from the previous frame are being sent. Each key memory buffer contains
keys that are microcode-defi ned.

In addition to keys, messages containing frame analysis results, such as the type
of frame and its contents, are also stored in the key memories. Based on round
robin arbitration and frame ordering, “out parse” selects a key memory and for-
wards the keys and messages to the TOPsearch I block. TOPparse may decide to
discard a frame, such as one with a bad IP checksum, and free all the pointers asso-
ciated with this frame from the RFD table (RFD out).

TOPparse may also perform direct table lookups in internal CAM data struc-
tures. The multiport text CAM is a shared resource containing keywords, such as
GET and SERVER_PORT, for pattern searching within the frame payload. The mul-
tiport 8-bit CAM, 16-bit CAM, and 32-bit CAM are for binary pattern matching. All
these CAM structures are accessed by all TOPparse engines simultaneously.

Relevant programmable accounting and statistical information pertaining to
each frame and fl ow is collected and passed on to the statistics block. Frame order-
ing is maintained in the TOPparse block.

FIGURE 10.11

TOPparse block diagram

KMEM #0TOPparse #0

FMEM #0

TOPparse #n

FMEM #n

KMEM #n

out
parse

.

.

.
in

parse

text CAM 16-bit CAM

TOPsearch I
(Keys)

RFD out
(frame discard)

Frame
Memory

ICFD queue

ECFD queue

RFD in

8-bit CAM

HW_Decoder

External Host Statistics Block

TX

RX

32-bit CAM

10.8 Data Flow 431

10.8.3 TOPsearch I Block
TOPsearch performs the various table look-ups required for the application.
Layer-2 switching, Layer-3 routing, Layer-4 session switching, and Layers 5 to 7
content switching and policy enforcement are just a few of the applications
possible. TOPsearch can also auto-learn and update tables with Layer-2 MAC
addresses, Layer-3 directly connected IP addresses, and Layer-4 sessions.

TOPsearch receives keys from TOPparse. These can be either simple single
keys or compound keys. TOPsearch matches the simple keys to entries stored
in various tables, or uses the compound keys for more complex searches.
TOPsearch uses a variety of search algorithms optimized for various types of
searched objects.

Three primary types of data structures are supported by TOPsearch: hash tables,
trees, and direct access tables. These data structure types are used to build the
lookup tables and policy rules used for packet handling and the decision-making
process. Unique algorithms accelerate the process of searching through the vari-
ous hash tables and trees.

TOPsearch enables conditional search operations that may be applied in vari-
ous applications. Search results in one data structure can trigger search in another
data structure, for example, when searching for an IP encapsulation. The results of
the search for the fi rst IP address determines in which data structure the search for
the second IP address will be conducted. Complex, conditional search instructions
are stored in a macrocode program.

It is important to note that for simple single key searches, no coding is required.
The programmer should simply transfer keys to the TOPsearch engine and expect
results that are based on the found matches after the TOPsearch conducts its
searches.

The NP-1 features two search stages (I and II); each with its own dedicated
TOPsearch engines. TOPsearch II is useful for performing searches based on
 output/ destination port-dependent information, such as the VLAN port, which is
determined after TOPresolve.

The TOPsearch I block diagram is illustrated in Figure 10.12. “In search” distrib-
utes the keys and messages from the TOPparse engines to the available TOPsearch
I engines (see Figure 10.10). “In search” identifi es either single or compound keys
and distributes them accordingly. Independent keys are identifi ed as single keys and
distributed to the available TOPsearch engines, enabling them to be searched in par-
allel. Compound keys are groups of keys that are interdependent and are loaded in
the same TOPsearch engine and searched sequentially. Compound keys are input for
conditional search programs where the results of a search in one data structure trig-
ger a search in another data structure. Each TOPsearch engine can access the inter-
nal and external search memory containing the data structures being searched.

Lookup tables can be fl exibly distributed among the memory cores to enable
parallel searching of multiple keys. For example, MAC addresses and VLAN informa-
tion may be stored in one memory core, IP addresses in a second memory core,

432 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

sessions in a third, and URLs in a fourth. All the information pertaining to a packet
can then be searched and retrieved simultaneously.

The external memory is typically used to store tables (trees or hash) with many
entries that otherwise would not fi t into the embedded memory cores. For exam-
ple, in a large router implementation, the external memory can be used to store
IP subnets, while internal memory cores can be used for storing various Access
 Control Lists (ACLs), QoS and accounting policies. On the other hand, in a URL load-
balancing switch implementation, TCP sessions can be stored in external memory,
while IP addresses and various policy rules are stored in the internal memory.

All data structures can be downloaded by the host via the host interface. Layers
2 and 3 hash table entries can also be added and updated by Layers 2 and 3 low-
learn, or by the TOPresolve high-learn (described next), which can update entries
of Layers 4 to 7 as well.

The structure defi nition table indicates the structure type, attributes, and its
location in the memories. Structures can be stored in one of the four memory
cores, the statistics counter, internal SRAM holding small lookup tables, or ternary
CAM for short fi eld searches of up to 32 bits.

“Out search” passes all of the frame’s search results (i.e., matches found or not),
and key-associated data to TOPresolve. Results and/or messages can be forwarded to
TOPresolve’s result memory (RMEM), depending on the type of search structure and its
location. Two buses are used for forwarding the results/messages in parallel. Messages
from TOPparse containing frame analysis results are passed directly on to TOPresolve.

FIGURE 10.12

TOPsearch I block diagram

.

.

.

Structure Definition
Table

SRAM

TOPresolve
(results)

search
msg queue

TOPparse
(keys)

Frame Memory
(long URLs)

TOPresolve
(high-learn)

Aging Machine
(del entry msg)

TOPresolve High-
Learn (add/

update/del msg)

L2/3 Low-Learn
(add entry msg)

Refresh Machine

messages passed from TOPparse

TOPsearch #n

out
search

in
search

External
Host

RMEM

Statistics
Block

Internal
Search
Memory

External
Search
Memory

TOPsearch #0

10.8 Data Flow 433

The TOPsearch I block contains several functional units/blocks that handle the
structures/tables. Layers 2 and 3 low-learn is a hardware functional unit that can
learn Layer 2 MAC addressees and/or Layer 3 directly connected IP addresses (e.g.,
stations connected to the switch’s local subnets) “on the fl y.”

The TOPresolve high-learn functional unit/block adds, updates and deletes
hash table entries based on packet tracking information from packets processed
in TOPresolve.

The aging machine deletes aged entries from hash tables in the search memory.
In parallel, each time that a hash table entry is used, the hash entry is refreshed by
the refresh machine, if it is confi gured to do so. Aged entries are those that have
not been refreshed during the aging period. Frame ordering is maintained in the
TOPsearch block.

10.8.4 TOPresolve Block
TOPresolve is the decision point for handling of frames. It determines the destina-
tion, priority, format, and content changes of frames.

TOPresolve is a programmable processor and executes a microcode command
per clock. Microcode downloaded to TOPresolve defi nes the desired resolutions
for various frames and applications. The TOPresolve block diagram is illustrated in
Figure 10.13.

TOPresolve determines the frame’s fi ltering, destination port and priority based
on search results, parse message, and stored learning/state information. The deci-
sions it reaches based on these criteria, together with modify instructions, are com-
piled into a message that is passed to TOPmodify. TOPresolve can also generate
search keys to be used by the TOPsearch II engines, if required.

“In resolve” dynamically distributes the search results to the next available buf-
fer results memory (RMEM) (see Figure 10.13). The buffer is loaded with incoming

FIGURE 10.13

TOPresolve block diagram

TOPresolve #0 RMEM #0 OMEM #0

TOPresolve #nRMEM #n OMEM #n

out
resolve

.

.

.

TOPsearch II Keys
and Messages to
TOPmodify

RFD out
(frame discard)

Messages
from
TOPparse

External
Host

Statistics
Block

TOPresolve High-
Learn Entries to
TOPsearch I

TOPsearch I
Results

in
resolve

434 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

search results and stores the search results that are currently being processed by
the TOPresolve engine. Messages from TOPparse containing frame analysis results,
such as the type of frame and its contents, are also stored in the RMEM.

Based on its microcode and the TOPparse message, the TOPresolve engine
determines if the frame should be forwarded, the frame’s destination port and
queue, its priority and fi elds to be modifi ed, and so on. These resolutions are for-
mulated into keys and messages that contain modify instructions, and are stored
in the out memory (OMEM). The OMEM buffer stores the keys/messages being
processed and the previous keys/messages. In other words, TOPresolve deci-
sions, along with modify instructions, are compiled into a message and passed
to TOPmodify. Additionally, TOPresolve can generate search keys to be used by
TOPsearch II engines. “Out resolve” sends up to eight keys/messages per frame
from the OMEM to TOPsearch II.

TOPresolve also collects state information for packet tracking. The TOPresolve
high-learn machine passes this information to TOPsearch I for data structure entries
update. If TOPresolve decides to discard a frame, it will free all the pointers associ-
ated with this frame from the RFD table (RFD out).

Relevant programmable accounting and statistical information pertaining to
each frame and fl ow is collected and passed on to the statistics block. TOPresolve
maintains registers refl ecting the status of all system queues (i.e., VOQ, TFDs,
and RFDs). This information can be used to implement various QoS mecha-
nisms (e.g., RED, WRED) through TOPresolve microcode. Frame ordering is main-
tained in the TOPresolve block.

10.8.5 TOPsearch II Block
TOPsearch engines in the TOPsearch II block are similar to those in the TOPsearch
I block, but provide limited functionality. TOPsearch II can be used, for example, for
output port-dependent data mapping such as VLAN or MPLS tags. The TOPsearch II
block diagram is illustrated in Figure 10.14.

“In search” distributes the keys and modify instruction messages from the
 TOPresolve engines to the available TOPsearch II engines. Keys are distributed
between the available TOPsearch engines, enabling them to be searched in parallel.

Each TOPsearch engine accesses the embedded search memory core. All data
structures (direct access tables and hash tables) may be downloaded by the host
via the host interface.

The structure defi nition table indicates the structure type, attributes, and its loca-
tion in the search memory core. “Out search” passes the search results (i.e., matches
found or not) to TOPmodify. Up to eight results can be sent per frame. Messages
from TOPresolve containing modify instructions are passed directly to TOPmodify.

10.8.6 TOPmodify Block
TOPmodify’s main task is to modify frame contents and forward them. TOPmodify
is a programmable processor that executes a microcode command per clock.

10.8 Data Flow 435

 Microcode downloaded to TOPmodify, along with modify instructions from
 TOPresolve and search results, decodes the desired modifi cations for various
frames and applications and modifi es frame contents accordingly.

The TOPmodify block diagram is illustrated in Figure 10.15. “In modify” dynami-
cally distributes the TOPsearch II results along with the frame’s modify instruction
messages to the next available buffer results memory (RMEM). The buffer is loaded
with incoming search results while it stores the search results that are currently
being processed by the TOPmodify engine.

TOPmodify reads the frame from the frame memory and stores it in its associ-
ated frame modify memory (FMEM). The FMEM has buffers that are read from the
frame memory based on its RFD pointers. An incoming frame is loaded in one buf-
fer, a second buffer holds the frame that is currently being modifi ed, and the third
buffer holds the frame that is being rewritten to the frame memory.

The TOPmodify engine overwrites, inserts or removes content in accordance
with its microcode and the modify instructions associated with the frame.
Once modifi ed, the frame (in the FMEM) is rewritten to the frame memory and
frame pointers are then passed to one or more of three queues based on the
 TOPresolve forwarding instructions.

Frames may be replicated by the TOPmodify engines; free buffers are fetched
from the RFD table, and the replicated frames are stored in the frame memory
while the RFD table is updated accordingly.

FIGURE 10.14

TOPsearch II block diagram

TOPsearch #0

.

.

.

Structure Definition
Table

messages passed to TOPmodify

TOPsearch #n

out
search

in
search

External
Host

RMEM

Internal Search
Memory

TOPmodify Results

TOPresolve
Keys

436 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

The three output queues are: Host TFD for frames destined for an external host
(via the PCI interface), VOQ for frames destined for the switching fabric, and Egress
TFD for frames destined for the network.

Relevant programmable accounting and statistical information pertaining to
each frame and fl ow is collected and passed on to the statistics block. Frame order-
ing is maintained in the TOPmodify block.

10.8.7 Frame Processing Ordering
The use of parallel processors provides increased processing power; however,
frame ordering must be maintained. The NP has a transparent, built-in hardware
mechanism to insure that frame ordering is maintained at each of the TOP blocks.

Unlike within the TOPparse engine in which entire frames are parsed, keys for the
same frame may be distributed among several TOPsearch engines that are operating
in parallel. Therefore, it is important not only to maintain frame ordering, but also to
know how to reassemble the search results from several processor engines. For this
reason, the “in search” stage assigns a tag containing the stream number, sequence
number, and the total number of keys pertaining to the frame. “Out search” uses
this tag to ensure that all of a frame’s search results are sent to TOPresolve intact.
TOPresolve and TOPmodify have similar frame ordering mechanisms.

In addition, several “lock” and “ordering” mechanisms may be activated option-
ally to ensure that the information related to a fl ow (e.g., session state information)
is updated by the TOPresolve high-learn mechanism in the order in which the

FIGURE 10.15

TOPmodify block diagram

TOPmodify #0

FMEM #0

RMEM #0

TOPmodify #n

FMEM #n

RMEM #n

.

.

.

Host TFD

Frame
Memory

TOPsearch II
Results

RFD

VOQ

Egress TFD

RX

External
Host

Statistics
Block

Frame Memory

RX

out
modify

in
modify

TX

TX

10.8 Data Flow 437

frames belonging to this fl ow are received by the NP. The same holds true for the
Statistical counters corresponding to a given fl ow and the session hash lookup
tables. Therefore, packets that belong to the same session are guaranteed to update
a given state in their correct order. Subsequent packets belonging to the same ses-
sion are guaranteed to be matched with the already updated state.

10.8.8 Frame Memory Interface
The NP operates in a store-and-forward mode. The frame memory stores the frame
while the various TOPs perform the processing.

The frames are segmented and stored in the frame memory. The Receive Frame
Descriptor (RFD) table contains pointers to all subsequent buffers belonging to
the frame, with each buffer containing a segment of the frame’s contents. In other
words, the buffers that contain the frame’s contents are linked together by the
RFD table.

10.8.9 External Host Tasks and Interface
The External host has several tasks to perform in order to enable the NP to exe-
cute its application and to support it in the control plane (slow path) processing.
Frames must be communicated between the NP and the External host, NP sta-
tus information must be accessible to the External host, and microcode, settings,
instructions, and confi guration data should be sent from the External host to the
NP. The main communication requirements and the hosts’ tasks can be defi ned
as follows.

Confi guration—The host confi gures and updates NP registers, internal TOP
registers and TOP resources via the register interface. Microcode is down-
loaded through register interfaces to each of the TOP blocks (TOPparse,
 TOPsearch, TOPresolve, and TOPmodify).

Search data structures—The host downloads and updates entries in the search
data structures. The host is notifi ed via the SRH_Q of any updates to these struc-
tures by the learning or aging mechanisms. The host can use this updated infor-
mation as appropriate; for example, it can propagate this information to other
NP devices in the system, or maintain a repository of its own.

Statistics—The host reads statistics counters collected by the network processor,
either by polling counters through the register interface or by event-driven
messages through the STATMSG_Q.

Receive frames—The host receives frames from the network processor via the
HTFD_Q. The HTFD_Q contains a pointer to the frame as well as a message
with TOP analysis information. For example, the message may contain the type
of frame, search results, and forwarding information, relieving the host of the
task of reanalyzing the frame. The NP acts as a preprocessor for the host.

438 CHAPTER 10 EZchip Architecture, Capabilities, and Applications

Transmit frames—Transmit frames are posted directly into the VOQ and trans-
mitted to the switching fabric. If required, TOPs will perform additional pro-
cessing when the frame reenters from the switching fabric (in a loop-back
confi guration). The NP acts as an egress post-processor for the host.

The host can operate either in an interrupt-driven mode, via a PCI interrupt, or
in a polling mode. For example, the host can be notifi ed of new frames pending
in the HTFD_Q by a PCI interrupt or by polling the status register. The External
Host interface and tasks are handled via high-level APIs that are not discussed in
this book.

NP provides a 32-bit 66-MHz PCI interface to an External Host CPU. NP uses
look-ahead registers for effi cient interfacing with the host. Host-destined frames
are read from the buffer memory ahead of time into registers, awaiting retrieval by
the host. This relieves the host of the need to access the frame memory directly.
The External Host CPU can collect statistics from the network processor and
download policies to the network processor.

10.9 SUMMARY
This chapter provides an overview of EZchip’s NP architecture, usage and
capabilities. This description should be suffi cient for someone who wants to evalu-
ate how to use a network processor and to start to program high-speed network
applications. It is not the intention of this chapter to provide a reference manual
or a user guide for the NP, and many details have been omitted or slightly softened
due to their complexity, specifi c purpose, or because they have not been publicly
 published.

The next chapter discusses how to program the NP, and it complements the
understanding of what can be achieved from network processors in general and
from EZchip’s NPs in particular.

CHAPTER

11
In the previous chapter, we discussed EZchip’s Network Processor (NP) architecture,
functional units, processors, memories, interfaces, and so on. In this chapter, we will
 discuss how to use them (i.e., how to program them).

Programming the NP has three components: the fi rst is the programming of
the processor itself; the second is the development environment of the network
processor (including compiling, debugging, simulating, etc.), and the third is run-
ning the network processor programs and applications (i.e., initializing the NP,
downloading it, and working with the attached external host processor). This
chapter deals mainly with programming the NP, and discusses the other two levels
briefl y.

EZchip’s NP employs an array of Task-Optimized Processors (TOPs) to perform
specifi c packet processing tasks with customized data paths and instruction sets.
Each of the four types of TOPs performs a separate function as described in the
previous chapter; they are: TOPparse, TOPsearch, TOPresolve, and TOPmodify.

The NP programming model is that of a pipelined message passing between
heterogeneous multiprocessors. Although there are parallel processors at each
stage of the processing pipeline, EZchip’s NP programming model is not involved
with parallel processing at all, as hardware circuitry handles all arbitration, order-
ing, and required scheduling and synchronization.

Although we have several heterogeneous processors to program (the TOPs),
it is important to understand that all TOPs share a very similar programming
language and style; thus, it is almost like programming a single processor
 architecture.

Each of the NP processor types, or the TOP engines, is a pipeline proces-
sor by itself, which means that the programmers of NP processors have to be
aware of instruction pipelining, including data and control hazards (discussed
in Chapter 8).

It is important to comprehend that the entire NP with all its TOPs works
through pipelined processing of network packets, and that each of the TOPs works
through pipelined processing of its instructions.

EZchip Programming

440 CHAPTER 11 EZchip Programming

11.1 INSTRUCTION PIPELINE
Each of the TOPs is a four-stage pipelined processor, with each stage taking a clock
cycle. In the fi rst stage, an instruction address is fetched from the instruction mem-
ory block and stored (F stage). The instruction is decoded in the second stage
(D stage) and executed in the third and fourth stages (E1 and E2 stages).

Since cycles are crucial in network processing, the TOPs are not equipped with
any instruction reordering, fl ushing, or branch predicting capabilities; the program-
mer has to deal with control and data hazards by himself. As described in the
programming chapter, data and control hazards can be used in such a way that
no cycles are lost. This however, requires careful coding, using the options that
EZchips’ NP instruction set provides.

11.1.1 Data Hazards
Data hazards were discussed generally in Chapter 8, so only the implications
 relevant to the NP are briefl y described here. An instruction is executed within the
two clock cycles of the E1 and E2 stages, with read operations executed in E1, and
write operations and fl ag settings executed in E2 (see Figure 11.1). This means that
an instruction cannot use a source or a fl ag if the preceding instruction writes it or
sets it, since these two operations happen in the same cycle and will collide.

In order to avoid data hazards, either a NOP instruction is inserted between the
dependent instructions, or instruction reorder should be done, such that a non-
dependent instruction—that is, one that does not read written data or count on a
modifi ed fl ag—is added between instructions.

The following examples demonstrate a data hazard. When the EZchip Compiler
encounters such a hazard, it warns the programmer.

Examples of bad coding:

SUB ALU, UREG[2], REG[3], 4;
JNZ Label //Zero Flag is not ready

Mov UREG[4], UREG[2], 4;
Add ALU, UREG[1], UREG[4], 4; //UREG[4] is not ready

11.1.2 Control Hazards
Control hazards were also described in the programming chapter, so only a few
implications are discussed here. Branch instructions check the condition fl ags,
decide whether or not to branch, and compute the next address to jump to in the
E1 phase (see Figure 11.1). Control hazards result from branching that actually
takes place only in the fourth cycle of the instruction (E2), where the pipeline
fi lls up with the two instructions that follow the branch instructions. Even when
the branch takes place, the two instructions that immediately followed the branch
instruction and were already loaded into the pipeline will also be executed. This
will cause a situation in which two more instructions will be executed after a jump
instruction, as if they ignore the jump instruction.

11.1 Instruction Pipeline 441

To avoid control hazards, instructions should be organized so that two instruc-
tions of the application will be placed for execution immediately after the branch
instruction, regardless of whether the branch will happen or not. Obviously, these
instructions should be nondependent instructions to avoid data hazards. This will
be further demonstrated in the following example. If no useful instructions can be
added, NOP commands must be inserted.

NP code supports automatic insertion of NOPs for branch instructions. This
is done by an operand of the branch instruction that adds zero, one or two NOPs
in case of branch execution. When “inserting” zero NOPs, all instructions are exe-
cuted (i.e., the succeeding two instructions and then the branched instruction).
If one NOP is inserted, then the subsequent instruction is executed, and one NOP
is added, so the next instruction executed is the branched one. When two NOPs
are inserted, then after the branch instruction, the next instruction to be executed
is the branched one. See the examples as follows.

Care should be exercised when several jump instructions are sequenced, as the fi rst
jump will happen, but immediately after executing one instruction from the branched
place, the next jump will occur, and the next instruction to be executed will come
from the second branched address. This is demonstrated in the following example.

Example: Successive jump instructions

L1: Jmp L5;
L2: jmp L7;
L3: ADD ALU, REGB, 4;
L4: MOV REGC, 0x8000;
NEXT_COMMAND:
. . .
. . .

L5: SUB ALU, REGD, REGC;
L6: XOR REGB, REGB, REGC;
. . .

L7: MOV REGA, 5;
L8: ADD ALU, REGC, REGB;
. . .

Description: The sequence of instructions that will be executed is L1, L2, L3, L5, L7,
L8, … Although jump L5 was clearly the fi rst instruction, the program
fi nds itself in another branch of the program (dictated by the second
jump to L7).

FIGURE 11.1

Instruction pipeline execution

CC1 Program Execution

F INST#1

INST#2

D E1 E2

E2 E1 D F

CC2 CC3
Clock Cycles

CC4 CC5

442 CHAPTER 11 EZchip Programming

Control hazards may be used in a productive way, to save machine cycles, as
described in the following example.

Example: Suppose you want to jump to label NEWLABEL if bit 3 of UREG[0] is
zero; otherwise, continue. Suppose further that before this jump you
want to perform two actions, say GETting 4 bytes of data into UREG[6]
and MOVing 0x8000 to UREG[7].

if (!UREG[0].BIT[3]) Jmp NEWLABEL |_NOP0;
Get UREG[6], 0(RD_PTR), 4;
Mov UREG[7], 0x8000, 4;
NEXT_COMMAND:

. . .

. . .

NEWLABEL: . . .

Description: When no NOPs are inserted into the pipeline, the actual order of
 execution will be: Get → Mov → NEXT_COMMAND or NEWLABEL.

The next example illustrates which commands are in the pipeline when zero,
one or two NOPs are used, with the instructions as follows.

Example: L1: mov UREG[1], 2, 2;
L2: jmp DISCARD | _NOPx;
L3: mov UREG[2], UREG[3], 4;
L4: sub ALU, UREG[3], UREG[1], 4;

. . .

DISCARD: halt;

In case of jmp DISCARD | _NOP0 (in preceding L2), the pipeline, as a function
of the clock cycles, will contain the instructions as follows:

Clock Cycles

CC1 CC2 CC3 CC4 CC5 CC6 CC7

Fetch L2 (jump) L3 (mov) L4 (sub) Discard:
Halt

Decode L1 L2 L3 L4 Discard:
Halt

E1 L1 L2 L3 L4 Discard:
Halt

E2 L1 L2 L3 L4 Discard:
Halt

11.2 Writing NP Microcode 443

In case of jmp DISCARD | _NOP1, the pipeline, as a function of the clock cycles,
will contain the instructions as follows:

In case of jmp DISCARD | _NOP2, the pipeline, as a function of the clock cycles,
will contain the instructions as follows:

11.2 WRITING NP MICROCODE
In this section we describe the assembly language of the NP and how to use it.

11.2.1 Assembly Language Overview
This section presents an overview of the assembly language used to write micro-
code applications for the four distinct types of TOPs, which constitute the pro-
grammability of the NP network processor. TOPparse, TOPresolve, and TOPmodify

Clock Cycles

CC1 CC2 CC3 CC4 CC5 CC6 CC7

Fetch L2 (jump) L3 (mov) L4 (sub) Discard:
Halt

Decode L1 L2 L3 NOP Discard:
Halt

E1 L1 L2 L3 NOP Discard:
Halt

E2 L1 L2 L3 NOP Discard:
Halt

Clock Cycles

CC1 CC2 CC3 CC4 CC5 CC6 CC7

Fetch L2 (jump) L3 (mov) L4 (sub) Discard:
Halt

Decode L1 L2 L3 NOP Discard:
Halt

E1 L1 L2 NOP NOP Discard:
Halt

E2 L1 L2 NOP NOP Discard:
Halt

444 CHAPTER 11 EZchip Programming

have similar instruction sets (described in a following section), while TOPsearch
has a distinct database-oriented instruction set. Nonetheless, all of the instruction
sets share a common syntax and style, and can be collectively described as a single
language.

The language consists of two layers, transparent to the user: the preprocessor
(or macro-assembler) layer and the assembler layer. Program compilation of the
program is performed in two stages (see Figure 11.2).

This subsection describes the assembler, the lower part of the two stages. As
a rule, one command of the language described here corresponds to a single line
in the instruction memory. Macros, variables and directives are described later in
Section 11.3.

11.2.2 Command Notation Convention
The general format for an NP command is:

<LABEL:> <if (CONDITION)> COMMAND <OPERANDS>;

Pointed brackets (< >) indicate optional features. For example, a command may or
may not be preceded by a label and/or a conditional statement. Not every command
can be conditional, and the number and type of operands are command-dependent.

Commands are case-insensitive and newline insensitive (newlines are counted
as white space) to increase program readability; a semicolon rather than a newline

FIGURE 11.2

NP assembly language processing

End-User Code
• Directives
• Macros
• Variables
• Comments
• Commands

Preprocessed Code
• No Directives
• No Macros
• Hardware - only Variables
• No comments
• Commands

PREPROCESSOR

ASSEMBLER

BINARY CODE Packed CODE

NP Chip Development
Environment

System
(Ezdesign)

Directive and
macro processing

Legality checking
binary encoding

For debugging
and simulation

for execution

11.2 Writing NP Microcode 445

serves as a delimiter between commands. Comments are C and C++ styled, as
 demonstrated in the following example:

/*comment
and comment*/
//comment until a line end

The following example illustrates the syntax of the NP assembly language:
.
.
.
BREAK_POINT_LAB:
 mov CNT, 2, 2; //initialize counter
 mov SREG[5], 0, 2; //initialize SREG[5] register
WRITE_ALL_UREGS_LAB:
 if (!HOST_RDY)
 jmp WRITE_ALL_UREGS_LAB | _NOP2; //insert 2 NOPs in

//pipeline
 loop WRITE_ALL_UREGS_LAB; //no NOPs inserted

//in pipeline
.
.
.

11.2.3 Special Symbols
Table 11.1 describes the special symbols used by the NP compiler. Several charac-
ter combinations are used as special symbols, as outlined in Table 11.2.

11.2.4 Resource ID, Indirect Access, and Address References
To access different devices (e.g., registers, functional units), the NP assembly lan-
guage uses a pointer mechanism similar to high-level languages such as C. With
the pointer mechanism, the programmer need not know the actual address of the
memory area referred to by the pointer.

Table 11.1 Special Symbols

Symbol Description Example

$ The current PC (program counter) value. mov UREG[0], $, 2;
jz $ + 10;

& Create immediate data with indirect
access format (see the following section).

mov UREG[1],
&UREG[0], 2;

+ following “)” Auto-increment base register or index
register after a read/write operation.

get UREG[1],
20(RD_PTR)+, 2;

446 CHAPTER 11 EZchip Programming

When a resource name (for example, UREG[2].BYTE[3]) is prefi xed by an
ampersand character (&UREG[2].BYTE[3]), it is interpreted as the actual hard-
ware address of it, byte 3 in user register 2 in this example (which is 0x0218;
the addresses are all known to the EZchip Compiler, but not necessarily to the
 programmer).

There are two indirect registers that can be used for various purposes. For
example, an indirect register can be used to load an element of a vector that is
loaded into UREG registers, as follows (there are potentially 64 byte values).

mov IND_REG0, &UREG[2].BYTE[3], 2; //Now IND_REG0 contains a
 . //reference to UREG[2].BYTE[3],
 . //the fi rst element

mov UREG[0], UREG[IND_REG0], 1; //move 1 byte from UREG[2].BYTE[3],
 . //which is the fi rst element

Add IND_REG0, IND_REG0, 4, 2; //point to next required
 . //element, which happens to
 . // be the next index in UREG
 . // register block (4 bytes
 . //difference)

mov UREG[0], UREG[IND_REG0], 1; //move 1 byte from UREG[3].BYTE[3],
//the next required element

11.2.5 Addressing Modes
There are many addressing modes supported by NP language, including immediate,
register (and even specifi c bytes or bits in the registers), indirect, memory direct

Table 11.2 Character Combinations Used as Special Symbols

Combination Description

\r The “carriage return” character, ASCII 10.

\n The “new line” character, ASCII 13.

\t The tab character.

\\ The backslash character.

\” The quotation mark character.

\ xx, where xx is a two-digit hexadecimal number An ASCII character with the code xx.

11.4 Developing and Running NP Applications 447

and base-indexed, TCAM groups, structures, and others. These are detailed in the
chapters that describe each of the TOP engines, according to its memories and
specifi c register interfaces.

11.2.6 Little Endian and Big Endian Notation
Networking generally operates in big endian1 notation (i.e., the most signifi cant
byte of the fi eld comes fi rst). EZchip’s NP uses little endian notation.

In either notation, there is very often a need to transfer data from memory
(which, in some cases, contains network data) to registers for processing, and vice
versa. This may require the conversion from big endian to little endian notation, or
vice versa, on the fl y. For example, an IP address that is received from the network
in network order (big endian), and that has to be processed by the NP, which reads
little endian, must be converted before processing.

11.3 PREPROCESSOR OVERVIEW
The preprocessor handles tokens, macros, and file inclusions. The commands
supported are macro (and endmacro), defi ne (and undefi ned), include, and
several conditional commands: if, else, endif, ifdef, and ifndef. The
meaning and usage of these preprocessor commands are very similar to those
of C and similar languages, and are described briefly in Appendix A of this
chapter.

11.4 DEVELOPING AND RUNNING NP APPLICATIONS
There are two main software components that are used for developing, and later
enabling, the implementation and usage of the NP in customized equipment.
The fi rst software component is EZdesign package, which is used for the devel-
opment phase and includes several development tools, such as the Microcode
Development Environment, which is a common GUI wrapper to all tools. The
second software component is EZdriver, a software API package that enables
the user to design embedded NP systems, based on any host processor or any
operating system.

1There are mainly two byte-ordering representations of any data, called little endian and big endian.
Little endian is byte ordering (either as positioned in memory or as transmitted), according to which
the least signifi cant byte comes fi rst. Big endian is the opposite ordering; that is, the most signifi cant
byte comes fi rst. In networks, byte ordering is called “network order,” and is generally big endian due
to historical reasons, where communication equipment (switches, routers, etc.) starts to switch or
to route based on the most signifi cant bytes that fl ow into the equipment, representing numbers,
prefi xes, or more meaningful addresses than the bytes that follow.

448 CHAPTER 11 EZchip Programming

11.4.1 EZdesign Software Toolset and Libraries
EZdesign is a set of design and testing software tools for developers. It allows
designers to create, verify, and implement NP applications to meet specifi c func-
tionality and performance targets. Its general setup is depicted in Figure 11.3.

EZdesign can be used for developing NP applications on a stand-alone PC, with
no NP attached. It can even be used to simulate and debug the NP applications,
when network traffi c can be artifi cially generated. For testing in real network envi-
ronment, a development system is required (a single board computer (SBC) that
contains EZware, a software package that interfaces between the NP and the devel-
oping system). EZdesign components include:

Microcode Development Environment (MDE): A unifi ed GUI for editing and
debugging code, including setting breakpoints, single-stepping program execu-
tion and access to internal resources. MDE enables code editing, view of mem-
ory and register contents, performance charting, macro recording and script
execution. MDE is used in development and debugging of code on both the
simulator and the actual network processor.

The MDE and a short description of how to install and use it can be down-
loaded according to the instructions in Chapter 1. As described before, this
package enables programming, debugging and simulation of the NP, without
having to attach the MDE to a development system (however, no real network
environment can be tested).

Simulator: The simulator provides cycle-accurate simulation of the EZchip network
processor for code functionality testing and performance optimization.

FIGURE 11.3

Sample EZdesign system architecture

CPU

Microcode Development Tools, which run
on the development station and include:
- Microcode Development Environment
- Frame Generator
- Structure Generator
- Assembler
- Preprocessor
- EZsim (simulator)

EZware, which runs on the SBC and includes:
- Agent
- Microcode Debugger Block (MDB)
- Data Viewer Block (DVB)
- Virtual PCI

Single Board
Computer

Development Station

NPU

NP Network
Processor

Optional
(used for testing in real network environment)

11.5 TOP Common Commands 449

Assembler and Preprocessor: These components generate code for execution on
EZchip’s network processors.

Frame Generator: A GUI guiding the programmer through the process of cre-
ating frames, layer by layer. The frame generator allows for the generation of
frames of different types, protocols and user-defi ned fi elds. The resulting frames
can be used for testing and simulating the NP code.

Structure Generator: A GUI enabling the defi nition of data structures used by the
EZchip network processor for forwarding and policy table lookups (e.g., hash,
trees), their keys, and associated result information.

To support debugging, interrupts both from the host to a TOP as well as from a
TOP to the host are supported. Interrupts sent from the host may halt a TOP opera-
tion in order to read it for debugging. The host runs a service routine that reads the
TOP’s memory and adds breakpoints by using a set-bit at branches to indicate the
location in the code. This mechanism is used by the EZdesign Microcode Develop-
ment Environment to allow programmers to develop and debug the microcode.

11.4.2 EZdriver Control Processor API Layer
EZdriver is a toolset that facilitates the development of the control path software for
EZchip network processor-based systems. It enables applications that run on the con-
trol CPU to communicate with the EZchip network processor. EZdriver consists of
routines that are executed on the control CPU and provide an API for interfacing with
the network processor. It includes the chip confi guration, microcode loading, creation
and maintenance of lookup structures, sending and receiving frames to and from the
network processor, as well as confi guration and access to the statistics block.

EZware, the interface to the EZdesign toolset, can be utilized optionally to allow
debugging and simulation of the NP application on the target system, the custom-
ized network equipment.

11.5 TOP COMMON COMMANDS
TOPparse, TOPresolve, and TOPmodify share common language conventions and
commands. Each of these TOPs also requires some specifi c commands that are
unique to their function. In the following chapters that describe each of the TOPs,
only the specifi c commands are described. It should be noted that although the
commands’ syntax in each of the TOPs is almost identical, and the operand usage
is also very similar, there are some differences in the operands’ usage, and these are
detailed in the appendices of each of the following chapters.

In this section, we provide a list of the common commands, divided into fi ve
categories: resource initialization commands, move commands, branch commands,
arithmetic (ALU) commands, and the halt command.

450 CHAPTER 11 EZchip Programming

11.5.1 Resource Initialization
Initialization commands are “executed” by the host rather than the TOP engines; they
indicate the initial values given to various registers prior to executing the program
in the instruction memory. There are several resource initialization commands in
each of the TOP engines, but there is one common command for all TOP engines:

LDREG MREG[n], value;

Load the Mask register MREG[n] (used for ALU operations) with a value.

Example: LDREG MREG[0], 0x0F;

Description: Move 0x0F value to the fi rst mask register, MREG[0].

11.5.2 Move Commands
Move commands copy data (bits, bytes, and words) from various sources to various
destinations. The following commands are used in almost identical ways by the
TOP engines. There are some differences in naming, usage, and optional operands
that are supported by some TOP engines and not others, but it does not change
the general meaning of these commands. The complete and accurate use of these
 commands is listed in the chapters that detail each of the TOP engines.

It should be noted that the last four move instructions in this section are not
supported by the TOPmodify, mostly due to the fact that the TOPmodify is the last
engine in the NP pipeline. Hence, there is no need for it to output keys or messages,
nor is there need for headers for these keys and messages.

It should also be noted that the TOPmodify has in all move commands an
optional operand, jpe, that instructs the TOPmodify to jump after the move opera-
tion according to the FAST_REG, a mechanism for allowing TOPmodify to execute
predetermined segments of require code. Move semantics depend on the type of
the source and the destination, as depicted in Figure 11.4.

FIGURE 11.4

Data movement semantics

Input
Memory

Registers
Output
Memory

COPY

GET

MOV

Put

11.5 TOP Common Commands 451

11.5.2.1 Mov DST, SRC, SIZE
Move SIZE bytes from source (SRC) to destination (DST).

Example: Mov UREG[0], UREG[1], 4;

Description: Move 4 bytes from UREG[1] to UREG[0].

Note: TOPmodify has one more optional operand—jpe, which is used to option-
ally jump according to the FAST_REG, after the move operation.

11.5.2.2 MovBits DST, SRC, SIZE
Move SIZE bits from source (SRC) to destination (DST).

Example: MovBits UREG[0].BIT[0], UREG[1].BIT[2], 5;

Description: Move 5 bits from UREG[1] from bit 2 to UREG[0] starting with bit 0.

Note: TOPmodify has one more optional operand—jpe, which is used to option-
ally jump according to the FAST_REG, after the move operation.

11.5.2.3 Get DST, SRC, SIZE
Move SIZE bytes from the source memory2 (SRC) to a destination (DST) register.

Note: TOPparse and TOPmodify have several other optional operands. One of
these, EOFjump (in TOPparse), determines whether a jump will occur at the end
of a frame. jpe operand (in TOPmodify) is used to optionally jump according to
the FAST_REG, after the move operation.

Example: Get UREG[0], 23(0)+, 2;

Description: Load two bytes from input memory address 23 to UREG[0] register.
Auto-increment the base pointer of the input memory to 23 1 2 5 25.

11.5.2.4 Put DST, SRC, SIZE
Move3 up to four bytes (SIZE) from source register (SRC) to destination memory (DST).

Example (in the case of TOPparse): PutKey OFF_KMEM(KBS2)+, UREG[0], 4;

Description: Put 4 bytes from UREG[0] to the key memory, in address
KBS21OFF_MEM. Auto-increment KBS2 to KBS21 OFF_KMEM14.

Note: TOPmodify has one more optional operand—jpe, which is used to optionally
jump according to the FAST_REG, after the move operation.

2Usually, the move is from input memory; however, in TOPmodify, SRC points to the frame memory
(FMEM), and for reading the input memory, it uses a similar command, that is, GetRes DST,
SCR, SIZE.
3In TOPparse and TOPresolve, only keys are output, so this command is called Putkey DST,
SCR, SIZE.

452 CHAPTER 11 EZchip Programming

11.5.2.5 Copy DST, SRC, SIZE
Move SIZE bytes from the source memory (SRC) to the destination memory (DST).

Note: TOPparse and TOPmodify have several other optional operands. One of
these, EOFjump (in TOPparse), determines whether a jump will occur at the end of
a frame. jpe operand is used to optionally jump according to the FAST_REG, after
the move operation.

Example (in the case of TOPparse): Copy 10(KBS0)+, 12(RD_PTR)+, 4;

Description: Copy four bytes from FMEM address RD_PTR112, to KMEM address
KBS0110. Auto-increment RD_PTR to RD_PTR11214. Auto-increment
also KBS0 to KBS011014.

11.5.2.6 Mov4Bits DST, SRC [, MASK]
Move four bits from source (SRC) to destination (DST). Use MASK to indicate
which bits should be inverted during the move. This command is not supported
by TOPmodify.

Example: Mov4Bits UREG[2].BITS[0,3,5,7], SREG[4].BITS[3,5,7,9];

Description: Move bits 3, 5, 7, 9 of SREG[4] to UREG[2] bits 0, 3, 5, 7.

Example: Mov4Bits FBLK[4].BITS[1,3,5,7], SREG[13].BITS[3,5,7,11], 0xE;

Description: The inverse mask is 0xE 5 1110. The lowest mask bit is used for the
inverse of the source register’s highest bit. So the result will be:

inverse(SREG[13].bit3) -> FBLK[4].bit1 // as inverse bit 3 (value 5 1) is used
inverse(SREG[13].bit5) -> FBLK[4].bit3 // as inverse bit 2 (value 5 1) is used
inverse(SREG[13].bit7) -> FBLK[4].bit5 // as inverse bit 1 (value 5 1) is used
SREG[13].bit11 -> FBLK[4].bit7 // as inverse bit 0 (value 5 0) is used
E.g., if SREG[13].BITS[3,5,7,11] = 1111, then FBLK[4].BITS[1,3,5,7] 5 0001

11.5.2.7 PutHdr DST, SRC, SIZE
Move SIZE bytes from source (SRC) to DST, the header registers (i.e., HREG).
This command is not supported in TOPmodify (since it does not write keys or
messages).

Example: PutHdr HREG[HBS0].BYTE[1], UREG[1], 2;

Description: Put 2 bytes from UREG[1] to header with number from HBS0, offset
in header—1.

11.5.2.8 PutHdrBits DST, SRC, SIZE
Move SIZE bits from source (SRC) to DST, the header registers (i.e., HREG).
This command is not supported in TOPmodify (since it doesn’t write keys or
 messages).

11.5 TOP Common Commands 453

Example: PutHdrBits HREG[0].BIT[3], UREG[1].BIT[2], 5;

Description: Put 5 bits from UREG[1] bit 2 to header 0, bit offset 3 in header.

11.5.2.9 PutHdr4Bits DST, SRC [, MASK]
Move four bits from source (SRC) to DST, the header registers (i.e., HREG). Use
MASK to indicate which bits to invert while moving. This command is not sup-
ported in TOPmodify (since it doesn’t write keys or messages).

Example: Mov UREG[1], 0x7, 1;
nop;
PutHdr4Bits HREG[HBS1].BITS[3,5,7,9], UREG [1], 5;

Description: Put 4 bits from UREG[1] to header with number from HBS1, bits 3, 5, 7, 9:

HREG[HBS1].BITS[3,5,7,9] should be 1, 0, 1, 1. This is because the inverse mask
0x5 5 0101, it will be used as 1010 as follows:

0111 SRC or UREG[1]
1010 inverse mask

1101 Result of HREG, i.e., bit 9 5 1, bit 7 5 1, bit 5 5 0, and bit 3 5 1

11.5.3 Halt Command
Halt is used to fi nish packet processing and to release it to the next stage in the pipeline,
or to multicast the frame several times, or to abort any further processing of the packet
and to discard it. These options are defi ned by the MODE operand of the command.

TOPmodify is the last TOP engine in the NP pipeline; hence, it is responsible to
decide how the frame is to be handled (i.e., to which output it should be sent, if any,
and whether the frame should be rewritten to the frame memory or not). This is deter-
mined by an additional operand that the Halt command has in the TOPmodify engine.

Example: HALT HALT_UNIC;

Description: Halt execution of the TOP engine, and release the frame, the keys and
messages to the next stage.

11.5.4 ALU Commands
Arithmetic Logic Unit commands are used for arithmetic and logic calculations.
There are two formats of ALU commands, one with two source-operands and the
other with one source-operand:

COMMAND DST,SRC1,SRC2,SIZE,[,MREG[,MODE[,JPE]]];
 // See commands in Table 11.3.

or

COMMAND DST,SRC,SIZE,[,MREG[,MODE[,JPE]]];
 // See commands in Table 11.3.

454 CHAPTER 11 EZchip Programming

Defi nition: Calculate the COMMAND on the sources (SRC, or SRC1 and SCR2) of
SIZE bytes, and put the result in the destination (DST). Use masks in
MREG, according to the required MODE, to mask the source operands if
required. jpe is used only by TOPmodify to optionally jump according
to the FAST_REG, after the ALU operation.

Table 11.3 lists the TOP ALU operations and fl ag dependencies. The inverse can
be performed on the logical functions "And" and "Xor", by entering a negation
mark (!) before the operand.

Example: Add ALU, UREG[3], 0x20, 4, MREG[0], _ALU_FRST;

Description: ALU 5 (UREG[3] & MREG[0]) 1 0x20;

Example: XOR UREG[2], ! UREG[3], ! UREG[4], 4;

Description: This performs inverse UREG[3] Xor inverse UREG[4] and writes to
UREG[2].

Example: NumOnes UREG[2], UREG[4].BYTE[1], 1;

Description: This counts the number of “1” bits in UREG[4].BYTE [1] and writes
the count into UREG[2].

Table 11.3 TOP ALU Operations

Name Description Source Operands Flag Dependencies

And DST = SRC1 & SRC2 2 OV, ZR, SN

Xor DST = SRC1 ^ SRC2 2 OV, ZR, SN

Or DST = SRC1 | SRC2 (Performed by macro) 2 OV, ZR, SN

Not DST = !SRC1
(Performed by macro)

1 OV, ZR, SN

Add DST = SRC1 + SRC2 2 OV, ZR, SN

Sub DST = SRC1 - SRC2 2 OV, ZR, CY, SN

Addc DST = SRC1 + SRC2 + Carry 2 OV, ZR, SN

Subb DST = SRC1 - SRC2 - Carry 2 OV, ZR, CY, SN

Decode Set bit k in the DST, when k = SRC 1 ZR

Encode DST = k when bit k is the most signifi cant
set bit in SRC

1 ZR

NumOnes DST = the number of bits equal to 1 in
SRC. 1 byte only

1 ZR

11.5 TOP Common Commands 455

Example: AND ! UREG[1], UREG[3], UREG[4], 4;

Description: This performs UREG[3] And UREG[4] and writes the inverse to
UREG[1].

11.5.5 Jump Commands
Jump commands instruct the NP to jump to a given label in the microcode. Some of
the commands are conditional jumps, and some jump with pushing and popping
program addresses. At the end of the jump, optional NOP_NUM (0, 1 or 2) NOPs may
be inserted into the pipeline following the jump command (to disable execution
of the commands that immediately follow the jump instruction). The NOPs are
effective only if the jump command is executed.

The standard Jump command format is:

if (CONDITION)command LABEL [| NOP_NUM];
 // See commands in Table 11.4.

or

command LABEL [| NOP_NUM]; // See commands in Tables 11.4 and 11.5.

Example:

if (FLAGS.BIT [F_ZR_TOP])
 Jmp LAB | _NOP2;

or

JZ LAB | _NOP2;

Description: If fl ag Zero is set, jump to label LAB. Two NOPs are inserted. The two
commands are exactly the same, as the second format is merely a
macro that deploys the fi rst format command, which is a single com-
mand (a single machine instruction).

Examples:

Jstack _NOP1; //Jump unconditionally to address taken from PC_STACK,
 //and insert one NOP.

if (FLAGS.BIT [F_ZR_TOP])

Jstack _NOP1; //Jump to address taken from PC_STACK only if fl ag
 //ZERO is set and insert one NOP.

Jmp LAB1; //Jump always

if (FLAGS.BIT [F_ZR_TOP]) // Jump to LAB1 only if fl ag ZERO is set
Jmp LAB1;
JZ LAB1; //Jump to LAB1 only if fl ag ZERO is set

456 CHAPTER 11 EZchip Programming

Table 11.4 TOP Jump Commands

Name Description Conditions for jump

Jmp Jump unconditionally. Any (using condition)

Jcam Indirect jump—address jump from CAMO register
(not available in TOPresolve).

MH

Jstack Indirect jump—address from PC_STACK register. Any (using condition)

Return Indirect jump—address from PC_STACK register.
Equivalent to Jstack.

Any (using condition)

Loop Jump with loop counter decrement. LP

Call Call and save current address in PC stack. Any (using condition)

CallCam JCam and save current address in PC stack (not
available in TOPresolve).

MH

CallStack JStack and save current address in PC stack. Any (using condition)

Table 11.5 TOP Jump Macro Commands

Name Description Name Description

JB Jump if below (CY) JNS Jump if not sign (!SN)

JC Jump if carry (CY) JA Jump if above (!CY & !ZR)

JNAE Jump if not above or equal (CY) JNBE Jump if not below or equal (!CY & !ZR)

JAE Jump if above or equal (!CY) JBE Jump if below or equal (CY | ZR)

JNB Jump if not below (!CY) JNA Jump if not above (CY | ZR)

JNC Jump if not carry (!CY) JGE Jump if greater or equal (SN == OV)

JE Jump if equal (ZR) JNL Jump if not less (SN == OV)

JZ Jump if zero (ZR) JL Jump if less (SN != OV)

JNE Jump if not equal (!ZR) JNGE Jump if not greater or equal (SN != OV)

JNZ Jump if not zero (!ZR) JNLE Jump if not less or equal (!ZR & S == OV)

JO Jump if overfl ow (OV) JG Jump if greater (!ZR & SN == OV)

JNO Jump if not overfl ow (!OV) JLE Jump if less or equal (ZR | SN != OV)

JS Jump if sign (SN) JNG Jump if not greater (ZR | SN != OV)

11.6 Summary 457

The standard assembly notation for the jump commands is provided by macros
predefi ned in a library header fi le, and listed in Table 11.5.

The format of the Call, CallCam, and CallStack commands is a bit different from
the jump command, and also includes a number of NOPs (RET_NOP_NUM) that
should be inserted before returning, as follows:

Call function [| NOP_NUM [, RET_NOP_NUM]];

or

CallCam function [| NOP_NUM [, RET_NOP_NUM]];

 //This command is not available in
//TOPresolve

or

CallStack function [| NOP_NUM [, RET_NOP_NUM]];

Defi nition: Call a function, and return from it to the next address upon comple-
tion (return command in the function). Insert NOP_NUM NOPs before
jumping and RET_NOP_NUM NOPs before returning.

11.6 SUMMARY
NP programming is described in this chapter from its very basic programming
model through the programming style. The chapter also explains the usage of soft-
ware packages that enable the NP to be developed and run in target, customized
network equipment. In the following chapters, a detailed programming of each of
the TOPs is given, along with an example of how the TOP is used.

458

APPENDIX A
PREPROCESSOR COMMANDS

The preprocessor commands are listed in this appendix by their groups; that is,
macros, defi nitions, includes, and conditional commands.

Macro Commands
The command format is as follows:

macro <NAME> <PARAM_LIST>; // may be also written #macro

where <PARAM_LIST> takes the form <TOKEN>, […], <TOKEN>=<DEFAULT>, […]
A macro preprocessor command defi nes a macro with the name NAME. All

code between this command and the command "endmacro" will be placed in
the assembly code each time the preprocessor encounters a line in the source
such as:

<NAME> <parameters>;

The comma-separated items of PARAM_LIST will be equated (as per #defi ne)
with the corresponding items of "parameters". If "parameters" is superfl u-
ous, extra parameters are ignored and a warning is issued. If there are insuf-
fi cient parameters, the default values (if they exist) of the missing parameters
are used.

Note that any preprocessor command inside a macro will be executed at
every expansion of the macro. A #defi ne inside a macro has global scope for the
whole program unless it is mentioned as a parameter in PARAM_LIST, in which
case it is local. If an external token has a value (e.g., per #defi ne) and the same
name is used for a macro parameter, the parameter value will be used inside the
macro locally; a warning will be issued to ensure that this is what the program-
mer meant.

Macros can use other macros inside them, called nested macros; there is even
the possibility of defi ning a macro within a macro, although nothing may be gained
from it.

Terminating a macro defi nition is done by the following command:

endmacro; // may be also written #endmacro, end macro or #end macro.

Defi ne Commands
The command format is as follows:

#defi ne <TOKEN> <VALUE>;

where <VALUE> is taken as all the text between "#defi ne" and the semicolon
except for the fi rst token (whitespace-separated).

Appendix A: Preprocessor Commands 459

Defi ne preprocessor command sets a meaning to a token. Any time the token
occurs in the text, it is replaced by a full evaluation of VALUE as it is currently
(unless the token occurs as a parameter of certain preprocessor commands, where
this obviously has no meaning). That is to say, white space-separated tokens inside
VALUE that currently are #defi ned (or, within a macro, passed as parameters of this
macro), are expanded to their values. Moreover, if the resulting text is a calculable
arithmetical/logical expression, the preprocessor evaluates it numerically. Note
that if A is defi ned as B+C, redefi nitions of B will affect the value of A.

A subsequent #defi ne of the same token replaces the previous one and a warn-
ing is issued. #undef removes it. Terminating a defi nition is done by the following
command:

#undef <TOKEN>;

Include Command
The command format is as follows:

#include "<FILENAME>";
 // Angular brackets may be used instead of the square quotes, or neither.

<FILENAME> may be either a simple name or a complete path.
Include preprocessor command inserts the whole text of the fi le FILENAME into

the program, and causes execution of all the preprocessor commands in it as well.
If FILENAME is a simple name (without a path), it is looked for in the current direc-
tory and in directories mentioned in the INCLUDE environment variable of the user; if
directory name include spaces, the whole list should be quoted in the command line.

Conditional Commands
Conditional preprocessor commands identify a block of code that is to be expanded
in the source, or not, according to a condition. The command format is as follows:

#if <LOGICAL_CONDITION>;

or
#ifdef <TOKEN>;

or
#ifndef <TOKEN>;

The "if" preprocessor command evaluates the logical_condition (including
tokens in it), and decides whether it is true or false. The "ifdef" will result true if
TOKEN is defi ned, and the ifndef will result true if TOKEN is undefi ned. The follow-
ing lines (up to the else or the endif preprocessor commands) will be included
in the program text if the condition is true; otherwise, they will be ignored. Prepro-
cessor commands in this block will be treated as well. #if-s may be nested as many
times as memory allows.

460 CHAPTER 11 EZchip Programming

Additional conditional commands are:

#endif;

Marks the end of an IF block.

#else;

Acts as a normal ELSE in an IF statement.

#elif <LOGICAL_CONDITION>; // may be also written #elsif

Equivalent to "#else; #if <LOGICAL_CONDITION>;"—except that an extra
#endif is not needed.

#elifdef <TOKEN>; // may be also written #elsifdef

Equivalent to "#else; #ifdef <TOKEN>;"—except that an extra #endif is
not needed.

#elifndef <TOKEN>; // may be also written #elsifndef

Equivalent to "#else; #ifndef <TOKEN>;"—except that an extra #endif is
not needed.

CHAPTER

12
The fi rst stop of the packet, as well as of our description of packet processing in
EZchip, is parsing: the stage in which the structure of the packet is analyzed and
keywords are parsed for further lookups.

TOPparse decodes, analyzes, and extracts frame headers and signifi cant fi elds
corresponding to all seven layers of the packet. This includes Medium Access
Control (MAC) addresses, Virtual Local Area Network (VLAN) tags, Ethernet frame
types, Multi-Protocol Label Switching (MPLS) tags, Internet Protocol (IP) options,
IP addresses, ports, HyperText Transfer Protocol (HTTP) information, Real Time
 Protocol (RTP) header, and so on. The headers and fi elds extracted by TOPparse
are passed as keys to TOPsearch.

This chapter outlines the TOPparse architecture, its functional blocks (called
devices), and its instruction set, in order to provide a general understanding of the
functionality of this Task Optimized Processor (TOP) engine. A simple example is
also given to demonstrate the use of the TOPparse. For those readers who would
like more complex examples, or who intend to write programs themselves, detailed
descriptions as well as lists of the most important registers and instructions can be
found in the appendices to this chapter.

12.1 INTERNAL ENGINE DIAGRAM
The block diagram (Figure 12.1) illustrates the internal blocks of a single TOPparse
engine.

12.1.1 Instruction Memory
The instruction memory contains microcode instructions for the TOPparse engines.

12.1.2 Pipeline Control
The pipeline control receives a command from the instruction memory, decodes
the command, and distributes the control signals to each block.

Parsing

462 CHAPTER 12 Parsing

12.1.3 Data Bus
The data bus supports a data fl ow between the TOPparse blocks.

12.1.4 Frame Memory
Frame Memory (FMEM) is a cache memory that contains a portion of the frame
that resides in the frame memory of the Network Processor (NP). The loading of
segments into the FMEM is completely transparent to the programmer who “sees”
the entire frame.

12.1.5 Key Memory
The Key Memory (KMEM) is a memory that stores extracted frame fi elds as keys to
be forwarded to the TOPsearch I stage. The memory also stores messages that are
being passed along to TOPresolve. All the internal TOPparse blocks can write to the
KMEM indirectly via the Key Base (KBS) address pointer register.

12.1.6 Register Blocks (User-Defi ned Register, Specifi c
Register, and Header Register)

The User-Defi ned Register (UREG) contains general-purpose registers for data pro-
cessing. Specifi c Registers (SREG) are dedicated to specifi c TOPparse functions.

Functional Blocks

Internal Registers Input/Output Memories

DATA BUS

CONTROL BUS

FMEM KMEM HREG CAMs UREG SREG

DATA BUS

HW_Dec SCAN
Instruction

Memory

Pipeline Control

Convert ALU FMEM—Frame Memory
KMEM—Key Memory
HREG—Header Register
UREG—User Register
SREG—Special Register
ALU—Arithmetic Logic Unit
HW_Dec—Hardware Decoder
CAM—Content Addressable Memory

FIGURE 12.1

TOPparse engine internal block diagram

The Header registers (HREG) contain descriptions of the KMEM contents, which
include information such the size of the key and what to do with the key. The
registers are described in Section 12.2, and some are detailed in Appendix A of
this chapter.

12.1.7 Arithmetic Logic Unit
The 32-bit general purpose Arithmetic Logic Unit (ALU) performs computational
functions. ALU source operands are by defi nition registers in any TOPparse
device. To use an operand from the memory, the programmer must fi rst copy it
to a register and then use it as an ALU source. ALU feedback registers are used for
consecutive operations in order to avoid data hazards.

12.1.8 Content Addressable Memories
Content Addressable Memories (CAMs) compare keys to entries to fi nd a match and
corresponding results. There are a wide variety of CAMs for rapid matching of well-
known frame identifi ers, for example, Bridge Protocol Data Unit (BPDU), IP protocol,
IP options, IP addresses, and IP ports. ASCII identifi ers can also be matched quickly, for
example, HTTP “GET,” HTTP “POST,” or Real Time Streaming Protocol (RTSP) “Cseq.”

In TOPparse, there are four CAM tables depending on the width of the entry: 8,
16, 32, and 64 bits. In the 8/16/32-bit binary CAM tables, the size of the key must
match the size of the entry exactly, whereas in the 8-character (64-bit) ternary
CAM table, “don’t care” bits can be used to defi ne characters in the keys that are
irrelevant. For instance, if a 64-bit key has 8 characters and 5 of the characters are
set to “don’t care,” then a 3-character key can be used. The ternary CAM also sup-
ports case insensitivity as defi ned by one bit per character.

All CAM results are 16 bits and may be used to indicate a jump to a specifi ed
address in the code memory. A CAM table may be divided into sections for layer 2
(L2), layer 3 (L3) protocols, and so on. Table entries may be divided into groups, up
to eight in number, to support keys with multiple results. Three group bits are used
to specify to which group a CAM entry corresponds. Keys can be downloaded to
the CAMs during resource initialization (see Section 12.4.1).

12.1.9 Convert Block
The Convert Block converts an ASCII string to a binary number. The ASCII string is
either a decimal number (maximum of fi ve characters) or a hexadecimal number
(maximum of four characters), depending upon the command parameters. The
Convert Block is useful in applications such as Network Address Translation (NAT).

12.1.10 Hardware Decoder Block
The hardware decoder performs preprocessing of frames, up to the IP Options,
before microcode execution begins. It is designed to support IP Version4 (IPv4)
and IP Version6 (IPv6) with/without MPLS using Ethernet or Point-to-Point Protocol

12.1 Internal Engine Diagram 463

464 CHAPTER 12 Parsing

(PPP) encapsulation. The hardware decoder can traverse up to four labels in the
MPLS label stack.

The hardware decoder can also be confi gured to search for up to 64 bits of
user-defi ned data. At initialization, the host must set the hardware decoder to
 process either Ethernet or PPP frames. The hardware decoder block writes into
the Hardware registers (HWARE), which is described in Section 12.2.1, and detailed
in Appendix A of this chapter.

12.1.11 Text Scanning Block
The SCAN block is a text-scanning engine for identifying delimiters and tokens in
text strings. SCAN searches the contents of FMEM for tokens, which are character
strings located between defi ned delimiters (such as a space or tab). Any 8-bit char-
acter may be defi ned as a delimiter. Programmers may defi ne up to 16 delimiters
and use masking to determine which of the delimiters are used in the current
SCAN operation. SCAN operations are performed either forwards or backwards
along the frame.

The SCAN engine can extract the string between two delimiters. The strings
can be a URL or signifi cant key words. URLs can be passed as keys for TOPsearch,
while keywords can be used for searching in the TOPparse TCAM. The SCAN block
performs four operations:

■ Find delimiter—locates the next defi ned delimiter in the bit stream.
■ Find nondelimiter—locates the next character that is not defi ned as a

 delimiter.
■ Find token—performs “fi nd delimiter” followed by “fi nd nondelimiter,” which

leads to the beginning of the next token.
■ Get token—performs “fi nd nondelimiter” followed by “fi nd delimiter.” The data

scanned can be written to a specifi ed destination, such as KMEM or a register.

The SCAN contains four output registers that are updated following each scan
operation. The registers specify the start (SCAN_START), the end (SCAN_STOP),
the size of the scanned data (SCAN_SIZE), and the termination cause (SCAN_TC).

When the SCAN operation reaches the end of the frame, it can generate an
end-of-frame (EOF) interrupt to a subroutine. When the SCAN operation terminates
due to the limit or due to an EOF, the reason is indicated in the termination cause
register.

The SCAN block also changes the value of two registers during its execution:
IND_REG[0] when writing to a register, and KBS0 when writing to KMEM.

At the end of SCAN operations, the character that results in the termination
(either delimiter found or nondelimiter found) is written to the SCAN_TC.
 If, as mentioned before, the reason for the termination is that EOF occurred, this
is also indicated in the SCAN_TC (see instructions descriptions, Section 12.4.5 and
Appendix A of this chapter).

12.2 TOPPARSE REGISTERS
There are two sets of registers in the EZchip TOPparse; one that is accessible
directly through the TOPparse microcode, and the other, which must fi rst be ini-
tialized by the host (through the host interface) prior to the TOPparse execution,
and only then can be read by the TOPparse microcode.

12.2.1 Microcode Registers
The tables that follow list the TOPparse registers and structures that are accessible
from the microcode. Detailed descriptions of the registers are given in Appendix A
of this chapter. All registers can be written to in bits or bytes. All registers are accessed
by the register name and the index in square brackets, example, UREG[3], or by their
defi ned name, example, LIM_REG (provided, of course, that they were defi ned as
such in the source program or in the libraries). The registers are intended for spe-
cifi c purposes and, consequently, have dedicated input sizes. For instance, attempt-
ing to write 8 bits into a 5-bit register will result in only the fi rst fi ve bits being
written. The R/W column indicates whether the register is read, write or both.

The UREG registers (Table 12.1) are composed of 16 registers, each of 32
bits, and are used for general purpose, though some may have specifi c purposes
 depending on the use of the other blocks of the TOPparse. The UDB register (which
is UREG[0]) is zeroed for each new frame.

Table 12.1 TOPparse UREG Registers

Index Register name Size (bits) Bytes (bits) Description R/W

0 UDB 32 bits 4 (32) User-defi ned bits. Each bit may serve
as a condition in an IF statement.

R/W

1 OFFS_FMEM0 32 bits 4 (32) Possible index to frame memory
address.

R/W

2 OFFS_FMEM1 32 bits 4 (32) Possible index to frame memory
address.

R/W

3 LIM_REG 32 bits 4 (32) Register for limit parameter in SCAN
operations.

R/W

4 OFFS_KMEM 32 bits 4 (32) Possible index to KMEM address. R/W

5 DELIM_MASK 32 bits 4 (32) Indirect delimiter mask for scan
operation (16 lsb).

R/W

. . .

15 32 bits 4 (32) General-purpose register. R/W

12.2 TOPparse Registers 465

466 CHAPTER 12 Parsing

Table 12.2 TOPparse FBLK Registers

Index Register name Size (bits) Bytes (bits) Description R/W

0 SCAN_START 14 bits 4 (14) Start address of found token.
See Section 12.4.5.

R

1 SCAN_STOP 14 bits 4 (14) End address of found token. R

2 SCAN_SIZE 14 bits 4 (14) Size of found token. R

3 SCAN_TC 22 bits 4 (22) Scan result bitmap and termination
cause.

R

4 ALU 32 bits 4 (32) ALU register. See ALU Commands in
Appendix C of this chapter.

R/W

5 CAMI 32 bits 4 (32) CAM in register. See CAM Operations
in Appendix C of this chapter.

R/W

6 CAMIH 32 bits 4 (32) CAM in high register. R/W

7 CAMO 16 bits 4 (16) CAM out register. R

8 CNVI 32 bits 4 (32) Convert in register. See Section 12.4.4. R/W

9 CNVIH 8 bits 4 (8) Convert in high register. R/W

10 CNVO 16 bits 4 (16) Convert result. R

13 SCAN_REG_HI 16 bits 4 (16) Interface to statistics block. R/W

The Functional Block (FBLK) registers (Table 12.2) are composed of 14 variable
length registers, and contain registers for the SCAN, ALU, CAM, and convert
 operations.

The Specifi c Registers (SREG) are composed of 16 variable length registers (see
Table 12.3). The RD_PTR register (which is SREG[0]) is zeroed for each new frame.
The key Header register (HREG) fi le (Table 12.4) contains 16 registers, each of
24 bits. The Hardware (HWARE) registers contain 10 variable bits registers, which
are initialized by the hardware decoder block according both to the arriving frame
and to a set-up register that tells the hardware decoder how to decode the incom-
ing frame. (See Table 12.5.)

Table 12.3 TOPparse SREG Block

Index Register name Size (bits) Bytes (bits) Description R/W

0 RD_PTR 14 bits 4 (14) FMEM base address. R/W

1 CNT 8 bits 4 (8) Counter for loops. R/W

Table 12.3 (continued)

Index Register name Size (bits) Bytes (bits) Description R/W

2 PC_STACK 16 bits 4 (16) Stack for PC used for
subroutines

R/W

3 FLAGS 16 bits 4 (16) Flag register. See Appendix A of
this chapter.

R

4 SIZE_REG 5 bits 4 (5) Dedicated size register. R/W

5 IND_REG0 16 bits 2 (3 � 2
� 4)

Dedicated offset register for
 indirect access to all devices.

R/W

5 IND_REG1 16 bits 2 (3 � 2
� 4)

Dedicated offset register for
 indirect access to all devices.

R/W

6 STAT_REG 32 bits 4 (32) Interface to statistics block. R/W

7 HOST_REG 32 bits 4 (32) Interface to host. R/W

8 RFD_REG0 10 bits 4 (10) Interface to RFD (received frame
descriptor) register.

R/W

9 RFD_REG1 26 bits 4 (26) Interface to RFD register. R/W

10 EOF_ADDR 10 bits 4 (10) Jump address in case of
EOF. See Section 12.4.5.

R/W

11 HBS0
HBS1
HBS2
HBS3

4 � 4 bits 4 (4 � 4 �
4 � 4)

Indirect headers pointer. R/W

12 KBS0
KBS1

2 � 9 bits 4 (9 � 9) Base addresses for key memory. R/W

13 KBS2
KBS3

2 � 9 bits 4 (9 � 9) Base addresses for key memory. R/W

15 NULL_REG NA NA Dump register. R

12.2 TOPparse Registers 467

Table 12.4 TOPparse HREG Block

Index Register name Size (bits) Bytes (bits) Description R/W

0 24 bits 4 (24) HREG registers, containing headers of
the keys and messages, as described
in Chapter 13.

R/W

. . .

15 24 bits 4 (24) R/W

468 CHAPTER 12 Parsing

It should be noted that HD_REG3 and HD_REG4 (HWARE[3] and HWARE[4])
contain values according to the ingress port of the frame and the content of the
CREG registers, for example, for a frame that entered the network processor in
port 0, HD_REG3 receives the contents of CREG0. Thus, these can be used to share
data between the host and the microcode, according to the ingress port. Further
description is provided in Appendix A of this chapter.

12.2.2 Host Registers
All host registers are initialized by the host; however, the initial values for some
are inserted into the NP-1 microcode for loading. These initialization commands
are “executed” by the host prior to executing the program in the instruction
 memory.

Table 12.6 lists all of TOPparse’s host registers and indicates which registers
have their initial values in the NP microcode. A detailed description of some of the
registers is provided in Appendix A of this chapter.

As described previously, CREG registers are shared with the HD_REG3 and
HD_REG4 (HWARE[3] and HWARE[4]), according to the ingress port of the frame;

Table 12.5 TOPparse HWARE Block

Index Register name Size (bits) Bytes (bits) Description R/W

0 HD_REG0 32 bits 4 (32) Hardware decoding; see Appendix A. R

1 HD_REG1 32 bits 4 (32) Hardware decoding. R

2 HD_REG2 32 bits 4 (32) Hardware decoding. R

3 HD_REG3 32 bits 4 (32) User defi ned data per in port. See
CREG description in Appendix A.

R

4 HD_REG4 32 bits 4 (32) User defi ned data per in port. See
CREG description in Appendix A.

R

6 HISTORY0
HISTORY1

2 � 10 bits 4 (10 � 10) Instructions in pipeline. R

7 HISTORY2
HISTORY3

2 � 10 bits 4 (10 � 10) Instructions in pipeline. R

8 UNIT_NUM 4 bits 1 (4) TOP engine number. R

8 HOST_BITS 8 bits 3 (8) User defi ned bits for NP chip. R

9 SOURCE_PORT_
REG

8 bits 1 (8) Source port from hardware decoder. R

Table 12.6 TOPparse Host Registers

Address Name Description Init

0x00 INT_REG Interrupt register. Host only

0x01 � 0x05 WIDE_LOAD[5:0] Load SRAM instruction register and CAMs. Host only

0x08 HOST_CONF Host confi guration register for decoding. Host only

0x09 UNIT_MASK Enables TOPparse engines. Host only

0x40 � 0x4F MREG[15:0] ALU mask register. Microcode

0x50 Reserved Reserved.

0x51 � 0x54 DEL_VECTOR[3:0] Load SCAN delimiters register, contains
16 characters.

Host only

0x56 � 0x65 CREG[15:0] User-defi ned port data register. Host only

0x67 BR_ADDR Service routine address. Host only

0x80 � 0x85 HOST_REG[5:0] Host debug register.

0x8C MCODE_BR_INT Microcode execution or break point
 command.

0x8D STATUS_REG Status register.

12.4 TOPparse Instruction Set 469

for example, a frame that entered the network processor in port 0, HDREG3
receives the contents of CREG0.

12.3 TOPPARSE STRUCTURES
TOPparse maintains various types of memories, as described in Table 12.7. Key
Memory is accessed indirectly via the KBS register.

12.4 TOPPARSE INSTRUCTION SET
This section lists the specifi c instructions of the TOPparse microcode that are
not common NP instructions described in Chapter 11.

The microcode execution begins on the fi rst instruction for each new frame.
After the frame parsing, programmers are responsible for writing the keys for
 TOPsearch in KMEM (PutKey instruction) and the key headers in HREG (PutHdr

470 CHAPTER 12 Parsing

instruction). A header must accompany each single key, since each may be
 processed by a separate TOPsearch engine. Each key header contains the structure
number (and therefore the type of the structure), according to which a search
will be done. Compound keys (complex searches that involve several lookups) are
defi ned by a single header. The format of the header is located in Section 13.4 in
the next chapter.

Programmers are also responsible for writing a TOPparse messages destined
for TOPresolve in KMEM (PutKey instruction). The messages are actually keys
that, instead of being processed by TOPsearch, are passed as is to TOPresolve.
A message may include fi elds from the hardware decoder, notably the frame
pointer, frame length, and time stamp, as well as other data obtained from
the frame and needed down the line. The format is located in Section 13.4 in
the next chapter.

12.4.1 Resource Initialization
Initialization commands are “executed” by the host rather than by the TOPs; they
indicate the initial values given to the mask registers and to various CAMs prior to
executing the program in the instruction memory. Table 12.8 lists the initialization
commands.

12.4.2 Move Commands
Move commands copy data (bits, bytes, and words) from various sources to various
destinations, as described in the previous chapter (EZchip Programming). Move
command names (the opcode mnemonic) indicate the type of move, as defi ned in
Table 12.9 and Figure 12.2.

Table 12.7 TOPparse Memories and CAMs

Name Description

FMEM Frame memory

KMEM Key memory

BCAM8 Content Addressable Memory (CAM, a table for exact searches)

BCAM16 CAM

BCAM32 CAM

TCAM64 Ternary CAM (TCAM, a table for pattern searches)

12.4 TOPparse Instruction Set 471

Table 12.8 Initialization Commands

Syntax Description

LDREG CREG [n], value; Load value to the CREG register (see Appendix A)
n – 0–15
value—number to load to this register.

LDCAM CAM [CAMgp], KEY, value; Load KEY to a specifi c CAM.
CAM—specifi c CAM (BCAM8, BCAM16, BCAM32)
CAMgp—group number (0, 1, 2, … 7)
KEY—number to load to this CAM
value—either a 16-bit numeral or a label. Possibly the number of
NOPs to insert, written as Label_name | # NOPs, where #NOPs is
_NOP0, _NOP1 or _NOP2).

LDTCAM CAMgp, str1, str2, value;

For example,

LDTCAM TCAM64 [0], “ABCD??34”,

“00110000”, VALUE;

Load string to the Text CAM (TCAM64).
CAMgp—group number (0, 1, 2, … 7)
str1—“string” or you can use “\t”,“\r”,“\n”, “\xx”, or “\?”
 where xx is hexadecimal number and ? is a wildcard.

Limitation: The backslash may be specifi ed with “\\”. However, the
sequence “\\?” results in the character “?”, and “\\\?” results in the
two characters “\” and “?”.

str2 � 0 means case sensitive;
 � 1 means case insensitive.
value— the result of the search in the CAM (LookCam
command) for the specifi c key.

This example searches for ABCD??34, ABCd??34,
ABcD??34 or ABcd??34, where ?? are any
two characters.

LDDV string

For example,

LDDV “;:-/”

Load string of the delimiters to the DEL_VECTOR register (see
 Appendix A). Up to 16 delimiters characters) are supported.

This example loads four delimiters: semicolon (bit 0),
colon (bit 1), dash (bit 2) and slash (bit 3). These may be masked
in scan operations.

12.4.3 LookCam DST, SRC, TYPE, SIZE
Defi nition: Search in a CAM indicated by TYPE. Use source (SRC) for search key and

put result in destination (DST), which is the CAMO. If the type is TCAM,
search for SIZE bytes.

Example: LookCam CAMO, CAMI, BCAM8 [1], 1;

Description: Search in BCAM8, group 1 key from CAMI and put result in CAMO if
match.

472 CHAPTER 12 Parsing

Table 12.9 List of All Move Commands

Name Description Max. Size*

Mov Move bytes from immediate value or register to register 4 bytes

MovBits Move bits from immediate value or register to register 16 bits

Mov4Bits Move 4 separate bits 4 bits

Get Move bytes from memory (FMEM) to register 8 bytes

PutKey Move bytes from register or immediate value to memory (KMEM) 4 bytes

Copy Move bytes from memory to memory 8 bytes

PutHdr Write bytes from immediate value or register to header 3 bytes

PutHdrBits Write bits group from immediate value or register to header 16 bits

PutHdr4Bits Write 4 bits with immediate values or from register to header 4 bits

*Maximum size that can be moved; also limited by the size of the register.
NOTE: Immediate offsets are limited to 9 bits, which indicate a size of 255 bytes.

FIGURE 12.2

TOPparse move commands name prefi x mnemonic

FMEM Registers

COPY

GET
KMEM

HDR

PutKey

PutHdr

MOV

12.4.4 Convert SRC, SIZE [, BASE]
Defi nition: Convert numbers from ASCII to binary format. The ASCII string can be

either a decimal number (maximum of fi ve characters) or a hexadecimal
number (maximum of four characters) depending upon the BASE. This
operation is useful in applications such as NAT. The source (SRC) is of
SIZE bytes, and the result is written into the CNVO.

Example: Convert UREG[7], 3, _DEC_PRS;

Description: Convert 3 character string from UREG[7] to binary number. If
UREG[7] contains an incorrect decimal number in ASCII format, the
CV fl ag is set.

12.4.5 Scan Operations
Scan operations enable the programmer to use one instruction to scan the
frame rapidly to search for multiple tokens or multiple specifi c characters. Scan
 operations are composed of the four commands listed in Table 12.10. The overall
 format of scan operations is:

Command DST,SRC,DELIM,LIMIT[,DIR[,EOF]];
 // See commands in Table 12.10.

Defi nition: The scan command starts scanning at the source point (SRC) up to a
LIMIT, and copies the result to the destination (DST). It uses a mask
(DELIM) on the delimiter vector it maintains, in order to choose the
desired delimiters that will be used for the search. DIR is used to
indicate a forward or backward search, and EOF indicates whether
an end-of-frame (EOF) jump will be executed in case of an EOF. For
a detailed use of the scan operations, please refer to Appendix C of
this chapter.

12.4.6 Conditional Commands
Some of the instructions can be preceded by conditional statements that function
as part of the instructions, that is, they are coded in one machine instruction, and
are executed at the same time as the unconditional statements. These TOPparse
commands are listed in Table 12.11.

12.4 TOPparse Instruction Set 473

Table 12.10 Scanning Operations

Name Description

FindDel Find delimiter in frame, that is, scan the frame for the fi rst enabled CHAR in the vector of
delimiters

FindNonDel Find nondelimiter in frame, that is, scan the frame for the fi rst character that is not a
 delimiter

FindToken Find token in frame, that is, scan for a delimiter and then scan for a nondelimiter character

GetToken Get token in frame, that is, scan for a nondelimiter character and then for a delimiter
 character

474 CHAPTER 12 Parsing

12.5 EXAMPLE
In this example, the hardware decoder inspects each frame to determine whether
or not it has a VLAN tag. The resulting information is passed as a message to
 TOPmodify, where it is used to determine the proper treatment for the frame. If
the frame is found to have a VLAN tag already, a CSIX header is added and the frame
is transmitted to the Virtual Output Queue; otherwise, a VLAN tag is inserted to the
frame header prior to its transmission.

In the following TOPparse example, the NP processes the frames on the ingress
path—that is, the frames that arrive from the network and that are transmitted
to the switching fabric. The NP examines the arriving frames for a VLAN tag. The
results of this inspection are put into a message, and the frame and the message are
sent to the next TOP in the pipeline for further processing.

Defi nitions and macro fi les for this sample application are located after the
sample codes and explanations.

12.5.1 Program Flow
Prior to execution of TOPparse microcode, the NP hardware decoder automatically
inspects each incoming frame and provides useful information about the frame for
microcode use, which is found in the HWARE register. The TOPparse program’s
steps are as follows.

1. A TOPparse-to-TOPresolve message is prepared containing information
extracted by the hardware decoder and destined for subsequent TOPs in
the pipeline. The message is passed through TOPsearch I using the same
 mechanism as that used to pass search keys and key headers.

TOPparse passes the message (as well as the keys) to TOPsearch I engines,
via the KMEM (NP-1 internal key memory). Each message and each key is
accompanied by a header that is passed via HREG (NP-1 internal header

Table 12.11 TOPparse Conditional Commands

Mov Call

MovBits CallStack

Get PutHdr

Copy PutHdrBits

PutKey Convert

Jmp Return

Jstack

structure), providing details regarding the message or the key. The message
header structure in this example, according to Table 12.12, is as follows:

HW_HEADER = 0x1E031 = 0001 1110 0000 0011 0001

2. The hardware decoder inspects whether an arriving frame contains a VLAN
TAG, and sets a bit in HD_REG0 (bit 17), accordingly. TOPparse passes this
information in the same message used to pass the hardware registers.

3. TOPparse fi nishes working on the frame and Halt HALT_UNIC passes the
current frame to TOPsearch I.

12.5.2 TOPparse Sample Microcode
The following code implements the TOPparse stage of the VLAN Example:

Eztop Parse;
#include “mcglobal.h” // Global defi nition fi le, contains predefi ned

// constants for NOPs, fl ags, etc.

#include “TOPParse.h” // TOPparse defi nition fi le, provides
// recognizable names for registers and fl ags.

#include “hdreg.h” // Global defi nition fi le supplied to provide
// recognizable names to the HW decoded registers.

// Constants:
#defi ne HW_HEADER 0x1E031;
#defi ne vlanTagExists UDB.BYTE[0];

START: //Beginning of microcode sequence
 /////////// Step 1: Create TOPparse-TOPresolve message ///////////
 Mov KBS0, 0, 2; //Initialize KBS0 to point to the base of KMEM

 // Step 2: Initialize vlanTagExists with the value HD_REG0 bit 17
// (0 = TAG does not exist, 1 = TAG exist).

12.5 Example 475

Table 12.12 Message Header Structure

0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1

6 bits representing the msg
length. In 0base and in 2-
byte resolution. (7 � 1) *
2 = 16 byte msg length.

Valid msg
(not
key)

Structure number 0 Last
key

Single
Key

4 bits representing
the number of
bytes in msg. In
0base and 8-byte
resolution. (1 � 1)
* 8 = 16 byte msg
size.

476 CHAPTER 12 Parsing

MovBits vlanTagExists.BIT[0], sHR0_bitTagExists, 1;

 // Always set the LSB bit of the fi rst byte of the message. (TOPresolve
// must receive the message and the search results in the same format.
// The fi rst byte of a search result is a control byte with its lsb a
// valid bit).

PutKey 0(KBS0), 1, 1;
 PutKey 1(KBS0),HD_REG0,4; //Insert HW decoder registers into KMEM
PutKey 5(KBS0),HD_REG1,4;
PutKey 9(KBS0),HD_REG2,4;

 // Send whether the arriving frame contains a VLAN TAG as a message
// byte to TOPresolve.

PutKey 13(KBS0),vlanTagExists,1;
 PutHdr HREG[0],HW_HEADER,3; // Insert the message header to HREG

 //Step 3: ///
 Halt HALT_UNIC; //pass frame to the next stage in the pipeline

12.5.3 Defi nition Files
There are three header fi les used in this example, the “mcglobal.h,” the “TOPParse.h,”
and the “hdreg.h” fi les.

The microcode global Defi nition fi le (mcglobal.h) is as follows:

#ifndef _mcglobal_h_ ;
#defi ne _mcglobal_h_ ;
...

// HALT type defi nes
#defi ne HALT_UNIC 0 ; // unicast
...

#endif /* _mcglobal_h_ */ ;

The hardware decoding Defi nition fi le (hdreg.h) is as follows:

#ifndef _hdreg_h ;
#defi ne _hdreg_h ;

#ifndef sHR0 ;
#defi ne sHR0 HD_REG0 ;
#endif ;
// length
...

#defi ne sHR0_bitTagExists sHR0.BIT [17] ;// 1
...

#endif ;

The TOPparse Defi nition fi le (TOPparse.h) is as follows:

#ifndef _TOPparse_h_ ;
#defi ne _TOPparse_h_ ;
#defi ne _TOPPARSE ___TOPPARSE ;
// UREG
#defi ne UDB UREG [0] ;
...

// SREG
#defi ne KBS0 SREG [12] ;
...

// HWARE
#defi ne HD_REG0 HWARE [0] ;
#defi ne HD_REG1 HWARE [1] ;
#defi ne HD_REG2 HWARE [2] ;
...

#endif /* _TOPparse_h_ */ ;

12.5.4 TOPsearch I Structures
Table 12.13 describes the TOPsearch I data structures, which TOPparse assumes
or builds while running the microcode. In our example, a message created in
 TOPparse for TOPresolve is placed in structure number 0 on the ingress path. A
message header (or key header) must accompany each message (or key) passed to
TOPsearch I, as described previously.

12.5.5 TOPparse–TOPresolve Hardware Decoded Message
Table 12.14 provides the format of the 14-byte message (padded to 16-byte) from
TOPparse to TOPresolve via TOPsearch I on the ingress path. This message is
placed in TOPsearch I structure #0. This message contains information extracted
by the HW decoder destined for TOPs down the line.

12.5 Example 477

Table 12.13 TOPsearch I Structure

Name
Structure
type

Structure
number Path Used for

Key size
(bytes)

Result size
(bytes)

TOPparse–
TOPresolve
message

(Message) 0 Ingress L2 � L3,
VLAN tag fl ag

478 CHAPTER 12 Parsing

12.6 SUMMARY
The internal structure of TOPparse is described in this chapter, including its
 registers and data structures, as well as its blocks (functional units) and instruc-
tion set. The appendices of this chapter provide more details about the registers
and the instruction set for those who need them either to understand a code or
to write one. In the next chapter, we describe very briefl y the TOPsearch I engine,
which is the next processor in the EZchip network processor pipeline.

Table 12.14 TOPparse to TOPresolve Message

Field name Byte offset Size (bits) Note

Valid 0 1 Always 1 for messages

To host 0 1 1—send to host

TTL_EXP 0 1 From HD_REG0 b28

Ctrl reserved bits 0 5

HD_REG0 1–4 32 HW decoding

HD_REG1 5–8 32 HW decoding

HD_REG2 9–12 32 HW decoding

vlanTagExists 13 1 Indicates whether the arriving frame contained a
VLAN tag fi eld.

APPENDIX A
DETAILED REGISTER DESCRIPTION

A detailed description of some TOPparse devices and registers is given in this
appendix. Though some of the information here duplicates that which can be found
in the body of the chapter, the details and descriptions are fl eshed out considerably.

MICROCODE REGISTERS
The microcode registers contain registers that the microcode access for normal
operations during program execution. These registers include functional, specifi c,
and hardware registers.

Functional Block Registers
The Functional Block (FBLK) registers contain registers for the SCAN, ALU, CAM,
and convert operations, as described in Table A12.1.

479

Table A12.1 TOPparse Detailed FBLK Registers

Register name Description
SCAN_TC 22-bit register specifying the SCAN termination cause. Bits 0–15 refer to the 16

 different delimiters and nondelimiters that can be user-defi ned. When the SCAN
 operation terminates on ‘fi nd delimiter’ or ‘fi nd token’, the corresponding delimiter
vector in bits 0–15 is set. When SCAN terminates on ‘fi nd nondelimiter’ or ‘fi nd token’,
then bits 0–7 contain the fi rst nondelimiter that caused the termination of the operation.

Bit 20 indicates that the limit of the SCAN has been reached, for example, if scan-
ning was limited to 20 bytes and it fi nished scanning those bytes. (NOTE: Bits 19:16
are reserved.)

Bit 21 indicates that SCAN reached the end of the frame.

CAMI/CAMIH CAM input register—an 8-byte register divided into two 4-byte registers. A unique
mechanism enables writing to it as if it were a single 8-byte register. When it reaches
the end of the fi rst register, data will automatically wrap into the second register. This
enables writing from memory 8 bytes at a time.

CAMO CAM output register—16-bit register containing the results of the CAM search. CAMO
can either be used as an immediate data store for 16 bits, or a jump address for bits
0–13 and specifying the number of NOPs used for the branch in bits 14–15.

CNVI/CNVIH Convert input register—a 5-byte register divided into two registers: 4 bytes and
1 byte. A unique mechanism enables writing into it as if it were a single 5-byte
register. When it reaches the end of the fi rst register, data will automatically wrap into
the second register.

CNVO 16-bit Convert output register.

STAT_REG_HI 16-bit operand for the statistics block See the STAT_REG register for the address and
command.

480 CHAPTER 12 Parsing

Specifi c Registers
The SREG contains specifi c registers for the counter block, fl ags, indirect access,
and interfaces to external devices, as described in Table A12.2.

Table A12.2 TOPparse SREG Registers

Register name Description

CNT 8-bit register to support loops. The program branches on the counter and
checks its value. If the counter value is not zero, then the program jumps to
the start of the loop. Each branch on the value of the counter automatically
decrements the counter by one. That is, it counts down per each loop. Up to
256 repetitions of a particular sequence of code are supported. The depth of
the Counter register is one. The counter can read/write to a register in order to
implement nested loops.

PC_STACK 16-bit register for call commands (that is branch � set bit to push to stack). For
each call command, the content (branch address �3 – #NOPs) is automatically
written to PC_STACK. The PC_STACK has a depth of one. The PC_STACK can be
read/write by the user in order to build nested call commands. The call command
contains the number of NOPs that follow the relevant return command.

SIZE_REG 5-bit register for an indirect size. The size is specifi ed in either bits or bytes,
depending on the instruction.

HBS Indirect address of the index fi eld in the format: device � index � byte � bit.

KBS Four 9-bit base addresses for KMEM. There are four KBS registers that enable
 TOPparse to write four keys simultaneously. KMEM is always accessed in the format:
base address � index. Auto increments the base address (offset � base � size).

NULL_REG Dump register for unwanted data. Writing to NULL_REG has no effect and reading
from it implies zero.

EOF_ADDR 10-bit end of address register. Each time that FMEM is accessed and requested to
read data beyond the end of the frame there are two possibilities:

1. Interrupts to a different routine in the code.
2. If the interrupt has been disabled, then garbage is read/written.

In both situations, the EOF fl ag is set. The two most signifi cant bits specify the
number of NOPs.
NOTE: To read data in the frame, but not in the current window, machine operation
is stalled until the DMA loads the next window. As the window always moves
forward along the frame, the frame should be parsed from beginning to end. Going
back beyond the boundary of the current windows can result in having to read the
frame from the beginning again, which is time consuming.

FLAGS 16-bit fl ag register. The defi ned bits and bit fi elds within the FLAGS register control
specifi c operations and indicate the status of the network processor (see Table A12.3).
ZR—zero fl ag
CY—carry fl ag
SN—sign fl ag
OV—overfl ow fl ag (0 � no overfl ow; 1 � overfl ow)

Appendix A: Detailed Register Description 481

Table A12.3 TOPparse Flags

bit# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CO ED LM CV RD MH HT ST LP OV SN CY ZR

The following registers (STAT_REG, RFD_REG0 and RFD_REG1) act as output
interface (OUT_IF) registers to access external blocks, even though they belong
to the SREG device (see Table A12.4). Programmers must check the ready fl ag to
ensure that these registers can be written to. Attempting to write to one of these
blocks when it is not ready will result in data loss.

Table A12.4 SREG Output Interface Registers

Register name Description

STAT_REG 32-bit interface to the statistics block: address (b31:8), reserved (b7:3), and com-
mand (b2:0). Valid commands are increment (000), decrement (101) and reset (001).
 Increment and decrement commands use the operand in the STAT_REG_HI register.

RFD_REG0 10-bit interface to the RFD table: (7:0) data and (9:8) command. Command bits:
1—Recycle, 2—Read, and 3—Write. The command bits are the trigger for setting the
ready fl ag. Data cannot be written to RFD_REG0 or RFD_REG1 until the fl ag is cleared.

RFD_REG1 26-bit interface to the RFD table. The register format differs depending on the NP
mode as confi gured. In NP-1c mode, for example, its format is:(15:0) pointer, (20:16)
number of buffers, (24:21) port number, and (25) multicast.

Hardware Registers
The Hardware Registers (HD_REG) contain fi ve 32-bit registers specifying the
 information that was hardware decoded from a frame (see Table A12.5). TOPparse
automatically performs the initial classifi cation of ingress frames (up to the IP
options) without requiring microcode instructions. It is designed to support IPv4

Table A12.2 (continued)

Register name Description

LP—loop counter register (0 � CNT register is not zero; 1 � CNT register is zero)
ST—statistics register (0 � interface ready; 1 � not ready)
HT—host register (0 � interface ready; 1 � not ready)
MH—CAM match fl ag (0 � no match; 1 � match)
RD—RFD interface (0 � interface ready; 1 � not ready)
CV—Convert command (0 � no error; 1 � ended with error)
LM—SCAN command (0 � limit not reached; 1 � limit reached)
ED—end of frame (0 � not EOF; 1 � reached EOF)
CO—convert overfl ow (1 � overfl ow; 0 � normal)

NOTE: In microcode, the fl ags are referred to as FLAGS.BIT [F_x_PRS], where x is the fl ag name from the
table below; for example, FLAGS.BIT [F_ZR_PRS].

482 CHAPTER 12 Parsing

and IPv6 with/without MPLS using Ethernet or PPP encapsulation. Up to four MPLS
labels may be traversed. The label that comes after the L2 level is referred to as
“top” and the label that comes before the L3 level is “last.”

These registers are read only and may be read like any other register. Using the
offsets, additional information may be obtained from the frame. The values of the
fi elds for the most common protocols for Layers 2 and 3 may be accessed since
their location in the frame is fi xed related to either the beginning of the frame or
the pointer to Layer 3 offset (L2 size).

Usually programmers will send information, such as the frame pointer, frame
length, and time stamp as a message, to the TOPs down the line. The hardware
decoder may be set by the host to support either Ethernet frames or PPP (see
Table A12.5).

The hardware decoder can also be confi gured to search for up to 64 bits of
user-defi ned data as defi ned by the CREG register and HD_REG 3/4, described in
the following. A check mark in the Egress path column in Table A12.5 indicates that
the fi eld is set on the egress path as well.

Table A12.5 Contents of HD_REG Based on Hardware Decoding

Contents and description
Offset
(bits)

Size
(bits)

Egress
path

HD_REG 0

Layer 2 header size. Five LSB are valid. 0–4 5 –

Reserved, set to 0. 5–7 3 –

Direction frame was received from: 0—RX (ingress path); 1—TX (egress path). 8 1 √

Layer 3 type:
0—L3 undefi ned; 1—L3 is IP (Ethernet protocol type 0x0800 or 0x86DD);
2— L3 is MPLS unicast (0x8847); 3—reserved; 4—L3 is MPLS multicast

(0x8848).

9–11 3 –

First buffer length control (required for TOPresolve and TOPmodify). It contains
7 if frame length > 448; otherwise, add one for each 64 bytes starting from one. 12–14 3 √

Layer 2 protocol type:
0—undefi ned; 1—“Old” Ethernet (EtherType 2); 2—PPP

15–16 2 –

Existence of TAG: 0—TAG does not exist; 1—TAG exists 17 1 –

CFI bit of VLAN tag 18 1 –

DA format. Only one of b21:19 will be set. Defi ned even if the L2 protocol
type is undefi ned.

 DA � BROADCAST (FF FF FF FF FF FF)
 DA � MULTICAST (byte[0].bit[0] ��1)
 DA � BPDU (01 80 C2 00 00 xx)

19
20
21

1
1
1

–
–
–

Appendix A: Detailed Register Description 483

Table A12.5 (continued)

Contents and description
Offset
(bits)

Size
(bits)

Egress
path

Only one of b26:22 will be set. For MPLS (unicast or multicast), indicates
the top label location.

 DIP � BROADCAST One label in MPLS label stack
 DIP � MULTICAST: 0xE******* Two labels in MPLS label stack
 (IPv4)/FF*… DIP.byte[1].bit[4]
 �� 1 (IPv6)
 DIP � Well-known multicast: Three labels in MPLS label stack
 0xE00000**/FF*. . .
 DIP.byte[1].bit[4] �� 0 (IPv6)
 IPv6 multicast – RFC 2373
 IP version: 0—IPv4, 1—IPv6 Four labels in MPLS label stack
First fragment if IP fragmentation More than four MPLS labels

22 1 –

23 1 –

24 1 –
25 1 –
26 1 –

Is fragmentation allowed? From IP header byte[6].bit[6]. 27 1 –

Is TTL expired? TTL �� 0 or TTL �� 1.
For IP frames, from IP header. For MPLS frames, from top label. Not
valid for other frame types. 28 1 –

TTL expired value. 29 1 –

Indicates if RX chip � TX chip. This is when a frame received on the egress
path originated from the ingress of the same NP-1 chip. The TX channel
number equals the channel number in the frame’s CSIX header. 30 1 √

IPv4 error detection. Set when the header length < 20, IP total length >
frame length, or IP total length < IP header length. 31 1 –

HD_REG 1

Time stamp for determining when the frame entered the NP-1c (should be
included in a message from TOPparse to TOPmodify) 0–15 16 √

Frame_ptr—logical pointer to the fi rst frame buffer (should be included in
a message from TOPparse to TOPmodify) 16–31 16 √

HD_REG 2

Frame_length 0–15 16 √

Number of buffers. Starting from one, add one for the fi rst 448 bytes, then
add one more for each additional 512 bytes. 16–20 5 √

Source port of NP-1c
When set to operate in NP-1c mode, the source port is 4 bits and written to
the SOURCE_PORT_REG register. HD_REG 2 contains the 3 lower bits.

On the egress path, it contains the 3 LSB bits from the 7 priority bits. This
information represents in which of the 8 ECFD queues the frame entered. 21–23 3 –

Channel number. Should be used in CSIX/XGMII header. Initialized by the host. 24–31 8 √

(continued)

484 CHAPTER 12 Parsing

HOST REGISTERS
Most registers are initialized with a high-level Application Program Interface (API)
interface, which is not described here. The only registers that are described in this
appendix are those that are mentioned in this chapter and in the sample programs
in the book. For more details, see [118].

HOST_CONF Register
The ETH/PPP setting determines the type of frames processed by the hardware
decoder. The data written to this register (Table A12.6) by the host is accessible
from the microcode via the HOST_BITS register, which is HWARE[8].

MREG[15:0] Register
The LDREG command in the microcode instructs the loader to load the user-defi ned
masks to each of these registers (see Section 12.4.1). One of the 16 masks (Table
A12.7) may be used in an ALU operation (see Appendix C, pages 493–494).

DEL_VECTOR[3:0] Register
The LDDV command in the microcode instructs the loader to load the user-defi ned
delimiters (Table A12.8) to the delimiter vector (see Section 12.4.1).

Table A12.6 HOST_CONF Register

Name Bits# Description Init value

ETH/PPP b0

W

0—perform hardware decoding for PPP frames.

1—perform hardware decoding for Ethernet frames.

0

Table A12.5 Contents of HD_REG Based on Hardware Decoding (continued)

Contents and description
Offset
(bits)

Size
(bits)

Egress
path

HD_REG 3

User-defi ned data per in port. Can be used for port-specifi c information such
as the PVID confi guration. Defi ned by the host using the driver API. See
detailed explanation in CREG registers. 32 √

HD_REG 4

User-defi ned data per in port. Defi ned by the host using the driver API. See
HD_REG3 section. 32 √

Appendix A: Detailed Register Description 485

Table A12.7 MREG[15:0] Register

Name Bits# Description Init value

ALU_MASK b31:0 Used for ALU mask.

Table A12.8 SCAN Delimiter Register

Name Bits# Description Init value

DEL_VECTOR b31:0 Used for loading SCAN delimiters.

Table A12.9 CREG Register[15:0]

Name Bits# Description Init value

CREG b31:0 Used for defi ning HD_REG3/4.

CREG Register[15:0]
The CREG register is used for defi ning the 64 user-defi ned bits in HD_REG3 and
HD_REG4. HD_REG3 and HD_REG4 receive the values of the pair of CREG registers
(Table A12.9) according to the port from which the frame entered; for example, for
a frame that enters in port 0, the value of HDREG3 is taken from CREG[0]. There
are 16 registers for 8 ports: CREG[0] & CREG[1] --> port 0, CREG[2] & CREG[3] -->
port 1, and so on. When using a 16 port/channel confi guration, CREG[0] --> port 0,
CREG[2] --> port 1, CREG[4] --> port 2 ... CREG[1] --> port 8, CREG[3] --> port 9 ...
CREG[15] --> port 15. Confi guration is per port.

APPENDIX B
TOPPARSE ADDRESSING MODES

Table B12.1 provides the numbers, names, and syntaxes of the addressing modes that
are relevant to the TOPparse. Devices in this table refer to registers or structures: for
example, UREG, FBLK. The numbers in the fi rst column are used in this chapter to indi-
cate the addressing modes supported by operands. Bold typeface indicates required
text. Italic typeface indicates text that must be replaced with the appropriate value.

Table B12.1 Addressing Modes of TOPparse

No. Name Syntax Description

1 Immediate 123 or 0x12 or “abcd” or $ or
label

123—decimal number
0x12—hexadecimal number
“abcd”—4 bytes � 0x61626364
$—program counter (PC)
label—program label.

2 Register device [number] For the device, see registers listed in 12.2.
number—index of the register in the
device array.

3 Register
(byte-specifi c)

device [number1].byte [number2] number1—index of the register in the
device array
number2—byte number in this register

4 Register
(bit-specifi c)

device [number1].bit [number2] number2—bit number in this register

5 Register
(four-bit)

device [number1].bits [n1,n2,n3,n4] n1...n4—specifi c bits in this register

6 Indirect device [IND_REG]

7 Base-index offset (base) or offset (base)+ base—base registers.
offset—immediate or some register.
� is used for auto-increment.

8 Direct number (0) or
(number)+

Can be used for Get or Copy commands.
For src in TOPparse copy and get
 instructions, use number (0)+.

9 Memory
(byte-specifi c)

hreg [HBS].byte[num2]

10 Memory
(bit-specifi c)

hreg [HBS].bit[num2]

11 Memory
(four-bit)

hreg [HBS].bits [n1,n2,n3,n4]

12 Device group bcam8 [num1] or bcam8 [ureg[0]]
bcam16[num1] or bcam16[ureg[0]]
tcam [num1] or tcam [ureg[0]]

num1—immediate 3 bits

486

487

APPENDIX C
TOPPARSE DETAILED INSTRUCTION SET

Detailed description of TOPparse commands’ operands are listed next. For even
more detailed explanations, see [118].

MOVE COMMANDS
Move commands copy data (bits, bytes, and words) from various sources to various
destinations.

Mov DST, SRC, SIZE
Defi nition: Move SIZE bytes from source (SRC) to destination (DST).

Operands: DST, the destination, can be a register (or a byte in it) or an indirect
addressing mode (type 2, 3, or 6 in Table B12.1). Valid registers are
UREG, ALU, CAMI, CAMHI,1 EOF_ADDR, CNVI, CNVIH,2 RD_PTR, CNT,
PC_STACK, SIZE_REG, IND_REG0..1, STAT_REG, RFD_REG0..1, HBS0..3,
KBS0..3, or NULL_REG (see Section 12.2.1).

SRC, the source, can be an immediate 32-bit value, a register (or a
byte in it) or an indirect addressing mode (type 1, 2, 3, or 6 in Table
B12.1). Register or indirect addressing modes can be any of the regis-
ters except STAT_REG and STAT_REG_HI (see Section 12.2.1).

Size can be either an immediate value (1 to 4) or a register content,
that is, the SIZE_REG (which is SREG[4]) value (0–4). This corresponds
to addressing mode type 1 or 2 in Table B12.1.

MovBits DST, SRC, SIZE
Defi nition: Move SIZE bits from source (SRC) to destination (DST).

Operands: DST, the destination, can be bit-specifi c position in a register (e.g.,
UREG[0].bit[5]) or an indirect addressing mode (type 4 or 6 in Table
B12.1). Valid registers are UREG, ALU, CAMI, CAMHI,3 EOF_ADDR,
CNVI, CNVIH,4 RD_PTR, CNT, PC_STACK, SIZE_REG, IND_REG0..1,
STAT_REG, RFD_REG0..1, HBS0..3, KBS0..3, or NULL_REG (see
 Section 12.2.1).

1mov cami.byte[2], src, 4; changes CAMIH
2mov cnvi.byte[1], src, 4; changes CNVIH.
3movbits cami.bit[24], src, 15; does not change CAMIH.
4 movbits cnvi.bit[24], src, 15; does not change CNVIH.

488 CHAPTER 12 Parsing

SRC, the source, can be an immediate 16-bit value, a register (or
a specifi c bit in it) or an indirect addressing mode (type 1, 4, or 6
in Table B12.1). Register or indirect addressing modes can be any
of the registers except STAT_REG and STAT_REG_HI (see Section
12.2.1).

Size can be either an immediate value (1 to 16) or a register con-
tent, that is, the SIZE_REG (which is SREG[4]) value (0–16). This cor-
responds to addressing mode type 1 or 2 in Table B12.1.

Mov4Bits DST, SRC [, MASK]
Defi nition: Move four bits from source (SRC) to destination (DST). Use MASK

to indicate which bits should be inverted during the copy. Bits
do not need to be adjacent. When copying different bits to the
same destination, the value written is logically ‘ORed’ between
the bits.

Operands: DST, the destination, can be a four-bit specifi cation in a register (e.g.,
UREG[0].bits[1, 5, 6, 8]) (addressing mode type 5 in Table B12.1). Valid
registers are UREG, ALU, CAMI, CAMHI, EOF_ADDR, CNVI, CNVIH, RD_
PTR, CNT, PC_STACK, SIZE_REG, IND_REG0..1, STAT_REG, RFD_REG0..1,
HBS0..3, KBS0..3, or NULL_REG (see Section 12.2.1).

SRC, the source, can be an immediate four-bits, or a four-bit speci-
fi cation in a register (e.g., UREG[0].bits[1, 5, 6, 8]) (addressing mode
type 1 or 5 in Table B12.1). The bit offsets must be specifi ed when
the source is not immediate. The register can be any of the registers
except STAT_REG and STAT_REG_HI (see Section 12.2.1).

MASK, is a bitmap, mask of bit inversion: move bit (0) and move
inverse of bit (1). By default MASK is 0x0 (bit string “0000”). If the
source is immediate, a mask is not valid. The mask is an immediate
value 0 to 15.

Get DST, SRC, SIZE [, EOFjump]
Defi nition: Move SIZE bytes from FMEM memory (SRC) to a destination register

(DST). Use EOFjump to jump to EOF_ADDR if end of frame occurred
while getting data.

Get can be preceded by conditional statements (and it will still
function as one instruction in machine code and in execution time).
A conditional command is impossible if the source is in the frame
memory and not in TOPparse’s internal FMEM.

Operands: DST, the destination, can be a register (or a byte in it) or an indirect
addressing mode (type 2, 3, or 6 in Table B12.1). Valid registers are

Appendix C: TOPparse Detailed Instruction Set 489

UREG, ALU, CAMI, CAMHI,5 EOF_ADDR, CNVI, CNVIH,6 RD_PTR, CNT,
PC_STACK, SIZE_REG, IND_REG0..1, STAT_REG, RFD_REG0..1, HBS0..3,
KBS0..3, or NULL_REG (see Section 12.2.1).

SRC, the source, can be a direct or a base-index addressing mode,
referring to FMEM (type 7 or 8 in Table B12.1), as can be seen in the
examples that follow.

Size can be either an immediate value (1 to 4) or a register con-
tent, that is, the SIZE_REG (which is SREG[4]) value (0 to 4). This
corresponds to addressing mode type 1 or 2 in Table B12.1.

EOFjump indicates that a jump to the address in EOF_ADDR
should be executed if “end of frame” happens while reading from
the FMEM (_ JEOF_PRS), or do not jump (_NJEF_PRS). The default is
_NJEF_PRS.

� indicates that auto-increment of the base address register (e.g.,
RD_PTR) should be done. When the auto-increment operation is used,
the RD_PTR will be set to base � index � size at the end of the
 operation.

PutKey DST, SRC, SIZE
Defi nition: Move SIZE bytes from SRC to DST, the key memory (KMEM). KMEM may

only be accessed indirectly via the KBS register.

Operands: DST, the destination, is a base indexed reference to the KMEM (addressing
mode type 7 in Table B12.1).

SRC, the source, can be an immediate 32-bit value, a register (or
a byte in it) or an indirect addressing mode (type 1, 2, 3, or 6 in
Table B12.1). Register or indirect addressing modes can be any of
the registers except STAT_REG and STAT_REG_HI (see Section
12.2.1).

Size can be either an immediate value (1 to 4) or a register content,
that is, the SIZE_REG (which is SREG[4]) value (0 to 4). This corre-
sponds to the type 1 or 2 addressing mode in Table B12.1.

� indicates that auto-increment of the base address register
(e.g., KBS0) should be done. When the auto-increment operation is
used, the KBS will be set to base � index � size at the end of the
 operation.

5mov cami.byte[2], src, 4; changes CAMIH
6mov cnvi.byte[1], src, 4; changes CNVIH.

490 CHAPTER 12 Parsing

Copy DST, SRC, SIZE [, EOFjump]
Defi nition: Move SIZE bytes from SRC, the frame memory (FMEM) to DST, the key

memory (KMEM). Use EOFjump to jump to EOF_ADDR if end of frame
occurred while getting data.

Copy can be preceded by conditional statements (and it will
still function as one instruction in machine code and in execution
time). A conditional command is impossible if the source is in the
frame memory and not in TOPparse’s internal FMEM.

Operands: DST, the destination, can be a base-index addressing mode, referring to
KMEM (addressing mode type 7 in Table B12.1), as can be seen in the
examples that follow.

SRC, the source, can be a direct or base-index addressing mode,
referring to FMEM (type 7 or 8 in Table B12.1), as can be seen in the
examples that follow.

Size can be either an immediate value (1 to 8) or a register con-
tent, that is, the SIZE_REG (which is SREG[4]) value (0 to 8). This
 corresponds to addressing mode type 1 or 2 in Table B12.1.

EOFjump indicates that a jump to the address in EOF_ADDR
should be executed if “end of frame” happens while reading from
the FMEM (_ JEOF_PRS), or do not jump (_NJEF_PRS). The default
is _NJEF_PRS.

� indicates auto-increments of the base address registers (e.g.,
RD_PTR, KBS0) for each interface (FMEM, KMEM, and so on). When
the auto-increment option is used, the RD_PTR will be set to base �
index � size and each of the four base registers KBSn will be set
to base register � index � size at the end of the operation. Auto-
 increment can be used for both the source and destination.

PutHdr DST, SRC, SIZE
Defi nition: Move SIZE bytes from source (SRC) to DST, the header registers, that is,

HREG.

Operands: DST, the destination, can be a register or a byte specifi c memory
with respect to HREG (addressing mode type 2 or 9 in Table B12.1)
as can be seen in the examples that follow. In other words, DST
refers to HREG through an immediate index or through HBS
register-like index (indirect access to HREG); for example, HREG[0]
and HREG[HBS1].

SRC, the source, can be an immediate 24-bit value, a register
(or a byte in it) or an indirect addressing mode (type 1, 2, 3, or 6
in Table B12.1). Register or indirect addressing modes can be any

Appendix C: TOPparse Detailed Instruction Set 491

of the registers except STAT_REG or STAT_REGHI (see Section
12.2.1).

Size can be either an immediate value (1 to 3) or a register con-
tent, that is, the SIZE_REG (which is SREG[4]) value (0 to 3). This
corresponds to addressing mode type 1 or 2 in Table B12.1.

PutHdrBits DST, SRC, SIZE
Defi nition: Move SIZE bits from source (SRC) to DTS, the header registers, that is,

HREG.

Operands: DST, the destination, can be a bit-specifi c position in a register or a bit-spe-
cifi c position in memory with respect to HREG (addressing mode type 4
or 10 in Table B12.1) as can be seen in the examples that follow. In other
words, DST refers to HREG through an immediate index or through HBS
register-like index (indirect access to HREG); for example, HREG[0] and
HREG[HBS1].

SRC, the source, can be an immediate 16-bit value, a register (or
a bit position in it) or an indirect addressing mode (type 1, 2, 4,
or 6 in Table B12.1). Register or indirect addressing modes can be
any of the registers except STAT_REG or STAT_REGHI (see Section
12.2.1).

Size can be either an immediate value (1 to 16) or a register con-
tent, that is, the SIZE_REG (which is SREG[4]) value (0 to 16). This
corresponds to addressing mode type 1 or 2 in Table B12.1.

PutHdr4Bits DST, SRC [, MASK]
Defi nition: Move four bits from source (SRC) to DST, the header registers, that is,

HREG. Use MASK to indicate what bits to invert while moving.

Operands: DST, the destination, can be four specifi c bits in a register or four specifi c
bits in memory with respect to HREG (addressing mode type 5 or 11 in
Table B12.1) as can be seen in the examples that follow. In other words,
DST refers to HREG through specifi c bits index or through HBS specifi c
bits of register index (indirect access to HREG); for example, HREG[0]
and HREG[HBS1].

SRC, the source, can be an immediate four-bits, or a four-bit speci-
fi cation in a register (e.g., UREG[0].bits[1, 5, 6, 8]) (addressing mode
type 1 or 5 in Table B12.1). The bit offsets must be specifi ed when the
source is not immediate. Register can be any of the registers except
STAT_REG or STAT_REGHI (see Section 12.2.1).

MASK, is a bitmap, mask of bit inversion: move bit (0) or move
 inverse of bit (1). By default MASK is 0x0 (bit string “0000”). If the

492 CHAPTER 12 Parsing

source is immediate, a mask is not valid. The mask is an immediate
value (0 to 15).

JUMP COMMANDS
Jump commands instruct the NP to jump to a given label in the microcode. Some
of the commands are conditional jumps, and some jump with pushing and pop-
ping program addresses. At the end of the jump, optional NOP_NUM (0, 1 or 2) NOPs
may be inserted into the pipeline following the jump command (to disable execu-
tion of the commands that immediately follow the jump instruction). The NOPs
are effective only if the jump command is executed. The standard Jump command
format is:

if (CONDITION)
command LABELS [|NOP_NUM];

 // See commands in Table 11.4, Chapter 11.
or

command LABELS [|NOP_NUM];
 // See commands in Tables 11.4 and 11.5, Chapter 11.

The format of the Call, CallCam, and CallStack commands is a bit different from
the jump command, and also includes a number of NOPs (RET_NOP_NUM) that
should be inserted before returning, as follows:

Call function [|NOP_NUM [, RET_NOP_NUM]];

or

CallCam function [|NOP_NUM [, RET_NOP_NUM]];

or

CallStack function [|NOP_NUM [, RET_NOP_NUM]];

Defi nition: Call a function, and return from it to the next address on completion
(return command in the function). Insert NOP_NUM NOPs before jump-
ing and RET_NOP_NUM NOPs before returning.

Operands: CONDITION is any valid logical operation on a fl ag bit or any of the UDB
bits. The negation mark (!) may precede any condition.

LABELS is the place in the program where the jump is to take place.
function is the name of the function to be called.
NOP_NUM shows the number of NOPs to be inserted after the branch,

to prevent the following command from entering the pipeline.
RET_NOP_NUM shows the number of NOPs to be inserted on return

from the called function.

Appendix C: TOPparse Detailed Instruction Set 493

ARITHMETIC LOGIC UNIT COMMANDS
Arithmetic Logic Unit commands are used for arithmetic and logic calculations. There
are two formats of ALU commands, one with two source-operands and the other
with one source-operand:

COMMAND DST,SRC1,SRC2,SIZE,[,MREG[,MODE]];
 // See commands in Table 11.3, Chapter 11.

or

COMMAND DST,SRC,SIZE,[,MREG[,MODE]];
 // See commands in Table 11.3, Chapter 11.

Defi nition: Calculate the COMMAND on the sources (SRC, or SRC1 and SCR2) of
SIZE bytes, and put the result in the destination (DST). Use masks in
MREG, according to the required MODE, to mask the source operands if
required.

Operands: DST, the destination, receives the result of the ALU block operation,
together with the ALU register, that is, the result is entered into both
the destination and the ALU register. DST can be a register (or a byte
in it) or an indirect addressing mode (type 2, 3, or 6 in Table B12.1),
and may use any of the following registers: UREG, ALU, CAMI, CAMHI,7
EOF_ADDR, CNVI, CNVIH,8 RD_PTR, CNT, PC_STACK, SIZE_REG,
IND_REG0..1, STAT_REG, RFD_REG0..1, HBS0..3, and KBS0..3 (see
Section 12.2.1).

SRC or SRC1, the fi rst source operand or the only source operand
can be a register (or a byte in it) or an indirect addressing mode (type
2, 3, or 6 in Table B12.1). Register or indirect addressing modes can be
any of the registers except STAT_REG or STAT_REGHI (see Section
12.2.1).

SRC2, the second source, can be an immediate 24-bit value, a reg-
ister (or a byte in it) or an indirect addressing mode (type 1, 2, 3, or
6 in Table B12.1). Register or indirect addressing modes can be any
of the registers except STAT_REG or STAT_REGHI (see Section
12.2.1).

SIZE is the size of the ALU operation in bytes. Zero (0) is not a
valid size. Size can be either an immediate value (1 to 4) or a register
content, that is, or the SIZE_REG (which is SREG[4]) value (1 to 4).
This corresponds to addressing mode type 1 or 2 in Table B12.1.

MREG indicates one of the 16 ALU mask registers (see Table A12.7).

7mov cami.byte[2], src, 4; changes CAMIH.
8mov cnvi.byte[1], src, 4; changes CNVIH.

494 CHAPTER 12 Parsing

MODE indicates how to use the mask:

_ALU_NONE—no masking done
_ALU_FRST—masking SRC1; that is, SRC1 � SRC1 & MASKREG
_ALU_SCND—masking SRC2; that is, SRC2 � SRC2 & MASKREG
_ALU_BOTH—masking both SRC1 and SRC2; that is,
 SRC1 � SRC1 & MASKREG, SRC2 � SRC2 & MASK_REG

When the explicit destination is not the ALU register, all four bytes of the ALU
register are updated, even if the instruction SIZE was less than 4. For example, "Add
UREG[7],UREG[5],UREG[6],1;" adds the contents of UREG[5] and UREG[6] and
writes 1-byte to UREG[7] and 4-bytes to ALU. The ALU register cannot be used with
an offset other than 0 (zero) when it is used for destination, source1 or source2.
Examples of improper usage of the ALU register:

Add ALU.BYTE [1], UREG[0].BYTE[2], 2, 1 ;
Add ALU, UREG[0].BYTE[2], ALU.BYTE [2], 1;
Add ALU, ALU.BYTE [3], UREG[0].BYTE[2], 1;

CONTENT ADDRESSABLE MEMORY OPERATIONS
There is one CAM instruction in the TOPparse CAM operation. See Section 12.1.8
for a description of the TOPparse CAMs.

LookCam DST, SRC, TYPE, SIZE;

Defi nition: Search in a CAM indicated by TYPE. Use source (SRC) for search key and
put result in destination (DST), and in the CAMO register. If the type is
TCAM, search for SIZE bytes. All CAM operations also write to the CAMO
register. If a match is found, the MH bit is set.

CAMs are divided into user-defi ned groups according by increasing
their key size by three bits. The fi rst three bits represented indicate
the CAM group. Each CAM table may be divided into up to eight
groups.

Operands: DST, the destination, can be the CAMO register (see Section 12.2.1) .
SRC, the source, can be a register (or a byte in it) or an indirect

addre ssing mode (type 2, 3, or 6 in Table B12.1). Register or indirect
addressing modes can be any of the registers except STAT_REG or
STAT_REGHI (see Section 12.2.1).

TYPE indicates the CAM type (BCAM8, BCAM16, BCAM32 or
TCAM64) and its group number, for example BCAM8[0]. Alternatively,
the 3 Least Signifi cant Bits (LSB) of the UDB may be used to indicate
the group number, example, BCAM16[UREG0] (addressing mode type
12 in Table B12.1).

Appendix C: TOPparse Detailed Instruction Set 495

SIZE is only valid when searching the text CAM (TCAM64)
because CAMI may be 1–8, and is either an immediate value (1 to 8)
or a register content, that is, the SIZE_REG (which is SREG[4]) value
(0 to 8). This corresponds to type 1 or 2 of the addressing modes in
Table B12.1.

In order to reduce data hazards, it is advisable to Get data from the FMEM into
CAMI and then perform a lookup in the next instruction.

CONVERT OPERATIONS
Convert Operation is used to convert ASCII formatted numbers to their binary
 format. This operation is useful in applications such as NAT.

Convert can be preceded by conditional statements (and it will still function as
one instruction in machine code and in execution time).

Convert SRC, SIZE [, BASE];

Defi nition: Convert numbers from ASCII to binary format. The ASCII string can be
either a decimal number (maximum of fi ve characters) or a hexadeci-
mal number (maximum of four characters) depending on the BASE. This
operation is useful in applications such as NAT. The source (SRC) is of
SIZE bytes, and the result is written into the CNVO.

Operands: SRC, the source, can be a register (or a byte in it) or an indirect address-
ing mode (type 2, 3, or 6 in Table B12.1). Register or indirect addressing
modes can be any of the registers except STAT_REG or STAT_REGHI
(see Section 12.2.1).

SIZE is either an immediate value (1 to 5) or a register content, that
is, the SIZE_REG (which is SREG[4]) value (0 to 5). This corresponds
to addressing mode type 1 or 2 in Table B12.1.

BASE indicates whether the source is a decimal number (_DEC_PRS)
or a hexadecimal number (_HEX_PRS).

It should be noted that by putting the value in the CNVI register and then con-
verting it, programmers can avoid a data hazard.

SCAN OPERATIONS
Scan is a very useful operation that allows rapid searches in the frame for particu-
lar strings, using delimiters to defi ne the searches. The vector that contains these
delimiters (a host register, DEL_VECTOR, see Appendix A) should be initialized
before performing scan operations (see Section 12.4.1). The LDDV initialization

496 CHAPTER 12 Parsing

instruction can store up to 16 characters in the delimiter vector, for use as
delimiters. These delimiters may then be masked for each scan operation. Scan
instructions are executed by the SCAN block of the TOPparse, and they use four
SCAN registers in the Functional Block (FBLK) registers, as well as the delimiter
vector, which is a host register (DEL_VECTOR) mentioned before. Scan opera-
tions are composed of four commands, listed in Table 12.10. The overall format of
scan operations is:

Command DST,SRC,DELIM,LIMIT[,DIR[,EOF]];
 // See commands in Table 12.10.

Defi nition: The scan command scans a memory, using a mask to choose the desired
delimiters.

Operands: DST, the destination, can be used for a copy of the scanned infor-
mation. During the SCAN operation, data from the starting point of the
scan toward the scan stop may be copied in the same clock cycle to
a user-defi ned destination. The number of characters copied is limited
by the destination size. The destination can be a register (or a byte in
it), an indirect or a based-indexed addressing mode (type 2, 3, 6, or 7 in
Table B12.1). Register-, indirect- or base-indexed addressing modes can
use one of these registers: KMEM, NULL_REG, CAMI, CAMIH, CNVI, or
CNVIH (see Section 12.2.1).

If the destination is a register, up to the fi rst 4 bytes (from the start-
ing point) may be copied. If the destination is CAMI, up to 8 bytes
may be copied. If the destination is KMEM, up to the key length may
be copied. If the programmer does not wish any data to be copied,
NULL_REG may be used as the destination. NOTE: When the destina-
tion is KMEM, the KBS0 register is used for the scan operation and
will contain undefi ned data at the end of the operation. Similarly,
when the destination is CAMI, CONVI or NULL_REG, the IND_REG0
register is used for the scan operation.

SRC, the source, indicates where to begin the scan, and can be
given in either direct or base-index addressing mode, referring to
FMEM (type 7 or 8 in Table B12.1), as can be seen in the examples
that follow.

DELIM is the delimiter bitmap, which can be either immediate,
indirect (DELIM_MASK register, which is UREG[5]), or the delimiter
that terminated the previous scan (SCAN_TC register). A mask is used
to indicate which of the delimiters to use in the specifi c command.
For example, let’s assume that LDDV “;:-/” was used to load four delimit-
ers: semicolon (0), colon (1), dash (2), and slash (3). If the programmer
would like to scan using the colon and the slash only (e.g., for a URL
analysis), then bits 1 (for colon) and 3 (for slash) should be masked as 1,

Appendix C: TOPparse Detailed Instruction Set 497

while the other bits should be masked as 0. This creates a mask of 1010
or decimal 10 (0xA). Then, in order to use these two delimiters, one
should simply code use 10 for DELIM:

FINDDEL CAMI, (RD_PTR)+, 10

Defi nes may be created (and used) to facilitate the use of masks,
 example,

#defi ne COLON_AND_SLASH 10;
#defi ne DASH_ONLY 4;

LIMIT indicates the depth of the SCAN (tested bytes number). LIMIT
may be LIM_REG (which is UREG[3]) register or immediate value; in
both cases, the value should be in the range of 1 to 0x3FF. If the SCAN
operation is terminated by LIMIT, the LM fl ag is set.

DIR indicates the SCAN direction, that is, it is either forwards
(_FRWD_PRS) or backwards (_BCKW_PRS). The default is _FRWD_PRS.

EOF is used as an exception handler, that is, to jump to the address
in EOF_ADDR if the SCAN operation terminates due to end of frame
(_ JEOF_PRS), or not to jump (_NJEF_PRS). The default is _NJEF_PRS.
If EOF is reached, the ED fl ag is set (and jumps to an address in
EOF_ADDR, if the EOF parameter is set).

� is the indication for auto-increment, which automatically incre-
ments the base address registers (e.g., RD_PTR) for each memory
(FMEM, KMEM, and so on) depending on the destination.

The SCAN group of registers (in the FBLK registers) contains scanning infor-
mation including the start and end of scanning and the scanning result, and is
 associated with the scan operations as defi ned in each of the scan commands. If
the auto-increment option is used, then the RD_PTR may be affected as well. Table
C12.1 below summarizes the results that are written to each of the three SCAN reg-
isters upon completion of the SCAN operation (the forth SCAN register, SCAN_TC,
containing the termination cause, is described in Appendix A, and briefl y in each of
the operations that follow). In Table C12.1 “del” means the place where a delimiter
was found in the scan and “non del” means the position of any character that is not
delimiter that was found during the scan.

FindDel DST, SRC, DELIM, LIMIT [, DIR [, EOF]]
Find Delimiter (FindDel) scans for the fi rst enabled CHAR in the delimiter vec-
tor from a specifi ed location. If the auto-increment option is set at source, the
RD_PTR will point to the found character at the end of the operation. The auto-
increment option can be set in the destination, when the destination is KMEM. The
data written to the destination consists of all the characters from the starting point

498 CHAPTER 12 Parsing

to the delimiter without the delimiter itself. The returned size is the number of
data characters. SCAN_TC contains a bit vector set according to the scan results:
bit 21 is set if the scan reached end of frame before fi nding a match, bit 20 indicates
if the limit of the scan was reached before fi nding a match, or bits 0-15 of SCAN_TC
indicate which of the delimiters was found in the scan.

Examples: FindDel CAMI, (RD_PTR), 1, 100, _FRWD_PRS, _JEOF_PRS;
 FindDel CAMI, (RD_PTR)+, 1, 100, _FRWD_PRS, _JEOF_PRS;

Description: Find the delimiter that is defi ned in the bitmap position 0 of the
delimiter vector, by scanning forward the frame memory from
RD_PTR address, with limit depth of 100 bytes. Jump if end of frame;
write result in CAMI. Set RD_PTR to the delimiter position (if found),
and the SCAN_STOP to the place of the delimiter in the frame mem-
ory (if found). Set SCAN_TC to the appropriate scan termination
cause. If, as in this example, the DELIM is 1 and the delimiter vector
was loaded by LDDV “;:-/”, then a character in the frame memory that
equals “/” will stop the scan.

FindNonDel DST, SRC, DELIM, LIMIT [, DIR [, EOF]]
Find Nondelimiter (FindNonDel) scans from a specifi ed location in the frame
memory (SRC) for the fi rst character that is not in the delimiter vector (enabled
according to the DELIM). If the auto-increment option is set at source, the
RD_PTR will point to the found character at the end of the operation. The
auto-increment option can be set in the destination, when the destination is
KMEM. The data written to the destination consists of all the characters from
the starting point to the fi rst nondelimiter without the last character. The

Table C12.1 Summary of SCAN Operation Results

SCAN
Operation SCAN_START SCAN_STOP

RD_PTR
If AI option
is used Data to destination

FindDel start point del � 0 del � 0 SCAN_START... SCAN_STOP - 1

FindNonDel start point non del � 0 non del � 0 SCAN_START... SCAN_STOP - 1

FindToken del � 0 non del � 0 non del � 0 SCAN_START... SCAN_STOP - 1

GetToken non del � 0 del � 0 del � 0 SCAN_START... SCAN_STOP - 1

NOTE: If a scan operation with auto-increment is followed by a second scan operation, then one NOP must
be inserted for the update.

Appendix C: TOPparse Detailed Instruction Set 499

returned size is the number of data characters. Either the low signifi cant byte
of SCAN_TC (bits 0–7) contains the character found, or bit 20 of SCAN_TC is
set to indicate that the limit of the scan was reached, or bit 21 of SCAN_TC is
set to indicate that end of frame was reached before the nondelimiter character
was found.

Example: FindNonDel CAMI, (RD_PTR), 3, 100, _FRWD_PRS, _JEOF_PRS;

Description: Find nondelimiter (fi rst symbol not equal to delimiters) from bitmap
0 or 1 of the delimiter vector in the frame memory by scanning for-
ward from RD_PTR address with limit depth of 100. Jump if end of
frame; write result in CAMI. If, as in this example, the DELIM is 3 and
the delimiter vector was loaded by LDDV “;:-/”, then any character
that is not a “-” or a “/” will stop the scan.

FindToken DST, SRC, DELIM, LIMIT [, DIR [, EOF]]
Find Token (FindToken) performs Find Delimiter and then Find Nondelimiter in
a single instruction. If the auto-increment option is set at source, the RD_PTR
will point to the found nondelimiter at the end of the operation. The auto-incre-
ment option can be set in the destination, when the destination is KMEM. The
data written to the destination is all the characters between found delimiter to
found nondelimiter. The low signifi cant bytes of SCAN_TC contain the character
(nondelimiter) found (see FindDel explanation of SCAN_TC).

Example: FindToken CAMI, (RD_PTR), 3, 100, _FRWD_PRS, _JEOF_PRS;

Description: Find token: set two pointers by Find Delimiter and Find Nondelimiter;
pointers are stored in SCAN_START and SCAN_STOP registers; the size
is in SCAN_SIZE register, jump if end of frame; write result in CAMI.

GetToken DST, SRC, DELIM, LIMIT [, DIR [, EOF]]
Get Token (GetToken) performs Find Nondelimiter and then Find Delimiter in a
single instruction. If the auto-increment option is set in the source, the RD_PTR
will point to the found delimiter at the end of the operation. The auto-increment
option can be set in the destination, when the destination is KMEM. The data is
only the data of the second operation (from the found nondelimiter to the found
delimiter). SCAN_TC contains the termination cause.

Example: GetToken CAMI, (RD_PTR), 3, 100, _FRWD_PRS, _JEOF_PRS;

Description: Get token: set two pointers by Find Nondelimiter and Find Delimiter;
pointers results in SCAN_START and SCAN_STOP registers; the size is
in SCAN_SIZE, jump if end of frame; write result in CAMI.

500 CHAPTER 12 Parsing

HALT COMMAND
The halt command is used either to fi nish the packet processing and release it to
the next stage in the pipeline, or to multicast the frame several times, or to abort
any further processing of this packet and discard it. It is the most useful instruction
and the only one that is mandatory, and it has the following format:

Halt Mode;

Mode is a two-bit immediate value, and it has these predefi ned constants:

HALT_UNIC Indicates that the current TOP has completed processing this frame
and the next TOP can get the data.

HALT_DISC Instruction to discard this frame and begin processing the next
frame.

HALT_MULC This is not a true halt and in fact may often be followed by other
instructions. HALT HALT_MULC notifi es TOPsearch I that it can take these keys
and begin processing. TOPparse will resume parsing the same frame again
to build new keys for it. Although multicast frames are usually duplicated by
TOPresolve or TOPmodify, this could be used to duplicate a frame and send dif-
ferent keys with each copy. Once the last set of keys is ready for TOPsearch I,
use HALT HALT_UNIC to terminate the processing of the current frame.

HALT_BRKP For debug mode. This freezes this specifi c TOPparse engine until the
host releases it.

NOTE: The two commands preceding a Halt command should not be jump
 commands.

NOTE: A hardware mechanism ensures that keys in KMEM are passed to
 TOPsearch I without programmers having to implement it.

CHAPTER

13
Searching is an important function in every network processor, and EZchip architec-
ture implements this utility in dedicated TOP processors that are integrated into the
EZchip NP pipeline. The search engine is actually used twice along the pipeline. It is
fi rst used after the TOPparse in order to search keys that are produced during the
analysis and parsing phase, and its results are handed to the TOPresolve for decision
making. The second use of TOPsearch is after the TOPresolve has fi nished process-
ing the results and making decisions, and further searches are required; for example,
 fi guring out port numbers, IP addresses, and so on. The two TOPsearches, termed I
and II, are quite similar, although there are some difference in the parameters each can
receive, the number of them, search types (trees, hash-tables, etc.), and memories.

In this chapter, we describe TOPsearch I very briefl y. TOPsearch II is not
described in this book, since the details that are given for TOPsearch I are suffi cient
for using TOPsearch II at the same level.

TOPsearch engines are capable of handling complex searches, and even capable
of running search procedures that are coded into its instruction memory, as in the
other TOP engines. As the programming of TOPsearch is not essential for under-
standing how NP works, we shall not address it here. We will, however, describe
the very frequent use of TOPsearch by showing how to program and carry out
various simple lookup operations of the TOPsearch engine, such as, providing the
TOPsearch with search keys and getting results that match these keys.

13.1 INTRODUCTION
TOPsearch I performs table look-ups by matching the keys received from TOPparse
to the various search structures (data structures maintained by the search engine).
Search structures are located in various memories that the NP uses, both internal
memory and external memory. There are three types of data structures: trees, hash
tables, and direct access tables.

TOPparse creates and sends keys and messages to the TOPsearch I by transfer-
ring them to the Key Memory (KMEM). Messages are simply data structures that

Searching

502 CHAPTER 13 Searching

TOPparse builds and sends via the TOPsearch to the TOPresolve, as a mean for
providing raw data to the TOPresolve. TOPsearch ignores these messages other
than to move them to the Output Memory (OMEM) for TOPresolve’s input. There
are two kinds of keys that TOPparse can create for TOPsearch I: single keys and
compound keys.

A single key, as its name implies, is a simple key of variable length that contains one
search key; for example, IP address, port number. A single key may contain an
aggregate combination of several fi elds, extracted from the frame, in one key, that
will be searched in a single operation; for example, <source port><protocol>
for looking for the assigned priority of this specifi c port of that protocol.

A compound key is built from several keys that are combined together from vari-
ous fi elds extracted from the frame. The keys are combined in such a way that
the TOPsearch I has to execute a macrocode procedure for implementing this
compound search. The compound key that TOPparse provides is not necessar-
ily the full key, and information can be added by TOPsearch’s macrocode proce-
dure, as a function of a sequence of search results. The compound key can also
include a long key structure, for TOPsearch to obtain keys longer than 38 bytes
directly from the NP-1 frame memory.

For single keys, TOPsearch macrocode is not required and the structure number,
defi ned in the structure defi nition table indicates the precise search structure (both
specifi c repository and the specifi c search method, i.e., hash, tree, etc.) for the
lookup. For compound keys, the structure number points to the beginning of the
macrocode sequence. TOPsearch may also access the Statistics block to retrieve
any counter value by using its counter ID as an index to a direct table.

13.2 INTERNAL ENGINE DIAGRAM
The following block diagram (Figure 13.1) illustrates the internal components of
a single TOPsearch engine. These components, internal functional units, registers,
and memories are described in this section.

13.2.1 Instruction Memory
Macrocode instructions are used for building compound searches. In these types
of searches the results of one search can trigger another search in a separate
 structure.

13.2.2 Key Register and Header Register
The Key Register (KREG) stores the keys and messages, and the Header Register
(HREG) stores the key and message headers received from TOPparse. Keys received

13.2 Internal Engine Diagram 503

from TOPparse are up to 38 bytes in length; keys longer than 38 bytes are read
directly from the frame memory according to the pointer provided by TOPparse.
Messages are up to 64 bytes. A header accompanies each key, indicating whether it
is a single key, a compound key or a message key, and its structure number.

13.2.3 Structure Defi nition Table
The structure defi nition table contains one row for each search structure defi ned.
A structure number indicates the precise row number in the structure defi nition
table. For single keys, the structure number is contained in the TOPparse key. For
compound keys, the TOPsearch macro command has a STR_NUM parameter.

13.2.4 Learning, Refreshing, and Aging Machines
The host updates structures upon initialization as well as dynamically. At the same
time, the dynamic updating of hash tables relies on the NP’s hardware aging, refresh
and learning machines. Layers 2 and 3 learning is based on traffi c (“low learn”),
whereas further learning is obtained from the TOPresolve or the host learning
(“high learn”).

High Learn
Machine

Aging Machine

Internal Search
Memory

External Search
Memory

Key Register

Header Register

Out Register

Lookup Engine

Refresh Machine

Structure
Definition Table

Lock Machine

Instruction
Memory

Low Learn
Machine

Statistics
Block

External
Host

FIGURE 13.1

TOPsearch internal engine diagram

504 CHAPTER 13 Searching

The aging mechanism is engaged automatically by the NP’s hardware, thus
 saving the application programmer from having to put a time stamp for the packet
in the result. When an entry is inserted into a hash table that is defi ned to work
with the aging mechanism, then an additional bit, a refresh bit, is assigned to the
entry. Each time the entry is accessed by a successful lookup, the refresh bit is set
by the refresh machine. Every aging period (based on either the “slow” or “fast”
aging values in a predefi ned register), this entry will be checked by the aging
mechanism and if the refresh bit of the entry is reset, the entry will be deleted.
If the refresh bit is set, the aging mechanism will reset it and will not delete the
entry on this round. Please note that every time the entry is accessed by a lookup,
this bit may be set according to the aging mechanism confi guration. Although
aging may be enabled for a hash structure, specifi c entries may be confi gured via
the EZchip Driver, so that they are not aged (i.e., static). The aging machine is also
responsible for performing a “garbage collection” process on buffers that were
used by the hash algorithm to solve collisions, and are no longer in use.

13.2.5 Out Register
Since the same frame is distributed among many TOPsearch engines for its lookups,
an out register (OREG) for each TOPsearch engine collects the respective engine’s
results. All of the search results for the frame are then forwarded to a single result
memory (RMEM) in TOPresolve. TOPresolve is notifi ed when all the results of a
frame have been forwarded to the respective RMEM.

13.2.6 Memory Cores and External Memory
TOPsearch has embedded memory cores, containing user-defi ned search struc-
tures. These include trees, hash tables, and direct tables. For systems requiring addi-
tional memory, structures may also be stored in external memory.

13.2.7 Statistics Counters
All the TOPsearch engines access the statistics counters stored in external memory.
Arbitration and ordering mechanisms are in place. TOPsearch can read and write
to any counter and the counters can be viewed as a direct lookup table where the
counter ID is the index to the direct table. The statistical counters can be used in
conjunction with the search engine for a variety of applications, such as stateful
classifi cation and packet processing.

13.2.8 Lock Machine
TOPsearch maintains frame ordering and proper learning by using a locking mech-
anism that the lock machine provides. This is required, for example, for stateful
classifi cation and packet processing.

13.3 TOPsearch I Structures 505

This mechanism guarantees that hash table entries in the search memory
are searched and updated according to the frame ordering. When a lookup is
 performed in a hash table and an entry is matched, the row in the search mem-
ory in which the entry is located is locked. This “ordinary” locking mechanism
 prevents the hash entry from being accessed by another engine (or the host
processor) until it is unlocked. In ordinary lookups, this lock function is invisible
to the programmer and the entry will be unlocked as soon as the lookup is
 completed. However, when the lock ordering mechanism is used, the entry is
locked and will not be released when the lookup is completed; rather, it will
only be released after the entry has been updated by the high learn feature. It is
the programmer’s responsibility in the TOPresolve microcode to fi ll-in the learn
registers (LRN_REG) instructing the high learn (H_LRN) mechanism to unlock
the entry following the hash entry’s update. The LOCK_ORDER bit indicates
to H_LRN whether it should unlock the hash table entry. Failure to do so may
suspend the processing of subsequent frames. The lock ordering mechanism is
activated for the NP by default.

13.3 TOPSEARCH I STRUCTURES
NP supports a variety of search data structures, and maintains a defi nition table that
describes the actual data structures that the TOPsearch uses, as described briefl y
in this section.

13.3.1 Structure Defi nition Table
The structure defi nition table is built by the EZchip Driver software. The structure
 defi nition table is composed of one row for each search structure defi ned. The
STRUC_ NUMBER from TOPparse indicates the specifi c row in the table that defi nes
the required searched structure. The row also determines in which type of struc-
ture to search (STRUCT_TYPE), the size of the key (KEY_SIZE), the size of the
result (RESULT_SIZE), and other relevant information.

13.3.2 Tree Structures
Trees are convenient search structures for keys of varying lengths or keys that
contain wildcards. In a typical binary tree, each bit in the key is examined and
a branch is created based on the bit value. If the bit is 0, the tree branches to
the left. If the key bit value is 1, the tree branches to the right. The procedure
continues until the leaf. In a binary tree, the length of the longest path equals
either the number of bits in the key or the number of keys supported by the tree,
whichever is less. To reduce path length, Patricia trees (actually tries) can be used,
as they examine the keys and skip all identical bits. This is explained further in
Chapter 5.

506 CHAPTER 13 Searching

13.3.3 Hash Table Structures
Programmers may create a variety of hash tables of different sizes for different
searches, such as L2 MAC addresses, L3 routing, L4 session switching, and so on.
Hash tables and their entries may be either stored in the core memories or in the
 external memory as defi ned in the structure defi nition table. Built-in memory pro-
vides fast access to the memory for effi cient hashing. The host can add and delete
hash table entries.

Dynamic updating of the hash tables is possible, and is done by the NP’s hard-
ware aging, refresh, and learning machines, as described previously. The low-learn
machine updates the hash tables from Layers 2 and 3 traffi c, while high-learn is
done by the TOPresolve and/or the host, based on algorithms, statistics, counters,
and so on. Hash table learning is described in more details in a later section.

13.3.4 Direct Table Structure
Direct tables offer the most effi cient searching. In a direct access table, the key is
the actual address of the row in the table structure. Direct tables can be stored in
internal or external memory.

13.4 INTERFACE TO TOPPARSE (INPUT TO TOPSEARCH)
This section describes the structure of the key header and the key that TOPparse
sends to TOPsearch I. TOPparse microcode is responsible for writing the keys for
TOPsearch I (including a message for TOPresolve) in KMEM and the key headers in
HREG. A header must accompany each single key, since each may be processed by
a separate TOPsearch I engine. Compound keys are defi ned by a single key header.

13.4.1 Frame Parameters
Frame pointers and other information that is required to maintain frame ordering,
or to use frame contents when required, is passed from TOPparse to TOPsearch
via hardware. This is transparent to the programmer, and besides having some
optional control (which is not described in this book), the programmer does not
have to be concerned with this at all.

13.4.2 Key/Message Header Structure
The 3-byte key header contains key information. The key is either a key for a
simple lookup, a compound lookup, or a message that is being passed directly to
 TOPresolve.

The header indicates the key size (KEY_SIZE), whether it is a single or a com-
pound search, whether it is the frame’s last key (KEY_LAST), the key’s structure

13.4 Interface to TOPparse (Input to TOPsearch) 507

number (STRUCT_NUMBER), and whether it is a message to be forwarded to
TOPresolve (MSG).

For a single search, the structure number indicates in which of the structures
the TOPsearch should conduct its search. For a compound search, the structure
number multiplied by two (x2) points to the macrocode instruction.

TOPparse uses the compound fi eld validation bits (COMPND_FIELD_V) to
 indicate if a specifi c fi eld exists within the frame. (Certain fi elds, e.g., VLAN tag, may
not exist in every frame.) TOPsearch checks the validity of each key before using
the key in a compound search. Table 13.1 describes the key/message header to be
written to the HREG register by TOPparse.

Table 13.1 Key/Message Header Structure

Name Bits # Byte # Description

KEY_SIZE(3:0) b3:0 0 Up to 38 bytes for keys or 16/32/64 bytes for
messages in 8-byte resolution. Note: Keep
in mind that this fi eld is zero based.

SINGLE/COMPOUND b4 0 1—Single lookup key or MSG key.
0—Compound key.

KEY_LAST b5 0 Indicate last key or message for the frame.
Set to 1 for the last element regardless of
whether it is a key or a message. Should be
set once per frame.

STRUCT_NUMBER(5:0) b11:6 1–0 If single key, indicates a specifi c data struc-
ture from the up to 64 structures.

If compound key, indicates the address in the
macrocode divided by two (/2).

LKP/MSG/COMPND_
FIELD_V(0)

b12 1 If single key, 1—Lookup key (LKP). 0—Key is
MSG from TOPparse (write result).

If compound key, validation of key bit 0.

SINGLE_KEY_VALID/
COMPND_FIELD_V(1)

b13 1 If single key, 1—Key Valid 0—Key Not Valid.
If compound key, validation of key bit 1.

KEY_LENGTH(5:0)/
COMPND_FIELD_V(7:2)

b19:14 2–1 Lookup key length in byte resolution, up to
38 bytes.

If message, length is in 2-byte resolution,
16/32/64 bytes. Note: Keep in mind that this
fi eld is zero based.

If compound key, validation of key bits (7:2).

COMPND_FIELD_V(10:8) b22:20 2 If compound key, validation of key bits (10:8).

WRITE_TO_RESOLVE b23 2 Must be set to 0.
In NP-1c, the key is always passed to
TOPresolve.

508 CHAPTER 13 Searching

13.4.3 Key Formats
The key follows the key header. There are three main types of key formats cor-
responding to single keys, compound keys (which may include long keys), and
messages.

13.4.3.1 Single Key Format
A single key may contains various fi elds extracted from the frame by TOPparse and
combined into a single key for a single lookup. Up to 38 arbitrary bytes may used
as a single TOPsearch key. No prefi x is required (see Table 13.2).

13.4.3.2 Compound Key Format
A compound key may contains various fi elds extracted from the frame by
 TOPparse to build different keys. This is not necessarily the full key and infor-
mation can be added from a previous search. The use of compound keys (and
TOPsearch programming) is not described in this book. Detailed instructions are
provided in [118] (see Table 13.3).

13.4.3.3 Long Key Format
Since keys from TOPparse are limited to 38 bytes, the contents of longer keys, such
as a long URL, are fetched directly from the frame memory. The long key format is
used for such searches; it includes two pointers to the frame memory, and is a spe-
cial case of the compound key. Long keys are handled similarly to compound keys;
they call TOPsearch macrocode procedures, and are not detailed in this book.

13.4.3.4 Message Key Format
The message key format refers to TOPparse messages destined for TOPresolve
(see Table 13.4). TOPsearch combines these messages with all other frames’ search
results sent to TOPresolve.

The message is actually a key that, instead of being processed by TOPsearch,
is passed as is to TOPresolve. The message may include fi elds from the TOPparse

Table 13.2 Single Key Format

Name Bits # Byte # Description

KEY up to 38 Includes several frame fi elds used as one key
(e.g., session key).

Table 13.3 Compound Key Format

Name Bits # Byte # Description

KEY up to 38 Includes several frame fi elds, used as several
keys.

13.5 Interface to TOPresolve (Output of TOPsearch) 509

hardware decoder, notably the time stamp and the frame_ptr fi elds (see in the
 TOPparsing chapter, the description of the Hardware register), as well as other data
obtained from the frame and needed down the line.

13.5 INTERFACE TO TOPRESOLVE (OUTPUT OF TOPSEARCH)
The Search Results Structure is the structure of the results that are forwarded to
TOPresolve. Up to 16 TOPsearch results and messages from TOPparse for an entire
frame can be sent to the same TOPresolve RMEM. The result written to TOPresolve
RMEM includes the structure number and the result pointer.

It is important to note that in TOPresolve, the results of the search can be read
simply by referring to the RMEM and providing the structure number from which
the result should be read, as an index (e.g., Get ALU,10(12),2; for loading two
bytes from the RMEM, structure number 12, offset 10, to the ALU register). For more
details, see the next chapter on TOPresolve programming.

13.5.1 Frame Parameters
There are several parameters that are passed to TOPresolve from TOPsearch by
hardware circuitry, and that are transparent to the programmer. One important
parameter is the RMEM number, which indicates to which RMEM all the results
were written.

13.5.2 General Result Format
In general, the results from all different types of structures are comprised of control
bits and the result (data) itself. Figure 13.2 and Table 13.5 show the general formate
of a result.

In all results, the fi rst three bytes are composed of control bits that may be
user-defi ned. The fi rst two bytes are referred to as user-defi ned control bits and can

Table 13.4 Message Key Format

Name Bits # Byte # Description

ONE b0 0 Reserved for VALID bit. Set to 1.

CONTROLS(15:1) b15:b1 1–0 Different control bits related to the entry
(e.g., MATCH, forward to host, discard, etc.).
Content and bit ordering are user defi ned.

OPTIONAL_ ADDITIONAL_
STRUCTURES

b512:b16 64–2 Additional structure such as: Frame PTR,
Port #, Timestamp, Frame length,
Host_Cause_Vec, Session_Key for high
learning, and so on.

510 CHAPTER 13 Searching

be easily accessed by TOPresolve instructions, such as GetRnd4Bits, which may
compare the control bits from two results. Byte 0 bits 1:0 are best reserved for the
VALID and MATCH bits, respectively, and should be set to one.

The third byte of control bits is generally referred to as match bits and may
be used in the TOPsearch programming. These match bits also offer compatibility
with the NP result format. The result is transferred to the TOPresolve RMEM.

It should be noted that when TOPresolve reads the result, it starts from offset 0
of the result’s entry in the structure; that is, it sees the control bits, starting from the
valid and match bits. Also note that in creating the results in the structure entries,
either in high-learn, low-learn, from the host or manually with the EZdesign struc-
ture generator’s tool, this format has to be kept; that is, the fi rst three bytes should
be left for controls, especially the fi rst two bits (valid and match).

Table 13.5 Result Format

Name Bits # Byte # Description

CONTROL BITS

ONE b0 0 1—VALID bit

ONE b1 0 1—MATCH bit

CONTROLS(14:2) b14:2 1–0 0

ZERO b15 1 0

MATCH_COND(3:0) b19:16 2 0

MATCH_ALL b20 2 0

NEW_MATCH_BITS b23:21 2 0

DATA (RESULT) Size is determined by the structure defi nition table.
Sizes may differ depending on whether the search
structure is stored in internal or external memory.

FIGURE 13.2

General result format

Control Bits
(up to 3 bytes)

Result Format

b0—VALID bit
b1—MATCH bit
For TOPresolve programming

For TOPsearch programming

User-Defined Control Bits
(2 bytes)

Match Control Bits
(1 byte; optional)

Data
(result)

13.6 Hash Table Learning 511

13.6 HASH TABLE LEARNING
The aging, refresh, and learning machines can dynamically update hash tables.
Layers 2 and 3 learning is obtained from the macrocode (low learn), whereas
 further learning is obtained from TOPresolve or host learning (high learn). Learn-
ing requested from TOPresolve microcode has higher priority than that from the
macrocode.

An example of how the NP creates a new session with the TOPresolve high
learn mechanism is as follows: A frame initiating a new session (e.g., SYN frame
of TCP protocol) enters the network processor. TOPparse creates a key with the
 session information and TOPsearch performs a lookup in a hash table containing
the known sessions. Since it is a new session, no match will be found. TOPresolve
gets the TOPsearch results (with the “not found” indication), and places them into a
new hash entry. TOPresolve microcode then instructs the H_LRN block to update
the session hash table in the search memory (internal or external) with the new
hash entry, effectively creating a known session. Before updating an entry, the
H_LRN block checks to see if the entry already exists in the table and if it should
be overwritten (CREATE/UPDATE COMMAND).

Thus, when subsequent frames from this session arrive, the relevant informa-
tion will be found in the session hash table. When the session is closed, TOPresolve
microcode sends a delete entry message to the H_LRN block.

13.6.1 Low-Learning Interface
Hardware Layers 2 and 3 learning (low learning) is done as frames fl y through
the NP (“from the wire” so to speak). This learning is conducted by TOPsearch
through two mechanisms: MAC hash table learning (Layer 2) and IP hash table
learning (Layer 3). The learning mechanisms are driven by the TOPsearch macro-
code whose data is interpreted according to one of two templates: MAC or IP. The
 template selection is based upon the structure number that must be provided in
the Learn command. A transparent mechanism looks up the structure number in
the Structure Defi nition Table to determine the structure type (according to the
key size—4, 8, or 10). If the structure type indicates a hash table, then it is a MAC
entry. If it indicates a tree � hash, then it is an IP entry.

TOPparse microcode or TOPsearch compound search must prepare a key in
the data format according to the MAC or IP learning templates, to be used in the
learn instruction, before a TOPsearch Learn command is executed. Since we are
not describing the compound searches and TOPsearch programming, we will not
elaborate more on low-learning; the interested reader is referred to [118].

13.6.2 TOPresolve High-Learning Interface
TOPresolve can add or delete an entry from any hash table using the high learn
(H_LRN) feature, by using its learn registers (LRN_REG, described in Chapter 14).
TOPsearch receives these learn-entries from TOPresolve in an H_LRN interface

512 CHAPTER 13 Searching

Table 13.6 TOPresolve H_LRN Interface

Name Bits # Byte # Description

LRN_INFO_
LENGTH(4:0)

b4:0 0 Learn data length in 4-byte resolution. Does not
include message header and header extension.

In add operation � size of key � result.
In delete operation � size of key.
In partial updatea � size of key � 4.
Minimum length is 8 bytes (or 12, if TOPresolve
ordering mechanism is activated).

If less than minimum, must be padded.

ZEROS b7:5 0 Reserved, set to 0.

STRUCT_
 NUMBER(5:0)

b13:8 1 High learn structure ID. (ID of hash structure to
be updated by H_LRN)

CREATE/UPDATE
 COMMANDb

b14 1 Indicates what H_LRN should do if it fi nds an
existing entry in the hash table.

If Add Entry (b16 � 1) and entry exists:
1-Create mode � do no overwrite existing entry;
0-Update mode � overwrite existing entry.

Otherwise if does not exist, create new entry.

ZERO b15 1 Reserved, set to 0.

COMMAND b16 2 Indicates the purpose of the message: 0-delete
entry 1-add entry.

ONE b17 2 Reserved for Refresh bit.

FIGURE 13.3

General format of TOPresolve H_LRN interface

NP basic message header (4 bytes)

Message header extension (4 bytes)a

Result

Key (up to 38 bytes)

aNP-1 does not support the message header extension

format, which varies according to the NP type (i.e., NP-1, NP-1c, NP-2, etc.). The
 general format, however, is shown in Figure 13.3.

Programmers are responsible for writing to the TOPresolve learn registers (LRN_
REG) in this format. No macrocode programming is required in TOPsearch I for car-
rying the learning itself. The example in the next section will clarify this. The detailed
format of the basic message header of the H_LRN interface is shown in Table 13.6.

13.7 Example 513

13.7 EXAMPLE
We provide two examples to show the usage of the TOPsearch I engine. The fi rst
example is of conducting a simple search, and the other is of activating the high-
learn mechanism.

13.7.1 Searching
The following TOPparse code describes how to initiate a simple search for an
IP address that will be conducted by TOPsearch in a hash table (structure #7)
that contains IP addresses. In this example, the Source IP address (SIP) is the
last search key that TOPparse creates, and it is the second key that is sent to
TOPsearch:

//Some defi nitions
 #defi ne IP_SIP_OFFSET 12; // the Source IP address offset in the

// frame
//
 #defi ne KEY_SIZE 4; // Source IP is IP address, i.e., 4

 // bytes long
#defi ne Simple_KEY 1; // indicate that the searching is single
#defi ne Last_key 1; // in this example it is the last key

Table 13.6 (continued)

Name Bits # Byte # Description

STATIC b18 2 Static bit: 0-entry may be aged; 1-aging will not
affect the entry.

LOCAL b19 2 Local bit: 0-entry learned from remote TOPresolve
(via host message); 1-entry learned from
 TOPresolve in this chip.

SEND_MSG b20 2 1-send message to host.

INCR_COUNTER b21 2 0-do not increment counter 1-increment counter
(bits 59:24 in ENTRY)

ZERO b31:22 2–3 Reserved, set to 0.

Resultc 4–

Key

aNP-1 does not support partial update.
bNP-1 does not support this bit, and must be 0.
cResult and Key are not provided for the delete command.

514 CHAPTER 13 Searching

#defi ne STR 7; // the structure number to look in
#defi ne Lookup_Key 1; // indicates that it is not a message
 #defi ne Single_VALID 1; // validate it as a single key, not a

// message
//
 // create the header from the defi nitions, shifted to their bit
// positions
 #defi ne HDR (((KEY_SIZE - 1)>>3) | (Simple_KEY<<4) | (Last_KEY<<5) |
(STR<<6) | (Lookup_KEY<<12) | (Single_VALID<<13) | ((KEY_SIZE-1)<<14));
//
// Now the actual code—two instructions: put data in KMEM,
// and create Header register (HREG)
//
 Copy 0(KBS0), IP_SIP_OFFSET(RD_PTR), 4; // Copy 4 bytes: KMEM <-FMEM
 PutHdr HREG[2], HDR, 3; // This is the second key, for searching SIP

13.7.2 Learning
The following code shows how to use the TOPresolve high-learn register to activate
the high-learn mechanism. Please note that we did not discuss the TOPresolve yet;
nevertheless, it is important to have it here, in the context of the search structures,
and the interested reader may refer to the next chapter, the TOPresolve program-
ming, in case of diffi culties.

// Some defi nitions
/* basic message header fi elds (4 bytes) */
//
// prepare the header information length
 #defi ne KEY_SIZE 4; // Source IP is the key, i.e., 4 bytes

// long
#defi ne RES_SIZE 32; // result is 32 bytes long
// prepare the header fi elds
#defi ne LRN_INFO_LEN (((((KEY_SIZE+3)>>2)<<2)+RES_SIZE-1)>>2);
#defi ne STR 7; // the structure number
 #defi ne CREATE_UPDATE_MODE 1; // HL_CREATE—don't change entry if exists
#defi ne CMD_MODE 1; // HL_ADD_CMD - this is to add
#defi ne STATIC_MODE 0; // HL_NO_STATIC – entry may be aged
 #defi ne LOCAL_MODE 1; // HL_LOCAL – TOPresolve teaches the

// entry
 #defi ne SEND_MSG_MODE 0; // HL_NO_SEND_MSG – do not send to host
 #defi ne INCR_CNT_MODE 0; // HL_NO_INCR_CNT – do not increment

// counter
//
// create the High-learn header from the defi nitions above,
// shifted to their correct bit positions
 #defi ne NP1_MSG_HDR ((LRN_INFO_LEN<<0) | (STR_NUM<<8) |
(CREATE_UPDATE_MODE<<14) | (CMD_MODE<<16) | (STATIC_MODE<<18) |

13.7 Example 515

(LOCAL_MODE<<19) | (SEND_MSG_MODE<<20) | (INCR_CNT_MODE<<21));
//

 // prepare the fi rst result byte (control bits of the search structure),
// in particular the valid bit and the match bits.
#defi ne Valid_bit_offset 0; //HL_VALID_BIT_OFF
#defi ne Match_bit_offset 1; //HL_MATCH_BIT_OFF
//

 #defi ne RES_B0_B3 ((1<<Valid_bit_offset) | (1<<Match_bit_offset));
//
 #defi ne WRITE_ALL_LRN_REGS 3; // number of LRN_REGs to use in learning
#defi ne WRITE_LRN_REG0_1 1; // -"-
// Here is the actual code:
 WAIT_NO_FLAG F_LN_RSV; //macro that makes sure the High Learn is free
//

// Now start by writing the header to LRN_REG0,
 // then the result to LRN_REG1 (fi rst 4 bytes), and the next 4 bytes
// to LRN_REG2 and the next 4 bytes to LRN_REG3.
Mov LRN_REG0, NP1_MSG_HDR, 4; // LRN_REG0 contains the header
 Mov LRN_REG1, RES_B0_B3, 4; // LRN_REG1 contains result bytes 0-3
 Mov LRN_REG2, something..., 4; // LRN_REG2 contains result bytes 4-7
 Mov LRN_REG3, something..., 4; // LRN_REG3 contains result bytes 8-11
//
 Mov LRN_SIZE, WRITE_ALL_LRN_REGS, 1; // this ignites the learning

// with 4 learn registers
Nop;
//
HL_2ND_WAIT L_DISCARD, 0; //a macro that makes sure that the second
// learning phase is possible
 // Continue the learning with bytes 12-27 in the four learn register
 Mov LRN_REG0, something..., 4; // LRN_REG0 contains result bytes 12-15
 Mov LRN_REG1, something..., 4; // LRN_REG1 contains result bytes 16-19
 Mov LRN_REG2, something..., 4; // LRN_REG2 contains result bytes 20-23
 Mov LRN_REG3, something..., 4; // LRN_REG3 contains result bytes 24-27
//
 Mov LRN_SIZE, WRITE_ALL_LRN_REGS, 1; // this ignites the learning

// with 4 learn registers
Nop;
//
 WAIT_NO_FLAG F_LN_RSV; // macro that makes sure the High Learn is

// free
//
 Mov LRN_REG0, something..., 4; // LRN_REG0 has the last result

// bytes 28-31
Mov LRN_REG1, KEY_to_be_used..., 4; // now copy the key
 Mov LRN_SIZE, WRITE_LRN_REG0_1, 1; // this ignites the learning

// with 2 learn registers

516 CHAPTER 13 Searching

13.8 SUMMARY
The TOPsearch engine is an important ingredient of the NP processor; although
we describe it only briefl y here, it is one of the most signifi cant factors in achiev-
ing good performance. EZchip technology supports a search engine that uses an
instruction set similar to the rest of the processors in its pipeline, and integrates
this engine with the others; it is not a peripheral or attached processor, as other
architectures usually make it. In the next chapter, we return to the regular process-
ing unit of the NP pipeline by looking at the TOPresolve.

CHAPTER

14
The next stop of the packet, as well as of our description of packet processing in
EZchip, is resolving. Based on the results of the searched items and the messages
coming from the parsing phase, the resolving stage determines the actions to be
taken on the frame in the next stage—modifying. In other words, TOPresolve is
the decision point for handling frames. It receives messages and search results from
the TOPparse and TOPsearch I engines, respectively, and processes them to make
decisions for TOPmodify about how to manipulate the frame.

This chapter outlines the TOPresolve architecture, its blocks (called devices),
and its instruction set. A simple example is also given to demonstrate TOPresolve’s
use. As with other chapters in this part, a detailed description of blocks, registers,
and instructions is given in the appendices for readers who would like more com-
plex examples or who intend to write programs themselves.

14.1 INTERNAL ENGINE DIAGRAM
The block diagram (Figure 14.1) illustrates the internal blocks of a single TOPresolve
engine.

14.1.1 Instruction Memory Block
Instruction memory contains microcode instructions for TOPresolve engines.

14.1.2 Pipeline Control Block
The pipeline control receives a command from the instruction memory, decodes it,
and distributes the control signals to each block.

14.1.3 Data Bus
The data bus supports a data fl ow between the TOPresolve blocks.

Resolving

518 CHAPTER 14 Resolving

14.1.4 Result Memory and Result Control
The Result Memory (RMEM) is a buffer that retains search results from TOPsearch I
and messages from TOPparse. The fi rst 16 bits of each result are control bits that
are also loaded into the Result Control block.

14.1.5 Register Blocks (User-Defi ned Register, Specifi c
Register, and Header Register)

The User-Defi ned Register (UREG) contains general-purpose registers for data
 processing. The Specifi c Register (SREG) contains special registers of differing lengths,
dedicated to specifi c TOPresolve functions. The Header Register (HREG) block con-
tains descriptions of the Output Memory (OMEM) contents, including information
such as which key to use, the size of the key, and what to do with the key.

The registers are described in Section 14.2, and some are detailed in Appendix A
of this chapter.

14.1.6 Arithmetic Logic Unit
The Arithmetic Logic Unit (ALU32) is a 32-bit general purpose ALU used for per-
forming computational functions. ALU source operands are any of the TOPresolve

FIGURE 14.1

TOPresolve internal engine diagram

Functional Blocks

Internal Registers Input/Output Memories

DATA BUS

Control
Bus

RMEM
Result
Control

OMEM HREG OUT_IF UREG SREG

DATA BUS

ALU32 MINT MAX
Instruction

Memory

Pipeline Control

RMEM—Result Memory

OMEM—Output Memory

HREG—Header Register

UREG—User Register

SREG—Special Register

OUT_IF—Outside Interface

ALU—Arithmetic Logic Unit

MINT—Minterm block

14.1 Internal Engine Diagram 519

registers. To use an operand from the memory, the programmer must fi rst copy the
operand to a register before using it as an ALU source. An ALU feedback register is
used for consecutive operations in order to avoid data hazards.

14.1.7 Minterm Block
The Minterm block (MINT) solves logical nested IF_ELSE_IF equations in a mini-
mum number of clocks without branches. Users can select a complex logical oper-
ation from up to 12 predefi ned operations. The Minterm block receives several
predefi ned bit wide inputs from any block, and outputs several predefi ned bit wide
results, depending upon the logical operation chosen.

For example, with a 32-bit wide input, Minterm operation #2 returns 4 logical
values (“0” or “1”). Each result is an OR of four logical values, which are themselves
functions of the inputs to Minterm. Specifi cally, each of these four logical values
is the result of comparing two-input-bits with a predefi ned two-bit-pattern (an
 outcome of an XORNOT operation of the two-input-bits with the corresponding
two-bit-pattern values), where the matching results (“1” for identical, “0” otherwise)
are then masked by an AND operation with two adjacent mask bit inputs. And there
are also more complicated operations. All operations are explained in a clearer way
in Appendix C.

14.1.8 Max Block
The MAX block calculates maximum/minimum and index values based on the
input. The 8-bit input can originate from any other block. Output, calculated within
one clock, includes the max/min value derived from the input and its index. The
index is the number of the result that contains the max/min value. The result of the
max/min calculation is written to the MAX_OUT register.

For example, if the input contains QoS setting information from three registers
(results #1–3), the Max block determines the frame’s maximum QoS setting. A frame
may have a Layer 2 QoS setting, a Layer 3 QoS setting, and a Layer 4 QoS setting,
with each setting being the result of a search in a different structure. MAX will
take these three results (see Table 14.1) and determine the setting that takes prece-
dence (i.e., the max value). The Max block also indicates what result the max had
(i.e., in this example, it is result #2, which contains the Layer 3 QoS setting).

Table 14.1 Example of Max Block Calculation

Input Output

Result #1 Layer 2 QoS setting Max � Layer 3 QoS setting

Result #2 Layer 3 QoS setting Index � 2

Result #3 Layer 4 QoS setting

520 CHAPTER 14 Resolving

14.1.9 Output Memory
The OMEM is a memory that stores search keys for TOPsearch II. The memory
also stores messages that are being passed along to TOPmodify. All the internal
TOPresolve blocks can write to the OMEM indirectly via the OBS register.

14.1.10 Result Control Block
The result control block holds control bits written by TOPsearch I. These bits are
used for sophisticated retrieval of information from the results, for various control
operations.

14.1.11 Outside Interface Block
The Outside Interface Block (OUT_IF) provides access to external blocks such as
the learn machine, Receive Frame Descriptor (RFD) table, statistics block, and host.

TOPresolve learning and tracking functions send a key and its result back to
TOPsearch I. TOPsearch I either adds or updates the search structures based on the
key and result that it receives from TOPresolve. The key and result contain informa-
tion such as the state of a session.

14.1.12 TOPresolve High Learn Ordering Mechanism
In addition to the ordering mechanisms in TOPsearch, TOPresolve has an ordering
mechanism that guarantees the ordering of messages sent to the high learn block
(H_LRN) of the TOPsearch I. When activated (using the HOST_CONF register
described in the following section), messages are sent to H_LRN according to frame
ordering. This ensures that the updates to the TOPsearch core memories (both
internal and external) will be performed in the same order that the frames arrived
to the network processor (NP). In other words, the fi rst frame updates the memory
before the second frame, which comes before the update of the third frame, and
so on. This ensures that high learn messages are queued in TOPresolve engines and
unable to access the H_LRN block until the previous update is completed. This fea-
ture is useful for the stateful classifi cation of fl ows when using the high learn state
or the software counter feature.

For example, identifying a specifi c sequence of frames—A, B, C—without the
use of the lock ordering feature is outlined as follows:

1. The TOPresolve ordering mechanism should be enabled from the host.
2. When receiving frame A, use high learn to add an entry with state A using the

conditional state update feature of high learn.
3. When receiving frame B, use high learn to update the entry with state B (only

if the current state is A).
4. The same for frame C, updating the state to C only if the current state is B.
5. When TOPsearch I reads this entry and passes it to TOPresolve, it will be possible

to know whether there was frame sequence A, B, C, if the state fi eld has C in it.

14.2 TOPresolve Registers 521

When activated, the programmers may determine which operation indicates
the end of the high learning processes (again, by using the HOST_CONF
register).

In the default setting, all the high learn messages are processed by the H_LRN
block at the end of the microcode sequence (i.e., at HALT). The programmer may,
alternatively, “signal” the end of the high learn messages for optimization purposes.
Once all the high learn messages have been written to the learn registers (LRN_REGs,
as detailed in the following section), the programmer is then responsible for writing
something to the END_H_LRN register (it is irrelevant what is written). Writing to
this register instructs the H_LRN arbiter to fi nish processing this engine and to move
to the next engine. If ordering is not enabled, then the H_LRN arbiter uses round
robin to select between messages from the TOPresolve engines. When activating this
mechanism, high learn messages must be larger than 16 bytes.

14.2 TOPRESOLVE REGISTERS
There are two sets of registers in the EZchip TOPresolve: one that is accessible
directly through the TOPresolve microcode, and one that can be accessed by the
TOPresolve microcode only after it is fi rst initialized by the host (through the host
interface).

14.2.1 Microcode Registers
The following tables list the TOPresolve registers and structures accessible from
the microcode. Detailed descriptions of the registers follow in Appendix A of this
chapter. The R/W column indicates whether the register is read, write or both. The
Init column indicates the register’s initial value. All registers can be written to in
bits or bytes. All registers are accessed by the register name and the index in square
brackets (e.g., SREG[4]), or by their defi ned name (e.g., CNT) provided, of course,
that they were defi ned as such in the source program, or in the libraries. The reg-
isters are intended for various and specifi c purposes and, consequently, have dedi-
cated input sizes. For instance, attempting to write 8 bits into a 5-bit register will
result in only the fi rst fi ve bits being written.

The UREG register is composed of 16 general purpose registers, 32 bits each,
as described in Table 14.2. The UDB register (which is UREG[0]) is zeroed for each
new frame.

The ALU32 register block is composed of just one register of 32 bits, as
described in Table 14.3. The MAX register block is composed of two regis-
ters, as described in Table 14.4. The Minterm (MINT) register block is com-
posed of two registers, as described in Table 14.5. The SREG are composed of
16 variable length registers, as described in Table 14.6. The Outside Interface
(OUT_IF) register block is composed of 15 registers of variable length, as
described in Table 14.7. The header key (HREG) register block is composed of

522 CHAPTER 14 Resolving

Table 14.2 UREG Register Block

Index
Register
name Size (bits) Bytes (bits) Description R/W Init

0 UDB 32 bits 4 (32) User-defi ned bits.
Each bit may serve
as a condition in an
IF statement.

R/W 0

…

15 32 bits 4 (32) General-purpose
register.

R/W

Table 14.3 ALU32 Register Block

Index
Register
name Size (bits) Bytes (bits) Description R/W Init

0 ALU 32 bits 4 (32) ALU feedback
 register. See
Section 14.1.6.

R/W 0

Table 14.4 MAX Register Block

Index
Register
name Size (bits) Bytes (bits) Description R/W Init

0 MAX_O 12 bits 4 (12) Out register. See
Sections 14.1.8
and 14.4.3.

R 0

1 MAX_I 8 bits 4 (8) In register. R/W 0

Table 14.5 MINT Register Block

Index
Register
name Size (bits) Bytes (bits) Description R/W Init

0 MINT_O 16 bits 4 (16) Out register. See
Sections 14.1.7
and 14.4.2.

R

1 MINT_I 32 bits 4 (32) In register. R/W

14.2 TOPresolve Registers 523

Table 14.6 SREG Register Block

Index Register name Size (bits) Bytes (bits) Description R/W Init

0 RBS0, RBS1,
RBS2, RBS3

4 � 6 bits 4 (6 � 6 � 6
� 6)

Four RMEM base
address registers.

R/W

1 OFF_RMEM0
OFF_RMEM1
OFF_RMEM2
OFF_RMEM3

4 � 7 bits 4 (7 � 7 � 7
� 7)

Four RMEM offset
registers.

R/W

2 OBS0, OBS1,
OBS2, OBS3

4 � 7 bits 4 (7 � 7 � 7
� 7)

Four OMEM base
address registers.

R/W

3 OFF_OMEM0
OFF_OMEM1
OFF_OMEM2
OFF_OMEM3

4 � 7 bits 4 (7 � 7 � 7
� 7)

Four OMEM offset
registers.

R/W

4 CNT 8 bits 4 (8) See Loop commands. R/W 0

5 PC_STACK 16 bits 4 (16) See Call commands. R/W 0

6 SIZE_REG 5 bits 4 (5) Indirect size
register for selected
 commands
(Mov, ALU).

R/W 0

7 IND_REG0
IND_REG1

2 � (3 � 2
� 4 bits)

4 (2 � (3 � 2
� 4))

Dedicated offset
register for indirect
access to all devices
(see Figure A14.1).

R/W 0

8 ST_GRP0
ST_GRP1

2 � 3 bits 4 (3 � 3) Two structure group
registers.

R/W 0

9 HBS0, HBS1,
HBS2, HBS3

4 � 3 bits 4 (3 � 3 � 3
� 3)

Four indirect access
registers to HREG.

R/W 0

10 FLAGS 12 bits 4 (12) Flags. See Figure
A14.3 in Appendix A.

11 HISTORY0
HISTORY1

2 � 10 bits 4 (10 � 10) Two instructions in
pipeline.

R 0

12 HISTORY2
HISTORY3

2 � 10 bits 4 (10 � 10) Two more instruc-
tions in pipeline.

R 0

(continued)

524 CHAPTER 14 Resolving

Table 14.6 SREG Register Block (continued)

Index Register name Size (bits) Bytes (bits) Description R/W Init

13 UNIT_NUM 4 bits 1 (4) Number of the TOP
engine.

R

14 RX_CNT_HI 24 bits 4 (24) Status of ingress
queues (high).

R

15 TX_CNT_HI 24 bits 4 (24) Status of egress
queues (high).

R

Table 14.7 OUT_IF Register Block

Index Register name Size (bits) Bytes (bits) Description R/W Init

0 STAT_REG 32 bits 4 (32) Interface to
 statistics block.

R/W 0

1 HOST_REG 32 bits 4 (32) Host register. R/W 0

2 LRN_REG0 32 bits 4 (32) Learn register 0. R/W 0

3 LRN_REG1 32 bits 4 (32) Learn register 1. R/W 0

4 LRN_REG2 32 bits 4 (32) Learn register 2. R/W 0

5 LRN_REG3 32 bits 4 (32) Learn register 3. R/W 0

6 LRN_SIZE 2 bits 4 (2) Learn size
register.

R/W 0

7 CTRL_REG 3 bits 1 (3) TOPmodify frame
length control.

R/W 0

RESERVED 8 bits 1 (8) Reserved byte set
to 0.

FR_PTR 16 bits 3 (16) TOPmodify frame
pointer register.

R/W 0

8 RFD_REG0 10 bits 4 (10) Interface to RFD
register.

R/W 0

9 RFD_REG1 26 bits 4 (26) Interface to RFD
register.

R/W 0

10 RX_CNT 32 bits 4 (32) Status of ingress
queues.

R

14.2 TOPresolve Registers 525

Table 14.8 HREG Register Block

Index Register name Size (bits) Bytes (bits) Description R/W Init

0 HREG0 24 bits 4 (24) HREG registers,
containing headers
of the keys and
messages, as
described in
the TOPsearch
chapter.

R/W

…

7 HREG7 24 bits 4 (24) R/W

eight registers (one for each key or message created for next stages in the NP
pipeline), each of 24 bits, as described in Table 14.8.

14.2.2 Host Registers
All host registers are initialized by the host; however, the initial values for some
are inserted into the NP microcode for loading. These initialization commands
are “executed” by the host prior to executing the program in the instruction
memory. Table 14.9 lists all of TOPresolve’s host registers and indicates which reg-
isters have their initial values in the NP microcode.

Table 14.7 (continued)

Index Register name Size (bits) Bytes (bits) Description R/W Init

11 TX_CNT 32 bits 4 (32) Status of egress
queues.

R

13 END_H_LRN 32 bits 4 (32) End of H_LRN
for ordering.

W

14 STAT_REG_HI 16 bits 4 (16) Interface to
statistics block.

R/W

526 CHAPTER 14 Resolving

Table 14.10 TOPresolve Memories

Name Description

RMEM Result memory (from TOPsearch I)

Result control block Result memory (from TOPsearch I)

OMEM Output memory (to TOPsearch II)

14.3 TOPRESOLVE STRUCTURES
TOPresolve’s microcode instructions access three “external” memories: the result
control block and the RMEM (both of which contain input data for TOPresolve),
and the OMEM (which is used by TOPresolve for output). The result control block
and RMEM—the inputs—contain the results of the previous pipelined engine
 (TOPsearch I), while OMEM will be used by the next pipelined engine (TOPsearch II).
These three kinds of memories are described in Table 14.10.

Output Memory is accessed indirectly via the OBS register. It is important to
note that RMEM, the input memory, cannot be accessed as a continuous memory,
like regular direct accessed memory, but can only be accessed using the structure
number of the search operation (or the message). In other words, if a key or message

Table 14.9 TOPresolve Host Registers

Address Name Description Initialization

0x00 INT_REG Interrupt register. Host only

0x00 INT_REG Interrupt register. Host only

0x01 � 0x04 WIDE_LOAD[3:0] SRAM instruction
register.

Host only

0x08 BR_ADDR Service routine address. Host only

0x09 � 0x18 MREG[15:0] ALU mask register. Microcode

0x19 HOST_CONF Learn ordering and
channel support register.

Host only

0x20 � 0x25 HOST_REG[5:0] Host debug register. Host only

0x2C MCODE_BR_INT Microcode execution
or break point
 command.

Host only

0x2D STATUS_REG Status register. Host only

14.4 TOPresolve Instruction Set 527

were written to the input memory of TOPsearch I using some structure (as indi-
cated in the key header in the HREG), the RMEM could be read by TOPresolve only
by indicating this structure number as a base.

14.4 TOPRESOLVE INSTRUCTION SET
This section examines each of the instructions in the TOPresolve microcode that
are unique to this TOP. The common NP instructions that are shared by all of the
TOPs are described in the EZchip programming chapter.

The microcode execution begins on the fi rst instruction for each new frame.
After examining and processing the input TOPsearch I results and the TOPparse
messages and then making decisions, programmers are responsible for writing the
output keys for TOPsearch II in the OMEM (PutKey instruction) and the key head-
ers in HREG (PutHdr instruction). A header must accompany each key. The format
of the header is located in Section 13.4.

Programmers are also responsible for writing TOPresolve messages destined
for TOPmodify in OMEM (PutKey instruction). The messages are actually keys
that, instead of being processed by TOPsearch II, are passed as is to TOPmodify. The
 messages may include fi elds from the TOPparse hardware decoder, notably the frame
pointer, frame length, fi rst frame buffer, and number of frame buffers. A message
may also contain other data obtained in TOPsearch I and TOPresolve; for example a
32-bit map indicating up to 32 modifi cations for the TOPmodify Accelerator, needed
in TOPmodify. The format is located in Section 13.4.

Programmers are also responsible for fi lling in the CTRL_REG and FR_PTR reg-
isters. These registers are automatically read by TOPmodify, enabling it to pre-fetch
the fi rst frame buffer if it requires modifi cation. These registers have a separate
interface and do not need to be passed through a message, unless the programmer
wishes to use them in the TOPmodify microcode.

Most of the commands in the following subsections are described briefl y, with
examples. In most cases, this should be enough for understanding and writing com-
plex code; however, the reader who needs deeper utilization of the commands is
referred to Appendix C of this chapter.

14.4.1 Move Commands
Move commands copy data (bits, bytes, and words) from various sources to vari-
ous destinations, as described in the EZchip Programming chapter. There are four
prefi xes for move commands, depending on where the data is being moved (see
Figure14.2 and Table 14.11):

� Use Get for moving data from RMEM to TOPresolve registers.
� Use Mov for moving data within the TOPresolve registers.
� Use Put for moving data from TOPresolve registers to OMEM.
� Use Copy for moving data from RMEM to OMEM.

528 CHAPTER 14 Resolving

Table 14.11 List of Move Commands

Name Description

Mov Move bytes from immediate value or register to register

MovBits Move bits from immediate value or register to register

Mov4Bits Move 4 separate bits

Get Move bytes from memory to register

PutKey Move bytes from register or immediate value to memory

Copy Move bytes from memory to memory

PutHdr Write bytes from immediate value or register to header

PutHdrBits Write bits group from immediate value or register to header

PutHdr4Bits Write 4 bits with immediate values or from register to header

GetRndBits Move bits from result control

GetFixBits Move bits from result control

GetRnd4Bits Move bits from result control

FIGURE 14.2

TOPresolve move commands name prefi x mnemonic

RMEM
Registers

OMEM

Copy

Get

Mov

PutHdr

PutKey

HDRResult
control Get*bits

The additional move commands in TOPresolve that are not described in the
common NP instructions (described in Chapter 11) are those that use the result
control block bits, as follows.

14.4.1.1 GetRndBits DST, SRC0, SRC1, SRC2, SRC3, SRC4,
SRC5, SRC6, SRC7

Defi nition: Move eight random bits from the result control block (SRC0..7) to
destination (DST). The term random refers to bits that are arbitrarily

14.4 TOPresolve Instruction Set 529

 addressed and not necessarily adjacent (like in Random Access Mem-
ory); actually, they are programmable-selected. This instruction enables
random bits from any two structure groups (each structure group
 contains up to eight structures) and writes them to the destination.

This is the only command that uses the structure groups (see ST_GRP
in the Specifi c Registers section of Appendix A in this chapter). If a
 structure number does not exist, “0” is written.

Example: GetRndBits UREG[1], STR_GRP0.INDEX[5].BIT[4],
 STR_GRP0.INDEX[1].BIT[4],
 STR_GRP0.INDEX[2].BIT[0],
 STR_GRP0.INDEX[6].BIT[3],
 STR_GRP1.INDEX[5].BIT[12],
 STR_GRP1.INDEX[7].BIT[4],
 STR_GRP1.INDEX[0].BIT[15],
 STR_GRP1.INDEX[5].BIT[4];

Description: STR_GRP0 and STR_GRP1 are aliases for SREG[8].BYTE[0] and
SREG[8].BYTE[1], respectively. (They are defi ned in TOPresolve.h.)
These are not really two byte size resources, but rather two 3-bit size
resources. Each one indicates a structure group number (0–7), giving
the programmer random access to the 16 structures within these two
groups. INDEX is the three least signifi cant bits (lsb) specifying the row
(0–7) within the group, using all the bits to build a byte. This example
loads the eight bits from the various structures to UREG[1].BIT[0], and
STR_GRP0.INDEX[5].BIT[4], for example, indicates ST_GRP0, structure
5 within this group, and bit 4.

14.4.1.2 GetFixBits DST, SRC0, SRC1, SRC2, SRC3, SRC4,
SRC5, SRC6, SRC7

Defi nition: Move eight bits from the result control block (SRC0..7) to destination
(DST). This instruction builds a byte from eight bits within any two
offsets. If structure number does not exist, ‘0’ will be written.

Example: GetFixBits UREG[1], STRNUM[55].BIT[15],
 STRNUM[0].BIT[15],
 STRNUM[55].BIT[15],
 STRNUM[15].BIT[15],
 STRNUM[13].BIT[4],
 STRNUM[51].BIT[4],
 STRNUM[55].BIT[4],
 STRNUM[7].BIT[4];

Description: Move eight bits from the structures indicated with corresponding
offsets to UREG[1].BIT[0]. Each of the offset bits may only have one
of two values (e.g., 15 or 4), hence, the mnemonic FixBits.

530 CHAPTER 14 Resolving

14.4.1.3 GetRnd4Bits DST, SRC0 [,SRC1 [,SRC2 [,SRC3 [,SIZE]]]]
Defi nition: Move up to four bits (SIZE) from the result control block (SRC1..4)

to destination (DST). All structure numbers and offsets (0..15) can be
used. If a structure number does not exist, “0” will be written.

Example: GetRnd4Bits UREG[1], STRNUM[0].BIT[0],
 STRNUM[5].BIT[2],
 STRNUM[19].BIT[1],
 STRNUM[19].BIT[0];

Description: Move bit 0 from structure 19 to UREG[1].BIT[0].
 Move bit 1 from structure 19 to UREG[1].BIT[1].
 Move bit 2 from structure 5 to UREG[1].BIT[2].
 Move bit 0 from structure 0 to UREG[1].BIT[3].

14.4.2 Minterm Operations
Minterm operations are a toolkit consisting of multiparameter bit-wise opera-
tions, all being ORs of groups of input bits ANDed together. The various opera-
tions are dictated by an “operation” operand. These operations are used to
perform complex logical decisions in a single clock. The mnemonic Minterm
originates from the name given to elements of Conjunctive Normal Form in
switching theory. The format of the Minterm operation is:

Minterm DST, OPER, INVMASK, MASK4, CTRL, SIZE;

Defi nition: Calculate logical formulas, according to OPER. Results of the Minterm
operation can be up to two bytes, sent to the destination (DST). The
input is from the 32-bit MINT_I register.

14.4.3 SetMaxMin Operations and Max Block
The Max functional block executes the SetMaxMin operations to fi nd the maximum or
minimum value of a series of arbitrary length. The format of the SetMaxMin operation is:

SetMaxMin SRC, MODE;

Defi nition: Find max/min value in a sequence (according to MODE) and write it
to MAX_O.BYTE[0].

Example: SetMaxMin UREG [13], _MAX_RST;
 Mov MAX_IN. UREG [14], 1;
 Mov MAX_IN. UREG [15], 1;

Description: These three commands calculate the maximum of values from
UREG[13], UREG[14], and UREG[15]. The one-byte result will be
 written to MAX_OUT.BYTE[0]. The index of the maximum value (in a
sequence of up to 16 values) will be written in MAX_OUT. BYTE[1].

14.5 Example 531

Table 14.12 TOPresolve Conditional Commands

Mov Jmp

MovBits Call

Get PutHdr

Copy PutHdrBits

PutKey ALU operations

Example: If a series is 1, 9, 0, 8, 5, 10, 3,
 then its index is 0, 1, 2, 3, 4, 5, 6.
 When 1 and 9 are compared, 9 is the max value and its index is 1. After

comparing the entire series, the max value is 10, and the index is 5.

14.4.4 Conditional Commands
Some of the instructions can be preceded by conditional statements that function
as part of the instructions, that is, they are coded in one machine-instruction, and
are executed at the same time as the unconditional statements. These TOPresolve
 commands are listed in Table 14.12.

14.5 EXAMPLE
This sample application continues the example of the TOPparse chapter, for trans-
mitting the ingress frames with a VLAN TAG to the Virtual Output Queue (VOQ)
with the application code written for each NP TOP processor.

This example adds a fi eld (VLAN tag) to the frame header, if required, based
on inspection by the hardware decoder as to whether the incoming frame has a
VLAN TAG. This information is passed through a message to TOPmodify, where the
proper treatment of the frame is decided.

14.5.1 Frame Handling Overview
The NP operates on both ingress and egress paths. As described in the Parsing
phase in Chapter 12, the NP processes frames on the ingress path; that is, frames
that arrive from the network and are transmitted to the switching fabric. The
TOPparse receives ingress frames, and the NP’s hardware decoder automatically
inspects each incoming frame and provides useful information about the frame for
microcode use prior to execution of the NP microcode.

The decoded information is passed by a message from TOPparse to TOPresolve,
accompanied with a decision byte. TOPresolve forwards the message to TOPmodify
and initializes the internal buffer of TOPmodify as the fi rst frame buffer. According
to the message (decision byte), TOPmodify decides whether to add a Common

532 CHAPTER 14 Resolving

Switch Interface Specifi cation (CSIX) header or a VLAN tag and a CSIX header to
the current frame header, prior to its transmission to the VOQ in Mode 1.

14.5.2 Data Flow and TOP Microcode
The subsections that follow describe the data fl ow for TOPresolve, including the
relevant microcode. Defi nition and macro fi les for this sample application are
located in Section 14.5.4.

TOPresolve does not do much, actually; it just passes the message received from
TOPparse along to TOPmodify (via TOPsearch II). It also initializes the internal
 buffer to be used in TOPmodify as the fi rst frame buffer. The entire code is eight
instructions, organized in two steps:

1. Pass the hardware decoded data to TOPmodify. This data was originally sent
by TOPparse as a message in the fi rst 16 bytes of KMEM. The “copy” com-
mand copies data from the RMEM (input memory of TOPresolve) to OMEM
(output memory of TOPresolve). The message header structure in this
 example, according to Figure 14.3, is as follows:

HW_MESSAGE_HEADER = 0x1E031 = 0001 1110 0000 0011 0001

2. TOPresolve can defi ne whether the internal buffer of TOPmodify will be
initialized. By initiating the value of CTRL_REG with the frame’s fi rst buffer
length, TOPresolve defi nes that the internal TOPmodify buffer will be initial-
ized with the contents of the fi rst frame buffer.

14.5.3 TOPresolve Microcode
The following code implements the TOPresolve stage.

EZtop Resolve;

#include "mcglobal.h" // Global defi nition fi le supplied with EZdesign,
 // with predefi ned constants for NOPs, fl ags, etc.
#include "TOPResolve.h" // TOPresolve defi nition fi le supplied, provides

 // recognizable names for registers and fl ags.
#include "hdreg.h" // Global defi nition fi le supplied to provide

 // recognizable names to the HW decoded registers.

FIGURE 14.3

Message header structure

0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1
6 bits representing the msg length.
In Obase and in 2-byte resolution.

valid msg
(not
key)

structure number
0

last
key

single
key

4 bits representing the
number of bytes in msg.
In Obase and 8-byte
resolution.

(7 � 1) *2 � 16 byte msg length.

(1 � 1) *8 � 16 byte
msg size.

14.5 Example 533

// Constants:
#defi ne HW_HEADER 0x1E031;
#defi ne HW_HD_REG0_OFF 1;
#defi ne HW_FR_PTR_OFF 7;
#defi ne HW_OBS OBS0;
#defi ne HW_STRUCT 0;
#defi ne HD_REG0 UREG[1];

START: // Beginning of microcode sequence
Mov HW_OBS, 0, 2; // Initialize the base pointer HW_OBS

// Initialize FR_PTR with the logical pointer to the fi rst frame buffer.
// The pointer is extracted from HD_REG1 b31:16 (passed via a message

 // from TOPparse).
Get FR_PTR, HW_FR_PTR_OFF(0), 2;

// Initialize the local register (HD_REG0) with the value of the HW
// decoder register HD_REG0 (passed via a message from TOPparse).
Get HD_REG0, HW_HD_REG0_OFF(0), 4;

////////////////////////////////////
// Step 1: Copy message to TOPsearch II
 PutHdr HREG[0], HW_HEADER, 3;
 Copy 0(HW_OBS)+, 0(HW_STRUCT), 8;
 Copy 0(HW_OBS)+, 8(HW_STRUCT), 8;

// Step 2: Initialize the internal buffer of TOPmodify with the
 // contents of the fi rst frame buffer.

 MovBits CTRL_REG, sHR0_bits1stBufLenCtrl, 3;

 Halt HALT_UNIC; //pass frame to the next TOP stage in the pipeline

14.5.4 Defi nition Files
There are three header fi les used in this example: the microcode global defi ni-
tion fi le (mcglobal.h), the hardware decoding defi nition fi le (hdreg.h), and the
 TOPresolve defi nition fi le (TOPresolve.h).

The microcode global defi nition fi le (mcglobal.h) is described in Chapter 12.
The hardware decoding defi nition fi le (hdreg.h) is also described in Chapter 12 but
is using here another defi nition:

#ifndef _hdreg_h ;
#defi ne _hdreg_h ;

#ifndef sHR0 ;
#defi ne sHR0 HD_REG0 ;

534 CHAPTER 14 Resolving

#endif ;
. . .

#defi ne sHR0_bits1stBufLenCtrl sHR0.BIT [12];// 3
. . .

#endif;

The TOPresolve defi nition fi le (TOPresolve.h) is as follows:

#ifndef _TOPresolve_h_ ;
#defi ne _TOPresolve_h_ ;
. . .

// SREG
. . .

#defi ne OBS0 SREG [2].BYTE [0] ;
. . .

// Outside interfaces
. . .

#defi ne CTRL_REG OUT_IF [7] ;
#defi ne FR_PTR OUT_IF [7].BYTE [2] ;
. . .

#endif /* _TOPresolve_h_ */ ;

14.5.5 Structures and Message Formats
Several data structures and formats are used to pass the information, keys, and
results between the previous pipeline engines and the TOPresolve, and between
TOPresolve and the following pipeline engine—the TOPmodify. These structures
are described in the subsections.

14.5.5.1 TOPsearch I Structures
Table 14.13 describes the TOPsearch I data structures (also described in the Parsing
chapter). The message from TOPparse to TOPresolve is placed in structure number
0 on the ingress path.

14.5.5.2 TOPsearch II Structures
As described in Table 14.14, TOPsearch II data structures in our example are
 precisely like the TOPsearch I data structures described earlier. The message from
TOPresolve to TOPmodify is placed in structure number 0 on the ingress path.
A message header must accompany the message passed to TOPsearch II.

14.5.5.3 TOPparse–TOPresolve Hardware Decoded Message
Table 14.15 presents the format of the 14-byte message (padded to 16 bytes)
from TOPparse to TOPresolve via TOPsearch I on the ingress path (as described in
 Chapter 12). This message is placed in TOPsearch I structure #0, and contains infor-
mation extracted by the HW decoder destined for TOPs down the line.

14.5 Example 535

Table 14.14 TOPsearch II Data Structures

Name
Structure
type

Structure
number Path Used for

Key size
(bytes)

Result size
(bytes)

TOPresolve-
TOPmodify
message

(Message) 0 Ingress L2 � L3,
VLAN tag
fl ag

– –

Table 14.13 TOPsearch I Strucures

Name
Structure
type

Structure
number Path Used for

Key size
(bytes)

Result size
(bytes)

TOPparse-
TOPresolve
message

(Message) 0 Ingress L2 � L3,
VLAN tag
fl ag

– –

14.5.5.4 TOPresolve–TOPmodify Message
The message from TOPresolve to TOPmodify, via TOPsearch II, in our example is
identical to the TOPparse to TOPresolve message described above, and outlined
in Table 14.16. This 14-byte message (padded to 16 bytes) is placed in TOPsearch
II structure #0. This message contains the HW decoded information, including
whether the original frame contains a VLAN tag fi eld.

Table 14.15 TOPparse–TOPresolve Message

Field name Byte offset Size (bits) Note

Valid 0 1 Always 1 for messages

To host 0 1 1—send to host

TTL_EXP 0 1 From HD_REG0 b28

Ctrl reserved bits 0 5

HD_REG0 1–4 32 HW decoding

HD_REG1 5–8 32 HW decoding

HD_REG2 9–12 32 HW decoding

vlanTagExists 13 1 Indicates whether the arriving frame
contained a VLAN tag fi eld

536 CHAPTER 14 Resolving

14.6 SUMMARY
The TOPresolve is a middle engine whose job is to make decisions based on the
analysis and fi ndings of the TOP engines that precede it have done, and to pass
these decisions on to the TOP engines that follow it, TOPmodify (and potentially
also through the extra step of lookup). The TOPresolve is also responsible for
updating the search database that the NP maintains for its TOPsearch operations,
for allowing stateful analysis, as well as enabling dynamic and adoptive program
algorithms.

The internal structure of TOPresolve is described in this chapter, including its
 registers and data structures, as well as its blocks (functional units) and instruction
set. The appendices of this chapter provide more details about the registers and
the instruction sets for those who need them either to understand a code or to
write one.

In the next chapter, we very briefl y describe the TOPmodify engine, which is
the next processor in the EZchip network processor pipeline.

Table 14.16 TOPresolve–TOPmodify Message

Field name Byte offset Size (bits) Note

Valid 0 1 Always 1 for messages

To host 0 1 1—send to host

TTL_EXP 0 1 From HD_REG0 b28

Ctrl reserved bits 0 5

HD_REG0 1–4 32 HW decoding

HD_REG1 5–8 32 HW decoding

HD_REG2 9–12 32 HW decoding

vlanTagExists 13 1 Indicates whether the arriving frame
contained a VLAN tag fi eld

537

APPENDIX A
DETAILED REGISTER DESCRIPTION

A detailed description of all TOPresolve devices and registers is given in this appen-
dix. Though some of the information here duplicates what can be found in the body
of the chapter, the details and descriptions are fl eshed out considerably.

MICROCODE REGISTERS
The microcode registers are accessed by the microcode for normal operations dur-
ing program execution, and include user-defi ned, functional, and specifi c registers.

User-Defi ned Register
The UREG contains 16 general-purpose registers for data processing; UREG[0] is
the UDB register.

Register name Description

UDB User-defi ned bits. Programmers can impose a condition on each bit, or its inverse,
and act accordingly.

Arithmetic Logic Unit Register

Register name Description

ALU 32-bit ALU feedback register with the last result of the ALU calculation. Used to
perform adjacent ALU calculations and avoid a data hazard.

MAX Register

Register name Description

MAX_O 12-bit output from the MAX block: 8 bits for the min/max and 4 bits for the index
value (0–15). MAX_O can be used as a source register for a move instruction.

MAX_I 8-bit input for the MAX block. Input is read for debugging only.

Minterm Register

Register name Description

MINT_O 1–16 bits of output from the Minterm block. The number of bits depends on the
Minterm equation used (see Section 14.1.7). Output can also be written auto-
matically to another destination as either one or two bytes (with all unused bits
set to 0). To write to another destination in bits, the register must wait for one
instruction (to prevent a data hazard) and then use the MovBit command.

MINT_I 32-bit input for the Minterm block for calculating logical formulas (see Section 14.1.7).

538 CHAPTER 14 Resolving

Specifi c Registers (SREG Table)

Register name Description

RBS 6-bit RMEM base address based on the TOPsearch structure number (0–63). This
provides TOPresolve with indirect access to the results in RMEM. Four RBS registers
enable TOPresolve to work on four results simultaneously.

OFF_RMEM 7-bit RMEM offset specifying the result (up to 128 bytes). Four OFF_RMEM registers
enable TOPresolve to work on four results simultaneously. Autoincrement (offset � size)
updates this register to read additional bytes from the same result in the RMEM.

OBS 7-bit OMEM base address for writing keys for TOPsearch II/TOPmodify. Four OBS
registers enable TOPresolve to write four keys simultaneously. Auto increments the
base address (offset � base � size).

OFF_OMEM 7-bit OMEM offset for writing keys for TOPsearch II/TOPmodify. Four OFF_OMEM
 registers enable TOPresolve to write four keys simultaneously.

CNT 8-bit register for loop support. The program branches on the counter and checks
the counter’s value; if the value is not zero, the program jumps to the start of the
loop. Each counter value branch automatically decrements the counter by one,
that is, counting down at each loop taken. Up to 256 repetitions of a particular
sequence of code are supported. The Counter register depth is one; thus, the
counter can write/read to a register to implement nested loops.

PC_STACK 16-bit register for call commands (i.e., branch � set bit to push to stack). At each
call command, the content (branch address �3-#NOPs) is automatically written to
PC_STACK. The PC_STACK has a depth of one; thus, the PC_STACK can be written/read
by the user to build nested call commands. The call command contains the number of
NOPs that follow the relevant return command.

SIZE_REG 5-bit register for an indirect size. The size may be specifi ed in either bits or bytes,
depending on the instruction.

IND_REG 9-bits contains the indirect address for a Dword, byte, and bit. Source. Destination
addresses are written in device#, Dword#, byte#, and bit# formats. The device num-
ber is always specifi ed as immediate, whereas the other three destinations (Dword#,
byte#, and bit#) can be addressed either immediately or indirectly using the IND_REG
register. See Figures A14.1 and A14.2 for IND_REG format.

ST_GRP0
ST_GRP1

Two 3-bit registers specifying the structure group. Structures are divided into 8 groups.
Another 3 bits from the GetRndBits command specify the particular structure within
that group (relative to the group). (See fi gure on facing page.)

HBS Four 3-bit registers for indirect access to header keys in HREG. Supports up to eight
keys per frame.

FLAGS 12-bit fl ag register. The defi ned bits and bit fi elds within the FLAGS register control
selected operations and indicate the status of the network processor (see Figure A14.3).
 ZR—zero fl ag
 CY—carry fl ag
 SN—sign fl ag
 OV—overfl ow fl ag (0=no overfl ow; 1=overfl ow)
 LP—loop counter register (0=CNT register is not zero; 1=CNT register is zero)
 ST—statistics register (0=interface ready; 1=not ready)
 HT—host register (0=interface ready; 1=not ready)

Appendix A: Detailed Register Description 539

Register name Description

 LN—learn ready fl ag (0=interface ready; 1=not ready)
 RD—RFD interface (0=interface ready; 1=not ready)
 PN— H_LRN pending fl ag interface (0 = TOPresolve engine not pending; 1=TOPresolve

engine is pending for H_LRN machine to begin receiving its learn message)
 Note: In microcode, the fl ags are referred to as FLAGS.BIT (F_x_RSV), where x is the

fl ag name from Table A14.3. (e.g. FLAGS.BIT (F_ZR_RSV)).

History Four 10-bit registers specifying the four instructions currently in the pipeline:
 HISTORY0 Byte 0–1: Fetch stage
 HISTORY1 Byte 2–3: Decode stage
 HISTORY2 Byte 0–1: Execution 1 stage
 HISTORY3 Byte 2–3: Execution 2 stage

UNIT_NUM 4-bit register that numbers each of the TOPresolve engines. This enables a specifi c
TOPresolve engine to be referenced directly in the code.

RX_CNT_HI In NP-1 and NP-1c: 24-bit register containing the status of the ingress upper queues.
See RX_CNT register for overall status and status of the lower ports.

b23:0 RFD upper ports (3*8) � 3 most signifi cant bit (msb) (bits 10:8) of Rx per port
counter bits 10:0. Indicates the number of RFD pointers being used in the Rx portion
of the RFD table (see RX_CNT).

TX_CNT_HI In NP-1 and NP-1c: 24-bit register containing the status of the egress upper queues.
See TX_CNT register for overall status and status of the lower ports.

b23:0 RFD upper port (3*8) � 3 msb of Tx per port counter (11 bit) Indicates the number
of RFD pointers being used in the Tx portion of the RFD table (see TX_CNT).

Group
Number

Relative
Structure

Structure
Number

0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

6
7

62
63

1

0

2

7

SREG ST_GRP

Diagram of 64 structures divided into 8 groups with 8 structures each

540 CHAPTER 14 Resolving

Register name Description

STAT_REG 32-bit interface to the statistics block: address (b31:8), reserved (b7:3), and command
(b2:0). Valid commands are increment (000), decrement (101) and reset (001). Incre-
ment and decrement commands use the operand in the STAT_REG_HI register.

HOST_REG 32-bit interface to the host. Microcode programmers should not write to this register.

LRN_REG Four 32-bit registers containing up to 128 bits of TOPresolve learn information for
the TOPresolve learning feature. The minimum learn size is 16 bytes (12 bytes if
operating in “NP-1 mode”). The data may occupy from one to four of these registers
depending on the size of the learn information. Learn information can be written into
the four LRN_REG registers (16 bytes) several times over; however, the fi rst time the
four control bytes (four lsbs of LRN_REG b31:0) must be written and sent fi rst. For
the structure format, refer to Section 13.6.2.

Programmers are responsible for checking the status of the LN fl ag; if it is set, then the
LRN_REG registers must not be written to because the learn interface is busy.Based on
the STRUCT_NUMBER, TOPsearch knows the size of the key and the size of the result
and takes these from the ENTRY. It then calculates the hash signatures.

Outside Interface Registers
The OUT_IF registers access external blocks. Programmers must check the ready
fl ag to ensure that these registers can be written to. Attempting to write to one of
these blocks when it is not ready will result in a loss of the data.

FIGURE A14.3

TOPresolve fl ags

2 bit# 15 14 13 12 11 10 9 8 7 6 5 4 3 1 0

SN OV LP ST HT LN RD PN ZR CY

FIGURE A14.1

IND_REG0 format

byte

Dword# byte# bit#
7 6 5 4 3

1
2 1 0

byte
7 6 5 4 3

0
2 1 0

FIGURE A14.2

IND_REG1 format

byte

Dword# byte# bit#
7 6 5 4 3

3
2 1 0

byte
7 6 5 4 3

2
2 1 0

Appendix A: Detailed Register Description 541

Register name Description

LRN_SIZE 2-bit register specifying which LRN_REG register should be written.
 0—write LRN_REG0 only.
 1—write LRN_REG0 and LRN_REG1 only.
 2—LRN_REG0, LRN_REG1, and LRN_REG2 only.
 3—write all four LRN_REG registers
Once the LRN_SIZE_REG is written into, it triggers the ready fl ag. None of the
LRN_REG registers can be written into until the ready fl ag is cleared.

CTRL_REG 3 bits of hardwired information for the TOPmodify block containing the number of
times that the TOPmodify needs to access the frame memory (64 bytes at a time)
to prefetch the fi rst frame buffer. This enables optimization of TOPmodify’s prefetch
mechanism. These are b2:0 in byte 0. If set to zero, then TOPmodify will not fetch
the frame buffer.

FR_PTR 16-bit frame pointer for TOPmodify. These are b31:16 in bytes 2–3. In addition to
being placed in this register, the frame pointer may be passed to TOPmodify in a
message for use in the TOPmodify microcode.

RFD_REG0 10 or 11-bit interface to the RFD table: (7:0) data, (9:8) command. The command bits
are the trigger for the ready fl ag to be set. Data cannot be written to RFD_REG0 or
RFD_REG1 again until the fl ag is cleared.

Command bits:
1— Recycle (based on the multicast bit in RFD_REG1, the recycle operation will either

check (1) or ignore (0) the multicast counter fi eld in RFD table);
3— Write to the multicast counter fi eld in the RFD table (the multicast bit in RFD_REG1

should be set). The number of RFD entries that are updated with this multicast counter
fi eld is based on the value of the RFD_REG1 number of buffers fi eld: 1 RFD entry if the
number of buffers is 1, or 2 entries if the number of buffers is greater than 1.

In NP-2 Bit 10 is used for reading one of the RFD budget counter according to the
port fi eld in RFD_REG1 (all “1” indicate reading ALL_PORT counter) and bit 15 in
RFD_REG1 used for selecting RX counter or TX counters.

Writing the command “100” to bits 10:8 will trigger a reading from the RFD counter.
Data cannot be written to RFD_REG0 or RFD_REG1 again until the fl ag is cleared,
and then the counter value will be in bits 24:16.

RFD_REG1 26 to 28-bit interface to the RFD table. The register format differs depending on
whether the chip is operating in NP-1, NP-1c, or NP-2 mode, as confi gured in the
HOST_CONF register. When in different modes, the number of bits used for the port
number differs.

In NP-1 mode:
(15:0) pointer, (20:16) number of buffers, (23:21) port number, (24) multicast, and
(25) set to zero.

In NP-1c mode:
(15:0) pointer, (20:16) number of buffers, (24:21) port number, and (25) multicast.

In NP-2 mode:
(15:0) pointer, (20:16) number of buffers, (26:21) port number, and (27) multicast.

RX_CNT 32-bit register containing the status of the ingress queues. This register is a counter
showing the number of RFD pointers in use, which indicates the number of active
 buffers in the system. The counters are increased as pointers are taken, and decreased
as pointers are recycled. These states may be used by TOPresolve as watermarks.

542 CHAPTER 14 Resolving

Register name Description

RX_CNT
(cont’d)

In NP-1 and NP-1c the RX_CNT register fi elds are separate counters indicating the
number of RFD pointers being used in the Rx portion of the RFD table:

2:0 VOQ total—bits 11:9 out of VOQ CNT counter bits 11:0.
Host—number of Rx RFD pointers that are used as the host sends frames to the VOQ and
receives frame from the HTFD queue. This provides an overall indication of congestion
at the host interface and could be used in restricting the host’s bandwidth consumption.

VOQ total—number of counters presently in the VOQ.
7:3 RFD total—bits 10:6 out of Rx RFD counter bits 10:0.
RFD total—total number of Rx RFD pointers being used by the IFDMA, the host and the
TOPmodify block. This provides an overall indication of congestion on the ingress path.

31:8 RFD port (3*8)—3 msb (bits 10:8) of Rx per port counter bits 10:0. These are the
lower 8 ports/channels; see RX_CNT_HI register for the status of the upper 8 ports.

RFD port—number of Rx RFD pointers being used by each IFDMA. This provides a
indication of congestion at each NP-1 input port from the network.

TX_CNT 32-bit register containing the status of the egress queues. This register is a coun-
ter showing the number of RFD pointers in use, which indicates the number of
active buffers in the system. The counters are increased as pointers are taken, and
decreased as pointers are recycled. These states may be used by TOPresolve as
watermarks.

In NP-1 and NP-1c the TX_CNT register fi elds are separate counters indicating the
number of RFD pointers being used in the Tx portion of the RFD table:

2:0 host—(9..7) bits of RxTx Host counter (11 bit)
Host—number of Tx RFD pointers used for sending frames to the host on the egress
path, although this is not a standard path implemented by the NP-1.

7:3 RFD total—(10..6) of Tx RFD counter (11 bit)
RFD total—total number of Tx RFD pointers being used by the EBDMA and the TOPmodify
block. This provides an overall indication of congestion on the egress path.

31:8 RFD port (3*8)—3 msb of Tx per port counter (11 bit). These are the lower 8
ports/channels; see TX_CNT_HI register for the status of the upper 8 ports.

RFD port—number of Tx RFD pointers being used by each ETFD. This provides an
indication of congestion on the queues to the network.

END_H_LRN 32-bit register that when written to indicates that the TOPresolve engine has com-
pleted its messages to the high learn block (H_LRN). This will release the H_LRN
arbiter from waiting so it may process messages from the next TOPresolve engine.
This register is only used when TOPresolve ordering is enabled (H_LRN_ORDERING)
and the H_LRN_END_MODE bit is set.

STAT_REG_HI 16-bit operand for the statistics block. See the STAT_REG register for the address and
command.

Header Register
The HREG contains the headers for the keys in the OMEM—eight registers for eight
headers (24 bits each). These are for the eight searches that may be performed in
TOPsearch II. HREG can be accessed indirectly from the HBS register.

Appendix A: Detailed Register Description 543

FIGURE A14.4

ALU mask[15:0] register

NAME

ALU_MASK b31:0 Used for ALU mask. 0

BITS# DESCRIPTION INIT VALUE

HOST REGISTERS
Most registers are initialized with a high-level Application Program Interface (API)
 interface, which is not described here. The only registers that are described in this
Appendix are those that are mentioned in this chapter and in the sample programs
in the book. For more details, see [118].

MREG[15:0] Register
The LDREG command in the microcode instructs the loader to load the user-
defi ned masks to each of these mask-registers (Figure A14.4).

544

APPENDIX B
TOPRESOLVE ADDRESSING MODES

Table B14.1 provides the numbers, names, and syntaxes of the addressing modes
that are relevant to the TOPresolve. Devices in this table refer to registers or struc-
tures; for example UREG, SREG. The numbers in the fi rst column are used in this
chapter to indicate the addressing modes supported by operands. Bold typeface
indicates required text. Italic typeface indicates text that must be replaced with
the appropriate value.

Table B14.1 TOPresolve Addressing Modes

No. Name Syntax Description

1 Immediate 123 or 0x12 or “abcd” or $ or label 123 � decimal number
0x12 � hexadecimal number
“abcd” � 4 bytes � 0x61626364
$ - program counter (PC)
label � program label

2 Register device [number] For the device, see the registers listed
in Section 14.2.

Number � index of the register in the
device array

3 Register
(byte- specifi c)

device [number1].byte [number2] number1 � index of the register in the
device array

number2 � byte number in this
register

4 Register
(bit-specifi c)

device [number1].bit [number2] Number2 � bit number in this register

5 Register
(four-bit)

device [number1].bits [n1,n2,n3,n4] n1..n4 – specifi c bits in this register

6 Indirect device [IND_REG]

7 Base-index offset (base) or offset (base) � Base–base registers.
Offset—immediate or some register

9 Memory
(byte- specifi c)

hreg [HBS].byte[num2]

10 Memory
(bit-specifi c)

hreg [HBS].bit[num2]

11 Memory
(four-bit)

hreg [HBS].bits [n1,n2,n3,n4]

Appendix B: TOPresolve Addressing Modes 545

Table B14.1 (continued)

No. Name Syntax Description

12 Control registers
in result
memory (bit
specifi c access
with group
registers)

sreg[8].byte[n1].index[n2].bit[n3] n1 � (0, 1) � group number register
n2 � (0, 1,..7) � structure index
n3 � (0, 1,…31) � bit offset

13 Control regis-
ters in result
memory (bit
specifi c access
 without group
registers)

strnum [num1].bit[num2] num1 � (0,1…63) structure number
num2 � (0,1,…31) � bit offset …

14 Structure
number-offset

offset (str) or offset (str) � str � register or immediate. Access to
result memory.

Offset � immediate or some register

546

APPENDIX C
TOPRESOLVE DETAILED INSTRUCTION SET

Detailed description of TOPresolve commands’ operands are listed in this
Appendix. For even more detailed explanations, see [118].

MOVE COMMANDS
Move commands copy data (bits, bytes, and words) from various sources to various
destinations.

Mov DST, SRC, SIZE
Defi nition: Move SIZE bytes from source (SRC) to destination (DST).

Operands: DST, the destination, can be a register (or a byte in it) or an indirect
address mode (type 2, 3, or 6 in Table B14.1). Valid registers are UREG,
ALU, MAX_I, MINT_I, SREG registers (except FLAGS, HISTORY0...3,
UNIT_NUM, RX_CNT_HI and TX_CNT_HI), and OUT_IF registers
(except RX_CNT and TX_CNT) (see Section 14.2.1).

SRC, the source, can be an immediate 32-bits value, a register
(or a byte in it) or an indirect addressing mode (type 1, 2, 3, or 6 in
Table B14.1). Register or indirect addressing modes can be any of
the registers (see Section 14.2.1).

Size can be either an immediate value (1–4) or a register content;
that is, the SIZE_REG (which is SREG[6]) value (0–4). This corresponds
to type 1 or 2 in Table B14.1.

MovBits DST, SRC, SIZE
Defi nition: Move SIZE bits from source (SRC) to destination (DST).

Operands: DST, the destination, can be a register, a specifi c bit in a register
(e.g., UREG[0].bit[5]) or an indirect addressing mode (type 2, 4, or 6
in Table B14.1). Valid registers are UREG, ALU, MAX_I, MINT_I, SREG
 registers (except FLAGS, HISTORY0...3, UNIT_NUM, RX_CNT_HI, and
TX_CNT_HI), and OUT_IF registers (except RX_CNT and TX_CNT)
(see Section 14.2.1).

SRC, the source, can be an immediate 16-bits value, a register (or
a byte in it) or an indirect addressing mode (type 1, 2, 4, or 6 in Table
B14.1). Register or indirect addressing modes can be any of the registers
(see Section 14.2.1).

Appendix C: TOPresolve Detailed Instruction Set 547

Size can be either an immediate value (1 to 16) or a register con-
tent; that is, the SIZE_REG (which is SREG[6]) value (0–16). This cor-
responds to type 1 or 2 in Table B14.1.

Mov4Bits DST, SRC [,MODE]
Defi nition: Move four bits from source (SRC) to destination (DST). MODE indicates

how to move the four bits. Moving several bits with the Mov4Bits com-
mand will OR them.

Operands: DST, the destination, can be four specifi c bits in a register (e.g.,
UREG[0]. bits[1, 3, 5, 9]) (type 5 in Table B14.1). Valid registers are UREG,
ALU, MAX_I, MINT_I, SREG registers (except FLAGS, HISTORY0...3,
UNIT_NUM, RX_CNT_HI, and TX_CNT_HI), and OUT_IF registers
(except RX_CNT and TX_CNT) (see Section 14.2.1).

SRC, the source, can be an immediate 4-bit value, or a specifi c 4 bits in
a register (type 1 or 5 in Table B14.1). Register can be any of the registers
(see Section 14.2.1). An offset must be specifi ed when the source is not
immediate.

MODE indicates how to copy the bits from the source to the destina-
tion. It is immediate value, 1 byte of 0–255 in value. Each 2 bits indicate
the moving mode for each bit from SRC: move bit (0), move inverse of
bit (1), move “1” (2), or move “0” (3). The default MODE is 0x0 (bit string
“00000000”). When SRC is immediate, MODE cannot be used.

Get DST, SRC, SIZE
Defi nition: Move SIZE bytes from RMEM (according to the SRC structure) to a des-

tination (DST) register.

Operands: DST, the destination, can be a register, a specifi c byte in a register
(e.g., UREG[0].byte[2]) or an indirect addressing mode (type 2, 3, or
6 in Table B14.1). Valid registers are UREG, ALU, MAX_I, MINT_I, SREG
registers (except FLAGS, HISTORY0...3, UNIT_NUM, RX_CNT_HI, and
TX_CNT_HI), and OUT_IF registers (except RX_CNT and TX_CNT)
(see Section 14.2.1).

SRC, the source, can be an immediate 8-bit value, or a register, indicat-
ing the structure number in RMEM (type 15 in Table B14.1). Auto-incre-
ment is on the index only, not the base. Thus, additional bytes of the same
result (structure) can be read from RMEM.

Size can be either an immediate value (1 to 4) or a register content;
that is, the SIZE_REG (which is SREG[6]) value (0–4). This corresponds
to type 1 or 2 in Table B14.1.

548 CHAPTER 14 Resolving

PutKey DST, SRC, SIZE
Defi nition: Move SIZE bytes from source (SRC) to OMEM (DST).

Operands: DST, the destination, can be a base-indexed addressing mode (type 7 in
Table B14.1), referring to OMEM.

SRC, the source, can be an immediate 32-bit value, a register (or a byte
in it) or an indirect addressing mode (type 1, 2, 3, or 6 in Table B14.1).
Register or indirect addressing modes can be any of the registers (see
Section 14.2.1).

Size can be either an immediate value (1 to 4) or a register content;
that is, the SIZE_REG (which is SREG[6]) value (0–4). This corresponds
to type 1 or 2 in Table B14.1.

Copy DST, SRC, SIZE
Defi nition: Move SIZE bytes from source (SRC, which is RMEM) to destination

(DST, which is OMEM).

Operands: DST, the destination, can be a base-indexed addressing mode (type 7 in
Table B14.1), referring to OMEM.

SRC, the source, can be an immediate 8-bit value, or a register, indi-
cating the structure number in RMEM (type 15 in Table B14.1).

Size can be either an immediate value (1 to 8) or a register content;
that is, the SIZE_REG (which is SREG[6]) value (0–8). This corresponds
to type 1 or 2 in Table B14.1.

PutHdr DST, SRC, SIZE
Defi nition: Move SIZE bytes from source (SRC) to destination (DST, which is the

header register, HREG). Move bytes from immediate value or register
to header.

Operands: DST, the destination, can be the HREG register (or a byte in it) or an
indirect address mode (type 2, 3, or 9 in Table B14.1). Access to HREG
is either through an immediate index or indirectly via an HBSn register-
like index; for example HREG[0] and HREG[HBS1].

SRC, the source, can be an immediate 24-bit value, a register (or a
byte in it) or an indirect addressing mode (type 1, 2, 3, or 6 in Table
B14.1). Register or indirect addressing modes can be any of the regis-
ters (see Section 14.2.1).

Size can be either an immediate value (1–3) or a register content;
that is, the SIZE_REG (which is SREG[6]) value (0–3). This corresponds
to type 1 or 2 in Table B14.1.

Appendix C: TOPresolve Detailed Instruction Set 549

PutHdrBits DST, SRC, SIZE
Defi nition: Move SIZE bits from source (SRC) to destination (DST, which is the

header register, HREG).

Operands: DST, the destination, can be the HREG register (or a specifi c bit in it)
or a bit specifi c memory (HREG) addressing mode (type 2, 4, or 10 in
Table B14.1). Access to HREG is either through an immediate index or
 indirectly via an HBSn register-like index; for example, HREG[0] and
HREG[HBS1].

SRC, the source, can be an immediate 16-bit value, a register (or a
specifi c bit in it) or an indirect addressing mode (type 1, 2, 4, or 6 in
Table B14.1). Register or indirect addressing modes can be any of the
registers (see Section 14.2.1).

Size can be either an immediate value (1 to 16) or a register content;
that is, the SIZE_REG (which is SREG[6]) value (0–16). This corresponds
to type 1 or 2 in Table B14.1.

PutHdr4Bits DST, SRC [,MODE]
Defi nition: Move four bits from source (SRC) to destination (DST). MODE defi nes

the way these four bits are moved.

Operands: DST, the destination, can be four specifi c bits in memory HREG (type 5
or 11 in Table B14.1).

SRC, the source, can be an immediate 4-bit value, or a specifi c 4 bits
in a register (type 1 or 5 in Table B14.1). The register can be any of the
registers (see Section 14.2.1). An offset must be specifi ed when the
source is not immediate.

MODE indicates how to copy the bits from the source to the
 destination. It is an immediate value, 1 byte of 0–255 in value. Each 2
bits indicate the moving mode for each bit from SRC: move bit (0), move
inverse of bit (1), move “1” (2), or move “0” (3). The default MODE is 0x0
(bit string “00000000”). When SRC is immediate, MODE cannot be used.

GetRndBits DST, SRC0, SRC1, SRC2, SRC3, SRC4,
SRC5, SRC6, SRC7
Defi nition: Move eight random bits from the result control block (SRC0..7) to desti-

nation (DST). The term random refers to bits that are arbitrarily addressed
and not necessarily adjacent (like in Random Access Memory); actually,
they are programmable-selected. This instruction enables random bits
from any two structure groups (each structure group contains up to
eight structures) and writes them to the destination.

550 CHAPTER 14 Resolving

Operands: DST, the destination, can be either a register or a byte-specifi c
 register (type 2 or 3 in Table B14.1). Valid registers are UREG[0..7],
and MINT_I.

SRC0..7, the sources, are result control bits, pointed by the structure
group stored in ST_GRP0..1, which is SREG[8] and the index of the
structure within the group (type 13 in Table B14.1).

GetFixBits DST, SRC0, SRC1, SRC2, SRC3, SRC4,
SRC5, SRC6, SRC7

Defi nition: Move eight bits from the result control block (SRC0..7) to destination
(DST). This instruction builds a byte from eight bits within any two off-
sets. If structure number does not exist, “0” will be written.

Operands: DST, the destination, can be either a register or a byte-specifi c register
(type 2 or 3 in Table B14.1). Valid registers are UREG[0..7], and MINT_I.

SRC0..7, the sources, are result control bits, pointed by the structure
number (type 14 in Table B14.1). In all SRCs there can be only two
offsets.

GetRnd4Bits DST, SRC0 [,SRC1 [,SRC2 [,SRC3 [, SIZE]]]]

Defi nition: Move up to four bits (SIZE) from the result control block (SRC1..4)
to destination (DST). All structure numbers and offsets (0..15) can be
used. If a structure number does not exist, “0” will be written.

Operands: DST can be either a register or a bit-specifi c register (type 2 or 4 in
Table B14.1). Valid registers are UREG, ALU, MAX_I, MINT_I, SREG
 registers (except FLAGS, HISTORY0..3, UNIT_NUM, RX_CNT_HI, and
TX_CNT_HI), and OUT_IF registers (except RX_CNT and TX_CNT)
(see Section 14.2.1).

SRC0..7, the sources, are result control bits, pointed by the structure
number (type 14 in Table B14.1). In all SRCs there can be only two
offsets. SIZE indicates how many bits to move, and contains immediate
value (1–4).

JUMP COMMANDS
Jump commands instruct the NP to jump to a given label in the microcode. Some of
the commands are conditional jumps, and some jump with pushing and popping
program addresses. At the end of the jump, optional NOP_NUM (0, 1, or 2) NOPs may
be inserted into the pipeline following the jump command (to disable execution

Appendix C: TOPresolve Detailed Instruction Set 551

of the commands that immediately follow the jump instruction). The NOPs are
 effective only if the jump command is executed. The standard Jump command
format is:

if (CONDITION)
command LABEL [| NOP_NUM];

 // See commands in Table 11.4, Chapter 11.
or

command LABEL [| NOP_NUM];
 // See commands in Tables 11.4 and 11.5, Chapter 11.

The format of the Call and CallStack commands is a bit different from the jump
command, and also includes a number of NOPs (RET_NOP_NUM) that should be
inserted before returning, as follows:

Call function [|NOP_NUM [,RET_NOP_NUM]];

or
CallStack function [| NOP_NUM [, RET_NOP_NUM]];

Defi nition: Call a function, and return from it to the next address upon completion
(return command in the function). Insert NOP_NUM NOPs before jump-
ing and RET_NOP_NUM NOPs before returning.

Operands: CONDITION is any fl ag bit or UDB register bit. The negation mark (!)
may precede any condition. For fl ags, see Figure A14.3.

LABELS is the place in the program where the jump is to take place.
function is the name of the function to be called.
NOP_NUM shows the number of NOPs to be inserted after the branch,

to prevent the following command from entering the pipeline.
RET_NOP_NUM shows the number of NOPs to be inserted upon

return from the called function.

ARITHMETIC LOGIC UNIT OPERATIONS
Arithmetic Logic Unit commands are used for arithmetic and logic calculations.
There are two formats of ALU commands, one with two source-operands and the
other with one source operand:

COMMAND DST,SRC1,SRC2,SIZE,[,MREG[,MODE]];
 // See commands in Table 11.3, Chapter 11.

or
COMMAND DST,SRC,SIZE,[,MREG[,MODE]];
 // See commands in Table 11.3, Chapter 11.

552 CHAPTER 14 Resolving

Defi nition: Calculate the COMMAND on the sources (SRC, or SRC1 and SCR2) of SIZE
bytes, and put the result in the destination (DST). Use masks in MREG,
according to the required MODE, to mask the source operands if required.

Operands: DST, the destination, receives the result of the ALU block operation, together
with the ALU register itself; that is, the result is entered into both the
 destination and the ALU register. DST can be a register (or a byte in it) or an
 indirect addressing mode (type 2, 3, or 6 in Table B14.1), and may use any of
the following registers: UREG, ALU, MINT_I, MAX_I, OUT_IF registers (except
RX_CNT and TX_CNT) and SREG registers (except FLAGS, HISTORY0..3
UNIT_NUM, RX_CNT_HI, and TX_CNT_HI), see Section 14.2.1.

SRC or SRC1, the fi rst source operand or the only source operand
can be a register (or a byte in it) or an indirect addressing mode (type
2, 3, or 6 in Table B14.1). Register or indirect addressing modes can be
any of the registers (see Section 14.2.1).

SRC2, the second source, can be an immediate 8-bit value, a register
(or a byte in it) or an indirect addressing mode (type 1, 2, 3, or 6 in Table
B14.1). Register or indirect addressing modes can be UREG, ALU, and SREG
registers (except HISTORY0..3 and UNIT_NUM), see Section 14.2.1.

SIZE is the size of the ALU operation in bytes. Zero (0) is not a valid
size. Size can be either an immediate value (1 to 4) or a register content;
that is, or the SIZE_REG (which is SREG[6]) value (1 to 4). This corre-
sponds to type 1 or 2 in Table B14.1.

MREG indicates one of the 16 ALU mask registers (see MREG[15:0]
Register section in Appendix A).

MODE indicates how to use the mask:

_ALU_NONE—no masking done
_ALU_FRST—masking SRC1; that is, SRC1 � SRC1 & MASKREG
_ALU_SCND—masking SRC2; that is, SRC2 � SRC2 & MASKREG
_ALU_BOTH— masking both SRC1 and SRC2; that is, SRC1 � SRC1

& MASKREG, SRC2 � SRC2 & MASK_REG

The inverse can be performed on the logical functions "AND" and
"XOR," by entering a negation mark (!) before the operand.

When the explicit destination is not the ALU register, all four bytes
of the ALU register are updated, even if the instruction SIZE was less
than 4. For example, “Add UREG[7],UREG[5],UREG[6],1;” adds the
contents of UREG[5] and UREG[6] and writes 1-byte to UREG[7] and
4-bytes to ALU. The ALU register cannot be used with an offset other
than 0 (zero) when it is used for destination, source1 or source2.
 Examples of improper usage of the ALU register follow:

Add ALU.BYTE [1], UREG[0].BYTE[2], 2, 1 ;
Add ALU, UREG[0].BYTE[2], ALU.BYTE [2], 1;
Add ALU, ALU.BYTE [3], UREG[0].BYTE[2], 1;

Appendix C: TOPresolve Detailed Instruction Set 553

MINTERM OPERATIONS
Minterm operations are a toolkit consisting of multiparameter bit-wise operations,
all being ORs of groups of input bits ANDed together. The various operations are
dictated by a “operation” operand. These operations are used to perform complex
logical decisions in a single clock. The mnemonic Minterm originates from the
name given to elements of Conjunctive Normal Form in switching theory. The
format of the Minterm operation is:

Minterm DST, OPER, INVMASK, MASK4, CTRL, SIZE;

Defi nition: Calculate logical formulas, according to OPER. Results of the Minterm
operation can be up to two bytes, sent to the destination (DST). The
input is from the 32-bit MINT_I register.

Operands: DST, the destination, receives the result of the ALU operation,
together with the ALU itself; that is, the result is entered into both the
destination and the ALU. DST can be a register (or a byte in it) or an
indirect addressing mode (type 2, 3, or 6 in Table B14.1), and may use
any of the following registers: UREG, ALU, MINT_I, MAX_I, OUT_IF
registers (except RX_CNT and TX_CNT) and SREG registers (except
FLAGS, HISTORY0..3 UNIT_NUM, RX_CNT_HI, and TX_CNT_HI), see
Section 14.2.1.

OPER indicates the number of the Minterm operation and is an imme-
diate value (0–11).

INVMASK indicates whether the value itself or its inverse is taken.
Logically this is XORNOT between the INVMASK and the source
(MINT_I). The operand is an immediate 32-bit mask.

MASK4 is used for masking the operands, as shown in the operation
tables. The operand is an immediate 4-bit mask.

CTRL indicates which byte of MINT_O, and is an immediate value (0 or 1);
if size is 1, is output to DST.

SIZE indicates the size of the result, and can be either an immediate
value (1 or 2) or a register content; that is, the SIZE_REG (which
is SREG[6]) value (0–2). This corresponds to type 1 or 2 in Table
B14.1.

Minterm operations are presented in Table C14.1 and Figures C14.1
and C14.2. Conventions used: AND equations are represented by AB; OR
equations are represented by A � B. M is a bit representing the result
of the comparison between 2 adjacent bits from MINT_I to the same
bits in INVMASK. Mi corresponds to bits 2i-1 and 2i in both MINT_I and
INVMASK. MASKn corresponds to the nth bit of MASK4.

554 CHAPTER 14 Resolving

Table C14.1 Minterm Operations

Operation #0

OUT0 � MASK0 M1 M1 � MINT_I[1:0] compared to INVMASK[1:0]
OUT1 � MASK0 M2 M2 � MINT_I[3:2] compared to INVMASK[3:2]
OUT2 � MASK0 M3 M3 � MINT_I[5:4] compared to INVMASK[5:4]
OUT3 � MASK0 M4 .
OUT4 � MASK1 M5 .
OUT5 � MASK1 M6 .
 . . .

OUT7 � MASK1 M8
OUT8 � MASK2 M9
 . . .

OUT11 � MASK2 M12
OUT12 � MASK3 M13
 . . .

OUT15 � MASK3 M16 M16 � MINT_I[31:30] compared to INVMASK[31:30]

Operation #1

OUT0 � MASK0 M1 � MASK0 M2
OUT1 � MASK0 M3 � MASK0 M4
OUT2 � MASK1 M5 � MASK1 M6
OUT3 � MASK1 M7 � MASK1 M8
OUT4 � MASK2 M9 � MASK2 M10
OUT5 � MASK2 M11 � MASK2 M12
OUT6 � MASK3 M13 � MASK3 M14
OUT7 � MASK3 M15 � MASK3 M16

Operation #2

OUT0 � MASK0 M1 � MASK0 M2 � MASK0 M3 � MASK0 M4
OUT1 � MASK1 M5 � MASK1 M6 � MASK1 M7 � MASK1 M8
OUT2 � MASK2 M9 � MASK2 M10 � MASK2 M11 � MASK2 M12
OUT3 � MASK3 M13 � MASK3 M14 � MASK3 M15 � MASK3 M16

Operation #3

OUT0 � (MASK0 M1 � MASK0 M2 � MASK0 M3 � MASK0 M4) � (MASK1 M5 � MASK1 M6 �
MASK1 M7 � MASK1 M8)

OUT1 � (MASK2 M9 � MASK2 M10 � MASK2 M11 � MASK2 M12) � (MASK3 M13 � MASK3 M14 �
MASK3 M15 � MASK3 M16)

In Figures C14.1 and C14.2, M is a bit representing the result of the
comparison between two adjacent bits from MINT_I to the same bits
in INVMASK; that is, Mi corresponds to bits 2i-1 and 2i in both MINT_I
and INVMINT (see Table C14.1).

Appendix C: TOPresolve Detailed Instruction Set 555

Table C14.1 (continued)

Operation #4

OUT0 � MASK0 M1 � MASK0 M2 � MASK0 M3 � MASK0 M4 � MASK1 M5 � MASK1 M6 �
MASK1 M7 � MASK1 M8 � MASK2 M9 � MASK2 M10 � MASK2 M11 � MASK2 M12 � MASK3
M13 � MASK3 M14 � MASK3 M15 � MASK3 M16

Operation #5

OUT0 � MASK0 M1 M2
OUT1 � MASK0 M3 M4
OUT2 � MASK1 M5 M6
OUT3 � MASK1 M7 M8
OUT4 � MASK2 M9 M10
OUT5 � MASK2 M11 M12
 . . .

OUT8 � MASK3 M15 M16

Operation #6

OUT0 � MASK0 M1 M2 � MASK0 M3 M4
OUT1 � MASK1 M5 M6 � MASK1 M7 M8
OUT2 � MASK2 M9 M10 � MASK2 M11 M12
OUT3 � MASK3 M13 M14 � MASK3 M15 M16

Operation #7

OUT0 � MASK0 M1 M2 � MASK0 M3 M4 � MASK1 M5 M6 � MASK1 M7 M8
OUT1 � MASK2 M9 M10 � MASK2 M11 M12 � MASK3 M13 M14 � MASK3 M15 M16

Operation #8

OUT0 � MASK0 M1 M2 � MASK0 M3 M4 � MASK1 M5 M6 � MASK1 M7 M8 � MASK2 M9 M10 �
MASK2 M11 M12 � MASK3 M13 M14 � MASK3 M15 M16

Operation #9

OUT0 � MASK0 M1 M2 M3 M4
OUT1 � MASK1 M5 M6 M7 M8
OUT2 � MASK2 M9 M10 M11 M12
OUT3 � MASK3 M13 M14 M15 M16

Operation #10

OUT0 � MASK0 M1 M2 M3 M4 � MASK1 M5 M6 M7 M8
OUT1 � MASK2 M9 M10 M11 M12 � MASK3 M13 M14 M15 M16

Operation #11

OUT0 � MASK0 M1 M2 M3 M4 � MASK1 M5 M6 M7 M8 � MASK2 M9 M10 M11 M12 � MASK3
M13 M14 M15 M16

556 CHAPTER 14 Resolving

FIGURE C14.1

Chart illustrating minterm operations 0–4

M1

M4

M3

M2

M5

M8

M7

M6

M9

M12

M11

M10

M13

M16

M15

M14

M1

M4

M3

M2

M5

M8

M7

M6

M9

M12

M11

M10

M13

M16

M15

M14

M1

M4

M3

M2

M5

M8

M7

M6

M9

M12

M11

M10

M13

M16

M15

M14

M5

M8

M7

M6

M9

M12

M11

M10

M13

M16

M15

M14

M1

M4

M3

M2

M5

M8

M7

M6

M9

M12

M11

M10

M13

M16

M15

M14

M1

M4

M3

M2

MASK0

OPER #0
MASK0 MASK0

MASK1 MASK1 MASK1

MASK2 MASK2 MASK2

MASK3 MASK3 MASK3

MASK0 MASK0

MASK1 MASK1

MASK2 MASK2

MASK3 MASK3

OUTO

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

OUT1O

OUT11

OUT12

OUT13

OUT14

OUT15

OUTO

OUT1

OUT2

OUT3

OUTO

OUT0

OUT1

OUTO

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OPER #1 OPER #3

OPER #2 OPER #4

AND

OR

557

FIGURE C14.2

Chart illustrating minterm operations 5–11

MASK1

MASK2

MASK3

MASK1

MASK2

MASK3

MASK1

MASK2

MASK3

MASK1

MASK2

M1

M4
M3

M2

M5

M8
M7

M6

M9

M12
M11

M10

M13

M16
M15

M14

M1

M4
M3

M2

M5

M8
M7

M6

M9

M12
M11

M10

M13

M16
M15

M14

M1

M4
M3

M2

M5

M8
M7

M6

M9

M12
M11

M10

M13

M16
M15

M14

M1

M4
M3

M2

M5

M8
M7

M6

M9

M12
M11

M10

M13

M16
M15

M14

M1

M4
M3
M2

M5

M8
M7
M6

M9

M12
M11
M10

M13

M16
M15
M14

MASK0 MASK0

M1

M4
M3
M2

M5

M8
M7
M6

M9

M12
M11
M10

M13

M16
M15
M14

M1

M4
M3
M2

M5

M8
M7
M6

M9

M12
M11
M10

M13

M16
M15
M14

MASK0

MASK1

MASK2

MASK3

MASK3

MASK2

MASK1

MASK0

MASK0

MASK3

MASK0

MASK1

MASK2

MASK3

MASK0

OUT0

OUT0

OUT1

OUT2

OUT3

OUT1

OUT4

OUT5

OUT6

OUT8

OUT0

OUT1

OUT2

OUT3

OUT0

OUT1

OUT0

OUT0

OUT0

OUT1

OUT2

OUT3

OPER #5 OPER #7 OPER #9

OPER #10

OPER #6 OPER #8

OPER #11

558 CHAPTER 14 Resolving

SETMAXMIN OPERATIONS AND MAX BLOCK
The Max functional block executes the SetMaxMin operations to fi nd the maximum
or minimum value of a series of arbitrary length. The format of the SetMaxMin
operation is:

SetMaxMin SRC, MODE;

Defi nition: Find max/min number in sequence (according to MODE) and write to
MAX_O.BYTE[0].

Operands: SRC, the source, can be immediate or any register (or a byte in it),
according to type 1, 2, or 3 in Table B14.1.

MODE indicates what operation to perform, and is an immediate
value (0–3), where:

 3—set max and reset MAX_OUT.BYTE[1] (i.e., the index)
 2—set min and reset the index
 1—set max without resetting the index
 0—set min without resetting the index

MODE can use the predefi ned constants:

 _MAX_RST 3
 _MIN_RST 2
 _MAX_NRST 1
 _MIN_NRST 0

Whenever a value is moved into the MAX_I register, MAX_O.BYTE[0] is updated
to contain the maximum—or minimum, depending on the MODE—between MAX_I
and the previous contents of MAX_O.BYTE[0]. This enables the user to calculate the
maximum—or minimum—value of a series of 8-bit numerals by simply moving them
to MAX_I successively. Additionally, MAX_O.BYTE[1] is updated to contain the index of
the maximum—or minimum—element in the series starting with 0 as the index follow-
ing system initialization. If both values are equal, the index indicates the previous value.

Note: The index feature is limited to series of up to 16 elements (actually MAX_O.
BYTE[1] is a 4-bit resource) before the index is overwritten. However, the series size for
the operation itself is unlimited. The MAX_O register format is shown in Figure C14.3.

FIGURE C14.3

MAX_O register format

Byte 1 Byte 0
B11 … b8 b7 … b0

Index Max/min value

MAX_OUT.BYTE[0] contains the max/min value.
MAX_OUT.BYTE[1] contains index of the max/min in the sequence.

Appendix C: TOPresolve Detailed Instruction Set 559

HALT COMMAND
The halt command is used either to fi nish the packet processing and release it to
the next stage in the pipeline, or to multicast the frame several times, or to abort
any further processing of this packet and discard it. It is the most useful command
and the only one that is mandatory, and it has the following format:

HALT MODE;

Mode is a two-bit immediate value. Mode has the following predefi ned constants:

HALT_UNIC Indicates that the TOPresolve has completed processing this frame
and the next TOP can get the data.

HALT_DISC Instruction to discard this frame and begin processing the next.

HALT_MULC This is not a true halt and in fact may often be followed by other
instructions. HALT HALT_MULC notifi es TOPsearch II that it can take these keys
and wait for additional keys that TOPresolve is building for this frame. This could
be used to duplicate a frame and send different keys with each copy. Once the
last set of keys is ready for TOPsearch II, use HALT HALT_UNIC to terminate the
processing of the current frame.

HALT_BRKP For debug mode. This freezes this specifi c TOPresolve engine until
the host releases it.

This page intentionally left blank

CHAPTER

15
The last step in packet processing, as well as of our description of EZchip processing,
is modifying: the phase in which actual modifi cations are made to the packets,
determining the forwarding, queueing, and routing parameters, and releasing the
processed packets to their destinations.

TOPmodify decodes modify instructions, as well as messages from previous
stages and TOPsearch II results, and modifi es the frame contents accordingly. An
unlimited number of bytes anywhere in the frame and in any order can be over-
written or modifi ed. Modifi ed frames and added headers are written to the frame
memory (if required; e.g., for backplane switching).

Three possible modifi cation types are available according to TOPmodify micro-
code programming. Data within the frame may be:

■ Inserted—‘new data’ is inserted to the frame; for example,VLAN or MPLS tags.
■ Cut—‘old data’ is removed from the frame; for example VLAN or MPLS tags.
■ Overwritten—current frame contents are overwritten; for example, MAC or

IP address, TOS bits, or TTL (of course, information can also be altered for
illegal or military purposes as well).

15.1 INTRODUCTION
In order to write microcode for TOPmodify effectively, programmers should under-
stand how the frames are linked in the frame memory and how the fi rst frame buf-
fer is pre-fetched. On the ingress path, frames from the network are stored in the
frame memory buffers by the Ingress Front DMA (the IFDMA, the internal block
for frames arriving from external interface). Since most modifi cations to frames are
done only in their headers (i.e., at their beginning), EZchip’s NP uses a mechanism
that allows such modifi cations easily, without the need to move and adjust the
entire frame’s contents. When storing in the fi rst frame buffer, the IFDMA renders
the fi rst 64 bytes free and stores only the fi rst 448 bytes of the frame. These fi rst
64 bytes are reserved for modifi cation information, and an additional frame header

Modifying

562 CHAPTER 15 Modifying

can be added at the TOPmodify stage. The remainder of the frame is stored in a
sequence of linked 512-byte buffers, using their entire space (i.e., without reserv-
ing 64 bytes).

TOPmodify interfaces with the frame memory and loads the 512-byte frame
buffers into its FMEM memory. This process may be optimized to read only 64-byte
chunks in which insert, cut or overwrite is necessary. The programmer may opt
to calculate this optimal number at the TOPresolve stage and put it to the TOPre-
solve OUT_IF registers (i.e., CTRL_REG and FR_PTR). A zero value indicates that
no changes are to be made to the fi rst frame buffer, which is then not read. If
changes are to be made in the second or third frame buffer (bytes 449 and on), the
programmer must fetch these buffers through the Receive Frame Descriptor (RFD)
interface (the RFD points to the frame buffers in the frame memory).

After modifying the frame, TOPmodify writes the fi rst memory buffer of a
frame to the frame memory in one of two modes (see Figure 15.1). In Mode 0,
the frame header1 is stored in the fi rst 64 bytes (or less, as required), and data
in bytes 64–511 (or less). This mode is used when TOPmodify is not required
to read the frame from the frame memory. It is the faster method and is imple-
mented in order to ease the load on the frame memory arbiter (which is the
module that arbitrates between the many “customers” of I/O resources and band-
width of the memory).

In Mode 1, TOPmodify writes the frame header and data contiguously. This
mode can be used, for example, in a confi guration in which two NP processors
are interconnected via a crossbar and modifi cations are being performed on the
egress path. In this case, TOPmodify does not read the frame on the ingress path.
Buffer mode 1 must be used to add a protocol header (not a switch fabric one)
to the frame when sending it to the Egress Transmit Frame Descriptor (ETFD, the
internal block for a frame exiting from the NP)—that, is when sending it to the
network.

1“Header” refers to the switch fabric header and EZheader that are appended to the fi rst frame
buffer.

FIGURE 15.1

Two modes in which TOPmodify writes to the fi rst memory buffer

0 0

64

511 511

data

header
�

data

Mode 1 Mode 0

header

15.2 Internal Engine Diagram 563

As mentioned before, the frame buffers, other than the fi rst buffer, contain
512 bytes. If data is to be inserted, then the frame buffer must be broken down
into two frame buffers. The RFD table is updated to add the new buffer to the
linked list.

Modifi cation of frame buffers differs slightly for the fi rst frame buffer. The
fi rst frame buffer actually has bytes 0–63 free (that is, it only contains 448 of the
 possible 512 bytes). Since most modifi cations are to a frame’s header, this leaves
enough space for insertion of the header’s information. Existing data is shifted
(by read/write operations) in 8-byte portions to make room for new data, which is
also written to the frame in 8-byte portions.

15.2 INTERNAL ENGINE DIAGRAM
The block diagram in Figure 15.2 illustrates the internal blocks of a single TOP-
modify processor; these blocks are described in the following subsections.

15.2.1 Instruction Memory
Instruction memory contains microcode instructions for TOPmodify engines.

Functional Blocks

Internal Registers Input/Output Memories

DATA BUS

CONTROL
BUS

RMEM FMEM CAM OUT_IF OREG UREG SREG

ALU Mod_Acc
Instruction

Memory

Pipeline Control

FMEM—Frame Memory block
RMEM—Result Memory
OUT_IF—Outside Interface Register block
UREG—User Register block
SREG—Special Register block
ALU—Arithmetic Logic Unit
OREG—Other Register block
Mod_Acc—Modification Accelerator
CAM—Content Addressable Memory

DATA
BUS

FIGURE 15.2

TOPmodify internal engine diagram

564 CHAPTER 15 Modifying

15.2.2 Pipeline Control Block
The pipeline control receives a command for decoding from the instruction
 memory and distributes control signals to each block.

15.2.3 Data Bus
The data bus supports a data fl ow between the TOPmodify blocks.

15.2.4 Frame Memory Block
Before starting work on a new frame, its fi rst frame buffer (with 448 bytes) is pre-
fetched from the frame memory, and loaded in the Frame Memory Block (FMEM).
Modifi cations may then be made in any of the 512-byte portions of the frame.
Although most frame modifi cations are performed on the header in the fi rst buffer
memory, the programmer can load an additional buffer to modify the contents of
the payload. In order to fetch the next buffer, the next pointer is accessed from
the linked list in the RFD table via the OUT_IF register. FMEM then uses this pointer
to access the buffer via the frame memory arbiter. The next buffer is then loaded
to FMEM via the OUT_IF register.

15.2.5 Result Memory
The Result Memory (RMEM) is a buffer that holds results and messages from
TOPsearch II and TOPresolve respectively. RMEM contains all the results that are
relevant to the entire frame, and not just those for the buffer loaded in FMEM. These
results include messages, confi guration, URL, VLAN, and so on.

For instance, a multicast that is to be transmitted to several VLANs via the des-
tination output port may be transmitted only once across the system’s switching
fabric. Each frame is then modifi ed individually at the egress side to match the
appropriate destination VLAN (from the TOPsearch II result).

15.2.6 Arithmetic Logic Unit
The Arithmetic Logic Unit (ALU) is a 32-bit general-purpose unit for performing
computational functions. ALU source operands are any of the TOPmodify regis-
ters. To use an operand from the memory, the programmer must fi rst copy it to
a register and then use it as an ALU source. The ALU feedback register is used for
consecutive operations in order to avoid data hazards.

15.2.7 Content Addressable Memory
The 8-bit Content Addressable Memory (CAM) can be used for complex
branches, verifi cation of constants or comparison of confi guration bits. Keys

15.2 Internal Engine Diagram 565

can be downloaded to the CAM during resource initialization (see LDCAM BCAM8
 [CAMgroup], KEY, value instruction in Section 15.5.1).

15.2.8 Register Blocks (User-Defi ned Register, Specifi c
Register and Other Register)

The User-defi ned Register (UREG) is a block of user-defi ned, general purpose
registers. The Specifi c Register (SREG) block contains special registers for
pointers, indexes, and the loop counter, that are used by the TOPmodify. The
Other Regis ter (OREG) block of registers contains other registers for the ALU
and CAM. The registers are described in Section 15.3, and some are detailed in
Appendix A of this chapter.

15.2.9 Modifi cation Accelerator Block
The Modifi cation Accelerator block (MOD_ACC) is used to perform rapid mul-
tiple branches, in order to jump to various procedures that execute specifi c
 modifi cations to the frame. Up to 32 such modifi cation procedures can be
addressed and jumped to, according to a decision made in a previous TOP engine,
such as TOPresolve.

A 32-bit map message from TOPresolve, indicating up to 32 possible modi-
fi cations to be performed on the frame, is set and transferred to TOPmodify
within one of the results from TOPsearch II. After writing this 32-bit map to
the FAST_REG register, the MOD_ACC block enables rapid branching only to
those modifi cation procedures that need to be performed, according to the
32-bit map. Without the MOD_ACC block, each of the 32 bits would require an
individual check. The 32 labels/addresses that point to the procedures in the
microcode program, which correspond to the 32-bit map message and to the
operations performed via the Modifi cation Accelerator, are downloaded from
the host (see LDREG LREG[n],label) instruction, during resource initializa-
tion (see Section 15.5.1).

Essentially, the block performs an ELSE-IF branch in a single command, and
this happens at any of the TOPmodify instructions that have the jpe operand
(see below). The MOD_ACC examines the modify bits in the FAST_REG register,
from the least-signifi cant-bit (lsb) to the most signifi cant bit (msb), until it reaches
the fi rst bit that is set, indicating the corresponding LREG register that contains
the address of the procedure for this modifi cation. The code then jumps to this
 corresponding location. After this modifi cation is done, the bit is reset and the
MOD_ACC block jumps according to the next set modify bit to perform modifi ca-
tion, when and if the block is called again.

The MOD_ACC is triggered by the code; a jpe operand (which is a bit in the
instruction op-code) indicates that there should be a jump to the procedure pointed
to by the MOD_ACC block. This jump is done immediately after the execution of

566 CHAPTER 15 Modifying

the instruction itself, and subject to the control hazard mechanism (i.e., the next
two successive instructions begin execution before the fi rst instruction of the
 procedure that is called for).

15.2.10 Outside Interface Block
The Outside Interface Block (OUT_IF) enables access to the RFD table, frame
 memory arbiter, host debug, and statistics. It also transfers data to the next stage.

Outside Interface Block interfaces with the frame memory arbiter to load
additional buffers to FMEM. The programmer performs four functions on the
RFD table: read, write, fetch free buffers, and recycle. If frames are discarded
in TOPmodify, the RFD table is accessed via the OUT_IF register to recycle the
pointers.

A function is sometimes halted while waiting for data from external blocks such
as the frame memory arbiter or RFD table.

15.3 TOPMODIFY REGISTERS
As with other TOP engines, TOPmodify has two sets of registers: one that is acces-
sible directly through the TOPmodify microcode, and the other, which must fi rst
be initialized by the host (through the host interface) prior to the TOPmodify exe-
cution, and which can only then be accessed by the TOPmodify microcode.

15.3.1 Microcode Registers
The tables below list the TOPmodify registers and structures accessible from
the microcode. All registers can also be read by the host for debugging. Detailed
descriptions of the registers follow in Appendix A of this chapter. The R/W column
indicates whether the register is read, write or both. The Init column indicates the
register’s initial value. All registers can be written to in bits or bytes. All registers
are accessed by the register name and the index in square brackets, for example,
OREG[1], or by their defi ned name; for example, ALU (provided, of course, that
they were defi ned as such in the source program, on in the libraries). The registers
are intended for various and specifi c purposes and, consequently, have dedicated
input sizes. For instance, attempting to write 8 bits into a 5-bit register will result
in only the fi rst fi ve bits being written.

The UREG block is composed of 14 general-purpose registers, each of 32 bits, as
shown in Table 15.1. Only the 32 bits of the UDB (UREG[0]) are zeroed with each
new frame.

The OREG block is composed of 10 variable-bit registers, as shown in
Table 15.2. The SREG block is composed of 14 variable-bits registers, as shown
in Table 15.3. The Output Interface (OUT_IF) register block is composed of
14 variable-bits registers, as shown in Table 15.4.

15.3 TOPmodify Registers 567

Table 15.1 TOPmodify UREG Registers

Index
Register
name

Size
(bits)

Bytes
(bits) Description R/W Init

0 UDB 32 bits 4 (32) User-defi ned bits. Each bit may
serve as a condition in an IF
statement.

R/W zeroed for
each frame

. . .

13 32 bits 4 (32) General-purpose register. R/W

Table 15.2 TOPmodify OREG Registers

Index Register name Size (bits) Bytes (bits) Description R/W

0 FAST_REG 32 bits 4 (32) Modifi cation accelerator input. R/W

1 ALU 32 bits 4 (32) ALU feedback register. See
 Section 15.2.6.

R/W

2 CAMI 8 bits 2 (8) CAM in register. See
Section 15.2.7.

R/W

3 CAMO 16 bits 2 (16) CAM out register. See
Section 15.2.7.

R

4 HISTORY0
HISTORY1

2 � 10 bits 4 (10 � 10) Instructions in pipeline. R

5 HISTORY2
HISTORY3

2 � 10 bits 4 (10 � 10) Instructions in pipeline. R

6 BUF_STATUS0 4 � 16 bits 4 (4 � 16) Buffer and queue status register. R

7 PORT_SEL 5 bits 1 (4) Port status. R/W

8 UNIT_NUM 4 bits 1 (4) Number of the TOP engine. R

9 BUF_STATUS1 16 bits 2 (16) Buffer and queue status register. R

Table 15.3 TOPmodify SREG Registers

Index Register name Size (bits) Bytes (bits) Description R/W

0 CNT 8 bits 1 (8) See Loop commands. R/W

0 RESERVED 8 bits 1 (8) Reserved bits, set to 0.

(continued)

568 CHAPTER 15 Modifying

Table 15.3 TOPmodify SREG Registers (continued)

Index Register name Size (bits) Bytes (bits) Description R/W

0 PC_STACK 16 bits 2 (16) For call and return in Jump
commands.

R/W

1 FLAGS 18 bits 3 (18) Flags. See Figure A15.1 in
Appendix A.

R

2 SIZE_REG 5 bits 1 (5) Indirect size register for some
 commands (Mov, ALU).

R/W

2 RESERVED 8 bits 1 (8) Reserved bits, set to 0.

2 DISP_REG 9 bits 1 (9) Displacement register. Static offset
in FMEM.

R/W

3 IND_REG0
IND_REG1

2 � (3 � 2
� 4)

4 (2 �
(3 � 2 � 4))

For indirect access to all devices. R/W

4 FR_PTR_IND0
FR_PTR_IND1

2 � 10 bits 4 (10 � 10) Indirect index for reading/ writing
to FMEM.

R/W

5 FR_PTR_IND2
FR_PTR_IND3

2 � 10 bits 4 (10 � 10) Indirect index for reading/ writing
to FMEM.

R/W

6 FR_PTR_IND4
FR_PTR_IND5

2 � 10 bits 4 (10 � 10) Indirect index for reading/ writing
to FMEM.

R/W

7 FR_PTR_IND6
FR_PTR_IND7

2 � 10 bits 4 (10 � 10) Indirect index for reading/ writing
to FMEM.

R/W

8 FR_PTR0
FR_PTR1

2 � 9 bits 4 (9 � 9) Indirect base for reading/ writing
to FMEM.

R/W

9 FR_PTR2
FR_PTR3

2 � 9 bits 4 (9 � 9) Indirect base for reading/ writing
to FMEM.

R/W

10 FR_PTR4
FR_PTR5

2 � 9 bits 4 (9 � 9) Indirect base for reading/ writing
to FMEM.

R/W

11 FR_PTR6
FR_PTR7

2 � 9 bits 4 (9 � 9) Indirect base for reading/ writing
to FMEM.

R/W

12 RD_PTR_RES0
RD_PTR_RES1
RD_PTR_RES2
RD_PTR_RES3

4 � 7 bits 4 (7 � 7 �
7 � 7)

Indirect index for reading
from RMEM.

R/W

13 STR_NUM0
STR_NUM1
STR_NUM2
STR_NUM3

4 � 4 bits 4 (4 � 4 �
4 � 4)

Indirect base (structure number)
for reading from RMEM.

R/W

15.3 TOPmodify Registers 569

15.3.2 Host Registers
All host registers are initialized by the host; however, the initial values for some are
inserted into the NP microcode for loading. These initialization commands (see
Section 15.5.1) are “executed” by the host prior to executing the program in the
instruction memory.

Table 15.5 lists all of TOPmodify’s host registers and indicates which registers
have their initial values in the NP microcode.

Table 15.4 TOPmodify OUT_IF Registers

Index Register name Size (bits) Bytes (bits) Description R/W

0 SEND_REG0 32 bits 4 (32) Frame descriptors. R/W

1 SEND_REG1 26 bits 4 (26) Frame descriptors. R/W

2 SEND_REG2 18 bits 4 (18) Frame descriptors. R/W

3 QUEUE_NUM 11 bits 4 (11) Interface data. R/W

4 FR_STRT 9 bits 2 (9) Start offset of data in fi rst frame
buffer.

R/W

5 NXT_BUF_PTR 16 bits 4 (16) Pointer for next buffer. R/W

5 NXT_BUF_SZ 10 bits 4 (10) Size of next buffer. R/W

6 RFD_CMD 17 bits 4 (17) RFD command. R/W

7 RFD_RD 25 bits 4 (25) Read RFD entry. R

8 RFD_WR 25 bits 4 (25) Write RFD entry. R/W

9 RFD_RD_CNT 8 bits 1 (8) RFD read data. R/W

9 RFD_WR_CNT 8 bits 1 (8) RFD write data. R/W

9 RFD_PTR 16 bits 2 (16) RFD pointer. R/W

10 RX_PRE_PTR 16 bits 2 (16) Rx pre-fetch pointer to free
buffer

R

10 TX_PRE_PTR 16 bits 2 (16) Tx pre-fetch pointer to free
buffer

R

11 STAT_REG 32 bits 4 (32) Interface to statistics block. R/W

12 HOST_REG 32 bits 4 (32) Interface with host register. R/W

13 STAT_REG_HI 16 bits 2 (16) Interface to statistics block. R/W

570 CHAPTER 15 Modifying

15.4 TOPMODIFY STRUCTURES
TOPresolve’s microcode instructions access three memories, as described in Table
15.6; the RMEM (which contains data from TOPresolve and TOPsearch II), CAM
memory for internal, fast searches, and the FMEM.

It is important to note that RMEM, the input memory, cannot be accessed as a
continuous memory, like regular direct accessed memory, but can only be accessed
using the structure number of the search operation (or the message). In other
words, if a key or message is written to the input memory of TOPsearch II using
some structure (as indicated in the key header in the HREG), the RMEM can be read
by TOPmodify only by indicating this structure number as a base.

Table 15.5 TOPmodify Host Registers

Address Name Description Initialization

0x00 INT_REG Interrupt register. Host only

0x01�0x03 WIDE_LOAD SRAM instruction register. Host only

0x09�0x18 MREG[15:0] ALU mask register. Host only

0x04�0x5F LREG[31:0] Modifi cation acceleration register. Host only

0x60�0x62 DISCARD_CNT_
NUM[2:0]

Counter number confi guration register. Host only

0x64 BR_ADDR Service routine address register. Host only

0x65 FLOW_CFG Flow control confi guration register. Host only

0x66 Reserved Reserved.

0x67 HOST_CONF Chip’s mode of operation register. Host only

0x80�0x85 HOST_REG[5:0] Host debug register. Microcode

0x88 MCODE_BR_INT Microcode execution or break point
 command register.

Host only

0x89 STATUS_REG TOPmodify status register. Host only

Table 15.6 TOPmodify Memories and CAMs

Name Description

RMEM Result memory

BCAM8 Content access memory (a table for search)

FMEM Frame memory

15.5 TOPmodify Instruction Set 571

15.5 TOPMODIFY INSTRUCTION SET
This section examines each of the specifi c instructions in the TOPmodify microcode
that are not common NP instructions described in Chapter 11. The microcode
execution begins on the fi rst instruction for each new frame.

Following the decisions made by TOPresolve regarding a frame, and the results
provided by TOPsearch II, programmers can use the TOPmodify microcode
to modify the frame as required, to transmit it, and even to implement multiple
instances of the frame. Registers are used to update the RFD table (a linked list of
pointers to the buffers in the frame memory), and to indicate the number of copies
of the frame that will be sent. By using the Halt command, multiple copies of the
frame are forwarded to different queues. The RFD pointers are recycled only after
all copies of the frame have been sent.

Before sending a frame to a queue, programmers are responsible for fi lling in
the SEND_REG register with the relevant frame information. Often this is obtained
from TOPparse and TOPresolve via messages.

Programmers are also responsible for writing the modifi ed frame buffers to the
frame memory before sending the frame to a queue (see Section 15.5.4). Several
commands in the TOPmodify instruction set have a Jpe operand for use with the
MOD_ACC (see Section 15.2.9).

Most of the commands in the following subsections are described briefl y, with
examples. In most cases, this should be enough for understanding and writing
 complex code; however, the reader who needs deeper utilization of the commands
is referred to Appendix C of this chapter.

15.5.1 Resource Initialization
Initialization commands are “executed” by the host rather than the TOPs (see Table
15.7); they indicate the initial values given to the mask registers and CAM prior
to executing the program in the instruction memory. These are the commands
inserted into the NP microcode for loading.

Table 15.7 Initialization Commands

Syntax Description

LDREG LREG [n], label; Load a value to the LREG register
n – 0–31
label—label to load to this register

LDCAM BCAM8 [CAMgroup],
KEY, value;

Load a KEY to the CAM.
CAMgroup—group number (0, 1, 2, …7)
KEY—number to load to this CAM
value—16 bit value (may be address + NOPs)

572 CHAPTER 15 Modifying

FIGURE 15.3

TOPmodify move commands name prefi x mnemonic

RMEM Registers FMEM

Copy

GetRes

Mov

GET

Put

Write

Table 15.8 List of TOPmodify Move Commands

Name Description

Mov Move bytes from immediate value or register to register.

MovBits Move bits from immediate value or register to register.

Get Move bytes from frame memory to register.

GetRes Move bytes from result memory to register.

Put Move bytes from source register to frame memory.

Copy Move bytes from memory to memory.

Write Move bytes from frame memory to frame memory.

15.5.2 Move Commands
Move commands copy data (bits, bytes, and words) from various sources to various
destinations, as described in Chapter 11. Please note that all move commands have
the jpe operand, to indicate an optional jump determined by the Modifi cation
accelerator (and the FAST_REG contents). The following are the fi ve prefi xes for
move commands, depending on where the data is being moved (see Figure 15.3
and Table 15.8).

� Use Get or GetRes for moving data to registers from FMEM or RMEM.
� Use Mov for moving data within the registers.
� Use Put for moving data from registers to FMEM.
� Use Copy for moving data from RMEM to FMEM.
� Use Write for moving data within the FMEM.

15.5 TOPmodify Instruction Set 573

Please note that the Get command in TOPmodify reads data from the FMEM,
and GetRes command is used for reading the RMEM. Both have similar format, as
described in Chapter 11. The only additional command is Write:

Write DST, SRC, SIZE [,jpe]

Defi nition: Move SIZE data from the source (SRC, the frame memory FMEM)
to the destination (DST, also the frame memory, FMEM). jpe is used
to optionally jump according to the FAST_REG, after the move (see
 Section 15.2.9).

Examples: Write 10(FR_PTR0), (FR_PTR1), 4;
Write FR_PTR_IND2(FR_PTR0), FR_PTR_IND0(FR_PTR2), 4;

Description: Write 4 bytes from frame memory (address from FR_PTR1) to the
frame memory (address from FR_PTR0+10).

Write 4 bytes from frame memory (address from FR_PTR2 + value
of FR_PTR_IND0) to the frame memory (address from FR_PTR0 +
value of FR_PTR_IND2).

15.5.3 LookCam DST, SRC, TYPE [, jpe]
Defi nition: Search in BCAM8. Use source (SRC) for search key and put result in

destination (DST), as well as in CAMO, which is OREG[3] register. jpe
is used to optionally jump according to the FAST_REG, after the move
(see Section 15.2.9).

Example: LookCam UREG[0], UREG[1], BCAM8[1], _NJP_MDF;

Description: Look in BCAM8, group 1 and search least signifi cant byte from
UREG[1]. If found, write result in UREG[0] and CAMO, and set MH
fl ag (CAM match).

15.5.4 Halt Command
Frames can be sent to any combination of destinations by writing the descriptors
to the SEND_REG register one at a time, and using the halt command to send each
in turn. The halt command indicates type (e.g., unicast, multicast) and specifi c
 destination (e.g., Transmit Frame Descriptor [TFD] for network interface, Virtual
Output Queue [VOQ] for switch interface, Host TFD [HTFD] for host interface,
or none).

The pointer to the frame buffer is taken from the TX frame pointer in the
SEND_REG register. The format of the Halt instruction is:

HALT DATA, MODE;

Defi nition: Halt is used to fi nish packet processing and to transmit it or to discard
it. MODE determines whether this frame should be unicast, multicast,

574 CHAPTER 15 Modifying

or discard, and DATA determines the frame’s destination (FMEM and
output queue).

Example: HALT _HALT_VQ_MDF, HALT_UNIC;

Description: Send the entire frame (all buffers) to the VOQ without writing the
frame to the frame memory. The frame pointer must point to the fi rst
frame buffer.

Appendix C provides more details on the operands and the way
halt works, as well as several sample scenarios.

15.5.5 TOPmodify Conditional Commands
Some of the instructions can be preceded by conditional statements that function
as part of the instructions; that is, they are coded in one machine-instruction, and
are executed at the same time as the unconditional statements. These TOPmodify
commands are listed in Table 15.9.

Table 15.9 TOPmodify Conditional Commands

Mov (only if source is not immediate) Call

MovBits (only if source is not immediate) Jmp

Get (only if source is not FMEM)

15.6 EXAMPLE
This sample application continues the example of the TOPparse and TOPresolve
chapters, for transmitting the ingress frames with a VLAN tag to the VOQ with the
application code written for each NP TOP processor.

This sample focuses on the use of the MOD_ACC and the required steps to add
fi elds (VLAN tag in this example) to the frame header. It is based on inspection by
the hardware decoder as to whether each frame has a VLAN tag. This information
is passed through a message to TOPmodify, where the VLAN tag is added if it did
not already exist.

15.6.1 Frame Handling Overview
The NP operates on both ingress and egress paths. In this example, however, the
NP processes frames on the ingress path; that is frames that arrive from the net-
work and are transmitted to the switching fabric (see Chapter 12). The TOPparse
receives ingress frames, and the NP’s hardware decoder automatically inspects
each incoming frame and provides useful information about it for microcode use
prior to execution of the NP microcode.

15.6 Example 575

The decoded information is passed by a message from TOPparse to TOPresolve,
accompanied with a decision byte. TOPresolve forwards the message to
 TOPmodify and initializes the internal buffer of TOPmodify to be the fi rst frame
buffer. According to the message (decision byte), TOPmodify decides whether to
add either a CSIX header alone or CSIX header plus a VLAN tag to the current
frame header, prior its transmission to the VOQ in Mode 1.

15.6.2 Data Flow and TOP Microcode
The section that follows describes the data fl ow for TOPmodify, including the rele-
vant microcode. Defi nitions and macro fi les for this sample application are located
in Section 15.6.4.

TOPmodify is responsible for transmitting the ingress frames to the VOQ with
a VLAN tag. TOPmodify checks whether the arriving frame contains a VLAN tag, in
which case it does not add a VLAN tag fi eld to the frame header.

The message from TOPresolve (via TOPsearch II) contains HD_REG0,
HD_REG1, HD_REG2, and a decision byte. The HW decoder registers contain
 information about the frame that is important for its transmission. The decision
byte acts as a fl ag to identify whether the current frame contains a VLAN tag fi eld
or not. If the original frame does not contain a VLAN tag, TOPmodify adds this fi eld
to the frame header. In order to forward the frames, TOPmodify updates the send
registers (SEND_REG0, SEND_REG1, and SEND_REG2) and verifi es that the FMEM
(frame memory) is updated correctly. The code contains the following steps:

1. The FAST_REG register is reset to clear its contents and the new decision
byte is extracted from the message and put into the FAST_REG.

2. The number of frame buffers and the source port are inserted into
SEND_REG1. This data is found in bits 16–23 of HD_REG2 (sNumBuf). The
operation is performed in two steps:

 � First, bits 16–31 of HD_REG2 are masked with M1_0x000000FF (due to the
fl ag_ALU_FRST, where the fi rst 8 bits of the mask are set) in order to take
the fi rst 8 bits (out of 16) as the fi rst operand for the additional operation.

 � A value of 0 is added to the fi rst operand and the result is inserted to
SEND_REG1 bits 16–23.

3. The data interface register QUEUE_NUM is updated with the port number and
the Quality of Service (QoS) setting (for each port, there are 8 different QoS
 settings). The value inserted to QUEUE_NUM is predefi ned in RX_OUT_DATA.
An explanation of the RX_OUT_DATA structure follows:

RX_OUT_DATA � 0x0201 � 0000 0010 0000 0001, where bits 0–6 defi ne the
port number (number 1) and bits 7–9 defi ne the QoS (QoS � priority � 4).

4. The frames are stored in the FMEM (frame memory) in 512-byte buffers.
 Nevertheless, the fi rst frame buffer contains only 448 bytes. The reserved
64 bytes of this buffer are used to add headers to the frame.

576 CHAPTER 15 Modifying

5. According to the _JPE_MDF fl ag that is appended to the command, the
MOD_ACC examines the FAST_REG bits until it reaches the fi rst bit that is
set. The program jumps to the corresponding label (ADD_CSIX_HEADER)
and the FAST_REG bit is reset. Please note that the two instructions that fol-
low the jump command are also performed (this is an effi cient use of the
control hazards).

6. If the original frame did not contain a VLAN tag fi eld, the structure of the
internal frame buffer before modifi cation is:

Data
Not
defi ned DA SA

Other fi elds (may be referred
to as the data fi eld)

Byte offset 0–63 64–69 70–75 76–511

Field size
(bytes)

64 6 6 Max Size 436 (448–12)

Data
Not
defi ned DA SA

Not
defi ned

Other fi elds (may be referred
to as the data fi eld)

Byte offset 0–59 60–65 66–71 72–75 76–511

Field size
(bytes)

60 6 6 4 Max 436 (448–12)

Data
Not
defi ned DA SA TAG type

TAG
control

Other fi elds (may
be referred to as
the data fi eld)

Byte offset 0–59 60–65 66–71 72–73 74–75 76–511

Field size
(bytes)

60 6 6 2 2 Max 436 (448–12)

Notes Always:
0x8100

0xAAAA

 To send the frame to the VOQ with a VLAN tag, an 8-byte CSIX header
must be added as the prefi x of the frame, and a 4-byte VLAN tag fi eld must be
inserted between the SA fi eld and the data fi eld. This is implemented by:

� Pushing the DA fi eld 4 bytes forwards.
� Pushing the SA fi eld 4 bytes forwards. Thus, the structure of the internal

frame buffer is:

� Insert the VLAN tag fi eld into the “hole” between the SA and data fi elds. The
VLAN tag fi eld is comprised of two fi elds; each with two bytes. The fi rst
fi eld is Tag Type and its value is 0x8100. The second fi eld is Tag Control and
its value is 0x A A A A. Thus, the structure of the internal frame buffer is:

15.6 Example 577

15.6.3 TOPmodify Microcode
The following code implements the TOPmodify stage (please note that it contains
just 36 instructions; all the rest are comments):

EZtop Modify;

 #include "mcglobal.h" // Global defi nition fi le supplied with EZdesign,
 // with predefi ned constants for NOPs, fl ags, etc.
 #include "TOPModify.h" // TOPmodify defi nition fi le supplied, provides
 // recognizable names for registers and fl ags.
#include "hdreg.h" // Global defi nition fi le supplied to provide
 // recognizable names to the HW decoding registers

// Constants:
#defi ne CSIX_HEADER_LEN 8;
 #defi ne CSIX_HEADER_LEN_MINUS1 CSIX_HEADER_LEN —1;
// for 0base usage
#defi ne VLAN_TAG_LEN 4;
 #defi ne CSIX_BEGIN_NO_VLAN 64 — (CSIX_HEADER_LEN +VLAN_TAG_LEN);

// 52
#defi ne CSIX_BEGIN_VLAN 64 — CSIX_HEADER_LEN; // 56
#defi ne FRAME_BEGIN_NO_VLAN 64 — VLAN_TAG_LEN; // 60
#defi ne MAX_1BUF_SIZE 448; // CSIX + 4 bytes, moved from frame beginning
#defi ne FIRST_DATA CSIX_HEADER_LEN + VLAN_TAG_LEN;
#defi ne FIRST_DATA_MINUS1 FIRST_DATA — 1;
#defi ne MASK_FIRST8BITS MREG[0]; // after LDREG

#defi ne RX_OUT_DATA 0x0201;
#defi ne CSIX_REG1_BEGIN 0x0084; // bits 21 — 23 = Qos = 2
#defi ne CSIX_REG1_END 0x0040; // bits 21 — 23 = Qos = 2
#defi ne CSIX_REG2_BEGIN 0x0;
#defi ne CSIX_REG2_END 0x0;
#defi ne HW_STRUCT 0;

Data
Not
defi ned

CSIX
header DA SA TAG type

TAG
control

Other fi elds (may
be referred to as
the data fi eld)

Byte
offset

0–51 52–59 60–65 66–71 72–73 74–75 76–511

Field size
(bytes)

52 8 6 6 2 2 Max 436
(448–12)

Notes Always:
0x8100

0xAAAA

7. The 8-byte CSIX header is appended to the beginning of the frame header.
Thus, the structure of the internal frame buffer is:

578 CHAPTER 15 Modifying

// Offsets in message
#defi ne HD_REG1_OFF 5;
#defi ne FR_PRT_OFF 7;
#defi ne HD_REG2_OFF 9;
#defi ne HW_SRC_CHANNEL_OFF 12;
#defi ne VLAN_TAG_EXISTS_OFF 13;

// Registers
#defi ne HD_REG2 UREG[2];
#defi ne sFrameLen HD_REG2.BIT[0];
#defi ne sNumBuf HD_REG2.BIT[16];
#defi ne uqMax1BufSize UREG[0];

LDREG MREG[0], 0x00FF; // mask for fi rst 8 bits - 1111 1111 = 0x00FF
// Set the label ADD_CSIX_HEADER to be the corresponding label for the
// fi rst bit of the FAST_REG register.
LDREG LREG[0], ADD_CSIX_HEADER;

START: // Beginning of microcode sequence
//////////////////////Step 1: Set FAST_REG///////////////////////////
 // Zero all four bytes of FAST_REG. Perform Xor of the ALU
// with itself and insert the result to the FAST_REG register.
 Xor FAST_REG, ALU, ALU, 4;
 // Extract byte 13 of the message received from TOPresolve
// and insert into FAST_REG.
 GetRes FAST_REG, VLAN_TAG_EXISTS_OFF(HW_STRUCT), 1;

///////////////////// Fill SEND_REGs ////////////////////////////////
// Init local register (HD_REG2) with the value of the HW decoder
// register HD_REG2 (passed via a message from TOPresolve).
 GetRes HD_REG2, HD_REG2_OFF(HW_STRUCT), 4;
// Insert HD_REG1 (offset 5 in message structure) to
// SEND_REG0 (time stamp + frame pointer).
 GetRes sSend_uxTime stamp, HD_REG1_OFF(HW_STRUCT), 4;

 // Step 2: Insert NumBuf (5 bits) + SrcPort (3 bits) from HD_ REG2 b23:16
 // (sNumBuff) to SEND_REG1 b25:16. (Note, the SrcPort fi eld in the source
 // (HD_REG2) is 3 bits and in the destination (SEND_REG1) it is 5 bits.)
 Add sSend_bitBuffNum, sNumBuf, 0, 2, MASK_FIRST8BITS, _ALU_FRST;
 MovBits QUEUE_NUM, RX_OUT_DATA, 11; // Step 3: port out + QOS

 // Initialize DISP_REG. Fixed offset for writing to the internal buffer.
 MovBits DISP_REG, 0, 9;

 // Step 4: Initialize register (uqMax1BufSize) with the value 448, the maximum
// fi rst frame buffer length.
 MovBits uqMax1BufSize, MAX_1BUF_SIZE, 16;

 // Initialize the fi rst 8 bits of SEND_REG2: header length = 8 (7 LSB);
// buffer type = 0 (bit 8)
 MovBits sSend_bitHdrLen, CSIX_HEADER_LEN, 8;

15.6 Example 579

 // Insert HD_REG2 b13:0 to SEND_REG1 b13:0 for 14 bits of frame length.
 MovBits sSend_uxFrameLen, sFrameLen, 14;

 // Subtract 448 from the frame length (fi rst 2 bytes of HD_REG2) to
 // calculate whether the frame occupies more than one buffer. Insert the
 // result into the ALU (and check the carry of the operation in the next line).

 Sub ALU, sHR2_uxFrameLen, uqMax1BufSize, 2;

 Nop; // One NOP needed between the ALU operation and the carry
 // fl ag check.

// If (!FLAGS.BIT [F_CY_MDF]) //Frame occupies more than one buffer.
// SEND_REG2 b16:8 , 9 bits of header length with value 448 + 1
// (UqMax1BufSize in 0base is 449)
 MovBits sSend_bit1stBufLen, uqMax1BufSize, 10;

 // Entire frame is in the fi rst frame buffer (i.e., frame less than 448 bytes).

 If (FLAGS.BIT [F_CY_MDF])
 // Initialize SEND_REG2 b16:8 with 9 bits of header length extracted
// from the fi rst 2 bytes of HD_REG2 (frame length fi eld). The tenth
 // bit is inserted to SEND_REG2 bit 17, multicast = 0. (If the frame
 // length is shorter than 512 bytes, then bits 9–15 in the HD_REG2
// frame length fi eld are reset and bit 10 can be used to reset the
// SEND_REG2 multicast bit.
 MovBits sSend_bit1stBufLen, sHR2_uxFrameLen, 10;
 Nop; // Avoid data hazard accessing sSend_bit1stBufLen.

 // Add the length of the CSIX header to the fi rst buffer length in 0base
// (7 bytes).
 Add sSend_bit1stBufLen, sSend_bit1stBufLen,

 CSIX_HEADER_ LEN_MINUS1, 2;
 MovBits sSend_bitBufType, 1, 1; // SEND_REG2 bit 7, buffer type 1.

// Step 5: If VLAN TAG already exists, jump to ADD_CSIX_HEADER
 // Initialize FR_PTR2 with a value of 56, and jump according to the
// fi rst bit set in the FAST_REG.
 MovBits FR_PTR2, CSIX_BEGIN_VLAN, 16, _JPE_MDF;

// The next two instructions are always executed.
// Initialize FR_PTR3 with the value of 52.
 MovBits FR_PTR3, FRAME_BEGIN_NO_VLAN, 16;
// Initialize FR_STRT with the value of 56.
 MovBits FR_STRT, CSIX_BEGIN_VLAN, 9;

//
 // Step 6: The structure of an old Ethernet frame without tag:
// DA(6 bytes) SA(6 bytes) ProtocolType(2 bytes) Data...
// The structure of an old Ethernet frame with tag:
// DA(6 bytes) SA(6 bytes) TPID(2 bytes) TCI(2 bytes)
// ProtocolType(2 bytes) Data...
// Now insert tag - 4 bytes

580 CHAPTER 15 Modifying

 Write 0(FR_PTR3)+, 4(FR_PTR3), 6; // Move 6 bytes forward 4 bytes.
 Write 0(FR_PTR3)+, 4(FR_PTR3), 6; // Move next 6 bytes forward 4 bytes

// Change frame data – add Tag Type fi eld (2 bytes).
 Put 0(FR_PTR3)+, 0x0081, 2;
// Change frame data – add Tag Control fi eld (2 bytes).
 Put 0(FR_PTR3), 0xAAAA, 2;
 MovBits FR_PTR2, CSIX_BEGIN_NO_VLAN, 16; // offset 52.
 MovBits FR_STRT, CSIX_BEGIN_NO_VLAN, 16; // offset 52.

 // Update the fi rst buffer length because of the
// addition of the four bytes of the VLAN TAG.
 Add sSend_bit1stBufLen, sSend_bit1stBufLen, VLAN_TAG_LEN, 2;
 Add sSend_uxFrameLen, sHR2_uxFrameLen, VLAN_TAG_LEN, 2; //Update
// frame length

ADD_CSIX_HEADER:
///
// Step 7: Append 8-byte CSIX header to beginning of frame header:
 Put 0(FR_PTR2)+, CSIX_REG1_BEGIN, 2;
 Put 0(FR_PTR2)+, CSIX_REG1_END, 2;
 Put 0(FR_PTR2)+, CSIX_REG2_BEGIN, 2;
 Put 0(FR_PTR2)+, CSIX_REG2_END, 1;
 Copy 0(FR_PTR2)+, HW_SRC_CHANNEL_OFF(HW_STRUCT), 1;

///
VOQ_HALT:
 // Write data from the internal buffer to FMEM and send the
// frame to the VOQ according to the parameters in the SEND_REGs and QUEUE_NUM.
 Halt _WHALT_VQ_MDF, HALT_UNIC;

15.6.4 Defi nition Files
There are three header fi les used in this example: the microcode global defi nition fi le
(mcglobal.h), the hardware decoding defi nition fi le (hdreg.h), and the TOPmodify
defi nition fi le (TOPmodify.h).

The microcode global defi nition fi le (mcglobal.h) is described in Chapter 12,
but is used here with another defi nition:

#ifndef _mcglobal_h_ ;
#defi ne _mcglobal_h_ ;
...

// ALU commands
...

#defi ne _ALU_FRST 1 ;
...

// HALT type defi nes
#defi ne HALT_UNIC 0 ; // unicast
#endif /* _mcglobal_h_ */ ;

15.6 Example 581

The hardware decoding defi nition fi le (hdreg.h) is also described in Chapter 12,
but is also used here with another defi nition:

#ifndef _hdreg_h ;
#defi ne _hdreg_h ;
...

#ifndef sHR2 ;
#defi ne sHR2 HD_REG2 ;
#endif ;
#defi ne sHR2_uxFrameLen sHR2.BIT [0];// 16
...

#endif ;

Last, the TOPmodify defi nition fi le (TOPmodify.h) is as follows:

#ifndef _TOPmodify_h_ ;
#defi ne _TOPmodify_h_ ;
...

// OREG
#defi ne FAST_REG OREG [0] ;
#defi ne ALU OREG [1] ;
...

// SREG
...

#defi ne FLAGS SREG [1] ;
...

#defi ne DISP_REG SREG [2].BYTE [2] ;
...

#defi ne FR_PTR2 SREG [9] ;
#defi ne FR_PTR3 SREG [9].BYTE [2] ;
...

// OUT_IF
#defi ne SEND_REG0 OUT_IF [0] ;
#defi ne SEND_REG1 OUT_IF [1] ;
...

#defi ne QUEUE_NUM OUT_IF [3] ;
#defi ne FR_STRT OUT_IF [4] ;
...

// Flag defi nes
...

#defi ne F_CY_MDF 1 ;
...

// Go to next procession
#defi ne _JPE_MDF 1 ;
...

// HALT data defi ne
...

#defi ne _WHALT_VQ_MDF 3 ;
...

582 CHAPTER 15 Modifying

/***/
#defi ne sSend_uxTimestamp SEND_REG0 ;
#defi ne sSend_uxFramePtr SEND_REG0.BYTE [2] ;
#defi ne sSend_uxFrameLen SEND_REG1.BYTE [0] ;
#defi ne sSend_bitFrameDrp SEND_REG1.BIT [15] ;
#defi ne sSend_bitBuffNum SEND_REG1.BIT [16] ;
#defi ne sSend_bitSrcPort SEND_REG1.BIT [21] ;
#defi ne sSend_bitHdrLen SEND_REG2.BIT [0] ;
#defi ne sSend_bitBufType SEND_REG2.BIT [7] ;
#defi ne sSend_bit1stBufLen SEND_REG2.BIT [8] ;
...

#endif /* _TOPmodify_h_ */ ;

15.6.5 Structures and Message Formats
Several data structures and formats are used to pass the information, keys and
results between the previous pipeline engines and the TOPmodify. These struc-
tures are described in this subsection.

15.6.5.1 TOPsearch II Structures
Table 15.10 describes the TOPsearch II data structures (also described in
 Chapter 14). The message from TOPresolve to TOPmodify is placed in structure
number 0 on the ingress path.

A message header (or key header) must accompany each message (or key)
passed to TOPsearch II.

15.6.5.2 TOPresolve–TOPmodify Message Format
In our example, the message from TOPresolve to TOPmodify, via TOPsearch II,
is identical to the TOPparse to TOPresolve message described in Chapters 12
and 14, and outlined in Table 15.11. This 14-byte message (padded to 16 bytes) is
placed in TOPsearch II structure #0. This message contains the hardware decoded
information, including whether the original frame contains a VLAN tag fi eld.

Table 15.10 TOPsearch II Structures

Name
Structure
type

Structure
number Path Used for

Key size
(bytes)

Result size
(bytes)

TOPresolve-
TOPmodify
message

(Message) 0 Ingress L2 + L3
VLAN tag
fl ag

 – –

15.7 Summary 583

15.7 SUMMARY
The TOPmodify engine is the last engine in the NP pipeline. It modifi es the frame
by either cutting it, adding to it, or altering its header fi elds or contents. The
 internal structure of TOPmodify is described in this chapter, including its regis-
ters and data structures, as well as its blocks (functional units) and instruction
set. The appendices of this chapter provide more details about the registers and
the instruction sets for those who need them either to understand a code or to
write one.

In the next chapters we put everything together and show how to create the
fi rst program with network processors, using EZchip NP’s coding, simulation and
debugging tools.

Table 15.11 TOPresolve–TOPmodify Message

Field name Byte offset Size (bits) Note

Valid 0 1 Always 1 for messages

To host 0 1 1—send to host

TTL_EXP 0 1 From HD_REG0 b28

Ctrl reserved bits 0 5

HD_REG0 1–4 32 HW decoding

HD_REG1 5–8 32 HW decoding

HD_REG2 9–12 32 HW decoding

vlanTagExists 13 1 Indicates whether the arriving frame
 contained a VLAN tag fi eld

584

APPENDIX A
DETAILED REGISTER DESCRIPTION

A detailed description of all TOPmodify devices and registers is given in this
appendix. Though some of the information here duplicates that which can be
found in the body of the chapter, the details and descriptions are fl eshed out
considerably.

The registers below, their bit functions and their overall roles are those of
NP-1 and NP-1c. NP-2 and above NPs are slightly different, as more registers and
bits are available to refl ect more functions, ports, and functional blocks that are
not described in this book.

MICROCODE REGISTERS
The microcode registers are accessed by the microcode for normal operations dur-
ing program execution and include user-defi ned, functional, specifi c, and output
interface registers.

User-Defi ned Registers

Register name Description

UDB 32 user-defi ned bits that can be used for conditions (branches).

Other Registers

Register name Description

FAST_REG 32-bit input for accelerating modifi cations, fi xed addresses. The 32 labels/addresses
corresponding to the 32 operations performed via the Modifi cation Accelerator are
downloaded from the host.

ALU 32-bit ALU feedback register with the last result of the ALU calculation. Used to per-
form adjacent ALU calculations and avoid a data hazard.

CAMO 16-bit CAM output register.

CAMI 8-bit CAM input register.

HISTORY Four 10-bit registers specifying the four instructions currently in the pipeline.
HISTORY0 Byte 0–1: Fetch stage
HISTORY1 Byte 2–3: Decode stage
HISTORY2 Byte 0–1: Execution 1 stage
HISTORY3 Byte 2–3: Execution 2 stage

Appendix A: Detailed Register Description 585

Register name Description

BUF_STATUS0 20-bit register (4 bits + 16 bits) specifying buffer and queue status.
bit 0—Tx_RFD_host_budget_expired
bit 1—Rx_RFD_host_budget_expired
bit 2—Tx_RFD_empty
bit 3—Rx_RFD_empty
bits 16:23—ETFD_modify_budget_expired[7:0] (per port). (The budget itself is speci-
fi ed in TX_PORT_BUDGET_LIMIT register in the ETFD block.)

bits 24:31—Rx_RFD_modify_budget_expired[7:0] (per port)
See BUF_STATUS1 below.

PORT_SEL 5-bit register. When inputting the register port number, fl ags are returned to indicate the
Receive RFD port status. Msb 0 – Rx; 1 – Tx.

When the chip is set to operate in NP-1 mode (in the HOST_CONF register, see Section
15.3.2), then the MSB is bit 3. When in NP-1c mode, the MSB is bit 4.

UNIT_NUM 4-bit register that numbers each of the TOPmodify engines. This enables a
specifi c TOPmodify engine to be referenced directly in the code.

BUF_STATUS1 16-bit register specifying buffer and queue status.
bits 7:0—ETFD_MODIFY_BUDGET_EXPIRED[15:8] (per port). (The budget itself is
specifi ed in the TX_PORT_BUDGET_LIMIT register in the ETFD block.)

bits 15:8—RX_RFD_MODIFY_BUDGET_EXPIRED[15:8] (per port).

Specifi c Registers

Register name Description

CNT 8-bit register to support loops. The program branches on the counter and checks its value.
If the counter value is not zero, then it jumps to the start of the loop. Each branch on the
counter value automatically decrements the counter by one. That is, the branch counts
down each time that the loop is taken. Up to 256 repetitions of a particular sequence of
code are supported. The depth of the Counter register is one, thus the counter can write/
read to a register to implement nested loops.

PC_STACK 16-bit register for call commands (i.e., branch + set bit to push to stack). For each call
command, the content (branch address +3 minus #NOPs) is automatically written to
PC_STACK. The PC_STACK has a depth of one; thus, the PC_STACK can be written/read
by the user in order to build nested call commands. The call command contains the
number of NOPs that follow the relevant return command.

FLAGS 18-bit fl ags register. The defi ned bits and bit fi elds within the FLAGS register control
specifi c operations and indicate the status of the network processor (see Figure A15.1).
ZR—zero fl ag
CY—carry fl ag
SN—sign fl ag
OV—overfl ow fl ag
LP—counter register (0=CNT register is not zero; 1=CNT is zero)
LP—counter register (0=CNT register is not zero; 1=CNT is zero)
ST—statistics register (0=interface ready; 1=not ready)
HT—host register (0=interface ready; 1=not ready)
MH—last search in CAM fl ag (0=no match; 1=match)

(continued)

586 CHAPTER 15 Modifying

Register name Description

 RAF—RFD address is ready fl ag (0=interface ready; 1=not ready)
RDF—RFD data ready fl ag (0=interface ready; 1=not ready)
RRP—RFD RX pre-fetch fl ag (0=interface ready; 1=not ready)
RTP—RFD TX pre-fetch fl ag (0=interface ready; 1=not ready)
RNB—RFD_EMPTY fl ag (0=free buffers available; 1=no free buffers)
RBB—RFD_PORT_BUDGET_EXPIRED fl ag (0=not exceeded; 1=budget exceeded)
RBE—RFD_EXPIRED_COMBINED fl ag (RNB | RBB)
HBE—RFD_HOST_BUDGET_EXPIRED fl ag (0=not exceeded; 1=host budget exceeded)
NBV—NEXT_BUFFER_VALID_FLAG (1=not ready; 0= next buffer has arrived)
NOTE: In microcode, the fl ags are referred to as FLAGS.BIT [F_x_MDF], where x is the
fl ag name from Figure A15.1; for example, FLAGs.BIT [F_ZR_MDF].

SIZE_REG 5-bit register for an indirect size. The size may be specifi ed in either bits or bytes,
depending on the instruction.

DISP_REG 9-bit register for a static offset in FMEM, used for read/write from/to the frame memory.
Unlike the base, it is not updated by the auto-increment function. Real offsets = base +
index + DISP_REG.

IND_REG0 9-bits containing the indirect address for a Dword, byte, and bit. Source and destination
addresses are written in the format: device#, Dword#, byte#, and bit#. The device number
is always specifi ed as immediate, whereas the other three (Dword#, byte#, and bit#) can
be addressed either immediately or indirectly using the IND_REG resister. Writing to this
register is in the format shown in Figure A15.2.

IND_REG1 Identical to OFFS_REG0 (see Figure A15.3).

PRT_IND Indirect indexes for reading/writing to FMEM. Each access to the FMEM is in the format:
base address + index. The indexes are 10 bits in the signed format (2’s-compliment).

PTR Indirect bases for reading/writing to FMEM. Each access to the FMEM is in the format:
base address + index. The base address for the FMEM is always indirect, that is, can-
not be immediate. Base values are 9 bits (absolute FMEM address in unsigned format).

RD_PTR_RES 7-bit RMEM offset specifying the result (up to 128 bytes). Four RD_PTR_RES registers
enable TOPmodify to work on four results simultaneously. Auto increment (offset + size)
updates this register to read additional bytes from the same result in the RMEM.

STR_NUM 4-bit RMEM base address. Each access to RMEM is in the format: base address + index.
Four STR_IND registers enable TOPmodify to work on four results simultaneously.

217 16 15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
SNOVLPSTHTMHRAFRDFRRPRTPRNBRBBRBEHBENBV ZRCY

FIGURE A15.1

TOPmodify fl ags

Appendix A: Detailed Register Description 587

byte

Dword# byte# bit#
7 6 5 4 3

1
2 1 0

byte
7 6 5 4 3

0
2 1 0

FIGURE A15.2

IND_REG0 format

Outside Interfaces
The OUT_IF registers interface to external blocks.

Register name Description

SEND_REG Three registers (32 + 26 + 18 bits) that contain descriptors of the frame to be
sent to the network (TFD), switching fabric (VOQ), and/or host (HTFD). Frames
can be sent to any combination of these destinations by writing the descriptors
to this register one at a time and using the halt command to send each in turn.
Refer to the halt command for the specifi c destination. The halt command indi-
cates the type (e.g. normal, multicast) and data (type of data being forwarded;
that is, TFD, VOQ, HTFD, none).

Programmers are responsible for fi lling in these fi elds according to the relevant
semantics. Bits differ slightly depending on the destination of the data (see
Table A15.1).

Time stamp—received in a message originating from TOPparse.
TX frame pointer—this is a pointer to the buffer that will be written or sent when
using the halt command (see Section 15.5.4).

Frame length—When sending the frame to a VOQ, the frame length includes the
data length without the switch fabric header length.

Number of buffers—identical to TOPparse HD_REG unless buffers were added
by TOPmodify.

First buffer length—Size of the data to be written by TOPmodify to memory.
If buffer type =0, the fi rst buffer length is equal to the header length. When
sending short frames (less than 65 bytes) using buffer type =0 with no header
(i.e., header length =0), set the fi rst buffer length to 64 bytes.

If buffer type =1, the fi rst buffer length is equal to switch fabric header length
plus length of the data in the fi rst buffer. NOTE: Keep in mind that this fi eld
is zero-based. header length—Only valid when sending to the switch fabric.
Includes the switch fabric header length.

Buffer type—mode 0 (0) or mode 1 (1). See Section 15.1. NOTE: Buffer mode 1
must be used to add a header to the frame when sending it to the ETFD.

Multiple—notifi es the hardware to examine the MULTICAST_CNT fi eld in the
RFD table; otherwise, it is ignored and multiple copies of the frame will not be
transmitted.

byte

Dword# byte# bit#
7 6 5 4 3

3
2 1 0

byte
7 6 5 4 3

2
2 1 0

FIGURE A15.3

IND_REG1 format

(continued)

588 CHAPTER 15 Modifying

Register name Description

QUEUE_NUM 11 bits containing interface data such as priority settings or queue number for
the frame descriptors that are sent to TFD, VOQ or HTFD. Programmers must
write here each time that a frame is sent to a queue.

TFD – For 8 ports/8 priorities (priority 8–10, port 0–2):

10 9 8 7 6 5 4 3 2 1 0

priority N/A port

For 16 ports/4 priorities (priority 9–10, port 0–3):

10 9 8 7 6 5 4 3 2 1 0

priority N/A port

VOQ – 10 bits (priority 8–10, ports 0–6):

10 9 8 7 6 5 4 3 2 1 0

priority N/A port

HTFD – 1 bit (priority 8, other bits are not valid):

10 9 8 7 6 5 4 3 2 1 0

N/A pri port

FR_STRT Start of frame offset is 9 bits specifying the byte for the start of frame data. The
data in the fi rst frame buffer may no longer start at byte 64, depending upon
the amount of data cut and inserted. This data is required for writing the buffer
to the frame memory.

NXT_BUF_PTR Pointer obtained from the RFD table to interface with another frame buffer in the
frame memory. Writing here activates the next operation. Buffer size is in the
NXT_BUF_SZ register. The NBV fl ag indicates if whether the next buffer has
arrived. Bits 0:15.

NXT_BUF_SZ 10-bits specifying the size of the next buffer obtained from the RFD table; should
be written with or before the NXT_BUF_PTR register as it activates the opera-
tion. Bits 16:25 (0—read 0 bytes; 1—read 1 byte)

RFD_CMD 2 bits specifying which RFD command: prefetch new pointer, read, write, and
recycle. Writing here activates the interface.

bits 0:1—command (00—prefetch; 01—recycle; 10—read; 11—write)
bit 2—1 for multicast for recycle command; 0 for writing RFD_WR and
 RFD_WR_CNT for write command
bits 8:12—number of buffers for recycle command
bits 13:15—port for prefetch/recycle command
bit 16—for 16-port confi guration.

RFD_RD 25 bits specifying RFD read data. If the RFD_CMD is read, then the 33 bits of
data are written to the RFD_RD and RFD_RD_CNT registers. Validation of data
is performed via the appropriate fl ag. See Figure A15.1.

bits 15:0—pointer
bits 16:24—next buffer length

Appendix A: Detailed Register Description 589

Register name Description

RFD_WR 25 bits specifying RFD write data. If the RFD_CMD is write, then the 33 bits of
data from the RFD_RD and RFD_RD_CNT registers are written to the RFD table.
Validation of data is performed via the appropriate fl ag. See Figure A15.1.

bits 15:0—pointer
bits 16:24—next buffer length

RFD_RD_CNT 8 bits specifying RFD read data. If the RFD_CMD is read, then the 33 bits of
data are written to the RFD_RD and RFD_RD_CNT registers.

RFD_WR_CNT 8 bits specifying RFD write data. If the RFD_CMD is write, then the 33 bits of
data from the RFD_RD and RFD_RD_CNT registers are written to the RFD
table.

RFD_PTR 16 bits specifying the RFD pointer. Programmers should fi rst check the status of
the RAF fl ag to see if the RFD address is ready.

RX_PRE_PTR Pointer to new available frame buffers in the Rx frame memory, ready for use.
The RRP fl ag indicates pointer presence.

TX_PRE_PTR Pointer to new available frame buffers in the Tx frame memory ready for use.
The RTP fl ag indicates pointer presence.

STAT_REG 32-bit interface to the statistics block: address (b31:8), reserved (b7:3), and
command (b2:0). Valid commands are increment (000), decrement (101)
and reset (001). Increment and decrement commands use the operand in the
STAT_REG_HI register.

HOST_REG Interface with the host. Microcode programmers should not write to this register.

STAT_REG_HI 16-bit operand for the statistics block. See the STAT_REG register for the
address and command.

Table A15.1 SEND_REG Register Description

TFD OQ HTFD

SEND_REG0
[31:0]

15:0—time stamp
31:16—Tx frame pointer

15:0—time stamp
31:16—Tx frame pointer

15:0_time stamp
31:16—Tx frame pointer

SEND_REG1
[57:32]

13:0—frame length
15:14—zero, reserved
20:16—number of buffers

25:21—source port number

13:0—frame length
15:14—zero, reserved
20:16—number of buffers

25:21—source port
number

13:0—frame length
15:14—zero, reserved
20:16—number of
buffers

25:21—source port
number

SEND_REG2
[81:64]

6:0—zeros
7—buffer type
16:8—fi rst buffer length
17—multiple

6:0—header length
7—buffer type
16:8—fi rst buffer length
17—multiple

6:0—header length
7—buffer type
16:8—fi rst buffer length
17—multiple

590 CHAPTER 15 Modifying

Host Registers
Most registers are initialized with a high-level Application Program Interface (API),
which is not described here. The only registers that are described in this appendix
are those that are mentioned in this chapter and in the sample programs in the
book. For more details, see [118].

MREG [15:0] Register
The LDREG command in the microcode instructs the loader to load the user-
defi ned masks to each of these registers (see Section 15.5.1).

LREG Register [31:0]
These are 32 labels/addresses indicating the procedures in the microcode program
corresponding to the 32 operations performed via the Modifi cation Accelerator
(see Section 15.2.9).

Table A15.2 ALU Mask Register

Name Bits# Description Init value

MASK b31:0 ALU mask.

Table A15.3 LREG Register [31:0]

Name Bits# Description Init value

LREG b9:0 TOPmodify modifi cation
acceleration.

591

APPENDIX B
TOPMODIFY ADDRESSING MODES

Table B15.1 provides the numbers, names, and syntaxes of the addressing modes
that are relevant to the TOPmodify. Devices in this table refer to registers or struc-
tures—for example, UREG, OREG. The numbers in the fi rst column are used in this
chapter to indicate the addressing modes supported by operands. Bold typeface
indicates required text. Italic typeface indicates text that must be replaced with
the appropriate value.

Table B15.1 TOPmodify Addressing Modes

No. Name Syntax Description

1 Immediate 123 or 0x12 or “abcd” or $
or label

123—decimal number
0x12—hexadecimal number
“abcd”—4 bytes = 0x61626364
$—program counter (PC)
label—program label

2 Register device [number] For the device, see the devices listed for each
TOP in its relevant part.

number—index of the register in the device array

3 Register
(byte-specifi c)

device[num1].byte[num2] num1—index of the register in the device array
num2—byte number in this register

4 Register
(bit-specifi c)

device[num1].bit[num2] num2—bit number in this register

6 Indirect device [IND_REG]

7 Base-index offset (base) or
offset (base)�

base—base registers. See the devices listed for
each TOP in its relevant part.

offset—immediate or some register.

8 Direct number (0) or
(number)�

Can be used for the Get command.
For src in the Get commnad, use number (0)+.

12 Device group bcam8 [num1] or
bcam8 [ureg[0]]

num1—immediate 3 bits

15 Structure
number-offset

offset (str) or
offset (str)�

str—register or immediate. Access to result
memory.

offset—immediate or some register.

592

APPENDIX C
TOPMODIFY DETAILED INSTRUCTION SET

Detailed description of TOPmodify commands’ operands are listed in this appendix.
For even more detailed explanations, see [118].

MOVE COMMANDS
Move commands copy data (bits, bytes, and words) from various sources to various
destinations.

Mov DST, SRC, SIZE [, jpe]
Defi nition: Move SIZE bytes from source (SRC) to destination (DST). jpe is used

to optionally jump according to the FAST_REG, after the move (see
 Section 15.2.9).

Operands: DST, the destination, can be a register (or a byte in it) or an indirect address-
ing mode (type 1, 2, 3, or 6 in Table in B15.1). Valid registers are UREG,
SREG registers (except FLAGS), OUT_IF registers (except HOST_REG,
RFD_RD, RFD_RD_CNT, RX_PRE_PTR and TX_PRE_PTR), and OREG
registers (except CAMO, HISTORY0..3, BUF_STATUS and UNIT_NUM)
(see Section 15.3.1).

SRC, the source, can be an immediate 32-bit value, a register (or a
byte in it) or an indirect addressing mode (type 1, 2, 3, or 6 in Table
B15.1). Register or indirect addressing modes can be any of the regis-
ters, (see Section 15.3.1). When it is an immediate 32 bit, then destina-
tion is ALU only, and to move an immediate value other than 32 bits to
a register (except ALU), use the MovBits command.

Size can be either an immediate value (1 to 4) or a register con-
tent; that is the SIZE_REG (which is SREG[2]) value (0–4). This cor-
responds to type 1 or 2 in Table B15.1. When an immediate address
mode is used, the SIZE fi eld is defaulted to 4 bytes; that is 32 bits long
immediate value–irrelevant of the value written.

Jpe indicates whether to jump (_JPE_MDF) or not to jump (_NJP_
MDF), following examination of the modify bits in the FAST_REG. The
examination starts at the least signifi cant bit (LSB), and continues until it
reaches the fi rst bit that is set (which determines where to jump; see Sec-
tion 15.2.9). The default is _NJP_MDF.

MovBits DST, SRC, SIZE [, jpe]
Defi nition: Move SIZE bits from source (SRC) to destination (DST). jpe is used

to optionally jump according to the FAST_REG, after the move (see
 Section 15.2.9).

Appendix C: TOPmodify Detailed Instruction Set 593

Operands: DST, the destination, can be a bit specifi c register or an indirect
addressing mode (type 4 or 6 in Table B15.1). Valid registers are
UREG, SREG registers (except FLAGS), OUT_IF registers (except
HOST_REG, RFD_RD, RFD_RD_CNT, RX_PRE_PTR, and TX_PRE_PTR),
and OREG registers (except CAMO, HISTORY0..3, BUF_STATUS and
UNIT_NUM) (see Section 15.3.1).

SRC, the source, can be an immediate 16-bit value, a bit specifi c
register or an indirect addressing mode (type 1, 4, or 6 in Table B15.1).
Register or indirect addressing modes can be any of the registers (see
Section 15.3.1).

Size can be either an immediate value (1–16) or a register con-
tent; that is, the SIZE_REG (which is SREG[2]) value (0–16). This cor-
responds to type 1 or 2 of the addressing modes in Table B15.1.

Jpe indicates whether to jump (_JPE_MDF) or not to jump
(_NJP_MDF), following examination of the modify bits in the
FAST_REG. The examination starts at the LSB, and continues until it
reaches the fi rst bit that is set (which determines where to jump; see
Section 15.2.9). The default is _NJP_MDF.

Get DST, SRC, SIZE [, jpe]
Defi nition: Move SIZE bytes from the source (SRC, the frame memory, FMEM) to

a destination (DST) register. jpe is used to optionally jump according
to the FAST_REG, after the move (see Section 15.2.9).

Operands: DST, the destination, can be a register (or a byte in it) or an indirect
addressing mode (type 2, 3, or 6 in Table B15.1). Valid registers are
UREG, SREG registers (except FLAGS), OUT_IF registers (except
HOST_REG, RFD_RD, RFD_RD_CNT, RX_PRE_PTR, and TX_PRE_PTR),
and OREG registers (except CAMO, HISTORY0..3, BUF_STATUS and
UNIT_NUM) (see Section 15.3.1).

SRC, the source, can be a based-indexed or a direct addressing
mode (type 7 or 8 in Table B15.1), referring to FMEM.

Size can be either an immediate value (1 to 4) or a register content;
that is the SIZE_REG (which is SREG[2]) value (0–4). This corresponds
to type 1 or 2 in Table B15.1.

Jpe indicates whether to jump (_JPE_MDF) or not to jump (_NJP_MDF),
following examination of the modify bits in the FAST_REG. The exami-
nation starts at the LSB, and continues until it reaches the fi rst bit
that is set (which determines where to jump; see Section 15.2.9). The
default is _NJP_MDF.

GetRes DST, SRC, SIZE [, jpe]
Defi nition: Move SIZE bytes from the source (SRC, the result memory RMEM) to

the destination (DST). jpe is used to optionally jump according to the
FAST_REG, after the move (see Section 15.2.9).

594 CHAPTER 15 Modifying

Operands: DST, the destination, can be a register (or a byte in it) or an indirect
addressing mode (type 2, 3, or 6 in Table B15.1). Valid registers are
UREG, SREG registers (except FLAGS), OUT_IF registers (except
HOST_REG, RFD_RD, RFD_RD_CNT, RX_PRE_PTR, and TX_PRE_
PTR), and OREG registers (except CAMO, HISTORY0..3, BUF_STATUS
and UNIT_NUM) (see Section 15.3.1).

SRC, the source, is the structure number of the required result or
message in the result memory (RMEM) (type 15 in Table B15.1).

Size can be either an immediate value (1 to 4) or a register content;
that is the SIZE_REG (which is SREG[2]) value (0–4). This corresponds
to type 1 or 2 in Table B15.1.

Jpe indicates whether to jump (_JPE_MDF) or not to jump (_NJP_MDF),
following examination of the modify bits in the FAST_REG. The exami-
nation starts at the LSB, and continues until it reaches the fi rst bit that
is set (which determines where to jump; see Section 15.2.9). The default
is _NJP_MDF.

Put DST, SRC, SIZE [, jpe]
Defi nition: Move up to four bytes (SIZE) from source register (SRC) to destination

(DST, which is the frame memory FMEM). jpe is used to optionally
jump according to the FAST_REG, after the move (see Section
15.2.9).

Operands: DST, the destination, is a based indexed address mode (type 7 in
Table B15.1), referring to FMEM.

SRC, the source, can be an immediate 16-bit value, a register (or
a byte in it) or an indirect addressing mode (type 1, 2, 3, or 6 in
Table B15.1). Register or indirect addressing modes can be any of the
registers (see Section 15.3.1).

Size can be either an immediate value (1–4) or a register content;
that is the SIZE_REG (which is SREG[2]) value (0–4). This corresponds
to type 1 or 2 of the addressing modes, Table B15.1.

Jpe indicates whether to jump (_JPE_MDF) or not to jump (_NJP_
MDF), following examination of the modify bits in the FAST_REG. The
examination starts at the LSB, and continues until it reaches the fi rst bit
that is set (which determines where to jump; see Section 15.2.9). The
default is _NJP_MDF.

Copy DST, SRC, SIZE [, jpe]
Defi nition: Move SIZE bytes from the source (SRC, which is the result memory

RMEM) to the destination (DST, which is the frame memory, FMEM). Jpe

Appendix C: TOPmodify Detailed Instruction Set 595

is used to optionally jump according to the FAST_REG, after the move
(see Section 15.2.9).

Operands: DST, the destination, is a based indexed addressing mode (type 7 in
Table B15.1), referring to FMEM.

SRC, the source, is the structure number of the required result or
message in the result memory (RMEM) (type 15 in Table B15.1).

Size can be either an immediate value (1 to 4) or a register con-
tent; that is the SIZE_REG (which is SREG[2]) value (0–4). This cor-
responds to type 1 or 2 of the addressing modes, Table B15.1.

Jpe indicates whether to jump (_JPE_MDF) or not to jump (_NJP_
MDF), following examination of the modify bits in the FAST_REG. The
examination starts at the LSB, and continues until it reaches the fi rst bit
that is set (which determines where to jump; see Section 15.2.9). The
default is _NJP_MDF.

Write DST, SRC, SIZE [, jpe]
Defi nition: Move SIZE data from the source (SRC, the frame memory FMEM) to

the destination (DST, also the frame memory, FMEM). jpe is used to
optionally jump according to the FAST_REG, after the move (see Sec-
tion 15.2.9).

Operands: DST, the destination, is a based indexed address mode (type 7 in Table
B15.1), referring to FMEM.

SRC, the source, is a based indexed address mode (type 7 in Table
B15.1), referring to FMEM.

Size can be either an immediate value (1–8) or a register content;
that is the SIZE_REG (which is SREG[2]) value (0–8). This corresponds
to type 1 or 2 in Table B15.1.

Jpe indicates whether to jump (_JPE_MDF) or not to jump (_NJP_
MDF), following examination of the modify bits in the FAST_REG. The
examination starts at the LSB, and continues until it reaches the fi rst bit
that is set (which determines where to jump; see Section 15.2.9). The
default is _NJP_MDF.

JUMP COMMANDS
Jump commands instruct the NP to jump to a given label in the microcode. Some
of the commands are conditional jumps, and some jump with pushing and popping
program addresses. At the end of the jump, optional NOP_NUM (0, 1 or 2) NOPs may
be inserted into the pipeline following the jump command (to disable execution of

596 CHAPTER 15 Modifying

the commands that immediately follow the jump instruction). The NOPs are effective
only if the jump command is executed. The standard Jump command format is:

if (CONDITION)

 command LABEL [| NOP_NUM];

 // See commands in Table 11.4, Chapter 11.

or

command LABEL [| NOP_NUM];

 // See commands in Tables 11.4 and 11.5, Chapter 11.

The format of the Call, CallCam, and CallStack commands is a bit different from
the jump command, and also includes a number of NOPs (RET_NOP_NUM) that
should be inserted before returning, as follows:

Call function [| NOP_NUM [, RET_NOP_NUM]];

or

CallCam function [| NOP_NUM [, RET_NOP_NUM]];

or

CallStack function [| NOP_NUM [, RET_NOP_NUM]];

Defi nition: Call a function, and return from it to the next address on completion
(return command in the function). Insert NOP_NUM NOPs before jump-
ing and RET_NOP_NUM NOPs before returning.

Operands: CONDITION is any fl ag bit or UDB register bit. The negation mark (!)
may precede any condition.

LABELS is the place in the program to where the jump is to take place.
function is the name of the function to be called.
NOP_NUM shows the number of NOPs to be inserted after the

branch, to prevent the following command from entering the pipe-
line.

RET_NOP_NUM shows the number of NOPs to be inserted on return
from the called function.

ARITHMETIC LOGIC UNIT OPERATIONS
Arithmetic Logic Unit commands are used for arithmetic and logic calculations.
There are two formats of ALU commands, one with two source–operands and the
other with one source-operand:

COMMAND DST,SRC1,SRC2,SIZE,[,MREG[,MODE[,JPE]]];

 // See commands in Table 11.3, Chapter 11.

Appendix C: TOPmodify Detailed Instruction Set 597

or

COMMAND DST,SRC,SIZE,[,MREG[,MODE[,JPE]]];

 // See commands in Table 11.3, Chapter 11.

Defi nition: Calculate the COMMAND on the sources (SRC, or SRC1 and SRC2) of SIZE
bytes, and put the result in the destination (DST). Use masks in MREG,
according to the required MODE, to mask the source operands if
required. jpe is used to optionally jump according to the FAST_REG,
after the move (see Section 15.2.9).

Operands: DST, the destination, receives the result of the ALU block operation,
together with the ALU register itself; that is the result is entered into
both the destination and the ALU. DST can be a register (or a byte in
it) or an indirect addressing mode (type 2, 3, or 6 in Table B15.1), and
may use any of the following registers: UREG, SREG registers (except
FLAGS), OUT_IF registers (except HOST_REG, RFD_RD, RFD_RD_CNT,
RX_PRE_PTR, and TX_PRE_PTR), and OREG registers (except CAMO,
HISTORY0..3, BUF_STATUS and UNIT_NUM), see Section 15.3.1.

SRC or SRC1, the fi rst source operand or the only source operand
can be a register (or a byte in it) or an indirect addressing mode (type
2, 3, or 6 in Table B15.1). Register or indirect addressing modes can be
any of the registers (see Section 15.3.1).

SRC2, the second source, can be an immediate 8-bit value, a regis-
ter (or a byte in it) or an indirect addressing mode (type 1, 2, 3, or 6 in
Table B15.1). Register or indirect addressing modes can be any of the
registers (see Section 15.3.1).

SIZE is the size of the ALU operation in bytes. Zero (0) is not a valid
size. Size can be either an immediate value (1–4) or a register content.
Register content is taken from the SIZE_REG (which is SREG[4]), and
valid values are 1–4. This corresponds to type 1 or 2 in Table B15.1.

MREG indicates one of the 16 ALU mask registers (see MREG[15:0]
Register subsection in Appendix A).

MODE indicates how to use the mask:

_ALU_NONE—no masking done
_ALU_FRST—masking SRC1, that is SRC1 = SRC1 and MASKREG
_ALU_SCND—masking SRC2, that is SRC2 = SRC2 and MASKREG
_ALU_BOTH—masking both SRC1 and SRC2; that is SRC1 = SRC1
 and MASKREG, SRC2 = SRC2, and MASK_REG

Jpe indicates whether to jump (_JPE_MDF) or not to jump (_NJP_
MDF), following examination of the modify bits in the FAST_REG. The
examination starts at the LSB, and continues until it reaches the fi rst
bit that is set (which determines where to jump; see Section 15.2.9).
The default is _NJP_MDF.

598 CHAPTER 15 Modifying

When the explicit destination is not the ALU register, all four bytes
of the ALU register are updated, even if the instruction SIZE was less
than 4. For example, Add UREG[7],UREG[5],UREG[6],1; adds the
contents of UREG[5] and UREG[6] and writes 1-byte to UREG[7] and
4 bytes to ALU. The ALU register cannot be used with an offset other
than 0 (zero) when it is used for destination, source1 or source2.
Examples of improper usage of the ALU register:

Add ALU.BYTE [1], UREG[0].BYTE[2], 2, 1;
Add ALU, UREG[0].BYTE[2], ALU.BYTE [2], 1;
Add ALU, ALU.BYTE [3], UREG[0].BYTE[2], 1;

CONTENT ADDRESSABLE MEMORY OPERATION
There is one CAM instruction in the TOPmodify CAM operation:

LookCam DST, SRC, TYPE [, jpe];

Defi nition: Search in a BCAM8. Use source (SRC) for a search key and put
the result in destination (DST), and in the CAMO register (which
is OREG[3]). If a match is found, the MH bit is set. jpe is used to
optionally jump according to the FAST_REG, after the move (see Sec-
tion 15.2.9).

The CAM table is divided into up to eight user-defi ned groups.
BCAM8 is actually 11 bits, where the fi rst three bits indicate the CAM
group.

Operands: DST, the destination, can be a register (or a byte in it) or an indirect address-
ing mode (type 2, 3, or 6 in Table B15.1). Valid registers are: UREG, SREG
registers (except FLAGS), OUT_IF registers (except HOST_REG, RFD_RD,
RFD_RD_CNT, RX_PRE_PTR, and TX_PRE_PTR), and OREG registers
(except CAMO, HISTORY0..3, BUF_STATUS and UNIT_NUM). In addi-
tion, as noted above, the CAMO register (which is OREG[3]), is always a
destination (see Section 15.3.1).

SRC, the source, can be a register (or a byte in it) or an indirect
addressing mode (type 2, 3, or 6 in Table B15.1). Register or indirect
addressing modes can be any of the registers (see Section 15.3.1).

TYPE indicates the CAM group, for example, BCAM8[0]. Alternatively,
the 3 LSBs of the UDB may also be used to indicate the group number;
for example BCAM8[UREG0] (type 12 in Table B15.1).

In order to reduce data hazards, it is advisable to Get data from the FMEM into
CAMI and then perform a lookup in the next instruction.

Appendix C: TOPmodify Detailed Instruction Set 599

HALT COMMAND
The Halt command of the TOPmodify is somewhat different from other Halt
 commands, as no results are passed along the pipeline, but the actual frame is han-
dled (e.g., transmitted, ignored, copied into the frame memory). Frames can be sent
to any combination of destinations by writing the descriptors to the SEND_REG
register one at a time, and using the halt command to send each in turn. The halt
command indicates type (e.g., unicast, multicast) and specifi c destination (i.e., TFD
for network interface, Virtual Output Queue [VOQ] for switch interface, HTFD for
host interface, or none).

The pointer to the frame buffer is taken from the TX frame pointer in the SEND_REG
register. The format of the Halt instruction is:

HALT DATA, MODE;

Defi nition: Halt is used to fi nish packet processing and to transmit the packet or
to discard it. MODE determines if this frame should be unicast, multicast,
or discarded, and DATA determines the frame’s destination (FMEM and
output queue).

Operands: DATA indicates the frame’s destination, according to the predefi ned
constants shown in Table C15.1.

Mode indicates how the TOPmodify terminates processing, accord-
ing to the predefi ned constants shown in Table C15.2. The examples
that follow the table show a series of instructions and when to use the
halt command.

Table C15.1 Data Operands for Halt Instruction

Predefi ned DATA constants Description

_WHALT_NO_MDF Just write: do not send to queue, but write buffers.
This writes the frame buffer (or the entire frame if the pointer is to the
fi rst frame buffer) to the frame memory. It is not sent to a queue.

_WHALT_TF_MDF TFD � write:
This sends the frame buffer (or the entire frame if the pointer is to the
fi rst frame buffer) to the TFD queue and writes it to the frame memory.

_WHALT_HT_MDF HTFD � write:
This sends the frame buffer (or the entire frame if the pointer is to the
fi rst frame buffer) to the HTFD queue and writes it to the frame memory.

_WHALT_VQ_MDF VOQ � write:
This sends the frame buffer (or the entire frame if the pointer is to the
fi rst frame buffer) to the VOQ and writes it to the frame memory.

(continued)

600 CHAPTER 15 Modifying

Table C15.1 Data Operands for Halt Instruction (continued)

Predefi ned DATA constants Description

_HALT_NO_MDF Nothing: do not send to queue and do not write to frame memory.
This is not a true halt and in fact may often be followed by other instruc-

tions. HALT_HALT_NO_MDF temporarily halts and resumes operation
on the same frame. Once all the frame buffers have been modifi ed, use

HALT _WHALT_xx_MDF to terminate the processing of the current
frame and sent it to the specifi ed queue.

_HALT_TF_MDF TFD:
This sends the frame buffer (or the entire frame if the pointer is to
the fi rst frame buffer) to the TFD queue. It is not written to the frame
memory.

_HALT_HT_MDF HTFD:
This sends the frame buffer (or the entire frame if the pointer is to the
fi rst frame buffer) to the HTFD queue. It is not written to the frame
memory.

_HALT_VQ_MDF VOQ:
This sends the frame buffer (or the entire frame if the pointer is to the
fi rst frame buffer) to the VOQ. It is not written to the frame memory.

Table C15.2 Mode Operands for Halt Instruction

Predefi ned MODE constants Description

HALT_UNIC Indicates that the current TOP has completed processing this frame
and is ready to start processing the next frame.

HALT_DISC Instruction to discard this frame and begin processing the next frame.

HALT_MULC This is not a true halt and in fact may often be followed by other

 instructions. HALT HALT_MULC temporarily halts and resumes
 operation on the same frame. Once all the frame buffers have been

modifi ed, use HALT HALT_UNIC to terminate the processing of the
current frame.

HALT_BRKP For debug mode. This freezes this specifi c TOPmodify engine until the
host releases it.

Appendix C: TOPmodify Detailed Instruction Set 601

Example 1: A frame in which only the fi rst frame buffer requires modifi cation.

■ Modify the fi rst frame buffer.
■ Use HALT _WHALT_VQ_MDF, HALT_UNIC to send the entire frame (all buf-

fers) to the VOQ and write the frame to the frame memory.

Example 2: A frame in which two frame buffers require modifi cation.

■ Modify the fi rst frame buffer.
■ Use HALT _WHALT_NO_MDF, HALT_MULC to write the fi rst frame buffer to the

frame memory without sending it to a queue.
■ Read second buffer and modify it.
■ Use HALT _WHALT_NO_MDF, HALT_MULC to write the second frame buffer

to the frame memory without sending it to a queue. After modifying buffer 2,
the frame cannot be sent directly to a queue because the pointer is pointing
to the second frame buffer.

■ Use HALT _WHALT_VQ_MDF, HALT_UNIC to send the entire frame (all buf-
fers) to the VOQ and write the frame to the frame memory. The frame pointer
must be pointing to the fi rst frame buffer.

This page intentionally left blank

CHAPTER

16
In the previous chapters, we used an example of Virtual Local Area Network (VLAN)
processing to show how to program and use each of the Task Optimizet Processor
(TOP) engines. In this chapter, we return to this example to describe how we actu-
ally use the EZchip development system; that is, how we load it, compile it, and
debug it. Debugging here is very elementary, but once the reader will follow the
procedure, he or she will be able to perform a complex debugging, which includes
running to breakpoints, single step-through running, and watching internal registers,
memories, frames, and so on.

In addition, this chapter provides a quick and basic review of how to defi ne
frames (that the simulator will use) and build the search-database (structures that
also can be used during the debugging phase).

The purpose of this chapter is not to teach how to use the specifi c tool, but
rather to show how to actually develop network processing software. For a com-
prehensive description of how to use the development environment, see [117].

16.1 INSTALLATION
First, we have to install the EZdesign kit, which includes EZmde (EZ Microcode
 Development Environment), frame, and structure generators. This kit is available at
http://www.cse.bgu.ac.il/npbook (with its User’s Guide). After the explanation of
installation, we provide a detailed description of how to compile the VLAN code,
and how to debug it.

Use Windows system (NT4.0, 2000, or XP) to install EZdesign according to the
following steps (basically, all you have to do is to press the <Enter> key to accept
all the defaults):

1. Run Setup.exe from the attached CD.

2. Click Next to start the wizard and to display the License Agreement window.

3. Approve License Agreement with Yes to display the Customer Information
window.

Running the Virtual Local
Area Network Example

4. Enter your user details:

User Name: [System registration details or manual entry]
Company Name: [System registration details or manual entry]
Click Next to display the Choose Destination Location window.

5. Default location: C:\EZchip\EZdesign_demo.

Browse if you want to defi ne an alternative folder location.
Click Next to display the Select Program Folder window.

6. Accept the default program folder name or enter preferred name and click
Next to install the package.

7. The installation window monitors the progress of installation operations. You can
Cancel the installation at any time. On completion, there may be a textbox asking
about creating a new EZmcc workspace fi le association, if the ‘wsc’-fi le associa-
tion already exists. Answer Yes in this case (normally, choose the default, i.e., No).

8. The View Release Notes window replaces the current window. This window
enables you to choose (optional) to open the Readme fi le after exiting the
installation procedure. Click Finish to display the Finish Reboot window.

9. Before running the program, you must restart your computer. You can choose to
restart your computer now or later. Click Finish to exit the installation process.

16.2 GETTING STARTED
Now we can run the VLAN example. First we’ll launch the EZmde, and then we’ll
open the VLAN project.

16.2.1 Launching the Microcode Development Environment
Click Start>ALL Programs>EZdesign demo>EZmde, or double click from your
 Windows desktop to launch EZmde. You’ll get the main screen of EZdesign shown
in Figure 16.1. You can now proceed to open the VLAN project for microcode
management.

FIGURE 16.1

EZmde opening screen

604 CHAPTER 16 Running the Virtual Local Area Network Example

16.2.2 Opening the Sample VLAN Project
To assist in GUI familiarization, the EZdesign package provides two sample micro-
code projects (*.prj) in the \mcode\sample folders shown in Figure 16.2.

We shall refer from this point on to the VLAN example. To open this sample
project, proceed as follows:

1. Click Project/Build>Open Project.

2. Select the VLAN project and Open to load the project. Since this is the fi rst
time this project has been opened, there is no workspace, and you have to
click OK at the prompt to create a new workspace for the project.

When the project is loaded, three windowpanes (see Figure 16.3) are view-
able in the GUI: Project Tree Window, Working Window and Output Window.

FIGURE 16.2

Microcode samples supplied

FIGURE 16.3

EZmde GUI—VLAN project loaded

16.2 Getting Started 605

3. Click Project/Build>Build All to compile the code. “Compilation was
 completed successfully” should display in the Output Window (Build tab)
and “Compiled Project” in the status bar.

4. Click Tools>Run Simulator Scripts to run a pre-defi ned script for initialization
of the system. As the script runs, DOS boxes appear on screen displaying
the status of applications that are used by the simulator. The sequence is
 completed when “Initialization is fi nished” displays in a separate ezrunner.exe
DOS window. Minimize all DOS windows.

5. Click Debug>Connect … to connect the simulator to the PC, and then OK
from the Connection Options dialog box. (The default address 127.0.0.1
 connects system components running on the same PC; see Figure 16.4)

6. Now, you can either run the microcode, or step-through it:

� To run the loaded code, click Debug>Go/Attach. If no breakpoint was set
before, a warning will show.

� To step-through the code, click Debug>Step Into.

Step-through allows you to see the code’s execution, instruction by
 instruction, and by using viewing options. For example, when choosing
View>Local Memory, the Registers can be watched as the program steps
through (see Figure 16.5).

After the code has been run, a message appears, letting you know that the simu-
lation has ended (see Figure 16.6).

Now, the log fi les may be viewed in the …\Debug\Output subfolder. For an
explanation of the log fi les, see the EZdesign User’s Guide and in [117].

Breakpoints can be inserted, code can be traced line-by-line (single step-through),
register contents can be watched and memory contents can be analyzed.

All this is explained in detail in the EZdesign User’s Guide and in [117].

FIGURE 16.4

Connections options dialog window

606 CHAPTER 16 Running the Virtual Local Area Network Example

16.3 MICROCODE DEVELOPMENT WORKFLOW
Although the VLAN example seems like a straightforward and simple task, usually a
code requires a bit more than what we have done. Actually, even the VLAN example
that we run through used a frame that was pre-prepared and a null structure that
was also predefi ned. The fl owchart shown in Figure 16.7 outlines the common
EZdesign workfl ow.

FIGURE 16.5

Debugging screen

FIGURE 16.6

End of simulation message

16.3 Microcode Development Workfl ow 607

FIGURE 16.7

Code developing workfl ow

The next two subsections describe the frame generation and the structure
 generation.

16.3.1 Frame Generation
Frames are generated according to various random or predetermined methods, and
are required for simulating the code on these “injected” frames, used as inputs to
the executable code. A secondary use of the frame generation is to build entries
in the search structures that are based on the generated frames’ contents. This is
described in the next subsection.

In the following, a simple example of creating a frame is provided. We start with
EZmde running (as described before). The steps are as follows:

1. Click Tools>Frame / Structure Generator. We’ll get the main frame generator
screen shown in Figure 16.8.

2. Select the frame type you want to generate by picking the protocol that meets
your requirements. At any rate, you have to defi ne the frames by defi ning pro-
tocols according to their layers, that is, defi ne layer 2 fi rst, and then layer 3,
and so on. For the sake of this example, we’ll show how to create an Ethernet
frame with no VLAN tag. We double click on Ethernet Without Tag (in the
Layer 2 group of the Protocols), and we get the frame structure shown in
Figure 16.9.

3. We can defi ne how any fi eld of the Ethernet header will be created by
 clicking the Edit button of this fi eld. We can go on and choose one of the edit

Create Executable Microcode Files
(Editing and Assembling in the preceding subsection)

Execute and Analyze the Microcode
(see Analysis Tools in EZdesign User's Guide)

Create the Driver Input File
(see Structure Generator subsection)

Create a Frames File
(see Frame Generator subsection)

Create a Project Environment
(see Microcode Projects in EZdesign User's Guide)

608 CHAPTER 16 Running the Virtual Local Area Network Example

options (i.e., random, incremental, predefi ned, etc.) as described in detail in
the EZdesign User Guide and in [117] (see Figure 16.10).

4. Eventually, after defi ning upper layers and all the required fi elds, we get
the entire frame, and we can create the frame by clicking Generator>Run
(Figure 16.11).

More options, such as saving, editing, creating, and manipulating the frames are
described in the EZdesign User Guide and in [117].

FIGURE 16.8

Main frame generator screen

FIGURE 16.9

Frame generator screen

16.3 Microcode Development Workfl ow 609

16.3.2 Structure Generation
Structures are generated according to the required searching repository structures
(i.e., hash tables, trees, direct tables), and fi lled with the required entries (i.e., keys
and search results). Entries may rely on generated frames (e.g., using fi elds’ con-
tents as keys, or as results), or may be determined otherwise. At any rate, structure
generation requires frames to be predefi ned.

In the following, a simple hash table generation is demonstrated. We start here
from the previous frame generation screen (as described before). The next steps
are as follows:

1. Click Tools>Structure Generator. We’ll get the main structure generator
screen.

2. In this screen (Figure 16.12), we defi ne the TOPsearch for this structure, the
structure number, and the entries and table parameters, as described in the
detailed EZdesign User Guide.

3. We create a structure header by clicking the header H button (),
and we get the fi elds that enable us to defi ne the entries’ parameters

 (Figure 16.13).

4. We defi ne the number of key and result elements in each of the entries (as for
fi ltering information, see the detailed Users’ Guide [117]), and while doing so,
we get a fourth column that allows us to defi ne the keys and the results of the
entries (Figure 16.14).

5. We can defi ne the keys or the results by pressing the Edit button, and
choosing the method by which it will be created (e.g., taken from a fi eld or
from an offset of a generated frame, fi xed or random values). The example

FIGURE 16.10

Frame fi eld’s options

610 CHAPTER 16 Running the Virtual Local Area Network Example

in Figure 16.15 shows how we determine the result according to the
frame’s fi eld.

6. We continue by clicking the body B button (), and we get the resulting
structure (Figure 16.16).

7. Adding other structures is possible by going through steps 2–6.

FIGURE 16.11

A defi ned frame

16.3 Microcode Development Workfl ow 611

FIGURE 16.12

Main structure generator screen

FIGURE 16.13

Structure defi nitions

FIGURE 16.15

Result options screen

FIGURE 16.14

Keys and results defi nitions

613

FIGURE 16.16

Final structure defi nition screen

8. Only after defi ning all required structures, can we go and actually create
them. We do this by clicking Generator>Run and providing the frame binary
fi le that we created in the previous frame generation phase. The resulting
structure is created and stored.

More editing, creating, and other manipulation options are described in the
EZ design User Guide and in [117].

16.3.3 Project Creation and Analysis
With EZdesign, it is possible to create an entire project, and then run simulations,
analysis of the code and the project, do performance and correctness evaluations,
optimize code and resource utilization of the network processor, and achieve the
highest performance requirements of packet processing. It is beyond the book’s
scope to describe all the available tools in the NP development environment, though
some of them are described in the EZdesign User Guide. For a complete reference
to EZdesign, the reader is referred to [117].

614 CHAPTER 16 Running the Virtual Local Area Network Example

16.4 SUMMARY
This chapter provides an overview of how to create a project, compile it, and test
(or debug) it. Obviously, the purpose was not to show how the EZmde works, but
to provide a sense of a development environment for network processors. It is a bit
different from a “regular” programming environment, as the process of developing
a packet processing task requires the related defi nition of the inputs (frames and
search repositories).

16.4 Summary 615

This page intentionally left blank

17
This chapter concludes the EZchip part of the book by demonstrating how to use
the EZchip NP. We describe a high-speed network application, a multi-Gbps routing,
and an “on the fl y” screening fi lter for prescribed words that are to be identifi ed
and masked. This chapter shows how to design, write, run, debug, and simulate an
application with the Microcode Development Environment.

17.1 INTRODUCTION
This example contains a demonstration application for inspecting, modifying, and
re-routing HyperText Transfer Protocal (HTTP) frames. The example is written
in a “teaching mode” in order to demonstrate the implementation of a network
 processor for high-speed application, and is not aimed to be effi cient or even true
(for example, check-summing is ignored); moreover, the example only uses NP
instructions that were described in this book, and is therefore not comprehensive.
As, in some cases, effi ciency was sacrifi ced for readability, the reader should not
look at this code as an example to use, but rather simply for using several methods
of writing instructions, for explanation and learning purposes. Nevertheless, this
example uses several of the important features of the NP processor, such as fast
deterministic hash-table lookups, auto-learning of hash entries, scanning of frames
for specifi c patterns in the payloads, and more.

The application inspects each frame for specifi c, predefi ned words, and accord-
ing to one of three predefi ned operating modes, the application resolves what to
do with the frame. If the packet isn’t an IPv4 packet, it is discarded. If the packet
isn’t an HTTP packet, it is routed without further inspection. If the frame is an
HTTP frame, the NP examines it and handles it according to the defi ned operating
mode, as described in the following:

The fi rst operating mode is the simplest—if a frame contains the “hot string,”
which in our example is either “bomb” or “sex,” this frame is discarded; otherwise,
the frame is routed.

Writing Your First
High-Speed Network
Application

CHAPTER

618 CHAPTER 17 Writing Your First High-Speed Network Application

The second operating mode checks fi rst if the incoming frame was received
from a “hot SIP” (a Source IP Address that in the past had sent a frame containing
the “hot string”). If it was, this frame is discarded. Otherwise, the frame is checked
to see if it contains the “hot string.” If it contains the “hot string,” the frame is dis-
carded, and the sender’s SIP is stored for future blocking (i.e., it becomes a “hot
SIP”). If the frame was clear, it is routed as usual.

The third operating mode is similar to the second operating mode, but in addi-
tion to what happens there, the frame that contained the “hot string” is now routed
to a predefi ned destination IP address, where the three fi rst letters in the “hot
string” are replaced by “XXX.”

The data structures that the program uses are three hash tables for look-ups,
of which two are static (and have to be initially populated with data), and one is
dynamically handled. The fi rst hash data structure, the dynamic one, is used to keep
the hot SIP addresses, and if the operating mode requires it, this table is updated
with these SIPs at wire speed. Initially, this hash structure must be provided to the
program, empty.

A second hash table contains DIP entries that must be provided. These Destina-
tion IP addresses are used for routing the frames, and only frames carrying DIPs
that reside in this table will be routed. This table points to an output port of the
NP through which the frame will be routed, as well as the destination MAC address
of the next hop router that is attached to the output port of the NP (and thereby
rendering the ARP1 mechanism redundant).

The third hash table is used for describing the source MAC address for each of
the output ports, as well as an alternative DIP address (for the diverted DIP in case
of a “hot string”). This table is also static, that is, it should be populated prior to the
execution and is not modifi ed during the execution.

The fi rst two tables described above (the one that contains SIP addresses and
the one that contains DIP addresses) are used by the TOPsearch I, and keys are sent
to the search engine from the TOPparse. The third table (the output ports) is used
by TOPsearch II, and keys are sent to it from the TOPresolve after it determines
the correct port to be used for routing. A detailed structure of these tables is
 provided in Section 17.3. Please note that in this example no code was written for
the TOPsearch I or TOPsearch II, and these engines are supposed to perform just
simple lookups in the hash tables that are in following pages.

17.2 DATA FLOW AND TOP MICROCODE
The general fl ow diagram of the entire application is shown in Figure 17.1. The follow-
ing subsections describe the program for each TOP, including the relevant microcode.
Each subsection includes an explanation of the program in the relevant TOP engine.

1Address Resolution Protocol, which is required to bind IP addresses (L3) to MAC addresses (L2).

17.2 Data Flow and Top Microcode 619

FIGURE 17.1

Application fl owchart

Packet arrives

Is it a valid
IPv4 packet?

Learn the
“HOT SIP”

Is it a HTTP
packet?

Scan the packet and
mark if it contains

“hot” strings

Redirect the packet

What is the
operating mode?

Is it from a
“HOT SIP”?

TO
P

pa
rs

e

Is the “hot” string
mark set?

Is it from a
“HOT SIP”?

3 2

Discard the
packet

Discard the
packet

no

yes

yes

1

Is the “hot” string
mark set?

yes

yes

no

yes

no

Is the “hot” string
mark set?

Learn the
“HOT SIP”

yes

no

no
no

Is the “hot” string
mark set?

yes

no
Calculate the offset

of “hot” string

Lookup SIP in the
“HOT SIP” table

TO
P

se
ar

ch
 I

yes

no

TO
P

re
so

lv
e

TO
P

m
od

if
y Modify packet

contents if required

Route the
packet

620 CHAPTER 17 Writing Your First High-Speed Network Application

17.2.1 TOPparse
Prior to executing the TOPparse code, the NP-1 hardware decoder automatically
examines each incoming frame and provides predefi ned analysis results about each
frame. The analysis results are stored in the hardware registers.

In a nutshell, the TOPparse receives the frame, runs several checks on that frame
(e.g., IPv4 validity), and prepares search keys and key headers, plus a message to
TOPresolve.

Two search keys are sent to the TOPsearch I containing the frame’s SIP
and DIP. The message contains information that was extracted from the hard-
ware decoder (read from the hardware registers). A detailed structure of these
search keys and the message is provided in subsection 17.3.2. TOPparse passes
the message and the keys to TOPsearch I engines, via the KMEM (the key mem-
ory). Each message and each key is accompanied by a header that is passed via
the HREG (the header register), which provides details about the message or
the key.

The TOPparse code was written as a sequence of macro-calls; each macro is
responsible for a specifi c task, as its name implies (the macro codes are listed in
subsection 17.2.4.1). The following code implements the TOPparse stage.

EZtop Parse;

#include "mcglobal.h"
#include "TOPparse.h"
#include "hdreg.h"
#include "stat.h"
#include "macro.h"
#include "rfd_macro.h"
#include "network.h"
#include "NP_Common.h"
#include "NP_Structs.h"
#include "NP_PRS.h"
#include "NP_PRS_macros.h"

L_START:

 // Initialize the program, use UREG[6].BYTE[2] and UREG[7].BYTE[0]
 Inits byMsgCtrls, uqSIP;

 // Check if the frame is IPV4, and if not - discard frame
 IfL3NotIPv4DiscardFrame L_DISCARD;

 //Creating DIP Key
 CreateDIPKey ALIGN_0; //0

 //Creating SIP Key
 CreateSIPKey ALIGN_4; //4

 // Scan the frame, use parameters UREG[6].BYTE[2].BIT[4] and FBLK[1]
 // for results of the scan (bit for found, and position)
 DetectSpecFrame byMsgCtrls.BIT[MSG_SPEC_FR], SCAN_STOP;

17.2 Data Flow and Top Microcode 621

 // Create a message, use UREG[6].BYTE[2], FBLK[1], and UREG[7].BYTE[0]
 // as inputs (bit for found, position, and SIP)
 CreateMessage byMsgCtrls, SCAN_STOP, uqSIP;

 Halt HALT_UNIC;

L_DISCARD:

 RFD_RECYC_PRS_RSV 0 /*mulc bit value*/, F_RD_PRS;
 Halt HALT_DISC;

17.2.2 TOPresolve
TOPresolve receives a message from TOPparse and, according to the defi ned oper-
ating mode, decides what to do with the frame. Then it provides this decision to
TOPmodify (as a parameter in a message).

The defi ned operating mode is determined by using the GetRndBits instruc-
tion, which read bits from ST_GRP0. TOPresolve then jumps to the appropriate
position in the program, according to the operating mode.

TOPresolve implements the required operations according to the operating
mode, and its algorithm is quite simple. The main purpose of TOPresolve is either
(a) to route the frame (using the TOPmodify, of course), if in operating mode 1, or
(b) to activate the SIP learning mechanism (with the High Learn) and associated
operations when applied (described in the Introduction of this chapter), or (c) to
additionally calculate the offset of the “hot string” in the frame when required (in
operating mode 3, for replacing the fi rst three letters of the “hot string” by TOP-
modify at a later stage).

Additionally, TOPresolve creates the appropriate message for TOPmodify
(which is based on the message it received from TOPparse, appended with addi-
tional information). TOPresolve also creates an output port key for searching by the
TOPsearch II, so that the correct port will be used by TOPmodify, along with the
right Source MAC address of the NP.

At the end, TOPresolve either forwards the frame (at label L_FORWARD_MODE3 of
the program) in case of a frame with a “hot string” in it, or routes the frame (at label
L_L3_ROUT) as planned. The following code implements the TOPresolve stage.

EZtop Resolve;

#include "mcglobal.h"
#include "TOPresolve.h"
#include "cond.h"
#include "hdreg.h"
#include "stat.h"
#include "macro.h"
#include "rfd_macro.h"
#include "NP_Common.h"
#include "NP_Structs.h"
#include "NP_FastRegs.h"
#include "NP_RSV.h"

622 CHAPTER 17 Writing Your First High-Speed Network Application

#include "NP_RSV_macros.h"

L_START:

 // If there are > 56<<5 (1792) occupied buffers, drop the frame,
 // since there is no point to continue, we have no room for
 // additional packets

 CriticalModeCheck RFD_CRITICAL_VAL, L_CRIT_MODE_DISCARD;

 // Perform all kinds of register initializations
 Inits;

 //Copy the result bits of operating mode to UDB.Byte[3] for decisions
 GetRndBits byFlags_UDB,
 ST_GRP0.INDEX [MSG_STR].BIT [MSG_MODE1],
 ST_GRP0.INDEX [MSG_STR].BIT [MSG_MODE2],
 ST_GRP0.INDEX [MSG_STR].BIT [MSG_MODE3],
 // One of mode bits is always set, use the rest for UDB fl ags
 ST_GRP0.INDEX [MSG_STR].BIT [VALID],
 ST_GRP0.INDEX [MSG_STR].BIT [VALID],
 ST_GRP0.INDEX [DIP_STR].BIT [MATCH],
 // DIP_STR is structure #1, bit1 is the match bit
 ST_GRP0.INDEX [SIP_STR].BIT [MATCH],
 // SIP_STR is structure #2, bit1 is the match bit
 ST_GRP0.INDEX [MSG_STR].BIT [MSG_SPEC_FR];

 //Check that we have a match in DIP_STR
 //In case that we don't have match, we can't route this frame, so discard it
 If (byFlags_UDB.BIT[2]) Jmp L_DISCARD | _NOP2; // UREG[0].BYTE[3].BIT[2]

 // Jump to the position in the program, according the operating mode

 If (byFlags_UDB.BIT[7]) Jmp L_MODE1 | _NOP2;
 If (byFlags_UDB.BIT[6]) Jmp L_MODE2 | _NOP2;
 If (byFlags_UDB.BIT[5]) Jmp L_MODE3 | _NOP2;
// Otherwise—it is illegal (no operating mode), proceed to discard

L_DISCARD:
 // Discard frame
 Discardtreatment;
 Halt HALT_DISC;
//--

L_MODE1:

// Check UDB.BIT[SPEC_FR] (found bit indicating the string is in frame)
 If (!byFlags_UDB.BIT[SPEC_FR]) Jmp L_L3_ROUT | _NOP2;
 Jmp L_MODE1_DISC | _NOP2;
//--

L_MODE2:

 // Check UDB.Byte[3] for hot SIP
 If (byFlags_UDB.BIT[SIP_MATCH]) Jmp L_MODE2_DISC | _NOP2;
 // maybe 1st "SEX" or "BOMB" frame for that SIP

17.2 Data Flow and Top Microcode 623

 If (!byFlags_UDB.BIT[SPEC_FR]) Jmp L_L3_ROUT | _NOP2;

 //Teach the Search1 database that there is one more hot SIP to
 // block in the future. . .
 // fi rst forbidden frame for that SIP

 SipHighLearn;
 Jmp L_MODE2_DISC | _NOP2;

//--

L_MODE3:

 If (byFlags_UDB.BIT[SIP_MATCH]) Jmp L_MODE3_CHECK_DATA | _NOP2;
 If (!byFlags_UDB.BIT[SPEC_FR]) Jmp L_L3_ROUT | _NOP2;

 //Teach the Search1 database that there is one more hot SIP to block
 // in the future. . .
 SipHighLearn;

L_MODE3_CHECK_DATA:

 // SIP_MATCH case
 If (!byFlags_UDB.BIT[SPEC_FR]) Jmp L_L3_ROUTE | _NOP1;
 Mov byFastReg, L3_FAST_REG, 1; // 64
 //"Hot" word found; we want forward frame to special IP
 //Check offset of "hot" data

 CheckDataReplaceOffset
 byFastReg, //UREG[7].BYTE[3]
 uxWorkBufOff, //UREG[7]
 byWorkBufNum, //UREG[7].BYTE[2]
 byFlags_UDB.BIT[READ_MDF]; //UREG [0].BYTE[3].BIT[2]

//--
// Forward the frame

L_FORWARD_MODE3:

 //Create a message for TOPmodify
 CreateSearchIIMsg DIP_SPEC_PORT_OFF, //3
 SPEC_IP_FLAG_TRUE, //1
 byFastReg, //UREG[7].BYTE[3]
 uxWorkBufOff, //UREG[7]
 byWorkBufNum; //UREG[7].BYTE[2]
 //Create a Search Key
 CreateOutPortCfgKey DIP_SPEC_PORT_OFF; //3

 If (!byFlags_UDB.BIT[READ_MDF]) MovBits CTRL_REG, 0, 3;
 Halt HALT_UNIC;

//--
// Route the frame

L_L3_ROUT:

 // Create a message for TOPModify

624 CHAPTER 17 Writing Your First High-Speed Network Application

 CreateSearchIIMsg DIP_OUT_PORT_OFF, //1
 SPEC_IP_FLAG_FALSE, //0
 L3_FAST_REG, //1<<64
 uxWorkBufOff, // not relevant
 byWorkBufNum; // not relevant
 //Create a Search Key
 CreateOutPortCfgKey DIP_OUT_PORT_OFF; //1
 Halt HALT_UNIC;

//--

L_MODE1_DISC:
 Jmp L_DISCARD | _NOP2;
//--

L_MODE2_DISC:
 Jmp L_DISCARD | _NOP2;
//--

L_CRIT_MODE_DISCARD:
 Jmp L_DISCARD | _NOP2;

17.2.3 TOPmodify
TOPmodify is responsible for changing the frame according to the decision it
receives from TOPresolve. Two modifi cations must be carried out: one is to replace
the Source MAC address of the frame to that of the egress port of the NP; the other
is to replace the Destination MAC address of the next hop device (e.g., router)
according to the next hop address. An optional modifi cation may be required,
in operating mode 3; that is, to replace the fi rst three letters of the “hot string” with
“XXX,” and to change the DIP address so that the frame will be diverted to the
required place.

Replacing these letters, however, is not so simple, since the “hot string” may
be located in two consecutive buffers (belonging to the same frame). TOPmodify
is written in such a way that every possible case is handled, that is, the change
operation might be required across frames. A few cases need to be taken into con-
sideration: the strings “sex” or “bomb” might be contained in their entirety in the
fi rst memory buffer, but the strings can also be split over two buffers that are not
consecutive in the memory structure. Therefore, each of the possible cases needs
to be treated appropriately. After changing the frame (and taking care of the MAC
and DIP addresses), the frame is sent away.

At the fi rst stage, TOPModify initializes all necessary registers like SEND_REG’s,
FAST_REG and so on. At the second stage, TOPmodify jumps according to the
FAST_REG to an appropriate program location, and modifi es the “hot string” in the
frame to “XXX.” At the last stage, TOPmodify performs modifi cations of the frame
at Layers 2–4 (at label L_L3 of the code), as discussed previously (to replace MAC
addresses and possibly change the DIP if required). The following code implements
the TOPmodify stage.

17.2 Data Flow and Top Microcode 625

EZtop Modify;

#include "mcglobal.h"
#include "TOPmodify.h"
#include "stat.h"
#include "macro.h"
#include "rfd_macro.h"
#include "network.h"
#include "NP_FastRegs.h"
#include "NP_Common.h"
#include "NP_Structs.h"
#include "NP_MDF.h"
#include "NP_MDF_macros.h"
#include "Rfd.MDF.h"

LDREG LREG[F_FRST_BUF], L_FRST_BUF ;
LDREG LREG[F_NOT_FRST], L_NOT_FRST ;
LDREG LREG[F_FRST_SCND_BUF_x_xx], L_FRST_SCND_BUF_x_xx ;
LDREG LREG[F_FRST_SCND_BUF_xx_x], L_FRST_SCND_BUF_xx_x ;
LDREG LREG[F_TWO_BUFS_xx_x], L_TWO_BUFS_xx_x ;
LDREG LREG[F_TWO_BUFS_x_xx], L_TWO_BUFS_x_xx ;
LDREG LREG[F_L3], L_L3 ;

L_START:

 GetRes uxFramePtr, MSG_FR_PTR_OFF(MSG_STR), 2; // UREG[1].BYTE[2]<–5(0)

 //Fill the FAST register for future jump
 GetRes FAST_REG, MSG_FAST_REG_OFF(MSG_STR), 1; // OREG[0]<–19(0)

 // Get frame len, num bufs, src port
 GetRes SEND_REG1, MSG_HD_REG2_OFF(MSG_STR), 4; // OUT_IF [1]<–7(0)
#ifdef EZ_NP_1c;
 GetRes tmpSrcPort, MSG_HD_REG9_OFF(MSG_STR), 1; // UREG[6]<–10(0)
 Nop;
 // SRC port
 MovBits sSend_bitSrcPort,tmpSrcPort, 4; // OUT_IF[1].BIT[21]<–UREG[6]
 Nop;
 // Zero msbits of src port
 MovBits SEND_REG1.BYTE[3].BIT[1], 0, 7; // OUT_IF[1].BYTE[3].BIT[1]<–0
#else;
 // Zero msbits of src port
 MovBits SEND_REG1.BYTE[3], 0, 8;
#endif
 Nop;

 //Call InitRfdSrcPort macro
 InitRfdSrcPort sSend_bitSrcPort;

 //time stamp + frame pointer

626 CHAPTER 17 Writing Your First High-Speed Network Application

 GetRes SEND_REG0, MSG_HD_REG1_OFF(MSG_STR), 4, _JPE_MDF;
 // Zero uxZeroFrPtr and uxL3FrPtr
 Mov uxZeroFrPtr, UDB, 4; // SREG[8]<–UREG[0]
 // Get Port + QoS
 GetRes QUEUE_NUM, MSG_OUT_PORT_OFF(MSG_STR), 2; // OUT_IF[3]<–27(0)

//---
//"Hot" data not is in the fi rst buffer and also is not split between buffers
L_NOT_FRST:

#defi ne uxCurPtr uqTemp;
 Mov uxCurPtr, uxFramePtr, 2; // UREG[5]<–UREG[1].BYTE[2]
 GetRes ALU, MSG_WORK_BUF_NUM_OFF(MSG_STR), 1; // OREG[1]<–26(0)
 Sub CNT, ALU, 1, 1;

FindCurBuffPtr uxCurPtr;
 Mov ALU, FULL_BUF_SIZE, 4; // OREG[1]<–512
 //Call ReadBufferToLocalMemory macro
 ReadBufferToLocalMemory uxCurPtr, ALU;

 //Call OneBufReplaceTreat macro
 OneBufReplaceTreat ZERO_OFF; // DISP_REG_VAL;

 Mov ALU, FULL_BUF_SIZE, 4;

 //Call WriteBufToGlobalMemory macro
 WriteBufToGlobalMemory uxCurPtr,
 ALU,
 ZERO_OFF;

 // Read fi rst buffer
 Mov ALU, FULL_BUF_SIZE, 4;

 //Call ReadBufferToLocalMemory macro
 ReadBufferToLocalMemory uxFramePtr, ALU;

 Jmp L_L3 | _NOP2;

#undef uxCurPtr;

//--
//"Hot" data not is in the fi rst buffer and is split between buffers:
// fi rst letter is in buffer x and the rest of the "hot" word is in
// buffer x+1
L_TWO_BUFS_x_xx:
#defi ne uxFrstPtr uqTemp;
#defi ne uxScndPtr uqTemp.BYTE[2];

 //Calling the MACRO for replaces "hot" word
 TwoBufsTreatment uxFrstPtr, //P_FRST_BUF_PRT,
 1, //P_FRST_BUF_DATA_SIZE,
 BUF_LAST_BYTE_OFF, //P_FRST_BUF_DATA_OFF,

17.2 Data Flow and Top Microcode 627

 X_ASCII, //P_FRST_DATA,
 uxScndPtr, //P_SCND_BUF_PTR,
 2, //P_SCND_BUF_DATA_SIZE,
 XX_ASCII; //P_SCND_DATA;

 Jmp L_L3 | _NOP2;

#undef uxFrstPtr;
#undef uxScndPtr;

//--
//"Hot" data is not in the fi rst buffer, and is split between buffers:
// fi rst two letters are in buffer x and the rest are is in buffer x+1
L_TWO_BUFS_xx_x:
#defi ne uxFrstPtr uqTemp;
#defi ne uxScndPtr uqTemp.BYTE[2];

 //Calling the MACRO for replaces "hot" word
 TwoBufsTreatment uxFrstPtr, //P_FRST_BUF_PRT,
 2, //P_FRST_BUF_DATA_SIZE,
 BUF_BEFORE_LAST_BYTE_OFF, //P_FRST_BUF_DATA_OFF,
 XX_ASCII, //P_FRST_DATA,
 uxScndPtr, //P_SCND_BUF_PTR,
 1, //P_SCND_BUF_DATA_SIZE,
 X_ASCII; //P_SCND_DATA;
 Jmp L_L3 | _NOP2;

#undef uxFrstPtr;
#undef uxScndPtr;

//--
//"Hot" data is split between the fi rst and the second buffer:
// fi rst two letters of the "hot" word are in the fi rst buffer,
// and the rest of the "hot" word are in the second buffer
L_FRST_SCND_BUF_xx_x:
#defi ne uxScndBufPtr uqTemp;

 //Getting the pointer to second buffer
 GetRfdNextPtr uxFramePtr, uxScndBufPtr;

 //Calling the MACRO for replace "hot" word
 TwoBufsReplaceTreat uxFramePtr, //P_FRST_BUF_PRT,
 2, //P_FRST_BUF_DATA_SIZE,
 BUF_BEFORE_LAST_BYTE_OFF, //P_FRST_BUF_DATA_OFF,
 XX_ASCII, //P_FRST_DATA,
 uxScndBufPtr, //P_SCND_BUF_PTR,
 1, //P_SCND_BUF_DATA_SIZE,
 X_ASCII; //P_SCND_DATA;
 Jmp L_L3 | _NOP2;

#undef uxScndBufPtr;

628 CHAPTER 17 Writing Your First High-Speed Network Application

//--
// "Hot" data is split between the fi rst and the second buffer:
// the fi rst letter of "hot" word is in fi rst buffer,
// and the rest of the "hot" word is in the second buffer
L_FRST_SCND_BUF_x_xx:
#defi ne uxScndBufPtr uqTemp;

 //Getting the pointer to second buffer
 GetRfdNextPtr sSend_uxFramePtr, uxScndBufPtr;

 //Calling the MACRO for replace "hot" word
 TwoBufsReplaceTreat uxFramePtr, //P_FRST_BUF_PRT,
 1, //P_FRST_BUF_DATA_SIZE,
 BUF_LAST_BYTE_OFF, //P_FRST_BUF_DATA_OFF,
 X_ASCII, //P_FRST_DATA,
 uxScndBufPtr, //P_SCND_BUF_PTR,
 2, //P_SCND_BUF_DATA_SIZE,
 XX_ASCII; //P_SCND_DATA;
 Jmp L_L3 | _NOP2;

#undef uxScndBufPtr;

//--
//The entire "hot" word is in the fi rst buffer
L_FRST_BUF:

 OneBufReplaceTreat FRST_BUF_OFF; // DISP_REG_VAL;

//--
//Modifying Layers 2-4
L_L3:
 MovBits DISP_REG, FRST_BUF_OFF, 9; // SREG[2].BYTE [2]<–64
 MovBits FR_STRT, FRST_BUF_OFF, 9; // OUT_IF [4]<–64

 GetRes uxL3FrPtr, MSG_L2_SIZE_OFF(MSG_STR), 1; // SREG[8].BYTE [2]<–1(0)
 MovBits uxFirstBufSize, FRST_BUF_SIZE, 16; // UREG[1]<–448

 GetRes byUDB_SpecIPFlag, MSG_SPEC_IP_FLAG_OFF(MSG_STR), 1;

 // L2 treatment
 Copy MAC_SA_OFF(uxZeroFrPtr), CFG_IF_MAC_OFF(CFG_STR), 4;
 //6(SREG[8])<–1(3)
 Copy MAC_SA_OFF_P4(uxZeroFrPtr), CFG_IF_MAC_OFF_P4(CFG_STR), 2;
 Copy MAC_DA_OFF(uxZeroFrPtr), MSG_NXT_HOP_MAC_OFF(MSG_STR), 4;
 Copy MAC_DA_OFF_P4(uxZeroFrPtr), MSG_NXT_HOP_MAC_OFF_P4(MSG_STR), 2;

 // TTL treatment
 Get ALU, IP_TTL_OFF(uxL3FrPtr), 1, _NJP_MDF;
 Sub ALU, ALU, 1, 1;
 Nop;
 Put IP_TTL_OFF(uxL3FrPtr), ALU, 1, _NJP_MDF;

17.2 Data Flow and Top Microcode 629

 // 1buf len = min (adds start, 448) - 1
 Sub ALU, sSend_uxFrameLen, uxFirstBufSize, 2;
 Mov sSend_bit1stBufLen, sSend_uxFrameLen, 2;
 If (A) Mov sSend_bit1stBufLen, uxFirstBufSize, 2;
 If (!byUDB_SpecIPFlag.BIT[0]) Jmp L_AFTER_SPEC_IP | _NOP0;
 MovBits sSend_bitHdrLen, HDR_LEN0_BUF_TYPE1, 8;
 Sub sSend_bit1stBufLen, sSend_bit1stBufLen, 1, 2;
 //Inserting Special IP address if needed
 Copy IP_DIP_OFF(uxL3FrPtr), CFG_SPEC_IP_OFF(CFG_STR), 4;

L_AFTER_SPEC_IP:
 Mov sSend_uxFramePtr, uxFramePtr, 2;

 Halt _WHALT_TF_MDF, HALT_UNIC;

17.2.4 Defi nitions and Macro Files
This subsection contains the defi nition and macro fi les used in the sample code.

17.2.4.1 TOPparse Macros (TOP_PRS_macros.h)
/*==
MACRO Inits: Initializing some necessary registers
Parameters: two registers, one for mode and the second for SIP
Output: RD_PTR <– point to beginning of IP header
 (KBS0 = 0) <– base address for message in KMEM
 (KBS1 = 32) <– base address for key in KMEM
 P_uqSIP <– holds Source IP
 P_byMsgCtrls <– holds valid bit, and is used later for control
==*/
MACRO Inits P_byMsgCtrls, P_uqSIP;

 // FMEM base ptr <– HD_REG0 - L2 size
 Mov RD_PTR, sHR0_bitsLayer2Size, 1; // SREG[0]<–HWARE[0].BIT[0]

 //KBS0 & KBS1 - Base addr for key mem <– MSG_SIZE (=32) << 16
 Mov MSG_KBS, COM_KBS_AFTER_MSG_MSG_KBS_0_OFF, 4; // happens to be 2097152

 Mov P_byMsgCtrls, VALID_VAL, 1;

 // save Source IP for later treatment
 Get P_uqSIP, IP_SIP_OFF(RD_PTR), 4; // UREG<–FMEM

ENDMACRO;

/*==
MACRO CreateMessage:Creating message
Parameters: P_byMsgCtrls – hold control bit
 P_DATA_OFF – offset of the hot string
 P_SIP – SIP

Output: KMEM holds the message
==*/

630 CHAPTER 17 Writing Your First High-Speed Network Application

MACRO CreateMessage P_byMsgCtrls, P_DATA_OFF, P_SIP;

 MovBits P_byMsgCtrls.BIT[MSG_MODE], CREG0_MODE, 3;

 PutKey MSG_HD_REG0_OFF(MSG_KBS), HD_REG0, 2; // KMEM<–HD_REG0
 PutKey MSG_HD_REG1_OFF(MSG_KBS), HD_REG1, 4;
 PutKey MSG_HD_REG2_OFF(MSG_KBS), HD_REG2, 4;

#ifdef EZ_NP_1c //for NP1c mode
 PutKey MSG_HD_REG9_OFF(MSG_KBS), SOURCE_PORT_REG, 1;
#endif;

 // the SIP we saved at the beginning
 PutKey MSG_SIP_OFF(MSG_KBS), P_SIP, 4; // SREG[12]<–UREG[7].BYTE[0]

 // Take the SCAN_STOP (the pointer to the 's'/'b' found in
 // 'sex' /'bomb')
 PutKey MSG_DATA_OFF(MSG_KBS), P_DATA_OFF, 2; // 17(SREG[12])<–FBLK[1]

 PutKey 0(MSG_KBS), P_byMsgCtrls, 1;
 PutHdr HREG[0], MSG_HDR, 3; // HREG[0]<–0x3E013

ENDMACRO;

/*==
MACRO CreateDIPKey: Creating DIP Key
Parameters: DIP offset relative to RD_PTR
Output: KMEM holds DIP on offset 32
 Filling HREG[1] with header for TOPSearchI
==*/
MACRO CreateDIPKey P_ALIGN;

 Copy P_ALIGN(COM_KBS)+, IP_DIP_OFF(RD_PTR), 4; // KMEM<–FMEM
 PutHdr HREG[1], DIP_HDR, 3; // HREG[1]<–0xF050

ENDMACRO;

/*==
MACRO CreateSIPKey: Creating SIP Key
Parameters: SIP offset relative to RD_PTR
Output: KMEM holds SIP on offset 36
 Filling HREG[2] with header for TOPSearch
==*/
MACRO CreateSIPKey P_ALIGN;

 Copy P_ALIGN(COM_KBS)+, IP_SIP_OFF(RD_PTR), 4; // KMEM<–FMEM
 PutHdr HREG[2], SIP_HDR, 3; // HREG[2]<–0xF0B0

L_SIP_END:
ENDMACRO;

/*==
MACRO IfL3NotIPv4DiscardFrame: Checking if frame is IPv4 or not
Parameters: Discard label
Output: YES => continue TOPParse
 NO => Jump to label P_L_DISCARD in TOPParse(Discard frame)

17.2 Data Flow and Top Microcode 631

==*/
MACRO IfL3NotIPv4DiscardFrame P_L_DISCARD;
 Sub ALU, HD_REG0, HW_IPv4_BITS, 4, HW_IPv4_BITS_MASK, _ALU_FRST;
 Nop;

 // jump if not zero (i.e., not IPV4)
 If (!FLAGS.BIT[F_ZR_PRS]) Jmp P_L_DISCARD | _NOP2;
ENDMACRO;

/*==
MACRO DetectSpecFrame: This MACRO detecting if word "sex" or "bomb" are
exist in frame. Only TCP frames with HTTP port require the checking all
other frames routed.
Parameters: P_SPEC_FLAG—fl ag to update if "hot" word found
 P_SCAN_STOP—special register for saving offset of "hot" word
Output: Input registers updated

==*/
MACRO DetectSpecFrame P_SPEC_FLAG, P_SCAN_STOP;
 //Get IP protocol from the frame
 Get ALU, IP_PRT_OFF(RD_PTR), 1; // FBLK [4]<–9(SREG[0])
 Sub ALU, ALU, TCP_PROT, 1; // TCP_PORT is 6

 // take advantage of the data hazard in pipeline execution
 // Get Source and destination Ports (note that we read both ports)
 // and note also the little endian NP is using
 Get uxDPort, IP_TCP_SPRT_OFF(RD_PTR), 4; // UREG[5].BYTE[0]<–20(SREG[0])

 // now make the jump if it is not TCP
 If (!FLAGS.BIT[F_ZR_PRS]) Jmp L_FINISH_DETECT | _NOP2;

 // First compare SPORT to PORT# received from host
 Sub ALU, uxSPort, uxCREG0_HTTP_PORT, 2;

 // Second compare DPORT to PORT# received from host
 // Take advantage of the data hazard
 Sub ALU, uxDPort, uxCREG0_HTTP_PORT, 2;

 //Check if SPORT=HTTP - go scan if OK (fi rst compare)
 If (FLAGS.BIT[F_ZR_PRS]) Jmp L_SCAN_HTTP_DATA | _NOP2;
 //if we get to this point it's mean that SPORT<>HTTP
 //Check if DPORT<>HTTP - go scan if OK (second compare)
 If (!FLAGS.BIT[F_ZR_PRS]) Jmp L_FINISH_DETECT | _NOP2;

L_SCAN_HTTP_DATA:
 //make sure scan will not stop in middle of longest possible frame
 Mov LIM_REG, MAX_SCAN_LIM, 2; //16000

 //Point to HTTP data, add to frame buffer pointer the TCP header-1
 //(for scan loop)
 Add RD_PTR, RD_PTR, IP_TCP_SIZE_M1, 4; //RD_PTR = start HTTP-1 (=39)

632 CHAPTER 17 Writing Your First High-Speed Network Application

 //put pointer to jump when frame scanning exhausts @ end of frame
 Mov EOF_ADDR, L_FINISH_DETECT, 4;

L_DO_SCAN:
//scan and look for a 's','S','b' or 'B' from FMEM+1 (RD_PTR) and inc
 FindDel NULL_REG, 1(RD_PTR)+, ALL_DELIMS_MASK, LIM_REG, _FRWD_PRS, _JEOF_PRS;

 //if FinDel found a one of letters, we get 8 bytes from this point
 Get CAMI, 0(RD_PTR), 8;

 // checking in TCAM for "sex....." or "bomb...."
 LookCam CAMO, CAMI, TCAM64[SPEC_GRP];
 Nop;
 Nop;
#ifdef EZ_STAT_NP_1c_MODE
 Nop;
#endif

 //tricky: jump at any rate, but in the pipe we have the
 //conditional jump!
 Jmp L_DO_SCAN | _NOP0;
 //Now see if we had a match!
 If (FLAGS.BIT[F_MH_PRS]) Jmp L_FINISH_DETECT | _NOP1;
 // still in the pipe, before jumping mark SEX or BOMB
 If (FLAGS.BIT[F_MH_PRS]) MovBits P_SPEC_FLAG, 1, 1;

L_FINISH_DETECT:
ENDMACRO;

17.2.4.2 TOPparse Defi nition File (TOP_PRS.h)

/*===================== constants ===============================*/
#defi ne COM_KBS_AFTER_MSG_MSG_KBS_0_OFFM (MSG_SIZE<<16);
#defi ne VALID_VAL 1;
#defi ne ALIGN_0 0;
#defi ne ALIGN_4 4;
#defi ne TCP_PROT 6;
#defi ne sHR0_bitIpL3T_OFF 9;
#defi ne HW_IPv4_BITS (1<<sHR0_bitIpL3T_OFF);

/*===================== frame offsets ===========================*/
#defi ne IP_TCP_SPRT_OFF (IP_BASE_SIZE+TCP_SPRT_OFF);
#defi ne IP_TCP_SIZE_M1 (IP_BASE_SIZE+TCP_BASE_SIZE-1);

/*===================== key headers =============================*/
#defi ne VALID_BITS_0 0;
#defi ne SINGLE_VALID 1;

#defi ne MSG_HDR (((MSG_SIZE - 1)>> 3) | (_SKEY_PRS<<4) |
 (_MKEY_PRS<<5) | (MSG_STR << 6) |
 (_MSG_PRS<<12) | (SINGLE_VALID<<13) |
 (((MSG_SIZE - 1)>> 1)<<14));

17.2 Data Flow and Top Microcode 633

#defi ne MSG_HDR_MODE3 (((MSG_M3_SIZE - 1)>> 3) | (_SKEY_PRS<<4) |
 (_MKEY_PRS<<5) | (MSG_STR << 6) |
 (_MSG_PRS<<12) | (SINGLE_VALID<<13) |
 (((MSG_M3_SIZE - 1)>> 1)<<14));

#defi ne DIP_HDR (((DIP_KEY_SIZE - 1)>> 3) | (_SKEY_PRS<<4) |
 (_MKEY_PRS<<5) | (DIP_STR << 6) |
 (_LKP_PRS<<12) | (SINGLE_VALID<<13) |
 ((DIP_KEY_SIZE-1)<<14));

#defi ne SIP_HDR (((SIP_KEY_SIZE - 1)>> 3) | (_SKEY_PRS<<4) |
 (_LKEY_PRS<<5) | (SIP_STR << 6) |
 (_LKP_PRS<<12) | (SINGLE_VALID<<13) |
 ((SIP_KEY_SIZE-1)<<14));

#defi ne DIP_HDR_LAST (DIP_HDR | (_LKEY_PRS<<5));

/*====================== registers ===============================*
#defi ne MSG_KBS KBS0;
#defi ne COM_KBS KBS1;

// do not use LIM_REG (UREG[3])
#defi ne uxDPort UREG[5].BYTE[0];
#defi ne uxSPort UREG[5].BYTE[2];
#defi ne byMsgCtrls UREG[6].BYTE[2];
#defi ne uqSIP UREG[7].BYTE[0];

/*====================== CREGS ==================================*/
#defi ne CREG0 HD_REG3;
#defi ne CREG1 HD_REG4;

// CREG0_MODE:
// exactly one of bits 0-2 of CREG0 is set
// CREG0.BIT[0] — mcode works in mode 1
// CREG0.BIT[1] — mcode works in mode 2
// CREG0.BIT[2] — mcode works in mode 3
#defi ne CREG0_MODE CREG0.BIT[0];

// CREG0_HTTP_PORT:
// contains real or proxy HTTP port number
#defi ne uxCREG0_HTTP_PORT CREG0.BYTE[1];

LDREG CREG[0], 0x00005004;
LDREG CREG[2], 0x00005004;
LDREG CREG[4], 0x00005001;
LDREG CREG[6], 0x00005002;
LDREG CREG[8], 0x00005004;
LDREG CREG[10], 0x00005004;
LDREG CREG[12], 0x00005001;
LDREG CREG[14], 0x00005002;

634 CHAPTER 17 Writing Your First High-Speed Network Application

/*====================== masks ================================*/
#defi ne HW_IPv4_BITS_MASK MREG[0];

LDREG MREG[0], HW_IPv4_BITS;

/*====================== Scan defi nes ===========================*/
LDDV "sSbB";

#defi ne S_LOW_CASE_OFF 0;
#defi ne S_UPPER_CASE_OFF 1;
#defi ne B_LOW_CASE_OFF 2;
#defi ne B_UPPER_CASE_OFF 3;

#defi ne ALL_DELIMS_MASK ((1<<S_LOW_CASE_OFF) |
 (1<<S_UPPER_CASE_OFF) |
 (1<<B_LOW_CASE_OFF) |
 (1<<B_UPPER_CASE_OFF)) ;

#defi ne MAX_SCAN_LIM 16000;

/*====================== CAMs =================================*/
// TCAM64
#defi ne SPEC_GRP 0;

#defi ne SPEC1 "sex?????";
#defi ne SPEC2 "bomb????";

LDTCAM TCAM64[SPEC_GRP], SPEC1, "11111111", 0;
LDTCAM TCAM64[SPEC_GRP], SPEC2, "11111111", 0;

17.2.4.3 TOPresolve Macros (TOP_RSV_macros.h)
/*===
MACRO Inits: Initialization of TOPresolve registers
===*/
MACRO Inits;

#defi ne byTemp_CtrlByte uqTemp5;

 // set Structure group register to 0
 Mov ST_GRP0, 0, 1;
 // initialize base to OMEM
 Mov HW_OBS, 0, 1;

 Get byTemp_CtrlByte, MSG_CTRL_REG_BYTE_OFF(MSG_STR), 2;

 //initialize the FR_PTR with the frame pointer, received from RMEM
 Get FR_PTR, MSG_FR_PTR_OFF(MSG_STR), 2;

 //Initialize control register with number of 64 bytes in 1st buffer
 MovBits CTRL_REG, byTemp_CtrlByte.BIT[CTRL_REG_OFF_IN_HW_BYTE],3;

#undef byTemp_CtrlByte;

17.2 Data Flow and Top Microcode 635

ENDMACRO;

/*==
MACRO Discardtreatment: Discard MACRO
==*/
MACRO Discardtreatment;

#defi ne sHR1 uqTemp5.BYTE[0];
#defi ne sHR2 uqTemp6.BYTE[0];
#ifdef EZ_NP_1c;
 #defi ne sHR9 uqTemp9.BYTE[0];
#endif;

 Get sHR1, MSG_HD_REG1_OFF(MSG_STR), 4; // UREG[5].BYTE[0]<–3(0)
 Get sHR2, MSG_HD_REG2_OFF(MSG_STR), 4; // UREG[6].BYTE[0]<–7(0)
#ifdef EZ_NP_1c;
 Get sHR9, MSG_HD_REG9_OFF(MSG_STR), 1; // UREG[9].BYTE[0]<–10(0)
#endif;

RFD_RECYC_PRS_RSV 0 /*BIT_MULC_VAL*/, F_RD_RSV;

#undef sHR1;
#undef sHR2;
#undef sHR9;

ENDMACRO;

/*==
MACRO CreateSearchIIMsg: Creating message for TOPmodify
Output: KMEM hold the message
 All needed parameters were transmitted as input of this MACRO
==*/
MACRO CreateSearchIIMsg P_OUT_PORT_OFF,
 P_SPEC_IP_FLAG,
 P_FAST_REG,
 P_WORK_BUF_OFF,
 P_WORK_BUF_NUM;

//next 3 instructions copy original message created by TOPparse
 Copy 0(HW_OBS), 0(MSG_STR), 8;
 Copy 8(HW_OBS), 8(MSG_STR), 8;
 Copy 16(HW_OBS), 16(MSG_STR), 8;

//next 3 instructions insert the result of DIP structure (#1) to message
 Copy MSG_OUT_PORT_OFF(HW_OBS), P_OUT_PORT_OFF(DIP_STR), 1;
 Copy MSG_OUT_QOS_OFF(HW_OBS), DIP_OUT_QOS_OFF(DIP_STR), 1;
 Copy MSG_NXT_HOP_MAC_OFF(HW_OBS), DIP_NXT_HOP_MAC_OFF(DIP_STR), 6;

 PutKey MSG_FAST_REG_OFF(HW_OBS), P_FAST_REG, 1;
 PutKey MSG_DATA_OFF(HW_OBS), P_WORK_BUF_OFF, 2;
 PutKey MSG_WORK_BUF_NUM_OFF(HW_OBS), P_WORK_BUF_NUM, 1;
 PutKey MSG_SPEC_IP_FLAG_OFF(HW_OBS), P_SPEC_IP_FLAG, 1;
 PutHdr HREG[0], RSV_MSG_HDR, 3;

636 CHAPTER 17 Writing Your First High-Speed Network Application

ENDMACRO;

/*===
MACRO SipHighLearn: MACRO for High Learn
Output: After this MACRO we have "hot" SIP as a new entry in SIP data structure
===*/
MACRO SipHighLearn;

/* NP-1 message header fi elds (4 bytes) */
#defi ne LRN_INFO_LEN
 (((((SIP_KEY_SIZE+3)>>2)<<2)+SIP_RES_SIZE-1)>>2);
#defi ne STR_NUM SIP_STR;
#defi ne CREATE_UPDATE_MODE HL_CREATE;
#defi ne CMD_MODE HL_ADD_CMD;
#defi ne STATIC_MODE HL_NO_STATIC;
#defi ne LOCAL_MODE HL_LOCAL;
#defi ne SEND_MSG_MODE HL_NO_SEND_MSG;
#defi ne INCR_CNT_MODE HL_NO_INCR_CNT;

#defi ne RES_B0_B3 ((1<<HL_VALID_BIT_OFF)|
 (1<<HL_MATCH_BIT_OFF));

/* prepare to write in 4 Dwords */
#defi ne NP1_MSG_HDR ((LRN_INFO_LEN<<HL_LRN_INFO_LEN_BIT_OFF) |
 (STR_NUM<<HL_STR_NUM_BIT_OFF) |
 (CREATE_UPDATE_MODE<<HL_CREATE_UPDATE_MODE_BIT_OFF) |
 (CMD_MODE<<HL_CMD_MODE_BIT_OFF) |
 (STATIC_MODE<<HL_STATIC_MODE_BIT_OFF) |
 (LOCAL_MODE<<HL_LOCAL_MODE_BIT_OFF) |
 (SEND_MSG_MODE<<HL_SEND_MSG_MODE_BIT_OFF) |
 (INCR_CNT_MODE<<HL_INCR_CNT_MODE_BIT_OFF));

 //wait for HL mechanism to be ready
 WAIT_NO_FLAG F_LN_RSV; // if (SREG [10].BIT [8]) Jmp $ | _NOP2

 Mov LRN_REG0, NP1_MSG_HDR, 4;

#ifdef EZ_NP_1c;
#defi ne LRN_RES_LEN ((SIP_RES_SIZE-1)>>2);
#defi ne NP1C_MSG2_HDR (LRN_RES_LEN<<HL_RES_SIZE_BIT_OFF);

 Mov LRN_REG1, NP1C_MSG2_HDR, 4;
 Mov LRN_REG2, RES_B0_B3, 4; // 3
 // LRN_REG3 (contains result bytes 4-7) is not relevant
 Mov LRN_SIZE, WRITE_ALL_LRN_REGS, 1; // 3
 Nop;

HL_2ND_WAIT L_DISCARD, 0;

 // LRN_REG0 - LRN_REG3 (contains result bytes 8-23) is not relevant
 Mov LRN_SIZE, WRITE_ALL_LRN_REGS, 1;

17.2 Data Flow and Top Microcode 637

 Nop;
 WAIT_NO_FLAG F_LN_RSV;

 // LRN_REG0 - LRN_REG1 (contains result bytes 24-31) is not relevant
 Get LRN_REG2, MSG_SIP_OFF(MSG_STR), 4; // copy key

 Mov LRN_SIZE, WRITE_LRN_REG0_1_2, 1;

#else;
 Mov LRN_REG1, RES_B0_B3, 4;
 // LRN_REG2 - LRN_REG3 (contains result bytes 4-11) is not relevant
 Mov LRN_SIZE, WRITE_ALL_LRN_REGS, 1;
 Nop;
 HL_2ND_WAIT L_DISCARD, 0;

 // LRN_REG0 - LRN_REG3 (contains result bytes 12-27) is not relevant
 Mov LRN_SIZE, WRITE_ALL_LRN_REGS, 1;
 Nop;
 WAIT_NO_FLAG F_LN_RSV;

 // LRN_REG0 (contains result bytes 28-31) is not relevant
 Get LRN_REG1, MSG_SIP_OFF(MSG_STR), 4; // copy key

 Mov LRN_SIZE, WRITE_LRN_REG0_1, 1;
#endif;

ENDMACRO;

/*===
MACRO CheckDataReplaceOffset: This MACRO check the offset of "hot"
word in frame and fi lling the FAST_REG for future modifi cation
acceleration in TOPModify.
Output: Register P_FAST_REG updated for transmitting to TOPModify
===*/
MACRO CheckDataReplaceOffset P_FAST_REG,
 P_uxWorkBufOff,
 P_byWorkBufNum,
 P_READ_MDF_FLAG;
#defi ne uxDataOff uqTemp5;

 Get uxDataOff, MSG_DATA_OFF(MSG_STR), 2; // UREG[5]<–17(0)
 Get P_uxWorkBufOff, MSG_DATA_OFF(MSG_STR), 2;
 // Check fi rst buffer case
 Sub ALU, uxDataOff, MAX_FRST_BUF_DATA_OFF, 2; // 445
 Mov P_FAST_REG, FRST_BUF_FAST_REG, 1; // 65
 If (!A) Jmp L_END_CHECK | _NOP2;

 // Check fi rst + second buffers case
 Sub ALU, uxDataOff, FRST_BUF_SIZE, 2; // 448
 MovBits P_READ_MDF_FLAG, 0, 1;
 If (!FLAGS.BIT[F_CY_RSV]) Jmp L_NOT_FRST_BUF | _NOP2;

638 CHAPTER 17 Writing Your First High-Speed Network Application

 // Check "x"+"xx", "xx"+"x" cases
 Sub ALU, uxDataOff, FRST_BUF_SIZE_M1, 2; //447
 Jmp L_END_CHECK | _NOP0;

 If (FLAGS.BIT[F_ZR_RSV])
 Mov P_FAST_REG, FRST_SCND_BUF_x_xx_FAST_REG, 1; // 68
 If (!FLAGS.BIT[F_ZR_RSV])
 Mov P_FAST_REG, FRST_SCND_BUF_xx_x_FAST_REG, 1; // 72

L_NOT_FRST_BUF:

 // byWorkBufNum = (uxDataOff-448)/512 + 2;
 // uxWorkBufOff = (uxDataOff-448)% 512;
 Sub uxDataOff, uxDataOff, FRST_BUF_SIZE, 2; // 448
 Nop;
 Sub P_uxWorkBufOff, uxDataOff, 0, 2, M_0x000001FF, _ALU_FRST;
 MovBits P_byWorkBufNum, uxDataOff.BIT[9], 5;
 Mov P_FAST_REG, NOT_FRST_FAST_REG, 1; // 66

 // check two buffer replace case
 Sub ALU,P_uxWorkBufOff,MAX_FULL_BUF_DATA_OFF,2,M_0x000001FF,_ALU_FRST;
 Add P_byWorkBufNum, P_byWorkBufNum, 1, 1, M_0x0000001F, _ALU_FRST;
 // forward buf_num-1
 If (!A) Jmp L_END_CHECK | _NOP2;

 // Check "x"+"xx", "xx"+"x" cases
 Sub ALU, P_uxWorkBufOff, FULL_BUF_SIZE_M1, 2; // 511
 Mov P_FAST_REG, TWO_BUFS_xx_x_FAST_REG, 1; // 80
 If (FLAGS.BIT[F_ZR_RSV])
 Mov P_FAST_REG, TWO_BUFS_x_xx_FAST_REG, 1; // 96

L_END_CHECK:

#undef uxDataOff;
ENDMACRO;

/*===
MACRO CreateSearchIIMsg: Creating Search key for SearchII
Input: P_OUT_PORT_OFF - port for searching in structure#2
Output: KMEM hold the key (output port)
 HREG updated
===*/
MACRO CreateOutPortCfgKey P_OUT_PORT_OFF;
 Copy RSV_MSG_SIZE(HW_OBS), P_OUT_PORT_OFF(DIP_STR), 1;
 PutHdr HREG[1], CFG_HDR, 3;

ENDMACRO;

/*===
MACRO CriticalModeCheck: this MACRO check if we have enough space in the RFD
===*/

17.2 Data Flow and Top Microcode 639

MACRO CriticalModeCheck
 PARAM_RFD_CRITICAL_VAL, PARAM_RFD_DISCARD_LABEL;
 Sub ALU, RX_CNT, PARAM_RFD_CRITICAL_VAL, 1, M_0x000000F8, _ALU_FRST;
 Nop;
 If (A) Jmp PARAM_RFD_DISCARD_LABEL | _NOP2;

ENDMACRO;

17.2.4.4 TOPresolve Defi nition File (TOP_RSV.h)

/*====================== constants ==============================*/
#defi ne CTRL_REG_OFF_IN_HW_BYTE 4;
#defi ne NO_TAG_ETHERNET_SIZE 14;
#defi ne TAG_ETHERNET_SIZE 18;
#defi ne WORD_SIZE 3;
#defi ne SPEC_IP_FLAG_FALSE 0;
#defi ne SPEC_IP_FLAG_TRUE 1;

#defi ne RFD_CRITICAL_VAL ((0<<7) | (0<<6) | (1<<5) |
 (1<<4) | (1<<3));

#defi ne MAX_FULL_BUF_DATA_OFF (FULL_BUF_SIZE -WORD_SIZE);
#defi ne MAX_FRST_BUF_DATA_OFF (FRST_BUF_SIZE -WORD_SIZE);

#defi ne FRST_BUF_SIZE_M1 (FRST_BUF_SIZE-1);
#defi ne FULL_BUF_SIZE_M1 (FULL_BUF_SIZE-1);

#defi ne RSV_CFG_SPEC_IP_OFF (RSV_MSG_SIZE+CFG_SPEC_IP_OFF);

/*===================== high learn constants =====================*/
#defi ne WRITE_LRN_REG0 0;
#defi ne WRITE_LRN_REG0_1 1;
#defi ne WRITE_LRN_REG0_1_2 2;
#defi ne WRITE_ALL_LRN_REGS 3;

// fi elds values
// CREATE_UPDATE_MODE values
#defi ne HL_CREATE 1; // don't change entry if exists
#defi ne HL_UPDATE 0; // change entry if exists
// CMD_MODE values
#defi ne HL_ADD_CMD 1;
#defi ne HL_RMV_CMD 0;
// STATIC_MODE values
#defi ne HL_STATIC 1;
#defi ne HL_NO_STATIC 0;
//LOCAL_MODE values
#defi ne HL_LOCAL 1;
#defi ne HL_NO_LOCAL 0;
// SEND_MSG_MODE values
#defi ne HL_SEND_MSG 1;

640 CHAPTER 17 Writing Your First High-Speed Network Application

#defi ne HL_NO_SEND_MSG 0;
// INCR_CNT_MODE values
#defi ne HL_INCR_CNT 1;
#defi ne HL_NO_INCR_CNT 0;

// fi elds offsets (in bits- from header start)
#defi ne HL_LRN_INFO_LEN_BIT_OFF 0;
#defi ne HL_STR_NUM_BIT_OFF 8;
#defi ne HL_CREATE_UPDATE_MODE_BIT_OFF 14;
#defi ne HL_CMD_MODE_BIT_OFF 16;
#defi ne HL_STATIC_MODE_BIT_OFF 18;
#defi ne HL_LOCAL_MODE_BIT_OFF 19;
#defi ne HL_SEND_MSG_MODE_BIT_OFF 20;
#defi ne HL_INCR_CNT_MODE_BIT_OFF 21;

// bytes 0 - 3 fi elds offsets (in bits - from result start)
#defi ne HL_VALID_BIT_OFF 0;
#defi ne HL_MATCH_BIT_OFF 1;

#ifdef EZ_NP_1c;

#defi ne HL_RES_SIZE_BIT_OFF 8;

#endif;

/*====================== key headers ============================*/
#defi ne SINGLE_VALID 1;
#defi ne _SKEY_RSV 1;
#defi ne _LKEY_RSV 1;
#defi ne _MKEY_RSV 0;
#defi ne _LKP_RSV 1;
#defi ne _MSG_RSV 0;

#defi ne RSV_MSG_HDR (((RSV_MSG_SIZE - 1)>> 3) |
 (_SKEY_RSV<<4) |
 (_MKEY_RSV<<5) |
 (MSG_STR << 6) |
 (_MSG_RSV<<12) |
 (SINGLE_VALID<<13) |
 (((RSV_MSG_SIZE - 1)>> 1)<<14));

#defi ne CFG_HDR (((CFG_KEY_SIZE - 1)>> 3) |
 (_SKEY_RSV<<4) |
 (_LKEY_RSV<<5) |
 (CFG_STR << 6) |
 (_LKP_RSV<<12) |
 (SINGLE_VALID<<13) |
 ((CFG_KEY_SIZE-1)<<14));
/*====================== masks ================================*/
#defi ne M_0x000001FF MREG[0];
#defi ne M_0x0000001F MREG[1];
#defi ne M_0x000000F8 MREG[2];

17.2 Data Flow and Top Microcode 641

LDREG MREG[0], 0x000001FF;
LDREG MREG[1], 0x0000001F;
LDREG MREG[2], 0x000000F8;

/*===================== registers ===============================*/
#defi ne HW_OBS OBS0;

// UDB defi nes
#defi ne byTemp_UDB UDB.BYTE[0];
#defi ne byFlags_UDB UDB.BYTE[3];
#defi ne READ_MDF 2;
#defi ne SIP_MATCH 1;
#defi ne SPEC_FR 0;

#defi ne uqTemp5 UREG[5];
#defi ne uqTemp6 UREG[6];

#ifdef EZ_NP_1c;
 #defi ne uqTemp9 UREG[9];
#endif;

#defi ne uxWorkBufOff UREG[7];
#defi ne byWorkBufNum UREG[7].BYTE[2];
#defi ne byFastReg UREG[7].BYTE[3];

17.2.4.5 TOPmodify Macros (TOP_MDF_macros.h)
/*===
MACRO TwoBufsReplaceTreat: replace "hot" word with "xxx" when "hot"
word is splitted between two buffers
===*/
MACRO TwoBufsReplaceTreat P_FRST_BUF_PRT,
 P_FRST_BUF_DATA_SIZE,
 P_FRST_BUF_DATA_OFF,
 P_FRST_DATA,
 P_SCND_BUF_PTR,
 P_SCND_BUF_DATA_SIZE,
 P_SCND_DATA;

 MovBits DISP_REG, 0, 9; // SREG[2].BYTE[2]<–0

 // second buffer treatment
 Mov ALU, P_SCND_BUF_DATA_SIZE, 4;
 ReadBufferToLocalMemory P_SCND_BUF_PTR, ALU;

 Get ALU, 0(uxZeroFrPtr), P_SCND_BUF_DATA_SIZE, _NJP_MDF;
 Put 0(uxZeroFrPtr), P_SCND_DATA, P_SCND_BUF_DATA_SIZE, _NJP_MDF;

 Mov ALU, P_SCND_BUF_DATA_SIZE, 4;
 WriteBufToGlobalMemory P_SCND_BUF_PTR,
 ALU,
 ZERO_OFF;

642 CHAPTER 17 Writing Your First High-Speed Network Application

 // fi rst buffer treatment

 Mov ALU, FULL_BUF_SIZE, 4;
 ReadBufferToLocalMemory P_FRST_BUF_PRT, ALU;

 Get ALU, P_FRST_BUF_DATA_OFF(uxZeroFrPtr),
 P_FRST_BUF_DATA_SIZE, _NJP_MDF;
 Put P_FRST_BUF_DATA_OFF(uxZeroFrPtr), P_FRST_DATA,
 P_FRST_BUF_DATA_SIZE, _NJP_MDF;

ENDMACRO;

/*===
MACRO FindWorkBuffsPtrs: fi nd the buffers in which "hot" word is splitted
 Input:
 CNT - should be equal to iterations number (or work buff - 1)

 Output:
 P_uxFrstPtr - pointer to First replace buffer
 P_uxScndPtr - pointer to Second replace buffer
===*/
MACRO FindWorkBuffsPtrs P_uxFrstPtr, P_uxScndPtr;

READ_RFD_LOOP_LABEL:
 Mov P_uxFrstPtr, P_uxScndPtr, 2;

 // read uxBreakBufPtr Rfd entry
 Movbits RFD_PTR, P_uxScndPtr, 16;
 Movbits sRfd_bitCommand, READ_CMD, 3; // READ_CMD is 2
 Nop;
 WAIT_NO_FLAG F_RDF_MDF;

 Loop READ_RFD_LOOP_LABEL | _NOP1;
 Mov P_uxScndPtr, sRfd_uxRdNxtPtr, 2;

ENDMACRO;

/*===
MACRO FindCurBuffPtr:
Input:
 CNT - should be equal to iterations number (or work buff - 1)
Output:
 P_uxCurPtr - pointer to replace buffer
===*/
MACRO FindCurBuffPtr P_uxCurPtr;

READ_RFD_LOOP_LABEL:

 // read uxBreakBufPtr Rfd entry
 Movbits RFD_PTR, P_uxCurPtr, 16;
 Movbits sRfd_bitCommand, READ_CMD, 3; // READ_CMD is 2
 Nop;
 WAIT_NO_FLAG F_RDF_MDF;

 Loop READ_RFD_LOOP_LABEL | _NOP1;
 Mov P_uxCurPtr, sRfd_uxRdNxtPtr, 2;

17.2 Data Flow and Top Microcode 643

ENDMACRO;

/*==
MACRO TwoBufsTreatment: this macro called is case that we now that our
"hot" word splitted between buffers but it not fi rst and second buffer
==*/
MACRO TwoBufsTreatment P_FRST_BUF_PRT,
 P_FRST_BUF_DATA_SIZE,
 P_FRST_BUF_DATA_OFF,
 P_FRST_DATA,
 P_SCND_BUF_PTR,
 P_SCND_BUF_DATA_SIZE,
 P_SCND_DATA;

 Mov P_SCND_BUF_PTR, uxFramePtr, 2;
 GetRes CNT, MSG_WORK_BUF_NUM_OFF(MSG_STR), 1; // buf_num-1

FindWorkBuffsPtrs P_FRST_BUF_PRT, P_SCND_BUF_PTR;

TwoBufsReplaceTreat P_FRST_BUF_PRT,
 P_FRST_BUF_DATA_SIZE,
 P_FRST_BUF_DATA_OFF,
 P_FRST_DATA,
 P_SCND_BUF_PTR,
 P_SCND_BUF_DATA_SIZE,
 P_SCND_DATA;

 Mov ALU, FULL_BUF_SIZE, 4; // 512
 WriteBufToGlobalMemory P_FRST_BUF_PRT,
 ALU,
 ZERO_OFF;

 // read fi rst buffer
 Mov ALU, FULL_BUF_SIZE, 4;
 ReadBufferToLocalMemory uxFramePtr, ALU;

ENDMACRO;

/*==
MACRO OneBufReplaceTreat:replace the "hot" word with "xxx" when "hot"
word is not splitted between buffers
==*/
MACRO OneBufReplaceTreat DISP_REG_VAL;

#defi ne uxDataPrt uxTempPrt;
 MovBits DISP_REG, DISP_REG_VAL, 9;
 GetRes uxDataPrt, MSG_DATA_OFF(MSG_STR), 2;
 Nop;
 Get ALU, 0(uxDataPrt), 3, _NJP_MDF;
 Put 0(uxDataPrt)+, XX_ASCII, 2, _NJP_MDF;
 Put 0(uxDataPrt), X_ASCII, 1, _NJP_MDF;

#undef uxDataPrt;

ENDMACRO;

644 CHAPTER 17 Writing Your First High-Speed Network Application

17.2.4.6 TOPmodify Defi nition File (TOP_MDF.h)
/*====================== constants =============================*/
#defi ne HDR_LEN0_BUF_TYPE1 ((1<<7) | 0);
#defi ne XX_ASCII 0x5858;
#defi ne X_ASCII 0x58;

#defi ne BUF_LAST_BYTE_OFF (FULL_BUF_SIZE-1);
#defi ne BUF_BEFORE_LAST_BYTE_OFF (FULL_BUF_SIZE-2);

#defi ne ZERO_OFF 0;

/*===================== frame offsets ==========================*/
#defi ne MAC_SA_OFF_P4 (MAC_SA_OFF+4);
#defi ne MAC_DA_OFF_P4 (MAC_DA_OFF+4);

/*================== masks =====================================*/
#defi ne M_0x000003FF MREG[0];
LDREG MREG[0], 0x000003FF;

/*===================== registers ==============================*/
#defi ne uxZeroFrPtr FR_PTR0;
#defi ne uxL3FrPtr FR_PTR1;
#defi ne uxTempPrt FR_PTR2;

#defi ne byUDB_SpecIPFlag UDB.BYTE[0];

#defi ne uxFirstBufSize UREG[1];
#defi ne uxFramePtr UREG[1].BYTE[2];
#defi ne uqTemp UREG[5];

#ifdef EZ_NP_1c;
 #defi ne tmpSrcPort UREG[6];
#endif

17.2.4.7 Common Defi nition File (NP_common.h)
/*==================== constant ================================*/
#defi ne FRST_BUF_SIZE 448;
#defi ne FULL_BUF_SIZE 512;

#defi ne FRST_BUF_OFF 64;

/*===================== frame offsets ===========================*/
#defi ne IP_TCP_CHK_OFF (IP_BASE_SIZE+TCP_CHK_OFF);

17.2.4.8 Structures Defi nition File (NP_structs.h)
#defi ne VALID 0;
#defi ne MATCH 1;

//======================== Structures list ========================
#defi ne MSG_STR 0;
// searchI
#defi ne DIP_STR 1;

17.2 Data Flow and Top Microcode 645

#defi ne SIP_STR 2;
// searchII
#defi ne CFG_STR 3;

//================== HW MESSAGE ===================================
#defi ne MSG_SIZE 32;
#defi ne RSV_MSG_SIZE 32;

// control bits offsets
#defi ne MSG_MODE 1;
#defi ne MSG_MODE1 1;
#defi ne MSG_MODE2 2;
#defi ne MSG_MODE3 3;
#defi ne MSG_SPEC_FR 4;
#defi ne MSG_TAG_EXISTS 5;

// fi elds offsets
#defi ne MSG_HD_REG0_OFF 1;
#defi ne MSG_L2_SIZE_OFF MSG_HD_REG0_OFF;
#defi ne MSG_CTRL_REG_BYTE_OFF (MSG_HD_REG0_OFF+1);
#defi ne MSG_HD_REG1_OFF 3;
#defi ne MSG_FR_PTR_OFF (MSG_HD_REG1_OFF+2);
#defi ne MSG_HD_REG2_OFF 7;
#defi ne MSG_FR_LEN_OFF MSG_HD_REG2_OFF;

//we will use last byte HD_REG2 for source port
//remember that
#ifdef EZ_NP_1c;
 #defi ne MSG_HD_REG9_OFF (MSG_HD_REG2_OFF+3);
#endif;

#defi ne MSG_SIP_OFF 11;

#defi ne MSG_DATA_OFF 17; // or work buf
 //offset for SearchII
// SearchII fi elds
#defi ne MSG_FAST_REG_OFF 19;
#defi ne MSG_NXT_HOP_MAC_OFF 20;
#defi ne MSG_NXT_HOP_MAC_OFF_P4 (MSG_NXT_HOP_MAC_OFF+4);
#defi ne MSG_WORK_BUF_NUM_OFF 26; // mode 3 only
#defi ne MSG_OUT_PORT_OFF 27; // or special port
 // for mode 3
#defi ne MSG_OUT_QOS_OFF 28;
#defi ne MSG_SPEC_IP_FLAG_OFF 29; // 1 byte

//======================= DIP structure ===========================
#defi ne DIP_KEY_SIZE 4;
#defi ne DIP_RES_SIZE 32;

// fi elds offsets
#defi ne DIP_OUT_PORT_OFF 1;

646 CHAPTER 17 Writing Your First High-Speed Network Application

#defi ne DIP_OUT_QOS_OFF 2;
#defi ne DIP_SPEC_PORT_OFF 3;
#defi ne DIP_NXT_HOP_MAC_OFF 4;

//======================= SIP structure ===========================
#defi ne SIP_KEY_SIZE 4;
#defi ne SIP_RES_SIZE 32;

//====================== CFG structure ============================
#defi ne CFG_KEY_SIZE 1;
#defi ne CFG_RES_SIZE 16;

// fi elds offsets
#defi ne CFG_IF_MAC_OFF 1;
#defi ne CFG_IF_MAC_OFF_P4 (CFG_IF_MAC_OFF+4);
#defi ne CFG_SPEC_IP_OFF 7;

17.2.4.9 FAST Register Defi nition File (NP_FastRegs.h)
// FAST_REG RX bits
#defi ne F_FRST_BUF 0;
#defi ne F_NOT_FRST 1;
#defi ne F_FRST_SCND_BUF_x_xx 2;
#defi ne F_FRST_SCND_BUF_xx_x 3;
#defi ne F_TWO_BUFS_xx_x 4;
#defi ne F_TWO_BUFS_x_xx 5;
#defi ne F_L3 6;

// FAST_REGs
#defi ne L3_FAST_REG (1<<F_L3);
#defi ne FRST_BUF_FAST_REG ((1<<F_FRST_BUF)|(1<<F_L3));
#defi ne NOT_FRST_FAST_REG ((1<<F_NOT_FRST)|(1<<F_L3));
#defi ne FRST_SCND_BUF_x_xx_FAST_REG
 ((1<<F_FRST_SCND_BUF_x_xx)|(1<<F_L3));
#defi ne FRST_SCND_BUF_xx_x_FAST_REG
 ((1<<F_FRST_SCND_BUF_xx_x)|(1<<F_L3));
#defi ne TWO_BUFS_xx_x_FAST_REG
 ((1<<F_TWO_BUFS_xx_x)|(1<<F_L3));
#defi ne TWO_BUFS_x_xx_FAST_REG
 ((1<<F_TWO_BUFS_x_xx)|(1<<F_L3));

17.2.4.10 RFD Macros File (Rfd.MDF.h)
/***
MACRO InitRfdSrcPort:
***/
MACRO InitRfdSrcPort bitsSrcPort;
 WAIT_NO_FLAG F_RAF_MDF;

#ifdef EZ_RFD_NP_1c_MODE;

17.2 Data Flow and Top Microcode 647

MovBits sRfd_bitPort, bitsSrcPort, 4;
#else;

MovBits sRfd_bitPort, bitsSrcPort, 3;
#endif;

ENDMACRO;

/***
MACRO ReadBufferToLocalMemory:
***/
MACRO ReadBufferToLocalMemory uxFramePtr, DATA_SIZE;

Add NXT_BUF_SZ, DATA_SIZE, 0, 2, M_0x000003FF, _ALU_FRST;
MovBits NXT_BUF_PTR, uxFramePtr, 16;

Nop;
If (FLAGS.BIT [F_NBV_MDF]) Jmp $ | _NOP0;

Nop;
Nop;

Halt _HALT_NO_MDF, HALT_MULC;
Nop;

ENDMACRO;

/***
MACRO PrefetchNewBuffer:
Assumptions: RFD src port must be initialized
***/
MACRO PrefetchNewBuffer uxNewPtr, PRE_PTR_REGISTER, PRE_FLAG;

Mov uxNewPtr, PRE_PTR_REGISTER, 2;
Nop;
WAIT_NO_FLAG PRE_FLAG;

ENDMACRO;

/***
MACRO WriteBufToGlobalMemory:
Assumptions: RFD src port must be initialized
***/
MACRO WriteBufToGlobalMemory uxBufPtr,
 uxDataSize,
 uxDataOff;

#defi ne CHUNK_SIZE 64;
#defi ne CHUNK_SIZE_M1 (CHUNK_SIZE - 1);

// align uxDataSize to fi ll last chunk:
// ((x-1)/64 +1) * 64 = ... = (x+63) with 6 ls bits masked
MovBits FR_STRT, uxDataOff, 9;

Add ALU, uxDataSize, CHUNK_SIZE_M1, 2;
MovBits ALU, 0, 6;

MovBits sSend_uxFramePtr, uxBufPtr, 16;
Sub sSend_bit1stBufLen, ALU, 1, 2;

648 CHAPTER 17 Writing Your First High-Speed Network Application

Halt _WHALT_NO_MDF, HALT_MULC;
Nop;

#undef CHUNK_SIZE;
#undef CHUNK_SIZE_M1;

ENDMACRO;

/***
MACRO GetRfdNextPtr:
Assumptions: needs NOP before if is called after RFD command
***/
MACRO GetRfdNextPtr uxBufPtr, uxNextFragmPtr;

WAIT_NO_FLAG F_RAF_MDF;
Mov RFD_PTR, uxBufPtr, 2;
MovBits sRfd_bitCommand, READ_CMD, 3; // READ_CMD is 2

Nop;
WAIT_NO_FLAG F_RDF_MDF;
Mov uxNextFragmPtr, sRfd_uxRdNxtPtr, 2;

ENDMACRO;

17.3 DATA STRUCTURES
This section describes the data structures used in the program. The functions of
the data structures were described in the introduction of this chapter, and further
detailed in the descriptions of each TOP engine.

Two data elements are described in this section: those that are created by the
TOPparse and used in the TOPsearch I, and those that are created by TOPresolve
and used by the TOPsearch II. One additional data element is provided through
the CREG registers and serves for inputting parameters for the program (and
can be used by TOPparse, by reading HD_REG3 and HD_REG4). These input
parameters are functions of the incoming port, that is, for each ingress port,
the frames will be treated with different input parameters, as predefi ned by the
 corresponding CREG registers. The use of the data structures is described sche-
matically in Figure 17.2.

17.3.1 CREGs

For each port from which frames are incoming, CREG predefi nes the mode in
which we want to work. CREG also predefi nes the HTTP port numbers that are
used for the TOPparse to decide that the frame is indeed an HTTP frame. Each port
of the NP can defi ne its own mode and the HTTP port numbers for all packets
coming through it.

The operating mode is defi ned by CREG.BIT[0–2], which maps to HWARE[3].
BIT[0–2] (which is HD_REG3.BIT[0–2]). Only one mode bit should be set:

17.3 Data Structures 649

CREG.BIT[0]—if set, the program works in operating mode 1
CREG.BIT[1]—if set, the program works in operating mode 2
CREG.BIT[2]—if set, the program works in operating mode 3

HTTP_PORT is defi ned for any real or proxy HTTP port number, in CREG. BYTE[1]
and CREG.BYTE[2] (mapped into HWARE[3].BYTE[1–2], which are HD_REG3.
BYTE[1–2]).

In this example, there are eight input ingress ports, and the defi nitions are such
that all of them consider HTTP ports as 0x0050 (which is the known HTTP port
80). The operating mode for each of them varies (e.g., the fi rst and second ports
work in operating mode 3, the third is in mode 1, and the fourth port is in operating
mode 2), according to the following sample code:

DIP
Normal

Port
“hot” Port

Destination
MAC

...

...

Port
Source
Mac

“hot” DIP

...

SIP Match

...

...

...

Ethernet Header

Type

IP Header

DestSourceDest tp vhSLenIDFragttlSource chks
Payload

If “hot”, in mode 3

or

TO
P

se
ar

ch
 I

S
tr

uc
tu

re
s

TO
P

se
ar

ch
 I

I
S

tr
uc

tu
re

TOPmodify L2-L3
modifications for

routing

SIP and DIP from
incoming frame

Indicates an already
“hot user” (that sent “hot

string” in the past)

FIGURE 17.2

Data structures usage

650 CHAPTER 17 Writing Your First High-Speed Network Application

LDREG CREG[0], 0x00005004;
LDREG CREG[2], 0x00005004;
LDREG CREG[4], 0x00005001;
LDREG CREG[6], 0x00005002;
LDREG CREG[8], 0x00005004;
LDREG CREG[10], 0x00005004;
LDREG CREG[12], 0x00005001;
LDREG CREG[14], 0x00005002;

17.3.2 TOPsearch I
TOPsearch I receives the following three data elements (see Table 17.1).

17.3.2.1 TOPparse -> TOPresolve Message
The messages that TOPparse sends to TOPresolve include the following informa-
tion in the structure described previously (Table 17.2).

17.3.2.2 Destination IP Address
DIP is a static routing table that should be created with the structure generator, prior
to executing the microcode. Obviously, this should be handled in an entirely different
way for “real” applications, that is, a routing protocol should update this table, by using,
for example, the “High Learn” mechanism that is described for the “hot SIP” case.

Table 17.2 TOPparse Messages

Field name Byte:bit offset Size Note

Valid bit 0:0 1 bit 1-valid bit

Mode 0:1 3 bits b1—mode1
b2—mode2
b3—mode3
Only one bit should be set

Special fl ag 0:4 1 bit 1—“hot” word found

L2 size 1 1 byte

Table 17.1 TOPsearch I Data Elements

Name Structure # Key size Size

Message 0 32 32

DIP 1 (hash) 4 32

SIP 2 (hash) 4 32

17.3 Data Structures 651

17.3.2.2.1 Key
Key is Destination IP—4 bytes.

17.3.2.2.2 Result
The result of a search by a destination IP address is two options for port output;
the frame should be sent to one of them according to whether it contained a “hot
string” or not (see Table 17.3 for the entire result).

17.3.2.3 Source IP Address
SIP is the data structure that enables the program to fi nd the “hot SIP,” that is, SIP
addresses from which “hot strings” were sent. This structure uses the “High Learn”
mechanism to learn the new hot IP’s. It should be created before running the
microcode, and shouldn’t be populated, as the program will “learn” and populate
the required entries on the fl y.

Table 17.2 (continued)

Field name Byte:bit offset Size Note

First buffer length
control

2 1 byte For TOPModify Initialization

HD_REG1 3 4 bytes Hardware decoding
HD_REG1, HD_REG2—for
SEND_REG0, SEND_REG1, SEND_REG2
initialization in TOPmodify

HD_REG2 7 4 bytes

SIP 11 4 bytes Source IP for High Learn

Data offset 17 2 bytes “sex” or “bomb” offset

Table 17.3 Search I DIP Search Result

Field name Byte offset Size Note

Valid bit 0 1 bit 1-valid bit

Match bit 0 1 bit 1-match bit

Output Port 1 1 byte This is the output port in the usual case

QoS 2 1 byte

Special output port 3 1 byte In case of a “hot string” and operating mode 3
this is output port

Destination MAC 4 6 bytes Next Hop MAC

652 CHAPTER 17 Writing Your First High-Speed Network Application

17.3.2.3.1 Key
Key is Source IP—4 bytes.

17.3.2.3.2 Result
The result is actually just an indication that such an IP was in the hash table, that is,
the match bit is 1 (see Table 17.4).

17.3.3 TOPsearch II
TOPsearch II receives the following two data elements (see Table 17.5).

17.3.3.1 TOPresolve -> TOPmodify Message
The message that TOPresolve sends to TOPmodify includes the following informa-
tion in the structure described previously (Table 17.6).

17.3.3.2 Output Port Confi guration
“Output structure” is used for fi nding the source MAC address and the special IP
address according to the output port. This structure has to be defi ned and popu-
lated before running the microcode. All the entries in this structure are static (i.e.,
they are not changed during the execution of the program).

17.3.3.2.1 Key
Key is Output Port—1 byte long.

17.3.3.2.2 Result
The result of the search is the source MAC address and the special IP address, to
which “hot string” frames are diverted (see Table 17.7).

Table 17.5 TOPsearch II Data Elements

Name Structure # Key size Result size

Message 0 32 32

Out port cfg 3 1 16

Table 17.4 Search I SIP Search Result

Field name Byte:bit offset Size Note

Valid bit 0:0 1 bit 1-valid bit

Match bit 0:1 1 bit 1-match bit

17.3 Data Structures 653

Table 17.6 TOPresolve Message

Field name Byte:bit offset Size Note

Valid bit 0:0 1 bit 1-valid bit

Mode 0:1 3 bits b1—mode1
b2—mode2
b3—mode3
Only one bit should be set

Special fl ag 0:4 1 bit 1—“hot” word found

L2 size 1 1 byte

First buffer length
control

2 1 byte For TOPmodify Initialization

HD_REG1

HD_REG2

3

7

4 bytes

4 bytes

Hardware decoding
HD_REG1, HD_REG2—for SEND_REG0,
SEND_REG1, SEND_REG2 initialization
in TOPmodify

SIP 11 4 bytes Source IP for High Learn

Data offset 17 2 bytes “sex” or “bomb” offset in the frame

FAST_REG 19 1 byte For modifi cation acceleration

Destination MAC 20 6 bytes Next hop MAC

Buffer number 26 1 byte Operating mode 3 only

Output port 27 1 byte Used for search II to put DIP

QoS 28 1 byte

Special IP fl ag 29:0 1 bit

Table 17.7 Search II Output Port Search Result

Field name Byte:bit offset Size Note

Valid bit 0:0 1 bit 1- valid bit

Match bit 0:1 1 bit 1- match bit

Source MAC 1 6 bytes Port Source MAC

Special IP 7 4 bytes Destination IP address to be used instead of the
original DIP if the frame contains a “hot string”

654 CHAPTER 17 Writing Your First High-Speed Network Application

17.4 SUMMARY
This chapter provides a comprehensive example for writing ultra-high processing
speed applications, for wire-speed packet analysis. Although it was not written for
performance but rather for teaching purposes, it can do the job (with minor issues,
e.g., checksum), and can demonstrate various ways to process packets by an NP.

This chapter also concludes the book, and the reader is encouraged to down-
load (see instructions in Chapter 1) the simulator for writing and simulating such
applications, as well as others.

AAA Authentication, Authorization, and Accounting
AAL ATM Adaptation Layer
AAS Adaptive Antenna System
ABR Available Bit Rate
AC Access Connection/Attachment Circuit
ACL Access Control List
ADM Add/Drop Multiplexer
ADSL Asymmetric Digital Subscriber Line
AF Assured Forwarding (a Class of Service)
Agg Eth SW Aggregation Ethernet Switch
Alloc-ID Allocation Identifi er of the upstream T-CONT
ALQD Approximated LQD
ALU Arithmetic Logic Unit
AMPS Advanced Mobile Phone System
AP Access Point
AP Alternate Port (in Ethernet bridging)
API Application Program Interface
APoM Any Protocol over MPLS
APP layer Application layer
AQM Active Queue Management
AQT Area-based QuadTtree
ARP Address Resolution Protocol
ARQ Automatic Request Response
AS Autonomous System
ASIC Application Specifi c Integrated Circuit
AS-ID Autonomous System identifi cations
ASIP Application Specifi c Instruction Set Processor
ASI-SIG Advanced Switching Interconnect—Special Interest Group
ASN Access Service Network
ASN Autonomous System Number
ASN-GW Access Service Network Gateway
ASON Automatically Switched Optical Networks
ASP Application Service Provider
ASSP Application Specifi c Standard Product
ASTN Automatic Switched Transport Network
ATCA Advanced Telecom Computing Architecture
ATM Asynchronous Transfer Mode
AToM Any Transport over MPLS
AU Administrative Unit (in SDH)
AUG Administrative Unit Group (in SDH)
AUI Attachment Unit Interface (in Ethernet)
AVQ Adaptive Virtual Queue

BAN Body Area Network
BCAM Binary CAM
BCB Backbone Core Bridge
B-DA Backbone Destination MAC Address
BEB Backbone Edge Bridge
BER Bit Error Rate

List of Acronyms

656 List of Acronyms

BGP Border Gateway Protocol
BIP Bit Interleaved Parity
B-ISDN Broadband Integrated Services Data Network
B-MAC Backbone MAC
BMP Best Matched Prefi x
BNG Broadband Network Gateway
BP Backup Port (in Ethernet bridging)
BPDU Bridge Protocol Data Unit
BPON Broadband PON
bps bits per second
BRAS Broadband Remote Access Server
BRED Balanced Random Early Detection
BS Base Station
BSC Base Station Controller (in 2G systems)
BSFQ Bin Sort Fair Queuing
BSP Bulk Synchronous Parallel
BSS Base-Station Subsystem
BSSGP Base Station System GPRS Protocol
BST Binary Search Tree
B-Tag Backbone VLAN tag
B-Tag TPID Backbone Tag Identifi er
BTS Base Transceiver Station (in 2G systems)
B-VLAN Backbone VLAN
BvN Birkhoff von Neumann

C2C Chip to Chip
CAC Call Admission Control
CAM Content Addressable Memory
CAS Column Address Strobe
CATV Cable TV
CBQ Class-Based Queueing
CBR Constant Bit Rate
CBS Committed Burst Size
CBT Core Based Tree
CC Continuity Check (in Ethernet)
CCM Continuity Check Message (in Ethernet)
CC-NUMA Cache Coherent NUMA
CC-UMA Cache Coherent UMA
CDG CDMA Development Group
CDMA Code Division Multiple Access
CDR Committed Data Rate
CE Congestion Experience
CE Customer Edge or Equipment
CEN Carrier Class Ethernet
CEOT Circuit Emulation over Transport
CEP Circuit Emulation over Packet
CEPT European Conference of Postal and Telecommunications Administration
CES Circuit Emulation Service
CESoETH CES over Ethernet
CFD Classify Frame Descriptor (in EZchip architecture)
CFI Canonical Format Indicator (in Ethernet)
CFM Connectivity Fault Management (in Ethernet)
CGMT Coarse-Grained Multithreading

List of Acronyms 657

cHEC Core HEC
CIDR Classless Inter Domain Routing
CIFS Common Internet File System
CIOQ Combined Input Output Queued
CIR Committed Information Rate
CISC Complex Instruction Set Computing
CIST Common and Internal Spanning Tree (in Ethernet bridging)
CLEC Competitive Local Exchange Carrier
CLP Cell Loss Priority
CLS Controlled Load Service
CM Cable Modem
CM Confi guration Message (in Ethernet bridging)
C-MAC Customer MAC
CMP Chip Multiprocessors
CMTS Cable Modem Termination System
CN Computer-Peripheral Network
CO Central Offi ce
COMA Cache Only Memory Architecture
CoS Class of Service
COW Cluster of Workstations
CP Common Part (in AAL type 5)
CPCS Common Part Convergence Sublayer (in AAL type 5)
CPE Customer Premises Equipment
CPI Common Part Indicator (in AAL type 5)
CPI Cycles per Instruction
CPIX Common Programming Interface Forum
CPLD Complex Programmable Logic Device
CPN Customer Premises Network
CPU Central Processing Unit
CRC Cyclic Redundancy Check (or Code)
CREW Concurrent Read Exclusive Write
CR-LDP Constraint-Based LDP
CS Circuit Switching
CS Convergence Sub-layer
CSIX Common Switch Interface Specifi cation
CSMA/CD Carrier Sense Multiple Access/Collision Detection
CSN Connectivity Service Network
CST Common Spanning Tree (in Ethernet bridging)
C-Tag Customer VLAN tag
C-Tag TPID Customer Tag Identifi er
CTR Committed Target Rate
CU Control Unit
C-VLAN Customer VLAN
CWDM Coarse Wave Division Multiplexing
CX Copper Physical (in Ethernet)

DA Ethernet Destination MAC Address
DB Designated Bridge (in Ethernet bridging)
DBR Deterministic Bit Rate
DBRu Dynamic Bandwidth Report upstream
DCE Distributed Computing Environment
DCM Distributed Call and Connection Management
DCOM Distributed Component Object Model

658 List of Acronyms

DCS Digital Cross Connect
DDR Double Data Rate
DEI Drop Eligible Indicator (in Ethernet)
DF Default Forwarding (a Class of Service)
DiffServ Differentiated Services
DIP Destination IP Address
DLB Dual Leaky Bucket
DLC Digital Loop Carrier
DLP Data Level Parallelism
DMA Direct Memory Access
DOCSIS Data over Cable Service Interface Specifi cations
DoD Department of Defense
DP Designated Port (in Ethernet bridging)
DPI Deep Packet Inspection
DRAM Dynamic RAM
DRDRAM Direct Rambus DRAM
DRED Dynamic Random Early Detection
DRR Defi cit Round-Robin
DRRM Dual Round-Robin Matching
DS Data Stream
DSAP Designation Service Access Point
DSCP Differentiated Services Code Point
DSL Digital Subscriber Loop/Line
DSLAM Digital Subscriber Line Access Multiplexer
DSM Distributed Shared Memory
DST Destination
DS-UWB Direct Sequence—UWB
DTB Dual Token Bucket
DVB Digital Video Broadcast
DVI Digital Visual Interface
DVMRP Distance Vector Multicast Routing Protocol
DWDM Dense WDM

EAP Extensible Authentication Protocol
EBDMA Egress Back DMA (in EZchip architecture)
EBRR Eligibility-Based Round-Robin
EBS Excess Burst Size
ECC Error Correcting Code
ECFD Egress Classify Frame Descriptor (in EZchip architecture)
ECMP Equal Cost Multiple Path
ECN Explicit Congestion Notifi cation
ECT ECN-Capable Transport
EDA Electronic Design Automation
EDD Earliest Due Date
EDD Ethernet Demarcation Device
EDF Earliest Deadline First
EDGE Enhanced Data rates for GSM Evolution
eDSL Ethernet DSL
EF Expedited Forwarding (a Class of Service)
EFDMA Egress Front DMA (in EZchip architecture)
EFM Ethernet in the First Mile
EGP Exterior Gateway Protocol
eHEC Extension Header HEC

List of Acronyms 659

EIR Excess Information Rate
EISA Extended ISA
E-LAN Ethernet LAN
E-Line Ethernet Line
E-LMI Ethernet Local Management Interface
eNB evolved Node B
E-NNI External Network to Network Interface
EO End-Offi ce
EOF End of Frame
EPC Evolved Packet Core
EPD Early Packet Discard
EPIC Explicitly Parallel Instruction Computing
EPL Ethernet Private Line
EPON Ethernet Passive Optical Network
EPROM Erasable and Programmable Memory
EPS Evolved Packet System
EREW Exclusive Read Exclusive Write
ER-LSP Explicitly Routed LSP
ES Emulated Service
ESCON Enterprise Systems Connection
ESF Extended Super Frame
ESP Ethernet Switched Path
ESPD Early selective packet discard
ETFD Egress Transmit Frame Descriptor (in EZchip architecture)
Eth Ethernet
ETH layer Ethernet layer
ETSI European Telecommunications Standards Institute
ETTx Ethernet-to-the-Home/Building/Offi ce
E-UTRAN Evolved Universal Terrestrial Radio Access Network
EVC Ethernet Virtual Connection
EVC-ID EVC Identifi cation
EV-DO Evolution-Data Optimized
EVPL Ethernet Virtual Private Line

FA Foreign Agent
FBLK Functional Block Registers
FCRAM Fast Cycle RAM
FCS Frame Check Sequence
FDDI Fiber Distributed Data Interface
FDM Frequency Division Multiplexing
FEC Forward Error Correction
FEC Forwarding Equivalence Class (in MPLS)
FGMT Fine-Grained Multithreading
FI Fair Index
FICON Fibre Connection
FID Filtering Identifi er (in Ethernet bridging)
FIFO First In, First Out
FIS-tree Fat Inverted Segment tree
FITL Fiber In The Loop
FMEM Frame Memory
FPGA Field Programmable Gate Array
FPL Functional Programming Language
FRED Flow Random Early Detection

660 List of Acronyms

FTN FEC-to-NHLFE
FTP File Transfer Protocol
FTTB Fiber to the Building
FTTC Fiber to the Curb/Cabinet
FTTH Fiber to the Home
FTTP Fiber to the Premises
FTTZ Fiber to the Zone
FW Forwarder

GAN Generic Access Network
GARP Generic Attribute Registration Protocol
GbE Gigabit Ethernet
GBIC Gigabit Interface Converter
Gbps Giga (109) bits per second
GCRA Generic Cell Rate Algorithm
GEM GPON Encapsulation Method
GERAN GSM/EDGE Radio Access Network
GFC Generic Flow Control
GFP Generic Framing Procedure
GFP-F Generic Frame Procedure—Frame mapped
GFP-T Generic Frame Procedure—Transparent mapped
GFR Guaranteed Frame Rate
GGSN Gateway GPRS Support Node
GMII Gigabit Media Independent Interface (in Ethernet)
GMPLS Generalized Multi-Protocol Label Switching
GMRP GARP Multicast Registration Protocol
GPON Gigabit PON
GPP General Purpose Processor
GPRS General Packet Radio Service
GPS Generalized Processor Sharing
GRE Generic Routing Encapsulation
GRED Gentle RED
GS Guaranteed Service (a Class of Service)
GSM Global System for Mobile—Groupe Spécial Mobile
GSMC Gateway Mobile Switching Center
GSN GPRS Support Node
GTC GPON Transmission Convergence
GTP GPRS Tunneling Protocol
GTP-U GTP—User plane
GVRP GARP VLAN Registration Protocol

HA Home Agent
HD_REG Hardware register (in EZchip architecture)
HDL Hardware Description Language
HDLC High-Level Data Link Control
HDMA Host DMA (in EZchip architecture)
HDSL High bit rate Digital Subscriber Line
HDTV High Defi nition TV
HEC Header Error Control
HFC Hybrid Fiber and Coax
HiCuts Hierarchical Intelligent Cutting
HLR Home Location Register
H-NSP Home Network Service Provider

List of Acronyms 661

HOL Head of Line
HOLB Head of Line Blocking
HPF High Performance Fortran
H-PFQ Hierarchical Packet Fair Queueing
HPNA Home Phoneline Networking Alliance
HREG Header Register (in EZchip architecture)
HSDPA High Speed Downlink Packet Access
HSI High-Speed Interconnect
HSPA High Speed Packet Access
HSS Home Subscriber Server
HSUPA High Speed Uplink Packet Access
HTFD Host Transmit Frame Descriptor (in EZchip architecture)
HTTP Hyper Text Transfer Protocol
H-VPLS Hierarchical VPLS
HW_DEC Hardware Decoder Block (in EZchip architecture)
HWARE Hardware registers (in EZchip architecture)

I/O Inputs/Outputs
IAB Internet Architecture Board
IANA Internet Assigned Numbers Authority
IBDMA Ingress Back DMA (in EZchip architecture)
IBGP Internal BGP
IC Integrated Circuit
ICFD Ingress Classify Frame Descriptor (in EZchip architecture)
ICMP Internet Control Message Protocol
I-DEI Instance Drop Eligible Indicator
IDS Intrusion Detection Systems
IETF Internet Engineering Task Force
IFDMA Ingress Forward Direct Memory Access (in EZchip architecture)
I-FFT Inverse Fast Fourier Transform
IGMP Internet Group Management Protocol
IGP Interior Gateway Protocol
IHL Internet Header Length
IID Independent and Identically Distributed
ILEC Incumbent Local Exchange Carrier
ILM Incoming Label Mapping
ILP Instruction Level Parallelism
iLQF Iterative Longest Queue First
IMS IP Multimedia System (or Services)
I-NNI Internal NNI
IntServ Integrated Services
iOCF Iterative Oldest Cell First
IOQS Ideal Output Queued Switch
IP Internet Protocol
IP/MPLS IP over MPLS
IPC Instructions per Cycle
IPC Inter-Process Communications
IPLS IP-only Like Service
IPoA IP over ATM
IPoS IP over SONET
IPS Intrusion Prevention Systems
IPsec Internet Protocol Security
IPTV TV service over IP

662 List of Acronyms

IPv4 IP version 4
IPv6 IP version 6
IQ Input Queued
IRRM Iterative Round-Robin Matching
IS Instruction Stream
IS-95 Interim Standard 95
ISA Industry Standard Architecture
ISA Instruction Set Architecture
iSCSI SCSI over IP
ISDN Integrated Services Digital Network
I-SID Service Instance Identifi er
ISO International Standard Organization
ISO/OSI ISO/Open System Interconnect
ISOC Internet Society
ISP Internet Service Provider
IST Internal Spanning Tree (in Ethernet bridging)
I-Tag Instance Service VLAN tag (in Ethernet bridging)
I-Tag TPID Service Instance Identifi er
ITU International Telecommunication Union
ITU-T Telecommunication Standardization Sector
IVL Independent VLAN Learning
IW Issue Width
IXA Internet eXchange Architecture
IXP Internet eXchange Processor

JCA Joint Coordination Activity
JEDEC Joint Electron Device Engineering Council
JTACS Japan Total Access Communications System

Kbps Kilo (103) bits per second
KMEM Key Memory (in EZchip architecture)
KREG Key Register (in EZchip architecture)

L1 Layer 1
L2 Layer 2
L2CP Layer 2 Control Protocol
L2TP Layer 2 Tunneling Protocol
L2TPext L2TP extensions
L2VPN Layer 2 Virtual Private Network
L3 Layer 3
L3VPN Layer 3 Virtual Private Network
LA Look-Aside
LAA Layer 2 Tunneling Protocol (L2TP) Access Aggregation
LAC L2TP Access Concentrator
LAN Local Area Network
LB LoopBack
LBM/LBR Loopback Message and Reply (in Ethernet)
LCAS Link Capacity Adjustment Scheme
LCCE L2TP Control Connection Endpoint
LCO Local Central Offi ce
LCT Last Conformance Time (in leaky bucket)
LC-trie Level Compressed trie
LDP Label Distribution Protocol
LEC Local Exchange Company

List of Acronyms 663

LER Label Edge Router
LH Long Haul
LIB Label Information Base
LIFO Last-in, First-out
LLC Logical Link Control
LLID Logical Link Identifi cation
LMSC LAN/MAN Standards Committee
LNS L2TP Network Server
LOH Line Overhead (in SDH)
LOS Line of Sight
LPC-trie Level and Path Compressed trie
LPM Longest Prefi x Match
LQD Longest Queue Drop
LRE Long Reach Ethernet
LSB Least signifi cant bit
LSI Large-Scale Integration
LSP Label Switched Path
LSPID LSP Identifi ers
LSR Label Switching Router
LT Link Trace
LTE Long Term Evolution
LTM/LTR Link Trace Message and Reply (in Ethernet)
LVDS Low Voltage Differential Signaling
LX Long-wave (in Ethernet)
LZ Lempel-Ziv algorithm

MA Maintenance Association
MAC Medium Access Control
MAN Metropolitan Area Network
MB-OFDM Multi-Band Orthogonal Frequency Division Multiplexing
MCID MST Confi guration Identifi er (in Ethernet bridging)
MCP Multi-Core Processor
MDE Microcode Development Environment
MDI Medium Dependent Interface (in Ethernet)
ME Maintenance Entity
MEF Metro Ethernet Forum
MEG ME Group
MEMS Micro Electro Mechanical System
MEN Metro Ethernet Network
MEP MEG End Point
MF More Fragments bit
MIB Management Information Base
MII Media Independent Interface
MIMO Multiple Input and Multiple Output
MIN Multistage Interconnection Network
MIP MEG Intermediate Point
MIP Mobile IP
MLD Multicast Listener Discovery
MM Maximum Matching
MME Mobility Management Entity
MMRP MRP MAC address Registration Protocol
MoCA Multimedia over Coax Alliance
MOD_ACC Modifi cation Accelerator Block (in EZchip architecture)

664 List of Acronyms

MoE T-MPLS over Ethernet
MOEMS Micro Opto-Electro Mechanical System
MoO T-MPLS over OTH
MoP T-MPLS over PDH
MoR T-MPLS over RPR
MoS T-MPLS over SDH
MOSPF Multicast Extensions to OSPF
MP Message Passing
MP2MP Multipoint-to-Multipoint
MP-BGP Multiprotocol Extensions for BGP-4
MPCP MAC Control Protocol
MPHY Multiple PHY Ports
MPI Message Passing Interface
MPLS Multi-Protocol Label Switching
MPMD Multi Program over Multiple Data streams
MPOA Multi Protocol over ATM
MPP Massively Parallel Processors
MPSoC Multiprocessor System-on-Chip
MRP Multiple Registration Protocol
MS Mobile Station
MSB Most signifi cant bit
MSC Mobile Switching Center
M-SISD Multiple SISD
MSOH Multiplex SOH (in SDH)
MSP Multi Service Platform
MSPP Multi Service Provisioning Platform
MSSP Multi Service Switching Platform
MST Multiple Spanning Tree (in Ethernet bridging)
MSTI Multiple Spanning Tree Instance (in Ethernet bridging)
MSTID Multiple Spanning Tree Instance ID (in Ethernet bridging)
MSTP Multi Service Transport Platforms
MSTP Multiple Spanning Tree Protocol (in Ethernet bridging)
MT Mobile Terminal
MTU Maximum Transmission Unit
MTU Multi Tenant Unit
MU Memory Unit
MVRP MRP VLAN Registration Protocol
MWM Maximum Weight Matching

NAMPS Narrowband Analog Mobile Phone Service
NAP Network Access Provider
NAT Network Address Translation
NCA No Customer Address
NCL Network Classifi cation Language
NE Network Elements
NFS Network File System
NG-SDH/ Next Generation SONET/SDH
SONET

NHLFE Next Hop Label Forwarding Entry
NIC Network Interface Card
NLOS non-Line of Sight
NLRI Network Layer Reachability Information
NMT Nordic Mobile Telephone

List of Acronyms 665

NNI Network–Network Interface
NoC Network on Chip
NOW Network of Workstations
NP Network Processor
NPF Network Processing Forum
NPSI Network Processing Streaming Interface
nrt-VBR Non-real-time VBR
NS Network Service
NSE Network Search Engines
NSP Network Service Provider
NSS Network Subsystem (in RAN)
NT Network Terminator
NUMA Non-Uniform Memory Access

OADM Optical Add/Drop Multiplexer
OAM Operations, Administration and Maintenance
OBS Optical Burst Switching
OC Optical Carrier
OCh Optical Channel
OCS Optical Circuit Switching
ODN Optical Distribution Network
ODU Optical Data Unit
OE Optical–Electrical
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
OIF Optical Interfacing Forum
OIF Optical Internetworking Forum
OLT Optical Line Terminal
OMEM Output Memory (in EZchip architecture)
ONT Optical Network Termination
ONU Optical Network Unit
ONU-ID ONU-Identifi er
OPS Optical Packet Switching
OPU Optical Payload Unit
OQ Output Queued
OREG Other Register (in EZchip architecture)
OS Operating System
OSF Open Software Foundation
OSPF Open Shortest Path First
OSPF-TE Open Shortest Path First–Traffi c Engineering
OTH Optical Transport Hierarchy
OTN Optical Transport Network
OTU Optical channel Transport Unit
OUI Organizationally Unique Identifi er
OUT_IF Output Interface (in EZchip architecture)
OXC Optical Cross-Connects

P2MP Point-to-MultiPoint
P2P Point-to-Point (or Peer to Peer)
PA Ethernet Preamble
PACT Parallel Architectures and Compilation Techniques
PAN Personal Area Network
PATRICIA Practical Algorithm To Retrieve Information Coded In Alphanumeric

666 List of Acronyms

PB Provider Bridge
PBBN Provider Backbone Bridged Network
PBB-TE Provider Backbone Bridges–Traffi c Engineering
PBN Provider Bridged Network
PBPS Parallel Buffered Packet Switches
PBS Peak Burst Size
PBT Provider Backbone Transport (now called PBB-TE)
PBX Private Branch eXchange
PC Personal Computer
PC Program Counter
PCBd Physical Control Block downstream
PCISIG PCI Special Interest Group
PCM Pulse Code Modulation
PCP Priority Code Point
PCRF Policy and Charging Rules Function
PCS Physical Coding Sublayer (in Ethernet)
PDCF Packet Data Convergence Protocol
PDH Plesiochronous Digital Hierarchy
PDN Packet Data Network or Public Data Network
PDR Peak Data Rate
PDU Protocol Data Unit
PE Provider Edge or Equipment
PEB Provider Edge Bridge
PF Policy Function
PFQ Packet Fair Queue
PFQ Per Flow Queuing
PGPS Packet Approximation of GPS
P-GW Packet Data Network (PDN) Gateway
PHB Per Hop Behavior—a DiffServ term (IP CoS)
PHY Physical Layer
PI Proportional-Integral
PICMG PCI Industrial Computer Manufacturers Group
PID Protocol Identifi er
PIM Parallel Iterative Matching
PIM-DM Protocol Independent Multicast–Dense mode
PIM-SM Protocol Independent Multicast–Sparse Mode
PIR Peak Information Rate
PLC Power Line Communications
Plend Physical Length downstream
PLI GEM’s Payload Length Indicator
PLMN Public Land Mobile Network
PLOAMd Physical Layer OAM downstream
PLOAMu Physical Layer OAM upstream
PLOu Physical Layer Overhead upstream
PLS Physical Layer Signaling (in Ethernet)
PLSu Power Leveling Sequence upstream
PMA Physical Medium Attachment (in Ethernet)
PMD Physical Medium Dependent (in Ethernet)
PNNI Private Network–Network Interface
POH Path Overhead (in SDH)
PON Passive Optical Network
POP Point-of-Presence Protocol

List of Acronyms 667

POS Packet over SONET/SDH
POSIX Portable Operating System Interface for UNIX
POS-PHY Packet-Over-SONET–Physical Layer
POTS Plain Old Telephone Service
PPC Port Path Cost (in Ethernet bridging)
PPD Partial Packet Discard
PPE Packet Processor Engine
PPL Packet Programming Language
PPP Point-to-Point Protocol
PPPoA PPP over ATM
PPPoE PPP over Ethernet
PPPoEoA PPPoE over ATM
PPPoEoE PPPoE over Ethernet
PPS Parallel Packet Switch
PPTP Point-to-Point Tunneling Protocol
PPV Pay per View
PPVPN Provider Provisioned Virtual Private Network
PQ Priority Queue
PRAM Parallel Random Access Machines
PRS-1 1 Gbps Packet PHY Reconciliation Sublayer
PRS-10 10 Gbps Packet PHY Reconciliation Sublayer
PS Processor Sharing
PSM Parallel Shared Memory
PSN Packet Switched Network
PSTN Public Switched Telephone Network
Psync Physical Synchronization
PT Payload-Type
PTA Point-to-Point Protocol Terminated Aggregation
PTE Path Terminating Equipment
Pthreads POSIX threads
PTI GEM’s Payload Type Indicator
PTR Peak Target Rate
PU Processing Unit
PVC Permanent Virtual Circuit
PVM Parallel Virtual Machine
PVR Personal Video Records
PW Pseudo-wire
PWE3 Pseudo Wire Emulation Edge-to-Edge
PWMCW PW MPLS Control Word
PWOT Pseudowire Over Transport

QDR Quad Data Rate
QFP Quantum Flow Processor
QoS Quality of Service

RADIUS Remote Authentication Dial In User Service
RAM Random Access Memory
RAN Radio Access Network
RAS Row Address Strobe
RB Root Bridge (in Ethernet bridging)
RBOC Regional Bell Operating Company
RCO Regional Central Offi ce
RCS Rate-Controlled Service

668 List of Acronyms

RCSP Rate-Controlled Static Priority
RD Route Distinguisher
RDL Remote Digital Terminal
RED Random Early Detection
REM Random Exponential Marking
RF Radio Frequency
RFC Recursive Flow Classifi cation
RFC Request For Comments
RFD Receive Frame Descriptor
RG Residential Gateway
RGMII Reduced GMII
RIB Routing Information Base
RIO RED In/Out
RIP Routing Information Protocol
RISC Reduced Instruction Set Computing
RLC Radio Link Control
RLDRAM Reduced Latency DRAM
RMEM Result Memory (in EZchip architecture)
RMI Remote Method Invocation
RMII Reduced MII
RNB Rearrangeable Non-Blocking
RNC Radio Network Controller (3G)
RND Random Dropping
ROADM Reconfi gurable OADM
ROM Read Only Memory
RP Root Port (in Ethernet bridging)
RPA Reservation with Preemption and Acknowledgment
RPC Remote Procedure Call
RPC Root Path Cost (in Ethernet bridging)
RPR Resilient Packet Ring
RR Round-Robin
RR Route Refl ector (in BGP)
RS Reconciliation Sublayer
RSOH Regenerator SOH (in SDH)
RSTP Rapid Spanning Tree Protocol (in Ethernet bridging)
RSVP Resource ReSerVation Protocol
RSVP-TE Resource Reservation Protocol—Traffi c Engineering
RT Route Target
RTBI Reduced TBI
RTOS Real-Time OS
RTP Real Time Protocol
RTSP Real Time Streaming Protocol
rt-VBR Real-time VBR

SA Ethernet Source MAC Address
SAN Storage Area Network
SAP Service Access Points
SAR Segmentation and Reassembly
SAS Shared Address Space
SAToP Structure-Agnostic Time Division Multiplexing over Packet
SBC Single Board Computer
SCFQ Self-Clocked Fair Queueing
SCSI Small Computer System Interface

List of Acronyms 669

SDH Synchronous Digital Hierarchy
SDMA Subcarrier Division Multiple Access
SDRAM Synchronous DRAM
SDSL Symmetric DSL
SEAL Simple and Easy Adaptation Layer
SECDED Single Error Correcting, Double Error Detection
SEFF Smallest Eligible virtual Finish time First
SERDES SERializer/DESerializer
SF Super frame
SFD Ethernet’s Start of Frame Delimiter
SFF Smallest virtual Finish time First
SFI SerDes-Framer Interface
SFI-4 or -5 SERDES Framer Interface level 4 or 5
SG Study Group
SGMII Serial GMII
SGSN Serving GPRS Support Node
S-GW Serving Gateway
SIO Separated I/O
SIP Session Initiation Protocol
SIP Source IP address
SLA Service Level Agreement
SLB Simple Leaky Bucket
SMDS Switched Multimegabit Data Service
SME Small and Medium Enterprise
SMII Serial MII
SMP Symmetrical Multi Processors
SMT Simultaneous Multithreading
SNAP Sub Network Access Protocol
SNB Strict Non-Blocking
SNDCP Subnetwork Dependent Convergence Protocol
SNMP Simple Network Management Protocol
SoC System on Chip
SOH Section Overhead (in SDH)
SOHO Small Offi ce Home Offi ce
SONET Synchronized Optical Networks
SP Service Provider
SP Strict Priority
SPB Shortest Path Bridging
SPE Synchronous Payload Envelope (in SDH)
SPFQ Starting Potential-based Fair Queue
SPI System Packet Interface
SPI System-Physical Interface
SPI-S Scalable System Packet Interface
SPMD Single Program over Multiple Data
SPPA Smith Predictor-based PI-controller for AQM
SPP Special Purpose Processor
SRAM Static RAM
SRC Source
SRED Stabilized Random Early Detection
SREG Specifi c Register (in EZchip architecture)
SRR Smoothed Round Robin
SRT Source-Routing Transparent

670 List of Acronyms

srTCM Single-Rate Three Color Marker
SS Service specifi c (in AAL type 5)
SSAP Source Service Access Point
SSL Secure Sockets Layer
SST Single-Spanning-Tree
SStart Starting time of the allocation
SStop Stopping time of the allocation
ST Space-Time
ST Spanning Tree (in Ethernet bridging)
S-Tag Service VLAN tag
S-Tag TPID Service Tag Identifi er
STM Synchronous Transport Module
STP Shielded Twisted Pairs
STP Spanning Tree Protocol (in Ethernet bridging)
STS Synchronous Transport Signal
S-VID Service VLAN Identifi er
S-VLAN Service VLAN
SVL Shared VLAN learning
SX Short-wave (in Ethernet)

TACS Total Access Communications System
TALS TDM Access Line Service
TAT Theoretical Arrival Time (in Virtual scheduling)
TB Token Bucket
TBI Ten Bit Interface (in Ethernet bridging)
Tbps Tera (1012) bps
TBSF Tandem Banyan Switching Fabric
TC Toll Center
TCA Traffi c Conditioning Agreement
TCAM Ternary CAM
TCI Tag Control Information (in Ethernet)
TCM Three Color Markers
TCN Topology Change Notifi cation
T-CONT Transmission Container
TCP Transmission Control Protocol
TDM Time Division Multiplexing
TDMA Time Division Multiple Access
TE Traffi c Engineering
tHEC Type HEC
3GPP Third Generation Partnership Project (for cellular 2G, 3G, and 4G)
TL Type/Length (in Ethernet)
T-Line TDM Line
TLP Thread Level Parallelism
TLS Transparent LAN Service
TLS Transport Layer Security
TLV Type, Length, and Value
TM Terminal Multiplexer
TM Traffi c Manager
T-MPLS Transport MPLS
TOH Transport Overhead (in SDH)
TOP Task Optimized Processor (in EZchip architecture)
TOS Type of Service
TP Twisted Pairs telephone wires

List of Acronyms 671

TPID Type ID, Ethertype (in Ethernet)
TRAN layer Transport layer
trTCM Two-Rate Three Color Marker
TS Time-Space
TSI Time-Slot Interchange
TSL Transport Layer Security
TST Time-Space-Time
tswTCM Time Sliding Window Three Color Marker
TTL Time to Live
TU Tributary Unit (in SDH)
TUG Tributary Unit Group (in SDH)

UBR Unspecifi ed Bit Rate
UDP User Datagram Protocol
UE User Equipment
UI Unnumbered Information
UMA Uniform Memory Access
UMA Unlicensed Mobile Access
UMB Ultra Mobile Broadband
UMTS Universal Mobile Telecommunication System (3G)
UNI User-Network Interface
UNI-ID UNI identifi cation
UPC Unifi ed Parallel C
UREG User-Defi ned Register (in EZchip architecture)
USB Universal Serial Bus
UTP Unshielded Twisted Pairs
UTRAN Universal Terrestrial Radio Access Network
UU User-to-User indication
UWB Ultra-Wideband

VBR Variable Bit Rate
VC Virtual Channel
VC Virtual Circuit
VC Virtual Clock
VC Virtual Container (in SDH)
VCAT Virtual Concatenation (in NG-SDH)
VCG Virtual Concatenated Group (in NG-SDH)
VCI VC identifi er
VCI Virtual Channel Identifi er
VDSL Very high-speed DSL
VID VLAN ID
VLAN Virtual Local Area Network
VLIW Very Long Instruction Word
VLR Visitor Location Register
VLSM Variable Length Subnet Mask
VOD Video on Demand
VoIP Voice over Internet Protocol
VOQ Virtual Output Queue
VP Virtual Path
VPC Virtual Path Connection
VPI Virtual Path Identifi er
VPI VP identifi er
VPLS Virtual Private LAN Service

672 List of Acronyms

VPN Virtual Private Network
VPN-L VPN Label
VPTA Virtual Path Tunneling Architecture
VPWS Virtual Private Wire Service
VRF VPN Routing and Forwarding
VSA Virtual Scheduling Algorithm
VSR Very Short Reach (in Ethernet)
VT Virtual Tributary

WAN Wide Area Network
W-CDMA Wideband Code Division Multiple Access
WDM Wave Division Multiplexing
WDMA WDM Access
WFI Worst-case Fair Index
WFQ Weighted Fair Queueing
Wi-MAX Worldwide Interoperability for Microwave Access
WIS WAN Interface Sublayer (in Ethernet)
WLAN Wireless Local Area Network
WNB Wide-sense Non-Blocking
WPAN Wireless Personal Area Network
WRED Weighted Random Early Detection
WRR Weighted Round-Robin

XAUI 10 Gbps Attachment Unit Interface (in Ethernet)
XGMII 10 Gigabit Media Independent Interface (in Ethernet)
XGMII 10 Gbps Media Independent Interface (in Ethernet)
XGXS XGMII Extended Sublayer (in Ethernet)
XSBI 10 Gbps Sixteen Bit Interface (in Ethernet)

ZBT Zero Bus Turnaround

 1. 3GPP, General Packet Radio Service (GPRS) Enhancements for Evolved Universal
 Terrestrial Radio Access Network (E-UTRAN) Access (Release 8), 3GPP TS 23.401 V8.1.0
(2008-03), 2008.

 2. 3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal
 Terrestrial Radio Access (E-UTRAN); Overall description; Stage 2, 3GPP TS 36.300 V8.4.0
(2008-03), 2008.

 3. 3GPP, Evolved Universal Terrestrial Access Network (E-UTRAN), Architecture description,
3GPP TS 36.401 V8.1.0 (2008-03), 2008.

 4. 3GPP, Evolved Universal Terrestrial Access Network (E-UTRAN), S1 General Aspects and
Principles (Release 8), 3GPP TS 36.410 V8.0.0 (2007–12), 2007.

 5. Aboul-Magd, O., Constraint-Based LSP Setup Using LDP (CR-LDP) Extensions for Automatic
Switched Optical Network (ASON), RFC 3475, IETF, 2003.

 6. Aboul-Magd, O., and Rabie, S., A Differentiated Service Two-Rate, Three-Color Marker with
Effi cient Handling of In-Profi le Traffi c, RFC 4115, IETF, 2005.

 7. Adams, A., Nicholas, J., and Siadak, W., Protocol Independent Multicast–Dense Mode
(PIM-DM): Protocol Specifi cation (Revised), RFC 3973, IETF, 2005.

 8. Adelson-Velsky, G. M., and Landis, E. M., An Algorithm for the Organization of Information,
Dokady Alademiia Nauk SSSR, 146:263–266, 1962 (translated to English by Ricci, M. K.);
also in Soviet Mathematics, Doklady, 3:1259–1263, 1962).

 9. Afsharian, S., Bertolino, A., De Angelis, G., Iovanna, P., and Mirandola, R., Model Based
Approach to Design Applications for Network Processor, Proceedings of RISE 2004,
 Lecture Notes in Computer Science, Vol. 3475:93–101, Springer Verlag, 2005.

 10. Agere, The Case for a Classifi cation Language, White Paper, http://nps.agere.com/support/
non-nda/docs/Classifi cation_New.pdf, 2001.

 11. Aggarwal, R., Rosen, E., Morin, T., Rekhter, Y., and Kodeboniya, C., BGP Encodings and Proce-
dures for Multicast in MPLS/BGP IP VPNs, draft-ietf-l3vpn-2547bis-mcast-bgp, IETF, 2007.

 12. Ahmad, S., and Mahapatra R. N., TCAM Enabled On-Chip Logic Minimization, Proceedings
of the 42nd ACM/IEEE International Design Automation Conference, pp. 678–683, 2005.

 13. Ahmadi, H., and Denzel, W. E., A Survey of Modern High-Performance Switching Tech-
niques, IEEE Journal on Selected Areas in Communications, 7(7):1091–1103, 1989.

 14. Allan, D., Bragg, N., McGuire A., and Reid, A., Ethernet as Carrier Transport Infrastructure,
IEEE Communications Magazine, 44(2):134–140, 2006.

 15. Almquist, P., Type of Service in the Internet Protocol Suite, RFC 1349, IETF, 1992.

 16. Alt, H., Blum, N., Mehlhorn, K., and Paul, M., Computing a Maximum Cardinality Matching
in a Bipartite Graph in Time O(n3/2 + (m/log n)1/2), Information Processing Letters,
37(4):237–240, 1991.

 17. Anderson, T. E., Owicki, S. S., Saxe, J. B., and Thacker, C. P., High-Speed Switch Scheduling for
Local-Area Networks, ACM Transaction on Computer Systems, 11(4):319–352, 1993.

 18. Andersson, A., and Nilsson, S., Improved Behavior of Tries by Adaptive Branching,
 Information Processing Letters, 46:295–300, 1993.

 19. Andersson, L., and Madsen, T., Provider Provisioned Virtual Private Network (VPN)
 Terminology, RFC 4026, IETF, 2005.

References

 20. Andersson, L., and Rosen, E., Framework for Layer 2 Virtual Private Networks (L2VPNs),
RFC 4664, IETF, 2006.

 21. Andersson, L., Doolan, P., Feldman, N., Fredette, A., and Thomas, B., LDP Specifi cations,
RFC 3036, IETF, 2001.

 22. Andersson, L., Minei, I., and Thomas, B., LDP Specifi cation, RFC 5036, IETF, 2007.

 23. Anjum, F. M., and Tassiulas, L., Fair Bandwidth Sharing Among Adaptive and Non-Adaptive
Flows in the Internet, Proceedings IEEE INFOCOM, 1999.

 24. Aoe, J., Morimoto, K., Shishibori, M., and Park, K., A Trie Compaction Algorithm for a Large
Set of Keys, IEEE Transactions Knowledge Data Engineering, 8:476–490, 1996.

 25. Asadullah, S., Ahmed, A., Popoviciu, C., Savola, P., and Palet, J., ISP IPv6 Deployment
 Scenarios in Broadband Access Networks, RFC 4779, IETF, 2007.

 26. Ashwood-Smith, P., and Berger, L., Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Constraint-Based Routed Label Distribution Protocol (CR-LDP) Extensions,
RFC 3472, IETF, 2003.

 27. Athuraliya, S., Low, S. H., Li, V. H., and Yin, Q., REM: Active Queue Management, IEEE
 Network Magazine, 15(3), 2001.

 28. ATM Forum, LAN Emulation Over ATM 1.0, af-lane-0021.000, The ATM Forum (now the
MFA Forum), 1995.

 29. ATM Forum, Multi-Protocol Over ATM Specifi cation v1.0, af-mpoa-0087.0000, The ATM
Forum (now the MFA Forum), 1997.

 30. ATM Forum, Private Network-Network Interface Specifi cation v.1.1, af-pnni-0055.002,
The ATM Forum (now the MFA Forum), 2002.

 31. ATM Forum, Utopia, An ATM-PHY Interface Specifi cation, Level 1, Version 2.01,
af-phy-0017.000, The ATM Forum (now the MFA Forum), 1994.

 32. ATM Forum, Utopia Level 2, Version 1.0, af-phy-0039.000, The ATM Forum (now the MFA
Forum), 1995.

 33. ATM Forum, Utopia Level 3, af-phy-0136.000, The ATM Forum (now the MFA Forum), 1999.

 34. ATM Forum, Utopia Level 4, af-phy-0144.000, The ATM Forum (now the MFA Forum), 2000.

 35. Attiya, H., and Hay, D., The Inherent Queuing Delay of Parallel Packet Switches, IEEE
 Transactions on Parallel and Distributed Systems, 17(8):1048–1056, 2006.

 36. Attiya, H., Hay, D., and Keslassy, I., Packet-Mode Emulation of Output-Queued Switches,
 Proceedings of the Eighteenth ACM Symposium on Parallelism in Algorithms and
 Architectures, pp. 138–147, 2006.

 37. Augustyn, W., and Serbest, Y., Service Requirements for Layer 2 Provider-Provisioned Virtual
Private Networks (L2VPNs), RFC 4665, IETF, 2006.

 38. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and Swallow, G., RSVP-TE: Extensions to
RSVP for LSP Tunnels, RFC 3209, IETF, 2001.

 39. Aweya, J., Ouellette, M., and Montuno, D. Y., DRED: A Random Early Detection Algorithm for
TCP/IP Networks, International Journal of Communication Systems, 15(4):287–307, 2002.

 40. Baer, J.-L., Low, D., Crowley, P., and Sidhwaney, N., Memory Hierarchy Design for a Multi-
processor Look-Up Engine, Proceedings of the 12th International IEEE Conference on
Parallel Architectures and Compilation Techniques, pp. 206–216, 2003.

 41. Baldi, M., and Risso, F., A Framework for Rapid Development and Portable Execution of
Packet-Handling Applications, Proceedings of 5th IEEE International Symposium on
Signal Processing and Information Technology, 2005.

674 References

References 675

 42. Ballardie, A., Core-Based Trees (CBT) Multicast Routing Architecture, RFC 2201, IETF, 1997.

 43. Batcher, K. E., Sorting Networks and their Applications, Proceedings of Spring Joint
 Computing Conference, AFIPS, pp. 307–314, 1968.

 44. Bates, S., Chen, E., and Chandra, R., BGP Route Refl ection: An Alternative to Full Mesh
 Internal BGP (IBGP), RFC 4456, IETF, 2006.

 45. Bates, T., Chandra, R., Katz, D., and Rekhter, Y., Multiprotocol Extensions for BGP-4,
RFC 4760, IETF, 2007.

 46. Bates, T., Rekhter, Y., Chandra, R., and Katz, D., Multiprotocol Extensions for BGP-4, RFC 2858,
IETF, 2000.

 47. Benes, V. E., Mathematical Theory of Connecting Networks and Telephone Traffi c,
 Academic Press, 1965.

 48. Benini, L., and De Micheli, G., Networks on Chips: A New SoC Paradigm, Computer,
35(1):70–78, 2002.

 49. Bennet, J. C. R., and Zhang, H., Hierarchical Packet Fair Queueing Algorithms, Proceedings
ACM SIGCOMM '96, 1996.

 50. Bennet, J. C. R., and Zhang, H., WF2Q: Worst-Case Fair Weighted Fair Queueing, Proceedings
IEEE INFOCOM, pp. 120–128, 1996.

 51. Bernstein, G., Caviglia, D., Rabbat, R., and van Helvoort, H., VCAT/LCAS in a Clamshell, IEEE
Communications Magazine, 44(5):34–36, 2006.

 52. Birkhoff, G., Tres Observaciones Sobre el Algebra Lineal, Universidad Nacional de
Tucumán Revista Serie A, 5:147–151, 1946.

 53. Black, B., and Kompella, K., Maximum Transmission Unit Signaling Extensions for the
Label Distribution Protocol, RFC 3988, IETF, 2005.

 54. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and Weiss, W., An Architecture for
 Differentiated Services, RFC 2475, IETF, 1998.

 55. Bottorff, P., General Discussion of Provider Backbone Transport in 802.1ah Networks,
http://www.ieee802.org/1/fi les/public/docs2006/ah-bottorff-pbt-v1-0506.pdf, 2006.

 56. Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J., and
Zhang, L., Recommendations on Queue Management and Congestion Avoidance in the
Internet, RFC 2309, IETF, 1998.

 57. Braden, B., Zhang, L., Berson, S., Herzog, S., and Jasmin, S., Resource ReSerVation Protocol
(RSVP)—Version 1 Functional Specifi cation, RFC 2205, IETF, 1997.

 58. Braden, R., and Postel, J., Requirements for Internet Gateways, RFC 1009, IETF, 1987.

 59. Braden, R., Borman, D., and Partridge, C., Computing the Internet Checksum, RFC 1071, IETF,
1988.

 60. Braden, R., Clark, D., and Shenker, S., Integrated Services in the Internet Architecture: An
Overview, RFC 1633, IETF, 1994.

 61. Bryant, S., and Pate, P., Pseudo-Wire Emulation Edge-to-Edge (PWE3) Architecture,
RFC 3985, IETF, 2005.

 62. Bryant, S., Swallow, G., Martini, L., and McPherson, D., Pseudowire Emulation Edge-to-Edge
(PWE3) Control Word for Use over an MPLS PSN, RFC 4385, IEEE, 2006.

 63. Buddhikot, M. M, Suri, S., and Waldvogel, M., Space Decomposition Techniques for Fast
Layer-4 Switching, Proceedings Conference on Protocols for High Speed Networks,
pp. 25–41, 1999.

676 References

 64. CableLabs, Cable Modem Termination System Network Side Interface Specifi cation,
SP-CMTS-NSI, http://www.cablelabs.com/specifi cations/SP_CMTS_NSII01-960702.
pdf, 1996.

 65. CableLabs, Cable Modem to Customer Premises Equipment Interface Specifi cation,
SP-CMCI, http://www.cablelabs.com/specifi cations/SP-CMCI-I10-050408.pdf, 2005.

 66. Cain, B., Deering, S., Kouvelas, I., Fenner, B., and Thyagarajan, A., Internet Group Manage-
ment Protocol, Version 3, RFC 3376, IETF, 2002.

 67. Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and Arkko, J., Diameter Base Protocol,
RFC 3588, IETF, 2003.

 68. Callon, R., and Suzuki, M., A Framework for Layer 3 Provider-Provisioned Virtual Private
Networks (PPVPNs), RFC 4110, IETF, 2005.

 69. Camarillo, G., and García-Martín, M.-A., The 3G IP Multimedia Subsystem (IMS): Merging
the Internet and the Cellular Worlds (2nd Edition), Wiley, 2005.

 70. Campbell, A. T., Chou, S., Kounavis, M. E., Stachtos, V. D., and Vicente, J. B., NetBind: A Binding
Tool for Constructing Data Paths in Network Processor-Based Routers, Proceedings of the
5th IEEE International Conference on Open Architectures and Network Programming,
pp. 91–103, 2002.

 71. Carugi, M., and McDysan, D., Service Requirements for Layer 3 Provider Provisioned Virtual
Private Networks (PPVPNs), RFC 4031, IETF, 2005.

 72. Chang, C.-S., Lee, D.-S., and Jou, Y.-S., Load Balanced Birkhoff-von Neumann Switches, part I:
One Stage Buffering, IEEE HPSR, 2001.

 73. Chang, C., Lee, D., and Yue, C., Providing Guaranteed Rate Services in the Load Balanced
 Birkhoff-von Neumann Switches, IEEE/ACM Transaction on Networking, 14(3):
644–656, 2006.

 74. Chao, H. J., Saturn: A Terabit Packet Switch Using Dual Round-Robin, IEEE Global Telecom-
munications Conference, 1:487–495, 2000.

 75. Chao, H. J., Next Generation Routers, Proceedings of the IEEE, 90:1518–1558, 2002.

 76. Chao, H. J., and Guo, X., Quality of Service Control in High-Speed Networks, Wiley, 2002.

 77. Chen, E., Route Refresh Capability for BGP-4, RFC 2918, IETF, 2000.

 78. Cheung, S., and Pencea, C., BSFQ: Bin Sort Fair Queuing, Proceedings IEEE INFOCOM, 2002.

 79. Chuang, S.-T., Iyer, S., and McKeown, N., Practical Algorithms for Performance Guarantees in
Buffered Crossbars, Proceedings IEEE INFOCOM, Vol. 2:981–991, 2005.

 80. Chuanxiong, G., SRR, An O(1) Time Complexity Packet Scheduler for Flows in Multi-
Service Packet Networks, Proceedings ACM SIGCOMM, 2001.

 81. Clark, D. D., and Wroclawski, J., An Approach to Service Allocation in the Internet,
draft-clark-diff-svc-alloc-00.txt, IETF, 1997.

 82. Click, http://www.read.cs.ucla.edu/click/.

 83. Clos, C., A Study of Non-Blocking Switching Networks, Bell System Technical Journal,
32(5):406–424, 1953.

 84. Coffman, E. G., and Eve, J., File Structures Using Hashing Functions, Communications of
the ACM, 13(7):427–436, 1970.

 85. Coffman, K. G., and Odlyzko, A. M., Internet Growth: Is There a “Moore’s Law” for Data Traf-
fi c? in Handbook of Massive Data Sets, Abello, J., Pardalos, P. M., and Resende, M.G., (Eds.),
Kluwer Academic Publishers, pp. 47–93, 2002.

References 677

 86. Comer, D. E., Network Systems Design Using Network Processors, Prentice Hall, 2004.

 87. Conta, A., Deering, S., and Gupta, M., Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specifi cation, RFC 4443, IETF, 2006.

 88. Coppo, P., D’Ambrosio, M., and Melen, R., Optimal Cost/Performance Design of ATM
Switches, IEEE/ACM Transactions on Networking, 1(5):566–575, 1993.

 89. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to Algorithms (2nd
Edition), MIT Press and McGraw-Hill, 2001.

 90. Crescenzi, P., Dardini, L., and Grossi, R., IP Address Lookup Made Fast and Simple, Technical
Report TR-99-01, Dipartmento Di Informatica, Universit a Di Pisa, 1999; also in Proceedings
7th Annual European Symposium on Algorithms, Lecture Notes in Computer Science,
Vol. 1643:65–76, 1999.

 91. Crowley, P., Fiuczynski, M. E., and Baer, J.-L., On the Performance of Multithreaded Archi-
tectures for Network Processors, Technical Report 2000-10-01, Department of Computer
Science, University of Washington, 2000.

 92. Crowley, P., Franklin, M., Hadimioglu, H., and Onufryk, P., Network Processor Design: Issues
and Practices, Vol. 1, Morgan Kaufmann, 2002.

 93. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K. E., Santos, E., Subramonian, R., and
von Erocken, T., LogP: Towards a Realistic Model of Parallel Computation, Proceedings of
the 4th ACM SIGPLAN Symposium on Principles and Practices of Parallel Computing,
pp. 1–12, 1993.

 94. Culler, D. E., Singh, J. P., and Gupta, A., Parallel Computer Architecture—A Hardware/
Software Approach, Morgan Kaufmann, 1999.

 95. Decker, E., Langille, P., Rijsinghani, A., and McCloghrie, K., Defi nitions of Managed Objects
for Bridges, RFC 1493, IETF, 1993.

 96. Decraene, B., Le Roux, J. L., and Minei, I., LDP extension for Inter-Area LSP, draft-ietf-mpls-
ldp-interarea-03, IETF, 2008.

 97. Deering, S., Host Extensions for IP multicasting, RFC 1112, IETF, 1989.

 98. Deering, S., and Hinden, R., Internet Protocol, Version 6 (IPv6) Specifi cation, RFC 2460,
IETF, 1998.

 99. Degermark, M., Brodnik, A., Carlsson, S., and Pink, S., Small Forwarding Tables for Fast Rout-
ing Lookups, Proceedings ACM SIGCOMM Computer Communication Review,
Vol. 27:3–14, 1997.

 100. Demers, A., Keshav, S., and Shenker, S., Analysis and Simulations of a Fair Queueing
 Algorithm, Proceedings ACM SIGCOMM, Vol. 19:3–12, 1989.

 101. Dias, D. M., and Kumar, M., Packet Switching in NlogN Multistage Networks, Proceedings
IEEE GLOBECOM, pp. 114–120, 1984.

 102. Dierks, T., and Rescorla, E., The Transport Layer Security (TLS) Protocol, Version 1.1,
RFC 4346, IETF, 2006.

 103. Dolev, S., and Kesselman, A., Bounded Latency Scheduling Scheme for ATM Cells, Computer
Networks: The International Journal of Computer and Telecommunications Networking,
32(3):325–331, 2000.

 104. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., and White, A. (Eds.),
Sourcebook of Parallel Computing, Morgan Kaufmann, 2003.

 105. DSL Forum, Core Network Architecture for Access to Legacy Data Network over ADSL,
TR-025, http://www.dslforum.org/techwork/tr/TR-025.pdf, 1999.

678 References

 106. DSL Forum, Multi-Service Architecture & Framework Requirements, TR-058,
http://www.dslforum.org/techwork/tr/TR-058.pdf, 2003.

 107. DSL Forum, DSL Evolution—Architecture Requirements for the Support of QoS-Enabled
IP Services, TR-059, http://www.dslforum.org/techwork/tr/TR-059.pdf, 2003.

 108. DSL Forum, Migration to Ethernet Based DSL Aggregation, TR-101, http://www.dslforum.org/
techwork/tr/TR-101.pdf, 2006.

 109. Eatherton, W., Dittia, Z., and Varghese, G., Full Tree Bit Map: Hardware/Software IP Lookup
Algorithms with Incremental Updates, Proceedings IEEE INFOCOM, 1999.

 110. Eatherton, W., Varghese, G., and Dittia, Z., Tree Bitmap: Hardware/Software IP Lookups with
Incremental Updates, Proceedings ACM SIGCOMM Computer Communication Review,
Vol. 34:97–122, 2004.

 111. Effenberger, F., Cleary, D., Haran, O., Kramer, G., Ding-Li, R., Oron, M., and Pfeiffer, T., An
Introduction to PON Technologies, IEEE Optical Communications, in IEEE Communica-
tions Magazine, 45(3):S17–S25, 2007.

 112. Eicker, E., and Lippert, T., Scalable Ethernet Clos-Switches, Euro-Par 2006 Parallel Process-
ing, Lecture Notes in Computer Science, Vol. 4128, Springer, pp. 874–883, 2006.

 113. Eisler, M., XDR: External Data Representation Standard, Request for Comments 4506, IETF,
2006.

 114. Ekman, M., Warg, F., and Nilson, J., An In-Depth Look at Computer Performance Growth,
ACM SIGARCH Computer Architecture News, 33(1):144–147, 2005.

 115. Eng, K. Y., Hluchyj, M. G., and Yeh, Y.-S., A Knockout Switch for Variable-Length Packets, IEEE
Journal on Selected Areas in Communications, 5(9):1426–1435, 1987.

 116. Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S., Handley, M., Jacobson, V., Liu, C.,
Sharma, P., and Wei, L., Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol
Specifi cation, RFC 2362, IETF, 1998.

 117. EZchip, EZdesign—Microcode Development Tools for NP-1 Family: User Manual,
Version 3.4, Document Number: 27-7799-07, EZchip Technologies, Inc., 2003.

 118. EZchip, NP-1 Network Processor: Architecture and Instruction Set: User Manual,
 Document Number: 27-7816-02, EZchip Technologies, Inc., 2002.

 119. Fang, W., and Seddigh, N., Time Sliding Window Three Color Marker, RFC 2859, IETF, 2000.

 120. Farinacci, D., Li, T., Hanks, S., Meyer, D., and Traina, P., Generic Routing Encapsulation (GRE),
RFC 2784, IETF, 2000.

 121. Farrel, A., Fault Tolerance for the Label Distribution Protocol (LDP), RFC 3479, IETF, 2003.

 122. Feldman, A., and Muthukrishnan, S., Tradeoffs for Packet Classifi cation, Proceedings IEEE
INFOCOM, Vol. 3:1193–1202, 2000.

 123. Feng, W.-C., Improving Internet Congestion Control and Queue Management Algorithms,
PhD Dissertation, Computer Science and Engineering, University of Michigan, 1999.

 124. Feng, W.-C., Kandlur, D. D., Saha, D., and Shin, K. G., BLUE: A New Class of Active Queue
Management Algorithms, Technical Report CSE-TR-387-99, University of Michigan, 1999.

 125. Feng, W.-C., Shin, K. G., Kandlur, D. D., and Saha, D., The BLUE Active Management
 Algorithms, IEEE/ACM Transactions on Networking, 10(4):513–528, 2002.

 126. Fenner, W., Internet Group Management Protocol, Version 2, RFC 2236, IETF, 1997.

 127. Ferrari, D., and Verma, D., A Scheme for Real-Time Channel Establishment in Wide-Area
Networks, IEEE Journal on Selected Areas of Communications, 8(3):368–379, 1990.

References 679

 128. Floyd, S., References on RED (Random Early Detection) Queue Management,
http://www.icir.org/fl oyd/red.html, 2002.

 129. Floyd, S., and Jacobson, V., Random Early Detection Gateways for Congestion Avoidance,
IEEE/ACM Transactions on Networking, 1(4):397–341, 1993.

 130. Floyd, S., and Jacobson, V., Link-Sharing and Resource Management Models for Packet
 Networks, IEEE/ACM Transactions on Networking, 3(4):365–386, 1995.

 131. Flynn, M. J., Very High-Speed Computing Systems, Proceedings of the IEEE,
Vol. 54:1901–1909, 1966.

 132. Flynn, M. J., Some Computer Organizations and Their Effectiveness, IEEE Transactions on
Computers, 21(9):948–960, 1972.

 133. Fortune, S., and Wyllie, J., Parallelism in Random Access Machines, Proceedings of the 10th
ACM Symposium on Theory of Computing, pp. 114–118, 1978.

 134. Franklin, M., Crowley, P., and Onufryk, P., Network Processor Design, Vol. 2, Morgan Kauf-
mann, 2003.

 135. Franklin, M., Crowley, P., Hadimioglu, H., and Onufryk, P., Network Processor Design: Issues
and Practices, Vol. 3, Morgan Kaufmann, 2005.

 136. Fredkin, E., Trie Memory, Communications of the ACM, 3(9):490–500, 1960.

 137. Fredman, M. L., and Tarjan, R. E., Fibonacci Heaps and their Uses in Improved Network
Optimization Algorithms, Journal of the Association for Computing Machinery,
34(3):596–615, 1987.

 138. Friend, R., Making the Gigabit IPsec VPN Architecture Secure, IEEE Computer, 37(6):54–60, 2004.

 139. Frobenius, G., Über zerlegbare Determinanten, Sitzungsberichte der Koniglich
 Preußischen Akademie der Wisssenschaften zu Berlin, XVIII, pp. 274–277, 1917.

 140. Fuller, V., Li, T., Yu, J., and Varadhan, K., Classless Inter-Domain Routing (CIDR): An Address
Assignment and Aggregation Strategy, RFC 1519, IETF, 1993.

 141. Ganjali, Y., Keshavarzian, A., and Shah, D., Input-Queued Switches: Cell Switching vs. Packet
Switching, Proceedings IEEE INFOCOM, Vol. 3:1651–1658, 2003.

 142. Ganjali, Y., Keshavarzian, A., and Shah, D., Cell Switching Versus Packet Switching in Input-
Queued Switches, IEEE/ACM Transactions on Networking, 13(4):782–789, 2005.

 143. Gao, Y., and Hou, J., A State Feedback Control Approach to Stabilizing Queues for ECN-
Enabled TCP Connections, Proceedings IEEE INFOCOM, 2003.

 144. Gavrilovska, A., SPLITS Stream Handlers: Deploying Application-Level Services to Attached
Network Processors, PhD Dissertation, Georgia Institute of Technology, 2004.

 145. Gavrilovska, A., Kumar, S., and Schwan, K., The Execution of Event-Action Rules on Pro-
grammable Network Processors, Proceedings of the 1st Workshop on Operating System
and Architectural Support for the On-Demand IT Infrastructure (OASIS), 2004.

 146. Geist, A., Beguelin, A., Dongara, J. J., Jiang, W., Manchek, R., and Sonderam, V., PVM: Parallel
Virtual Machine—A Users’ Guide and Tutorial to Networked Parallel Computing,
MIT Press, 1994.

 147. Giordano, S., Procissi, G., Rossi, F., and Vitucci, F., Design of a Multi-Dimensional Packet
Classifi er for Network Processors, Proceedings of the IEEE International Conference on
Communications, Vol. 2:503–508, 2006.

 148. Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and Malis, A., A Framework for IP Based
Virtual Private Networks, RFC 2764, IETF, 2000.

680 References

 149. Goke C., and Lipovsky, G. J., Banyan Networks for Partitioning Multiprocessor Systems,
Proceedings of the 1st Annual Symposium on Computer Architecture, pp. 21–28, 1973.

 150. Golestani S. J., A Framing Strategy for Congestion Management, IEEE Journal on Selected
Areas of Communications, 9(7):1064–1077, 1991.

 151. Golestani, S. J., A Self-Clocked Fair Queuing Scheme for Broadband Applications, Proceed-
ings IEEE INFOCOM, pp. 636–646, 1994.

 152. Gries, M., Kulkarni, C., Sauer, C., and Keutzer, K., Exploring Trade-Offs in Performance
and Programmability of Processing Element Topologies for Network Processors, 2nd
Workshop on Network Processors (NP2) at the 9th International Symposium on High
 Performance Computer Architecture, pp. 75–87, 2003.

 153. Gross, G., Kaycee, M., Li, A., Malis, A., and Stephens, J., PPP Over AAL5, RFC 2364, IETF, 1998.

 154. Grossman, D., and Heinanen, J., Multiprotocol Encapsulation over ATM Adaptation Layer 5,
RFC 2684, IETF, 1999.

 155. Guerin, R., and Peris, V., Quality-of-Service in Packet Networks: Basic Mechanisms and
Directions, Computer Networks, 31(3):169–189, 1999.

 156. Guez, D., Kesselman, A., and Rosen, A., Packet-Mode Policies for Input-Queued Switches,
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 93–103, 2004.

 157. Gunning, P., Wilkinson, M., Rragami, L., Semnani, S., and Smith, K., Multiservice Ethernet
Access, BT Technology Journal, 24(2):72-78, 2006.

 158. Gupta, P., and McKeown, N., Designing and Implementing a Fast Crossbar Scheduler,
IEEE Micro, 19(1):20–28, 1999.

 159. Gupta, P., and McKeown, N., Packet Classifi cation on Multiple Fields, Proceedings
SIGCOMM ‘99, Computer Communication Review, Vol. 29:147–160, 1999.

 160. Gupta, P., and McKeown, N., Classifi cation Using Hierarchical Intelligent Cuttings,
IEEE Micro, 20(1):34–41, 2000.

 161. Gupta, P., and McKeown, N., Algorithms for Packet Classifi cation, IEEE Network,
15(2):24–32, 2001.

 162. Gupta, P., Lin, S., and McKeown, N., Routing Lookups in Hardware at Memory Access
Speeds, Proceedings of INFOCOM, pp. 1240–1247, 1998.

 163. Gwehenberger, G., Anwendung einer binären Verweiskettenmethode beim Aufbau von
Listen, Elektronische Rechenanlagen, 10(5):223–226, 1968.

 164. Hall, P., On Representatives of Subsets, Journal of the London Mathematical Society,
(10):26–30, 1935.

 165. Hambrusch, E. S., Models of Parallel Computation, Proceedings of Workshop on Challenges
for Parallel Processing, International Conference on Parallel Processing, pp. 92–95, 1996.

 166. Hamzeh, K., Pall, G., Verthein, W., Taarud, J., Little, W., and Zorn, G., Point-to-Point Tunneling
Protocol (PPTP), RFC 2637, IETF, 1999.

 167. Hedrick, C. L., Routing Information Protocol, RFC 1058, IETF, 1988.

 168. Heinanen, J., and Guerin, R., A Single Rate Three Color Marker, RFC 2697, IETF, 1999.

 169. Heinanen, J., and Guerin, R., A Two Rate Three Color Marker, RFC 2698, IETF, 1999.

 170. Heinanen, J., Baker, F., Weiss, W., and Wroclawski, J., Assured Forwarding PHB Group,
RFC 2597, IETF, 1999.

 171. Hennessy, L. J., and Patterson, A. D., Computer Architecture: A Quantitative Approach
(4th Edition), Morgan Kaufmann, 2006.

References 681

 172. Hernandez-Valencia, E., Scholten, M., and Zhu, Z., The Generic Framing Procedure (GFP):
An Overview, IEEE Communications Magazine, 40(5):63–71, 2002.

 173. High Performance Fortran Forum, High Performance Fortran Language Specifi cation,
Version 1.1, 1994.

 174. Hollot, C., Misra, V., Towsley, D., and Gong, W., On Designing Improved Controllers for AQM
Routers Supporting TCP Flows, Proceedings IEEE INFOCOM, pp. 1726–1734, 2001.

 175. Huang, H., Zhao, S., Pan, J., and Su, C., A Fast IP Routing Lookup Scheme for Gigabit Switch-
ing Routers, Proceedings IEEE INFOCOM, 1999.

 176. Husak, D., Network Processors: A Defi nition and Comparison, White paper, C-PORT/
FreeScale, http://www.freescale.com/fi les/netcomm/doc/white_paper/
COMMPROCWP.pdf, 2000.

 177. Hwang, K., Advanced Computer Architecture: Parallelism, Scalability, Programmability,
McGraw-Hill, 1993.

 178. IEEE Std 802-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview
and Architecture, 2002.

 179. IEEE Std 802.1ad-2005, IEEE Standard for Local and Metropolitan Area Networks: Virtual
Bridged Local Area Networks—Provider Bridges, 2005.

 180. IEEE Std 802.1ag-2007, IEEE Standard for Local and Metropolitan Area Networks: Con-
nectivity Fault Management, 2007.

 181. IEEE P802.1ah/D4.0, IEEE Standard for Local and Metropolitan Area Networks, Virtual
Bridged Local Area Networks: Provider Backbone Bridges, 2007.

 182. IEEE Std 802.1ak-2007, IEEE Standard for Local and Metropolitan Area Networks: Mul-
tiple Registration Protocol, 2007.

 183. IEEE Std 802.1D-2004, Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges, 2004.

 184. IEEE Std 802.1Q-2005, IEEE Standard for Local and Metropolitan Area Networks, Virtual
Bridged Local Area Networks, 2006.

 185. IEEE Std 802.2-1998 Edition (R2003), IEEE Standard for Local and Metropolitan Area
 Networks, Part 2: Logical Link Control, 1998.

 186. IEEE Std 802.3-2005, IEEE Standard for Local and Metropolitan Area Networks, Part 3:
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifi cations, 2005.

 187. IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks, Part 16:
Air Interface for Fixed Broadband Wireless Access Systems, 2004.

 188. IEEE Std 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks,
Part 16: Air Interface for Fixed Broadband Wireless Access Systems, Amendment 2: Physi-
cal and Medium Access Control Layers for Combined Fixed and Mobile Operation in
Licensed Bands, 2005.

 189. IEEE 802-16m, Project Authorization Request, http://standards.ieee.org/board/nes/
projects/802-16m.pdf.

 190. IEEE Std 802.17-2004, IEEE Standard for Local and Metropolitan Area Networks, Part 17:
Resilient Packet Ring (RPR) Access Method and Physical Layer Specifi cations, 2004.

 191. Iliadis, I., and Denzel, W. E., Resequencing Worst-Case Analysis for Parallel Buffered Packet
Switches, IEEE Transactions on Communications, 55(3):605–617, 2007.

 192. Intel, IXA SDK ACE Programming Framework, SDK 2.01 Reference, Document Number
A46817-002, Revision 3.4, Intel, 2001.

682 References

 193. International Organization for Standardization, Information Technology Telecommunications
and Information Exchange Between Systems—High-Level Data Link Control (HDLC)
 Procedures—Frame Structure—Amendment 2: Extended Transparency Options For Start/Stop
 Transmission, ISO/IEC 3309, 1992.

 194. International Telecommunication Union, Characteristics of Plesiochronous Digital Hierarchy
(PDH) Equipment Functional Blocks, ITU-T Recommendation G.705 (10/00), 2000.

 195. International Telecommunication Union, Network Node Interface for the Synchronous
Digital Hierarchy (SDH), ITU-T Recommendation G.707/Y.1322 (01/07), 2007.

 196. International Telecommunication Union, Interfaces for the Optical Transport Network
(OTN), ITU-T Recommendation G.709/Y.1331 (03/03), 2003.

 197. International Telecommunication Union, Architecture of Transport Networks Based on the
Synchronous Digital Hierarchy (SDH), ITU-T Recommendation G.803 (03/00), 2000.

 198. International Telecommunication Union, Generic Functional Architecture of Transport
Networks, ITU-T Recommendation G.805 (03/00), 2000.

 199. International Telecommunication Union, Requirements for Automatic Switched Transport
Networks (ASTN), ITU-T Recommendation G.807/Y.1302 (07/01), 2001.

 200. International Telecommunication Union, Terms and Defi nitions for Optical Transport
 Networks (OTN), ITU-T Recommendation G.870/Y.1352 (03/08), 2008.

 201. International Telecommunication Union, Architecture of Optical Transport Networks,
ITU-T Recommendation G.872 (11/01), 2001.

 202. International Telecommunication Union, Gigabit-Capable Passive Optical Networks
(G-PON): Transmission Convergence Layer Specifi cation, ITU-T Recommendation G.984.3
(03/08), 2008.

 203. International Telecommunication Union, High Bit Rate Digital Subscriber Line (HDSL)
Transceivers, ITU-T Recommendation G.991.1 (10/98), 1998.

 204. International Telecommunication Union, Asymmetric Digital Subscriber Line (ADSL)
Transceivers, ITU-T Recommendation G.992.1 (07/99), 1999.

 205. International Telecommunication Union, Very High Speed Digital Subscriber Line
Transceivers, ITU-T Recommendation G.993.1 (06/04), 2004.

 206. International Telecommunication Union, Generic Framing Procedure (GFP),
ITU-T Recommendation G.7041/Y.1303 (08/05), 2005.

 207. International Telecommunication Union, Link Capacity Adjustment Scheme (LCAS) for
Virtual Concatenated Signals, ITU-T Recommendation G.7042/Y.1305 (03/06), 2006.

 208. International Telecommunication Union, Virtual Concatenation of Plesiochronous Digital
Hierarchy (PDH) Signals, ITU-T Recommendation G.7043/Y.1343 (07/04), 2004.

 209. International Telecommunication Union, Distributed Call and Connection Management
(DCM) Based on PNNI, ITU-T Recommendation G.7713.1/Y.1704.1 (03/03), 2003.

 210. International Telecommunication Union, Distributed Call and Connection Management:
Signalling Mechanism Using GMPLS RSVP-TE, ITU-T Recommendation G.7713.2/
Y.1704.2 (03/03), 2003.

 211. International Telecommunication Union, Distributed Call and Connection Management:
Signalling Mechanism Using GMPLS CR-LDP, ITU-T Recommendation G.7713.3/Y.1704.3
(03/03), 2003.

 212. International Telecommunication Union, Architecture for the Automatically Switched
 Optical Network (ASON), ITU-T Recommendation G.8080/Y.1304 (06/06), 2006.

References 683

 213. International Telecommunication Union, Terms and Defi nitions for Automatically Switched
Optical Networks (ASON), ITU-T Recommendation G.8081/Y.1353 (03/08), 2008.

 214. International Telecommunication Union, Terms and Defi nitions for Transport MPLS, ITU-T
Recommendation G.8101/Y.1355 (12/06), 2006.

 215. International Telecommunication Union, Architecture of Transport MPLS (T-MPLS) Layer
Network, ITU-T Recommendation G.8110.1/Y.1370.1 (11/06), 2006.

 216. International Telecommunication Union, Interfaces for the Transport MPLS (T-MPLS)
 Hierarchy, ITU-T Recommendation G.8112/Y.1371 (10/06), 2006.

 217. International Telecommunication Union, Phoneline Networking Transceivers—Foundation
(HomePNA 2.0), ITU-T Recommendation G.9951 (02/01), 2001.

 218. International Telecommunication Union, Phoneline Networking Transceivers—Payload Format
and Link Layer Requirements (HomePNA 2.0), ITU-T Recommendation G.9952 (11/01), 2001.

 219. International Telecommunication Union, Phoneline Networking Transceivers—Isolation
Function (HomePNA 2.0), ITU-T Recommendation G.9953 (03/03), 2003.

 220. International Telecommunication Union, Home Networking Transceivers—Enhanced
Physical, Media Access, and Link Layer Specifi cations (HomePNA 3.0 and 3.1), ITU-T
 Recommendation G.9954 (01/07), 2007.

 221. International Telecommunication Union, B-ISDN General Network Aspects, ITU-T
 Recommendation I.311 (08/96), 1996.

 222. International Telecommunication Union, B-ISDN ATM Layer Specifi cation, ITU-T
 Recommendation I.361 (02/99), 1999.

 223. International Telecommunication Union, Traffi c Control and Congestion Control in B-ISDN,
ITU-T, Recommendation I.371, 1995.

 224. International Telecommunication Union, Transmission Systems for Interactive Cable
 Television Services, ITU-T Recommendation J.112 (03/98), 1998.

 225. International Telecommunication Union, Second-Generation Transmission Systems for
Interactive Cable Television Services—IP Cable Modems, ITU-T Recommendation J.122
(12/07), 2007.

 226. International Telecommunication Union, Overview of Third-Generation Transmission
Systems for Interactive Cable Television Services—IP Cable Modems, ITU-T Recom-
mendation J.222.0 (12/07), 2007.

 227. International Telecommunication Union, Operation and Maintenance Mechanism for
MPLS Networks, ITU-T Recommendation Y.1711 (02/04), 2004.

 228. International Telecommunication Union, Requirements for OAM Functions in Ethernet-
Based Networks and Ethernet Services, ITU-T Recommendation Y.1730 (01/04), 2004.

 229. International Telecommunication Union, OAM Functions and Mechanisms for Ethernet
Based Networks, ITU-T Recommendation Y.1731 (02/08), 2008.

 230. Iyer, S., and McKeown, N. W., Analysis of the Parallel Packet Switch Architecture, IEEE/ACM
Transaction on Networking, 11(2):314–324, 2003.

 231. Iyer, S., Zhang, R., and McKeown, N., Routers with a Single Stage of Buffering, ACM
 SIGCOMM Computer Communication Review, 32(4):251–264, 2002.

 232. Jacobson, V., Nichols, K., and Poduri, K., An Expedited Forwarding PHB, RFC 2598, IETF, 1999.

 233. Jain, R., Chiu, D. M., and Hawe, W. R., A Quantitative Measure of Fairness and Discrimina-
tion for Resource Allocation Shared Computer Systems, Digital Equipment Corporation
Technical Report TR-301, 1984.

684 References

 234. Jajszczyk, A., Optical Networks—the Electro-Optic Reality, Optical Switching and
Networking, 1(1):3–18, 2005.

 235. Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu, L., Doolan, P., Worster, T., Feldman, N.,
Fredette, A., Girish, M., Gray, E., Heinanen, J., Kilty, T., and Malis, A., Constraint-Based LSP
Setup Using LDP, RFC 3212, IETF, 2002.

 236. Javidi, T., Magill, R., and Hrabik, T., A High-Throughput Scheduling Algorithm for a Buff-
ered Crossbar Switch Fabric, Proceedings of the IEEE International Conference on
 Communications, Vol. 5:1586–1591, 2001.

 237. JEDEC Standard, DDR2 SDRAM Specifi cation, JESD79-2D, JEDEC Solid State Technology
Association, Electronic Industries Alliance, 2008.

 238. JEDEC Standard, DDR3 SDRAM Specifi cation, JESD79-3A, JEDEC Solid State Technology
Association, Electronic Industries Alliance, 2007.

 239. Jeon, H. S., Riegel, M., and Jeong, S. J., Transmission of IP Over Ethernet Over IEEE 802.16
Networks, draft-ietf-16ng-ip-over-ethernet-over-802.16-04.txt, IETF, 2007.

 240. Jerraya, A. A., and Wolf, W., Multiprocessor Systems-on-Chip, Morgan Kaufmann, 2005.

 241. Jones, N., and Murton, C., Extending Point-to-Point Protocol (PPP) Over Synchronous
 Optical NETwork/Synchronous Digital Hierarchy (SONET/SDH) with Virtual Conca-
tenation, High Order and Low Order Payloads, RFC 3255, IETF, 2002.

 242. Kalmanek, C. R., Kanakia, H., and Keshav, S., Rate Controlled Servers for Very High Speed
Networks, Proceedings GLOBECOM, pp. 12–20, 1990.

 243. Kanhere, S., and Sethu, H., Prioritized Elastic Round Robin: An Effi cient and Low-Latency
Packet Scheduler with Improved Fairness, Technical Report DU-CS-03-03, Department of
Computer Science, Drexel University, 2003.

 244. Kanhere, S., Sethu, H., and Parekh, A., Fair and Effi cient Packet Scheduling Using Elastic
Round Robin, IEEE Transactions on Parallel and Distributed Systems, 13(3):324–336,
2002.

 245. Karlin, S., and Peterson, L., VERA: An Extensible Router Architecture, Proceedings of the
4th International Conference on Open Architectures and Network Programming
(OPENARCH), pp. 3–14, 2001; and also in Computer Networks, 38(3):277–293, 2002.

 246. Karol, M. J., Hluchyj, M. G., and Morgan, S. P., Input Versus Output Queueing on a Space-
 Division Packet Switch, IEEE Transactions on Communications, 35(12):1347–1356, 1987.

 247. Kartalopoulos, S. V., Next Generation SONET/SDH: Voice and Data, IEEE Press/Wiley, 2004.

 248. Katz, D., Kompella, K., and Yeung, D., Traffi c Engineering (TE) Extensions to OSPF Version 2,
RFC 3630, IETF, 2003.

 249. Kent, S., and Seo, K., Security Architecture for the Internet Protocol, RFC 4301, IETF, 2005.

 250. Keshav, S., An Engineering Approach to Computer Networking: ATM Networks and the
Telephone Network, Addison-Wesley, 1997.

 251. Keslassy, I., The Load-Balanced Router, PhD Dissertation, Stanford University, 2004.

 252. Keslassy, I., and McKeown, N., Maintaining Packet Order in Two-Stage Switches, Proceed-
ings of IEEE INFOCOM, Vol. 2:1032–1041, 2002.

 253. Keslassy, I., Chang, C.-S., McKeown, N., and Lee, D.-S., Optimal Load-Balancing, Proceedings
of IEEE INFOCOM, Vol. 3:1712–1722, 2005.

 254. Keutzer, K., Malik, S., and Newton, A. R., From ASIC to ASIP: The Next Design Disconti-
nuity, Proceedings of the IEEE International Conference on Computer Design: VLSI in
 Computers and Processors, 2002.

References 685

 255. Khosravi, H., and Anderson, T., Requirements for Separation of IP Control and Forwarding,
RFC 3654, IETF, 2003.

 256. Kleene, S. C., Mathematical Logic, Wiley, 1967.

 257. Kleinrock, L., Time-Shared Systems: A Theoretical Treatment, Journal of the ACM,
14(2):242–261, 1967.

 258. Kleinrock, L., Queueing Systems, Volume 2: Computer Applications, Wiley, 1976.

 259. Knight, P., Ould-Brahim, H., and Gleeson, B., Network Based IP VPN Architecture Using
Virtual Routers, draft-ietf-l3vpn-vpn-vr-03.txt, IETF, 2006.

 260. Knuth, D. E., The Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition), Addison-Wesley, 1998.

 261. Koelbel, C. H., Loveman, D. V., Schreiber, R. S., Steele, G. L., and Zosel, M. E., The High
 Performance Fortran Handbook, MIT Press, 1994.

 262. Kohler, E., The Click Modular Router, PhD Dissertation, MIT, http://pdos.csail.mit.edu/
papers/click:kohler-phd/thesis.pdf, 2001.

 263. Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F., The Click Modular Router,
ACM Transactions on Computer Systems, 18(3):263–297, 2000.

 264. Kompella, K., and Rekhter, Y., Virtual Private LAN Service (VPLS) Using BGP for Auto-
 Discovery and Signaling, RFC 4761, IETF, 2007.

 265. Kompella, K., Rekhter, Y., and Kullberg, A., Signaling Unnumbered Links in CR-LDP,
RFC 3480, IETF, 2003.

 266. Kunniyur, S., and Srikant, R., Analysis and Design of an Adaptive Virtual Queue (AVQ)
 Algorithm for Active Queue Management, Proceedings ACM SIGCOMM, 2001.

 267. Labovitz, C., Scalability of the Internet Backbone Routing Infrastructure, PhD Dissertation,
 University of Michigan, 1999.

 268. Lakshman, T. V., Neidhardt, A., and Ott, T., The Drop From Front Strategy in TCP Over ATM
and Its Interworking with Other Control Features, Proceedings IEEE INFOCOM, 1996.

 269. Lakshman, T. V., and Stiliadis, D., High-Speed Policy-Based Packet Forwarding Using Effi cient
Multi-Dimensional Range Matching, Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication,
pp. 203–214, 1998.

 270. Lampson, B., Srinivasan, V., and Varghese, G., IP Lookups Using Multiway and Multicolumn
Search, Proceedings IEEE INFOCOM, pp. 1248–1256, 1998.

 271. Lasserre, M., and Kompella, V., Virtual Private LAN Services Using LDP, RFC 4762, IETF, 2007.

 272. Lau, J., Townsley, M., and Goyret, I., Layer Two Tunneling Protocol—Version 3 (L2TPv3),
RFC 3931, IETF, 2005.

 273. Laubach, M., and Halpern, J., Classical IP and ARP over ATM, RFC 2225, IETF, 1998.

 274. Lee, C.-H., Sorin, W. V., and Kim, B. Y., Fiber to the Home Using a PON Infrastructure, Journal
of Lightwave Technology, 24(12):4568–4583, 2006.

 275. Lee, E. A., The Problem with Threads, IEEE Computer, 39(5):33-42, 2006.

 276. Lee, K., Coulson, G., Blair, G., Joolia, A., and Ueyama, K., Towards a Generic Programming
Model for Network Processors, Proceedings of the 12th IEEE International Conference
on Networks, pp. 504–510, 2004.

 277. Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann, 1992.

686 References

 278. Lekkas, P. C., Network Processors: Architectures, Protocols, and Platforms, McGraw-Hill,
2003.

 279. Lenzini, L., Mingozzi, E., and Stea, G., Eligibility-Based Round Robin for Fair and Effi cient
Packet Scheduling in Wormhole Switching Networks, IEEE Transactions on Parallel and
Distributed Systems, 15(3):244–256, 2004.

 280. Li, X., Zhou, Z., and Hamdi, M., Space-Memory-Memory Architecture for CLOS-Network
Packet Switches, Proceedings of the IEEE International Conference on Communications,
Vol. 2:1031–1035, 2005.

 281. Li, Y., Ko, K.-T., and Chen, G., A Smith Predictor-Based PI-Controller for Active Queue
Management, IEICE Transactions on Communications, E88–B(11):4293–4300, 2005.

 282. Light Reading, http://www.lightreading.com/.

 283. Lin, D., and Morris, R., Dynamics of Random Early Detection, Proceedings ACM SIGCOMM,
pp. 127–137, 1997.

 284. Lin, M., and McKeown, N., The Throughput of a Buffered Crossbar Switch, IEEE Communi-
cations Letters, 9(5):465–467, 2005.

 285. Lin, Y. S., and Shung, C. B., Quasi-Pushout Cell Discarding, IEEE Communications Letters,
1(5):146–148, 1997.

 286. Linley Group, http://www.linleygroup.com/.

 287. Liu, C., and Layland, J., Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment, Journal of the ACM, 20(1):46–61, 1973.

 288. Lougheed, K., and Rekhter, Y., Border Gateway Protocol (BGP), RFC 1105, IETF, 1989.

 289. Lougheed, K., and Rekhter, Y., Border Gateway Protocol (BGP), RFC 1163, IETF, 1990.

 290. Lougheed, K., and Rekhter, Y., Border Gateway Protocol 3 (BGP-3), RFC 1267, IETF, 1991.

 291. Magill, R. B., Rohrs, C. E., and Stevenson, R. L., Output-Queued Switch Emulation by Fabrics
with Limited Memory, IEEE Journal on Selected Areas in Communications, 21(4):
606–615, 2003.

 292. Malis, A., Pate, P., Cohen, R., and Zelig, D., Synchronous Optical Network/Synchronous
 Digital Hierarchy (SONET/SDH) Circuit Emulation over Packet (CEP), RFC 4842, IETF, 2007.

 293. Malkin, G., RIP Version 2, RFC 2453, IETF, 1998.

 294. Malkin, G., and Minnear, R., RIPng for IPv6, RFC 2080, IETF, 1997.

 295. Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D., and Wheeler, R., A Method for
 Transmitting PPP over Ethernet (PPPoE), RFC 2516, IETF, 1999.

 296. Mammoliti, V., Zorn, G., Arberg, P., and Rennison, R., DSL Forum Vendor-Specifi c RADIUS
Attributes, RFC 4679, IETF, 2006.

 297. Mannie, E., Generalized Multi-Protocol Label Switching (GMPLS) Architecture, RFC 3945,
IETF, 2004.

 298. Marowka, A., Analytic Comparison of Two Advanced C Language-Based Parallel Programming
Models, Proceedings of the Third International Symposium on Parallel and Distributed
Computing/Third International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Networks, pp. 284–291, 2004.

 299. Marsan, M. A., Bianco, A., Giaccone, P., Leonardi, E., and Neri, F., Packet Scheduling in Input-
Queued Cell-Based Switches, Proceedings of IEEE INFOCOM, pp. 1085–1094, 2001.

 300. Marsan, M. A., Bianco, A., Leonardi, E., and Milia, L., RPA: A Flexible Scheduling Algorithm for
Input Buffered Switches, IEEE Transactions on Communications, 47(12):1921–1933, 1999.

References 687

 301. Martini, L., IANA Allocations for Pseudowire Edge to Edge Emulation (PWE3), RFC 4446,
IETF, 2006.

 302. Martini, L., and Sajassi, A., 802.1ah Ethernet Pseudowire, draft-martini-pwe3-802.
1ah-pw-02.txt, IETF, 2008.

 303. Martini, L., Bocci, M., and Balus, F., Dynamic Placement of Multi Segment Pseudo Wires,
draft-ietf-pwe3-dynamic-ms-pw-06, IETF, 2007.

 304. Martini, L., Jayakumar, J., Bocci, M., El-Aawar, N., Brayley, J., and Koleyni, G., Encapsulation
Methods for Transport of Asynchronous Transfer Mode (ATM) Over MPLS Networks, RFC
4717, IETF, 2006.

 305. Martini, L., Kawa, C., and Malis, A., Encapsulation Methods for Transport of Frame Relay
Over Multiprotocol Label Switching (MPLS) Networks, RFC 4619, IETF, 2006.

 306. Martini, L., Rosen, E., and El-Aawar, N., Encapsulation Methods for Transport of Layer 2
Frames Over MPLS Networks, RFC 4905, IETF, 2007.

 307. Martini, L., Rosen, E., and El-Aawar, N., Transport of Layer 2 Frames Over MPLS, RFC 4906,
IETF, 2007.

 308. Martini, L., Rosen, E., El-Aawar, N., and Heron, G., Encapsulation Methods for Transport of
Ethernet Over MPLS Networks, RFC 4448, IETF, 2006.

 309. Martini, L., Rosen, E., El-Aawar, N., Smith, T., and Heron, G., Pseudowire Setup and
 Maintenance Using the Label Distribution Protocol (LDP), RFC 4447, IETF, 2006.

 310. Martini, L., Rosen, E., Heron, G., and Malis, A., Encapsulation Methods for Transport of PPP/
High-Level Data Link Control (HDLC) Over MPLS Networks, RFC 4618, IETF, 2006.

 311. McKenney, P. E., Stochastic Fairness Queuing, Proceedings IEEE INFOCOM, 1990.

 312. McKeown, N., Scheduling Algorithms for Input-Queued Cell Switches, PhD Dissertation,
University of California at Berkeley, 1995.

 313. McKeown, N., iSLIP: A Scheduling Algorithm for Input-Queued Switches, IEEE/
ACM Transactions on Networking, 7(2):188–201, 1999.

 314. McKeown, N., Mekkittikul, A., Anantharam, V., and Walrand, J., Achieving 100% Throughput in
an Input-Queued Switch, IEEE Transactions on Communications, 47(8):1260–1267, 1999.

 315. McKeown, N., Varaiya, P., and Warland, J., Scheduling Cells in an Input-Queued Switch, IEE
Electronics Letters, 29(25):2174–2175, 1993.

 316. Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard”, 1995.

 317. Metro Ethernet Forum, Ethernet Services Attributes Phase 2, MEF 10.1, 2006.

 318. Metro Ethernet Forum, Ethernet Local Management Interface (E-LMI), MEF 16, 2006.

 319. Metro Ethernet Forum, Service OAM Requirements and Framework—Phase I, MEF 17, 2007.

 320. Mogul, J., and Postel, J., Internet Standard Subnetting Procedure, RFC 950, IETF, 1985.

 321. Mohan, D., and Sajassi, A., L2VPN OAM Requirements and Framework, draft-ietf-l2vpn-
oam-req-frmk-09.txt, IETF, 2007.

 322. Morris, R., Kohler, E., Jannotti, J., and Kaashoek, M. F., The Click Modular Router, Proceedings
of the Seventeenth ACM Symposium on Operating Systems Principles (SOSP ‘99); also in
Operating Systems Review, 34:217–231, 1999.

 323. Morrison, D. R., PATRICIA—Practical Algorithm To Retrieve Information Coded In
 Alphanumeric, Journal of the ACM, 15(4):514–534, 1968.

324. Moy, J., Multicast Extensions to OSPF, RFC 1584, IETF, 1994.

688 References

325. Moy, J., OSPF Version 2, RFC 2328, IETF, 1998.

326. Munteanu, D., and Williamson, C., An FPGA-Based Network Processor for IP Packet
 Compression, Proceedings SCS SPECTS, pp. 599–608, 2005.

327. Myers, G., Overview of IP Fabrics’ PPL Language and Virtual Machine, white paper,
http://www.ipfabrics.com/pdf/Overview_of_PPL_and_VM.pdf, 2006.

328. Nadeau, T. D., Morrow, M., Busschbach, P., Aissaoui, M., and Allan, D., Pseudo Wire (PW)
OAM Message Mapping, draft-ietf-pwe3-oam-msg-map-06.txt, IETF, 2008.

329. Nagarajan, A., Generic Requirements for Provider Provisioned Virtual Private Networks
(PPVPN), RFC 3809, IETF, 2004.

330. Nakamura, M., Ueda, H., Makino, S., Yokotani, T., and Oshima, K., Proposal of Networking by
PON Technologies for Full and Ethernet Services in FTTx, Journal of Lightwave Technol-
ogy, 22(11):2631–2640, 2004.

331. Network Processing Forum (NPF), CSIX-L1: Common Switch Interface Specifi cation-L1,
Network Processing Forum Implementation Agreement, 2000.

332. Network Processing Forum (NPF), Network Processing Forum Streaming Interface (NPSI)
Implementation Agreement, NPF2001.121.25, 2002.

333. Nichols, K., Blake, S., Baker, F., and Black, D., Defi nition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers, RFC 2474, IETF, 1998.

334. Nilsson, S., and Karlsson, G., Fast Address Look-Up for Internet Routers, Proceedings of
IEEE Broadband Communications: The Future of Telecommunications, pp. 11–22, 1998.

335. Nilsson, S., and Karlsson, G., IP-Address Lookup Using LC-Tries, IEEE Journal on Selected
Areas in Communications, 17(6):1083–1092, 1999.

336. Nilsson, S., and Tikkanen, M., Implementing a Dynamic Compressed Trie, Proceedings 2nd
Workshop on Algorithm Engineering, 1998.

337. Nojima, S., Tsutsui, E., Fukuda, H., and Hashimoto, M., Integrated Services Packet Network
Using Bus Matrix Switch, in Broadband Switching: Architectures, Protocols, Design, and
Analysis, Chas, C., Konangi, V. K., and Sreetharan, M., (Eds.), pp. 296–304, 1991.

338. Ohta, H., Assignment of the “OAM Alert Label” for Multiprotocol Label Switching Architec-
ture (MPLS) Operation and Maintenance (OAM) Functions, RFC 3429, IETF, 2002.

339. O’Mahony, M. J., Politi, C., Klonidis, D., Nejabati, R., and Simeonidou, D., Future Optical
Networks, Journal of Lightwave Technology, 24(12):4684–4696, 2006.

340. Ooghe, S., Voigt, N., Platnic, M., Haag, T., and Wadhwa, S., Framework and Requirements for
an Access Node Control Mechanism in Broadband Multi-Service Networks, draft-ietf-ancp-
framework-05.txt, IETF, 2008.

341. Optical Internetworking Forum (OIF), Scalable System Packet Interface Implementation
Agreement: System Packet Interface Capable of Operating as an Adaptation Layer for Serial
Data Links, IA # OIF-SPI-S-01.0, 2006.

342. Optical Internetworking Forum (OIF), Serdes Framer Interface Level 5 Phase 2 (SFI-5.2):
Implementation Agreement for 40Gb/s Interface for Physical Layer Devices,
IA#OIF-SFI-02.0, 2006.

343. Ott, T. J., Lakshman, T. V., and Wong, L. H., SRED: Stabilized RED, Proceedings IEEE INFOCOM,
1999.

344. Overmars, M. H., and van der Stappen, A. F., Range Searching and Point Location Among Fat
Objects, Journal Algorithms, 21(3):629–656, 1996.

345. Paganini, F., Doyle, J. C., and Low, S. H., Scalable Laws for Stable Network Congestion
 Control, Proceedings Conference on Decision and Control, 2001.

References 689

 346. Pagiamtzis, K., and Sheikholeslami, A., Content-Addressable Memory (CAM) Circuits and
 Architectures: A Tutorial and Survey, IEEE Journal of Solid-State Circuits, 41(3):712–727, 2006.

347. Parekh, A. K., A Generalized Processor Sharing Approach to Flow Control in Integrated
Services Networks, PhD Dissertation, MIT, 1992.

348. Parekh, A. K., and Gallager, R., A Generalization Processor Sharing Approach to Flow
 Control in Integrated Services Networks: The Single Node Case, IEEE/ACM Transactions
on Networks, 1(3):344–357, 1993.

349. Patel, J. H., Performance of Processor-Memory Interconnections for Multiprocessors, IEEE
Transactions on Computers, 30(10):771–780, 1981.

350. Perlman, R., Interconnections: Bridges, Routers, Switches, and Internetworking Protocols
(2nd Edition), Addison-Wesley, 1999.

351. Peterson, W. W., and Brown, D. T., Cyclic Codes for Error Detection, Proceedings of the IRE,
pp. 228–235, 1961.

352. Plummer, D., Ethernet Address Resolution Protocol: Or Converting Network Protocol
Addresses to 48-Bit Ethernet Address for Transmission on Ethernet Hardware, RFC 826,
IETF, 1982.

353. Poikselka, M., Niemi, A., Khartabil, H., and Mayer, G., The IMS: IP Multimedia Concepts and
Services (2nd Edition), Wiley, 2006.

354. Postel, J., User Datagram Protocol, RFC 768, IETF, 1980.

355. Postel, J., Internet Protocol, RFC 791, IETF, 1981.

356. Postel, J., Internet Control Message Protocol, RFC 792, IETF, 1981.

357. Postel, J., Transmission Control Protocol, RFC 793, IETF, 1981.

358. Postel, J., and Reynolds, J. K., Standard for the Transmission of IP Datagrams Over IEEE 802
Networks, RFC 1042, IETF, 1988.

359. PVM: Parallel Virtual Machine, Oak Ridge National Laboratory (ORNL), http://www.csm.
ornl.gov/pvm/.

360. Rajagopalan, B., Label Distribution Protocol (LDP) and Resource ReSerVation Protocol
(RSVP) Extensions for Optical UNI Signaling, RFC 3476, IETF, 2003.

361. Ramabhadran, S., and Pasquale, J., Stratifi ed Round Robin: A Low Complexity Packet
 Scheduler with Bandwidth Fairness and Bounded Delay, Proceedings ACM SIGCOMM,
pp. 239–250, 2003.

362. Ramakrishnan, K. K., Floyd, S., and Black, D., The Addition of Explicit Congestion Notifi -
cation (ECN) to IP, RFC 3168, IETF, 2001.

 363. Rekhter, Y., and Li, T., An Architecture for IP Address Allocation with CIDR, RFC 1518, IETF, 1993.

364. Rekhter, Y., and Li, T., A Border Gateway Protocol 4 (BGP-4), RFC 1771, IETF, 1995.

365. Rekhter, Y., Li, T., and Hares, S., A Border Gateway Protocol 4 (BGP-4), RFC 4271, IETF, 2006.

366. Rigney, C., Willens, S., Rubens, A., and Simpson, W., Remote Authentication Dial-In User
 Service (RADIUS), RFC 2865, IETF, 2000.

367. Rosen, E., and Rekhter, Y., BGP/MPLS VPNs, RFC 2547, IETF, 1999.

 368. Rosen, E., and Rekhter, Y., BGP/MPLS IP Virtual Private Networks (VPNs), RFC 4364, IETF, 2006.

369. Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., and Conta, A., MPLS Label
Stack Encoding, RFC 3032, IETF, 2001.

370. Rosen, E., Viswanathan, A., and Callon, R., Multiprotocol Label Switching Architecture,
RFC 3031, IETF, 2001.

690 References

371. Rosolen, V., Bonaventure, O., and Leduc, O., Impact of Cell Discard Strategies on TCP/IP in
ATM UBR Networks, Proceedings 6th Workshop on Performance Modeling and Evalua-
tion of ATM Networks, 1998.

372. Ruf, L., Bossardt, M., Plattner, B., and Stadler, R., A Linux-Based Nose OS for Network Pro-
cessors, TIK Report 205, Computer Engineering and Networks Laboratory (TIK), Swiss
Federal Institute of Technology (ETH), 2001.

373. Ruf, L., Farks, K., Hug, H., and Plattner, B., The PromethOS NP Service Programming
Interface, TIK Report 228, Computer Engineering and Networks Laboratory (TIK), Swiss
Federal Institute of Technology (ETH), 2005.

374. Ruiz-Sanchez, M. A., Biersack, E. W., and Dabbous, W., Survey and Taxonomy of IP Address
Lookup Algorithms, IEEE Network, 15(2):8–23, 2001.

375. Saltsidis, P., IEEE802.1Qay/D0.0, http://www.ieee802.org/1/fi les/public/docs2007/
ay-saltsidis-initial-draft-0507.pdf, 2007.

376. Sangli, S. R., Tappan, D., and Rekhter, Y., BGP Extended Communities Attribute, RFC 4360,
IETF, 2006.

377. Saturn Development Group, SATURN Compatible Packet Over SONET Interface Specifi ca-
tion for Physical Layer Devices (Level 3), PMC-980495, Issue 3, PMC-Sierra, 1998.

378. Saturn Group, POS-PHY: Saturn Compatible Packet Over SONET, Interface Specifi cation for
Physical Layer Devices (Level 2), PMC-971147, Issue 5, PMC-Sierra, 1998.

379. Serpanos, D. N., and Antoniadis, P. I., FIRM: A Class of Distributed Scheduling Algorithms
for High-Speed ATM Switches with Multiple Input Queues, Proceedings IEEE INFOCOM,
Vol. 2:548–555, 2000.

380. Serpanos, D. N., Baldi, M., and Giladi, R., Network Systems Architecture, IEEE Network,
21(4):6–7, 2007.

381. Shah, N., and Keutzer, K., Network Processors: Origin of Species, Proceedings of the
17th International Symposium on Computer and Information Sciences, XVII, 2002.

382. Shah, N., Plishker, W., and Keutzer, K., NP-Click: A Programming Model for the Intel IXP1200,
Proceedings of the Second Workshop on Network Processors (NP-2); and in the Ninth
International Symposium on High Performance Computer Architectures (HPCA), 2003.

383. Shah, N., Plishker, W., Ravindran, K., and Keutzer, K., NP-Click: A Productive Software Devel-
opment Approach for Network Processors, IEEE Micro, 24(5):45–54, 2004.

384. Shenker, S., Partridge, C., and Guerin, R., Specifi cation of Guaranteed Quality of Service,
RFC 2212, IETF, 1997.

385. Shreedhar, M., and Varghese, G., Effi cient Fair Queuing Using Defi cit Round Robin,
 Proceedings ACM SIGCOM, pp. 231–242, 1995.

386. Simpson, W., PPP Over SONET/SDH, RFC 1619, IETF, 1994.

387. Simpson, W., The Point-to-Point Protocol (PPP), STD 50, RFC 1661, IETF, 1994.

388. Simpson, W., PPP in HDLC-Like Framing, STD 51, RFC 1662, IEEE, 1994.

389. Sklower, K., A Tree-Based Packet Routing Table for Berkeley Unix, Proceedings USENIX
Winter, pp. 93–104, 1991.

390. Spalink, T., Karlin, S., Peterson, L., and Gottlieb, Y., Building a Robust Software-Based Router
Using Network Processors, Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles, pp. 216–229, 2001.

391. Srinivasan, R., RPC: Remote Procedure Call Protocol Specifi cation Version 2, RFC 1831,
IETF, 1995.

References 691

392. Srinivasan, R., XDR: External Data Representation Standard, RFC 1832, IETF, 1995.

393. Srinivasan, V., Suri, S., and Varghese, G., Packet Classifi cation Using Tuple Space Search,
 Proceedings ACM SIGCOMM, pp. 135–146, 1999.

394. Srinivasan, V., Varghese, G., Suri, S., and Waldvogel, M., Fast and Scalable Layer Four Switch-
ing, Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,
 Architectures, and Protocols for Computer Communication, pp. 191–202, 1998.

395. Srisuresh, P., and Holdrege, M., IP Network Address Translator (NAT) Terminology and
 Considerations, RFC 2663, IETF, 1999.

396. Stiliadis, D., and Varma, A., A General Methodology for Designing Effi cient Traffi c Schedul-
ing and Shaping Algorithms, Proceedings IEEE INFOCOM, 1997.

397. Stiliadis, D., and Varma, A., Effi cient Fair Queuing Algorithms for Packet-Switched Networks,
IEEE/ACM Transactions on Networking, 6(2):175–185, 1998.

398. Sun, J., Chen, G., Ko, K. T., Chan, S., and Zukerman, M., PD-Controller: A New Active Queue
Management Scheme, Proceedings IEEE GLOBECOM, Vol. 6:3103–3107, 2003.

399. Suri, S., Varghese, G., and Chandranmenon, G., Leap Forward Virtual Clock: A New Fair
Queuing Scheme with Guaranteed Delays and Throughput Fairness, Proceedings IEEE
INFOCOM, 1997.

400. Suri, S., Varghese, G., and Warkhede, P. R., Multiway Range Trees: Scalable IP Lookup with
Fast Updates, Technical Report 99-28, Washington University, 1999.

 401. Suter, B., Lakshman, T. V., Stiliadis, D., and Choudhury, A. K., Design Considerations for
 Supporting TCP with Per-Flow Queueing, Proceedings IEEE INFOCOM, pp. 299–306, 1998.

402. Taeda, T., Framework and Requirements for Layer 1 Virtual Private Networks, RFC 4847,
IETF, 2007.

403. Thaler, D., Interoperability Rules for Multicast Routing Protocols, RFC 2715, IETF, 1999.

404. Thiele, L., Chakraborty, S., Gries, M., and Knzli, S., Design Space Exploration of Network
Processor Architectures, First Workshop on Network Processors at the 8th International
Symposium on High Performance Computer Architecture (HPCA8), 2002.

405. Thiele, L., Chakraborty, S., Gries, M., Maxiaguine, A., and Greutert, J., Embedded Software in
Network Processors—Models and Algorithms, in First Workshop on Embedded Software,
Lecture Notes in Computer Science, Vol. 2211, Springer Verlag, pp. 416–434, 2001.

406. Tobagi, F. A., Fast Packet Switch Architectures for Broadband Integrated Services Networks,
Proceedings IEEE, Vol. 78:133–167, 1990.

407. Tobagi, F. A., Chiussi, F. M., and Kwok, T., Architecture, Performance, and Implementation
of the Tandem Banyan Fast Packet Switch, IEEE Journal on Selected Areas in Communi-
cations, 9(8):1173–1193, 1991.

408. Tomic, S., Statovci-Halimi, B., Halimi, A., Muellner, W., and Fruehwirth, J., ASON and GMPLS—
Overview and Comparison, Photonic Network Communications, 7(2):111–130, 2004.

409. Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G., and Palter, B., Layer Two Tunneling
Protocol “L2TP, ” RFC 2661, IETF, 1999.

410. Traina, P., McPherson, D., and Scudder, J., Autonomous System Confederations for BGP,
RFC 3065, IETF, 2001.

411. Tse, E. S., Switch Fabric Design for High Performance IP Routers: A Survey, Journal of
 Systems Architecture: The EUROMICRO Journal, 51(10-11):571–601, 2005.

412. Tsuchiya, P., A Search Algorithm for Table Entries with Non-Contiguous Wildcarding,
Unpublished Report, Bellcore, http://citeseer.ist.psu.edu/tsuchiya91search.html, 1992.

692 References

413. Turner, J. S., New Directions in Communications (or Which Way to the Information Age?),
IEEE Communication Magazine, 24(10):8–15, 1986.

414. Turner, J., Strong Performance Guarantees for Asynchronous Crossbar Schedulers,
 Proceedings IEEE INFOCOM, the 25th IEEE International Conference on Computer
Communications, 2006.

415. Vainshtein, A., and Stein, Y. J., Structure-Agnostic Time Division Multiplexing (TDM) Over
Packet (SAToP), RFC 4553, IETF, 2006.

416. Valiant, L. G., A Bridging Model for Parallel Computation, Communications of the ACM,
33(8):103–111, 1990.

417. Valiant, L. G., and Brebner, G. J., Universal Schemes for Parallel Communication, Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 263–277, 1981.

418. van Emde Boas, P., Preserving Order in a Forest in Less than Logarithmic Time and Linear
Space, Information Processing Letters, 6(3):80–82, 1977.

419. van Emde Boas, P., Kaas, R., and Zijlstra, E., Design and Implementation of an Effi cient
 Priority Queue, Mathematical Systems Theory, 10(2):99–127, 1977.

420. Verma, D., Zhang, H., and Ferrari, D., Guaranteeing Delay Jitter Bounds in Packet Switching
Networks, Proceedings of TRICOMM, pp. 35–46, 1991.

421. Villamizar, C., Chandra, R., and Govindan, R., BGP Route Flap Damping, RFC 2439, IETF, 1998.

422. Vohra, Q., and Chen, E., BGP Support for Four-Octet AS Number Space, RFC 4893, IETF, 2007.

423. von Neumann, J., A Certain Zero-Sum Two-Person Game Equivalent to the Optimal
 Assignment Problem, in Contributions to the Theory of Games (Annals of Mathematics
Study No. 28), Kuhn, H., and Tucker, A., (Eds.), Princeton University Press, 2:5–12, 1953.

424. Waitzman, D., Partridge, C., and Deering, S., Distance Vector Multicast Routing Protocol,
RFC 1075, IETF, 1988.

425. Waldvogel, M., Fast Longest Prefi x Matching: Algorithms, Analysis, and Applications, PhD
Dissertation, ETH No. 13266, Swiss Federal Institute of Technology, 2000.

426. Waldvogel, M., Varghese, G., Turner, J., and Plattner, B., Scalable High-Speed IP Routing
 Lookups, Proceedings ACM SIGCOMM, pp. 25–36, 1997.

427. Waldvogel, M., Varghese, G., Turner, J., and Plattner, B., Scalable High-Speed Prefi x Matching,
ACM Transactions on Computer Systems, 19(4):440–482, 2001.

428. Willard, D. E., Log-Logarithmic Worst Case Range Queries are Possible in Space Θ(n),
 Information Processing Letters, 17(2):81–84, 1983.

429. Willard, D. E., New Trie Data Structures Which Support Very Fast Search Operations,
 Journal of Computer and System Sciences, 28(3):379-394, 1984.

430. WiMAX Forum, WiMAX Forum Network Architecture Stage 2-3: Release 1, Version 1.2,
http://www.wimaxforum.org/technology/documents/WiMAX_End-to-End_Network_
 Systems_Architecture_Stage_2-3_Release_1.1.2.zip.

431. Worster, T., Rekhter, Y., and Rosen, E., Encapsulating MPLS in IP or Generic Routing
 Encapsulation (GRE), RFC 4023, IETF, 2005.

432. Wroclawski, J., The Use of RSVP with IETF Integrated Services, RFC 2210, IETF, 1997.

433. Wroclawski, J., Specifi cation of the Controlled-Load Network Element Service, RFC 2211,
IETF, 1997.

References 693

434. Xiao, H., Zhang, L., and Wu, D., Software Component Model for Network Processor Based
System, Proceedings of the 6th International Conference on Parallel and Distributed
Computing Applications and Technologies, pp. 427–429, 2005.

435. Yang, L., Dantu, R., Anderson, T., and Gopal, R., Forwarding and Control Element Separation
(ForCES) Framework, RFC 3746, IETF, 2004.

436. Yeh, Y.-S., Hluchyj, M. G., and Acampora, A. S., The Knockout Switch: A Simple, Modular
Architecture for High-Performance Packet Switching, IEEE Journal on Selected Areas in
Communications, 5(8):1274–1283, 1987.

437. Yi, K., and Gaudiot, J.-L., Architectural Support for Network Applications on Simultane-
ous MultiThreading Processors, Proceedings of the IEEE International Parallel and
 Distributed Processing Symposium, p. 46, 2007.

438. Yoo, S. J. B., Optical Packet and Burst Switching Technologies for the Future Photonic
 Internet, Journal of Lightwave Technology, 24(12):4468–4492, 2006.

439. Zane, F., Narlikar, G., and Basu, A., CoolCAM: Power-Effi cient TCAMs for Forwarding Engines,
Proceedings IEEE INFOCOM, 2003.

440. Zhang, H., Service Disciplines for Guaranteed Performance Service in Packet-Switching
Networks, Proceedings IEEE, Vol. 83:1374–1396, 1995.

441. Zhang, H., and Ferrari, D., Rate-Controlled Service Disciplines, Journal of High Speed
 Networks, 3(4):389–412, 1994.

442. Zhang, L., Virtual Clock: A New Traffi c Control Algorithm for Packet Switching Networks,
Proceedings ACM SIGCOMM, pp. 19–29, 1990.

443. Ziv, J., and Lempel, A., A Universal Algorithm for Sequential Data Compression, IEEE
 Transactions on Information Theory, 23:337–343, 1977.

444. Ziv, J., and Lempel, A., Compression of Individual Sequences Via Variable-Rate Coding, IEEE
Transactions Information Theory, 24(5):530–536, 1978.

This page intentionally left blank

A
Access interfaces, 330
Access networks, 2, 149–178
 radio, 166–178
 reference model, 159
 services, 149
 technologies, 150
 wired, 150–166
Access NPs, 8, 10, 149, 150, 237, 288, 330, 362
Access Service Network (ASN), 175, 176
Active network, 51
Active Queue Management (AQM), 263
Adaptive Virtual Queue (AVQ), 264
Add/Drop Multiplexers (ADM), 31, 36
Addressing modes
 assembly language, 446–447
 TOPmodify, 591
 TOPparse, 486
 TOPresolve, 544–545
Address Resolution Protocol (ARP), 59, 421
Admission control, 246, 249, 251. See also

Quality of Service
 CAC, 242, 251
Advanced Switching Interconnect (ASI),

400
Advanced Telecom Computing Architecture

(ATCA), 400
Aggregation networks, 2–3, 20
Aggregation Point, 158–164
Aging
 NP-1, 421
 process, 421
 TOPsearch, 504
ALU operators, 454
Any Protocol over MPLS (APoM), 95
Any Transport over MPLS (AToM), 95
Application accelerators, 407
Application programming interfaces (APIs),

341, 449
Application Service Providers (ASPs), 158
Application Specifi c Instruction Processors

(ASIPs), 7, 308
Application Specifi c Integrated Circuits (ASICs),

2, 30, 287, 305
 designing, 305, 306
 NP versus, 308–309
 in product design, 308–309
Application Specifi c Standard Products

(ASSPs), 7, 308, 321, 402

Application writing example, 617–654
 common defi nition fi le, 644
 data fl ow and TOP microcode,

618–648
 data structures, 648–653
 defi nitions and macro fi les, 629–648
 fl owchart, 619
 NP_common.h, 644
 NP_structs.h, 644–646
 output port confi guration, 652–653
 structures defi nition fi le, 644–646
 TOP_MDF_macros.h, 641–643
 TOPmodify, 624–629
 TOPmodify macros, 641–643
 TOPparse, 620–621
 TOPparse defi nition fi le, 632–634
 TOPparse macros, 629–632
 TOPparse -> TOPresolve message, 650
 TOP_PRS.h, 632–634
 TOP_PRS_macros.h, 629–632
 TOPresolve, 621–624
 TOPresolve defi nition fi le, 639–641
 TOPresolve macros, 634–639
 TOPresolve -> TOPmodify message, 652
 TOP_RSV.h, 639–641
 TOP_RSV_macros.h, 634–639
 TOPsearch I, 650–652
 TOPsearch II, 652–653
Approximated Longest Queue Drop (ALQD),

271
Architectures, 287–335
 background, 289–307
 control fl ow, 290
 data-fl ow, 290
 dimensions, 289
 EPIC, 303–304
 MIMD, 292–293, 294
 MISD, 292
 M-SISD, 293
 multiprocessing, 290–305
 network processor, 309–313
 programming, 341
 SIMD, 291
 SISD, 290, 291
 software, 343
 superscalar, 300–301
 switch fabrics, 387–397
 VLIW, 301–303
 Von-Neumann, 290

Index

Arithmetic Logic Units (ALU)
 TOPmodify, 564
 TOPparse, 463
 TOPresolve, 518–519, 521, 522, 537
Arithmetic Logic Units (ALU) commands, 453–455.

See also Commands
 TOPmodify, 596–598
 TOPparse, 493–494
 TOPresolve, 551–552
Assembly language, 443–444
 addressing modes, 446–447
 pointer mechanism, 445
 processing, 444
 syntax, 445
Associative arrays, 217
Assured Forwarding (AF), 246
Asymmetric parallelism, 297
Asynchronous Transfer Mode (ATM), 62, 78–81
 segmentation and reassembly, 193–195
 services, 244–245
 VPCs, 79
 VPI/VCI, 79, 80, 81
ATM Adaptation Layer (AAL), 80–81
 SEAL, 194
 type 5, 194
Attachment Unit Interface (AUI), 328
Automatically Switched Optical Networks

(ASONs), 38, 133, 148
Autonomous System Numbers (ASNs), 104
Autonomous Systems (ASs), 60, 104–105, 135–138
Available Bit Rate (ABR), 245
AVL trees, 218

B
Backbone MAC (B-MAC), 119, 122–125
Backplane switching, 402
Balanced BSTs, 218
Balanced Random Early Detection (BRED), 270
Bandwidth, 3–5, 27–35, 81–85, 114–115,

149–154, 177–178, 244
Banyan networks, 393–395
 Omega, 394–395
 subclasses, 395
Baseline networks, 395
Batcher-Banyan network, 395–396
Benes networks, 392–393
Best effort, 246
BGP/MPLS IP VPN, 102–107
 data plane fl ow, 106–107
 export route targets, 105
 extended addressing information,

104–105
 import route targets, 105

 internal operation, 103–107
 MPLS forwarding management, 106
 routing distribution management, 105–106
 separation and distribution, 103
 terminology, 102
Big endian notation, 447
Binary CAMs (BCAMs), 230
Binary heaps, 217–218
Binary search, 214–215
Binary search trees (BSTs), 218
Binary trees, 217
Binary tries, 222
Bin Sort Fair Queuing algorithm, 274
Birkoff von Neumann (BvN), 399
Bit Error Rate (BER), 244
Blocking, 382
 avoiding, 385–387
 HOL, 382
 input, 382
 internal, 382
 output, 382, 390
Blue, 271–272
Border Gateway Protocol (BGP), 61, 135–141,

208
 AS-IDs, 135, 136
 AS separation, 135
 eBGP, 135
 iBGP, 135, 141
 KeepAlive message, 140
 message formats, 137–140
 message types, 136
 Multiprotocol Extensions, 141
 network example, 136
 Notifi cation message, 140
 Notifi cation message format, 137
 Open message, 137–138
 route refl ectors, 141
 speakers, 135, 141
 Update message, 138–140
 as vector-based algorithm, 136
Border Gateway Protocol (BGP) routers, 4, 5
Branch instructions, 358, 440, 441
Bridge Protocol Data Units (BPDUs), 74–76
 RSTP, 76
 TCN, 75, 76
Bridging, 50, 54, 55, 135
 port states, 51
Broadband Network Gateway (BNG), 160
Broadcast storm, 51
Buffered switches, 397
Buffer management, 249, 263–273
 active, 263
 Blue, 271–272

696 Index

 BRED, 270
 Drop Front on full, 264
 EPD, 272
 ESPD, 273
 FRED, 269–270
 LLQD, 270–271
 packet behavior and, 262
 PPD, 272
 passive, 263
 random drop, 264
 RED, 264–267
 RIO, 267–268
 SRED, 268–269
 tail drop, 264
 WRED, 267
Burst Switching, 36
Busses, 320
 EISA, 331
 ISA, 331

C
Cable Modem Termination System (CMTS),

151
Cable TV (CATV) access networks, 150, 151
 cable plant, 151
 Ethernet frames, 160
Cache Coherent NUMA (CC-NUMA), 293
Cache Coherent UMA (CC-UMA), 293
Cache Only Memory Architecture (COMA), 293
Call Admission Control (CAC), 242, 251
CallCam command, 457, 492, 551, 596
Call command, 457, 492, 551, 596
CallStack command, 457, 492, 551, 596
Cantor networks, 393
Carrier Class Ethernet (CEN), 111–131
 IEEE 802 approach, 116–126
 implementations, 111
 MEF approach, 111–116
 OAM support, 126–131
 PBBN, 119–123
 PBB-TE, 123–126
 PBN, 116–119
Carrier Sense Multiple Access/Collision

Detection (CSMA/CD) protocol,
39, 45

C/C++ compilers, 361–362
CEN operations, administration, and maintenance

(OAM), 126–131. See also Carrier Class
Ethernet

Checksums, 190–191, 237
Chip design, 305–307
Chip multiprocessors (CMPs), 294, 338
Circuit Emulation Service (CES), 116

Circuit Emulation Service over Ethernet
(CESoETH), 116

Circuit switching, 2, 16
Class-Based Queuing, 274
Classifi cation, packet, 184, 196–205. See also

Packet processing
 basic, 198, 235
 complex, 198, 235
 deep packet, 198
 demultiplexing and, 197
 dynamic, 200
 hardware, 204–205
 hybrid, 205
 issues, 199–200
 languages, 205
 matching techniques, 212
 mechanisms, 201–205
 packet forwarding, 197
 pre-classifi cation process, 199
 quick indicators, 197
 scheme selection, 235
 software, complex, 202–204
 software, simple, 201–202
 stateful, 199, 425
 stateless, 199
 static, 200
 taxonomy of schemes, 236
 types of, 198
 using, 235–236
 variable fi eld lengths and offsets, 200
Classifi ers, 196, 373–374
 hardware, 204
 input/outputs, 374
 one-dimensional, 202
 prioritized, 203
 search, 405–406
 two-dimensional, 203
Classless Interdomain Routing (CIDR), 139–140,

208
Class of Service (CoS), 181, 243, 244–249.

See also Quality of Service
 ATM services, 244–245
 DiffServ, 246
 Ethernet, 247
 IntServ, 245–246
 layer 2, 247
 layer 3, 247–249
 specifying, 247–249
Click, 371–375
 classifi ers, 373, 374
 connections, 371
 design, 372
 elements, 371, 372, 373

Index 697

Click (cont’d)
 extendability, 375
 IP Firewall example, 373–374
 ports, 371
 uses, 371
Clos networks, 391–392
Coarse-grained multithreading (CGMT), 295, 347
Coarse-grained parallelism, 296
Coarse WDM (CWDM), 36
Code Division Multiple Access (CDMA),

153, 169
Commands, 449–459
 ALU, 453–455, 493–494, 551–552, 596–598
 Call, 457, 492, 551, 596
 CallCam, 457, 492, 551, 596
 CallStack, 457, 492, 551, 596
 case sensitivity, 444
 conditional, 473, 531, 574
 Convert, 472–473, 495
 Copy, 452, 490, 548, 594–595
 defi ne, 458–459
 FindDel, 497–498
 FindNonDel, 498–499
 FindToken, 499
 general format, 444
 Get, 451, 488–489, 547, 573, 593
 GetFixBits, 529, 550
 GetRes, 573, 593–594
 GetRnd4Bits, 530, 550
 GetRndBits, 528–529, 549–550
 GetToken, 499
 Halt, 453, 500, 559, 573–574, 599–601
 include, 459
 initialization, 450
 Jump, 455–457, 492, 550–551, 595–596
 LookCam, 471, 494–495, 573, 598
 macro, 458
 Minterm, 530, 553–557
 Mov, 451, 487, 546, 592
 Mov4Bits, 357, 452
 MovBits, 451, 488, 546–547, 592–593
 move, 450–453, 487–492, 527–530, 572–573,

592–595
 notation conventions, 444–445
 preprocessor, 458–460
 Put, 451, 594
 PutHdr, 452, 490–491, 548
 PutHdr4Bits, 453, 491–492, 549
 PutHdrBits, 452–453, 491, 549
 PutKey, 489, 548
 SetMaxMin, 530–531, 558
 TOPparse, 469–474, 487–500
 TOPresolve, 527–531, 546–559

 TOPmodify, 571–574, 592–602
 Write, 595
Committed Burst Size (CBS), 147
Committed Data Rate (CDR), 147
Committed Information Rate (CIR), 85
Common and Internal Spanning Tree (CIST), 55, 56
Common Internet File System (CIFS), 406
Common Spanning Tree (CST), 55, 56
Common Switch Interface Specifi cation (CSIX),

329, 425
Communication systems, 16
 applications, 2–6
 network categories, 2
 network systems, 2
Compact suffi x tries, 221
Complex Instruction Set Computing (CISC),

297–298
Compound keys, 502. See also Keys
 format, 508
 TOPsearch, 502
Compressed (compact) tries, 220–221
Compression, 237
Computer-Peripheral Networks (CNs), 18
Conditional commands. See also Commands
 preprocessor, 495–460
 TOPmodify, 574
 TOPparse, 473, 474
 TOPresolve, 531
Congestion control, 242
Connection communication interface, 21–22
Connectionless communication interface, 22
Connectionless-oriented networks, 16
Connection-oriented networks, 16
Connectivity Service Network (CSN), 175, 176
Constant Bit Rate (CBR), 244–245
Constraint-based LDP (CR-LDP)
 explicit routing, 147
 Label Request message, 147
 TLVs, 148
Content Addressable Memory (CAM), 210,

211, 228–232, 315
 binary CAMs, 230
 as hardware search component, 229
 implementations, 229–230
 simplifi ed scheme, 229
 ternary CAMs, 230, 231, 232
 TOPmodify, 564–565
 TOPparse, 463, 470, 494–495
Context switching, 346
Continuous-state leaky bucket algorithm, 256
Control and synchronization mechanism, 334
Control fl ow architecture, 290
Control hazards, 358–359. See also Hazards

698 Index

 avoiding, 441
 causes, 440
 EZchip, 440–443
 productive use, 442
Controlled-Load Service, 246
Control plane, 6, 26
Conventional systems, 342–348. See also

Software
 multiprogramming, 346
 multitasking, 346–347
 multithreading, 347–348
 OS, 343–344
 principles, 345
Converged networks, 77–134
 ATM, 78–81
 CEN, 111–131
 datacom to telecom, 87–134
 ITU-T approach, 131–134
 MSPs, 87
 Next Generation SONET/SDH, 81–83
 RPR, 84–86
 telecom to data, 78–87
Convert command, 472–473, 495
Cooperative multitasking, 346
Coprocessors, 204, 297, 403–407. See also

Peripherals
 application accelerators, 407
 look-aside scheme, 403
 search processors and classifi ers,

405–406
 security processors, 404–405
 storage processors, 406
 traffi c managers, 403–404
Copy command, 452
 TOPmodify, 594–595
 TOPparse, 490
 TOPresolve, 548
Core Based Tree (CBT) protocol, 64
Core devices, 24
Core-metro, 19
Core networks, 2–3, 18
Counters
 atomic update of, 423
 hardware, 422
 software, 422–423
 statistics, 437, 504
 types of, 421–422
CREG[15:0] register, 485
Crossbar switches, 390
Cube networks, 395
Customer Premises Equipment (CPE),

158
Cut-through architecture, 195, 384–385

Cycles per instruction (CPI), 295
Cyclic Redundancy Code (CRC), 45, 189–190
 algorithms, 189–190
 calculation, 190
Cypress, 406

D
Databases
 fi ltering, 51
 forwarding rules, 26
Data bus
 TOPmodify, 564
 TOPparse, 462
 TOPresolve, 517
Datacom networks, 17
 from telecom networks to, 78–87
Data fl ow
 application writing example, 618–648
 architecture, 290
 EZchip NP, 426–438
 NP-1 diagram, 427
 processing, 304–305
 TOPmodify example, 575–577
 TOPresolve example, 532
Data forward plane, 6, 7, 26
Datagrams, 186
 exceeding MTU, 191
Data hazards, 357, 440. See also Hazards
Data-level parallelism (DLP), 296
Data networks, 38–68. See also Networks
 Ethernet, 39–58
 Internet Protocol (IP), 58–68
 overview, 38–39
Data over Cable Service Interface Specifi cations

(DOCSIS) standards, 151
Data parallelism, 351
Data structures, 212–228. See also Search
 application writing example, 648–653
 list, 214
 metrics, 213–214
 operations, 213
 table, 214–217
 TOPsearch I, 650–652
 TOPsearch II, 652–653
 tree, 217–219
 tries, 219–228
Data tokens, 304
Declarative programming, 341
Deep packet analysis, 9, 407
Deep packet inspection, 9, 198, 202, 238, 310
Default Forwarding (DF), 246
Defi cit Round-Robin (DRR) scheduler, 278–279
Defi ne commands, 458–459

Index 699

Defi nition fi les
 common (NP_common.h), 644
 FAST register (NP_FastRegs.h), 646
 structures (NP_structs.h), 644–646
 TOPmodify example, 580–582
 TOP_MDF . h, 644
 TOP_PRS.h, 632–634
 TOPresolve example, 533–534
 TOP_RSV.h, 639–641
Delay, 244
Delay variations (jitter), 244
Delete operation, 213
Delta networks, 395
DEL_VECTOR[3:0] register, 484, 485
Demultiplexing, 197
Dense trie, 226–227
Dense WDM (DWDM), 36
Designated Bridge (DB), 53
Designated Port (DP), 53
Destination Service Access Point (DSAP), 46
Development environments, 342
Differentiated Services CodePoint (DSCP),

248
Differentiated Services (DiffServ), 63, 246
Digital Cross Connect (DCS), 31
Digital Loop Carrier (DLC), 152
Digital Subscriber Line Access Multiplexer

(DSLAM), 151
Digital Subscriber Loop (DSL), 152
 PPPoE, 162
 PVCs, 160
Digital tree search, 222
Direct access tables, 419
Direct addressable tables, 214–215
Direct Memory Access (DMA), 426
Direct Rambus DRAM (DRDRAM), 318
Direct tables, 506
Discarding state, 51
Distance Vector Multicast Routing Protocol

(DVMRP), 63–64
Distributed Component Object Model, 352
Distributed Computing Environment, 352
Distributed memory multicomputers, 293
Double Data Rate (DDR), 316
Double Data Rate SRAM (DDR SDRAM), 316
DSL Access Multiplexer (DSLAM), 152
Dual Leaky Bucket (DLB), 254
Dynamic classifi cation, 200
Dynamic RAM (DRAM), 215. See also Memories
 DRDRAM, 318
 DDR, 316, 317–318
 FCRAM, 319
 RLDRAM, 317, 319

 speed, 315–316
 SDRAM, 316, 317
 technologies, 316–319

E
Earliest Deadline First (EDF) scheduler,

279
Early Packet Discard (EPD), 272
Early Selective Packet Discard (ESPD), 273
Edge devices, 24
Egress Back DMA (EBDMA), 415, 426
Egress Front DMA (EFDMA), 416, 426
Egress processing, 184, 188
 EZchip, 415–416
 tasks, 188
Egress Transmit Frame Descriptor Queue

(ETFD_Q), 429
Elastic Round-Robin algorithm, 274
Embedded processors, 335
Encryption, 237–238
Enhanced Data rates for GSM Evolution (EDGE),

169
Entry-level NPs, 8, 288
Equal Cost Multiple Path (ECMP), 132
Error Correcting Code (ECC), 319
Error detection, 189–191
 algorithms, 189
 CRC, 189–190
 IP checksum, 190–191
Ethernet, 3, 15, 39–58. See also Data networks
 architectural positioning, 40
 bandwidths, 3–4
 bridging, 49–52
 CEN, 111–131
 CoS, 247
 CSMA/CD, 39, 45
 Demarcation, 165–166
 DIX, 39
 end-to-end, 166
 evolution, 46–47
 IEEE 802.3, 39–40
 interfaces, 4, 326–328
 LAN networking evolution, 55–57
 LAN standards, 39
 MAC layer, 42–46
 networking, 47–58
 physical layer, 40–42
 summary, 57–58
 switching, 49–52
 technology, 15
 VLANs, 47, 48–49
Ethernet Demarcation Device (EDD), 166
Ethernet in the First-Mile (EFM), 160

700 Index

Ethernet LAN (E-LAN), 114, 115
Ethernet Line (E-Line), 114–115
Ethernet Local Management Interface (E-LMI), 114,

128
Ethernet PON (EPON), 154–158. See also Passive

Optical Networks
 10 Gbps, 158
 frame format, 157
 GPON versus, 158
 hybrid, 157
 link budget, 154
 link level OAM, 158
Ethernet-to-the-Home/Business (ETTx), 160, 165
Ethernet-Virtual-Connection (EVC), 113
Ethertype, 43
Excess Burst Size (EBS), 147
Excess Information Rate (EIR), 85
Expedited Forwarding (EF), 246
Explicit Congestion Notifi cation (ECN), 263
Explicitly Parallel Instruction Computing (EPIC),

303–304
Explicit parallelism, 350. See also Parallelism
 pipelining and, 361
Exponential averaging, 261
Extended ISA (EISA) bus, 331
Exterior Gateway Protocols (EGPs), 60
External BGP (eBGP), 135
External interfaces, 320–334. See also Network

processors
 functional groups, 321
 host, 330–332
 importance, 320
 LA-1, 333–334
 look-aside, 321
 memory and coprocessors, 333–334
 Network Processing Forum reference model,

322
 packet, 321–330
 SerDes, 321
 streaming, 321
External memory, TOPsearch, 504
EZchip NP, 411. See also NP-1; NP-2
 applications, developing/running, 447–449
 applications, using, 417–419
 assembly language, 443–444
 command notation convention, 444–445
 compiler, 440
 control hazards, 440–443
 counters, 421–423
 data fl ow, 426–438
 data hazards, 440
 direct access tables, 419
 egress processing, 415–416

 external host tasks/interface, 437–438
 frame memory interface, 437
 frame processing ordering, 436–437
 frame processing walkthrough, 426–429
 hash tables, 419
 ingress processing, 415–416
 instruction pipeline, 440–443
 interfaces, 416–417
 learning, updating, and aging, 420–421
 line card application, 418
 lookup structures, 419–421
 microcode, writing, 443–447
 microcode usage, 422
 network processors, 409, 410
 pipeline, 501
 preprocessor overview, 447
 programming, 439–457
 service card application, 418
 software counters, 421, 422–423
 special symbols, 445, 446
 stand-alone solution, 418
 stateful classifi cation, 425
 structures, 419–421
 system architecture, 413–419
 TOPs, 9, 412, 413–414, 439, 603
 TOPmodify, 434–436, 443, 561–583
 TOPparse, 429–430, 443, 461–478
 TOPresolve, 433–434, 443, 517–536
 TOPsearch, 431, 436, 444, 506–509,

511–513
 TOPsearch I, 431–433, 505–506, 650–652
 TOPsearch II, 434, 534, 582
 traffi c management, 424–425
 tree structures, 420
EZdesign, 448–449
 Assembler and Preprocessor, 449
 EZmde, 603
 Frame Generator, 449, 608–610
 MDE, 448
 simulator, 448
 Structure Generator, 449, 610–614
 system architecture, 448
 User’s Guide, 606, 609, 614
 workfl ow, 607–614
EZdriver, 449, 504
EZmde, 410, 603
 GUI, 605
 opening screen, 604

F
Fair Index (FI), 275
Fast Cycle RAM (FCRAM), 319
Fiber Channel over IP (FCIP), 406

Index 701

Fiber-in-the-Loop (FITL), 152–158
 appearances, 152
 PONs, 152–153
Fibonaccian search, 214
Field Programmable Gate Arrays (FPGAs), 7, 305,

309
Filtering databases, 51
Find Delimiter (FindDel) command,

497–498
Find Nondelimiter (FindNonDel) command,

498–499
Find Token (FindToken) command, 499
Fine-grained multithreading (FGMT), 295, 347
Fine-grained parallelism, 296
Firmware, 306
First generation (1G), 167, 168–170. See also Radio

Access Networks
First In, First Out (FCFS) scheduling, 276
Fixed-stride tries, 226
Flip networks, 395
Flow control, 242
Flow Random Early Detection (FRED),

269–270
Flow-through scheme, coprocessor, 403
Fork-Join model, 354
Forward Error Correction (FEC), 325
Forwarding, 9
 IP lookups, 234
 MPLS, 106
 packets, 60, 97, 232
 state, 51
 switch fabrics, 384–385
Forwarding Equivalence Classes (FECs), 89
Fourth generation (4G), 167, 171–177. See also

Radio Access Networks
 Long Term Evolution (LTE), 171–173
 Ultra Mobile Broadband (UMB), 178
 WiMAX, 173–177
Fragmentation, 191
 IP, 192–193
Frame buffers, modifi cation, 563
Frame Check Sequence (FCS), 189, 190
Frame Generator, EZdesign, 449
 main screen, 608, 609
 screen, 609
Frame handling
 TOPmodify example, 574–575
 TOPresolve example, 531–532
Frame-Mapped GFP (GFP-F), 82, 83
Frame memory, 415
 interface, 437
 TOPmodify, 564
 TOPparse, 462

Frame processing
 ordering, 436–437
 walkthrough, 426–429
Frame Relay, 62
Frames
 classifying, 9
 contents, modifying, 9
 generation, 608–610
 host receive, 437
 host transmit, 438
 multicast, 425–426
 OAM, 129
 OTU, 37, 38
 PDH, 28
 RPR, 85
 SONET/SDH, 32
 VLAN, 48
Framing, 184, 188–195. See also Packet processing
 error detection and correction, 189–191
 segmentation, fragmentation, and assembly,

191–195
Free trees, 217
Functional Block (FBLK) registers, 466, 479
Functional languages, 362
Functional programming, 340–341
Functional Programming Language, 205,

377–378
Functional units, 297, 334–335

G
Gateway GPRS Support Node (GGSN), 169,

170
Generalized Multi-Protocol Label Switching

(GMPLS), 38, 133
Generalized Processor Sharing (GPS),

279–280
 PGPS, 281
General Packet Radio System (GPRS), 168–169
Generic Access Network (GAN), 167–168, 169
Generic Attribute Registration Protocol (GARP), 70
 addresses, 70
 operations, 70
 PDU format, 71
Generic Cell Rate Algorithm (GCRA), 257, 262
Generic Framing Procedure (GFP), 35, 81, 82
 Frame-Mapped, 82, 83
 frame structure, 83
 GFP-T, 82, 83
 mapping, 82
Generic PW MPLS Control Word (PWMCW), 98
Generic Routing Encapsulation (GRE), 95
 WiMAX, 177
Gentle RED, 264

702 Index

Get command, 451
 TOPmodify, 573, 593
 TOPparse, 488–489
 TOPresolve, 547
GetFixBits command, 529, 550
GetRes command, 573, 593–594
GetRnd4Bits command, 530, 549–550
GetRndBits command, 528–529, 550
Get Token (GetToken) command, 499
Gigabit Interface Converter (GBIC), 42
Gigabit Media Independent Interface (GMII),

326–327
 Reduced GMII, 328
 Serial GMII, 329
Gigabit PON (GPON), 153–154. See also Passive

Optical Networks
 EPON versus, 158
 frames, 154
 transmission convergence (downstream frame),

155
 transmission convergence (upstream frame),

156
Global System for Mobile (GSM), 168
GPRS Tunneling Protocol (GTP), 173
GSM/EDGE Radio Access Network

(GERAN), 169
GSM/EDGE/UMTS, 168–169
 network architecture, 168
 user plane data protocols, 170
Guaranteed Frame Rate (GFR), 245
Guaranteed Service (GS), 246

H
Half-duplex processing, 187
Halt command, 453
 data operands, 599–600
 examples, 601
 mode operands, 600
 TOPmodify, 573–574, 599–601
 TOPparse, 500
 TOPresolve, 559
Hardware
 classifi cation, 204–205
 decoder block, 463–464
 search, 228–232
Hardware counters, 421, 422
 dedicated, 422
 types of, 422
Hardware Registers (HD_REG), 481–484
Hardwired control, 298
Hashing functions, 215
Hash tables, 215–217, 419. See also Table

structures

 application example, 618
 collision resolution technique, 216
 dynamic updating, 506
 functions, 215
 learning, 511–513
 multiplication method, 215–216
 principle, 215
 TOPsearch I, 506
Hazards, 299
 control, 358–359, 440–443
 data, 357, 440
 defi ned, 357
Header Register (HREG)
 TOPparse, 463
 TOPresolve, 518, 521, 525, 542
 TOPsearch, 502–503
Head of line (HOL) blocking, 382
Heterogeneous processors, 312
Hierarchical Packet Fair Queuing (H-PFQ),

274
Hierarchical Round-Robin, 274
Hierarchical VPLS (H-VPLS), 110
High-end NPs, 8, 9, 78, 288
High learn block (H_LRN), 520–521
High-speed networking, 3
High Speed Packet Access (HSPA), 169
H_LRN interface, 511–513. See also Hash tables
 general format, 512
 message header format, 512–513
Home and building networks, 178–180
Home Location Register (HLR), 169
Home Phoneline Networking Alliance

(HPNA), 179
Homogeneous processors
 parallelized, 310–311
 pipeline of, 311–312
Hop-by-hop routing, 94
HOST_CONF register, 484
Host interfaces, 330–332. See also External

interfaces
 PCI, 331
 PCIe, 331–332
 PCI-X, 331
Host notifi cation, EZchip, 421
Host registers, 468–469, 484–485
 CREG[15:0], 485
 DEL_VECTOR[3:0], 484, 485
 HOST_CONF, 484
 LREG [31:0], 590
 MREG[15:0], 484, 485, 543
 TOPmodify, 569–570, 590
 TOPparse, 468–469, 484–485
 TOPresolve, 525–526, 543

Index 703

Host Transmit Frame Descriptor Queue (HTFD_Q),
428

Hybrid classifi cation systems, 205
HyperText Transfer Protocol (HTTP), 59, 196
 frames, 617
 packets, 68, 617
Hyper-threading, 295, 347

I
Ideal Output Queued Switch (IOQS), 386, 397
IDT, 406
IEEE 802 metro Ethernet, 117
IEEE 802.1, 48, 56–57
IEEE 802.1ad, 117, 119
IEEE 802.1ag, 129
IEEE 802.11, 179
IEEE 802.16, 174
IEEE 802.3, 39–40, 43, 46–47
 Ethernet interfaces, 326–328
 frame format, 39, 43
IEEE 802.3ah, 127
Imperative programming, 340
Implied parallelism, 350
Include command, 459
Industry Standard Architecture (ISA) bus,

331
Infi niBand, 400
Ingress Back DMA (IBDMA), 416, 426
Ingress Forward Direct Memory Access (IFDMA),

415, 426, 561
Ingress processing, 184, 187
 EZchip, 415–416
 tasks, 187
 TOPmodify, 575
Initialization commands, 450
 TOPmodify, 571
 TOPparse, 470, 471
Input blocking, 382
Input Queued (IQ) switches, 386
Insert operation, 213
Instruction level parallelism (ILP), 296
Instruction memory
 TOPmodify, 563
 TOPparse, 461
 TOPresolve, 517
 TOPsearch, 502
Instruction pipeline, 298, 356–357, 440–443
 control hazards, 358–359, 440–443
 data hazards, 357, 440
 execution, 357, 441
Instructions
 branch, 358, 440, 441
 jump, 359, 441

 optimized, 314
 organization, 357
Instruction sets, 314
 design dimensions, 314
 TOPparse, 469–474
Instructions per cycle (IPC), 295
Integrated Services Digital Network (ISDN), 152
Integrated Services (IntServ), 245–246
Interior Gateway Protocols (IGPs), 60
Interleaving multithreading, 347
Internal BGP (iBGP), 135, 141
Internal blocking, 382
Internal circuitry, 320
Internal Spanning Tree (IST), 55
International Standard Organization (ISO), 21
International Telecommunications

Union–Telecommunication Standardization
Sector. See ITU-T

Internet Control Message Protocol (ICMP), 64
Internet Engineering Task Force (IETF), 58, 88–111,

243
Internet eXchange Architecture (IXA), 342
Internet eXchange Processor (IXP), 342
Internet Protocol (IP), 58–68. See also Data

networks
 ASs, 60
 checksum, 190–191
 DIP address, 60
 EGPs, 60
 headers, 64–66
 IGPs, 60
 MPLS over, 95
 multicast routing, 63–64
 networks, 3, 15
 packet routing, 59–60
 routing approaches/protocols, 60–64
 selective packet routing, 61–63
 shortest-path routing protocols, 61
 upper layers, 66–68
 version 4 (IPv4), 59
 version 6 (IPv6), 59
Internet Protocol Security (IPsec), 102, 237,

238, 405
 transport mode, 238
Internet Service Providers (ISPs), 158
Interrupt-driven software, 345
IP addresses
 classes, 207
 IPv4, 207, 210
 IPv6, 208, 210
IP Fabric PPL, 363
IP lookups, 205, 206. See also Lookups
 forwarding, 234

704 Index

 IPv4, 234
 IPv6, 234
 scheme arrangement, 235
 taxonomy, 234
 TCAMs for, 232
IP Multimedia Services (IMS), 167, 169
IP-only Like Service, 110–111
ISLIP, 398–399
ISO/OSI seven layers model, 21
 illustrated, 22
Issue width (IW), 295
ITU Mobile Telecommunications (IMT-2000), 168
ITU-T, 34, 111, 131, 243

J
Joint Coordination Activity on Home Networking

(JCA-HN), 179–180
Joint Electron Device Engineering Council

(JEDEC), 318
Jump commands, 455–457
 format, 455
 macro, 456
 TOPmodify, 595–596
 TOPparse, 492
 TOPresolve, 550–551
Jump instructions, 359, 441

K
KeepAlive message, BGP, 140
Kernels, 344
 microkernels, 344
 monolithic, 344
Key header, 506–509. See also TOPsearch
 compound key format, 508
 long key format, 508
 message key format, 508–509
 single key format, 508
 structure, 506–507
Key Memory (KMEM), TOPparse, 462,

501–502
Key Register (KREG), 502–503
Keys
 compound, 502, 508
 long, 508
 message, 508–509
 single, 502, 508
 string, 222
 TCAM, 232
Knockout switch, 396

L
Label Distribution Protocol (LDP), 91–94,

141–148

 advertisement messages, 142
 CR-LDP, 147
 discovery messages, 142
 Discovery process, 146
 enhancements, 146–148
 header format, 143
 identifi er, 143
 initialization procedure, 146
 Loop Detection, 146
 message format, 143
 messages, 144
 network topology, 146
 notifi cation messages, 142
 PDU, 142
 procedures, 146
 session messages, 142
 TCP, 142
 TLV encoding, 143, 144
 TLV types and usage, 145
Label Information Base (LIB), 89, 93–94
Label Switched Path (LSP), 89
 ER-LSP, 94
 merging, 132
Label Switched Routers (LSRs), 141
 identifi er, 146
 message exchange, 142
Large Scale Integration (LSI), 305
Layer 2 Tunneling Protocol (L2TP), 95, 164
 DSL access network, 164
 LAA model, 159
 LAC, 164
 LCCEs, 164
 Network Server (LNS), 164
 version 3 (L2TPv3), 164
Layer 2 VPN (L2VPN), 107–111. See also

Provider Provisioned Virtual Private
Networks

 IP-only Like Service, 110–111
 network example, 107
 PWs, 107
 VPLS, 109–110
 Virtual Private Wire Service, 108–109
Layer 3 VPN (L3VPN), 101–107. See also Provider

Provisioned Virtual Private Networks
 BGP/MPLS IP VPN, 102–107
 technologies, 102
 types of, 101–102
Layering model, 98
Leap Forward Virtual Clock algorithm, 274
Learning
 example, 514–515
 EZchip, 421
 hash table, 511–513

Index 705

Learning (cont’d)
 high, interface, 511–513
 low, interface, 511
 state, 51
 TOPsearch, 503
Lempel-Ziv algorithm, 237
Level and Path Compressed tries (LPC-tries), 228
Level-Compressed tries (LC-tries), 226, 227–228.

See also Tries
 for routing lookup, 228
 updating, 228
 variations, 228
Linear search, 214
Line-cards, 6
Link budgets, 153
Link Capacity Adjustment Scheme (LCAS), 35,

81, 82
Linked list structure, 214
Link state algorithm, 61
List structures, 214
Little endian notation, 447
Local area networks (LANs), 15, 18
 bridged, 50, 52
 networking evolution, 55–57
 scalability, 50
 VLANs, 47–48, 54–55, 428
Local Central Offi ce (LCO), 20
Lock machine, 504–505
LogP, 350
Longest prefi x match (LPM), 209
Longest Queue Drop (LQD), 270–271. See also

Buffer management
 ALQD, 271
Long keys format, 508
Long Reach Ethernet (LRE), 160
Long Term Evolution (LTE), 171–173. See also

Fourth generation
 network architecture, 171
 P-GW, 171–172
 S-GW, 171
Look-aside interfaces, 321
 coprocessor, 403
 LA-1, 333–334
 LA-2, 334
LookCam command, 471
 TOPmodify, 573, 598
 TOPparse, 494–495
Lookups, 205
 IP, 206, 233–235
 packet content, 233
 URL, 233
Lookup tables, 415
Loop Detection, LDP, 146

M
MAC-in-MAC, 119
MAC layer, 42–46. See also Ethernet
 frame format, 43
 MAC addresses, 44
 MAC client data, 44
 RPR, 84
 services, 42
 SNAP, 45–46
Macro commands, 458
Macros
 TOPmodify, 641–643
 TOPparse, 629–632
 TOPresolve, 634–639
Management Information Base (MIB), 196
Martini-drafts, 95
Maximum Matching algorithms, 398
MAX register block, TOPresolve, 519, 521, 522, 537
Media Independent Interface (MII), 326
 RMII, 328
 SMII, 329
Medium-grained parallelism, 296
Memories, 315–320. See also Network processors
 CAM, 210, 211, 229–232, 315
 DRAM, 316–319
 frame, 415
 instruction, 461, 502, 563
 internal, 315
 search, 415
 shared, 353, 388–389
 SRAM, 316
 statistics, 422
 TOPparse, 470
 TOPresolve, 526
Memory cores, 415
Memory interfaces, 333
Message formats
 BGP, 137–140
 keys, 508–509
 LDP, 143
 TOPmodify example, 582–583
 TOPresolve example, 534
Message Passing (MP)
 MPI, 352
 programming, 351–352
Metrics, data structures, 213–214
Metro Ethernet Forum (MEF) models, 111–116
 APP layer, 112
 bundling, 114
 CES, 116
 CESoETH, 116
 E-LAN, 114, 115

706 Index

 E-Line, 114–115
 E-LMI, 114
 ETH layer, 112
 OEM, 115
 TRAN layer, 112
 UNI, 112–114
Metro Ethernet Networks (MENs), 111
Metro networks, 20
Metropolitan area networks (MANs), 15
Microcode Development Environment (MDE),

448
Microcode development workfl ow, 607–614
 frame generation, 608–610
 project creation and analysis, 614
 structure generation, 610–614
Microcode registers
 TOPmodify, 566–569, 584–590
 TOPparse, 465–468, 479–484
 TOPresolve, 521–525, 537–542
Microkernels, 344
Micro-segmentation, 50
Mid-level NPs, 8, 9, 288
MIMD architecture, 292–294
 classes, 293
 implementations, 293
 memory usage, 294
Minterm (MINT) register block, TOPresolve, 519,

521, 522, 537
Minterm operations, 530, 553–557. See also

TOPresolve
 format, 553
 list, 554–555
 operands, 553
MISD architecture, 292
Modifi cation, 184, 236–237. See also TOPmodify
 frame buffers, 563
 operations, 236
 types, 561
 using, 236–237
Modifi cation Accelerator (MOD_ACC) block,

565–566
 ELSE branch, 565
 trigger, 565–566
Modifi ed Data Manipulator networks, 395
Modify operation, 213
Monolithic kernels, 344
Moore’s law, 4, 289
Mov4Bits command, 452
 TOPparse, 488
 TOPresolve, 547
MovBits command, 451
 TOPmodify, 592–593
 TOPparse, 487–488

 TOPresolve, 546–547
Mov command, 451
 TOPmodify, 592
 TOPparse, 487
 TOPresolve, 546
Move commands, 451–453, 470, 472, 487–492
 list of, 528
 TOPmodify, 572–573
 TOPparse, 487–492
 TOPresolve, 527–530
MPLS/IP (MPLS-in-IP tunneling), 98
MREG[15:0] register, 484, 485
MRP MAC Address Registration Protocol (MMRP),

52, 70, 71
Multibit-tries, 226–227
Multicard chassis system, 6, 8
Multicast frames, 425–426
Multicast routing, 63–64
 groups, 63
 protocols, 63–64
Multicore processors (MCPs), 294, 338
Multidomain VPLS, 110
Multimedia over Coax Alliance (MoCA), 179
Multiple Input and Multiple Output (MIMO)

antenna arrays, 169
Multiple Registration Protocol (MRP), 52, 70, 71
Multiple SISD (M-SISD), 293
Multiple Spanning Tree (MST)
 bridges, 55
 CST, 55, 56
 MSTI, 55
 region, 55
Multiple Spanning Tree Protocol (MSTP), 54,

123
Multipoint MAC Control Protocol (MPCP), 155,

157
Multiprocessing, 290–305
 Flynn typology, 290–294
 practical implementations, 294–305
Multiprocessor systems on a chip (MPSoC), 294,

306, 307, 355
Multiprogramming, 346
Multi-program over multiple data streams (MPMD),

293
Multi-Protocol Label Switching (MPLS), 15, 60, 62,

88–95, 428
 APoM, 95
 AToM, 95
 carrying over IP, 95
 FECs, 89
 hierarchy, 91
 labels, 92–93
 label stacks, 90

Index 707

Multi-Protocol Label Switching (MPLS) (cont’d)
 label switching, 92
 layering, 95
 LDP protocol, 92, 93, 94
 LIB, 93–94
 LSP, 89
 Martini-drafts, 95
 penultimate, 91
 PWE3 over, 99
 routers, 91
 T-MPLS, 131–134
 as transmission mechanism, 89
Multiservice Platforms (MSPs), 87
Multiservice Provisioning Platforms (MSPP), 36,

77, 87, 401
Multiservice Switching Platforms (MSSP), 87
Multiservice Transport Platforms (MSTP), 87
Multistage interconnection networks, 390–396
 Banyan networks, 393–395
 Batcher-Banyan, 395–396
 Benes networks, 392–393
 Cantor networks, 393
 Clos network, 391–392
Multitasking, 346
Multithreading, 346–347
Multiway search trees (m-way tree/m-ary tree), 219

N
NetBind, 363
NetLogic, 406
.NET, 352
NetVM, 363
Network Access Provider (NAP), 175
Network Address Translation (NAT), 208, 463
Network Classifi cation Language (NCL), 205, 362,

364–370
 conditional rules, 367
 intrinsic functions, 365
 protocol statement, 364–367
 rule defi nition, 367–368
 searches, 368–369
 sets, 368
 statements, 364
Network elements, 2, 6–8
 architecture planes, 6
 control plane, 6
 data forward plane, 6, 7
 optical networks, 36
 SONET/SDH, 31
Network File System (NFS), 406
Network fl ows, 242
Network masks, 208
Network modeling, 21–25

 links, 24
 nodes, 24
Network Processing Streaming Interface (NPSI),

323
Network processors (NPs), 1, 7, 8–10
 advantages, 2
 architectures, 309–313
 busses, 320
 categories of, 8–9, 287–289
 companies, 10
 components, 314–335
 control and synchronization mechanism, 334
 ecosystem, 1–2
 embedded processors, 335
 entry-level, 8, 288
 explicit parallelism, 361
 external interfaces, 320–334
 EZchip, 409–461
 functional units, 334–335
 heterogeneous, pipeline, 312
 high-end, 8, 9, 78, 288
 homogeneous, pipeline, 311–312
 homogeneous parallelized, 310–311
 implementations, 187
 internal connections, 320
 key functions, 9
 memory, 315–320
 mid-level, 8, 9, 288
 packet processors versus, 9
 parallel pipelines, 312–313
 peripherals, 379–407
 programming, 337, 359–363
 programming models, 362–363
 program structures, 360
 run-to-complete, 361
 run-to-timer, 360–361
 shared memory, 353
 threads in, 355
 use history, 10
Networks
 access, 2, 149–178
 active, 51
 aggregation, 2
 categorization, 19
 communication, 16
 connection-oriented, 16
 converged, 77–134
 core, 2, 18
 data, 38–68
 datacom, 17, 78–87
 Ethernet, 15, 39–58
 hierarchy, 19
 home and building, 178–180

708 Index

 as information infrastructure, 3
 IP, 3, 15, 58–68
 link speed, 3
 metro, 20
 optical, 27, 36–38
 packet, 3, 6, 16
 primer, 17–20
 speeds, 17
 technologies, 25–26
 telecom, 17, 26–38
 topologies, 20
 wireless, 20
Network Service Provider (NSP), 175
Networks on Chips (NoCs), 17, 307, 320
Network systems/devices. See Network elements
Network-to-Network Interface (NNI), 112
Next Generation SONET/SDH, 81–83. See

also Synchronized Optical Networks/
Synchronous Digital Hierarchy

 GFP, 81, 82–83
 LCAS, 81, 82
 VCAT, 81–82
Nodes
 core devices, 24
 edge devices, 24
 hosts, 24
Nonblocking switches, 382
Nonuniform Memory Access (NUMA), 293
Notifi cation message, BGP, 140
NP-1, 411. See also EZchip
 aging mechanism, 421
 architectural overview, 426
 data fl ow diagram, 427
 external host tasks/interface, 437–438
 frame fragmentation support, 429
 frame memory interface, 437
 frame processing ordering, 436–437
 frame processing walkthrough,

426–429
 host notifi cation, 421
 interfaces, 416, 417
 programming model, 412
 queues, 429
 RED implementation, 425
 token bucket implementation, 423
 TOPmodify block, 434–436
 TOPparse block, 429–430
 TOPresolve block, 433–434
 TOPsearch, 431, 436
 TOPsearch I block, 431–433
 TOPsearch II block, 434
 VOQ implementation, 424–425
 WRED implementation, 425

NP-2, 419
 interfaces, 416, 417
 lookup structure support, 419
NP-Click, 363, 371, 375–376
 elements, 375
 IXP-C language, 375
 pipelining, 376
 testing, 376
 uses, 375, 376
NP_common.h, 644
NP_FastRegs.h, 646
NP_structs.h, 644–646

O
Omega network, 394–395
OpenCom, 363
Open message, BGP, 137–138
OpenMP, 354
Open Shortest Path First (OSPF), 61
 MOSPF, 63
 version 2 (OSPF2), 61
Operating system (OS), 343–344
 general-purpose, 345
 RTOS, 344
Optical Carrier 1 (OC-1), 30
Optical Distribution Network (ODN), 153
Optical networks, 36–38
 network elements, 36
 optical devices, 36
 OTN, 37
 OTU frames, 37, 38
 PONs, 38
 WDM, 27, 36, 37
Optical Packet Switching (OPS), 36
Optical switching, 36
Optical Transport Network (OTN), 37
Optical Transport Unit (OTU) frames, 37
Ordered trees, 217
Organizationally Unique Identifi er (OUI), 46
Other Register (OREG), 565, 566, 567
 ALU, 584
 BUF_STATUS, 585
 CAMI, 584
 CAMO, 584
 FAST_REG, 584
 HISTORY, 584
 PORT_SEL, 585
 UNIT_NUM, 585
Output blocking, 382, 390
Output Memory (OMEM), 502, 518, 520
Output Queued (OQ) switches, 385–386,

397
Out register (OREG), 504

Index 709

Outside Interface Block (OUT_IF) registers
(TOPmodify), 566, 569

 FR_STRT, 588
 HOST_REG, 589
 NXT_BUF_PTR, 588
 NXT_BUF_SZ, 588
 QUEUE_NUM, 588
 RFD_CMD, 588
 RFD_PTR, 589
 RFD_RD, 588
 RFD_RD_CNT, 589
 RFD_WR, 589
 RFD_WR_CNT, 589
 RX_PRE_PTR, 589
 SEND_REG, 587, 589
 STAT_REG, 589
 STAT_REG_HI, 589
 TX_PRE_PTR, 589
Outside Interface Block (OUT_IF) registers

(TOPresolve), 520, 524–525, 540–542. See
also TOPresolve registers

 CTRL_REG, 541
 END_H_LRN, 542
 FR_PTR, 541
 HOST_REG, 540
 LRN_REG, 540
 LRN_SIZE, 541
 RFD_REG, 541
 RX_CNT, 541–542
 STAT_REG, 540
 STAT_REG_HI, 542
 TX_CNT, 542

P
Packet content lookup, 233
Packet Fair Queuing (PFQ) schedulers,

280–285
 SCFQ, 284
 VC, 283–284
 WFQ, 282–283
 worst-case WFQ, 284–285
Packet fl ow handling, 241–286
 CoS, 246–249
 at network edge and core, 250
 QoS, 243–244, 249–286
 terminology, 242–243
Packet forwarding, 60, 197
 simple decision, 232
Packet interfaces, 321–330. See also External

interfaces
 access, 330
 CSIX, 329
 IEEE 802.3, 326–328

 IP blocks, 323
 MII and GMII derivatives, 328–329
 NPSI, 323
 SPI, 324–326
 SPI-S, 323
 UTOPIA, 324
Packet loss ratio, 244
Packet networks, 3, 6, 16
Packet processing, 239
 architectures, 195–196
 classifi cation, 184
 compression, 237
 cut-through architecture, 195
 direction, 184, 186–188
 egress, 188
 encryption, 237–238
 framework, 185
 framing, 184, 188–195
 half-duplex, 187
 ingress, 187
 introduction, 183–186
 modifi cation, 184
 parsing, 184
 paths, 184
 prioritization, 185
 queuing, 185, 238
 store-and-forward architecture, 195
 tasks, 184
 traffi c management, 185, 238–239
Packet Processing Language (PPL), 377–378
 primitives, 378
 uses, 377
Packet processors, 9, 10
Packet routing, 59–60
Packets, 186
 conformance, 256–257
 fragmenting, 188, 191, 192–193
 HTTP, 68, 617
 queuing, 232
 reassembling, 188, 192–195
 segmenting, 188, 191, 193–195
 switching, 2, 16, 232
Packet scheduling, 249, 273–286. See also Quality

of Service
 aggregating policies, 274
 DRR, 278–279
 EDF, 279
 FI, 275
 fairness, 274–275
 FCFS, 276
 GPS, 279–280
 hierarchical policies, 274
 methods, 276–285

710 Index

 parameters, 274–275
 performance, 274
 PFQ, 280–285
 PQ, 276
 priority, 273
 RR, 273, 276–277
 SFI, 275
 SP, 276
 starvations, 275
 time stamp-based, 273
 with traffi c shaping, 274
 WRR, 277–278
 work-conserving, 274
Packet Switch Networks (PSN), 88
 carrier-provisioned, 96
 tunnels, 97
 using, 95–96
Parallelism, 290
 asymmetric, 297
 bit or byte slicing basis, 397
 coarse-grained, 296
 concept, 397
 data, 351
 DLP, 296
 explicit, 350, 361
 fi ne-grained, 296
 ILP, 296
 implementation, 296
 implied, 250
 levels, 296
 medium grained, 296
 in scaling switch capacity, 397
 switch fabric, 396–397
 symmetric, 296–297
 thread-based, 353–355
 TLP, 296
Parallel Iterative Matching (PIM), 398
Parallel processor pipeline, 313
Parallel programming, 348, 349–355
 coding models, 350
 computation models, 349–350
 data parallelism, 351
 MP, 351–352
 models, 351
 SAS, 353
 thread-based parallelism, 353–355
Parallel Random Access Machines (PRAM), 349
Parallel Virtual Machine (PVM), 352
Parsing, 9, 184, 196, 461–478. See also Packet

processing
 example, 196
 EZchip, 461–478
 languages, 205

Partial Packet Discard (PPD), 272
Partial search, 212
Passive Optical Networks (PONs), 38, 150, 153
 EPON, 154–158
 fi rst generation, 153
 in FITL, 152–153
 GPON, 153–154
Path Terminating Equipment (PTE), 31
Patricia tries, 222–226
 behavior, 225
 of IP addresses, 223, 224
 prefi xes, 225–226
Pat-tries, 221
PCI Express (PCIe), 331–332
PCI Industrial Computer Manufacturers Group

(PICMG), 400
PCI-X, 331
Peak Burst Size (PBS), 147
Peak Data Rate (PDR), 147
Penultimate hop popping, 91, 132
Penultimate router, 91
Per Hop Behavior (PHB), 423
Peripheral Component Interconnect (PCI),

331
Peripherals, 379–407
 coprocessors, 403–407
 switch fabrics, 379–403
Permanent Virtual Circuits (PVCs), 160
Personal area networks (PANs), 18
Pipeline control
 TOPmodify, 564
 TOPparse, 461
 TOPresolve, 517
Pipelines
 branch execution, 358
 EZchip, 501
 heterogeneous processors, 312
 homogeneous processors, 311–312
 instruction, 440–443
 parallel, 312–313
 parallel processors, 313
Pipelining, 298–300, 348, 355–359
 explicit parallelism and, 361
 hazards, 299, 357–359
 instruction, 298, 356
 levels, 299
 process, 356
 program, 300
 super, 300
 task, 356
 vector processor, 299
Pipenets, 304
Pizza box system, 6, 7

Index 711

Plesiochronous Digital Hierarchy (PDH), 26, 27–29
 DS1, 28
 E1 link, 28
 frames, 28
 lines, 28–29
 point-to-point links, 28
 voice channel multiplexing, 27
Point samples, 261
Point-to-Multipoint (P2MP) topology, 154
Point-to-Point (P2P) emulation, 155
Point-to-Point Protocol (PPP)
 control plane, 160–162
 encapsulation, 463–464
 over ATM, 162
 over Ethernet over ATM, 162
 over Ethernet over Ethernet, 162
 over Ethernet, 162
 PTA model deployment examples, 163
 Terminated Aggregation model, 159,

160–163
Predicates, 365–366, 367
Preemptive multitasking, 346
Prefi x trees. See Tries
Preprocessor, EZchip, 447
Prioritized Elastic Round-Robin algorithm, 274
Priority queues, 217
Priority Queuing (PQ) scheduler, 276
Priority vector, 73
Processes, 295
Processor Sharing (PS) technique, 279
Process pipelining, 356
Programmable models, 287
Programming
 architectures, 341
 declarative, 341
 EZchip, 439–457
 functional, 340–341, 361–362
 imperative, 340
 languages, 341, 361–362
 MP, 351–352
 network processors, 337, 359–363
 object-oriented, 345
 paradigms, 339–341
 parallel, 348, 349–355
 run-to-completion, 311
Programming models, 338, 339
 classifi cation, 348
 network processor, 362–363
Protection, connection, 131
Protocol Data Units (PDUs), 24
 BPDUs, 74–76
 LDP, 142
 PWE3, 98

Protocol Independent Multicast—Dense mode
(PIM-DM), 64

Protocol statement (NCL), 364–367
 demux statement, 366
 fi eld statement, 365
 intrinsic statement, 365
 predicate statement, 365–366
 size statement, 365
 syntax, 364–365
Provider Backbone Bridged Networks (PBBN),

88, 119–123
 bridges, 121
 B-VLANs, 122
 customer connections,

123
 C-VLANs, 122
 frame format, 120
 internal functioning, 121
 I-SIDs, 122
 I-Tag, 121
 model and interfaces, 121
 reliability, 123
 scalability issues, 123
 S-VIDs, 122
 S-VLANs, 122
Provider-Backbone Bridges-Traffi c Engineering

(PBB-TE), 88, 123–126
 B-VIDs, 124, 125
 example, 125
 splitting B-VLANs, 124
 trees, 124
 VLAN use, 124
Provider Bridged Network (PBN),

116–119
 C-Tag, 117, 119
 frame format, 118
 internal behavior, 117
 model and interfaces, 118
 PB, 117
 S-Tag, 117, 119
 VLAN representation, 119
Provider Provisioned Virtual Private Networks

(PPVPNs), 88, 96, 100–111
 access connection, 101
 access network, 101
 customer edge equipment, 100
 L2VPN, 107–111
 L3VPN, 101–107
 provider edge equipment, 100
 provider equipment, 101
 reference model, 100
 service provider network, 101
 terminology, 101

712 Index

Pseudo Wire Emulation Edge to Edge (PWE3), 95,
96–99

 backward compatibility, 99
 Ethernet frames and, 99
 over MPLS, 99
 PDU, 98
 protocol layers, 97
 PW, 96
 PWMCW, 98
 reference model, 96, 97
 technologies, 96
Public Data Network (PDN), 172
Public Land Mobile Network (PLMN),

172
Public Switched Telephone Network

(PSTN) access network, 150, 152
 twisted pair wire system, 152
 uses, 152
Pull communications, 371, 372
Pulse Code Modulation (PCM), 27
Push communications, 372
Put command, 451
 TOPmodify, 594
PutHdr4Bits command, 453
 TOPparse, 491–492
 TOPresolve, 549
PutHdrBits command, 452–453
 TOPparse, 491
 TOPresolve, 549
PutHdr command, 452
 TOPparse, 490–491
 TOPresolve, 548
PutKey command
 TOPparse, 489
 TOPresolve, 548

Q
Q-in-Q double tagging, 117
Quad Data Rate (QDR), 316
Quality of Service (QoS), 181, 242,

243–244
 admission control, 249, 251–252
 bandwidth, 244
 BER, 244
 buffer management, 249, 263–273
 delay, 244
 delay variations (jitter), 244
 end-to-end mechanisms, 251
 European Commission defi nition,

243
 functions illustration, 250
 IETF defi nition, 243
 ITU-T defi nition, 243

 mechanisms, 249–286
 packet loss ratio, 244
 packet queuing, 249
 packet scheduling, 249, 273–286
 parameters, 244
 throughput, 244
 traffi c management, 249
Quantum Flow Processor (QFP), 311, 348
Queuing, 232, 238, 249, 262–263. See also Packet

processing
 as QoS mechanism, 262–263

R
Radio Access Networks (RANs), 166–178. See also

Access networks
 BTS/BSC/RNC, 169
 1G, 167, 168–170
 2G, 167, 168–170
 2.5G, 167, 168–170
 3G, 167, 168–170
 4G, 167, 171–177
 Gateway MSC, 169
 GERAN, 169
 GGSN, 169, 170
 GSM/EDGE/UMTS, 168–170
 HLR, 169
 MS, 169
 MSC, 169
 UTRAN, 169
 VLR, 169
Random Early Detection (RED), 264–267. See also

Buffer management
 algorithm phases, 265
 Balanced, 270
 fi nal drop probability, 266
 FRED, 269–270
 packet dropping probability, 266
 profi les, 265
 queue utilization, 266–267
 RIO, 267–268
 SRED, 268–269
 WRED, 267
Rapid Spanning Tree Protocol (RSTP), 54
 BPDUs, 74–76
 DPs, 74
 operation, 72–74
 priority vector, 73
 root ports, 74
Rate-Controlled Static Priority algorithm,

274
Real-Time OS (RTOS), 344
Real-time VBR (rt-VBR), 245
Rearrangeable Nonblocking (RNB) switch, 382

Index 713

Reassembly, 192
 ATM segmentation and, 193–195
 IP fragmentation and, 192–193
Receive Frame Descriptor (RFD) table, 437
Receive frames, 437
Red-black trees, 218
Reduced GMII (RGMII), 328
Reduced Instruction Set Computing (RISC), 297, 298
Reduced Latency DRAM (RLDRAM), 317, 319
Reduced MII (RMII), 328
Regional Central Offi ce (RCO), 19
Registration protocols, 70–71
Remote Method Invocation, 352
Remote Procedure Call (RPC), 352
Reservation and Preemption and

Acknowledgement (RPA), 398
Resilient Packet Ring (RPR), 84–86
 architectural positioning, 86
 failure protection, 85
 frame formats, 85, 86
 MAC, 84
 service classes, 85
Resource initialization, 450, 571
Resource Reservation Protocol (RSVP), 62
 packet handling, 62
 RSVP-TE, 94
Restoration, connection, 131
Result Control, TOPresolve, 520
Result Memory (RMEM), TOPmodify, 564
 accessing, 570
 reading, 570
Result Memory (RMEM), TOPresolve, 432, 433, 504,

509, 510, 518, 526
 access, 526–527
Rfd.MDF.h, 646–648
Ring topology, 20
Root Bridge (RB), 53
Rooted trees, 217
Root Port (RP), 53
Round-Robin (RR) schedulers, 273, 276–277
 illustrated, 277
Route refl ectors, BGP, 141
Routers
 BGP, 4, 5, 136
 LSR, 141, 142, 146
 MPLS, 91
 penultimate, 91
Routing information distribution protocols
 BGP, 135–141
 LDP, 141–148
Routing Information Protocol (RIP), 61
Run-to-complete, 361
Run-to-timer, 360–361

S
Scalability
 control, 264
 LAN, 50
Scalable System Packet Interface (SPI-S), 323
Scalar processors, 294
SCAN block, 464
SCAN delimiter register, 485
Scan operations, 473, 495–499
 FindDel, 497–498
 FindNonDel, 498–499
 FindToken, 499
 format, 496
 GetToken, 499
 operands, 496–497
 results summary, 498
Schedulers
 DR, 278–279
 EDF, 279
 FCFS, 276
 GPS, 279–280
 PFQ, 280–285
 PQ, 276
 RR, 273, 276–277
 SCFQ, 284
 SP, 276
 time stamp-based, 273
 with traffi c shapers, 274
 VC, 283–284
 WFQ, 282–283
 work-conserving, 274
 WRR, 277–278
SDH networks. See also Synchronized Optical

Networks/Synchronous Digital Hierarchy
 confi gurations, 29
 multiplexing scheme, 34
 rings, 29
 SONET versus, 30
 VC, 35
Search, 205, 213
 binary, 214–215
 calling, 205
 classifi cation, 184, 196–205, 235–236
 classifi ers, 405–406
 as data handling operation, 213
 data structures, 212–228
 digital tree, 222
 Fibonaccian, 214
 full match, 212
 hardware, 228–232
 introduction, 205–210
 IP lookup, 205, 206, 233–235
 linear, 214

714 Index

 partial, 212
 URL lookup, 233
 using, 232–236
Search engines, 210–212
 complex, 211
 external, 211
 plain memory, 210
Searching, 501–516. See also TOPsearch
 example, 513–514
 hash table learning, 511–513
 importance, 501
 introduction, 501–502
Search memory, 415
Search processors, 405–406
 CAM devices, 406
 commercial, 406
Second generation (2G), 167, 168–170
Security processors, 404–405
 commercial, 405
 fl ow-through scheme, 405
Segmentation, 191
Segmentation and reassembly (SAR), 189
Selective packet routing, 61–63
 DiffServ, 63
 label switching model, 62
 relative priority marking, 62
 service requirements and, 62
 static per-hop classifi cation model, 63
Self-adjusted balanced BSTs, 218
Self-Clocked Fair Queuing (SCFQ) scheduler, 284
Self-routing switches, 384
SerDes to Framer Interface (SFI), 325, 326
Serial GMII (SGMII), 329
Serial MII (SMII), 329
Service Access Points (SAPs), 46
Service disciplines, 273
Service Fair Index (SFI), 275
Service Instance Identifi ers (I-SIDs), 122
Service Level Agreements (SLAs), 243
Service VLAN Identifi ers (S-VIDs), 122
SetMaxMin operations, 530–531, 558
Shared Address Space (SAS), 353
Shared medium, 387, 389
Shared memory, 353
 architecture, 388
 dynamic queues, 389
 multiprocessors, 293
 speed, 389
 static queues, 389
Shortest Path Bridging (SPB), 123, 124
Shortest-path routing protocols, 61
SIMD architecture, 291
Simple and Easy Adaptation Layer (SEAL), 194

Simple Leaky Bucket (SLB), 252–253
Simple Network Management Protocol (SNMP),

196
Simulator, EZdesign, 448
Simultaneous Multithreading (SMT), 295, 347
Single Error Correcting, Double Error Detection

(SECDED), 319
Single keys, 502. See also Keys
 format, 508
Single Program Multiple Data (SPMD), 293, 351
Single Rate Three Color Marker (srTCM), 258, 423
Single Spanning Tree (SST), 55
SISD architecture, 290, 291
 Multiple (M-SISD), 293
Skip lists, 214
Small and Medium Enterprises (SMEs), 158
Small Computer System Interface (SCSI), 406
Smoothed Round-Robin algorithm, 274
Software, 337–363
 architecture, 343
 complex classifi cation, 202–204
 conventional systems, 342–348
 interrupt-driven, 345
 NP programming, 359–363
 simple classifi cation, 201–202
Software counters, 422–423
 reading, 423
 updating, 423
SONET, 29. See also Synchronized Optical

Networks/Synchronous Digital
Hierarchy

 frames, 32
 multiplexing scheme, 34
 Next Generation, 77
 SDH versus, 30
 STM-1/STS payload pointing, 32, 33
 STS-1, 30
 TOH, 32
 VCAT, 35
 VT, 33
Source Service Access Point (SSAP), 46
Space division architecture, 387, 390–396
Space-Time (ST) switching, 384
Spanning Tree Protocol (STP), 51, 54, 123
 MSTP, 54, 123
 in PBBN, 123
 RSTP, 54, 72–74
 TCN BPDUs, 75
Spanning trees
 of bridged network, 53
 bridge roles, 53
 constructing, 51
 multiple, example, 56

Index 715

Specifi c Registers (SREG)
 CNT, 466, 480, 538, 585
 DISP_REG, 586
 EOF_ADDR, 467, 480
 FLAGS, 467, 480–481, 538–539, 585–586
 HBS, 467, 480, 538
 History, 539
 HOST_REG, 467
 IND_REG, 467, 538, 586
 KBS, 467, 480
 NULL_REG, 467, 480
 OBS, 538
 OFF_OMEM, 538
 OFF_RMEM, 538
 PC_STACK, 467, 480, 538, 585
 PRT_IND, 586
 PTR, 587
 RBS, 538
 RD_PTR, 466
 RD_PTR_RES, 587
 RFD_REG, 467, 481
 RX_CNT_HI, 539
 SIZE_REG, 467, 480, 538, 586
 STAT_REG, 467, 481
 ST_GRP, 538
 STR_NUM, 587
 TOPmodify, 565, 567–568, 585–587
 TOPparse, 462, 466–467, 480–481
 TOPresolve, 518, 523–524, 538–539
 TX_CNT_HI, 539
 UNIT_NUM, 539
Stabilized Random Early Detection (SRED),

268–269
Starting Potential-based Fair Queue (SPFQ), 285
Star topology, 20
Starvation, 275
Stateful classifi cation, 199
Stateless classifi cation, 199
Static classifi cation, 200
Static per-hop classifi cation model, 63
Static RAM (SRAM), 215. See also Memories
 DDR, 316
 QDR, 316
 speed, 215–216
 technologies, 316
Statistics counters, 437, 504
Statistics memory, 422
Stochastic Fair Queuing algorithm, 274
Stop-and-Go algorithm, 274
Storage processors, 406
Store-and-forward architecture, 195, 384–385
Stratifi ed Round-Robin algorithm, 274
Streaming interfaces, 321

Strictly Nonblocking (SNB) switch, 382
Strict Priority (SP) scheduler, 276
Structure defi nition table
 TOPsearch, 503
 TOPsearch I, 505
Structure Generator, EZdesign, 449, 610–614
 fi nal structure defi nition screen, 611, 614
 keys and results defi nition, 610, 613
 main screen, 610, 612
 opening, 610
 result options screen, 611, 613
 structure defi nitions, 610, 612
Subcarrier Division Multiple Access (SDMA), 153
Subnetwork Access Protocol (SNAP), 44–45
Suffi x trie, 221
Summarization, 208
Sunshine switch, 396
Supernetting, 208
Superscalar, 300–301
 implementations, 301
Switches
 buffered, 397
 Cantor, 397
 CIOQ, 398, 399
 combined Input/Output Queued, 386
 crossbar, 390
 IQ, 386
 knockout, 396
 nonblocking, 382
 OQ, 385–386, 397
 RNB, 382
 self-routing, 384
 SNB, 382
 Sunshine, 396
 WNB, 382
Switch fabrics, 379–403
 addressing, 384–385
 algorithms, 397–399
 architectures, 387–397
 blocking, 382
 blocking avoidance, 385–387
 chips, 380–381
 chipsets, 401–402
 commercial aspects, 401–402
 controller, 385
 crossbar, 390
 in data communications, 381
 forwarding, 384–385
 implementation, 400–401
 implementation attributes, 380
 introduction, 380–381
 market analysis, 402
 models, 381–387

716 Index

 multistage interconnection network,
390–396

 operation, 381–387
 parallelism, 396–397
 parallel switching, 396–397
 performance, 397–399
 redundancy support, 400
 routing, 384–385
 shared medium, 387, 389
 shared memory, 387, 388–389
 space division, 387, 390–396
 technology, 381
 time-space-division switching, 383–384
 usage, 400–401
 uses, 381
Switching
 backplane, 402
 cut-through, 384–385
 Ethernet, 49–52
 requirements, defi ning, 381
 ST, 384
 store-and-forward, 384–385
 technical issues, 403
 technology, 380
 theory, 381
 TS, 383–384
 TST, 384
 VLAN, 50–51
Switching nodes, 380
Symmetrical Multiprocessing (SMP), 293, 296–297,

338
 advantage, 296
 using, 296–297
Synchronized Optical Networks/Synchronous

Digital Hierarchy (SONET/SDH), 2–3, 26,
29–35. See also SDH; SONET

 ASON, 38
 data communications support, 29
 DCS, 31
 frames, 32
 framework, 29
 GFP, 35
 LCAS, 35
 multiplexing, 31, 34
 network elements, 31
 NG-SONET/SDH, 81–83
 PTE, 31
Synchronous DRAM (SDRAM), 316, 317
Synchronous Transport Module 1 (STM-1), 30
Synchronous Transport Signal 1 (STS-1), 30
System Packet Interface (SPI), 324–326
 POS-PHY level 3 (SPI-3), 324–325
 SFI reference model, 326

 SPI-3, 324–325
 SPI-4.2, 325
Systolic processing, 304

T
Table structures, 214–217. See also Data structures
 associative arrays, 217
 direct addressable tables, 214–215
 hash tables, 215–217
Task-Optimized Processors (TOPs), 9, 412,

413–414, 439. See also TOPmodify;
TOPparse; TOPresolve; TOPsearch

 allocation of, 414
 architecture, 412
 engines, 412, 414, 603
Task pipelining, 356
Tasks, 346
T-Carrier. See Plesiochronous Digital Hierarchy

(PDH)
TCP/IP model, 22
TDM Access Line Service (TALS), 116
Teja-NP, 363
Telecom networks, 17, 26–38
 optical, 36–38
 PDH, 28–29
 SONET/SDH, 29–35
 TDM, 27
 technologies, 27
 to telecom networks, 87–134
 uses, 26
10G Attachment Unit Interface (XAUI), 328
Ten Bit Interface (TBI), 328
Terminal Multiplexers (TM), 31
Ternary CAMs (TCAMs), 230. See also Content

Addressable Memory
 don’t care bit, 230
 for IP lookup, 232
 key, 232
 priority mechanism, 231
Third generation (3G), 167, 168–170
Thread-based parallelism, 353–355
Thread-level parallelism (TLP), 296
Threads, 346
 in network applications, 354–355
 in network processors, 355
Three Color Markers (TCM), 257–260
 srTCM, 258
 trTCM, 258–259
 tswTCM, 259–260
Throughput, 244
Time Division Multiple Access (TDMA), 153
Time Division Multiplexing (TDM), 27
Time Sliding Window TCM (tswTCM), 259–260

Index 717

Time-Slot Interchange (TSI), 383
Time-Space-Time (TST) switching, 384
Time-Space (TS) switching, 383–384
Time stamp-based schedulers, 273
Time-to-Live (TTL) fi eld, 92
Time-window samples, 261
Token Bucket (TB), 253
 implementation, 423
 principle, 253
TOP_MDF_macros.h, 641–643
TOPmodify, 434–436, 561–583
 addressing modes, 591
 ALU, 564
 application writing example, 624–629
 block diagram, 435, 436
 CAM, 564–565, 570
 data bus, 564
 engines, 435
 fi rst memory buffer modes, 562
 frame header write, 562
 frame memory block, 564
 frame memory interface, 562
 frame ordering, 436
 frame replication, 435
 ingress frame transmission, 575
 instruction memory, 563
 internal engine diagram, 563–566
 introduction, 561–563
 memories, 570
 MOD_ACC block, 565–566
 move commands, 450
 OUT_IF block, 566
 output queues, 436
 pipeline control block, 564
 RMEM, 564
 structures, 570
TOPmodify example, 574–582, 583
 data fl ow, 575–577
 defi nition fi les, 580–582
 frame handling, 574–575
 message formats, 582–583
 microcode, 577–580
 structures, 582
 TOPresolve-TOPmodify message format,

582–583
 TOPsearch II structures, 582
TOPmodify instruction set, 571–574
 ALU operations, 596–598
 conditional commands, 574
 Copy command, 594–595
 Get command, 573, 593
 GetRes command, 573, 593–594
 Halt command, 573–574

 initialization commands, 571
 Jump commands, 595–596
 LookCam command, 573, 598
 MovBits command, 592–593
 Mov command, 592
 move commands, 572–573, 592–595
 Put command, 594
 Write command, 595
TOPmodify registers, 566–570
 host, 569–570, 590
 microcode, 566–569, 584–590
 OREG, 565, 566, 567, 584–585
 OUT_IF, 569, 587–589
 SREG, 565, 567–568, 585–587
 UREG, 565, 566, 567, 584
TOPparse, 429, 461–478
 addressing modes, 486
 ALU, 463
 application writing example, 620–621
 block, 429–430
 CAMs, 463, 470, 494–495
 conditional commands, 473–474
 Convert Block, 463
 Convert command, 472–473
 data bus, 462
 direct table lookups, 430
 fl ags, 481
 frame memory, 462
 functions, 429–430, 461
 hardware decoder block, 463–464
 initialization commands, 470, 471
 instruction memory, 461
 internal engine diagram, 461–464
 KMEM, 462
 memories, 470
 messages, 470
 move commands, 470, 472
 pipeline control, 461
 SCAN block, 464
 scan operations, 473, 495–499
 structures, 469
TOPparse example, 474–478
 defi nition fi les, 476–477
 program fl ow, 474–475
 sample microcode, 475–476
 TOPparse-TOPresolve hardware decoded

message, 477–478
 TOPsearch I structures, 477
TOPparse instruction set, 469–474
 ALU commands, 493–494
 conditional commands, 473, 474
 Convert command, 472–473, 495
 Copy command, 490

718 Index

 FindDel command, 497–498
 FindNonDel command, 498–499
 FindToken command, 499
 Get command, 488–489
 GetToken command, 499
 Halt command, 500
 Jump commands, 492
 LookCam command, 471, 494–495
 MovBits command, 487–488
 Mov command, 487
 Move4Bits command, 488
 move commands, 470, 472, 487–492
 PutHdr4Bits command, 491–492
 PutHdrBits command, 491
 PutHdr command, 490–491
 PutKey command, 489
 resource initialization, 470, 471
 scan operations, 473, 495–499
TOPparse registers, 465–469
 FBLK, 466, 479
 HD_REG, 481–484
 HREG, 463
 host, 468–469, 484–485
 HWARE, 466, 468
 microcode, 465–468, 479–484
 SREG, 462, 466–467, 480–481
 TOPresolve, 521–525, 537–542
 UREG, 462, 465
TOP_PRS.h, 632–634
TOP_PRS_macros.h, 629–632
TOPresolve, 433, 517–536
 addressing modes, 544–545
 ALU, 518–519
 application writing example, 621–624
 block diagram, 433
 data bus, 517
 engine diagram illustration, 518
 fl ags, 540
 high learn functional unit/block, 433
 high-learning interface, 511–513
 H_LRN, 520–521
 instruction memory block, 517
 internal engine diagram, 517–521
 memories, 526
 OMEM, 434, 518, 520, 526
 OUT_IF block, 520
 pipeline control block, 517
 Result Control block, 518, 520, 526
 RMEM, 432, 433, 509, 510, 518, 526–527
 state information collection, 434
 structures, 526–527
TOPresolve example, 531–536
 data fl ow, 532

 defi nition fi les, 533–534
 frame handling, 531–532
 message formats, 534
 microcode, 532–533
 structures, 534
 TOP-parse-TOPresolve message, 534–535
 TOPresolve-TOPmodify message,

535–536
 TOPsearch I structures, 534, 535
 TOPsearch II structures, 534, 535
TOPresolve instruction set, 527–531
 ALU operations, 551–552
 conditional commands, 531
 Copy command, 548
 Get command, 547
 GetFixBits command, 529, 550
 GetRnd4Bits command, 530, 550
 GetRndBits command, 528–529, 549–550
 Halt command, 559
 Jump commands, 550–551
 Minterm operations, 530, 553–557
 Mov4Bits command, 547
 MovBits command, 546–547
 Mov command, 546
 move commands, 527–530, 546–550
 PutHdr4Bits command, 549
 PutHdrBits command, 549
 PutHdr command, 548
 PutKey command, 548
 SetMaxMin command, 530–531, 558
TOPresolve registers, 434, 519, 521, 521–526, 522,

537
 ALU32, 521, 522, 537
 host, 525–526, 543
 HREG, 518, 525, 542
 MAX, 519, 521, 522, 537
 microcode, 521–525, 537–542
 MINT, 519, 521, 522, 537
 OUT_IF, 521, 524–525, 540–542
 SREG, 518, 523–524, 538–539
 UREG, 518, 521, 522, 537
TOP_RSV.h, 639–641
TOP_RSV_macros.h, 634–639
TOPsearch, 431
 for compound keys, 502
 database-oriented instruction set, 444
 frame parameters, 506, 509
 hash table learning, 511–513
 key header, 506–509
 low-learning interface, 511
 result format, 509–510
 single keys and, 502
 uses, 501

Index 719

TOPsearch engines, 436, 501
 aging, 504
 diagram illustration, 503
 external memory, 504
 HREG, 502–503
 instruction memory, 502
 internal diagram, 502–505
 KREG, 502–503
 learning, 503
 lock machine, 504–505
 memory cores, 504
 out register, 504
 statistics counters, 504
 structure defi nition table, 503
 updating, 503
TOPsearch I, 431–433
 application writing example, 650–652
 diagram, 432
 direct table structure, 506
 functional units/blocks, 433
 hash table structures, 506
 structure defi nition table, 505
 structures, 505–506
 TOPresolve example, 534
 tree structures, 505
TOPsearch II, 434, 435
 application writing example, 652–653
 TOPmodify example, 582
 TOPresolve example, 534
Traffi c Conditioning Agreement (TCA),

242–243
Traffi c engineering, 242
Traffi c management, 185, 238–239, 242, 252–262.

See also Packet processing
 DLB, 254
 as fl ow handling, 239
 incoming packets, 238
 issue handling, 188
 measurement and metering, 261
 packet conformance, 256–257
 policing, 261
 process, 238
 as QoS mechanism, 249, 252–262
 shaping, 261–262
 SLB, 252–253
 TB, 253
 TCM, 257–260
 theory, 252–260
 TSpec, 254–255
Traffi c managers, 403–404
 commercial, 404
 multilevel hierarchical queuing system, 404
 queues, 404

Traffi c policing, 242, 261
 characterization, 255
Traffi c shaping, 242, 261–262
 characterization, 255
Traffi c specifi cation (TSpec), 254–255
Transmission Control Protocol (TCP), 66. See also

Internet Protocol
 checksum, 190–191
 header, 67
 LDP use, 142
 session initiation/termination, 413
Transmit frames, 438
Transparent-Mapped GFP (GFP-T), 82, 83
Transport Layer Security (TSL), 405
Transport MPLS (T-MPLS), 131–134. See also

Multi-Protocol Label Switching
 control plane, 133
 frame structure and layers, 133
 IP/MPLS via Ethernet over, 132
 labels, 134
 services, 131–132
 as transport network, 133
Tree structures, 217–219. See also Data structures
 AVL tree, 218
 balanced BSTs, 218
 binary heap, 217–218
 BST, 218
 binary tree, 217
 EZchip, 420
 free tree, 217
 longest match, 420
 multiway search tree, 219
 nodes, 217
 ordered, 217
 red-black tree, 218
 rooted tree, 217
 TOPsearch I, 505
Tries, 219–228. See also Data structures
 advanced, 222
 binary, 222
 bucket, 221
 compressed (compact), 220–221
 dense, 226–227
 example, 219–220
 fi xed-stride, 226
 IP addresses, 220
 LC, 226, 227–228
 multibit, 226
 networking advantage, 221
 Pat, 221
 Patricia, 222–226
 string keys, 222
 suffi x, 221

720 Index

 updating, 220
 variable-stride, 226
Two-Rate TCM (trTCM), 258–259
Type of Service (ToS), 243

U
Ultra Mobile Broadband (UMB), 178
Uniform Memory Access (UMA), 293
Universal Mobile Telecommunications System

(UMTS), 169
Universal Terrestrial Radio Access Network

(UTRAN), 169
Universal Test & Operations PHY Interface for ATM

(UTOPIA), 324
Unlicensed Mobile Access (UMA), 168
Unspecifi ed Bit Rate (UBR), 245
Update message, BGP, 138–140
 Attribute Length, 139
 Total Path Attributes Length, 139
 Withdrawn Routes Length, 139
Updating
 EZchip, 421
 hash tables, 506
 LC-tries, 228
 software counters, 423
 TOPsearch, 503
 tries, 220
URL lookup, 233
User Datagram Protocol (UDP), 66–68
 checksum, 191
 header, 68
User-Defi ned Register (UREG)
 TOPmodify, 565, 566, 567, 584
 TOPparse, 462, 465
 TOPresolve, 518, 521, 522, 537
User-to-Network Interfaces (UNIs), 112–114
 EVCs, 113
 types, 113

V
Van Emde Boas tree, 222
Variable Bit Rate (VBR), 81, 245
Variable-stride tries, 226
Vector distance algorithm, 61
Vector processors, 294
VERA, 363
Very Large Scale Integration (VLSI), 305
Very Long Instruction Word (VLIW) architecture,

301–303, 361
 implementation, 302
 instructions, 302
 pure, 303
 superscalar architecture and, 302

 tainted, 303
 Variable Length, 303–304
Virtual Channels (VCs), 79
 VCI, 79, 80, 81
Virtual Clock (VC) scheduler, 283–284
Virtual Concatenated Groups (VCGs), 82
Virtual Concatenation (VCAT), 81, 82
Virtual Containers (VCs), 35
Virtual local area networks (VLANs), 47, 48–49
 access and trunk ports, 49
 bridging, 54–55
 B-VLAN, 119
 example, 49
 frames, 48
 hosts, 48
 network span, 52
 port-based, 48
 protocol-based, 48, 49
 Provider Bridged, 119
 switching, 54–55
 trunks, 49
 VID, 48
Virtual Output Queues (VOQs), 386, 387,

397, 399
 NP-1 implementation, 425–426
 uses, 428–429
Virtual Path Connections (VPCs), 79
Virtual Paths (VPs), 79
 VPI, 79, 80, 81
Virtual Private LAN Service (VPLS), 109–110
 as bridged LAN service, 109
 H-VPLS, 110
 multidomain, 110
 PE behavior, 110
 reference model, 109
Virtual Private Networks (VPNs), 95, 100,

237, 405
 BGP/MPLS IP, 102–107
 tunneling signaling protocols, 108
Virtual Router, 102
Virtual Scheduling Algorithm (VSA), 257
VLAN example, 603–615
 Connection options dialog, 606
 debugging screen, 606, 607
 frame generation, 608–610
 installation, 603–604
 microcode development environment,

launching, 604–605
 microcode development workfl ow,

607–614
 project, opening, 605–607
 project creation and analysis, 614
 structure generation, 610–614

Index 721

Von-Neumann architecture, 290
VPN Routing and Forwarding (VRF) tables, 103

W
Wave Division Multiplexing (WDM), 27, 36
 CWDM, 36
 DWDM, 36
 WDMA, 153
Weighted Fair Queuing (WFQ) scheduler,

282–283
 WF2Q, 285
 WF2Q+, 285
 worst-case, 284–285
Weighted Random Early Detection (WRED), 267
Weighted Round-Robin (WRR) scheduler, 277–278
Wide area networks (WANs), 15, 18
Wide-sense Nonblocking (WNB) switch, 382
Wi-Fi networks, 179
WiMAX, 173–177
 architecture, 174
 ASN, 175, 176
 bearer plane between network entities, 176
 CSN, 175, 176
 data plane, 177
 IEEE 802.16, 174
 IP packets, 177
 IP protocol layer architecture, 177
 Layer-2, 176
 Layer-3, 176

 MS, 175, 176
 NAP, 175
 network reference model, 175
 NSP, 175
 ramp up, 173
 standards, 174
WiMAX Forum, 173, 174, 175
Wired access networks, 150–166. See also Access

networks
 bridged model, 159–160
 CATV, 150, 151
 data on, 158–166
 Ethernet demarcation, 165–166
 FITL, 152–158
 implementations, 165
 L2TP, 164
 PPP, 160–163
 PSTN, 150, 151
 reference model, 159
Wireless Local Area Networks (WLANs), 179
Wireless networks, 20
 home and building, 179
 IEEE 802.11, 179
Worst-case fair index (WFI), 275
Worst-case packet fair, 275
Write command, TOPmodify, 595

X
XGMII, 327

722 Index

This page intentionally left blank

This page intentionally left blank

	Cover Page
	Network Processors
	Copyright Page
	Table of Contents
	Preface
	Chapter 1. Introduction and Motivation
	1.1 Network Processors Ecosystem
	1.2 Communication Systems and Applications
	1.3 Network Elements
	1.4 Network Processors
	1.5 Structure of This Book
	1.6 Summary

	Part 1. Networks
	Chapter 2. Networking Fundamentals
	2.1 Introduction
	2.2 Networks Primer
	2.3 Data Networking Models
	2.4 Basic Network Technologies
	2.5 Telecom Networks
	2.6 Data Networks
	2.7 Summary
	Appendix A: Registration Protocols
	Appendix B: Spanning Tree Protocols

	Chapter 3. Converged Networks
	3.1 Introduction
	3.2 From Telecom Networks to Data Networks
	3.3 From Datacom to Telecom
	3.4 Summary
	Appendix A: Routing Information Distribution Protocols

	Chapter 4. Access and Home Networks
	4.1 Access Networks
	4.2 Home and Building Networks
	4.3 Summary

	Part 2. Processing
	Chapter 5. Packet Processing
	5.1 Introduction and Definitions
	5.2 Ingress and Egress
	5.3 Framing
	5.4 Parsing and Classification
	5.5 Search, Lookup, and Forwarding
	5.6 Modification
	5.7 Compression and Encryption
	5.8 Queueing and Traffic Management
	5.9 Summary

	Chapter 6. Packet Flow Handling
	6.1 Definitions
	6.2 Quality of Service
	6.3 Class of Service
	6.4 QoS Mechanisms
	6.5 Summary

	Chapter 7. Architecture
	7.1 Introduction
	7.2 Background and Definitions
	7.3 Equipment Design Alternatives: ASICS Versus NP
	7.4 Network Processors Basic Architectures
	7.5 Instruction Set (Scalability; Processing Speed)
	7.6 NP Components
	7.7 Summary

	Chapter 8. Software
	8.1 Introduction
	8.2 Conventional Systems
	8.3 Programming Models Classification
	8.4 Parallel Programming
	8.5 Pipelining
	8.6 Network Processor Programming
	8.7 Summary
	Appendix A: Parsing and Classification Languages
	Appendix B: Click and NP-Click Language and Programming Model
	Appendix C: PPL Language and Programming Model

	Chapter 9. NP Peripherals
	9.1 Switch Fabrics
	9.2 Coprocessors
	9.3 Summary

	Part 3. A Network Processor: EZchip
	Chapter 10. EZchip Architecture, Capabilities, and Applications
	10.1 General Description
	10.2 System Architecture
	10.3 Lookup Structures
	10.4 Counters, Statistics and Rate Control
	10.5 Traffic Management
	10.6 Stateful Classification
	10.7 Multicast Frames
	10.8 Data Flow
	10.9 Summary

	Chapter 11. EZchip Programming
	11.1 Instruction Pipeline
	11.2 Writing NP Microcode
	11.3 Preprocessor Overview
	11.4 Developing and Running NP Applications
	11.5 Top Common Commands
	11.6 Summary
	Appendix A: Preprocessor Commands

	Chapter 12. Parsing
	12.1 Internal Engine Diagram
	12.2 Topparse Registers
	12.3 Topparse Structures
	12.4 Topparse Instruction Set
	12.5 Example
	12.6 Summary
	Appendix A: Detailed Register Description
	Appendix B: Topparse Addressing Modes
	Appendix C: Topparse Detailed Instruction Set

	Chapter 13. Searching
	13.1 Introduction
	13.2 Internal Engine Diagram
	13.3 Topsearch I Structures
	13.4 Interface to Topparse (Input to Topsearch)
	13.5 Interface to Topresolve (Output of Topsearch)
	13.6 Hash Table Learning
	13.7 Example
	13.8 Summary

	Chapter 14. Resolving
	14.1 Internal Engine Diagram
	14.2 Topresolve Registers
	14.3 Topresolve Structures
	14.4 Topresolve Instruction Set
	14.5 Example
	14.6 Summary
	Appendix A: Detailed Register Description
	Appendix B: Topresolve Addressing Modes
	Appendix C: Topresolve Detailed Instruction Set

	Chapter 15. Modifying
	15.1 Introduction
	15.2 Internal Engine Diagram
	15.3 Topmodify Registers
	15.4 Topmodify Structures
	15.5 Topmodify Instruction Set
	15.6 Example
	15.7 Summary
	Appendix A: Detailed Register Description
	Appendix B: Topmodify Addressing Modes
	Appendix C: Topmodify Detailed Instruction Set

	Chapter 16. Running the Virtual Local Area Network Example
	16.1 Installation
	16.2 Getting Started
	16.3 Microcode Development Workflow
	16.4 Summary

	Chapter 17. Writing Your First High-Speed Network Application
	17.1 Introduction
	17.2 Data Flow and Top Microcode
	17.3 Data Structures
	17.4 Summary

	List of Acronyms
	References
	Index

