NETWORK

AN INTERDISCIPLINARY APPROACH TO DESIGHNING FAST NETWORKED DEVICES

GEORGE VARGHESE

Network Algorithmics

The Morgan Kaufmann Series in Networking

Series Editor, David Clark, M.L.T.

Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices

George Varghese

Network Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS

Jean Philippe Vasseur, Mario Pickavet, and Piet Demeester

Routing, Flow, and Capacity Design in Communication
and Computer Networks

Michal Piéro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing
Approach

Feng Zhao and Leonidas Guibas

Communication Networking: An Analytical Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach
Adrian Farrel

Modern Cable Television Technology: Video, Voice, and
Data Communications, 2e

Walter Ciciora, James Farmer, David Large, and Michael Adams

Bluetooth Application Programming with the Java APIs
C. Bala Kumar, Paul J. Kline, and Timothy J. Thompson

Policy-Based Network Management: Solutions for
the Next Generation

John Strassner

Computer Networks: A Systems Approach, 3e
Larry L. Peterson and Bruce S. Davie

Network Architecture, Analysis, and Design, 2e
James D. McCabe

MPLS Network Management: MIBs, Tools, and Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service
Providers and Vendors

Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective, 2e
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms

Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers

Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming,
and Applications

Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce Davie and Yakov Rekhter

High-Performance Communication Networks, 2e
Jean Walrand and Pravin Varaiya

Internetworking Multimedia

Jon Crowcroft, Mark Handley, and lan Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Integrated Management of Networked Systems: Concepts,
Architectures, and Their Operational Applications

Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing
Infrastructure

David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for
Optimization
Robert S. Cahn

For further information on these books and for a list of forth-
coming titles, please visit our website at http://www.mkp.com.

Network Algorithmics

An Interdisciplinary Approach to Designing
Fast Networked Devices

George Varghese
University of California, San Diego

AMSTERDAM « BOSTON + HEIDELBERG * LONDON
NEW YORK * OXFORD ¢ PARIS * SAN DIEGO R
SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO M {{

ELSEVIER MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER ~ MORGAN KAUFMANN PUBLISHERS

-

Elsevier/Morgan Kaufmann Cover Image: Getty Images

Publishing Director: Diane D. Cerra Text Design: Michael Remener

Senior Acquisitions Editor: Rick Adams Composition: CEPHA

Associate Editor: Karyn Johnson Technical Illustration: Dartmouth Publishing, Inc.

Editorial Coordinator: Mona Buehler Copyeditor: Elliot Simon

Publishing Services Manager: Simon Crump Proofreader: Phyllis Coyne et al.

Senior Project Manager: Angela Dooley Indexer: Northwind Editorial

Cover Design Manager: Cate Rickard Barr Interior Printer: The Maple-Vail Book Manufacturing Group
Cover Design: Yvo Riezebos Design Cover Printer: Phoenix Color

Morgan Kaufmann is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
© 2005 by Elsevier Inc.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Elsevier is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means
electronic, mechanical, photocopying, scanning, or otherwise without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone:
(+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions @elsevier.com.uk. You may also complete your
request on-line via the Elsevier homepage (http://elsevier.com) by selecting “Customer Support” and then “Obtaining
Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN: 0-12-088477-1

For information on all Morgan Kaufmann publications,
visit our website at www.mkp.com.

Printed in the United States of America
08 07 06 05 04 54321

For Aju and Tim and Andrew, who made all this possible . . .

CONTENTS

PREFACE Xix

PART I The Rules of the Game 1

CHAPTER 1 |Introducing Network Algorithmics 3

1.1 The Problem: Network Bottlenecks 3
1.1.1 Endnode Bottlenecks 4
1.1.2 Router Bottlenecks 5
1.2 The Techniques: Network Algorithmics 7
1.2.1 Warm-up Example: Scenting an Evil Packet 8
1.2.2 Strawman Solution 9
1.2.3 Thinking Algorithmically 9
1.2.4 Refining the Algorithm: Exploiting Hardware 10
1.2.5 Cleaning Up 11
1.2.6 Characteristics of Network Algorithmics 13

1.3 Exercise 15

CHAPTER 2 Network Implementation Models 16

2.1 Protocols 17

2.1.1 Transport and Routing Protocols 17

2.1.2 Abstract Protocol Model 17

2.1.3 Performance Environment and Measures 19
2.2 Hardware 21

2.2.1 Combinatorial Logic 21

2.2.2 Timing and Power 22

vii

viii

Contents

2.3

2.4

2.5
2.6

2.2.3 Raising the Abstraction Level of Hardware Design 23
224 Memories 25

2.2.5 Memory Subsystem Design Techniques 29

2.2.6 Component-Level Design 30

2.277 Final Hardware Lessons 31

Network Device Architectures 32

2.3.1 Endnode Architecture 32

2.3.2 Router Architecture 34

Operating Systems 39

2.4.1 Uninterrupted Computation via Processes 39
2.4.2 Infinite Memory via Virtual Memory 41
243 Simple I/O via System Calls 43

Summary 44

Exercises 44

CHAPTER 3 Fifteen Implementation Principles 50

3.1

3.2
3.3

3.4
3.5

3.6
3.7

Motivating the Use of Principles — Updating Ternary Content-Addressable
Memories 50

Algorithms versus Algorithmics 54
Fifteen Implementation Principles — Categorization and Description 56

3.3.1 Systems Principles 56
3.3.2 Principles for Modularity with Efficiency 61
3.3.3 Principles for Speeding Up Routines 63

Design versus Implementation Principles 65

Caveats 66
3.5.1 Eight Cautionary Questions 68

Summary 70
Exercises 70

CHAPTER 4 Principles in Action 73

41
4.2
4.3
4.4

Buffer Validation of Application Device Channels 74
Scheduler for Asynchronous Transfer Mode Flow Control 76
Route Computation Using Dijkstra’s Algorithm 77

Ethernet Monitor Using Bridge Hardware 80

4.5
4.6
4.7
4.8
4.9
4.10
41
4.12
413
4.14
4.15

Contents

Demultiplexing in the X-Kernel 81

Tries with Node Compression 83

Packet Filtering in Routers 85

Avoiding Fragmentation of Link State Packets 87
Policing Traffic Patterns a0

Identifying a Resource Hog 92

Getting Rid of the TCP Open Connection List 93
Acknowledgment Withholding 96

Incrementally Reading a Large Database 98
Binary Search of Long Identifiers 100

Video Conferencing via Asynchronous Transfer Mode 102

PART Il Playing with Endnodes 105
CHAPTER 5 CopyingData 107

5.1
5.2

5.3

5.4

9.5
5.6

Why Data Copies 109

Reducing Copying via Local Restructuring i

5.2.1 Exploiting Adaptor Memory 111

5.2.2 Using Copy-on-Write 113

5.2.3 Fbufs: Optimizing Page Remapping 115

5.24 Transparently Emulating Copy Semantics 119
Avoiding Copying Using Remote DMA 121

5.3.1 Avoiding Copying in a Cluster 122

5.3.2 Modern-Day Incarnations of RDMA 123
Broadening to File Systems 125

5.4.1 Shared Memory 125

5.4.2 IO-Lite: A Unified View of Buffering 126
5.4.3 Avoiding File System Copies via I/O Splicing 128

Broadening beyond Copies 129

Broadening beyond Data Manipulations 131
5.6.1 Using Caches Effectively 131
5.6.2 Direct Memory Access versus Programmed I/O 135

Contents

5.7 Conclusions 135
5.8 Exercises 137

CHAPTER 6 Transferring Control 139
6.1 Why Control Overhead? 14

6.2 Avoiding Scheduling Overhead in Networking Code 143
6.2.1 Making User-Level Protocol Implementations Real 144

6.3 Avoiding Context-Switching Overhead in Applications 146
6.3.1 Process per Client 147
6.3.2 Thread per Client 148
6.3.3 Event-Driven Scheduler 150
6.3.4 Event-Driven Server with Helper Processes 150
6.3.5 Task-Based Structuring 151

6.4 FastSelect 153
6.4.1 A Server Mystery 153
6.4.2 Existing Use and Implementation of Select() 154
6.4.3 Analysis of Select() 155
6.4.4 Speeding Up Select() without Changing the API 157
6.4.5 Speeding Up Select() by Changing the API 158

6.5 Avoiding System Calls 159
6.5.1 The Virtual Interface Architecture (VIA) Proposal 162

6.6 Reducing Interrupts 163
6.6.1 Avoiding Receiver Livelock 164

6.7 Conclusions 165
6.8 Exercises 166

CHAPTER 7 Maintaining Timers 169
7.1 Why Timers? 169
7.2 Model and Performance Measures 17
7.3 Simplest Timer Schemes 172
7.4 Timing Wheels 173
7.5 Hashed Wheels 175
7.6 Hierarchical Wheels 176
7.7 BSD Implementation 178

7.8
7.9

Contents

Obtaining Fine-Granularity Timers 179
Conclusions 180

7.10 Exercises 181
CHAPTER 8 Demultiplexing 182

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Opportunities and Challenges of Early Demultiplexing 184
Goals 184

CMU/Stanford Packet Filter: Pioneering Packet Filters 185
Berkeley Packet Filter: Enabling High-Performance Monitoring
Pathfinder: Factoring Out Common Checks 189

Dynamic Packet Filter: Compilers to the Rescue 192
Conclusions 195

Exercises 195

CHAPTER 9 Protocol Processing 197

9.1

9.2

9.3

9.4

9.5
9.6

Buffer Management 198
9.1.1 Buffer Allocation 199
9.1.2 Sharing Buffers 201

Cyclic Redundancy Checks and Checksums 203
9.2.1 Cyclic Redundancy Checks 204

9.2.2 Internet Checksums 207

9.2.3 Finessing Checksums 209

Generic Protocol Processing 209
9.3.1 UDP Processing 212

Reassembly 213
9.4.1 Efficient Reassembly 214

Conclusions 216

Exercises 217

PART Ill Playing with Routers 219
CHAPTER 10 Exact-Match Lookups 221

10.1

Challenge 1: Ethernet under Fire 222

186

Xi

Xii Contents

10.2 Challenge 2: Wire Speed Forwarding 224

10.3 Challenge 3: Scaling Lookups to Higher Speeds 228
10.3.1 Scaling via Hashing 228
10.3.2 Using Hardware Parallelism 230

10.4 Summary 231

10.5 Exercise 232

CHAPTER 11 Prefix-Match Lookups 233

11.1 Introduction to Prefix Lookups 234
11.1.1 Prefix Notation 234
11.1.2 Why Variable-Length Prefixes? 235
11.1.3 Lookup Model 236

11.2 Finessing Lookups 238
11.2.1 Threaded Indices and Tag Switching 238
11.2.2 Flow Switching 240

11.2.3 Status of Tag Switching, Flow Switching, and Multiprotocol
Label Switching 241

11.3 Nonalgorithmic Techniques for Prefix Matching 242
11.3.1 Caching 242
11.3.2 Ternary Content-Addressable Memories 242
11.4 Unibit Tries 243

11.5 Multibit Tries 245
11.5.1 Fixed-Stride Tries 246
11.5.2 Variable-Stride Tries 247
11.5.3 Incremental Update 250

11.6 Level-Compressed (LC) Tries 250
11.7 Lulea-Compressed Tries 252

11.8 Tree Bitmap 255
11.8.1 Tree Bitmap Ideas 255
11.8.2 Tree Bitmap Search Algorithm 256

11.9 Binary Search on Ranges 257
11.10 Binary Search on Prefix Lengths 259

11.11 Memory Allocation in Compressed Schemes 261
11.11.1 Frame-Based Compaction 262

11.12
11.13
11.14

Contents

Lookup-Chip Model 263
Conclusions 265
Exercises 266

CHAPTER 12 PacketClassification 270

121
12.2
12.3
12.4

12.5

12.6

12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14

Why Packet Classification? 2M
Packet-Classification Problem 273

Requirements and Metrics 275

Simple Solutions 276

12.4.1 Linear Search 276

12.4.2 Caching 276

12.4.3 Demultiplexing Algorithms 277

12.4.4 Passing Labels 277

12.4.5 Content-Addressable Memories 278
Two-Dimensional Schemes 278

12.5.1 Fast Searching Using Set-Pruning Trees 278
12.5.2 Reducing Memory Using Backtracking 281
12.5.3 The Best of Both Worlds: Grid of Tries 281
Approaches to General Rule Sets 284

12.6.1 Geometric View of Classification 284

12.6.2 Beyond Two Dimensions: The Bad News 286
12.6.3 Beyond Two Dimensions: The Good News 286
Extending Two-Dimensional Schemes 287

Using Divide-and-Conquer 288

Bit Vector Linear Search 289

Cross-Producting 292

Equivalenced Cross-Producting 293

Decision Tree Approaches 296

Conclusions 299

Exercises 300

CHAPTER 13 Switching 302

13.1

Router versus Telephone Switches 304

xiii

Xiv

Contents

13.2
13.3
13.4
13.5
13.6
13.7

13.8

13.9

13.10

13.1
13.12

Shared-Memory Switches 305

Router History: From Buses to Crosshars 305

The Take-a-Ticket Crossbar Scheduler 307
Head-of-Line Blocking 311

Avoiding Head-of-Line Blocking via Output Queuing 312

Avoiding Head-of-Line Blocking by Using Parallel lterative
Matching 314

Avoiding Randomization with iSLIP 316

13.8.1 Extending iSLIP to Multicast and Priority 320
13.8.2 iSLIP Implementation Notes 322

Scaling to Larger Switches 323

13.9.1 Measuring Switch Cost 324

13.9.2 Clos Networks for Medium-Size Routers 324
13.9.3 Benes Networks for Larger Routers 328
Scaling to Faster Switches 333

13.10.1 Using Bit Slicing for Higher-Speed Fabrics 333
13.10.2 Using Short Links for Higher-Speed Fabrics 334
13.10.3 Memory Scaling Using Randomization 335
Conclusions 336

Exercises 337

CHAPTER 14 Scheduling Packets 339

141
14.2
14.3
14.4
14.5
14.6

14.7
14.8

Motivation for Quality of Service 340

Random Early Detection 342

Token Bucket Policing 345

Multiple Outbound Queues and Priority 346

A Quick Detour into Reservation Protocols 347

Providing Bandwidth Guarantees 348

14.6.1 The Parochial Parcel Service 348

14.6.2 Deficit Round-Robin 350

14.6.3 Implementation and Extensions of Deficit Round-Robin

Schedulers That Provide Delay Guarantees 354

Scalable Fair Queuing 358
14.8.1 Random Aggregation 359

351

14.9
14.10

Contents

14.8.2 Edge Aggregation 359
14.8.3 Edge Aggregation with Policing 360

Summary 361
Exercises 361

CHAPTER 15 Routers as Distributed Systems 362

15.1

15.2

15.3

15.4
15.5

Internal Flow Control 363

15.1.1 Improving Performance 364
15.1.2 Rescuing Reliability 365
Internal Striping 368

15.2.1 Improving Performance 368
15.2.2 Rescuing Reliability 369

Asynchronous Updates 3N
15.3.1 Improving Performance 372
15.3.2 Rescuing Reliability 373

Conclusions 373

Exercises 374

PART IV Endgame 377
CHAPTER 16 Measuring Network Traffic 379

16.1

16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10

Why Measurement Is Hard 381
16.1.1 Why Counting Is Hard 381

Reducing SRAM Width Using DRAM Backing Store 382
Reducing Counter Width Using Randomized Counting 384
Reducing Counters Using Threshold Aggregation 385
Reducing Counters Using Flow Counting 387

Reducing Processing Using Sampled NetFlow 388
Reducing Reporting Using Sampled Charging 389
Correlating Measurements Using Trajectory Sampling 390
A Concerted Approach to Accounting 392

Computing Traffic Matrices 393
16.10.1 Approach 1: Internet Tomography 394

Xv

XVi

Contents

16.10.2 Approach 2: Per-Prefix Counters 394
16.10.3 Approach 3: Class Counters 395

16.11 Sting as an Example of Passive Measurement 395
16.12 Conclusion 396
16.13 Exercises 397

CHAPTER 17 Network Security 399

171

17.2
17.3
17.4

17.5
17.6
17.7

Searching for Multiple Strings in Packet Payloads 401

17.1.1 Integrated String Matching Using Aho—Corasick
17.1.2 Integrated String Matching Using Boyer—Moore

Approximate String Matching 405
IP Traceback via Probabilistic Marking 406

IP Traceback via Logging 409
17.4.1 Bloom Filters 410
17.4.2 Bloom Filter Implementation of Packet Logging

Detecting Worms 413
Conclusion 415
Exercises 415

CHAPTER 18 Conclusions 417

18.1

18.2

18.3
18.4

18.5

What This Book Has Been About 418

18.1.1 Endnode Algorithmics 418

18.1.2 Router Algorithmics 419

18.1.3 Toward a Synthesis 420

What Network Algorithmics Is About 423
18.2.1 Interdisciplinary Thinking 423
18.2.2 Systems Thinking 424

18.2.3 Algorithmic Thinking 425

Network Algorithmics and Real Products 427
Network Algorithmics: Back to the Future 429
18.4.1 New Abstractions 429

18.4.2 New Connecting Disciplines 430
18.4.3 New Requirements 431

The Inner Life of a Networking Device 431

402
403

412

Contents

APPENDIX Detailed Models 433

A1

A.2

A3

A4

TCP and IP 433
A.1.1 Transport Protocols 433
A.1.2 Routing Protocols 436

Hardware Models 437

A.2.1 From Transistors to Logic Gates 437
A.2.2 Timing Delays 439

A.2.3 Hardware Design Building Blocks 439
A.2.4 Memories: The Inside Scoop 440
A.2.5 Chip Design 441

Switching Theory 442
A3.1 Matching Algorithms for Clos Networks with k = n 442

The Interconnection Network Zoo 443

Bibliography 445

Index

457

XVii

PREFACE

Computer networks have become an integral part of society. We take for granted the ability
to transact commerce over the Internet and that users can avail themselves of a burgeoning
set of communication methods, which range from file sharing to Web logs. However, for
networks to take their place as part of the fundamental infrastructure of society, they must
provide performance guarantees.

We take for granted that electricity will flow when a switch is flicked and that telephone
calls will be routed on Mother’s Day. But the performance of computer networks such as the
Internet is still notoriously unreliable. While there are many factors that go into performance,
one major issue is that of network bottlenecks. There are two types of network bottlenecks:
resource bottlenecks and implementation bottlenecks.

Resource bottlenecks occur when network performance is limited by the speed of the
underlying hardware; examples include slow processors in server platforms and slow com-
munication links. Resource bottlenecks can be worked around, at some cost, by buying faster
hardware. However, it is quite often the case that the underlying hardware is perfectly ade-
quate but that the real bottleneck is a design issue in the implementation. For example, a Web
server running on the fastest processors may run slowly because of redundant data copying.
Similarly, a router with a simple packet classification algorithm may start dropping packets
when the number of ACL rules grows beyond a limit, though it keeps up with link speeds
when classification is turned off. This book concentrates on such network implementation
bottlenecks, especially at servers and routers.

Beyond servers and routers, new breeds of networking devices that introduce new perfor-
mance bottlenecks are becoming popular. As networks become more integrated, devices such
as storage area networks (SANs) and multimedia switches are becoming common. Further, as
networks get more complex, various special-purpose network appliances for file systems and
security are proliferating. While the first generation of such devices justified themselves by
the new functions they provided, it is becoming critical that future network appliances keep
up with link speeds.

Thus the objective of this book is to provide a set of techniques to overcome implemen-
tation bottlenecks at all networking devices and to provide a set of principles and models to
help overcome current and future networking bottlenecks.

Xix

XX

Preface

AUDIENCE

This book was written to answer a need for a text on efficient protocol implementations.
The vast majority of networking books are on network protocols; even the implementation
books are, for the most part, detailed explanations of the protocol. While protocols form the
foundation of the field, there are just a handful of fundamental network infrastucture protocols
left, such as TCP and IP. On the other hand, there are many implementations as most companies
and start-ups customize their products to gain competitive advantage. This is exacerbated by
the tendency to place TCP and IP everywhere, from bridges to SAN switches to toasters.

Thus there are many more people implementing protocols than designing them. This is a
textbook for implementors, networking students, and networking researchers, covering ground
from the art of building a fast Web server to building a fast router and beyond.

To do so, this book describes a collection of efficient implementation techniques; in fact,
an initial section of each chapter concludes with a Quick Reference Guide for implementors
that points to the most useful techniques for each topic. However, the book goes further and
distills a fundamental method of crafting solutions to new network bottlenecks that we call
network algorithmics. This provides the reader tools to design different implementations for
specific contexts and to deal with new bottlenecks that will undoubtedly arise in a changing
world.

Here is a detailed profile of our intended audience.

* Network Protocol Implementors: This group includes implementors of endnode
networking stacks for large servers, PCs, and workstations and for network appliances. It
also includes implementors of classic network interconnection devices, such as routers,
bridges, switches, and gateways, as well as devices that monitor networks for measurement
and security purposes. It also includes implementors of storage area networks, distributed
computing infrastructures, multimedia switches and gateways, and other new networking
devices. This book can be especially useful for implementors in start-ups as well as in
established companies, for whom improved performance can provide an edge.

* Networking Students: Undergraduate and graduate students who have mastered the basics
of network protocols can use this book as a text that describes how protocols should be
implemented to improve performance, potentially an important aspect of their future jobs.

e Instructors: Instructors can use this book as a textbook for a one-semester course on
network algorithmics.

» Systems Researchers: Networking and other systems researchers can use this text as a
reference and as a stimulus for further research in improving system performance. Given
that disributed operating systems and distributed computing infrastructures (e.g., the Grid)
rely on an underlying networking core whose performance can be critical, this book can be
useful to general systems researchers.

WHAT THIS BOOK IS ABOUT

Chapter 1 provides a more detailed introduction to network algorithmics. For now, we infor-
mally define network algorithmics as an interdisciplinary systems approach to streamlining

Preface XXi

network implementations. Network algorithmics is interdisciplinary, because it requires tech-
niques from diverse fields such as architecture, operating systems, hardware design, and
algorithms. Network algorithmics is also a systems approach, because routers and servers are
systems in which efficiencies can be gained by moving functions in time and space between
subsystems.

In essence, this book is about three things: fundamental networking implementation bot-
tlenecks, general principles to address new bottlenecks, and techniques for specific bottlenecks
that can be derived from the general principles.

Fundamental bottlenecks for an endnode such as a PC or workstation include data copy-
ing, control transfer, demultiplexing, timers, buffer allocation, checksums, and protocol
processing. Similarly, fundamental bottlenecks for interconnect devices such as routers and
SAN switches include exact and prefix lookups, packet classification, switching, and the
implementation of measurement and security primitives. Chapter 1 goes into more detail
about the inherent causes of these bottlenecks.

The fundamental methods that encompass network algorithmics include implementation
models (Chapter 2) and 15 implementation principles (Chapter 3). The implementation models
include models of operating systems, protocols, hardware, and architecture. They are included
because the world of network protocol implementation requires the skills of several different
communities, including operating system experts, protocol pundits, hardware designers, and
computer architects. The implementation models are an attempt to bridge the gaps between
these traditionally separate communities.

On the other hand, the implementation principles are an attempt to abstract the main ideas
behind many specific implementation techniques. They include such well-known principles as
“Optimize the expected case.” They also include somewhat less well-known principles, such
as “Combine DRAM with SRAM,” which is a surprisingly powerful principle for producing
fast hardware designs for network devices.

While Part I of the book lays out the methodology of network algorithmics, Part Il applies
the methodology to specific network bottlenecks in endnodes and servers. For example, Part
II discusses copy avoidance techniques (such as passing virtual memory pointers and RDMA)
and efficient control transfer methods (such as bypassing the kernel, as in the VIA proposal,
and techniques for building event-driven servers).

Similarly, Part III of the book applies the methodology of Part I to interconnect devices,
such as network routers. For example, Part III discusses effficient prefix-lookup schemes (such
as multibit or compressed tries) and efficient switching schemes (such as those based on virtual
output queues and bipartite matching).

Finally, Part IV of the book applies the methodology of Part I to new functions for security
and measurement that could be housed in either servers or interconnect devices. For example,
Part IV discusses efficient methods to compress large traffic reports and efficient methods to
detect attacks.

ORGANIZATION OF THE BOOK

This book is organized into four overall parts. Each part is made as self-contained as possible
to allow detailed study. Readers that are pressed for time can consult the index or Table of
Contents for a particular topic (e.g., IP lookups). More importantly, the opening section of

XXii

Preface

each chapter concludes with a Quick Reference Guide that points to the most important topics
for implementors. The Quick Reference Guide may be the fastest guide for usefully skimming
a chapter.

Part I of the book aims to familiarize the reader with the rules and philosophy of network
algorithmics. It starts with Chapter 2, which describes simple models of protocols, operating
systems, hardware design, and endnode and router architectures. Chapter 3 describes in detail
the 15 principles used as a cornerstone for the book. Chapter 4 rounds out the first part by
providing 15 examples, drawn for the most part from real implementation problems, to allow
the reader a first opportunity to see the principles in action on real problems.

Part II of the book, called “Playing with Endnodes,” shows how to build fast endnode
implementations, such as Web servers, that run on general-purpose operating systems and stan-
dard computer architectures. It starts with Chapter 5, which shows how to reduce or avoid extra
data copying. (Copying often occurs when network data is passed between implementation
modules) and how to increase cache efficiency. Chapter 6 shows how to reduce or avoid the
overhead of transferring control between implementation modules, such as the device driver,
the kernel, and the application. Chapter 7 describes how to efficiently manage thousands of
outstanding timers, a critical issue for large servers. Chapter 8 describes how to efficiently
demultiplex data to receiving applications in a single step, allowing innovations such as user-
level networking. Chapter 9 describes how to implement specific functions that often recur
in specific protocol implementations, such as buffer allocation, checksums, sequence number
bookkeeping, and reassembly. An overview of Part II can be found in Figure 1.1.

Part Il of the book, called “Playing with Routers,” shows how to build fast routers, bridges,
and gateways. It begins with three chapters that describe state lookups of increasing complexity.
Chapter 10 describes exact-match lookups, which are essential for the design of bridges and
ARP caches. Chapter 11 describes prefix-match lookups, which are used by Internet routers
to forward packets. Chapter 12 describes packet classification, a more sophisticated form of
lookup required for security and quality of service. Chapter 13 describes how to build crossbar
switches, which interconnect input and output links of devices such as routers. Finally, Chapter
14 describes packet-scheduling algorithms, which are used to provide quality-of-service, and
Chapter 15 discusses routers as distributed systems, with examples focusing on performance
and the use of design and reasoning techniques from distributed algorithms. While this list of
functions seems short, one can build a fast router by designing a fast lookup algorithm, a fast
switch, and fast packet-scheduling algorithms. Part IV, called “Endgame,” starts by speculating
on the potential need for implementing more complex tasks in the future. For example, Chapter
16 describes efficient implementation techniques for measurement primitives, while Chapter
17 describes efficient implementation techniques for security primitives. The book ends with
a short chapter, Chapter 18, which reaches closure by distilling the unities that underly the
many different topics in this book. This chapter also briefly presents examples of the use of
algorithmics in a canonical router (the Cisco GSR) and a canonical server (the Flash Web
server). A more detailed overview of Parts III and IV of the book can be found in Figure 1.2.

FEATURES

The book has the following features that readers, implementors, students, and instructors can
take advantage of.

Preface xxiii

Intuitive introduction: The introductory paragraph of each chapter in Parts II, III, and IV uses
an intuitive, real-world analogy to motivate each bottleneck. For example, we use the
analogy of making multiple photocopies of a document for data copying and the analogy
of a flight database for prefix lookups.

Quick Reference Guide: For readers familiar with a topic and pressed for time, the opening
section of each chapter concludes with a Quick Reference Guide that points to the most
important implementation ideas and the corresponding section numbers.

Chapter organization: To help orient the reader, immediately after the Quick Reference Guide
in each chapter is a map of the entire chapter.

Summary of techniques: To emphasize the correlation between principles and techniques, at
the start of each chapter is a table that summarizes the techniques described, together with
the corresponding principles.

Consistent use of principles: After a detailed description in Chapter 3 of 15 principles, the
rest of the book consistently uses these principles in describing specific techniques. For
reference, the principles are summarized inside the front cover. Principles are referred
to consistently by number — for example, P9 for Principle 9. Since principle numbers
are hard to remember, three aids are provided. Besides the inside front cover summary
and the summary at the start of each chapter, the first use of a principle in any chapter is
accompanied by an explicit statement of the principle.

Exercises: Chapter 4 of the book provides a set of real-life examples of applying the principles
that have been enjoyed by past attendees of tutorials on network algorithmics. Every
subsequent chapter through Chapter 17 is followed by a set of exercises. Brief solutions to
these exercises can be found in an instructor’s manual obtainable from Morgan Kaufmann.

Slides: Lecture slides in pdf for most chapters are available at Morgan Kaufmann’s Web site
www.mkp.com.

USAGE

This book can be used in many ways.

Textbook: Students and instructors can use this book as the basis of a one-semester class.
A semester class on network algorithmics can include most of Part I and can sample
chapters from Part II (e.g., Chapter 5 on copying, Chapter 6 on control overhead) and
from Part III (e.g., Chapter 11 on prefix lookups, Chapter 13 on switching).

Implementation guide: Implementors who care about performance may wish to read all of
Part I and then sample Parts II and III according to their needs.

Reference book: Implementors and students can also use this book as a reference book in
addition to other books on network protocols.

WHY THIS BOOK WAS WRITTEN

The impetus for this book came from my academic research into efficient protocol implemen-
tation. It also came from three networking products I worked on with colleagues: the first
bridge, the Gigaswitch, and the Procket 40 Gbps router. To prove itself against detractors, the
first bridge was designed to operate at wire speed, an idea that spread to routers and the entire

XXiv

Preface

industry. My experience watching the work of Mark Kempf on the first bridge (see Chapter 10)
led to a lasting interest in speeding up networking devices.

Next, the DEC Gigaswitch introduced me to the world of switching. Finally, the Procket
router was designed by an interdisciplinary team that included digital designers who had
designed processors, experts who had written vast amounts of the software in core routers, and
some people like myself who were interested in algorithms. Despite the varied backgrounds,
the team produced innovative new ideas, which convinced me of the importance of interdis-
ciplinary thinking for performance breakthroughs. This motivated the writing of Chapter 2
on implementation models, an attempt to bridge the gaps between the different communities
involved in high-performance designs.

For several years, I taught a class that collected together these techniques. The 15 principles
emerged as a way to break up the techniques more finely and systematically. In retrospect,
some principles seem redundant and glib. However, they serve as part of a first attempt to
organize a vast amount of material.

I'have taught five classes and three tutorials based on the material in this book, and so this
book has been greatly influenced by student responses and ideas.

ACKNOWLEDGMENTS

A special thanks to my editors: Karen Gettman and Rick Adams and Karyn Johnson; to all my
advisors, who taught me so much: Wushow Chou, Arne Nillson, Baruch Awerbuch, Nancy
Lynch; to all my mentors: Alan Kirby, Radia Perlman, Tony Lauck, Bob Thomas, Bob Simcoe,
Jon Turner; to numerous colleages at DEC and other companies, especially to Sharad Merhotra,
Bill Lynch, and Tony Li of Procket Networks, who taught me about real routers; to students
who adventured in the field of network algorithmics with me; to numerous reviewers of this
book and especially to Jon Snader, Tony Lauck, Brian Kernighan, Craig Partridge, and Radia
Perlman for detailed comments; to Kevin D’Souza, Stefano Previdi, Anees Shaikh, and Darryl
Veitch for their reviews and ideas; to my family, my mother, my wife’s father and mother, and
my sister; and, of course, to my wife, Aju, and my sons, Tim and Andrew.

I’d like to end by acknowledging my heroes: four teachers who have influenced me. The
first is Leonard Bernstein, who taught me in his lectures on music that a teacher’s enthusiasm
for the material can be infectious. The second is George Polya, who taught me in his books
on problem solving that the process of discovery is as important as the final discoveries them-
selves. The third is Socrates, who taught me through Plato that it is worth always questioning
assumptions. The fourth is Jesus, who has taught me that life, and indeed this book, is not a
matter of merit but of grace and gift.

PART |

The Rules of the Game

“Come, Watson, come!” he cried. “The game is afoot!”

—ARTHUR CONAN DOYLE IN The Abbey Grange

The first part of this book deals with specifying the rules of the network algorithmics
game. We start with a quick introduction where we define network algorithmics and
contrast it to algorithm design. Next, we present models of protocols, operating
systems, processor architecture, and hardware design; these are the key disciplines
used in the rest of the book. Then we present a set of 15 principles abstracted from
the specific techniques presented later in the book. Part I ends with a set of sample
problems together with solutions obtained using the principles. Implementors pressed
for time should skim the Quick Reference Guides directly following the introduction
to each chapter.

CHAPTER 1

Introducing Network Algorithmics

What really makes it an invention is that someone decides not to change the solution
to a known problem, but to change the question.

—DEAN KAMEN

Just as the objective of chess is to checkmate the opponent and the objective of tennis is to win
matches, the objective of the network algorithmics game is to battle networking implementation
bottlenecks.

Beyond specific techniques, this book distills a fundamental way of crafting solutions
to internet bottlenecks that we call network algorithmics. This provides the reader tools to
design different implementations for specific contexts and to deal with new bottlenecks that
will undoubtedly arise in the changing world of networks.

So what is network algorithmics? Network algorithmics goes beyond the design of effi-
cient algorithms for networking tasks, though this has an important place. In particular,
network algorithmics recognizes the primary importance of taking an interdisciplinary systems
approach to streamlining network implementations.

Network algorithmics is an interdisciplinary approach because it encompasses such fields
as architecture and operating systems (for speeding up servers), hardware design (for speeding
up network devices such as routers), and algorithm design (for designing scalable algorithms).
Network algorithmics is also a systems approach, because it is described in this book using a set
of 15 principles that exploit the fact that routers and servers are systems, in which efficiencies
can be gained by moving functions in time and space between subsystems.

The problems addressed by network algorithmics are fundamental networking perfor-
mance bottlenecks. The solutions advocated by network algorithmics are a set of fundamental
techniques to address these bottlenecks. Next, we provide a quick preview of both the
bottlenecks and the methods.

1.1 THE PROBLEM: NETWORK BOTTLENECKS

The main problem considered in this book is how to make networks easy to use while at the
same time realizing the performance of the raw hardware. Ease of use comes from the use of
powerful network abstractions, such as socket interfaces and prefix-based forwarding. Unfor-
tunately, without care such abstractions exact a large performance penalty when compared to
the capacity of raw transmission links such as optical fiber. To study this performance gap

3

4 CHAPTER 1 |Introducing Network Algorithmics

in more detail we examine two fundamental categories of networking devices, endnodes and
routers.

1.1.1 Endnode Bottlenecks

Endnodes are the endpoints of the network. They include personal computers and workstations
as well as large servers that provide services. Endnodes are specialized toward computation,
as opposed to networking, and are typically designed to support general-purpose computation.
Thus endnode bottlenecks are typically the result of two forces: structure and scale.

 Structure: To be able to run arbitrary code, personal computers and large servers typically
have an operating system that mediates between applications and the hardware. To ease
software development, most large operating systems are carefully structured as layered
software; to protect the operating system from other applications, operating systems
implement a set of protection mechanisms; finally, core operating systems routines, such
as schedulers and allocators, are written using general mechanisms that target as wide a
class of applications as possible. Unfortunately, the combination of layered software,
protection mechanisms, and excessive generality can slow down networking software
greatly, even with the fastest processors.

* Scale: The emergence of large servers providing Web and other services causes further
performance problems. In particular, a large server such as a Web server will typically have
thousands of concurrent clients. Many operating systems use inefficient data structures and
algorithms that were designed for an era when the number of connections was small.

Figure 1.1 previews the main endnode bottlenecks covered in this book, together with
causes and solutions. The first bottleneck occurs because conventional operating system struc-
tures cause packet data copying across protection domains; the situation is further complicated

4 N\
Bottleneck | Chapter Cause Sample Solution
. . Copying many data blocks without
Copying 5 Protection, structure 0S intervention (e.g., RDMA)
Context . User-level protocol implementations
switching 6 Complex scheduling Event-driven Web servers
System 6 Protection, structure Direct chan_nels from applications
calls to drivers (e.g., VIA)
Timers 7 Scaling with Timing wheels

number of timers

Scaling with

number of endpoints BPF and Pathfinder

Demultiplexing 8

Checksums/ 9 Generality Multibit computation
CRCs Scaling with link speeds
Protocol . -
code 9 Generality Header prediction

J

FIGURE 1.1 Preview of endnode bottlenecks, solutions to which are described in Part I of the book.

1.1 The Problem: Network Bottlenecks 5

in Web servers by similar copying with respect to the file system and by other manipula-
tions, such as checksums, that examine all the packet data. Chapter 5 describes a number of
techniques to reduce these overheads while preserving the goals of system abstractions, such
as protection and structure. The second major overhead is the control overhead caused by
switching between threads of control (or protection domains) while processing a packet; this
is addressed in Chapter 6.

Networking applications use timers to deal with failure. With a large number of connec-
tions the timer overhead at a server can become large; this overhead is addressed in Chapter 7.
Similarly, network messages must be demultiplexed (i.e., steered) on receipt to the right end
application; techniques to address this bottleneck are addressed in Chapter 8. Finally, there
are several other common protocol processing tasks, such as buffer allocation and checksums,
which are addressed in Chapter 9.

1.1.2 Router Bottlenecks

Though we concentrate on Internet routers, almost all the techniques described in this book
apply equally well to any other network devices, such as bridges, switches, gateways, monitors,
and security appliances, and to protocols other than IP, such as FiberChannel.

Thus throughout the rest of the book, it is often useful to think of a router as a “generic
network interconnection device.” Unlike endnodes, these are special-purpose devices devoted
to networking. Thus there is very little structural overhead within a router, with only the use
of a very lightweight operating system and a clearly separated forwarding path that often is
completely implemented in hardware. Instead of structure, the fundamental problems faced
by routers are caused by scale and services.

* Scale: Network devices face two areas of scaling: bandwidth scaling and population
scaling. Bandwidth scaling occurs because optical links keep getting faster, as the progress
from 1-Gbps to 40-Gbps links shows, and because Internet traffic keeps growing due to a
diverse set of new applications. Population scaling occurs because more endpoints get
added to the Internet as more enterprises go online.

* Services: The need for speed and scale drove much of the networking industry in the
1980s and 1990s as more businesses went online (e.g., Amazon.com) and whole new
online services were created (e.g., Ebay). But the very success of the Internet requires
careful attention in the next decade to make it more effective by providing guarantees in
terms of performance, security, and reliability. After all, if manufacturers (e.g., Dell) sell
more online than by other channels, it is important to provide network guarantees — delay
in times of congestion, protection during attacks, and availability when failures occur.
Finding ways to implement these new services at high speeds will be a major challenge
for router vendors in the next decade.

Figure 1.2 previews the main router (bridge/gateway) bottlenecks covered in this book, together
with causes and solutions.

First, all networking devices forward packets to their destination by looking up a for-
warding table. The simplest forwarding table lookup does an exact match with a destination
address, as exemplified by bridges. Chapter 10 describes fast and scalable exact-match lookup
schemes. Unfortunately, population scaling has made lookups far more complex for routers.

CHAPTER 1

Introducing Network Algorithmics

e 2\
Bottleneck | Chapter Cause Sample Solution
ggkaj;s 10 Link speed scaling Parallel hashing
Prefix Link speed scaling -
lookups " Prefix database size scaling Compressed multibit tries
Packet 12 Service differentiation Decision tree algorithms
classification Link speed and size scaling | Hardware parallelism (CAMs)
- Optical-electronic speed gap Crossbar switches
Switching 13 Head-of-line blocking Virtual output queues
Fair Service differentiation Weighted fair queueing
ueuein 14 Link speed scaling Deficit round robin
a 9 Memory scaling DiffServ, Core Stateless
Internal Scaling of internal . -
bandwidth 15 bus speeds Reliable striping
Measurement 16 Link speed scaling Juniper's DCU
Security 17 Sc_aling i_n number and Tracebe_lck with bIo_om filters
intensity of attacks Extracting worm signatures
N\ J

FIGURE 1.2 Preview of router bottlenecks, solutions to which are described in Parts III and IV
of the book.

To deal with large Internet populations, routers keep a single entry called a prefix (analogous
to a telephone area code) for a large group of stations. Thus routers must do a more com-
plex longest-prefix-match lookup. Chapter 11 describes solutions to this problem that scale to
increasing speeds and table sizes.

Many routers today offer what is sometimes called service differentiation, where different
packets can be treated differently in order to provide service and security guarantees. Unfor-
tunately, this requires an even more complex form of lookup called packet classification, in
which the lookup is based on the destination, source, and even the services that a packet is
providing. This challenging issue is tackled in Chapter 12.

Next, all networking devices can be abstractly considered as switches that shunt packets
coming in from a set of input links to a set of output links. Thus a fundamental issue is that of
building a high-speed switch. This is hard, especially in the face of the growing gap between
optical and electronic speeds. The standard solution is to use parallelism via a crossbar switch.
Unfortunately, it is nontrivial to schedule a crossbar at high speeds, and parallelism is limited
by a phenomenon known as head-of-line blocking. Worse, population scaling and optical
multiplexing are forcing switch vendors to build switches with a large number of ports (e.g.,
256), which exacerbates these other problems. Solutions to these problems are described in
Chapter 13.

While the previous bottlenecks are caused by scaling, the next bottleneck is caused by
the need for new services. The issue of providing performance guarantees at high speeds is
treated in Chapter 14, where the issue of implementing so-called QoS (quality of service)
mechanisms is studied. Chapter 15 briefly surveys another bottleneck that is becoming an

1.2 The Techniques: Network Algorithmics 7

increasing problem: the issue of bandwidth within a router. It describes sample techniques,
such as striping across internal buses and chip-to-chip links.

The final sections of the book take a brief look at emerging services that must, we believe,
be part of a well-engineered Internet of the future. First, routers of the future must build in
support for measurement, because measurement is key to engineering networks to provide
guarantees. While routers today provide some support for measurement in terms of counters
and NetFlow records, Chapter 16 also considers more innovative measurement mechanisms
that may be implemented in the future.

Chapter 17 describes security support, some of which is already being built into routers.
Given the increased sophistication, virulence, and rate of network attacks, we believe that
implementing security features in networking devices (whether routers or dedicated intru-
sion prevention/detection devices) will be essential. Further, unless the security device can
keep up with high-speed links, the device may miss vital information required to spot an
attack.

1.2 THE TECHNIQUES: NETWORK ALGORITHMICS

Throughout this book, we will talk of many specific techniques: of interrupts, copies, and
timing wheels; of Pathfinder and Sting; of why some routers are very slow; and whether
Web servers can scale. But what underlies the assorted techniques in this book and makes
it more than a recipe book is the notion of network algorithmics. As said earlier, network
algorithmics recognizes the primary importance of taking a systems approach to streamlining
network implementations.

While everyone recognizes that the Internet is a system consisting of routers and links,
it is perhaps less obvious that every networking device, from the Cisco GSR to an Apache
Web server, is also a system. A system is built out of interconnected subsystems that are
instantiated at various points in time. For example, a core router consists of line cards with
forwarding engines and packet memories connected by a crossbar switch. The router behavior
is affected by decisions at various time scales, which range from manufacturing time (when
default parameters are stored in NVRAM) to route computation time (when routers conspire
to compute routes) to packet-forwarding time (when packets are sent to adjoining routers).

Thus one key observation in the systems approach is that one can often design an efficient
subsystem by moving some of its functions in space (i.e., to other subsystems) or in time
(i.e., to points in time before or after the function is apparently required). In some sense, the
practitioner of network algorithmics is an unscrupulous opportunist willing to change the rules
at any time to make the game easier. The only constraint is that the functions provided by the
overall system continue to satisfy users.

In one of Mark Twain’s books, a Connecticut Yankee is transported back in time to King
Arthur’s court. The Yankee then uses a gun to fight against dueling knights accustomed to
jousting with lances. This is an example of changing system assumptions (replacing lances by
guns) to solve a problem (winning a duel).

Considering the constraints faced by the network implementor at high speeds — increas-
ingly complex tasks, larger systems to support, small amounts of high-speed memory, and
a small number of memory accesses — it may require every trick, every gun in one’s arse-
nal, to keep pace with the increasing speed and scale of the Internet. The designer can throw

8 CHAPTER 1 |Introducing Network Algorithmics

hardware at the problem, change the system assumptions, design a new algorithm — whatever
it takes to get the job done.

This book is divided into four parts. The first part, of which this is the first chapter, lays
a foundation for applying network algorithmics to packet processing. The second chapter of
the first part outlines models, and the third chapter presents general principles used in the
remainder of the book.

One of the best ways to get a quick idea about what network algorithmics is about is to
plunge right away into a warm-up example. While the warm-up example that follows is in the
context of a device within the network where new hardware can be designed, note that Part 2
is about building efficient servers using only software design techniques.

1.2.1 Warm-up Example: Scenting an Evil Packet
Imagine a front-end network monitor (or intrusion detection system) on the periphery of a
corporate network that wishes to flag suspicious incoming packets — packets that could contain
attacks on internal computers. A common such attack is a buffer overflow attack, where the
attacker places machine code C in a network header field F.

If the receiving computer allocates a buffer too small for header field F and is careless
about checking for overflow, the code C can spill onto the receiving machine’s stack. With a
little more effort, the intruder can make the receiving machine actually execute evil code C.
C then takes over the receiver machine. Figure 1.3 shows such an attack embodied in a familiar
field, a destination Web URL (uniform resource locator). How might the monitor detect the
presence of such a suspicious URL? A possible way is to observe that URLs containing evil
code are often too long (an easy check) and often have a large fraction of unusual (at least in
URLSs) characters, such as #. Thus the monitor could mark such packets (containing URLs that
are too long and have too many occurrences of such unusual characters) for more thorough
examination.

It is worth stating at the outset that the security implications of this strategy need to be
carefully thought out. For example, there may be several innocuous programs, such as CGI
scripts, in URLs that lead to false positives. Without getting too hung up in overall architectural
implications, let us assume that this was a specification handed down to a chip architect by
a security architect. We now use this sample problem, suggested by Mike Fisk, to illustrate
algorithmics in action.

Faced with such a specification, a chip designer may use the following design process,
which illustrates some of the principles of network algorithmics. The process starts with a
strawman design and refines the design using techniques such as designing a better algorithm,
relaxing the specification, and exploiting hardware.

Evil code
B S s
Intrusion (Get AIM://overflow # * # | * # *)

Detection
System

FIGURE 1.3 Getting wind of an evil packet by noticing the frequency of unprintable characters.

1.2 The Techniques: Network Algorithmics 9

Threshold Count

Array Array Evil code
B S s
0] 2% 5
(Get AIM://overflow # * # | * # . . # . *]
® ® ;
1
° ° i
B PP
#1% Increment
® ®
® ®
255

FIGURE 1.4 Strawman solution for detecting an evil packet by counting occurrences of each char-
acter via a count array (middle) and then comparing in a final pass with an array of acceptable thresholds
(left).

1.2.2 Strawman Solution

The check of overall length is straightforward to implement, so we concentrate on checking for
a prevalence of suspicious characters. The first strawman solution is illustrated in Figure 1.4.
The chip maintains two arrays, T and C, with 256 elements each, one for each possible value
of an 8-bit character. The threshold array, T, contains the acceptable percentage (as a fraction
of the entire URL length) for each character. If the occurrences of a character in an actual
URL fall above this fraction, the packet should be flagged. Each character can have a different
threshold.

The count array, C, in the middle, contains the current count C[i] for each possible
character i. When the chip reads a new character ”i” in the URL, it increments C[i] by 1.
C[i] is initialized to O for all values of i when a new packet is encountered. The incrementing
process starts only after the chip parses the HTTP header and recognizes the start of a URL.

In HTTP, the end of a URL is signified by two newline characters; thus one can tell the
length of the URL only after parsing the entire URL string. Thus, after the end of the URL is
encountered, the chip makes a final pass over the array C. If C[j] > L - T[] for any j, where
L is the length of the URL, the packet is flagged.

Assume that packets are coming into the monitor at high speed and that we wish to finish
processing a packet before the next one arrives. This requirement, called wire speed processing,
is very common in networking; it prevents processing backlogs even in the worst case. To meet
wire speed requirements, ideally the chip should do a small constant number of operations for
every URL byte. Assume the main step of incrementing a counter can be done in the time to
receive a byte.

Unfortunately, the two passes over the array, first to initialize it and then to check for
threshold violations, make this design slow. Minimum packet sizes are often as small as
40 bytes and include only network headers. Adding 768 more operations (1 write and 1 read
to each element of C, and 1 read of T for each of 256 indices) can make this design infeasible.

1.2.3 Thinking Algorithmically

Intuitively, the second pass through the arrays C and T at the end seems like a waste. For exam-
ple, it suffices to alarm if any character is over the threshold. So why check all characters?

10

CHAPTER 1 |Introducing Network Algorithmics

Threshold Count
Array Array Evil code
e ——_
0| 2% 5
(Get AIM://overflow # * # | * # . . # . *)
® ® .
1
° ° i
S e
#1 1%
Y 1) Increment
2) Read °
d ® | 3) If C[i)/T[i] > Max, Max = C[i}/T[i]
255

FIGURE 1.5 Avoiding the final loop through the threshold array by keeping track only of Max, the
highest counter encountered so far relative to its threshold value.

This suggests keeping track only of the largest character count c; at the end perhaps the
algorithm needs to check only whether ¢ is over threshold with respect to the total URL
length L.

This does not quite work. A nonsuspicious character such as “e” may well have a very
high occurrence count. However, “e” is also likely to be specified with a high threshold. Thus
if we keep track only of “e” with, say, a count of 20, we may not keep track of “#” with, say, a
count of 10. If the threshold of “#” is much smaller, the algorithm may cause a false negative:
The chip may fail to alarm on a packet that should be flagged.

The counterexample suggests the following fix. The chip keeps track in a register of the
highest counter relativized to the threshold value. More precisely, the chip keeps track of the
highest relativized counter Max corresponding to some character k, such that C[k]/T'[k] = Max
is the highest among all characters encountered so far. If a new character i is read, the chip
increments C[i]. If C[i]/T[i] > Max, then the chip replaces the current stored value of Max
with C[i]/T[i]. At the end of URL processing, the chip alarms if Max > L.

Here’s why this works. If Max = C[k]/T[k] > L, clearly the packet must be flagged,
because character k is over threshold. On the other hand, if C[k])/T[k] < L, then for any
character i, it follows that C[i]/T[i] < C[k)/T[k] < L. Thus if Max falls below threshold, then
no character is above threshold. Thus there can be no false negatives. This solution is shown
in Figure 1.5.

1.2.4 Refining the Algorithm: Exploiting Hardware

The new algorithm has eliminated the loop at the end but still has to deal with a divide operation
while processing each byte. Divide logic is somewhat complicated and worth avoiding if
possible — but how?

Returning to the specification and its intended use, it seems likely that thresholds are not
meant to be exact floating point numbers. It is unlikely that the architect providing thresholds
can estimate the values precisely; one is likely to approximate 2.78% as 3% without causing
much difference to the security goals. So why not go further and approximate the threshold
by some power of 2 less than the exact intended threshold? Thus if the threshold is 1/29, why
not approximate it as 1/32?

1.2 The Techniques: Network Algorithmics 1

Threshold plus

Count Array Evil code
<>
2%
R LR (GetAM:/overiow # * #1* # . . # . ")
)) :
1
° ° i
< m e
#| 1%
° ° 1) Read wide word
2) Compare and flag if needed
hd d 3) Write incremented value
255

FIGURE 1.6 Using a wide word and a coalesced array to combine 2 reads into one.

Changing the specification in this way requires negotiation with the system architect.
Assume that the architect agrees to this new proposal. Then a threshold such as 1/32 can be
encoded compactly as the corresponding power of 2 — i.e., 5. This threshold shift value can
be stored in the threshold array instead of a fraction.

Thus when a character j is encountered, the chip increments C[j] as usual and then shifts
C[j] to the left — dividing by 1/x is the same as multiplying by x — by the specified threshold.
If the shifted value is higher than the last stored value for Max, the chip replaces the old value
with the new value and marches on.

Thus the logic required to implement the processing of a byte is a simple shift-and-
compare. The stored state is only a single register to store Max. As it stands, however, the
design requires a Read to the Threshold array (to read the shift value), a Read to the Count
array (to read the old count), and a Write to the Count array (to write back the incremented
value).

Now reads to memory — 1-2 nsec even for the fastest on-chip memories but possibly
even as slow as 10 nsec for slower memories — are slower than logic. Single gate delays are
only in the order of picoseconds, and shift logic does not require too many gate delays. Thus
the processing bottleneck is the number of memory accesses.

The chip implementation can combine the 2 Reads to memory into 1 Read by coalescing
the Count and Threshold arrays into a single array, as shown in Figure 1.6. The idea is to make
the memory words wide enough to hold the counter (say, 15 bits to handle packets of length
32K) and the threshold (depending on the precision necessary, no more than 14 bits). Thus the
two fields can easily be combined into a larger word of size 29 bits. In practice, hardware can
handle much larger words sizes of up to 1000 bits. Also, note that extracting the two fields
packed into a single word, quite a chore in software, is trivial in hardware by routing wires
appropriately between registers or by using multiplexers.

1.2.5 Cleaning Up

We have postponed one thorny issue to this point. The terminal loop has been eliminated
while leaving the initial initialization loop. To handle this, note that the chip has spare time for
initialization after parsing the URL of the current packet and before encountering the URL of
the next packet.

12

CHAPTER 1 |Introducing Network Algorithmics

Unfortunately, packets can be as small as 50 bytes, even with an HTTP header. Thus
even assuming a slack of 40 non-URL bytes other than the 10 bytes of the URL, this still does
not suffice to initialize a 256-byte array without paying 256/40 = 6 more operations per byte
than during the processing of a URL. As in the URL processing loop, each initialization step
requires a Read and Write of some element of the coalesced array.

A trick among lazy people is to postpone work until it is absolutely needed, in the hope
that it may never be needed. Note that, strictly speaking, the chip need not initialize a C[i]
until character i is accessed for the first time in a subsequent packet. But how can the chip tell
that it is seeing character i for the first time?

To implement lazy evaluation, each memory word representing an entry in the coalesced
array must be expanded to include, say, a 3-bit generation number G[i]. The generation number
can be thought of as a value of clock time measured in terms of packets encountered so far,
except that it is limited to 3 bits. Thus, the chip keeps an additional register g, besides the
extra G[i] for each i, that is 3 bits long; g is incremented mod 8 for every packet encountered.
In addition, every time C[i] is updated, the chip updates G[i] as well to reflect the current
value of g.

Given the generation numbers, the chip need not initialize the count array after the current
packet has been processed. However, consider the case of a packet whose generation number
is h, which contains a character i in its URL. When the chip encounters i while processing the
packet the chip reads C[i] and G[i] from the Count array. If G[i] # h, this clearly indicates
that entry i was last accessed by an earlier packet and has not been subsequently initialized.
Thus the logic will write back the value of C[i] as 1 (initialization plus increment) and set G[i]
to A. This is shown in Figure 1.7.

The careful reader will immediately object. Since the generation number is only 3 bits,
once the value of g wraps around, there can be aliasing. Thus if G[i] is 5 and entry i is not
accessed until eight more packets have gone by, g will have wrapped around to 5. If the next
packet contains i, C[i] will not be initialized and the count will (wrongly) accumulate the count
of i in the current packet together with the count that occurred eight packets in the past.

The chip can avoid such aliasing by doing a separate “scrubbing” loop that reads the array
and initializes all counters with outdated generation numbers. For correctness, the chip must
guarantee one complete scan through the array for every eight packets processed. Given that
one has a slack of (say) 40 non-URL bytes per packet, this guarantees a slack of 320 non-URL

Shift Count Gen Evil code
—_
0[1bit] 5 | 100
(Get AIM://overflow # * # | * # . . # . *)
° °) ;
oo | o i
|4bits| 3 [101 | <€-—-------mmm
® ® 1) Read wide word
2) If Gen match, Write count + 1 else Write 1
° ° 3) if C[i] shifted by T[i] > Max, replace Max
255
CurrentGen=101 (At the end, flag packet if Max > URL length)

FIGURE 1.7 The final solution with generation numbers to finesse an initialization loop.

1.2 The Techniques: Network Algorithmics 13

bytes after eight packets, which suffices to initialize a 256-element array using one Read and
one Write per byte, whether the byte is a URL or a non-URL byte. Clearly, the designer can
gain more slack, if needed, by increasing the bits in the generation number, at the cost of
slightly increased storage in the array.

The chip, then, must have two states: one for processing URL bytes and one for processing
non-URL bytes. When the URL is completely processed, the chip switches to the “Scrub” state.
The chip maintains another register, which points to the next array entry s to be scrubbed. In
the scrub state, when a non-URL character is received, the chip reads entry s in the coalesced
array. If G[s] # g, G[s] is reset to g and C[s] is initialized to 0.

Thus the use of 3 extra bits of generation number per array entry has reduced initialization
processing cycles, trading processing for storage. Altogether a coalesced array entry is now
only 32 bits, 15 bits for a counter, 14 bits for a threshold shift value, and 3 bits for a generation
number. Note that the added initialization check needed during URL byte processing does
not increase memory references (the bottleneck) but adds slightly to the processing logic. In
addition, it requires two more chip registers to hold g and s, a small additional expense.

1.2.6 Characteristics of Network Algorithmics

The example of scenting an evil packet illustrates three important aspects of network
algorithmics.

a. Network algorithmics is interdisciplinary: Given the high rates at which network
processing must be done, a router designer would be hard pressed not to use hardware. The
example exploited several features of hardware: It assumed that wide words of arbitrary size
were easily possible; it assumed that shifts were easier than divides; it assumed that memory
references were the bottleneck; it assumed that a 256-element array contained in fast on-chip
memory was feasible; it assumed that adding a few extra registers was feasible; and finally it
assumed that small changes to the logic to combine URL processing and initialization were
trivial to implement.

For the reader unfamiliar with hardware design, this is a little like jumping into a game of
cards without knowing the rules and then finding oneself finessed and trumped in unexpected
ways. A contention of this book is that mastery of a few relevant aspects of hardware design can
help even a software designer understand at least the feasibility of different hardware designs.
A further contention of this book is that such interdisciplinary thinking can help produce the
best designs.

Thus Chapter 2 presents the rules of the game. It presents simple models of hardware that
point out opportunities for finessing and trumping troublesome implementation issues. It also
presents simple models of operating systems. This is done because end systems such as clients
and Web servers require tinkering with and understanding operating system issues to improve
performance, just as routers and network devices require tinkering with hardware.

b. Network algorithmics recognizes the primacy of systems thinking: The specification
was relaxed to allow approximate thresholds in powers of 2, which simplified the hardware.
Relaxing specifications and moving work from one subsystem to another is an extremely com-
mon systems technique, but it is not encouraged by current educational practice in universities,
in which each area is taught in isolation.

Thus today one has separate courses in algorithms, in operating systems, and in net-
working. This tends to encourage “black box” thinking instead of holistic or systems thinking.

14

CHAPTER 1 |Introducing Network Algorithmics

The example alluded to other systems techniques, such as the use of lazy evaluation and trading
memory for processing in order to scrub the Count array.

Thus a feature of this book is an attempt to distill the systems principles used in algorithmics
into a set of 15 principles, which are catalogued inside the front cover of the book and are
explored in detail in Chapter 3. This book attempts to explain and dissect all the network
implementations described in this book in terms of these principles. The principles are also
given numbers for easy reference, though for the most part we will use both the number and the
name. For instance, take a quick peek at the inside front cover and you will find that relaxing
specifications is principle P4 and lazy evaluation is P2a.

c. Network algorithmics can benefit from algorithmic thinking: While this book
stresses the primacy of systems thinking to finesse problems wherever possible, there are
many situations where systems constraints prevent any elimination of problems. In our exam-
ple, after attempting to finesse the need for algorithmic thinking by relaxing the specification,
the problem of false positives led to considering keeping track of the highest counter relative
to its threshold value. As a second example, Chapter 11 shows that despite attempts to finesse
Internet lookups using what is called fag switching, many routers resort to efficient algorithms
for lookup.

It is worth emphasizing, however, that because the models are somewhat different from
standard theoretical models, it is often insufficient to blindly reuse existing algorithms. For
example, Chapter 13 discusses how the need to schedule a crossbar switch in 8 nsec leads to
considering simpler maximal matching heuristics, as opposed to more complicated algorithms
that produce optimal matchings in a bipartite graph.

As a second example, Chapter 11 describes how the BSD implementation of lookups
blindly reused a data structure called a Patricia trie, which uses a skip count, to do IP lookups.
The resulting algorithm requires complex backtracking.! A simple modification that keeps the
actual bits that were skipped (instead of the count) avoids the need for backtracking. But this
requires some insight into the black box (i.e., the algorithm) and its application.

In summary, the uncritical use of standard algorithms can miss implementation break-
throughs because of inappropriate measures (e.g., for packet filters such as BPF, the insertion
of a new classifier can afford to take more time than search), inappropriate models (e.g.,
ignoring the effects of cache lines in software or parallelism in hardware), and inappropriate
analysis (e.g., order-of-complexity results that hide constant factors crucial in ensuring wire
speed forwarding).

Thus another purpose of this book is to persuade implementors that insight into algo-
rithms and the use of fundamental algorithmic techniques such as divide-and-conquer and
randomization is important to master. This leads us to the following.

Definition: Network algorithmics is the use of an interdisciplinary systems approach,
seasoned with algorithmic thinking, to design fast implementations of network processing
tasks at servers, routers, and other networking devices.

IThe algorithm was considered to be the state of the art for many years and was even implemented in hardware
in several router designs. In fact, a patent for lookups issued to a major router company appears to be a hardware
implementation of BSD Patricia tries with backtracking. Any deficiencies of the algorithm can, of course, be mitigated
by fast hardware. However, it is worth considering that a simple change to the algorithm could have simplified the
hardware design.

1.3 Exercise 15

Focus Chapter Motivation Sample Topic
Models 5 Understand simple models Memory technology techniques
for OS, hardware, networks | (interleaving, mixing SRAM/DRAM)
. Learn systems principles Pass hints, evaluate lazily
Strategies 3 for overcoming bottlenecks Add state, exploit locality
Problems 4 Practice'applying principles Designing a lookup Qngine for
on simple problems a network monitor

. J

FIGURE 1.8 Preview of network algorithmics. Network algorithmics is introduced using a set of
models, strategies, and sample problems, which are described in Part I of the book.

Part T of the book is devoted to describing the network algorithmics approach in more
detail. An overview of Part I is given in Figure 1.8.

While this book concentrates on networking, the general algorithmics approach holds for
the implementation of any computer system, whether a database, a processor architecture,
or a software application. This general philosophy is alluded to in Chapter 3 by providing
illustrative examples from the field of computer system implementation. The reader interested
only in networking should rest assured that the remainder of the book, other than Chapter 3,
avoids further digressions beyond networking.

While Parts IT and III provide specific techniques for important specific problems, the main
goal of this book is to allow the reader to be able to tackle arbitrary packet-processing tasks
at high speeds in software or hardware. Thus the implementor of the future may be given the
task of speeding up XML processing in a Web server (likely, given current trends) or even the
task of computing the chi-square statistic in a router (possible because chi-square provides a
test for detecting abnormal observed frequencies for tasks such as intrusion detection). Despite
being assigned a completely unfamiliar task, the hope is that the implementor would be able
to craft a new solution to such tasks using the models, principles, and techniques described in
this book.

1.3 EXERCISE

1. Implementing Chi-Square: The chi-square statistic can be used to find if the overall set
of observed character frequencies are unusually different (as compared to normal random
variation) from the expected character frequencies. This is a more sophisticated test,
statistically speaking, than the simple threshold detector used in the warm-up example.
Assume that the thresholds represent the expected frequencies. The statistic is computed
by finding the sum of

(ExpectedFrequencyl[i] — ObservedFreqmency[i])2 / ExpectedFrequency|i]

for all values of character i. The chip should alarm if the final statistic is above a specified
threshold. (For example, a value of 14.2 implies that there is only a 1.4% chance that the
difference is due to chance variation.) Find a way to efficiently implement this statistic,
assuming once again that the length is known only at the end.

CHAPTER 2 <’§><

Network Implementation Models

A rather small set of key concepts is enough. Only by learning the essence of each
topic, and by carrying along the least amount of mental baggage at each step, will
the student emerge with a good overall understanding of the subject.

— CARVER MEAD AND LYNN CONWAY

To improve the performance of endnodes and routers, an implementor must know the rules of
the game. A central difficulty is that network algorithmics encompasses four separate areas:
protocols, hardware architectures, operating systems, and algorithms. Networking innovations
occur when area experts work together to produce synergistic solutions. But can alogic designer
understand protocol issues, and can a clever algorithm designer understand hardware trade-offs,
at least without deep study?

Useful dialog can begin with simple models that have explanatory and predictive power but
without unnecessary detail. At the least, such models should define terms used in the book; at the
best, such models should enable a creative person outside an area to play with and create designs
that can be checked by an expert within the area. For example, a hardware chip implementor
should be able to suggest software changes to the chip driver, and a theoretical computer
scientist should be able to dream up hardware matching algorithms for switch arbitration. This
is the goal of this chapter.

The chapter is organized as follows. Starting with a model for protocols in Section 2.1, the
implementation environment is described in bottom-up order. Section 2.2 describes relevant
aspects of hardware protocol implementation, surveying logic, memories, and components.
Section 2.3 describes a model for endnodes and network devices such as routers. Section 2.4
describes a model for the relevant aspects of operating systems that affect performance, espe-
cially in endnodes. To motivate the reader and to retain the interest of the area expert, the
chapter contains a large number of networking examples to illustrate the application of each
model.

Quick Reference Guide

Hardware designers should skip most of Section 2.2, except for Example 3 (design of a switch
arbitrator), Example 4 (design of a flow ID lookup chip), Example 5 (pin count limitations and their impli-
cations), and Section 2.2.5 (which summarizes three hardware design principles useful in networking).
Processor and architecture experts should skip Section 2.3 except for Example 7 (network processors).

16

2.1 Protocols 17

Implementors familiar with operating systems should skip Section 2.4, except for Example 8 (receiver
livelock as an example of how operating system structure influences protocol implementations). Even
those unfamiliar with an area such as operating systems may wish to consult these sections if needed
after reading the specific chapters that follow.

2.1 PROTOCOLS

Section 2.1.1 describes the transport protocol TCP and the IP routing protocol. These two
examples are used to provide an abstract model of a protocol and its functions in Section 2.1.2.
Section 2.1.3 ends with common network performance assumptions. Readers familiar with
TCP/IP may wish to skip to Section 2.1.2.

2.1.1 Transport and Routing Protocols

Applications subcontract the job of reliable delivery to a transport protocol such as the Trans-
mission Control Protocol (TCP). TCP’s job is to provide the sending and receiving applications
with the illusion of two shared data queues in each direction — despite the fact that the sender
and receiver machines are separated by a lossy network. Thus whatever the sender application
writes to its local TCP send queue should magically appear in the same order at the local TCP
receive queue at the receiver, and vice versa. TCP implements this mechanism by breaking
the queued application data into segments and retransmitting each segment until an acknowl-
edgment (ack) has been received. A more detailed description of TCP operation can be found
in Section A.1.1.

If the application is (say) a videoconferencing application that does not want reliability
guarantees, it can choose to use a protocol called UDP (User Datagram Protocol) instead of
TCP. Unlike TCP, UDP does not need acks or retransmissions because it does not guarantee
reliability.

Transport protocols such as TCP and UDP work by sending segments from a sender node
to a receiver node across the Internet. The actual job of sending a segment is subcontracted to
the Internet routing protocol IP.

Internet routing is broken into two conceptual parts, called forwarding and routing.
Forwarding is the process by which packets move from source to destination through inter-
mediate routers. A packet is a TCP segment together with a routing header that contains the
destination Internet address.

While forwarding must be done at extremely high speeds, the forwarding tables at each
router must be built by a routing protocol, especially in the face of topology changes, such
as link failures. There are several commonly used routing protocols, such as distance vector
(e.g., RIP), link state (e.g., OSPF), and policy routing (e.g., BGP). More details and references
to other texts can be found in Section A.1.2 in the Appendix.

2.1.2 Abstract Protocol Model

A protocol is a state machine for all nodes participating in the protocol, together with inter-
faces and message formats. A model for a protocol state machine is shown in Figure 2.1.

18

CHAPTER 2 Network Implementation Models

User calls
STATE Timer calls
(e.g., seq numbers)
Send message Receive message

FIGURE 2.1 Abstract model of the state machine implementing a protocol at a node participating in
a protocol.

\ / CONTROL TRANSFER
N

-
Demultiplex
Schedule tasks

Set timers PROTOCOL
-Manipulate state ~ PROCESSING

8=
~Look Up state

Reassemble
|\

Allocate resources (buffers, CPU)

DATA MANIPULATION
(e.g., switch, copy, checksum)

FIGURE 2.2 Common protocol functions. The small shaded black box to the lower left represents
the state table used by the protocol.

The specification must describe how the state machine changes state and responds (e.g., by
sending messages, setting timers) to interface calls, received messages, and timer events.

For instance, when an application makes a connect request, the TCP sender state machine
initializes by picking an unused initial sequence number, goes to the so-called SYN-SENT
state, and sends a SYN message. As a second example, a link state routing protocol like OSPF
has a state machine at each router; when a link state packet (LSP) arrives at a router with a
higher sequence number than the last LSP from the source, the new LSP should be stored and
sent to all neighbors. While the link state protocol is very different from TCP, both protocols
can be abstracted by the state machine model shown in Figure 2.1.

This book is devoted to protocol implementations. Besides TCP and IP, this book will
consider other protocols, such as HTTP. Thus, it is worth abstracting out the generic and time-
consuming functions that a protocol state machine performs based on our TCP and routing
examples. Such a model, shown in Figure 2.2, will guide us through this book.

First, at the bottom of Figure 2.2, a protocol state machine must receive and send data
packets. This involves data manipulations, or operations that must read or write every byte in a
packet. For instance, a TCP must copy received data to application buffers, while a router has to

2.1 Protocols 19

switch packets from input links to output links. The TCP header also specifies a checksum that
must be computed over all the data bytes. Data copying also requires allocation of resources
such as buffers.

Second, at the top of Figure 2.2, the state machine must demultiplex data to one of many
clients. In some cases, the client programs must be activated, requiring potentially expensive
control transfer. For instance, when a receiving TCP receives a Web page, it has to demultiplex
the data to the Web browser application using the port number fields and may have to wake
up the process running the browser.

Figure 2.2 also depicts several generic functions shared by many protocols. First, protocols
have crucial state that must be looked up at high speeds and sometimes manipulated. For
instance, a received TCP packet causes TCP to look up a table of connection state, while a
received IP packet causes IP to look up a forwarding table. Second, protocols need to efficiently
set timers, for example, to control retransmission in TCP. Third, if a protocol module is
handling several different clients, it needs to efficiently schedule these clients. For instance,
TCP must schedule the processing of different connections, while a router must make sure that
unruly conversations between some pair of computers do not lock out other conversations.
Many protocols also allow large pieces of data to be fragmented into smaller pieces that need
reassembly.

One of the major theses of this book is that though such generic functions are often
expensive, their cost can be mitigated with the right techniques. Thus each generic protocol
function is worth studying in isolation. Therefore after Part I of this book, the remaining
chapters address specific protocol functions for endnodes and routers.

2.1.3 Performance Environment and Measures

This section describes some important measures and performance assumptions. Consider a
system (such as a network or even a single router) where jobs (such as messages) arrive
and, after completion, leave. The two most important metrics in networks are throughput and
latency. Throughput roughly measures the number of jobs completed per second. Latency
measures the time (typically worst case) to complete a job. System owners (e.g., ISPs, routers)
seek to maximize throughput to maximize revenues, while users of a system want end-to-end
latencies lower than a few hundred milliseconds. Latency also affects the speed of computation
across the network, as, for example, in the performance of a remote procedure call.

The following performance-related observations about the Internet milieu are helpful when
considering implementation trade-offs.

* Link Speeds: Backbone links are upgrading to 10 Gbps and 40 Gbps, and local links are
upgrading to gigabit speeds. However, wireless and home links are currently orders of
magnitude slower.

* TCP and Web Dominance: Web traffic accounts for over 70% of traffic in bytes or packets.
Similarly, TCP accounts for 90% of traffic in a a recent study [Bra98].

» Small Transfers: Most accessed Web documents accessed are small; for example, a SPEC
[Car96] study shows that 50% of accessed files are 50 kilobytes (KB) or less.

* Poor Latencies: Real round-trip delays exceed speed-of-light limitations; measurements in
Crovella and Carter [CC95] report a mean of 241 msec across the United States compared

CHAPTER 2 Network Implementation Models

to speed-of-light delays of less than 30 msec. Increased latency can be caused by efforts
to improve throughput, such as batch compression at modems and pipelining in routers.

e Poor Locality: Backbone traffic studies [TMW97] show 250,000 different source—
destination pairs (sometimes called flows) passing through a router in a very short
duration. More recent estimates show around a million concurrent flows. Aggregating
groups of headers with the same destination address or other means does not reduce the
number of header classes significantly. Thus locality, or the likelihood of computation
invested in a packet being reused on a future packet, is small.

» Small Packets: Thompson et al. [TMW97] also show that roughly half the packets received
by a router are minimum-size 40-byte TCP acknowledgments. To avoid losing important
packets in a stream of minimum-size packets, most router- and network-adaptor vendors
aim for “wire speed forwarding” — this is the ability to process minimum-size (40-byte)
packets at the speed of the input link.!

* Critical Measures: 1t is worth distinguishing between global performance measures, such
as end-to-end delay and bandwidth, and local performance measures, such as router
lookup speeds. While global performance measures are crucial to overall network
performance, this book focuses only on local performance measures, which are a key
piece of the puzzle. In particular, this book focuses on forwarding performance and
resource (e.g., memory, logic) measures.

* Tools: Most network management tools, such as HP’s OpenView, deal with global
measures. The tools needed for local measures are tools to measure performance within
computers, such as profiling software. Examples include Rational’s Quantify
(http://www.rational.com) for application software, Intel’s VTune (www.intel.com/
software/products/vtune/), and even hardware oscilloscopes. Network monitors such
as tecpdump (www.tcpdump.org) are also useful.

Case Study 1: SANs and iSCSI

This case study shows that protocol features can greatly affect application per-
formance. Many large data centers connect their disk drives and computers together
using a storage area network (SAN). This allows computers to share disks. Currently,
storage area networks are based on FiberChannel [Ben95] components, which are
more expensive than say Gigabit Ethernet. The proponents of iSCSI (Internet storage)
[SSMeO1] protocols seek to replace FiberChannel protocols with (hopefully cheaper)
TCP/IP protocols and components.

SCSI is the protocol used by computers to communicate with local disks. It can also
be used to communicate with disks across a network. A single SCSI command could
ask to read 10 megabytes (MB) of data from a remote disk. Currently, such remote
SCSI commands run over a FiberChannel transport protocol implemented in the net-
work adaptors. Thus a 10-MB transfer is broken up into multiple FiberChannel packets,

IThe preoccupation with wire speed forwarding in networking is extremely different from the mentality in
computer architecture, which is content with optimizing typical (and not worst-case) performance as measured on
benchmarks.

2.2 Hardware 21

sent, delivered, and acknowledged (acked) without any per-packet processing by the
requesting computer or responding disk.

The obvious approach to reduce costs is to replace the proprietary FiberChannel
transport layer with TCP and the FiberChannel network layer with IP. This would allow us
to replace expensive FiberChannel switches in SANs with commodity Ethernet switches.
However, this has three implications. First, to compete with FiberChannel performance,
TCP will probably have to be implemented in hardware. Second, TCP sends and delivers
a byte stream (see Figure A.1 in the Appendix if needed). Thus multiple sent SCSI
messages can be merged at the receiver. Message boundaries must be recovered by
adding another iSCSI header containing the length of the next SCSI message.

The third implication is trickier. Storage vendors [SSMeO1] wish to process SCSI
commands out of order. If two independent SCSI messages C1 and C2 are sent in
order but the C2 data arrives before C1, TCP will buffer C2 until C1 arrives. But the
storage enthusiast wishes to steer C2 directly to a preallocated SCSI buffer and process
C2 out of order, a prospect that makes the TCP purist cringe. The length field method
described earlier fails for this purpose because a missing TCP segment (containing the
SCSI message length) makes it impossible to find later message boundaries. An alternate
proposal suggests having the iSCSI layer insert headers at periodic intervals in the TCP
byte stream, but the jury is still out.

2.2 HARDWARE

As links approach 40-gigabit/sec OC-768 speeds, a 40-byte packet must be forwarded in 8 nsec.
At such speeds, packet forwarding is typically directly implemented in hardware instead of
on a programmable processor. You cannot participate in the design process of such hardware-
intensive designs without understanding the tools and constraints of hardware designers. And
yet a few simple models can allow you to understand and even play with hardware designs.
Even if you have no familiarity with and have a positive distaste for hardware, you are invited
to take a quick tour of hardware design, full of networking examples to keep you awake.

Internet lookups are often implemented using combinational logic, Internet packets are
stored in router memories, and an Internet router is put together with components such as
switches, and lookup chips. Thus our tour begins with logic implementation, continues with
memory internals, and ends with component-based design. For more details, we refer the
reader to the classic VLSI text [MC80], which still wears well despite its age, and the classic
computer architecture text [HP96].

2.2.1 Combinatorial Logic

Section A.2.1 in the Appendix describes very simple models of basic hardware gates, such as
NOT, NAND, and NOR, that can be understood by even a software designer who is willing to
read a few pages. However, even knowing how basic gates are implemented is not required to
have some insight into hardware design.

The first key to understanding logic design is the following observation. Given NOT,
NAND, and NOR gates, Boolean algebra shows that any Boolean function f(/i,...,1I,) of
n inputs can be implemented. Each bit of a multibit output can be considered a function of

22

CHAPTER 2 Network Implementation Models

the input bits. Logic minimization is often used to eliminate redundant gates and sometimes
to increase speed. For example, if + denotes OR and - denotes AND, then the function
O =1 -I)+ I - I, can be simplified to O = I.

Example 1. Quality of Service and Priority Encoders: Suppose we have a network router that
maintains n output packet queues for a link, where queue i has higher priority than queue j if
i < j. This problem comes under the category of providing quality of service (QOS), which
is covered in Chapter 14. The transmit scheduler in the router must pick a packet from the
first nonempty packet queue in priority order. Assume the scheduler maintains an N-bit vector
(bitmap) I such that I[j] = 1 if and only if queue j is nonempty. Then the scheduler can find
the highest-priority nonempty queue by finding the smallest position in / in which a bit is
set. Hardware designers know this function intimately as a priority encoder. However, even
a software designer should realize that this function is feasible for hardware implementation
for reasonable n. This function is examined more closely in Example 2.

2.2.2 Timing and Power

To forward a 40-byte packet at OC-768 speeds, any networking function on the packet must
complete in 8 nsec. Thus the maximum signal transmission delay from inputs to outputs on any
logic path must not exceed 8 nsec.? To ensure this constraint, a model of signal transmission
delay in a transistor is needed.

Roughly speaking, each logic gate, such as a NAND or NOT gate, can be thought of as
a set of capacitors and resistors that must be charged (when input values change) in order to
compute output values. Worse, charging one input gate can cause the outputs of later gates
to charge further inputs, and so on. Thus for a combinatorial function, the delay to compute
the function is the sum of the charging and discharging delays over the worst-case path of
transistors. Such path delays must fit within a minimum packet arrival time. Besides the time
to charge capacitors, another source of delay is wire delay. More details can be found in
Section A.2.2.

It also takes energy to charge capacitors, where the energy per unit time (power) scales
with the square of the voltage, the capacitance, and the clock frequency at which inputs can
change; P = CV?f. While new processes shrink voltage levels and capacitance, higher-speed
circuits must increase clock frequency. Similarly, parallelism implies more capacitors being
charged at a time. Thus many high-speed chips dissipate a lot of heat, requiring nontrivial
cooling techniques such as heat sinks. ISPs and colocation facilities are large consumers of
power. While our level of abstraction precludes understanding power trade-offs, it is good to
be aware that chips and routers are sometimes power limited. Some practical limits today are
30 watts per square centimeter on a single die and 10,000 watts per square foot in a data center.

Example 2. Priority Encoder Design: Consider the problem of estimating timing for the priority
encoder of Example 1 for an OC-768 link using 40-byte packets. Thus the circuit has 8 nsec
to produce the output. Assume the input / and outputs O are N-bit vectors such that O[j] = 1
if and only if I[j] = 1 and I[k] = O for all k < j. Notice that the output is represented in unary
(often called 1-hot representation) rather than binary. The specification leads directly to the
combinational logic equation O[j] = I[1]...I[j — 1}I[j] forj > 0.

2Alternatively, parts of the function can be parallelized/pipelined, but then each part must complete in 8 nsec.

2.2 Hardware 23

This design can be implemented directly using N AND gates, one for each output bit,
where the N gates take a number of inputs that range from 1 to N. Intuitively, since N input
AND gates take O(N) transistors, we have a design, Design 1, with O(NZ) transistors that
appears to take O(1) time.? Even this level of design is helpful, though one can do better.

A more area-economical design is based on the observation that every output bit O[j]
requires the AND of the complement of the first j — 1 input bits. Thus we define the partial
results P[j] = I[1]...I[j — 1] for j = 2...N. Clearly, O[j] = I[j]P[j]. But P[j] can be
constructed recursively using the equation P[j] = P[j — 1]I[j], which can be implemented
using N two-input AND gates, connected in series. This produces a design, Design 2, that
takes O(N) transistors but takes O(N) time.

Design 1 is fast and fat, and Design 2 is slow and lean. This is a familiar time—space
trade-off and suggests we can get something in between. The computation of P[j] in Design
2 resembles an unbalanced binary tree of height N. However, it is obvious that P[N] can be
computed using a fully balanced binary of 2-input AND gates of height log N. A little thought
then shows that the partial results of the binary tree can be combined in simple ways to get
P[j] for all j < N using the same binary tree [WHO0O].

Forexample, if N = §, to compute P[8] we compute X = 1[0]...1[3]and Y = I[4]...1[7]
and compute the AND of X and Y at the root. Thus, it is easy to calculate P[5], for instance,
using one more AND gate by computing X - I[4]. Such a method is very commonly used by
hardware designers to replace apparently long O(N) computation chains with chains of length
2log N. Since it was first used to speed up carry chains in addition, it is known as carry look-
ahead or simply look-ahead. While look-ahead techniques appear complex, even software
designers can master them because at their core they use divide-and-conquer.

2.2.3 Raising the Abstraction Level of Hardware Design

Hand designing each transistor in a network chip design consisting of 1 million transistors
would be time consuming. The design process can be reduced to a few months using building
blocks. A quick description of building block technologies, such as PLAs, PALs, and standard
cells, can be found in Section A.2.5.

The high-order bit, however, is that just as software designers reuse code, so also hardware
designers reuse a repertoire of commonly occurring functions. Besides common computational
blocks, such as adders, multipliers, comparators, and priority encoders, designs also use
decoders, barrel shifters, multiplexers, and demultiplexers. It is helpful to be familiar with
these “arrows” in the hardware designer’s quiver.

A decoder coverts a log N-bit binary value to an N-bit unary encoding of the same value;
while binary representations are more compact, unary representations are more convenient for
computation. A barrel shifter shifts an input / by s positions to the left or right, with the bits
shifted off from an end coming around to the other end.

A multiplexer (mux) connects one of several inputs to a common output, while its dual, the
demultiplexer, routes one input to one of several possible outputs. More precisely, a multiplexer
(mux) connects one of » input bits I; to the output O if a log n—bit select signal S encodes the
value j in binary. Its dual, the demultiplexer, connects input / to output O; if the signal §
encodes the value j in binary.

3A more precise argument, due to David Harris, using the method of Sutherland et al. [SSH99] shows the delay
scales as log(N log N) because of the effort required to charge a tree of N transistors in each AND gate.

24

CHAPTER 2 Network Implementation Models

Ja.

v
/2—>_I—>
/3—>/(

So

Output
o

FIGURE 2.3 Building a4-input mux with select bits Sy and Sy from three 2-input muxes. The figure
uses the standard trapezoidal icon for a mux.

Thus the game becomes one of decomposing a complex logic function into instances of
the standard functions, even using recursion when needed. This is exactly akin to reduction
and divide-and-conquer and is easily picked up by software designers. For example, Figure 2.3
shows the typical Lego puzzle faced by hardware designers: Build a 4-input multiplexer from
2-input multiplexers. Start by choosing one of /y and /; using a 2-input mux and then choosing
one of I and I3 by another 2-input mux. Clearly, the outputs of the 2-input muxes in the first
stage must be combined using a third 2-input mux; the only cleverness required is to realize
that the select signal for the first two muxes is the least significant bit Sy of the 2-bit select
signal, while the third mux chooses between the upper and lower halves and so uses S; as the
select bit.

The following networking example shows that reduction is a powerful design tool for
designing critical networking functions.

Example 3. Crossbar Scheduling and Programmable Priority Encoders: Examples 1 and 2
motivated and designed a fast priority encoder (PE). A commonly used router arbitration
mechanism uses an enhanced form of priority encoder called a programmable priority encoder
(PPE). There is an N-bit input / as before, together with an additional log N-bit input P. The
PPE circuit must compute an output O such that O[j] = 1, where j is the first position beyond
P (treated as a binary value) that has a nonzero bit in /. If P = 0, this reduces to a simple
priority encoder.

PPEs arise naturally in switch arbitration (see Chapter 13 for details). For now, suppose a
router connects N communication links. Suppose several input links wish to transmit a packet
at the same time to output link L. To avoid contention at L, each of the inputs sends a request
to L in the first time slot; L chooses which input link to grant a request to in the second slot;
the granted input sends a packet in the third time slot.

To make its grant decision, L can store the requests received at the end of Slot 1 in an
N-bit request vector R, where R[i] = 1 if input link i wishes to transmit to L. For fairness, L
should remember the last input link P it granted a request to. Then, L should confer the grant
to the first input link beyond P that has a request. This is exactly a PPE problem with R and P
as inputs. Since a router must do arbitration for each time slot and each output link, a fast and

2.2 Hardware 25

area-efficient PPE design is needed. Even a software designer can understand and possibly
repeat the process [GM99a] used to design the PPE found in the Tiny Tera, a switch built at
Stanford and later commercialized. The basic idea is reduction: reducing the design of a PPE
to the design of a PE (Example 2).

The first idea is simple. A PPE is essentially a PE whose highest-priority value starts at
position P instead of at 0. A barrel shifter can be used to shift / first to the left by P bits. After
this a simple PE can be used. Of course, the output-bit vector is now shifted; we recover the
original order by shifting the output of the PE to the right by P bits. A barrel shifter for N-bit
inputs can be implemented using a tree of 2-input multiplexers in around log N time. Thus two
barrel shifters and a PE take around 3 log N gate delays.

A faster design used in Gupta and McKeown [GM99a], which requires only 2 log N gate
delays is as follows. Split the problem into two parts. If the input has some bit set at position
P or greater, then the result can be found by using a PE operating on the original input after
setting to zero all input bits with positions less than P.* On the other hand, if the input has no
bit set at a position P or greater, then the result can be found by using a PE on the original
input with no masking at all. This results in the design of Figure 2.4, which, when tested on a
Texas Instrument Cell Library, was nearly twice as fast and took three times less area than the
barrel shifter design for a 32-port router.

The message here is that the logic design used for a time-critical component of a very
influential switch design can be achieved using simple reductions and simple models. Such
models are not beyond the reach of those of us who do not live and breathe digital design.

2.2.4 Memories
Inendnodes and routers, packet forwarding is performed using combinational logic, but packets
and forwarding state are stored in memories. Since memory access times are significantly
slower than logic delays, memories form major bottlenecks in routers and endnodes.

Further, different subsystems require different memory characteristics. For example,
router vendors feel it is important to buffer 200 msec — an upper bound on a round-trip
delay — worth of packets to avoid dropping packets during periods of congestion. At, say,
40 Gbit/sec per link, such packet buffering requires an enormous amount of memory. On the
other hand, router lookups require a smaller amount of memory, which is accessed randomly.
Thus it helps to have simple models for different memory technologies. Next, we describe reg-
isters, SRAMs, DRAMs, and interleaved memory technology. Simple implementation models
of these memory components can be found in Section A.2.4 in the Appendix.

REGISTERS

A flip-flop is a way of connecting two or more transistors in a feedback loop so that (in the
absence of Writes and power failures) the bit stays indefinitely without “leaking” away. A
register is an ordered collection of flip-flops. For example, most modern processors have a
collection of 32- or 64-bit on-chip registers. A 32-bit register contains 32 flip-flops, each storing
a bit. Access from logic to a register on the same chip is extremely fast, around 0.5-1 nsec.

4This can be done by ANDing the input with P encoded as a mask; such a mask is commonly known in the
hardware community as a thermometer encoding of P.

26

CHAPTER 2 Network Implementation Models

Pointer P Request R
log N bits ¢ Y N bits

Encode as . Copy 2

N-bit mask N bits of PE

\—+
e/

N bits

Any bit set?

Copy 1
of PE

N bits

Grant (N bits)

FIGURE 2.4 The Tiny Tera PPE design uses copy 1 of a priority encoder to find the highest bit set,
if any, of all bits greater than P using a mask encoding of P. If such a bit is not found, the output of a
second copy of a priority encoder is enabled using the bottom AND gate. The results of the two copies
are then combined using an N-input OR gate.

SRAM

A static random access memory (SRAM) contains N registers addressed by log N address bits
A. SRAM is so named because the underlying flip-flops refresh themselves and so are “static.”
Besides flip-flops, an SRAM also needs a decoder that decodes A into a unary value used to
select the right register. Accessing an SRAM on-chip is only slightly slower than accessing a
register, because of the added decode delay. At the time of writing, it was possible to obtain
on-chip SRAMs with 0.5-nsec access times. Access times of of 1-2 nsec for on-chip SRAM
and 5-10 nsec for off-chip SRAM are common.

DynaMic RAM

An SRAM bit cell requires at least five transistors. Thus SRAM is always less dense or more
expensive than memory technology based on dynamic RAM (DRAM). The key idea is to
replace the feedback loop (and extra transistors) used to store a bit in a flip-flop with an output
capacitance that can store the bit; thus the charge leaks, but it leaks slowly. Loss due to leakage
is fixed by refreshing the DRAM cell externally within a few milliseconds. Of course, the
complexity comes in manufacturing a high capacitance using a tiny amount of silicon.
DRAM chips appear to quadruple in capacity every 3 years [FPCe97] and are heading
towards 1 gigabit on a single chip. Addressing these bits, even if they are packed together as 4-
or even 32-bit “registers,” is tricky. Recall that the address must be decoded from (say) 20 bits

2.2 Hardware 27

)
Row -->»| selected row of bits |- -+
decoder
A

Address bits

Column
decoder

1
i row buffer .
1
I

~

selected word within row

FIGURE 2.5 Most large memories are organized two-dimensionally in terms of rows and columns.
Selecting a word consists of selecting first the row and then the column within the row.

to (say) one of 220 values. The complexity of such decode logic suggests divide-and-conquer.
Why not decode in two stages?

Figure 2.5 shows that most memories are internally organized two-dimensionally into
rows and columns. The upper address bits are decoded to select the row, and then the lower
address bits are used to decode the column. More precisely, the user first supplies the row
address bits and enables a signal called RAS (row address strobe); later, the user supplies
the column address bits,”> and enables a signal called CAS (column address strobe). After
a specified time, the desired memory word can be read out. Assuming equal-size rows and
columns, this reduces decode gate complexity from O(N) to O(\/EN)) at the expense of one
extra decode delay. Besides the required delay between RAS and CAS, there is also a precharge
delay between successive RAS and CAS invocations to allow time for capacitors to charge.

The fastest off-chip DRAM:s take around 40-60 nsec to access (latency), with longer times,
such as 100 nsec, between successive reads (throughput) because of precharge restrictions.
Some of this latency includes the time to drive the address using external lines onto the DRAM
interface pins; recent innovations allow on-chip DRAM with lower access times of around
30 nsec. It seems clear that DRAM will always be denser but slower than SRAM.

PAGE-MODE DRAMS

One reason to understand DRAM structure is to understand how function can follow form. A
classic example is a trick to speed up access times called page mode. Page mode is beneficial for
access patterns that exhibit spatial locality, in which adjacent memory words are successively
accessed. But having made a row access in Figure 2.5, one can access words within the
row without incurring additional RAS and precharge delays. Video RAMs exploit the same
structure by having a row read into an SRAM, which can be read out serially to refresh a
display at high speed. Besides page mode and video RAMS, perhaps there are other ideas that
exploit DRAM structure that could be useful in networking.

5 Many DRAM chips take advantage of the fact that row and column addresses are not required at the same time
to multiplex row and column addresses on the same set of pins, reducing the pin count of the chip.

28

CHAPTER 2 Network Implementation Models

Address Bus

Bank2 |® @ ®| BankB

m
[V
3
=~
—_

Data Bus

Single chip -

FIGURE 2.6 The ideabehind RAMBUS, SDRAM, and numerous variants is to create a single chip
containing multiple DRAM parallel memories to gain memory bandwidth while using only one set of
address and data lines.

INTERLEAVED DRAMS

While memory latency is critical for computation speed, memory throughput (often called
bandwidth) is also important for many network applications. Suppose a DRAM has a word
size of 32 bits and a cycle time of 100 nsec. Then the throughput using a single copy of
the DRAM is limited to 32 bits every 100 nsec. Clearly, throughput can be improved using
accesses to multiple DRAMs. As in Figure 2.6, multiple DRAMs (called banks) can be strung
together on a single bus. The user can start a Read to Bank 1 by placing the address on the
address bus. Assume each DRAM bank takes 100 nsec to return the selected data.

Instead of idling during this 100-nsec delay, the user can place a second address for Bank
2, a third for Bank 3, and so on. If the placing of each address takes 10 nsec, the user can
“feed” 10 DRAM banks before the answer to the first DRAM bank query arrives, followed
10 nsec later by the answer to the second DRAM bank query, and so on. Thus the net memory
bandwidth in this example is 10 times the memory bandwidth of a single DRAM, as long as
the user can arrange to have consecutive accesses touch different banks.

While using multiple memory banks is a very old idea, it is only in the last 5 years
that memory designers have integrated several banks into a single memory chip (Figure 2.6),
where the address and data lines for all banks are multiplexed using a common high-speed
network called a bus. In addition, page-mode accesses are often allowed on each bank. Memory
technologies based on this core idea abound, with different values for the DRAM sizes, the
protocol to read and write, and the number of banks. Prominent examples include SDRAM
with two banks and RDRAM with 16 banks.

Example 4. Pipelined Flow ID Lookups: A flow is characterized by source and destination IP
addresses and TCP ports. Some customers would like routers to keep track of the number of
packets sent by each network flow, for accounting purposes. This requires a data structure that
stores a counter for each flow ID and supports the two operations of Insert (Flowld) to insert
a new flow ID, and Lookup (Flowld) to find the location of a counter for a flow ID. Lookup
requires an exact match on the flow ID — which is around 96 bits — in the time to receive a
packet. This can be done by any exact-matching algorithm, such as hashing.

2.2 Hardware 29

Queue of
results

Address
4-—@4— Lookup >
__><)—> Logic

Flow ID queue

. J
LOOKUP CHIP RDRAM

Bank 1

A

[0F0]

Data Bank 16

FIGURE 2.7 Solving the flow ID lookup problem by using a pipelined lookup chip that works on
up to 16 concurrent flow ID lookups, each of which accesses an independent bank of the RDRAM. The
lookup chip returns an index to, say, a network processor that updates the flow ID counter.

However, if, as many router vendors wish to do, the worst-case lookup time must be small
and bounded, binary search [CLR90] is a better idea. Assume that flow ID lookups must be
done at wire speeds for worst-case 40-byte packets at 2.5 Gbits/sec or OC-48 speeds. Thus the
chip has 128 nsec to look up a flow ID.

To bound lookup delays, consider using a balanced binary tree, such as a B-tree. The
logic for tree traversal is fairly easy. For speed, ideally the flow IDs and counters should be
stored in SRAM. However, current estimates in core routers [TMW97] show around a million
concurrent flows. Keeping state for a million flows in SRAM is expensive. However, plain
DRAM using a binary tree with a branching factor of 2 would require log, 1,000,000 = 20
memory accesses. Even assuming an optimistic DRAM cycle time of 50 nsec, the overall
lookup time is 1 usec, which is too slow.

A solution is to use pipelining, as shown in Figure 2.7, where the pipelined logic accesses
flow IDs stored in an RDRAM with 16 banks of memory as shown in Figure 2.6. All the nodes
at height i in the binary tree are stored in Bank i of the RDRAM. The lookup chip works
on 16 flow ID lookups (for 16 packets) concurrently. For example, after looking at the root
node for Packet 1 in Bank 1, the chip can look up the second-level tree node for Packet 1 in
Bank 2 and (very slightly after that) look up the root for Packet 2 in Bank 1. When Packet 1’s
lookup “thread” is accessing Bank 16, Packet 16’s lookup thread is accessing Bank 1. Since
direct RDRAM runs at 800 MHz, the time between address requests to the RAMBUS is small
compared with the read access time of around 60 nsec. Thus while a single packet takes around
16 * 60 nsec to complete, processing 16 packets concurrently allows a throughput of one flow
ID lookup every 60 nsec.

Unfortunately, a binary tree with 16 levels allows only 2!6 = 64K flow IDs, which is too
small. Fortunately, RAMBUS allows a variation of page mode where 8 data words of 32 bits
can be accessed in almost the same time as 1 word. This allows us to retrieve two 96-bit keys
and three 20-bit pointers in one 256-bit memory access. Thus a tree with 3-way branching can
be used, which allows potentially 316 or potentially 43 million, flow IDs.

2.2.5 Memory Subsystem Design Techniques

The flow ID lookup problem illustrates three major design techniques commonly used in
memory subsystem designs for networking chips.

30

CHAPTER 2 Network Implementation Models

* Memory Interleaving and Pipelining: Similar techniques are used in IP lookup,
classification, and in scheduling algorithms that implement QoS. The multiple banks
can be implemented using several external memories, a single external memory like
a RAMBUS, or on-chip SRAM within a chip that also contains processing logic.

* Wide Word Parallelism: A common theme in many networking designs, such as the
Lucent bit vector scheme (Chapter 12), is to use wide memory words that can be processed
in parallel. This can be implemented using DRAM and exploiting page mode or by using
SRAM and making each memory word wider.

* Combining DRAM and SRAM: Given that SRAM is expensive and fast and that DRAM
is cheap and slow, it makes sense to combine the two technologies to attempt to obtain the
best of both worlds. While the use of SRAM as a cache for DRAM databases is classical,
there are many more creative applications of the idea of a memory hierarchy. For instance,
the exercises explore the effect of a small amount of SRAM on the design of the flow
ID lookup chip. Chapter 16 describes a more unusual application of this technique to
implement a large number of counters, where the low-order bits of each counter are stored
in SRAM.

It is more important for a novice designer to understand these design techniques (than to know
memory implementation details) in order to produce creative hardware implementations of
networking functions.

2.2.6 Component-Level Design

The methods of the last two subsections can be used to implement a state machine that imple-
ments arbitrary computation. A state machine has a current state stored in memory; the machine
processes inputs using combinatorial logic that reads the current state and possibly writes the
state. An example of a complex state machine is a Pentium processor, whose state is the com-
bination of registers, caches, and main memory. An example of a simpler state machine is
the flow ID lookup chip of Figure 2.7, whose state is the registers used to track each of 16
concurrent lookups and the RDRAM storing the B-tree.

While a few key chips may have to be designed to build a router or a network interface
card, the remainder of the design can be called component-level design: organizing and inter-
connecting chips on a board and placing the board in a box while paying attention to form
factor, power, and cooling. A key aspect of component-level design is understanding pin-count
limitations, which often provide a quick “parity check” on feasible designs.

Example 5. Pin-Count Implications for Router Buffers: Consider a router than has five
10 Gb/sec links. The overall buffering required is 200 msec * 50 Gb/sec, which is 10 gigabits.
For cost and power, we use DRAM for packet buffers. Since each packet must go in and out
of the buffer, the overall memory bandwidth needs to be twice the bandwidth into the box —
i.e., 100 Gb/sec. Assuming 100% overhead for internal packet headers, links between packets
in queues, and wasted memory bandwidth, it is reasonable to aim for 200-Gb/sec memory
bandwidth.

Using a single direct RDRAM with 16 banks, specifications show peak memory bandwidth
of 1.6 GB/sec, or 13 Gb/sec. Accessing each RDRAM requires 64 interface pins for data and
25 other pins for address and control, for a total of 90 pins. A 200-Gbps memory bandwidth
requires 16 RDRAMSs, which require 1440 pins in total. A conservative upper bound on the

2.2 Hardware 31

number of pins on a chip is around 1000. This implies that even if the router vendor were to
build an extremely fast custom-designed packet-forwarding chip that could handle all packets
at the maximum box rate, one would still need at least one more chip to drive data in and out
of the RAMBUS packet buffers. Our message is that pin limitations are a key constraint in
partitioning a design between chips.

2.2.7 Final Hardware Lessons
If all else is forgotten in this hardware design section, it is helpful to remember the design
techniques of Section 2.2.5. A knowledge of the following parameter values is also useful
to help system designers quickly weed out infeasible designs without a detailed knowledge
of hardware design. Unfortunately, these parameters are a moving target, and the following
numbers were written based on technology available in 2004.

Chip Complexity Scaling: The number of components per chip appears to double every
2 years. While 0.13-micron processes are common, 90-nm technology is ramping up, and
65-nm technology is expected after that. As a result, current ASICs can pack several
million gate equivalents (that’s a lot of combinatorial logic) plus up to 50 Mbits (at the
time of writing, using half a 12-mm/side die) of on-chip SRAM on an ASIC.® Embedded
DRAM is also a common option to get more space on-chip at the cost of larger latency.

Chip Speeds: As feature sizes go down, on-chip clock speeds of 1 GHz are becoming
common, with some chips even pushing close to 3 GHz. To put this in perspective, the
clock cycle to do a piece of computation on a 1-GHz chip is 1 nsec. By using parallelism
via pipelining and wide memory words, multiple operations can be performed per clock
cycle.

Chip I/0: The number of pins per chip grows, but rather slowly. While there are
some promising technologies, it is best to assume that designs are pin limited to
around 1000 pins.

Serial I/0O: Chip-to-chip I/O has also come a long way, with 10-Gbit serial links available
to connect chips.

Memory Scaling: On-chip SRAM with access times of 1 nsec are available, with even
smaller access times being worked on. Off-chip SRAM with access times of 2.5 nsec are
commonly available. On-chip DRAM access times are around 30 nsec, while off-chip
DRAM of around 60 nsec is common. Of course, the use of interleaved DRAM, as
discussed in the memory subsection, is a good way to increase memory subsystem
throughput for certain applications. DRAM costs roughly 4—10 times less than SRAM
per bit.

Power and Packaging: The large power consumption of high-speed routers requires
careful design of the cooling system. Finally, most ISPs have severe rack space limitations,
and so there is considerable pressure to build routers that have small form factors.

These parameter values have clear implications for high-speed networking designs. For

instance, at OC-768 speeds, a 40-byte packet arrives in 3.2 nsec. Thus it seems clear that all

SFPGAs are more programmable chips that can only offer smaller amounts of on-chip SRAM.

32

CHAPTER 2 Network Implementation Models

state required to process the packet must be in on-chip SRAM. While the amount of on-chip
SRAM is growing, this memory is not growing as fast as the number of flows seen by a router.
Similarly, with 1-nsec SRAMs, at most three memory accesses can be made to a single memory
bank in a packet arrival time.

Thus the design techniques of Section 2.2.5 must be used within a chip to gain parallelism
using multiple memory banks and wide words and to increase the usable memory by creative
combinations that involve off- and on-chip memory. However, given that chip densities and
power constraints limit parallelism to, say, a factor of at most 60, the bottom line is that all
packet-processing functions at high speeds must complete using at most 200 memory accesses
and limited on-chip memory.” Despite these limitations, a rich variety of packet-processing
functions have been implemented at high speeds.

2.3 NETWORK DEVICE ARCHITECTURES

Optimizing network performance requires optimizing the path of data through the internals
of the source node, the sink node, and every router. Thus it is important to understand the
internal architecture of endnodes and routers. The earlier part of this chapter argued that logic
and memory can be combined to form state machines. In essence, both routers and endnodes
are state machines. However, their architectures are optimized for different purposes: endnode
architectures (Section 2.3.1) for general computation and router architectures (Section 2.3.2)
for Internet communication.

2.3.1 Endnode Architecture

A processor such as a Pentium is a state machine that takes a sequence of instructions and data
as input and writes output to I/O devices, such as printers and terminals. To allow programs
that have a large state space, the bulk of processor state is stored externally in cheap DRAM.
In PCs, this is referred to as main memory and is often implemented using 1 GB or more of
interleaved DRAM, such as SDRAM. However, recall that DRAM access times are large, say,
60 nsec. If processor state were stored only in DRAM, an instruction would take 60 nsec to
read or write to memory.

Processors gain speed using caches, which are comparitively small chunks of SRAM that
can store commonly used pieces of state for faster access. Some SRAM (i.e., the L1 cache)
is placed on the processor chip, and some more SRAM (i.e., the L2 cache) is placed external
to the processor. A cache is a hash table that maps between memory address locations and
contents. CPU caches use a simple hash function: They extract some bits from the address
to index into an array and then search in parallel for all the addresses that map into the array
element.® When a memory location has to be read from DRAM, it is placed in the cache, and
an existing cache element may be evicted. Commonly used data is stored in a data cache, and
commonly used instructions in an instruction cache.

70f course, there are ways to work around these limits, for instance, by using multiple chips, but such
implementations often do badly in terms of cost, complexity, and power consumption.

8The number of elements that can be searched in parallel in a hash bucket is called the associativity of the cache.
While router designers rightly consider bit extraction to be a poor hash function, the addition of associativity improves
overall hashing performance, especially on computing workloads.

2.3 Network Device Architectures 33

Caching works well if the instructions and data exhibit temporal locality (i.e., the corre-
sponding location is reused frequently in a small time period) or spatial locality (i.e., accessing
a location is followed by access to a nearby location). Spatial locality is taken advantage of as
follows. Recall that accessing a DRAM location involves accessing a row R and then a column
within the row. Thus reading words within row R is cheaper after R is accessed. A Pentium
takes advantage of this observation by prefetching 128 (cache line size) contiguous bits into
the cache whenever 32 bits of data are accessed. Accesses to the adjoining 96 bits will not
incur a cache miss penalty.

Many computing benchmarks exhibit temporal and spatial locality; however, a stream of
packets probably exhibits only spatial locality. Thus improving endnode protocol implemen-
tations often requires paying attention to cache effects.

The foregoing discussion should set the stage for the endnode architecture model shown
in Figure 2.8. The processor, or CPU — e.g., a Pentium or an Alpha — sits on a bus. A bus
can be thought of as a network like an Ethernet, but optimized for the fact that the devices
on the bus are close to each other. The processor interacts with other components by sending
messages across the bus.

The input—output (I/O) devices are typically memory mapped. In other words, even I/O
devices like the network adaptor and the disk look like pieces of memory. For example, the
adaptor memory may be locations 100-200 on the bus. This allows uniform communication
between the CPU and any device by using the same conventions used to interact with memory.
In terms of networking, a Read (or Write) can be thought of as a message sent on the bus
addressed to the memory location. Thus a Read 100 is sent on the bus, and the device that
owns memory location 100 (e.g., the adaptor) will receive the message and reply with the
contents of location 100.

Modern machines allow direct memory access (DMA), where devices such as the disk
or the network adaptor send Reads and Writes directly to the memory via the bus without
processor intervention. However, only one entity can use the bus at a time. Thus the adaptor
has to contend for the bus; any device that gets hold of the bus “steals cycles” from the
processor. This is because the processor is forced to wait to access memory while a device is
sending messages across the bus.

In Figure 2.8 notice also that the adaptor actually sits on a different bus (system bus or
memory bus) from the bus on which the network adaptor and other peripherals (I/O bus) sit.

' Memory '

MMU, Cache
System bus
Bus adaptor
(8]
I/0 bus

FIGURE 2.8 Model of a workstation.

34

CHAPTER 2 Network Implementation Models

Programmable
parallel switch

Processor Memory 1

Network

adaptor Memory 2

FIGURE 2.9 Using parallel connections within an endnode architecture to allow concurrent
processing and network traffic via a parallel switch.

The memory bus is designed for speed and is redesigned for every new processor; the I/O bus
is a standard bus (e.g., a PCI bus) chosen to stay compatible with older I/O devices. Thus the
I/O bus is typically slower than the memory bus.

Abig lesson for networking in Figure 2.8 is that the throughput of a networking application
is crucially limited by the speed of the slowest bus, typically the I/O bus. Worse, the need for
extra copies to preserve operating system structure causes every packet received or sent by a
workstation to traverse the bus multiple times. Techniques to avoid redundant bus traversals
are described in Chapter 5.

Modern processors are heavily pipelined with instruction fetch, instruction decode, data
reads, and data writes split into separate stages. Superscalar and multithreaded machines
go beyond pipelining by issuing multiple instructions concurrently. While these innovations
(see, for example, the classic reference on endnode architecture [HP96]) remove computation
bottlenecks, they do little for data-movement bottlenecks. Consider instead the following
speculative architecture.

Example 6. Endnode Architecture Using a Crossbar Switch: Figure 2.9 shows the endnode
bus being replaced by a programmable hardware switch, as is commonly used by routers.
The switch internally contains a number of parallel buses so that any set of disjoint endpoint
pairs can be connected in parallel by the switch. Thus in the figure the processor is connected
to Memory 1, while the network adaptor is connected to Memory 2. Thus packets from the
network can be placed in Memory 2 without interfering with the processor’s reading from
Memory 1. If the processor now wishes to read the incoming packet, the switch can be
reprogrammed to connect the processor to Memory 2 and the adaptor to Memory 1. This can
work well if the queue of empty packet buffers used by the adaptor alternates between the two
memories.

There are recent proposals for Infiniband switch technology to replace the I/O bus in
processors (Chapter 5). The ultimate message of this example is not that architectures such
as Figure 2.9 are necessarily good but that simple architectural ideas to improve network
performance, such as Figure 2.9, are not hard for even protocol designers to conceive, given
simple models of hardware and architecture.

2.3.2 Router Architecture

A router model that covers both high-end routers (such as Juniper’s M-series routers) and
low-end routers (such as the Cisco Catalyst) is shown in Figure 2.10. Basically, a router is a

2.3 Network Device Architectures 35

ROUTER

B2

-

° B3 | _
Input link i . o Output link
[]

° .
I:D o Scheduling
°

° B1
Address lookup

FIGURE 2.10 A model of a router labeled with the three main bottlenecks in the forwarding path:
address lookup (B1), switching (B2), and output scheduling (B3).

box with a set of input links, shown on the left, and a set of output links, shown on the right;
the task of the router is to switch a packet from an input link to the appropriate output link
based on the destination address in the packet. While the input and output links are shown
separately, the two links in each direction between two routers are often packaged together.
We review three main bottlenecks in a router: lookup, switching, and output queuing.

Lookup

A packet arrives on, say, the left link, input link i. Every packet carries a 32-bit Internet (IP)
address.” Assume that the first six bits of the destination address of a sample packet are 100100.
A processor in the router inspects the destination address to determine where to forward the
packet.

The processor consults a forwarding table to determine the output link for the packet. The
forwarding table is sometimes called a FIB, for forwarding information base. The FIB contains
a set of prefixes with corresponding output links. The reason for prefixes will be explained in
Chapter 11; for now think of prefixes as variable-length “area codes” that greatly reduce the
FIB size. A prefix like 01*, where the * denotes the usual “don’t care” symbol, matches IP
addresses that start with 01. Assume that prefix 100* has associated output link 6, while prefix
1* has output link 2. Thus our sample packet, whose destination address starts with 100100,
matches both prefix 100* and 1*. The disambiguating rule that IP routers use is to match an
address to the longest matching prefix. Assuming no longer matching prefixes, our sample
packet should be forwarded to output link 6.

The processor that does the lookup and basic packet processing can be either shared or
dedicated and can be either a general processor or a special-purpose chip. Early router designs
used a shared processor (or processors), but this proved to be a bottleneck. Later designs,
including Cisco’s GSR family, use a dedicated processor per input link interface. The earliest
designs used a standard CPU processor, but many of the fastest routers today, such as Juniper’s
M-160, use a dedicated chip (ASIC) with some degree of programmability. There has been a

9Recall that while most users deal with domain names, these names are translated to an IP address by a directory
service, called DNS, before packets are sent.

36

CHAPTER 2 Network Implementation Models

backlash to this trend toward ASICs, however, with customers asking routers to perform new
functions, such as Web load balancing. Thus some new routers use network processors (see
Example 7), which are general-purpose processors optimized for networking.

Algorithms for prefix lookups are described in Chapter 11. Many routers today also offer
a more complex lookup called packet classification (Chapter 12), where the lookup takes as
input the destination address as well as source address and TCP ports.

SWITCHING

After address lookup in the example of Figure 2.10, the processor instructs an internal switching
system to transfer the packet from link i to output link 6. In older processors, the switch was a
simple bus, such as shown in Figure 2.8. This proved to be a major bottleneck because, if the
switch has N input links running at B bits per second, the bus would have to have a bandwidth
of B - N. Unfortunately, as N increases, electrical effects (such as the capacitive load of a bus)
predominate, limiting the bus speed.

Thus the fastest routers today internally use a parallel switch of the sort shown in Figure 2.9.
The throughput of the switch is increased by using N parallel buses, one for each input and
one for each output. An input and an output are connected by turning on transistors connecting
the corresponding input bus and output bus. While it is easy to build the data path, it is harder
to schedule the switch, because multiple inputs may wish to send to the same output link at
the same time. The switch-scheduling problem boils down to matching available inputs and
outputs every packet arrival time. Algorithms for this purpose are described in Chapter 13.

QUEUING

Once the packet in Figure 2.10 has been looked up and switched to output link 6, output
link 6 may be congested, and thus the packet may have to be placed in a queue for output
link 6. Many older routers simply place the packet in a first-in first-out (FIFO) transmission
queue. However, some routers employ more sophisticated output scheduling to provide fair
bandwidth allocation and delay guarantees. Output scheduling is described in Chapter 14.

Besides the major tasks of lookups, switching, and queuing, there are a number of other
tasks that are less time critical.

HEADER VALIDATION AND CHECKSUMS

The version number of a packet is checked, and the header-length field is checked for options.
Options are additional processing directives that are rarely used; such packets are often shunted
to a separate route processor. The header also has a simple checksum that must be verified.
Finally, a time-to-live (TTL) field must be decremented and the header checksum recalculated.
Chapter 9 shows how to incrementally update the checksum. Header validation and checksum
computation are often done in hardware.

ROUTE PROCESSING

Section A.1.2 describes briefly how routers build forwarding tables using routing protocols.
Routers within domains implement RIP and OSPF, while routers that link domains also
must implement BGP.!? These protocols are implemented in one or more route processors.

107t is possible to buy versions of these protocols, but the software must be customized for each new hardware
platform. A more insidious problem, especially with BGP and OSPF, is that many of the first implementations of these

2.3 Network Device Architectures 37

For example, when a link state packet is sent to the router in Figure 2.10, lookup will recognize
that this is a packet destined for the router itself and will cause the packet to be switched to the
route processor. The route processor maintains the link state database and computes shortest
paths; after computation, the route processor loads the new forwarding databases in each of
the forwarding processors through either the switch or a separate out-of-band path.

In the early days, Cisco won its spurs by processing not just Internet packets but also other
routing protocols, such as DECNET, SNA, and Appletalk. The need for such multiprotocol
processing is less clear now. A much more important trend is multi-protocol-label switching
(MPLS), which appears to be de rigeur for core routers. In MPLS, the IP header is augmented
with a header containing simple integer indices that can be looked up directly without a prefix
lookup; Chapter 11 provides more details about MPLS.

ProOTOCOL PROCESSING

All routers today have to implement the simple network management protocol (SNMP) and
provide a set of counters that can be inspected remotely. To allow remote communication with
the router, most routers also implement TCP and UDP. In addition, routers have to implement
the Internet control message protocol (ICMP), which is basically a protocol for sending error
messages, such as “time-to-live exceeded.”

FRAGMENTATION, REDIRECTS, AND ARPS

While it is clear that route and protocol processing is best relegated to a route processor on a
so-called “slow path,” there are a few router functions that are more ambiguous. For example,
if a packet of 4000 bytes is to be sent over a link with a maximum packet size (MTU) of
1500 bytes, the packet has to be fragmented into two pieces.!! While the prevailing trend is for
sources, instead of routers, to do fragmentation, some routers do fragmentation in the fast path.
Another such function is the sending of Redirects. If an endnode sends a message to the wrong
router, the router is supposed to send a Redirect back to the endnode. A third such function is
the sending of address resolution protocol (ARP) requests, whose operation is explored in the
exercises.

Finally, routers today have a number of other tasks they may be called on to perform. Many
routers within enterprises do content-based handling of packets, where the packet processing
depends on strings found in the packet data. For example, a router that fronts a Web farm of
many servers may wish to forward packets with the same Web URL to the same Web server.
There are also the issues of accounting and traffic measurement. Some of these new services
are described in Chapter 16.

Example 7. Network Processors: Network processors are general-purpose programmable pro-
cessors optimized for network traffic. Their proponents say that they are needed because the
unpredictable nature of router tasks (such as content-based delivery) makes committing router
forwarding to silicon a risky proposition. For example, the Intel IXP1200 network proces-
sor evaluated in Spalink et al. [SKPOO] internally contains six processors, each running at

protocols vary in subtle ways from the actual specifications. Thus a new implementation that meets the specification
may not interoperate with existing routers. Thus ISPs are reluctant to buy new routers unless they can trust the “quality”
of the BGP code, in terms of its ability to interoperate with existing routers.

11Strictly speaking, since each fragment adds headers, there will be three pieces.

38

CHAPTER 2 Network Implementation Models

177 MHz with a 5.6-nsec clock cycle. Each processor receives packets from an input queue;
packets are stored in a large DRAM; after the processor has looked up the packet destination,
the packet is placed on the output queue with a tag describing the output link it should be
forwarded to.

The biggest problem is that the processors are responsible for moving packets in and out
of DRAM. In the IXP1200, moving 32 bytes from the queue to the DRAM takes 45 clock
cycles, and moving from the DRAM to the queue takes 55 cycles. Since a minimum-size
packet is at least 40 bytes, this requires a total of 200 cycles = 1.12 usec, which translates to
a forwarding rate of only around 900K packets/second. The IXP1200 gets around this limit
by using six parallel processors and an old architectural idea called multithreading. The main
idea is that each processor works on multiple packets, each packet being a thread; when the
processing for one packet stalls because of a memory reference, processing for the next thread
is resumed. Using fast context switching between threads, and four contexts per processor, the
IXP1200 can theoretically obtain 6 * 4 * 900 = 21.4M packets/second.

Network processors also offer special-purpose instructions for address lookup and other
common forwarding functions. Some network processors also streamline the movement of
data packets by having hardware engines that present only the header of each data packet
to the processor. The remainder of the data packet flows directly to the output queue. The
processor(s) read the header, do the lookup, and write the updated header to the output queue.
The hardware magically glues together the updated header with the original packet and keeps
all packets in order. While this approach avoids the movement of the remainder of the packet
through the processor, it does nothing for the case of minimum-size packets.

Case Study 2: Buffering and Optical Switching

As fiber-optic links scale to higher speeds, electronics implementing combinational
logic and memories in core routers becomes a bottleneck. Currently, packets arrive over
fiber-optic links with each bit encoded as a light pulse. Optics at the receiver convert
light to electrical pulses; the packet is then presented to forwarding logic implemented
electronically. The packet is then queued to an outbound link for transmission, upon
which the transmitting link optics convert electrical bits back to light. The electronic
bottleneck can be circumvented by creating an all-optical router without any electro-
optical conversions.

Unfortunately, doing IP lookups optically, and especially building dense optical
packet memories, seems hard today. But switching light between several endpoints is
feasible. Thus the numerous startups in the buzzing optical space tend to build optical
circuit switches that use electronics to set up the circuit switch. A circuit switch connects
input X to output Y for a large duration, as opposed to the duration of a single packet
as in a packet switch. Such circuit switches have found use as a flexible “core” of an
ISP’s network to connect conventional routers. If traffic between, say, routers R1 and R2
increases, an ISP operator can (at a large time scale of, say, minutes) change the circuit
switches to increase the bandwidth of the R1-to-R2 path. However, the wastefulness
of reserving switch paths for small flow durations makes it likely that packet-switched
routers will continue to be popular in the near future.

2.4 Operating Systems 39

2.4 OPERATING SYSTEMS

An operating system is software that sits above hardware in order to make life easier for appli-
cation programmers. For most Internet routers, time-critical packet forwarding runs directly
on the hardware (Figure 2.10) and is not mediated by an operating system. Less time-critical
code runs on a router operating system that is stripped down such as Cisco’s IOS. However, to
improve end-to-end performance for, say, Web browsing, an implementor needs to understand
the costs and benefits of operating systems.

Abstractions are idealizations or illusions we invent to deal with the perversity and irreg-
ularity of the real world. To finesse the difficulties of programming on a bare machine,
operating systems offer abstractions to application programmers. Three central difficulties
of dealing with raw hardware are dealing with interruptions, managing memory, and control-
ling I/O devices. To deal with these difficulties, operating systems offer the abstractions of
uninterrupted computation, infinite memory, and simple 1/0.

A good abstraction increases programmer productivity but has two costs. First, the mech-
anism implementing the abstraction has a price. For example, scheduling processes can cause
overhead for a Web server. A second, less obvious cost is that the abstraction can hide power,
preventing the programmer from making optimal use of resources. For example, operating
system memory management may prevent the programmer of an Internet lookup algorithm
from keeping the lookup data structure in memory in order to maximize performance. We now
provide a model of the costs and underlying mechanisms of the process (Section 2.4.1), virtual
memory (Section 2.4.2), and I/O (Section 2.4.3) abstractions. More details can be found in
Tanenbaum [Tan92].

2.4.1 Uninterrupted Computation via Processes

A program may not run very long on the processor before being interrupted by the network
adaptor. If application programmers had to deal with interrupts, a working 100-line program
would be a miracle. Thus operating systems provide programmers with the abstraction of
uninterrupted, sequential computation under the name of a process.

The process abstraction is realized by three mechanisms: context switching, scheduling,
and protection, the first two of which are depicted in Figure 2.11. In Figure 2.11, Process P1
has the illusion that it runs on the processor by itself. In reality, as shown on the timeline below,
Process P1 may be interrupted by a timer interrupt, which causes the OS scheduler program
to run on the processor. Displacing P1 requires the operating system to save the state of P1 in
memory. The scheduler may run briefly and decide to give Process P2 a turn. Restoring P2 to

Process P1 runs to completion all by itself

> lllusion
Timeline
T T T T T T T > Reality
i P1starts 1 On interrupt, kernel i Scheduler runs, | P2’s stateis 1 P2runs | ¢ » ¢ o | P1runs again
. torun | savesPi'sstate picks P2 | restored : i and finishes

FIGURE 2.11 The programmer sees the illusion of an uninterrupted timeline shown above, while the real
processor timeline may switch back and forth between several processes.

40

CHAPTER 2 Network Implementation Models

Pj P? Application processes P§
' T T T ™\

Socket Queues
.
Y

', TCP

1

1

1

i —{Shared IP
: queue

1

1

1

i

Network

adaptor

FIGURE 2.12 The processing of a received Internet packet in BSD is divided between the network
adaptor, the kernel, and the destined process.

run on the processor requires restoring the state of P2 from memory. Thus the actual time line
of a processor may involve frequent context switches between processes, as orchestrated by
the scheduler. Finally, protection ensures that incorrect or malicious behavior of one process
cannot affect other processes.

As agents of computation, “processes” come in three flavors — interrupt handlers, threads,
and user processes — ranked in order of increasing generality and cost. Interrupt handlers are
small pieces of computation used to service urgent requests, such as the arrival of a message
to the network adaptor; interrupt handlers use only a small amount of state, typically a few
registers. User processes use the complete state of the machine, such as memory as well as
registers; thus it is expensive to switch between user processes as directed by the scheduler.
Within the context of a single process, threads offer a cheaper alternative to processes. A
thread is a lightweight process that requires less state, because threads within the same process
share the same memory (i.e., same variables). Thus context switching between two threads
in the same process is cheaper than switching processes, because memory does not have
to be remapped. The following example shows the relevance of these concepts to endnode
networking.

Example 8. Receiver Livelock in BSD Unix: In BSD UNIX, as shown in Figure 2.12, the
arrival of a packet generates an interrupt. The interrupt is a hardware signal that causes the
processor to save the state of the currently running process, say, a Java program. The processor
then jumps to the interrupt handler code, bypassing the scheduler for speed. The interrupt
handler copies the packet to a kernel queue of IP packets waiting to be consumed, makes a
request for an operating system thread (called a software interrupt), and exits. Assuming no
further interrupts, the interrupt exit passes control to the scheduler, which is likely to cede the
processor to the software interrupt, which has higher priority than user processes.

2.4 QOperating Systems 4

The kernel thread does TCP and IP processing and queues the packet to the appropriate
application queue, called a socket queue (Figure 2.12). Assume that the application is a browser
such as Netscape. Netscape runs as a process that may have been asleep waiting for data and
is now considered for being run on the processor by the scheduler. After the software interrupt
exits and control passes back to the scheduler, the scheduler may decide to run Netscape in
place of the original Java program.

Under high network load, the computer can enter what is called receiver livelock [MR97],
in which the computer spends all its time processing incoming packets, only to discard them
later because the applications never run. In our example, if there is a series of back-to-back
packet arrivals, only the highest-priority interrupt handler will run, possibly leaving no time
for the software interrupt and certainly leaving none for the browser process. Thus either the IP
or socket queues will fill up, causing packets to be dropped after resources have been invested
in their processing. Methods to mitigate this effect are described in Chapter 6.

Notice also that the latency and throughput of network code in an endnode depend on
“process” activation times. For example, current figures for Pentium I'V machines show around
2 psec of interrupt latency for a null interrupt call, around 10 psec for a Process Context switch
on a Linux machine with two processes, and much more time for Windows and Solaris on
the same machine. These times may seem small, but recall that 30 minimum-size (40-byte)
packets can arrive in 10 psec on a Gigabit Ethernet link.

2.4.2 Infinite Memory via Virtual Memory

In virtual memory (Figure 2.13), the programmer works with an abstraction of memory that
is a linear array into which a compiler assigns variable locations. Variable X could be stored

lllusion > Reality
Process 1’s Virtual Main Memory Disk Memory
Memory
))))
Virtual
Page 1 " p Physical Page
Virtual S P s a0 s Disk page
Page 2 S L 80
\\ ,,
\\ ,/
N 4
NG
/<\
4 N
7/ N
7/ N
e N
J AN
/ \‘ Physical Page
/ 200
,/
/,,
4
4
4
Virtual
Page M
— —

FIGURE 2.13 The programmer sees the illusion of contiguous virtual memory, which is, in reality,
mapped to a collection of main memory and disk memory pages via page tables.

42

CHAPTER 2 Network Implementation Models

in location 1010 in this imaginary (or virtual) array. The virtual memory abstraction is imple-
mented using the twin mechanisms of page table mapping and demand paging. Both these
mechanisms are crucial to understand in order to optimize data transfer costs in an endnode.

Any virtual address must be mapped to a physical memory address. The easiest mapping
is to use an offset into physical memory. For example, a virtual array of 15,000 locations
could be mapped into physical memory from, say, 12,000 to 27,000. This has two disad-
vantages. First, when the program runs, a block of 15,000 contiguous locations has to be
found. Second, the programmer is limited to using a total memory equal to the size of physical
memory.

Both problems can be avoided by a mapping based on table lookup. Since it takes too
much memory to implement a mapping from any virtual location to any physical location,
a more restricted mapping based on pages is used. Thus for any virtual address, let us say
that the high-order bits (e.g., 20 bits) form the page number and that the low-order bits (e.g.,
12 bits) form the location within a page. All locations within a virtual page are mapped to the
same relative location, but individual virtual pages can be mapped to arbitrary locations. Main
memory is also divided into physical pages, such that every group of 2'> memory words is a
physical page.

To map a virtual into a physical address, the corresponding virtual page (i.e., high-order
20 bits) is mapped to a physical page number while retaining the same location within the
page. The mapping is done by looking up a page table indexed by the virtual page number.
A virtual page can be located in any physical memory page. More generally, some pages
(e.g., Virtual Page 2 in Figure 2.13) may not be memory resident and can be marked as being
on disk. When such a page is accessed, the hardware will generate an exception and cause the
operating system to read the page from the disk page into a main memory page. This second
mechanism is called demand paging.

Together, page mapping and demand paging solve the two problems of storage allocation
and bounded memory allocations. Instead of solving the harder variable size storage allocation
problem, the OS needs only to keep a list of fixed size free pages and to assign some free pages
to a new program. Also, the programmer can work with an abstraction of memory whose size
is bounded only by the size of disk and the number of instruction address bits.

The extra mapping can slow down each instruction considerably. A Read to virtual location
X may require two main memory accesses: a page table access to translate X to physical address
P, followed by a Read to address P. Modern processors get around this overhead by caching
the most recently used mappings between virtual and physical addresses in a translation look-
aside buffer (TLB), which is a processor-resident cache. The actual translation is done by a
piece of hardware called the memory management unit (MMU), as shown in Figure 2.8.

The page table mapping also provides a mechanism for protection between processes.
When a process makes a Read to virtual location X, unless there is a corresponding entry
in the page table, the hardware will generate a page fault exception. By ensuring that only
the operating system can change page table entries, the operating system can ensure that
one process cannot read from or write to the memory of another process in unauthorized
fashion.

While router forwarding works directly on physical memory, all endnode and server
networking code works on virtual memory. While virtual memory is a potential cost (e.g., for
TLB misses), it also reflects a possible opportunity. For example, it offers the potential that

2.4 Operating Systems 43

packet copying between the operating system and the application (see Example 8) can be done
more efficiently by manipulating page tables. This idea is explored further in Chapter 5.

2.4.3 Simple I/0 via System Calls

Having an application programmer be aware of the variety and complexity of each I/O device
would be intolerable. Thus operating systems provide the programmer with the abstraction of
the devices as a piece of memory (Figure 2.14) that can be read and written.

The code that maps from a simple I/O interface call to the actual physical Read (with all
parameters filled in) to the device is called a device driver. If abstraction were the only concern,
the device driver code could be installed in a library of commonly available code that can be
“checked out” by each application. However, since devices such as disks must be shared by
all applications, if applications directly control the disk, an erroneous process could crash the
disk. Instead, secure operating system design requires that only the buggy application fail.

Thus it makes sense for the I/O calls to be handled by device drivers that are in a secure
portion of the operating system that cannot be affected by buggy processes. This secure portion,
called the kernel, provides a core of essential services, including I/O and page table updates,
that applications cannot be trusted to perform directly.

Thus when a browser such as Netscape wants to make a disk access to read a Web page, it
must make a so-called system call across the application—kernel boundary. System calls are a
protected form of a function call. The hardware instruction is said to “trap” to a more privileged
level (kernel mode), which allows access to operating system internals. When the function call
returns after the I/O completes, the application code runs at normal privilege levels. A system
call is more expensive than a function call because of the hardware privilege escalation and
the extra sanitizing checks for incorrect parameter values. A simple system call may take a
few microseconds on modern machines.

The relevance to networking is that when a browser wishes to send a message over the
network (e.g., Process 2 in Figure 2.14), it must do a system call to activate TCP processing.
A few microseconds for a system call may seem small, but it is really very high overhead on
a fast Pentium. Can applications speed up networking by bypassing the system call? If so,

Process 1 Process 2
read file X

write to TCP connection Y Illusion

Choose platter
Move disk arm

Write device register
Write network headers Reality

8 Network adaptor

FIGURE 2.14 The programmer sees devices as disparate as a disk and a network adaptor as pieces
of memory that can be read and written using system calls, but in reality the kernel manages a host of
device-specific details.

44 CHAPTER 2 Network Implementation Models

does OS protection get tossed out of the window? Answers to these tantalizing questions are
postponed to Chapter 6.

2.5 SUMMARY

This chapter is best sampled based on the reader’s needs. Structurally, the chapter works its
way through four abstraction levels that affect performance: hardware, architecture, operating
systems, and protocols. Viewing across abstraction levels is helpful because packet-processing
speeds can be limited by transistor paths implementing packet processing, by architectural
limits such as bus speeds, by OS abstraction overheads such as system calls, and finally even
by protocol mechanisms. Several examples, which look ahead to the rest of the book, were
described to show that performance can be improved by understanding each abstraction level.

Designers that consider all four abstraction levels for each problem will soon be lost in
detail. However, there are a few important performance issues and major architectural decisions
for which simultaneous understanding of all abstraction levels is essential. For example, the
simple models given in this chapter can allow circuit designers, logic designers, architects,
microcoders, and software protocol implementors to work together to craft the architecture of
a world-class router. They can also allow operating system designers, algorithm experts, and
application writers to work together to design a world-class Web server. As link speeds cross
40 Gbps, such interdisciplinary teams will become even more important. This need is alluded
to by Raymond Kurzweil in a different context [Kur]:

There’s another aspect of creativity. We 've been talking about great individual contrib-
utors, but when you're creating technology it’s necessarily a group process, because
technology today is so complex that it has to be interdisciplinary. . . . And they’re all
essentially speaking their own languages, even about the same concepts. So we will
spend months establishing our common language. . . . I have a technique to get people
to think outside the box: I'll give a signal-processing problem to the linguists, and vice
versa, and let them apply the disciplines in which they’ve grown up to a completely
different problem. The result is often an approach that the experts in the original field
would never have thought of. Group process gives creativity a new dimension.

With fields like hardware implementation and protocol design replacing signal processing
and linguistics, Kurzweil’s manifesto reflects the goal of this chapter.

2.6 EXERCISES

1. TCP Protocols and Denial-of-Service Attacks: A common exploit for a hacker is to
attempt to bring down a popular service, such as Yahoo, by doing a denial-of-service
(DOS) attack. A simple DOS attack that can be understood using the simple TCP model
of Figure A.1 is TCP Syn-Flooding. In this attack, the hacker sends a number of SYN
packets to the chosen destination D (e.g., Yahoo) using randomly chosen source
addresses. D sends back a SYN-ACK to the supposed source S and waits for a response.
If S is not an active IP address, then there will be no response from S. Unfortunately,
state for S is kept in a pending connection queue at D until D finally times out S. By
periodically sending bogus connection attempts pretending to be from different sources,

2.6 Exercises 45

the attacker can ensure that the finite pending connection queue is always full. Thereafter,
legitimate connection requests to D will be denied.

» Assume there is a monitor that is watching all traffic. What algorithm can be used to
detect denial-of-service attacks? Try to make your algorithm as fast and memory
efficient as possible so that it can potentially be used in real time, even in a router.
This is a hard problem, but even starting to think about the problem is instructive.

* Suppose the monitor realizes a TCP flood attack is under way. Why might it be hard to
distinguish between legitimate traffic and flood traffic?

. Digital Design: Multiplexers and barrel shifters are very useful in networking hardware,
so working this problem can help even a software person to build up hardware intuition.

* First, design a 2-input multiplexer from basic gates (AND, OR, NOT).

* Next, generalize the idea shown in the chapter to design an N-input multiplexer from
N/2 input multiplexers. Use this to describe a design that takes log N gate delays and
O(N) transistors.

» Show how to design a barrel shifter using a reduction to multiplexers (i.e, use as many
muxes as you need in your solution). Based on your earlier solutions, what are the gate
and time complexities of your solution?

* Try to design a barrel shifter directly at the transistor level. What are its time and
transistor complexities? You can do better using direct design than the simple reduction
earlier.

. Memory Design: For the design of the pipelined flow ID lookup scheme described
earlier, draw the timing diagrams for the pipelined lookups. Use the numbers described in
the chapter, and clearly sketch a sample binary tree with 15 leaves and show how it can
be looked up after four lookups on four different banks. Assume a binary tree, not a
ternary tree. Also, calculate the number of keys that can be supported using 16 banks

of RAMBUS if the first k levels of the tree are cached in on-chip SRAM.

. Memories and Pipelining Trees: This problem studies how to pipeline a heap. A heap is
important for applications like QoS, where a router wishes to transmit the packet with the
earliest timestamp first. Thus it makes sense to have a heap ordered on timestamps. To
make it efficient, the heap needs to be pipelined in the same fashion as the binary search
tree example in the chapter, though doing so for a heap is somewhat harder. Figure 2.15
shows an example of a P-heap capable of storing 15 keys. A P-heap [BLO0O0] is a full
binary tree, such as a standard heap, except that nodes anywhere in the heap can be empty
as long as all children of the node are also empty (e.g., nodes 6, 12, 13).

For the following explanations consult Figures 2.15 and Figure 2.16. Consider
adding key 9 to the heap. Assume every node N has a count of the number of empty nodes
in the subtree rooted at N. Since 9 is less than the root value of 16, 9 must move below.
Since both the left and right children have empty nodes in their subtrees, we arbitrarily
choose to add 9 to the left subtree (node 2). The index, value, and position values shown
on the left of each tree are registers used to show the state of the current operation. Thus
in Figure 2.15, part (b), when 9 is added to the left subtree, the index represents the depth

46 CHAPTER 2 Network Implementation Models

index value index

position

position

index value position

L]

index value position

FIGURE 2.15 An enqueue example in five snapshots to be read from left to right and then top down. In each
snapshot, the index represents the depth of the subtree, and the position is the number of the node that the value is
being added to.

of the subtree (depth 2) and the position is the number of the node (i.e., node 2) that the
value 9 is being added to.

Next, since 9 is less than 14 and since only the right child has space in its subtree,
9 is added to the subtree rooted at node 5. This time 9 is greater than 7, so 7 is replaced
with 9 (in node 5) and 7 is pushed down to the empty node, 10. Thus in Figure 2.15, part
(d), the index value is 4 (i.e., operation is at depth 4) and the position is 10. Although in
Figure 2.15 only one of the registers at any index/depth has nonempty information,
keeping separate registers for each index will allow pipelining.

Consider next what is involved in removing the largest element (dequeue). Remove
16 and try to push down the hole created until an empty subtree is created. Thus in Step 3,

2.6 Exercises 47

index value position index value position

2 2
3 3
4 4
(b) local-dequeue(1)
index value position index value position
1 1
2 2 2
3 3 4
4 4

(c) local-dequeue(2)

index value position

FIGURE 2.16 Dequeue example.

the hole is moved to node 2 (because its value, 14, is larger than its sibling, with
value 10), then to node 4, and finally to node 9. Each time a hole is moved down,
the corresponding nonempty value from below replaces the old hole.

* In order to make the enqueue operation work correctly, the count of empty subtree
nodes must be maintained. Explain briefly how the count should be maintained for
each enqueue and dequeue operation (the structure will be pipelined in a moment,
so make sure the count values respect this goal).

* Alogical thing to do is to pipeline by level, as we did for the binary tree in the chapter.
However, here we have a problem. At each level (say, inserting 9 at the root) the
operation has to consult the two children at the next level as well. Thus when the first
operation moves down to level 2, one cannot bring in a second operation to level 1 or

48

CHAPTER 2 Network Implementation Models

there will be memory contention. Clearly waiting till one operation finishes completely
will work, but this reduces to sequential processing of operations. What is the fastest
rate you can pipeline the heap?

* Consider the operations “Enqueue 9; Enqueue 4.5; Dequeue” pipelined as you have
answered earlier. Show six consecutive snapshots of the tree supporting these three
operations.

» Assume that each level memory is an on-chip SRAM that takes 5 nsec for a memory
access. Assume that you can read and write the value and count fields together in one
access. Remember that some of the memories can be queried in parallel. What is the
steady-state throughput of the heap, in operations per second?

* Could one improve the number of memory references by using a wider memory access
and laying out the tree appropriately?

» Before this design, previous designs used a memory element for each heap element as
well as logic for each element. Thus the amount of logic required scaled directly with
heap size, which scales poorly in terms of density and power. In this design, the
memory scales with the number of heap elements and thus scales with SRAM densities
and power, but the logic required scales much better. Explain.

5. Architecture, Caches, and Fast Hash Functions: The L1 cache in a CPU provides
essentially a fast hash function that maps from a physical memory address to its contents
via the L1 cache. Suppose that one wants to teach an old dog (the L1 cache) a new trick
(to do IP lookups) using a method suggested in Chieuh and Pradhan [CP98]. The goal is
to use the L1 cache as a hash table to map 32-bit IP addresses to 7-bit port numbers.
Assume a 16-KB L1 cache, of which the first 4 KB are reserved for the hash table, and a
32-byte cache block size. Assume a byte-addressable machine, a 32-bit virtual address,
and a page size of 4 KB. Thus there are 512 32-byte blocks in the cache. Assume the L1
cache is directly indexed (called direct mapped). Thus bits 5 through 13 of a virtual
address are used to index into one of 512 blocks, with bits O through 4 identifying the
byte within each block.

* Given pages of size 4 KB and that the machine is byte addressable, how many bits in a
virtual address identify the virtual page? How many bits of the virtual page number
intersect with bits 5 through 13 used to index into the L1 cache?

* The only way to ensure that the hash table is not thrown out of the L1 cache when some
other virtual pages arrive is to mark any pages that could map into the same portion of
the L1 cache as uncacheable at start-up (this can be done). Based on your previous
answer and the fact that the hash table uses the first 4 KB of L1 cache, precisely
identify which pages must be marked as uncacheable.

* To do a lookup of a 32-byte IP address, first convert the address to a virtual address by
setting to O all bits except bits 5 through 11 (bits 12 and 13 are zero because only the
top quarter of the L1 cache is being used). Assume this is translated to the exact same
physical address. When a Read is done to this address, the L1 cache hardware will
return the contents of the first 32-bit word of the corresponding cache block. Each
32-bit word will contain a 25-bit tag and a 7-bit port number. Next, compare all bits in

2.6 Exercises 49

the IP address, other than bits 5 through 11, with the tag, and keep doing so for each
32-bit entry in the block. How many L1 cache accesses are required in the worst case
for a hash lookup? Why might this be faster than a standard hash lookup in software?

6. Operating Systems and Lazy Receiver Processing: Example 8 described how BSD
protocol processing can lead to receiver livelock. Lazy receiver processing [DB96]
combats this problem via two mechanisms.

* The first mechanism is to replace the single shared IP processing queue by a separate
queue per destination socket. Why does this help? Why might this not be easy to
implement?

* The second mechanism is to implement the protocol processing at the priority of the
receiving process and as part of the context of the received process (and not a separate
software interrupt). Why does this help? Why might this not be easy to implement?

CHAPTER 3 Q\

y
N 74

y

)

Fifteen Implementation Principles

Instead of computing, I had to think about the problem, a formula for success that I
recommend highly.

— IvAN SUTHERLAND

After understanding how queens and knights move in a game of chess, it helps to understand
basic strategies, such as castling and the promotion of pawns in the endgame. Similarly,
having studied some of the rules of the protocol implementation game in the last chap-
ter, you will be presented in this chapter with implementation strategies in the form of
15 principles. The principles are abstracted from protocol implementations that have worked
well. Many good implementors unconsciously use such principles. The point, however,
is to articulate such principles so that they can be deliberately applied to craft efficient
implementations.

This chapter is organized as follows. Section 3.1 motivates the use of the principles using
a ternary CAM problem. Section 3.2 clarifies the distinction between algorithms and algorith-
mics using a network security forensics problem. Section 3.3 introduces 15 implementation
principles; Section 3.4 explains the differences between implementation and design principles.
Finally, Section 3.5 describes some cautionary questions that should be asked before applying
the principles.

Quick Reference Guide

The reader pressed for time should consult the summaries of the 15 principles found in Figures
3.1, 3.2, and 3.3. Two networking applications of these principles can be found in a ternary CAM update
problem (Section 3.1) and a network security forensics problem (Section 3.2).

3.1 MOTIVATING THE USE OF PRINCIPLES — UPDATING TERNARY CONTENT-
ADDRESSABLE MEMORIES

Call a string ternary if it contains characters that are either 0, 1, or *, where * denotes a wildcard
that can match both a 0 and a 1. Examples of ternary strings of length 3 include S1 = 01* and
S2 = *1%; the actual binary string 011 matches both S1 and S2, while 111 matches only S2.

50

3.1 Motivating the Use of Principles — Updating Ternary Content-Addressable Memories

(Number Principle Used In

P1 Avoid obvious waste Zero-copy interfaces

P2 Shift computation in time
P2a Precompute Application device channels
P2b Evaluate lazily Copy-on-write
P2c Share expenses, batch Integrated layer processing

P3 Relax system requirements
P3a Trade certainty for time Stochastic fair queueing
P3b Trade accuracy for time Switch load balancing
P3c Shift computation in space IPv6 fragmentation

P4 Leverage off system components
P4a Exploit locality Locality-driven receiver
P4b Trade memory for speed Processing; Lulea IP lookups
P4c Exploit existing hardware Fast TCP checksum

P5 Add hardware
P5a Use memory interleaving and pipelining | Pipelined IP lookups
P5b Use wide word parallelism Shared memory switches
P5c Combine DRAM and SRAM effectively Maintaining counters

FIGURE 3.2 Summary of Principles 6-10 — recovering efficiency while retaining modularity.

FIGURE 3.1 Summary of Principles

1-5 — systems thinking.

[Number Principle Networking Example

Create efficient specialized

P6 routines UDP checksums

P7 Avoid unnecessary generality | Fbufs
Don't be tied to reference

P8 implementation Upcalls

P9 Pass hints in layer interfaces Packet filters

P10 Pass hints in protocol headers | Tag switching

\

J

r

N

P12a | Compute incrementally

Number Principle Networking Example

P11 Optimize the expected case | Header prediction
P11a | Use caches Fbufs

P12 Add state for speed Active VC list

Recomputing CRCs

P13 Optimize degrees of freedom

IP trie lookups

P14 Use bucket sorting, bitmaps

Timing wheels

P15 Create efficient data
L structures

Level-4 switching

J

FIGURE 3.3 Summary of Principles 11-15 — speeding up key routines.

51

92

CHAPTER 3 Fifteen Implementation Principles

Prefix | Next Hop
Free Free E;
010001 * | P5 1 110001. ' P3
110001 * | P5 P4
: : e P5
110* P3 Router
111* P2
00* P1
01* P3
10* P4
© P4)

FIGURE 3.4 Example of using a ternary CAM for prefix lookups.

A ternary content-addressable memory (CAM) is a memory containing ternary strings of a
specified length together with associated information; when presented with an input string,
the CAM will search all its memory locations in parallel to output (in one cycle) the lowest
memory location whose ternary string matches the specified input key.

Figure 3.4 shows an application of ternary CAMs to the longest-matching-prefix problem
for Internet routers. For every incoming packet, each Internet router must extract a 32-bit
destination IP address from the incoming packet and match it against a forwarding database
of IP prefixes with their corresponding next hops. An IP prefix is a ternary string of length 32
where all the wildcards are at the end. We will change notation slightly and let * denote any
number of wildcard characters, so 101* matches 10100 and not just 1010.

Thus in Figure 3.4 a packet sent to a destination address that starts with 010001 matches the
prefixes 010001* and 01* but should be sent to Port P5 because Internet forwarding requires
that packets be forwarded using the longest match. We will have more to say about this problem
in Chapter 11. For now, note that if the prefixes are arranged in a ternary CAM such that all
longer prefixes occur before any shorter prefixes (as in Figure 3.4), the ternary CAM provides
the matching next hop in one memory cycle.

While ternary CAMs are extremely fast for message forwarding, they require that longer
prefixes occur before shorter prefixes. But routing protocols often add or delete prefixes.
Suppose in Figure 3.4 that a new prefix, 11*, with next hop Port 1 must be added to the
router database. The naive way to do insertion would make space in the group of length-2
prefixes (i.e., create a hole before 0*) by pushing up by one position all prefixes of length 2 or
higher.

Unfortunately, for a large database of around 100,000 prefixes kept by a typical core router,
this would take 100,000 memory cycles, which would make it very slow to add a prefix. We
can obtain a better solution systematically by applying the following two principles (described
later in this chapter as principles P13 and P15).

UNDERSTAND AND EXPLOIT DEGREES OF FREEDOM

In looking at the forwarding table on the left of Figure 3.4 we see that all prefixes of the same
length are arranged together and all prefixes of length i occur after all prefixes of length j > i.

3.1 Motivating the Use of Principles — Updating Ternary Content-Addressable Memories 53

e N

Prefix Next Hop

Free space

€ - - Create a hole here by
Length-i prefixes moving X to Y’s position

>
>

\ J

FIGURE 3.5 Finding a spot for the new prefix by moving X to ¥’s position recursively requires us
to find a spot to move Y.

However, in the figure all prefixes of the same length are also sorted by value. Thus 00* occurs
before 01*, which occurs before 10*. But this is unnecessary for the CAM to correctly return
longest matching prefixes: We only require ordering between prefixes of different lengths; we
do not require ordering between prefixes of the same length.

In looking at the more abstract view of Figure 3.4 shown in Figure 3.5, we see that if we
are to add an entry to the start of the set of length-i prefixes, we have to create a hole at the end
of the length-(i + 1) set of prefixes. Thus we have to move the entry X, already at this position,
to another position. If we move X one step up, we will be forced into our prior inefficient
solution.

However, our observation about degrees of freedom says that we can place X anywhere
adjacent to the other length-(i 4+ 1) prefixes. Thus, an alternative idea is to move X to the
position held by Y, the last length-(i + 2) prefix. But this forces us to find a new position for
Y. How does this help? We need a second principle.

USE ALGORITHMIC TECHNIQUES

Again, recursion suggests itself: We solve a problem by reducing the problem to a “smaller”
instance of the same problem. In this case, the new problem of assigning Y a new position is
“smaller” because the set of length-(i + 2) prefixes are closer to the free space at the top of the
CAM than the set of length-(i + 1) prefixes. Thus we move Y to the end of the length-(i 4+ 3)
set of prefixes, etc.

While recursion is a natural way to think, a better implementation is to unwind the recursion
by starting from the top of the CAM and working downward by creating a hole at the end of
the length-1 prefixes,' creating a hole at the end of the length-2 prefixes, etc., until we create
a hole at the end of the length-i prefixes. Thus the worst-case time is 32 — i memory accesses,
which is around 32 for small .

IFor simplicity, this description has assumed that the CAM contains prefixes of all lengths; it is easy to modify
the algorithm to avoid this assumption.

54

CHAPTER 3 Fifteen Implementation Principles

Are we done? No, we can do better by further exploiting degrees of freedom. First, in
Figure 3.5 we assumed that the free space was at the rop of the CAM. But the free space could
be placed anywhere. In particular, it can be placed after the length-16 prefixes. This reduces
the worst-case number of memory accesses by a factor of 2 [SGO1].

A more sophisticated degree of freedom is as follows. So far the specification of the CAM
insertion algorithm required that “a prefix of length i must occur before a prefix of length j
if i > j.” Such a specification is sufficient for correctness but is not necessary. For example,
010* can occur before 111001* because there is no address that can match both prefixes!

Thus a less exacting specification is “if two prefixes P and Q can match the same address,
then P must come before Q in the CAM if P is longer than Q.” This is used in Shah and Gupta
[SGO1] to further reduce the worst-case number of memory accesses for insertion for some
practical databases.

While the last improvement is not worth its complexity, it points to another important
principle. We often divide a large problem into subproblems and hand over the subproblem
for a solution based on a specification. For example, the CAM hardware designer may have
handed over the update problem to a microcoder, specifying that longer prefixes be placed
before shorter ones.

But, as before, such a specification may not be the only way to solve the original problem.
Thus changes to the specification (principle P3) can yield a more efficient solution. Of course,
this requires curious and confident individuals who understand the big picture or who are brave
enough to ask dangerous questions.

3.2 ALGORITHMS VERSUS ALGORITHMICS

It may be possible to argue that the previous example is still essentially algorithmic and does
not require system thinking. One more quick example will help clarify the difference between
algorithms and algorithmics.

SEcURITY FORENSICS PROBLEM

In many intrusion detection systems, a manager often finds that a flow (defined by some
packet header, for example, a source IP address) is likely to be misbehaving based on some
probabilistic check. For example, a source doing a port scan may be identified after it has sent
100,000 packets to different machines in the attacked subnet.

While there are methods to identify such sources, one problem is that the evidence (the
100,000 packets sent by the source) has typically disappeared (i.e., been forwarded from the
router) by the time the guilty source is identified. The problem is that the probabilistic check
requires accumulating some state (in, say, a suspicion table) for every packet received over
some period of time before a source can be deemed suspicious. Thus if a source is judged to
be suspicious after 10 seconds, how can one go back in time and retrieve the packets sent by
the source during those 10 seconds?

To accomplish this, in Figure 3.6 we keep a queue of the last 100,000 packets that were
sent by the router. When a packet is forwarded we also add a copy of the packet (or just keep
a pointer to the packet) to the head of the queue. To keep the queue bounded, when the queue
is full we delete from the tail as well.

The main difficulty with this scheme is that when a guilty flow is detected there may be
lots of the flow’s packets in the queue (Figure 3.6). All of these packets must be placed in

3.2 Algorithms versus Algorithmics 55

Packet P arrives

for flow F Fast probabilistic > Forward P
suspicion test - 3
1
i Add copy
' of P to Head
Y
If alert, add F to table; F) Queue of
If F in Table, update state \v last N Q
F packets

Suspicion ‘
table ‘
Report to manager periodically
log

) How to search memory for
bad flow detect
or tpon bad flow detection all packets sent with flow ID F

to add to forensic log?

FIGURE 3.6 Keeping a queue of the last 100,000 packets that contains forensic information about
what suspicious flows have been sent in the past.

the forensic log for transmission to a manager. The naive method of searching through a large
DRAM buffer is very slow.

The textbook algorithms approach would be to add some index structure to search quickly
for flow IDs. For example, one might maintain a hash table of flow IDs that maps every flow
to a list of pointers to all packets with that flow ID in the queue. When a new packet is placed
in the queue, the flow ID is looked up in the hash table and the address of the new packet in
the queue is placed at the end of the flow’s list. Of course, when packets leave the queue, their
entries must be removed from the list, and the list can be long. Fortunately, the entry to be
deleted is guaranteed to be at the head of the queue for that flow ID.

Despite this, the textbook scheme has some difficulties. It adds more space to maintain
these extra queues per flow ID, and space can be at a premium for a high-speed implementation.
It also adds some extra complexity to packet processing to maintain the hash table, and requires
reading out all of a flow’s packets to the forensic log before the packet is overwritten by a
packet that arrives 100,000 packets later. Instead the following “systems” solution may be
more elegant.

SoLurion

Do not attempt to immediately identify all of a flow F’s packets when F is identified, but
lazily identify them as they reach the end of the packet queue. This is shown in Figure 3.7.
When we add a packet to the head of the queue, we must remove a packet from the end of the
queue (at least when the queue is full).

If that packet (say, Q, see Figure 3.6) belongs to flow F' that is in the Suspicion Table and
flow F has reached some threshold of suspicion, we then add packet Q to the forensic log. The
log can be sent to a manager. The overhead of this scheme is significant but manageable; we
have to do two packet-processing steps, one for the packet being forwarded and one for the
packet being removed from the queue. But these two packet-processing steps are also required
in the textbook scheme; on the other hand, the elegant scheme requires no hashing and uses
much less storage (no pointers between the 100,000 packets).

56 CHAPTER 3 Fifteen Implementation Principles

Packet P arrives

for flow F Fast probabilistic

. » Foward P
suspicion test J--

Add copy
of P to Head

Y

If alert, add F to table;

- Queue of
If F in Table, update state last N
Suspicion packets

table

Report to manager periodically
i |
or upon bad flow detection °9 If packet Q’s flow F is deemed bad

in suspicion table, add Q to log

FIGURE 3.7 Keeping a queue of the last 100,000 packets that contains forensic information about
what suspicious flows have been sent in the past.

3.3 FIFTEEN IMPLEMENTATION PRINCIPLES — CATEGORIZATION AND DESCRIPTION

The two earlier examples and the warm-up exercise in Chapter 1 motivate the following
15 principles, which are used in the rest of the book. They are summarized inside the front
cover. To add more structure they are categorized as follows:

» Systems Principles: Principles 1-5 take advantage of the fact that a system is constructed
from subsystems. By taking a systemwide rather than a black-box approach, one can often
improve performance.

» Improving Efficiency While Retaining Modularity: Principles 6—10 suggest methods
for improving performance while allowing complex systems to be built modularly.

» Speeding It Up: Principles 11-15 suggest techniques for speeding up a key routine
considered by itself.

Amazingly, many of these principles have been used for years by Chef Charlie at his
Greasy Spoon restaurant. This chapter sometimes uses illustrations drawn from Chef Char-
lie’s experience, in addition to computer systems examples. One networking example is also
described for each principle, though details are deferred to later chapters.

3.3.1 Systems Principles

The first five principles exploit the fact that we are building systems.

P1: Avoip OBVIOUS WASTE IN COMMON SITUATIONS

In a system, there may be wasted resources in special sequences of operations. If these patterns
occur commonly, it may be worth eliminating the waste. This reflects an attitude of thriftiness
toward system costs.

3.3 Fifteen Implementation Principles — Categorization and Description 57

For example, Chef Charlie has to make a trip to the pantry to get the ice cream maker
to make ice cream and to the pantry for a pie plate when he makes pies. But when he makes
pie a la mode, he has learned to eliminate the obvious waste of two separate trips to the
pantry.

Similarly, optimizing compilers look for obvious waste in terms of repeated subexpres-
sions. For example, if a statement calculates i = 5.1 * n + 2 and a later statement calculates
Jj = (5.1 ¥ n + 2) % 4, the calculation of the common subexpression 5.1 % n 4 2 is wasteful
and can be avoided by computing the subexpression once, assigning it to a temporary variable
t, and then calculating i := ¢ and j := t % 4. A classic networking example, described in
Chapter 5, is avoiding making multiple copies of a packet between operating system and user
buffers.

Notice that each operation (e.g., walk to pantry, line of code, single packet copy) consid-
ered by itself has no obvious waste. It is the sequence of operations (two trips to the pantry,
two statements that recompute a subexpression, two copies) that have obvious waste. Clearly,
the larger the exposed context, the greater the scope for optimization. While the identification
of certain operation patterns as being worth optimizing is often a matter of designer intuition,
optimizations can be tested in practice using benchmarks.

P2: SHIFT COMPUTATION IN TIME

Systems have an aspect in space and time. The space aspect is represented by the subsystems,
possibly geographically distributed, into which the system is decomposed. The time aspect is
represented by the fact that a system is instantiated at various time scales, from fabrication
time, to compile time, to parameter-setting times, to run time. Many efficiencies can be gained
by shifting computation in time. Here are three generic methods that fall under time-shifting.

* P2a: Precompute. This refers to computing quantities before they are actually used, to
save time at the point of use. For example, Chef Charlie prepares crushed garlic in advance
to save time during the dinner rush. A common systems example is table-lookup methods,
where the computation of an expensive function f in run time is replaced by the lookup of
a table that contains the value of f for every element in the domain of f. A networking
example is the precomputation of IP and TCP headers for packets in a connection; because
only a few header fields change for each packet, this reduces the work to write packet
headers (Chapter 9).

* P2b: Evaluate Lazily. This refers to postponing expensive operations at critical times,
hoping that either the operation will not be needed later or a less busy time will be found to
perform the operation. For example, Chef Charlie postpones dishwashing to the end of the
day. While precomputation is computing before the need, lazy evaluation is computing
only when needed.

A famous example of lazy evaluation in systems is copy-on-write in the Mach
operating system. Suppose we have to copy a virtual address space A to another space, B,
for process migration. A general solution is to copy all pages in A to B to allow for pages in
B to be written independently. Instead, copy-on-write makes page table entries in B’s
virtual address space point to the corresponding page in A. When a process using B writes
to a location, then a separate copy of the corresponding page in A is made for B, and the
write is performed. Since we expect the number of pages that are written in B to be small
compared to the total number of pages, this avoids unnecessary copying.

58

CHAPTER 3 Fifteen Implementation Principles

[1 1 1
1

! (property P) E E (property Q) E
! | Subsystem 2 ' v Subsystem 2 '
1 1 1 1
1 1 > 1 1
i Spec S | i Weaker Spec W
L 1 1 1
1 Y 1 1 Y 1
: 1 1 1
i (Subsystem1) ! i | Subsystem1) |
L i \ U

FIGURE 3.8 Easing the implementation of Subsystem 1 by weakening its specification from S to,
say, W, at the cost of making Subsystem 2 do more work.

A simple networking example occurs when a network packet arrives to an endnode
X in a different byte order than X’s native byte order. Rather than swap all bytes
immediately, it can be more efficient to wait to swap the bytes that are actually read.

* P2c: Share Expenses. This refers to taking advantage of expensive operations done by
other parts of the system. An important example of expense sharing is batching, where
several expensive operations can be done together more cheaply than doing each
separately. For example, Charlie bakes several pies in one batch. Computer systems have
used batch processing for years, especially in the early days of mainframes, before time
sharing. Batching trades latency for throughput. A simple networking example of expense
sharing is timing wheels (Chapter 7), where the timer data structure shares expensive
per-clock-tick processing with the routine that updates the time-of-day clock.

P3: RELAX SYSTEM REQUIREMENTS

When a system is first designed top-down, functions are partitioned among subsystems. After
fixing subsystem requirements and interfaces, individual subsystems are designed. When
implementation difficulties arise, the basic system structure may have to be redone, as shown
in Figure 3.8.

As shown in Chapter 1, implementation difficulties (e.g., implementing a Divide) can
sometimes be solved by relaxing the specification requirements for, say, Subsystem 1. This is
shown in the figure by weakening the specification of Subsystem 1 from, say, S to W, but at the
cost of making Subsystem 2 obey a stronger property, Q, compared to the previous property, P.

Three techniques that arise from this principle are distinguished by how they relax the
original subsystem specification.

* P3a: Trade Certainty for Time. Systems designers can fool themselves into believing that
their systems offer deterministic guarantees, when in fact we all depend on probabilities.
For example, quantum mechanics tells us there is some probability that the atoms in your
body will rearrange themselves to form a hockey puck, but this is clearly improbable.?
This opens the door to consider randomized strategies when deterministic algorithms are
too slow.

In systems, randomization is used by millions of Ethernets worldwide to sort
out packet-sending instants after collisions occur. A simple networking example of

2Quote due to Tony Lauck.

3.3 Fifteen Implementation Principles — Categorization and Description 59

randomization is Cisco’s NetFlow traffic measurement software: If a router does not have
enough processing power to count all arriving packets, it can count random samples and
still be able to statistically identify large flows. A second networking example is stochastic
fair queuing (Chapter 14), where, rather than keep track exactly of the networking
conversations going through a router, conversations are tracked probabilistically using
hashing.

* P3b: Trade Accuracy for Time. Similarly, numerical analysis cures us of the illusion that
computers are perfectly accurate. Thus it can pay to relax accuracy requirements for speed.
In systems, many image compression techniques, such as MPEG, rely on lossy
compression using interpolation. Chapter 1 used approximate thresholds to replace divides
by shifts. In networking, some packet-scheduling algorithms at routers (Chapter 14)
require sorting packets by their departure deadlines; some proposals to reduce sorting
overhead at high speeds suggest approximate sorting, which can slightly reduce
quality-of-service bounds but reduce processing.

* P3c: Shift Computation in Space. Notice that all the examples given for this principle
relaxed requirements: Sampling may miss some packets, and the transferred image may
not be identical to the original image. However, other parts of the system (e.g., Subsystem
2 in Figure 3.8) have to adapt to these looser requirements. Thus we prefer to call the
general idea of moving computation from one subsystem to another (“robbing Peter to pay
Paul”) shifting computation in space. In networking, for example, the need for routers to
fragment packets has recently been avoided by having end systems calculate a packet size
that will pass all routers.

P4: LEVERAGE OFF SYSTEM COMPONENTS

A black-box view of system design is to decompose the system into subsystems and then to
design each subsystem in isolation. While this top-down approach has a pleasing modularity,
in practice performance-critical components are often constructed partially bottom-up. For
example, algorithms are designed to fit the features offered by the hardware. Here are some
techniques that fall under this principle.

* P4a: Exploit Locality. Chapter 2 showed that memory hardware offers efficiencies if
related data is laid out contiguously — e.g., same sector for disks, or ssme DRAM page
for DRAMs. Disk-search algorithms exploit this fact by using search trees of high radix,
such as B-trees. IP-lookup algorithms (Chapter 11) use the same trick to reduce lookup
times by placing several keys in a wide word, as did the example in Chapter 1.

* P4b: Trade Memory for Speed. The obvious technique is to use more memory, such as
lookup tables, to save processing time. A less obvious technique is to compress a data
structure to make it more likely to fit into cache, because cache accesses are cheaper than
memory accesses. The Lulea IP-lookup algorithm described in Chapter 11 uses this idea
by using sparse arrays that can still be looked up efficiently using space-efficient bitmaps.

* P4c: Exploit Hardware Features. Compilers use strength reduction to optimize away
multiplications in loops; for example, in a loop where addresses are 4 bytes and the index i
increases by 1 each time, instead of computing 4 * i, the compiler calculates the new array
index as being 4 higher than its previous value. This exploits the fact that multiplies are
more expensive than additions on many modern processors. Similarly, it pays to

60

CHAPTER 3 Fifteen Implementation Principles

manipulate data in multiples of the machine word size, as we will see in the fast
IP-checksum algorithms described in Chapter 9.

If this principle is carried too far, the modularity of the system will be in jeopardy. Two
techniques alleviate this problem. First, if we exploit other system features only to improve
performance, then changes to those system features can only affect performance and not
correctness. Second, we use this technique only for system components that profiling has
shown to be a bottleneck.

P5: ADD HARDWARE TO IMPROVE PERFORMANCE

When all else fails, goes the aphorism, use brute force. Adding new hardware,> such as buying
a faster processor, can be simpler and more cost effective than using clever techniques. Besides
the brute-force approach of using faster infrastructure (e.g., faster processors, memory, buses,
links), there are cleverer hardware—software trade-offs. Since hardware is less flexible and has
higher design costs, it pays to add the minimum amount of hardware needed.

Thus, baking at the Greasy Spoon was sped up using microwave ovens. In computer
systems, dramatic improvements each year in processor speeds and memory densities suggest
doing key algorithms in software and upgrading to faster processors for speed increases. But
computer systems abound with cleverer hardware—software trade-offs.

For example, in a multiprocessor system, if a processor wishes to write data, it must inform
any “owners” of cached versions of the data. This interaction can be avoided if each processor
has a piece of hardware that watches the bus for write transactions by other processors and
automatically invalidates the cached location when necessary. This simple hardware snoopy
cache controller allows the remainder of the cache-consistency algorithm to be efficiently
performed in software.

Decomposing functions between hardware and software is an art in itself. Hardware offers
several benefits. First, there is no time required to fetch instructions: Instructions are effec-
tively hardcoded. Second, common computational sequences (which would require several
instructions in software) can be done in a single hardware clock cycle. For example, finding
the first bit set in, say, a 32-bit word may take several instructions on a RISC machine but can
be computed by a simple priority encoder, as shown in the previous chapter.

Third, hardware allows you to explicitly take advantage of parallelism inherent in the
problem. Finally, hardware manufactured in volume may be cheaper than a general-purpose
processor. For example, a Pentium may cost $100 while an ASIC in volume with similar speeds
may cost $10.

On the other hand, a software design is easily transported to the next generation of faster
chips. Hardware, despite the use of programmable chips, is still less flexible. Despite this,
with the advent of design tools such as VHDL synthesis packages, hardware design times have
decreased considerably. Thus in the last few years chips performing fairly complex functions,
such as image compression and IP lookups, have been designed.

Besides specific performance improvements, new technology can result in a complete
paradigm shift. A visionary designer may completely redesign a system in anticipation of

3By contrast, Principle P4 talks about exploiting existing system features, such as the existing hardware. Of
course, the distinction between principles tends to blur and must be taken with a grain of salt.

3.3 Fifteen Implementation Principles — Categorization and Description 61

such trends. For example, the invention of the transistor and fast digital memories certainly
enabled the use of digitized voice in the telephone network.

Increases in chip density have led computer architects to ponder what computational
features to add to memories to alleviate the processor-memory bottleneck. In networks, the
availability of high-speed links in the 1980s led to use of large addresses and large headers.
Ironically, the emergence of laptops in the 1990s led to the use of low-bandwidth wireless
links and to a renewed concern for header compression. Technology trends can seesaw!

The following specific hardware techniques are often used in networking ASICs and are
worth mentioning. They were first described in Chapter 2 and are repeated here for convenience.

* P5a: Use Memory Interleaving and Pipelining. Similar techniques are used in IP
lookup, in classification, and in scheduling algorithms that implement QoS. The multiple
banks can be implemented using several external memories, a single external memory
such as a RAMBUS, or on-chip SRAM within a chip that also contains processing logic.

* P5b: Use Wide Word Parallelism. A common theme in many networking designs, such
as the Lucent bit vector scheme (Chapter 12), is to use wide memory words that can be
processed in parallel. This can be implemented using DRAM and exploiting page mode or
by using SRAM and making each memory word wider.

* P5c: Combine DRAM and SRAM. Given that SRAM is expensive and fast and that
DRAM is cheap and slow, it makes sense to combine the two technologies to attempt to
obtain the best of both worlds. While the use of SRAM as a cache for DRAM databases is
classical, there are many more creative applications of the idea of a memory hierarchy. For
instance, the exercises explore the effect of a small amount of SRAM on the design of the
flow ID lookup chip. Chapter 16 describes a more unusual application of this technique to
implement a large number of counters, where the low-order bits of each counter are stored
in SRAM.

3.3.2 Principles for Modularity with Efficiency
An engineer who had read Dave Clark’s classic papers (e.g., Ref. Cla85) on the inefficiences
of layered implementations once complained to a researcher about modularity. The researcher
(Radia Perlman) replied, “But that’s how we got to the stage where we could complain about
something.” Her point, of course, was that complex systems like network protocols could only
have been engineered using layering and modularity. The following principles, culled from
work by Clark and others, show how to regain efficiencies while retaining modularity.

P6: CREATE EFFICIENT SPECIALIZED ROUTINES BY REPLACING
INEFFICIENT GENERAL-PURPOSE ROUTINES

As in mathematics, the use of abstraction in computer system design can make systems
compact, orthogonal, and modular. However, at times the one-size-fits-all aspect of a general-
purpose routine leads to inefficiencies. In important cases, it can pay to design an optimized
and specialized routine.

A systems example can be found in database caches. Most general-purpose caching strate-
gies would replace the least recently used record to disk. However, consider a query-processing
routine processing a sequence of database tuples in a loop. In such a case, it is the most recently
used record that will be used furthest in the future so it is the ideal candidate for replacement.

62

CHAPTER 3 Fifteen Implementation Principles

Thus many database applications replace the operating system caching routines with more
specialized routines. It is best to do such specialization only for key routines, to avoid code
bloat. A networking example is the fast UDP processing routines that we describe in Chapter 9.

P7: AvoID UNNECESSARY GENERALITY

The tendency to design abstract and general subsystems can also lead to unnecessary or rarely
used features. Thus, rather than building several specialized routines (e.g., P6) to replace the
general-purpose routine, we might remove features to gain performance.*

Of course, as in the case of P3, removing features requires users of the routine to live
with restrictions. For example, in RISC processors, the elimination of complex instructions
such as multiplies required multiplication to be emulated by firmware. A networking example
is provided by Fbufs (Chapter 5), which provide a specialized virtual memory service that
allows efficient copying between virtual address spaces.

P8: DON’T BE T1ED TO REFERENCE IMPLEMENTATIONS

Specifications are written for clarity, not to suggest efficient implementations. Because abstract
specification languages are unpopular, many specifications use imperative languages such as
C. Rather than precisely describe what function is to be computed, one gets code that prescribes
how to compute the function. This has two side effects.

First, there is a strong tendency to overspecify. Second, many implementors copy the
reference implementation in the specification, which is a problem when the reference imple-
mentation was chosen for conceptual clarity and not efficiency. As Clark [Cla85] points out,
implementors are free to change the reference implementation as long as the two implemen-
tations have the same external effects. In fact, there may be other structured implementations
that are efficient as well as modular.

For example, Charlie knows that when a recipe tells him to cut beans and then to cut
carrots, he can interchange the two steps. In the systems world, Clark originally suggested the
use of upcalls [Cla85] for operating systems. In an upcall, a lower layer can call an upper layer
for data or advice, seemingly violating the rules of hierarchical decomposition introduced
in the design of operating systems. Upcalls are commonly used today in network protocol
implementations.

P9: PAss HINTS IN MODULE INTERFACES

A hint is information passed from a client to a service that, if correct, can avoid expensive
computation by the service. The two key phrases are passed and if correct. By passing the
hint in its request, a service can avoid the need for the associative lookup needed to access
a cache. For example, a hint can be used to supply a direct index into the processing state at
the receiver. Also, unlike caches, the hint is not guaranteed to be correct and hence must be
checked against other certifiably correct information. Hints improve performance if the hint
is correct most of the time.

This definition of a hint suggests a variant in which information is passed that is guaranteed
to be correct and hence requires no checking. For want of an established term, we will call such
information a tip. Tips are harder to use because of the need to ensure correctness of the tip.

4Butler Lampson, a computer scientist and Turing Award winner, provides two quotes: When in doubt, get rid
of it (anonymous) and Exterminate Features (Thacker).

3.3 Fifteen Implementation Principles — Categorization and Description 63

As a systems example, the Alto File system [Lam89] has every file block on disk carry a
pointer to the next file block. This pointer is treated as only a hint and is checked against the
file name and block number stored in the block itself. If the hint is incorrect, the information
can be reconstructed from disk. Incorrect hints must not jeopardize system correctness but
result only in performance degradation.

P10: Pass HINTS IN PROTOCOL HEADERS

For distributed systems, the logical extension to Principle P9 is to pass information such as
hints in message headers. Since this book deals with distributed systems, we will make this a
separate principle. For example, computer architects have applied this principle to circumvent
inefficiencies in message-passing parallel systems such as the Connection Machine.

One of the ideas in active messages (Chapter 5) is to have a message carry the address of
the interrupt handler for fast dispatching. Another example is tag switching (Chapter 11), where
packets carry additional indices besides the destination address to help the destination address
to be looked up quickly. Tags are used as hints because tag consistency is not guaranteed;
packets can be routed to the wrong destination, where they must be checked.

3.3.3 Principles for Speeding Up Routines

While the previous principles exploited system structure, we now consider principles for
speeding up system routines considered in isolation.

P11: OpTiMIZE THE EXPECTED CASE

While systems can exhibit arange of behaviors, the behaviors often fall into a smaller set called
the “expected case” [HP96]. For example, well-designed systems should mostly operate in a
fault- and exception-free regime. A second example is a program that exhibits spatial locality
by mostly accessing a small set of memory locations. Thus it pays to make common behaviors
efficient, even at the cost of making uncommon behaviors more expensive.

Heuristics such as optimizing the expected case are often unsatisfying for theoreticians,
who (naturally) prefer mechanisms whose benefit can be precisely quantified in an average or
worst-case sense. In defense of this heuristic, note that every computer in existence optimizes
the expected case (see Chapter 2) at least a million times a second.

For example, with the use of paging, the worst-case number of memory references to
resolve a PC instruction that accesses memory can be as bad as four (read instruction from
memory, read first-level page table, read second-level page table, fetch operand from memory).
However, the number of memory accesses can be reduced to 0 using caches. In general, caches
allow designers to use modular structures and indirection, with gains in flexibility, and yet
regain performance in the expected case. Thus it is worth highlighting caching.

P11a: USE CACHES

Besides caching, there are subtler uses of the expected-case principle. For example, when
you wish to change buffers in the EMACS editor, the editor offers you a default buffer name,
which is the last buffer you examined. This saves typing time in the expected case when you
keep moving between two buffers. The use of header prediction (Chapter 9) in networks is
another example of optimizing the expected case: The cost of processing a packet can be greatly
reduced by assuming that the next packet received is closely related to the last packet processed
(for example, by being the next packet in sequence) and requires no exception processing.

64

CHAPTER 3 Fifteen Implementation Principles

Note that determining the common case is best done by measurements and by schemes that
automatically learn the common case. However, it is often based on the designer’s intuition.
Note that the expected case may be incorrect in special situations or may change with time.

P12: ADD OR EXPLOIT STATE TO GAIN SPEED

If an operation is expensive, consider maintaining additional but redundant state to speed up
the operation. For example, Charlie keeps track of the tables that are busy so that he can
optimize waiter assignments. This is not absolutely necessary, for he can always compute this
information when needed by walking around the restaurant.

In database systems, a classic example is the use of secondary indices. Bank records
may be stored and searched using a primary key, say, the customer Social Security number.
However, if there are several queries that reference the customer name (e.g., “Find the balance
of all Cleopatra’s accounts in the Thebes branch”), it may pay to maintain an additional index
(e.g., a hash table or B-tree) on the customer name. Note that maintaining additional state
implies the need to potentially modify this state whenever changes occur.

However, sometimes this principle can be used without adding state by exploiting existing
state. We call this out as Principle P12a.

P12a: COMPUTE INCREMENTALLY

When a new customer comes in or leaves, Charlie increments the board on which he notes
waiter assignments. As a second example, strength reduction in compilers (see example in
P4c) incrementally computes the new loop index from the old using additions instead of
computing the absolute index using multiplication. An example of incremental computation
in networking is the incremental computation of IP checksums (Chapter 9) when only a few
fields in the packet change.

P13: OpTIMIZE DEGREES OF FREEDOM

It helps to be aware of the variables that are under one’s control and the evaluation criteria used
to determine good performance. Then the game becomes one of optimizing these variables
to maximize performance. For example, Charlie first used to assign waiters to tables as they
became free, but he realized he could improve waiter efficiency by assigning each waiter to a
set of contiguous tables.

Similarly, compilers use coloring algorithms to do register assignment while minimizing
register spills. A networking example of optimizing degrees of freedom is multibit trie IP
lookup algorithms (Chapter 11). In this example, a degree of freedom that can be overlooked
is that the number of bits used to index into a trie node can vary, depending on the path through
the trie, as opposed to being fixed at each level. The number of bits used can also be optimized
via dynamic programming (Chapter 11) to demand the smallest amount of memory for a given
speed requirement.

P14: USE SPECIAL TECHNIQUES FOR FINITE UNIVERSES SUCH AS
INTEGERS

When dealing with small universes, such as moderately sized integers, techniques like bucket
sorting, array lookup, and bitmaps are often more efficient than general-purpose sorting and
searching algorithms.

3.4 Design versus Implementation Principles 65

To translate a virtual address into a physical address, a processor first tries a cache called
the TLB. If this fails, the processor must look up the page table. A prefix of the address bits
is used to index into the page table directly. The use of table lookup avoids the use of hash
tables or binary search, but it requires large page table sizes. A networking example of this
technique is timing wheels (Chapter 7), where an efficient algorithm for a fixed timer range is
constructed using a circular array.

P15: USE ALGORITHMIC TECHNIQUES TO CREATE EFFICIENT DATA
STRUCTURES

Even where there are major bottlenecks, such as virtual address translation, systems designers
finesse the need for clever algorithms by passing hints, using caches, and performing table
lookup. Thus a major system designer is reported to have told an eager theoretician: “I don’t
use algorithms, son.”

This book does not take this somewhat anti-intellectual position. Instead it contends that,
in context, efficient algorithms can greatly improve system performance. In fact, a fair portion
of the book will be spent describing such examples. However, there is a solid kernel of truth
to the “I don’t use algorithms” putdown. In many cases, Principles P1 through P14 need to be
applied before any algorithmic issues become bottlenecks.

Algorithmic approaches include the use of standard data structures as well as generic algo-
rithmic techniques, such as divide-and-conquer and randomization. The algorithm designer
must, however, be prepared to see his clever algorithm become obsolete because of changes in
system structure and technology. As described in the introduction, the real breakthroughs may
arise from applying algorithmic thinking as opposed to merely reusing existing algorithms.

Examples of the successful use of algorithms in computer systems are the Lempel-Ziv
compression algorithm employed in the UNIX utility gzip, the Rabin—Miller primality test algo-
rithm found in public key systems, and the common use of B-trees (due to Bayer—-McCreight)
in databases [CLR90]. Networking examples studied in this text include the Lulea IP-lookup
algorithm (Chapter 11) and the RFC scheme for packet classification (Chapter 12).

3.4 DESIGN VERSUS IMPLEMENTATION PRINCIPLES

Now that we have listed the principles used in this book, three clarifications are needed. First,
conscious use of general principles does not eliminate creativity and effort but instead channels
them more efficiently. Second, the list of principles is necessarily incomplete and can probably
be categorized in a different way; however, it is a good place to start.

Third, it is important to clarify the difference between system design and implementation
principles. Systems designers have articulated principles for system design. Design principles
include, for example, the use of hierarchies and aggregation for scaling (e.g., IP prefixes),
adding a level of indirection for increased flexibility (e.g., mapping from domain names to IP
addresses allows DNS servers to balance load between instances of a server), and virtualization
of resources for increased user productivity (e.g., virtual memory).

A nice compilation of design principles can be found in Lampson’s article [Lam89] and
Keshav’s book [Kes97]. Besides design principles, both Lampson and Keshav include a few

5The previous chapter briefly explains these terms (IP prefixes, DNS, and virtual memory).

66

CHAPTER 3 Fifteen Implementation Principles

Get Web page
< > web page)
Getimages 1...n

(O

Web client Image 1 Image n

Web server

FIGURE 3.9 Retrieval of a Web page with images typically requires one request to get the page that
specifies the needed images and more requests to retrieve each specified image. Why not have the Web
server download the images directly?

implementation principles (e.g., “use hints” and “optimize the expected case”). This book,
by contrast, assumes that much of the network design is already given, and so we focus on
principles for efficient protocol implementation. This book also adds several principles for
efficient implementation not found in Keshav [Kes91] or Lampson [Lam89].

On the other hand, Bentley’s book on “efficient program design” [Ben82] is more about
optimizing small code segments than the large systems that are our focus; thus many of
Bentley’s principles (e.g., fuse loops, unroll loops, reorder tests) are meant to speed up critical
loops rather than speed up systems as a whole.

3.5 CAVEATS

Performance problems cannot be solved only through the use of Zen meditation.

— PARAPHRASED FROM JEFF MOGUL, A COMPUTER SCIENTIST AT HP LABS

The best of principles must be balanced with wisdom to understand the important metrics,
with profiling to determine bottlenecks, and with experimental measurements to confirm that
the changes are really improvements. We start with two case studies to illustrate the need for
caution.

Case Study 1: Reducing Page Download Times

Figure 3.9 shows that in order for a Web client to retrieve a Web page containing
images, it must typically send a GET request for the page. If the page specifies inline
images, then the client must send separate requests to retrieve the images before it can
display the page. A natural application of principle P1 is to ask why separate requests are
needed. Why can’t the Web server automatically download the images when the page is
requested instead of waiting for a separate request? This should reduce page download
latency by at least half a round-trip delay.

To test our hypothesis, we modified the server software to do so and measured the
resulting performance. To our surprise, we found only minimal latency improvement.

3.5 Caveats

Using a network analyzer based on tcpdump, we found two reasons why this seeming
improvement was a bad idea.

* Interaction with TCP: Web transfer is orchestrated by TCP as described in
Chapter 2. To avoid network congestion, TCP increases its rate slowly, starting with
one packet per round-trip, then to two packets per round-trip delay, increasing its
rate when it gets acks. Since TCP had to wait for acks anyway to increase its rate,
waiting for additional requests for images did not add latency.

* Interaction with Client Caching: Many clients already cache common images,
such as .gif files. It is a waste of bandwidth to have the Web server unilaterally
download images that the client already has in its cache. Note that having the client
request the images avoids this problem because the client will only request images it
does not already have.

A useful lesson from this case study is the difficulty of improving part of a system
(e.g., image downloading) because of interactions with other parts of the system (e.g.,
TCP congestion control.)

67

Case Study 2: Speeding Up Signature-Based Intrusion Detection

As a second example, many network sites field an intrusion detection system, such
as Snort [Sno], that looks for suspicious strings in packet payloads that are characteristic
of hacker attacks. An example is the string “perl.exe”, which may signify an attempt
to execute perl and then to execute arbitrary commands on a Web server. For every
potentially matching rule that contains a string, Snort searches for each such string
separately using the Boyer—-Moore algorithm [CLR90]. The worst case happens to be
a Web packet that matches 310 rules. Simple profiling using gprof reveals [FV01] that
30% of the overhead in Snort arises from string searching.

An obvious application of P1 seemed to be the following: Instead of separate
searches for each string, use an integrated search algorithm that searches for all possible
strings in a single pass over the packet. We modified Boyer—Moore to a set Boyer—
Moore algorithm that could search for all specified strings in one pass. Implemented
in a library, the new algorithm performed better than the Snort algorithm by a fac-
tor of 50 for the full Snort database. Unfortunately, when we integrated it into Snort,
we found almost no improvement on packet traces [FV01]. We found two reasons
for this.

* Multiple string matching is not a bottleneck for the trace: For the given trace,
very few packets matched multiple rules, each of which contained separate strings.
When we used a trace containing only Web traffic (i.e., traffic with destination port
80), a substantial improvement was found.

* Cache Effects: Integrated string searching requires a data structure, such as a trie,
whose size grows with the number of strings being searched. The simplest way to do
integrated set searching is to place the strings contained in all rules in a single trie.
However, when the number of strings went over 100, the trie did not fit in cache,

68

CHAPTER 3 Fifteen Implementation Principles

and performance suffered. Thus the system had to be reimplemented to use
collections of smaller sets that took into account the hardware (P4).

A useful lesson from this case study is that purported improvements may not really
target the bottleneck (which in the trace appears to be single-string matching) and can
also interact with other parts of the system (the data cache).

3.5.1 Eight Cautionary Questions

In the spirit of the two case studies, here are eight cautionary questions that warn against
injudicious use of the principles.

Q1: Is IT WORTH IMPROVING PERFORMANCE?

If one were to sell the system as a product, is performance a major selling strength? People
interested in performance improvement would like to think so, but other aspects of a system,
such as ease of use, functionality, and robustness, may be more important. For example, a user
of a network management product cares more about features than performance. Thus, given
limited resources and implementation complexity, we may choose to defer optimizations until
needed. Even if performance is important, which performance metric (e.g., latency throughput,
memory) is important?

Other things being equal, simplicity is best. Simple systems are easier to understand,
debug, and maintain. On the other hand, the definition of simplicity changes with technology
and time. Some amount of complexity is worthwhile for large performance gains. For example,
years ago image compression algorithms such as MPEG were considered too complex to
implement in software or hardware. However, with increasing chip densities, many MPEG
chips have come to market.

Q2: Is THIS REALLY A BOTTLENECK?

The 80-20 rule suggests that a large percentage of the performance improvements comes from
optimizing a small fraction of the system. A simple way to start is to identify key bottlenecks
for the performance metrics we wish to optimize. One way to do so is to use profiling tools,
as we did in Case Study 2.

Q3: WHAT IMPACT DOES THE CHANGE HAVE ON THE REST OF THE
SYSTEM?

A simple change may speed up a portion of the system but may have complex and unforeseen
effects on the rest of the system. This is illustrated by Case Study 1. A change that improves
performance but has too many interactions should be reconsidered.

Q4: DOES THE INITIAL ANALYSIS INDICATE SIGNIFICANT IMPROVEMENT?

Before doing a complete implementation, a quick analysis can indicate how much gain is
possible. Standard complexity analysis is useful. However, when nanoseconds are at stake,
constant factors are important. For software and hardware, because memory accesses are a
bottleneck, a reasonable first-pass estimate is the number of memory accesses.

For example, suppose analysis indicates that address lookup in a router is a bottleneck
(e.g., because there are fast switches to make data transfer not a bottleneck). Suppose the

3.5 Caveats 69

standard algorithm takes an average of 15 memory accesses while a new algorithm indicates
a worst case of 3 memory accesses. This suggests a factor of 5 improvement, which makes it
interesting to proceed further.

QS5: Is It WORTH ADDING CUSTOM HARDWARE?

With the continued improvement in the price—performance of general-purpose processors, it
is tempting to implement algorithms in software and ride the price—performance curve. Thus
if we are considering a piece of custom hardware that takes a year to design, and the resulting
price—performance improvement is only a factor of 2, it may not be worth the effort. On the
other hand, hardware design times are shrinking with the advent of effective synthesis tools.
Volume manufacturing can also result in extremely small costs (compared to general-purpose
processors) for a custom-designed chip. Having an edge for even a small period such as a year
in a competitive market is attractive. This has led companies to increasingly place networking
functions in silicon.

Q6: CaN ProTOCOL CHANGES BE AVOIDED?

Through the years there have been several proposals denouncing particular protocols as being
inefficient and proposing alternative protocols designed for performance. For example, in the
1980s, the transport protocol TCP was considered “slow” and a protocol called XTP [Che89]
was explicitly designed to be implemented in hardware. This stimulated research into making
TCP fast, which culminated in Van Jacobson’s fast implementation of TCP [CJRS89] in the
standard BSD release. More recently, proposals for protocol changes (e.g., tag and flow
switching) to finesse the need for IP lookups have stimulated research into fast IP lookups.

Q7: DO PROTOTYPES CONFIRM THE INITIAL PROMISE?

Once we have successfully answered all the preceding questions, it is still a good idea to
build a prototype or simulation and actually test to see if the improvement is real. This is
because we are dealing with complex systems; the initial analysis rarely captures all effects
encountered in practice. For example, understanding that the Web-image-dumping idea does
not improve latency (see Case Study 1) might come only after a real implementation and tests
with a network analyzer.

A major problem is finding a standard set of benchmarks to compare the standard and new
implementations. For example, in the general systems world, despite some disagreement, there
are standard benchmarks for floating point performance (e.g., Whetstone) or database perfor-
mance (e.g., debit—credit). If one claims to reduce Web transfer latencies using differential
encoding, what set of Web pages provides a reasonable benchmark to prove this contention?
If one claims to have an IP lookup scheme with small storage, which benchmark databases
can be used to support this assertion?

Q8: WILL PERFORMANCE GAINS BE LOST IF THE ENVIRONMENT
CHANGES?

Sadly, the job is not quite over even if a prototype implementation is built and a benchmark
shows that performance improvements are close to initial projections. The difficulty is that
the improvement may be specific to the particular platform used (which can change) and may
take advantage of properties of a certain benchmark (which may not reflect all environments

70

CHAPTER 3 Fifteen Implementation Principles

in which the system will be used). The improvements may still be worthwhile, but some form
of sensitivity analysis is still useful for the future.

For example, Van Jacobson performed a major optimization of the BSD networking code
that allowed ordinary workstations to saturate 100-Mbps FDDI rings. The optimization, which
we will study in detail in Chapter 9, assumes that in the normal case the next packet is from
the same connection as the previous packet, P, and has sequence number one higher than
P. Will this assumption hold for servers that have thousands of simultaneous connections to
clients? Will it hold if packets get sent over parallel links in the network, resulting in packet
reordering? Fortunately, the code has worked well in practice for a number of years. Despite
this, such questions alert us to possible future dangers.

3.6 SUMMARY

This chapter introduced a set of principles for efficient system implementation. A summary
can be found in Figures 3.1, 3.2, and 3.3. The principles were illustrated with examples drawn
from compilers, architecture, databases, algorithms, and networks to show broad applicability
to computer systems. Chef Charlie’s examples, while somewhat tongue in cheek, show that
these principles also extend to general systems, from restaurants to state governments. While
the broad focus is on performance, cost is an equally important metric. One can cast problems
in the form of finding the fastest solution for a given cost. Optimization of other metrics, such
as bandwidth, storage, and computation, can be subsumed under the cost metric.

A preview of well-known networking applications of the 15 principles can be found in
Figures 3.1, 3.2, and 3.3. These applications will be explained in detail in later chapters. The
first five principles encourage systems thinking. The next five principles encourage a fresh
look at system modularity. The last five principles point to useful ways to speed up individual
subsystems.

Just as chess strategies are boring until one plays a game of chess, implementation prin-
ciples are lifeless without concrete examples. The reader is encouraged to try the following
exercises, which provide more examples drawn from computer systems. The principles will
be applied to networks in the rest of the book. In particular, the next chapter seeks to engage
the reader by providing a set of 15 self-contained networking problems to play with.

3.7 EXERCISES

1. Batching, Disk Locality, and Logs: Most serious databases use log files for perfor-
mance. Because writes to disk are expensive, it is cheaper to update only a memory image
of a record. However, because a crash can occur any time, the update must also be
recorded on disk. This can be done by directly updating the record location on disk, but
random writes to disk are expensive (see P4a). Instead, information on the update is
written to a sequential log file. The log entry contains the record location, the old value
(undo information), and the new value (redo information).

» Suppose a disk page of 4000 bytes can be written using one disk I/0 and that a log
record is 50 bytes. If we apply batching (2¢), what is a reasonable strategy for updating
the log? What fraction of a disk I/O should be charged to a log update?

3.7 Exercises 1

» Before a transaction that does the update can commit (i.e., tell the user it is done), it
must be sure the log is written. Why? Explain why this leads to another form of
batching, group commit, where multiple transactions are committed together.

* If the database represented by the log gets too far ahead of the database represented on
disk, crash recovery can take too long. Describe a strategy to bound crash recovery
times.

2. Relaxing Consistency Requirements in a Name Service: The Grapevine system [Be82]
offers a combination of a name service (to translate user names to inboxes) and a mail
service. To improve availability, Grapevine name servers are replicated. Thus any update
to a registration record (e.g., Joe — MailSlot3) must be performed on all servers
implementing replicas of that record. Standard database techniques for distributed
databases require that each update be atomic; that is, the effect should be as if updates
were done simultaneously on all replicas. Because atomic updates require that all servers
be available, and registration information is not as important as, say, bank accounts,
Grapevine provides only the following loose semantics (P3): All replicas will eventually
agree if updates stop. Each update is timestamped and passed from one replica to the
other in arbitrary order. The highest timestamped update wins.

* Give an example of how a user could detect inconsistency in Joe’s registration during
the convergence process.

 If Joe’s record is deleted, it should eventually be purged from the database to save
storage. Suppose a server purges Joe’s record immediately after receiving a Delete
update. Why might Add updates possibly cause a problem? Suggest a solution.

* The rule that the latest timestamp wins does not work well when two administrators try
to create an entry with the same name. Because a later creation could be trapped in a
crashed server, the administrator of the earlier creation can never know for sure that his
creation has won. The Grapevine designers did not introduce mechanisms to solve this
problem but relied on “some human-level centralization of name creation.” Explain
their assumption clearly.

3. Replacing General-Purpose Routines with Special-Purpose Routines and Efficient
Storage Allocators: Consider the design of a general storage allocator that is given
control of a large contiguous piece of memory and may be asked by applications for
smaller, variable-size chunks. A general allocator is quite complex: As time goes by, the
available memory fragments and time must be spent finding a piece of the requested size
and coalescing adjacent released pieces into larger free blocks.

* Briefly sketch the design of a general-purpose allocator. Consult a textbook such as
Horwitz and Sahni [HS78] for example allocators.

* Suppose a profile has shown that a large fraction of the applications ask for 64 bytes of
storage. Describe a more efficient allocator that works for the special case (P6) of
allocating just 64-byte quantities.

* How would you optimize the expected case (P11) and yet handle requests for storage
other than 64 bytes?

72

CHAPTER 3 Fifteen Implementation Principles

4. Passing Information in Interfaces: Consider a file system that is reading or writing files

from disk. Each random disk Read/Write involves positioning the disk over the correct
track (seeking). If we have a sequence of say three Reads to Tracks 1, 15, and 7, it may
pay to reorder the second and third Reads to reduce waste in terms of seek times. Clearly,
as in P1, the larger the context of the optimization (e.g., the number of Reads or Writes
considered for reordering), the greater the potential benefits of such seek optimization.

A normal file system only has an interface to open, read, and write a single file.
However, suppose an application is reading multiple files and can pass that information
(P9) in the file system call.

* What information about the pattern of file accesses would be useful for the file system
to perform seek optimization? What should the interface look like?

» Give examples of applications that process multiple files and could benefit from this
optimization. For more details, see the paper by H. Patterson et al. [Pe95]. They call
this form of tip a disclosure.

. Optimizing the Expected Case, Using Algorithmic Ideas, and Scavenging Files: The

Alto computer used a scavenging system [Lam89] that scans the disk after a crash to
reconstruct file system indexes that map from file names and blocks to disk sectors. This
can be done because each disk sector that contains a file block also contains the
corresponding file identifier. What complicates matters is that main memory is not large
enough to hold information for every disk sector. Thus a single scan that builds a list in
memory for each file will not work. Assume that the information for a single file will fit
into memory. Thus a way that will work is to make a single scan of the disk for each file;
but that would be obvious waste (P1) and too slow.

Instead, observe that in the expected case, most files are allocated contiguously. Thus
suppose File X has pages 1-1000 located on disk sectors 301-1301. Thus the information
about 1000 sectors can be compactly represented by three integers and a file name. Call
this a run node.

» Assume the expected case holds and that all run nodes can fit in memory. Assume also
that the file index for each file is an array (stored on disk) that maps from file block
number to disk sector number. Show how to rebuild all the file indexes.

* Now suppose the expected case does not hold and that the run nodes do nor all fit into
memory. Describe a technique, based on the algorithmic idea of divide-and-conquer
(P15), that is guaranteed to work (without reverting to the naive idea of building the
index for one file at a time unless strictly necessary).

CHAPTER 4

Principles in Action

System architecture and design, like any art, can only be learned by doing. ... The
space of possibilities unfolds only as the medium is worked.

— CARVER MEAD AND LYNN CONWAY

Having rounded up my horses, I now set myself to put them through their paces.

— ARNOLD TOYNBEE

The previous chapter outlined 15 principles for efficient network protocol implementation.
Part II of the book begins a detailed look at specific network bottlenecks such as data copying
and control transfer. While the principles are used in these later chapters, the focus of these
later chapters is on the specific bottleneck being examined. Given that network algorithmics
is as much a way of thinking as it is a set of techniques, it seems useful to round out Part I by
seeing the principles in action on small, self-contained, but nontrivial network problems.

Thus this chapter provides examples of applying the principles in solving specific net-
working problems. The examples are drawn from real problems, and some of the solutions
are used in real products. Unlike subsequent chapters, this chapter is not a collection of new
material followed by a set of exercises. Instead, this chapter can be thought of as an extended
set of exercises.

In Section 4.1 to Section 4.15, 15 problems are motivated and described. Each problem
is followed by a hint that suggests specific principles, which is then followed by a solution
sketch. There are also a few exercises after each solution. In classes and seminars on the topic
of this chapter, the audience enjoyed inventing solutions by themselves (after a few hints were
provided), rather than directly seeing the final solutions.

Quick Reference Guide

Inan ideal world, each problem should have something interesting for every reader. For those readers
pressed for time, however, here is some guidance. Hardware designers looking to sample a few problems
may wish to try their hand at designing an Ethernet monitor (Section 4.4) or doing a binary search on
long identifiers (Section 4.14). Systems people looking for examples of how systems thinking can finesse
algorithmic expertise may wish to tackle a problem on application device channels (Section 4.1) or a

73

74 CHAPTER 4 Principles in Action

problem on compressing the connection table (Section 4.11). Algorithm designers may be interested in
the problem of identifying a resource hog (Section 4.10) and a problem on the use of protocol design
changes to simplify an implementation problem in link state routing (Section 4.8).

4.1 BUFFER VALIDATION OF APPLICATION DEVICE CHANNELS

Usually, application programs can only send network data through the operating system kernel,
and only the kernel is allowed to talk to the network adaptor. This restriction prevents different
applications from (maliciously or accidentally) writing or reading each other’s data. However,
communication through the kernel adds overhead in the form of system calls (see Chapter 2).
In application device channels (ADCs), the idea is to allow an application to send data to
and from the network by directly writing to the memory of the network adaptor. Refer to
Chapter 5 for more details. One mechanism to ensure protection, in lieu of kernel mediation,
is to have the kernel set up the adaptor with a set of valid memory pages for each application.
The network adaptor must then ensure that the application’s data can only be sent and received
from memory in the valid set.

In Figure 4.1, for example, application P is allowed to send and receive data from a set
of valid pages X, Y,...,L,A. Suppose application P queues a request to the adaptor to receive
the next packet for P into a buffer in page A. Since this request is sent directly to the adaptor,
the kernel cannot check that this is a valid buffer for P. Instead, the adaptor must validate this
request by ensuring that A is in the set of valid pages. If the adaptor does not perform this
check, application P could supply an invalid page belonging to some other application, and the
adaptor would write P’s data into the wrong page. The need for a check leads to the following
problem.

p < Memory
CPU Page X
Application P] o o o
\ Receive next
Kernel packet into Page A
\ J Page A \ J
Y
I Validlist | 5 x v L A J ADAPTOR
for P

NETWORK

FIGURE 4.1 1In application device channels, the network adaptor is given a set of valid pages
(X,Y,L,A, etc.) for a given application P. When application P makes a request to receive data into
page A, the adaptor must check if A is in the valid list before allowing the receive.

4.1 Buffer Validation of Application Device Channels 75

ProsLEmM

When application P does a Receive, the adaptor must validate whether the page belongs to
the valid page set for P. If the set of pages is organized as a linear list [DDP94], then validation
can cost O(n), where n is the number of pages in the set. For instance, in Figure 4.1, since A is
at the end of the list of valid pages, the adaptor must traverse the entire list before it finds A. If
n is large, this can be expensive and can slow down the rate at which the adaptor can send and
receive packets. How can the validation process be sped up? Try thinking through the solution
before reading the hint and solutions that follow.

Hint: A good approach to reduce the complexity of validation is to use a better data structure than a
list (P15). Which data structure would you choose? However, one can improve worst-case behavior
even further and get smaller constant factors by using system thinking and by passing hints in
interfaces (P9).

An algorithmic thinker will immediately consider implementing the set of valid pages as a hash
fable instead of a /ist. This provides an O(1) average search time. Hashing has two disadvan-
tages: (1) good hash functions that have small collision probabilities are expensive computationally;
(2) hashing does not provide a good worst-case bound. Binary search does provide logarithmic
worst-case search times, but this is expensive (it also requires keeping the set sorted) if the set of
pages is large and packet transmission rates are high. Instead, we replace the hash table lookup by
an indexed array lookup, as follows (try using P9 before you read on).

SoLution

The adaptor stores the set of valid pages for each application in an array, as shown in
Figure 4.2. This array is updated only when the kernel updates the set of valid pages for the
application. When the application does a Receive into page A, it also passes to the adaptor a
handle (P9). The handle is the index of the array position where A is stored. The adaptor can
use this to quickly confirm whether the page in the Receive request matches the page stored
in the handle. The cost of validation is a bounds check (to see if the handle is a valid index),
one array lookup, and one compare.

(Application]
Receive (A, val, handle) X
Y
. | ADAPTOR
A
L
~

FIGURE 4.2 Finessing the need for a hash table lookup by passing a handle across the interface
between the application and adaptor.

76

CHAPTER 4 Principles in Action

EXERCISES

* Is the handle a hint or a tip? Let’s invoke principle P1: If this is a handle, why pass the
page number (e.g., A) in the interface? Why does removing the page number speed up the
confirmation task slightly?

* To find the array corresponding to application P normally requires a hash table search
using P as the key. This weakens the argument for getting rid of the hash table search to
check if the page is valid — unless, of course, the hash search of P can be finessed as well.
How can this be done?

4.2 SCHEDULER FOR ASYNCHRONOUS TRANSFER MODE FLOW CONTROL

In asynchronous transfer mode (ATM), an ATM adaptor may have hundreds of simultaneous
virtual circuits (VCs) that can send data (called cells). Each VC is often flow controlled in
some way to limit the rate at which it can send. For example, in rate-based flow control, a VC
may receive credits to send cells at fixed time intervals. On the other hand, in credit-based
flow control [KCB94, OSV94], credits may be sent by the next node in the path when buffers
free up.

Thus, in Figure 4.3 the adaptor has a table that holds the VC state. There are four VCs that
have been set up (1, 3, 5, 7). Of these, only VCs 1, 5, and 7 have any cells to send. Finally,
only VCs 1 and 7 have credits to send cells. Thus the next cell to be sent by the adaptor should
be from either one of the eligible VCs: 1 or 7. The selection from the eligible VCs should be
done fairly, for example, in round-robin fashion. If the adaptor chooses to send a cell from
VC 7, the adaptor would decrement the credits of VC 7 to 1. Since there are no more cells to
be sent, VC 7 now becomes ineligible. Choosing the next eligible VC leads to the following
problem.

ProBLEM

A naive scheduler may cycle through the VC array looking for a VC that is eligible. If

many of the VCs are ineligible, this can be quite inefficient, for the scheduler may have to

Active Inactive Active Active
has credits no credits has credits
o0 o0
VC VC VC VC
1 3 5 7
Y Y Y
(. —o OO

Y

(.

FIGURE 4.3 AnATM virtual circuit is eligible to send data if it is active (has some outstanding cells
to send in the queue shown below the VC) and has credits (shown by black dots above the VC). The
problem is to select the next eligible VC in some fair manner without stepping through VCs that are
ineligible.

4.3 Route Computation Using Dijkstra’s Algorithm 71

Head Tail

List of active VC VC
VCs with credits 1 ” 7

FIGURE 4.4 Maintaining a list of eligible VCs to speed up the scheduler main loop.

step through several VCs that are ineligible to send one cell from an eligible VC. How can this
inefficiency be avoided?

Hint: Consider invoking P12 to add some extra state to speed up the scheduler main loop. What state
can you add to avoid stepping through ineligible VCs? How would you maintain this state efficiently?

Sorution

Maintain a list (Figure 4.4) of eligible VCs in addition to the VC table of Figure 4.3. The
only problem is to efficiently maintain this state. This is the major difficulty in using P12. If
the state is too expensive to maintain, the added state is a liability and not an asset. Recall that
a VC is eligible if it has both cells to send and has credits. Thus a VC is removed from the list
after service if VC becomes inactive or has no more credits; if not, the VC is added to the tail
of the list to ensure fairness. A VC is added to the tail of the list either when a cell arrives to
an empty VC cell queue or when the VC has no credits and receives a credit update.

EXERCISES

* How can you be sure that a VC is not added multiple times to the eligible list?

* Can this scheme be generalized to allow some VCs to get more opportunities to send than
other VCs based on a weight assigned by a manager?

4.3 ROUTE COMPUTATION USING DIJKSTRA’S ALGORITHM

How does a router S decide how to route a packet to a given destination D? Every link in a
network is labeled with a cost, and routers like S often compute the shortest (i.e., lowest-cost)
paths to destinations within a local domain. Assume the cost is a small integer. Recall from
Chapter 2 that the most commonly used routing protocol within a domain is OSPF based on
link state routing.

In link state routing, every router in a subnet sends a link state packet (LSP) that lists its
links to all of its neighbors. Each LSP is sent to every other router in the subnet. Each router
sends its LSP to other routers using a primitive flooding protocol [Per92]. Once every router
receives an LSP from every router, then every router has a complete map of the network.
Assuming the topology remains stable, each router can now calculate its shortest path to every
other node in the network using a standard shortest-path algorithm, such as Dijkstra’s algorithm
[CLR90].

InFigure 4.5, source S wishes to calculate a shortest-path tree to all other nodes (A, B, C, D)
in the network. The network is shown on the left frame in Figure 4.5 with links numbered
with their cost. In Dijkstra’s algorithm, S begins by placing only itself in the shortest-cost tree.

78

CHAPTER 4 Principles in Action

Pick D next

(DD

Source

FIGURE 4.5 In Dijkstra’s algorithm, the source S builds a shortest-path tree rooted at S. At each
stage, the closest node not in the tree is added to the tree.

S also updates the cost to reach all its direct neighbors (e.g., B, A). At each iteration, Dijkstra’s
algorithm adds to the current tree the node that is closest to the current tree. The costs of the
neighbors of this newly added node are updated. The process repeats until all nodes in the
network belong to the tree.

For instance, in Figure 4.5, after adding S, the algorithm picks B and then picks A. At
this iteration, the tree is as shown on the right in Figure 4.5. The solid lines show the existing
tree, and the dotted lines show the best current connections to nodes that are not already in
the tree. Thus since A has a cost of 2 and there is a link of cost 3 from A to C, C is labeled
with 5. Similarly, D is labeled with a cost of 2 for the path through B. At the next iteration, the
algorithm picks D as the least-cost node not already in the tree. The cost to C is then updated
using the route through D. Finally, C is added to the tree in the last iteration.

This textbook solution requires determining the node with the shortest cost that is not
already in the tree at each iteration. The standard data structure to keep track of the minimum-
value element in a dynamically changing set is a priority queue. This leads to the following
problem.

ProBLEmM

Dijkstra’s algorithm requires a priority queue at each of N iterations, where N is the
number of network nodes. The best general-purpose priority queues, such as heaps [CLR90],
take O(log N) cost to find the minimum element. This implies a total running time of O(N log N)
time. For a large network, this can result in slow response to failures and other network topology
changes. How can route computation be speeded up?

Hint: Consider exploiting the fact that the link costs are small integers (P14) by using an array to
represent the current costs of nodes. How can you efficiently, at least in an amortized sense, find the
next minimum-cost node to include in the shortest-path tree?

SoLurion

The fact that the link costs are small integers can be exploited to construct a priority
queue based on bucket sorting (P14). Assume that the largest link cost is MaxLinkCost. Thus
the maximum cost of a path can be no more than Diam % MaxLinkCost, where Diam is the
diameter of the network. Assume Diam is also a small integer. Thus one could imagine using
an array with a location for every possible cost ¢ in the range 1... Diam % MaxLinkCost. If
during the course of Dijkstra’s algorithm the current cost of a node X is ¢, then node X can be
placed in a list pointed to by element c of the array (Figure 4.6). This leads to the following
algorithm.

4.3 Route Computation Using Dijkstra’s Algorithm 79

CurrentMin
1
1
Costs -- > , Diam * MaxLinkCost
1
ol 1] 213 5 | @
| | °
1 1
1 1 [
1 1
1 1
Y oY ¥ Y
B A D C

FIGURE 4.6 Using a priority queue based on bucket sorting to speed up Dijkstra’s algorithm.

Whenever a node X changes its cost from ¢ to ¢, node X is removed from the list for ¢
and added to the list for ¢’. But how is the minimum element to be found? This can be done by
initializing a pointer called CurrentMin to 0 (which corresponds to the cost of S). Each time
the algorithm wishes to find the minimum-cost node not in the tree, CurrentMin is incremented
by 1 until an array location is reached that contains a nonempty list. Any node in this list can
then be added to the tree. The algorithm costs O(N + Diam * MaxLinkCost) because the work
done in advancing CurrentMin can at most be the size of the array. This can be significantly
better than N log N for large N and small values of Diam and MaxLinkCost.

A crucial factor in being able to efficiently use a bucket sort priority queue of the kind
described earlier is that the node costs are always ahead of the value of CurrentMin. This is a
monotonicity condition. If it were not true, the algorithm would start checking for the minimum
from 1 at each iteration, instead of starting from the last value of CurrentMin and never backing
up. The monotonicity condition is fairly obvious for Dijktra’s algorithm because the costs of
nodes not already in the tree have to be larger than the costs of nodes that are already in
the tree.

Figure 4.6 shows the state of the bucket sort priority queue after A has been added to the
tree. This corresponds to the right frame of Figure 4.5. At this stage, CurrentMin = 2, which
is the cost of A. At the next iteration, CurrentMin will advance to 3, and D will be added to
the tree. This will result in the C’s cost being reduced to 4. We thus remove C from the list in
position 5 and add it to the empty list in position 4. CurrentMin is then advanced to 4, and C
is added to the tree.

EXERCISES

* The algorithm requires a node to be removed from a list and added to another, earlier list.
How can this be done efficiently?

* In Figure 4.6, how can the algorithm know that it can terminate after adding C to the tree
instead of advancing to the end of the long array?

* In networks that have failures, the concept of diameter is a highly suspect one because the
diameter could change considerably after a failure. Consider a wheel topology where all N
nodes have diameter 2 through a central spoke node; if the central spoke node fails, the
diameter goes up to N/2. In actual practice the diameter is often small. Can this cause
problems in sizing the array?

80 CHAPTER 4 Principles in Action

* Can you circumvent the problem of the diameter completely by replacing the linear array
of Figure 4.6 with a circular array of size MaxLinkCost? Explain. The resulting solution is
known as Dial’s algorithm [AMO93].

4.4 ETHERNET MONITOR USING BRIDGE HARDWARE

Alyssa P. Hacker is working for Acme Networks and knows of the Ethernet bridge invented at
Acme. A bridge (see Chapter 10) is a device that can connect together Ethernets. To forward
packets from one Ethernet to another, the bridge must look up the 48-bit destination address
in an Ethernet packet at high speeds.

Alyssa decides to convert the bridge into an Ethernet traffic monitor that will passively
listen to an Ethernet and produce statistics about traffic patterns. The marketing person tells
her that she needs to monitor traffic between arbitrary source—destination pairs. Thus for every
active source—destination pair, such as A, B, Alyssa must keep a variable P4 p that measures
the number of packets sent from A to B since the monitor was started. When a packet is sent
from A to B, the monitor (which is listening to all packets sent on the cable) will pick up a
copy of the packet. If the source is A and the destination is B, the monitor should increment
P4 p. The problem is to do this in 64 psec, the minimum interpacket time on the Ethernet.
The bottleneck is the lookup of the state P4 p associated with a pair of 48-bit addresses A, B.

Fortunately, the bridge hardware has a spiffy lookup hardware engine that can look up
the state associated with a single 48-bit address in 1.4 psec. A call to the hardware can be
expressed as Lookup(X, D), where X is the 48-bit key and D is the database to be searched.
The call returns the state associated with X in 1.4 psec for databases of less than 64,000 keys.
What Alyssa must solve is the following problem.

ProsLEM

The monitor needs to update state for AB when a packet from A to B arrives. The monitor
has a lookup engine that can look up only single addresses and not address pairs. How can
Alyssa use the existing engine to look up address pairs? The problem is illustrated in Figure 4.7.

Hint: The problem requires using P4c to exploit the existing bridge hardware. Since 1.4 jsec is
much smaller than 64 Lsec, the design can afford to use more than one hardware lookup. How can
a 96-bit lookup be reduced to a 48-bit lookup using three lookups?

Anaive solution is to use two lookups to convert source A and destination B into smaller (<24-bit)
indices I4 and Iz. The indices 14 and Ip can then be used to look up a two-dimensional array that

A State AB State
(48 bits) for A (96 bits) for AB

HAVE WANT

FIGURE 4.7 Adapting an engine that does destination lookup to doing destination-source lookups.

4.5 Demultiplexing in the X-Kernel 81

IAIB State
(48 bits) for AB
L—» J N l I
(24 bits)
GET INDICES GET STATE

FIGURE 4.8 Converting a 96-bit lookup into a 48-bit lookup by first converting each 48-bit address
into a 24-bit index and concatenating the indices.

stores the state for AB. This requires only two hardware lookups plus one more memory access,
but it can require large amounts of memory. If there are 1000 possible sources and 1000 possible
destinations, the array must contain a million entries. In practice, there may be only 20,000 active
source—destination pairs. How could you make the required amount of memory proportional to the
number of actual source—destination pairs?

SoLution

As before, first use one lookup each to convert source A and destination B into smaller
(<24-bit) indices I4 and Ip. Then use a third lookup to map from I4/p to AB state. The solution
is illustrated in Figure 4.8. The third lookup effectively compresses the two-dimensional array
of the naive solution. This solution is due to Mark Kempf and Mike Soha.

EXERCISES

* Can this problem be solved using only two bridge hardware lookups without requiring
extra memory?

* The set of active source—destination pairs may change with time, because some pairs of
addresses stop communicating for long periods. How can this be handled without keeping
the state for every possible address pair that has communicated since the monitor was
powered on?

4.5 DEMULTIPLEXING IN THE X-KERNEL

The x-kernel [HP91] provides a software infrastructure for protocol implementation in hosts.
The x-kernel system provides support for a number of required protocol functions. One com-
monly required function is protocol demultiplexing. For example, when the Internet routing
layer IP receives a packet, it must use the protocol field to determine whether the packet should
be subsequently sent to TCP or UDP.

Most protocols do demultiplexing based on some identifier in the protocol header. These
identifiers can vary in length in different protocols. For example, Ethernet-type fields can be
5 bytes while TCP port numbers are 2 bytes long. Thus the x-kernel allows demultiplexing based
on variable-length protocol identifiers. When the system is initialized, the protocol routine can
register the mapping between the identifier and the destination protocol with the x-kernel.

82

CHAPTER 4 Principles in Action

(variable length)
Key K

k—) hash (K)

L

FIGURE 4.9 Demultiplexing in the x-kernel is done by hashing the protocol identifier K and
(potentially) using a byte-by-byte comparison with the key L stored at the hash table entry.

Key L, State

Hitif K =L
(byte by byte compare)

At run time, when a packet arrives the protocol routine can extract the protocol identifier from
the packet and query the x-kernel demultiplexing routine for the destination protocol. Since
packets can arrive at high speeds, the demultiplexing routine should be fast. This leads to the
following problem.

ProBLEmM

On average, the fastest way to do a lookup is to use a hash table. As shown in Figure 4.9,
this requires computing some hash function on the identifier K to generate a hash index, using
this index to access the hash table, and comparing the key L stored in the hash table entry
with K. If there is a match, the demultiplexing routine can retrieve the destination protocol
associated with key L. Assume that the hash function has been chosen to make collisions
infrequent.

However, since the identifier length is an arbitrary number of bytes, the comparison
routine that compares the two keys must, in general, do byte-by-byte comparisons. However,
suppose the most common case is 4-byte identifiers, which is the machine word size. In this
case, it is much more efficient to do a word comparison. Thus the goal is to exploit efficient
word comparisons (P4c) to optimize the expected case (P11). How can this be done while still
handling arbitrary protocols?

Hint: Notice that if the x-kernel has to demultiplex a 3-byte identifier, it has to use a byte-by-byte
comparison routine; if the x-kernel has to demultiplex a 4-byte identifier and 4 bytes is the machine
word size, it can use a word compare. The first degree of freedom that can be exploited is to
have different comparison routines for the most common cases (e.g., word compares, long-word
compares) and a default comparison routine that uses byte comparisons. Doing so trades some extra
space for time (P4b). For correctness, however, it is important to know which comparison routine
to use for each protocol. Consider invoking principles P9 to pass hints in interfaces and P2a to do
some precomputation.

Socution

Each protocol has to declare its identifier and destination protocol to the x-kernel when
the system initializes. When this happens, each protocol can predeclare its identifier length,
so the x-kernel can use a specialized comparison routines for each protocol. Effectively,
information is being passed between the client protocol and the x-kernel (P9) at an earlier
time (P2a). Assume that the x-kernel has a separate hash table for each client protocol and
that the x-kernel knows the context for each client in order to use code specialized for that
client.

4.6 Tries with Node Compression 83

EXERCISES

* Code up byte-by-byte and word comparisons on your machine and do a large number
of both types of comparisons and compare the overall time taken for each.

* In the earlier ADC solution, the hash table lookup was finessed by passing an index
(instead of the identifier length as earlier). Why might that solution be difficult in this case?

4.6 TRIES WITH NODE COMPRESSION

A trie is a data structure that is a tree of nodes, where each node is an array of M elements.
Figure 4.10 shows a simple example with M = 8. Each array can hold either a key (e.g., KEY
1, KEY 2, or KEY 3 in Figure 4.11) or a pointer to another trie node (e.g., the first element
in the topmost trie node of Figure 4.10, which is the root). The trie is used to search for
exact matches (and longest-prefix matches) with an input string. Tries are useful in networking
for such varied tasks as IP address lookup (Chapter 11), bridge lookups (Chapter 10), and
demultiplexing filters (Chapter 8).

The exact trie algorithms do not concern us here. All one needs to know is how a trie is
searched. Let ¢ = log, M be the chunk size of a trie. To search the trie, search first breaks
the input string into chunks of size c. Search uses successive chunks, starting from the most
significant, to index into nodes of the trie, starting with the root node. When search uses chunk
J to index into position i of the current trie node, position i could contain either a pointer or
a key. If position i contains a nonnull pointer to node N, the search continues at node N with
chunk j 4 1; otherwise, the search terminates.

To summarize, each node is an array of pointers or keys, and the search process needs to
index into these arrays. However, if many trie nodes are sparse, there is considerable wasted
space (P1). For example, in Figure 4.10, only 4 out of 16 locations contain useful information.
In the worst case, each trie node could contain 1 pointer or key and there could be a factor of
M in wasted memory. Assume M < 32 in what follows. Even if M is this small, a 32-fold
increase in memory can greatly increase the cost of the design.

An obvious approach is to replace each trie node by a linear list of pairs of the form (i, val),
where val is the nonempty value (either pointer or key) in position i of the node. For example,

Trie Node (space not used by pointers is wasted)

(1
Y

Key 1
Y
| |
Key 2 Key 3

FIGURE 4.10 Trie storing three keys. Notice the wasted space in the trie nodes.

84

CHAPTER 4 Principles in Action

Uncompressed Trie Node

1 7
(Key 3)
Y
10000010 | 1 2

(bitmap) (Key 3) Compressed Trie Node

Y

FIGURE 4.11 Compressing a trie node using a bitmap and bit counting to efficiently translate from
an uncompressed index to a compressed index.

the root trie node in Figure 4.10 could be replaced by the list (1, ptr); (7, KEYI), where ptr1 is
the pointer to the bottom trie node. Unfortunately, this can slow down trie search by a factor of
M, because the search of each trie node may now have to search through a list of M locations,
instead of a single indexing operation. This leads to the following problem.
PRoBLEM

How can trie nodes be compressed to remove null pointers without slowing down search
by more than a small factor?

Hint: Despite compressing the nodes, array indexing needs to be efficient. If the nodes are com-
pressed, how might information about which array elements are removed be represented? Consider
leveraging off the fact that M is small by following P14 (exploit the small integer size) and P4a (exploit
locality).

SoLurion

Since M < 32, a bitmap of size 32 can easily fit into a computer word (P14 and P4a).
Thus null pointers are removed after adding a bitmap with zero bits indicating the original
positions of null pointers. This is shown in Figure 4.11. The trie node can now be replaced
with a bitmap and a compressed trie node. A compressed trie node is an array that consists
only of the nonnull values in the original node. Thus in Figure 4.11, the original root trie node
(on the top) has been replaced with the compressed trie node (on the bottom). The bitmap
contains a 1 in the first and seventh positions, where the root node contains nonnull values.
The compressed array now contains only two elements, the first pointer and KEY 3. This still
begs the question: How should a trie node be searched?

Since both uncompressed and compressed nodes are arrays and the search process starts
with an index [into the uncompressed node, the search process must consult the bitmap to
convert the uncompressed index I into a compressed index C into the compressed node. For
example, if 7 is 1 in Figure 4.11, C should be 1; if I is 7, C should be 2. If [is any other value,
C should be 0, indicating that there is only a null pointer.

Fortunately, the conversion from / to C can be accomplished easily by noting the following.
If position I in the bitmap contains a 0, then C = 0. Otherwise, C is the number of 1’s in the

4.7 Packet Filtering in Routers 85

first I bits of the bitmap. Thus if I = 7, then C = 2, since there are two bits set in the first
seven bits of the bitmap.

This computation requires at most two memory references: one to access the bitmap
(because the bitmap is small (P4a)) and one to access the compressed array. The calculation
of the number of bits set in a bitmap can be done using internal registers (in software) or
combinatorial logic (in hardware). Thus the effective slowdown is slightly more than a factor
of 2 in software and exactly 2 in hardware.

EXERCISES

* How could you use table lookup (P14, P2a) to speed up counting the number of bits set in
software? Would this necessarily require a third memory reference?

* Suppose the bitmap is large (say, M = 64 K). It would appear that counting the number of
bits set in such a large bitmap is impossibly slow in hardware or software. Can you find a
way to speed up counting bits in a large bitmap (principles P12 and P2a) using only one
extra memory access? This will be extremely useful in Chapter 11.

4.7 PACKET FILTERING IN ROUTERS

Chapter 12 describes protocols that set up resources at routers for traffic, such as video, that
needs performance guarantees. Such protocols use the concept of packet filters, sometimes
called classifiers. Thus, in Figure 4.12 each receiver attached to a router may specify a packet
filter describing the packets it wishes to receive. For example, in Figure 4.12 Receiver 1 may be
interested in receiving NBC, which is specified by Filter 4. Each filter is some specification of
the fields that describe the video packets that NBC sends. For example, NBC may be specified
by packets that use the source address of the NBC transmitter in Germany and use a specified
TCP destination and source port number.

Similarly, in Figure 4.12 Receiver m may be interested in receiving ABC Sports and CNN,
which are described by Filters 1 and 7, respectively. Packets arrive at the router at high speeds
and must be sent to all receivers that request the packet. For example, Receivers 1 and 2 may
both wish to receive NBC. This leads to the following problem.

Receiver 1
(Filter 4)

Filter 1
Filter 2

Arriving
Packet

Filter n

Receiver m
(Filters 1, 7)

Router

FIGURE 4.12 Packet filtering in a router may require a slow linear scan of all filters followed by
making a copy of the packet for all filters that match.

86

CHAPTER 4 Principles in Action

ProBLEmM

Each receiving packet must be matched against all filters and sent to all receivers that
match. A simple linear scan of all filters is expensive if the number of filters is large. Assume
the number of filters is over a thousand. How can this expensive process be sped up?

Hint: One might think of optimizing the expected case by caching (P11a). However, why is caching
difficultin this case? Consider adding a field (P10) to the packet header to make caching easier. Ideally,
which protocol layer should this be added to? Adding a fixed well-known field for each possible video
type is not a panacea because it requires global standardization, and filters can be based on other
fields, such as the source address. Assume the field you add does not require globally standardized
identifiers. What properties of this field must the source ensure?

SoLurion

Caching (P11a), the old workhorse of system designers, is not very straightforward in
this problem. In general, a cache stores a mapping between an input a and some output f(a).
The cache then consists of a set of pairs of the form (a, f(a)). This set of pairs is stored as a
database keyed by values of a. The database can be implemented as a hash table (in software)
or a content-addressable memory (in hardware). Given input @ and the need to calculate f(a),
the database is first checked to see if a is already in the database. If so, the fast path exits
with the existing value of f(a). If not, f(a) is computed using some other (possibly expensive)
computation and the pair (a, f(a)) is then inserted into the cache database. Subsequent inputs
with value a can then be calculated very fast.

In the packet filtering problem, the goal is to calculate the set of receivers associated with
a packet P. The problem is that the output is a function of a (potentially) large number of
packet header fields of P. Thus to use caching, one has to store a large portion of the headers
of P associated with the set of receivers for P. Storing a mapping between 64 bytes of packet
header and an output set of receivers is an expensive proposition. It is expensive in time, since
searching the cache can take longer because the keys are wide. It is also clearly expensive in
storage. The large storage needs in turn imply that fewer mappings can be cached for a given
cache size, which leads to a poorer cache hit rate.

The ideal is to cache a mapping between one or two packet fields and the output receiver
set. This would speed up cache search time and improve the cache hit rate. These fields should
also preferably be in the routing header, which routers examine anyway. The problem is that
there may be no such field that uniquely fingerprints packet P.

However, suppose we are system designers designing the routing protocol. We can add a
field to the routing header. The problem might seem trivial if we could assign each possible
stream of packets a unique global identifier. For example, if we could assign NBC identifier
1, ABC identifier 2, and CNN identifier 3, then we could cache using the identifier as the
key. Such a solution would require some form of global standards committee responsible for
naming every application stream. Even if that could be done, the receiver filter might ask for
all NBC packets from a given source, and the filter could depend on other packet fields. This
leads to the following final idea.

Change the routing header to add a flow identifier F' (Figure 4.13), whose meaning depends
on the source. In other words, different sources can use the same flow identifier because it
is the combination of the source and the flow identifier that is unique. Thus there is no need
for global standardization (or other global coordination) of flow identifiers. A flow identifier
is only a local counter maintained by the source. The idea is that a sending application at the

4.8 Avoiding Fragmentation of Link State Packets 87

F,S —>» R1,R5
Flow ID . . .
Cache

G, S'—> Rm

Filter 1
SF
Filter n
Arriving
Packet

Router

FIGURE 4.13 Adding a flow identifier (which is unique only with respect to a source) can speed up
packet filtering.

sender can ask the routing layer for a flow identifier. This identifier is added to the routing
header of all the packets for this application.

As usual, when the application packet first arrives, the router does a (slow) linear search
to determine the set of receivers associated with the packet header. Because identifiers are
not unique across sources, the router caches the mapping using the concatenation of the
packet source address and the flow identifier as the key. Clearly, correctness depends on
the sender application’s not changing fields that could affect a filter without also changing the
flow identifier in the packet.

EXERCISES

* What can go wrong if the source crashes and comes up again without remembering which
identifiers it has assigned to different applications? What can go wrong when a receiver
adds a new filter? How can these problems be solved?

* In the current solution, the flow identifier is used as a tip (Chapter 3) and not as a hint.
What additional costs would be incurred if the flow identifier-source address pair is treated
as a hint and not as a tip?

4.8 AVOIDING FRAGMENTATION OF LINK STATE PACKETS

The following problem actually arose during the design of the OSI and OSPF [Per92] link
state routing protocols. This problem is about protocol design, as opposed to protocol imple-
mentation once the design is fixed. Despite this, it illustrates how design choices can greatly
affect implementation performance.

Chapter 2 and Section 4.3 described link state routing. Recall that in link state routing,
a router must send a link state packet (LSP) listing all its neighbors. The link state protocol
consists of two separate processes. The first is the update process that sends link state packets
reliably from router to router using a flooding protocol that relies on a unique sequence number

88

CHAPTER 4 Principles in Action

[]
[]
[]
E500 @

FIGURE 4.14 The link state packet of router R1 (with even 500 endnode neighbors) may be too
large to fit into a data link frame. Without a clever idea, this would require inefficient fragmentation and
reassembly of the router at every hop.

per link state packet. The sequence number is used to reject duplicate copies of an LSP.
Whenever a router receives a new LSP numbered x from source S, the router will remember
number x and will reject any subsequent LSPs received from S with sequence number x.
After the update process does its work, the decision process at every router applies Dijkstra’s
algorithm to the network map formed by the link state packets.

While a router may have a small number of router neighbors, a router may have a large
number of host computers (endnodes) that are connected directly to the router on the same
LAN. For example, in Figure 4.14, router R1 has 500 endnode neighbors E1 ... E500. Large
LANSs may even have a larger number of endnodes. This leads to the following problem.
ProsLEM

At 8 bytes per endnode (6 bytes to identify the endnode and 2 bytes of cost information),
the LSP can be very large (40,000 bytes for 5000 endnodes). This is much too huge for the
link state packet to fit into a maximum-size frame on many commonly used data links. For
example, Ethernet has a maximum size of 1500 bytes and FDDI specifies a maximum of
4500 bytes. This implies that the large LSP must be fragmented into many data link frames
on each hop and reassembled at each router before it can be sent onward. This requires an
expensive reassembly process at each hop to determine whether all the pieces of a LSP have
been received.

It also increases the latency of link state propagation. Suppose that each LSP can fit in M
data link frames, that the diameter of the network is D, and that the time to send a data link
frame over a link is 1 time unit. Then with hop-by-hop reassembly, the propagation time of
an LSP can be D - M. If a router did not have to wait to reassemble each LSP at each hop, the
propagation delay would be only M + D. When the link state protocol was being designed,
these problems were discovered by implementors reviewing the initial specification.

On the other hand, it seems impossible to propagate the fragments independently because
the LSP carries a single sequence number that is crucial to the update process. Simply copy-
ing the sequence number into each fragment will not help, because that will cause the later
fragments to be rejected, since they have the same sequence number as the first fragment.
The problem is to make the impossible possible by shifting computation around in space
to avoid the need for hop-by-hop fragmentation. Changes to the LSP routing protocol are
allowed.

Hint: Does the information about all 5000 endnodes have to be in the same LSP? Consider invoking
P3c to shift computation in space.

4.8 Avoiding Fragmentation of Link State Packets 89

E1—E175———;
////
/
/

\
\

A
E175-E350 ” IS @

N \

AN \

// \\\

E350-E500 * ---3 @

FIGURE 4.15 Avoiding hop-by-hop fragmentation by dividing a large router into pseudo-routers.

SoLurion

If the individual fragments of the original LSP of R1 are to be propagated independently
without hop-by-hop reassembly, then each fragment must be a separate LSP by itself, with a
separate sequence number. This crucial observation leads to the following elegant idea.

Modify the link state routing protocol to allow any router R1 to be multiple pseudo-routers
R1,, R1p, R1. (see Figure 4.15). The original set of endnodes are divided among these pseudo-
routers, so the LSP of each pseudo-router can fit into most data link frames without the need for
fragmentation. For example, if most data link sizes are at least 576 bytes, roughly 72 endnodes
can fit within a data link frame.

How is this concept of a pseudo-router actually realized? In the original LSP propagation,
each router had a 6-byte ID that is placed in all LSPs sent by the router. To allow for pseudo-
routers, we change the protocol to have LSPs carry a 7-byte ID (6-byte router ID 4 1-byte
pseudo-router ID). The pseudo-router ID can be assigned by the actual router that houses all
the pseudo-routers. By allowing 256 pseudo-routers per router, roughly 18,000 endnodes can
be supported per router.

While the LSP propagation treats pseudo-routers separately, it is crucial that route com-
putation treat the separate pseudo-routers as one router. After all, the endnodes are all directly
connected to R1 in our example. But this is easily done, because all the LSPs with the same
first 6 bytes can be recognized as being from the same router.

In summary, the main idea is to shift computation in space (P3c) by having the source
fragment the original LSP into independent LSPs instead of having each data link do the
fragmentation. This is a good example of systems thinking. Needless to say, the implementors
liked this solution (invented by Radia Perlman) much better than the original approach.

EXERCISES

* How can a router assign endnodes to pseudo-routers? What happens if a router initially has
a lot of endnodes (and hence a lot of pseudo-routers) and then most of the endnodes die?
This can leave a lot of pseudo-routers, each of which has only a few endnodes. Why is this
bad, and how can it be fixed?

* As in the relaxed-consistency examples described in Chapter 3, this solution can lead to
some unexpected (but not very serious) temporary inconsistencies. Assuming a solution to
the previous exercise, describe a scenario in which a given router, say, R2, can find (at
some instant) that its LSP database shows the same endnode (say, E1) belonging to two
pseudo-routers, R1, and R1.. Why is this no worse than ordinary LSP routing?

90

CHAPTER 4 Principles in Action

4.9 POLICING TRAFFIC PATTERNS

Some network protocols require that sources never send data faster than a certain rate. Instead
of merely specifying the average rate over long periods of time, the protocol may also specify
the maximum amount of traffic, B, in bits a source can send in any period of T seconds. This
does limit the source to an average rate of B/T bits per second. However, it also limits the
“burstiness” of the users’ traffic to at most one burst of size B every T units of time. For
example, choosing a small value of the parameter 7 limits the traffic burstiness considerably.
Burstiness causes problems for networks because periods of high traffic and packet loss are
followed by idle periods.

If every source meets its contract (i.e., sends no more than the specified amount in the
specified period), the network can often guarantee performance and ensure that no traffic is
dropped and that all traffic is delivered in timely fashion. Unfortunately, this is like saying that
if everyone follows the rules of the road, traffic will flow smoothly. Most people do follow
the rules: some because they feel it is the right thing to do, and many because they are aware
of penalties that they have to pay when caught by traffic police. Thus policing is an important
part of an ordered society.

For the same reason, many designers advocate that the network should periodically police
traffic to look for offenders that do not meet their contracts. Without policing, the offenders
can get an unfair share of network bandwidth.

Assume that a traffic flow is identified by the source and destination address and the traffic
type. Thus each router needs to ensure that a particular traffic flow sends no more than B bits
in any period of T seconds. The simplest solution is for the router to use a single timer that
ticks every T seconds and to count the number of bits sent in each period using a counter per
flow. At the end of each period, if the counter exceeds B, the router has detected a violation.

Unfortunately, the single timer can police only some periods. For example, assume without
loss of generality that the timer starts at time 0. Then the only periods checked are the periods
[0,T],[T,2T],[2T,3T],... . This does not ensure that the source flow does not violate its
contract in a period like [7/2,3T/2], which overlaps the periods that are policed. For example,
in the left side of Figure 4.16, the flow sends a burst of size B just before the timer ticks at time
T and sends a second burst of size B just after the timer ticks at time 7.

Bits

—_— 3 — 3l 3

T T T2 T2 TRTT/2
Time Time
ONE TIMER TWO TIMERS

FIGURE 4.16 The naive use of a single or multiple timers (to check whether a flow sends no more
than B every T seconds) does not catch all violations.

4.9 Policing Traffic Patterns 91

Violation

Bits

—_— | — >
T Random T Random

Time

FIGURE 4.17 Picking a random gap of T seconds between policing intervals allows the router to
catch a violating flow with high probability.

One attempt to fix this problem is for the router to use multiple timers and counters. For
example, as shown on the right of Figure 4.16, the router could use one timer that starts at 0
and a second timer that starts at time 7/2. Unfortunately, the flow can still violate its contract
by sending no more than B in each policed period but sending more than B in some overlapping
period.

For instance, in the right frame of Figure 4.16 an offending flow sends a first burst of B
at the end of the first period and a second burst of B at the start of the third period, sending 2B
within a period slightly greater than 7/2. Unfortunately, neither of the timers will detect the
flow as being a violator. This leads to the following problem.

ProsLEmM

Multiple timers are expensive and do not guarantee that the flow will not violate its traffic
contract. It is easy to see that with even a single timer, the flow can send no more than 2B in
any period of T seconds. One approach is simply to assume that a factor-of-2 violation is not
worth the effort to police. However, suppose that bandwidth is precious on a transcontinental
link and that a factor-of-2 violation is serious. How could a violating flow still be caught using
only a single timer?

Hint: Consider exploiting a degree of freedom (P13) that has been assumed to be fixed in the naive
solution. Do the policing intervals have to start at fixed intervals? Also consider using P3a.

SoLurion

As suggested in the hints, the policing intervals need not be fixed. Thus, there can be an
arbitrary gap between policing intervals. How should the gap be picked? Since a violating
flow can pick its violating period of 7 to start at any instant, a simple idea is to invoke P3a to
yield the following idea (Figure 4.17).

The router uses a single timer of 7" units and a single counter, as before. A policing interval
ends with a timer tick; if the counter is greater than B, a violation is detected. Then a flag is
set indicating that the timer is now used only for inserting a random gap. Then the timer is
restarted for a random time interval between 0 and 7. When the timer ticks, the flag is cleared
and the counter is initialized, and the timer is reset for a period of T to start policing again.

EXERCISES

* Suppose the counter is initialized and maintained during the gap period as well as during
policing periods. Can the router make any valid inference during such a period, even if the
gap period is less than 7 units?

92

CHAPTER 4 Principles in Action

S1| 1
S2| 9
S3 | 30
S4| 24
S5(7

Priority queue
(e.g., heap)

ExtractMax
S3, 30

FIGURE 4.18 Finding the source that is a resource hog.

* (Open Problem): Suppose the flow is adversarial. What is a good strategy for the flow to
consistently violate the contract by as high a margin as possible and still elude the
randomized detector described earlier? The flow strategy can be randomized as well. A
good answer should be supported by a probabilistic analysis.

4.10 IDENTIFYING A RESOURCE HOG

Suppose a device wishes to keep track of resources, like the packet memory allocated to
various sources in a router. The device wants a cheap way to find the source consuming the
most memory so that the device can grab memory back from such a resource hog. Figure 4.18
shows five sources with their present resource consumption of 1, 9, 30, 24, and 7 units,
respectively. The resource hog is S3.

A simple solution to identify the resource hog is to use a heap. However, if the number
of sources is a thousand or more, this may be too expensive at high speeds. Assume that the
numbers that describe resource usage are integers in the range from 1 to 8000. Thus bucket
sort techniques won’t work well because we may have to search 8000 entries to find the
resource hog.

Suppose, instead, that the device does not care about the exact maximum as long as the
result comes within a factor of 2 (perfect fairness is unimportant as in P3b). For example, in
the figure, assume it is fine to get an answer of 24 instead of 30. This leads to the following
problem.

ProBLEmM

A software or hardware module needs to keep track of resources required by various users.
The module needs a cheap way to find the user consuming the most resources. Since ordinary
heaps are too slow, the device designers are willing to relax the system requirements (P3b) to
be off by a factor of 2. Can this relaxation in accuracy requirements be translated into a more
efficient algorithm?

Hint: Consider using three principles: trading accuracy for computation (P3b), using bucket sorting
(P14), and using table lookups (P4h, P2a).

SoLurion

Since the answer can be off by a factor of 2, it makes sense to aggregate users whose
resources are within a factor of 2 into the same “resource usage group.” This can be a win if
the resulting number of groups is much smaller than the original number of users; finding the
largest group then will be faster than finding the largest user. This is roughly the same idea
behind aggregation in hierarchical routing, where a number of destinations are aggregated

4.11 Getting Rid of the TCP Open Connection List 93

1-1 2-3 4-7 8-1516-31

S1(1
1 0 1 1 1 ExtractMax
S2| 9 1 1 1 1
s3 | 30 + + + + ?1‘46231
salz2] st S5 S2 s4 (offby2)
g |
—
S3

FIGURE 4.19 Aggregating users with resource consumption within a factor of 2 leads to a small
number of aggregates whose membership can be represented using a bitmap.

behind a common prefix; this can make routing less accurate but reduces the number of
routing entries. This leads to the following idea (try to work out the details before you read
further).

Binomial bucketing can be used, as shown in Figure 4.19, where all users are grouped into
buckets according to resource consumption, where bucket i contains all users whose resource
consumption lies between 2iand 2t — 1. In Figure 4.19, for instance, users S3 and S4 are
both in the range [16,31] and hence are in the same bucket.

Each bucket contains an unsorted list of the resource records of all the users that fall within
that bucket range. Thus in Figure 4.19, S3 and S4 are in the same list. The data structure also
contains a bitmap, with one bit for every bucket, that is set if the corresponding bucket list is
nonempty (Figure 4.19). Thus in Figure 4.19, the bits corresponding to buckets [1,1], [4,7],
[8,15], and [16,31] are set, while the bit corresponding to [2,3] is clear.

Thus to find the resource hog, the algorithm simply looks for the bit position i correspond-
ing to the rightmost bit set in the bitmap. The algorithm then returns the user at the head of
the bucket list corresponding to position i. Thus in Figure 4.19, the algorithm would return S4
instead of the more accurate S3.

EXERCISES

» How is this data structure maintained? What happens if the resources in a user (e.g., S3)
are reduced from 30 to 16? What kind of lists are needed for efficient maintenance?

* How large is each bitmap? How can finding the rightmost bit set be done efficiently?

4.11 GETTING RID OF THE TCP OPEN CONNECTION LIST

A transport protocol such as TCP [Ste94] in computer X keeps state for every concurrent
conversation that X has with other computers. Recall from Chapter 2 that the technical name
for the shared state between the two endpoints of a conversation is a connection. Thus if a
user wishes to send mail from X to another workstation, Y, the mail program in X must first
establish a connection (shared state) to the mail program in Y. A busy server like a Web server
may have lots of concurrent connections.

The state in a connection consists of things like the numbers of packets sent by X that
have not been acknowledged by Y. Any packets that have not been acknowledged for a long
time must be retransmitted by X. To do retransmission, transport protocols typically have a

94

CHAPTER 4 Principles in Action

Conn1 —>» Conn2 —>» - - - —>» Conn N

Connection list

Hash table

FIGURE 4.20 The x-kernel implementation uses a hash table mapping connections to state (for
packet dispatching) as well as a linked list of connections (for timer processing). The redundant state
causes dilution of the data cache.

periodic timer that triggers the retransmission of any packets whose acknowledgments have
been outstanding for a while.

The freely available Berkeley (BSD) TCP code [Ste94] keeps a list of open connections
(Figure 4.20) to examine on timer ticks in order to perform any needed retransmissions. How-
ever, when a packet arrives at X, TCP at X must also quickly determine which connection the
packet belongs to in order to update the state for the connection. Each connection is identified
by a connection identifier that is carried in every packet.

Relying on the list to determine the connection for a packet would require searching the
entire list, in the worst case; this could be slow for servers with large numbers of connections.
Thus the x-kernel implementation [HP91] added a hash table to the BSD implementation
(P15) to efficiently map from connection identifiers in packets to the corresponding state for
the connection. The hash table is an array of pointers indexed by hash value that points to lists of
connections that hash to the same value. In addition, the original linked list of connections was
retained for timer processing, while the hash table was supposed to speed up packet processing.

Oddly enough, measurements of the new implementation actually showed a slowdown!
Careful measurements traced the problem to the fact that information about connections was
stored redundantly, and this reduced the efficiency of the data cache when implemented on
modern processors (see Chapter 2 for a model of a modern processor). This illustrates question
Q3 in Chapter 3, where an obvious improvement to one part of the system can affect other
parts of the system. Note that while main memory may be cheap, fast memory such as the data
cache is often limited. Commonly used structures such as the connection list should float into
the data cache as long as they are small enough to fit.

The obvious solution is to avoid redundancy. The hash table is needed for fast lookups.
The timer routine must also periodically and efficiently scan through all connections. This
leads to the following problem.

ProBLEmM

Can you get rid of the waste caused by the explicit connection list while retaining the hash
table? It is reasonable to add a small amount of extra information to the hash table. When doing
s0, observe that the original connection list was made doubly linked to allow easy deletion
when connections terminate. But this adds storage and dilutes the data cache. How can a singly
linked list be used without slowing down deletion?

Hint: The first part is easy to fix by linking the valid hash table entries in a list. The second part
(avoiding the doubly linked list, which would require two pointers per hash table entry) is a bit harder.

4.11 Getting Rid of the TCP Open Connection List 95

Connection table replaced
by a singly linked list

L D@

Hash table for
—> C3 connection lookup
with lazy deletion

~—

FIGURE 4.21 Linking the valid hash table entries using forward pointers and lazy deletion. The
dashed lines imply connection records that have been marked as deleted but that will be processed only
in the next iteration.

A connection list consists of nodes, each of which contains a connection ID (96 bits for IP)
plus two pointers (say, 32 bits each) for easy deletion. Since the hash table is needed for fast
demultiplexing, the connection list can be removed if the valid hash table entries are linked together
as shown in Figure 4.21 and a pointer is kept to the head of the list. On a timer tick, the retransmit
routine will periodically scan this list. Scanning the complete hash table is less efficient because the
hash table may have many empty locations.

The naive solution would add two pointers to each valid hash table entry to implement a doubly
linked list. Since these pointers can be hash table indexes instead of arbitrary pointers to memory,
the indexes need not be larger than the size of the hash table: Even the largest hash table storing
connections should require no more than 16 bits, often much less. The naive solution does well,
adding at most 32 bits per entry instead of 160 bits per entry, a savings of 128 bits. However, it
is possible to do better and to add only 16 bits per entry. Consider using lazy evaluation (P2b) and
relaxing the specification (P3).

SoLution

A doubly linked list is useful only for efficient deletions. When a connection (say, Connec-
tion C3 in Figure 4.21) is terminated, the delete routine would ideally like to find the previous
valid entry (i.e., the list containing Connection C1 in Figure 4.20) in order to link the previous
list to the next list (i.e., the list containing C2). This would require each hash table entry to
store a pointer to the previous valid entry in the list.

Instead, consider principle P3, which asks whether the system requirements can be relaxed.
Normally, one assumes that when a connection terminates, its storage must be reclaimed
immediately. To reclaim storage, the hash table entry should be placed in a free list, where it can
be used by another connection. However, if the hash table is a little larger than strictly necessary,
it is not essential that the storage used by a terminated connection be reused immediately.

96

CHAPTER 4 Principles in Action

Given this relaxation of requirements, the implementation can /azily delete the connection
state. When a connection is terminated, the entry must be marked as unused. This requires an
extra bit of state, as in P12, but is cheap. The actual deletion of unused hash table entry E
involves linking the entry before E to the entry after E and also requires returning E to a free
list. However, this deletion can be done on the next list traversal when the traversal encounters
an unused entry.

EXERCISES

» Write pseudocode for the addition of a new connection, the termination of a connection,
and the timer-based traversal.

* How can we get away with singly linked lists for the lists of connections in each hash table
list?

* Hugh Hopeful is always interested in clever tricks that he never thinks through completely.
He suggests a way to avoid back pointers in any doubly linked list. Suppose a node X
needs to be deleted. Normally, the deletion routine is passed a handle to retrieve X, which
is typically a pointer to node X. Instead, Hugh suggests that the handle be a pointer to the
node before X in the linked list (except when X is the head of the list when the handle is a
null pointer). Hugh claims that this allows his implementation to efficiently locate both the
node prior to X and the node after X using only forward pointers. Present a counter-
example to stop Hugh before he writes some buggy code.

4.12 ACKNOWLEDGMENT WITHHOLDING

Transport protocols such as TCP ensure that data is delivered to the destination by requiring
that the destination send an acknowledgment (ack) for every piece of received data. This is
analogous to certified mail. Packets and acks are numbered. Acks are often cumulative; an
ack for a packet numbered N implicitly acknowledges all packets with numbers less than or
equal to V.

Cumulative acks allow the receiver the flexibility of not sending an ack for every received
packet. Instead, acks can be batched (P2¢). For example, in Figure 4.22 a file transfer program
is sending file blocks, one in every packet. Blocks 1 and 2 are individually acknowledged, but
blocks 3 and 4 are acknowledged with a single ack for block 4.

Reducing acks is a good thing for the sender and receiver. Although acks are small, they
contain headers that must be processed by every router and the source and the destination. Fur-
ther, each received packet, however small, can cause an interrupt at the destination computer,
and interrupts are expensive. Thus ideally, a receiver should batch as many acks as possible.
But what should the receiver batching policy be? This leads to the following problem.
ProBLEmM

Ack withholding is difficult at a receiver that is not clairvoyant. In Figure 4.22, for
example, if block 3 arrives first and is processed quickly, how long should the receiver wait
for block 4 before sending the ack for block 37 If block 4 never arrives (because the sender has
no more data to send), then withholding the ack for block 3 would cause incorrect behavior.
The classical solution is to set an ack-withholding timer; when the timer expires, a cumulative
ack is sent. This limits the time that an ack can be withheld.

4.12 Acknowledgment Withholding 97

SENDER RECEIVER

Block 2

File

transfer | Block 3

FIGURE 4.22 The use of cumulative acks allows the receiver to acknowledge several packets
with one ack (e.g., Blocks 3 and 4) but introduces the problem of determining a good receiver ack
policy.

However, the withholding timer also causes problems. Some applications are sensitive to
latency. Adding an ack-withholding timer can increase latency in cases where the sender has
no more data to send. If the transport protocol could be modified, what information could be
added to avoid unnecessary latency and yet allow acks to be effectively batched?

Hint: In an application such as FTP, which software module “knows” that there is more data to be
sent? For ack withholding, which software module would ideally like to know that there is more data
to be sent? Now consider using P9 and P10.

SoLution

In an application such as file transfer, the sender application knows that there is more
data to be sent (e.g., there will be a block 4 after block 3). The sending application may
also be willing to tolerate the latency due to batching of acks. However, it is the transport
module at the receiver that needs to know this information. This observation leads to a simple
proposal.

The sender application passes a bit to the sender transport (in the application—transport
interface) that is set when the application has more data to send. Assume that the transport
protocol can be modified to carry a withhold bit. The sending transport can use the information
passed by the application to set a withhold bit w in every packet that it sends; w is cleared when
the sender wants an immediate ack. The moral, of course, is that it is better for the sender to
telegraph his intentions than for the receiver to make guesses about the future!

For example, in Figure 4.23 the sender transport is informed by the sending file transfer
application that there are four blocks to be sent. Thus the sender transport sets the withhold
bit on the first three packets and clears the bit in the fourth packet. The receiver acts on this
information to send one ack instead of four. On the other hand, an application that is latency
sensitive can choose not to pass any information about data to be sent. Note also that the
withhold bit is a hint; the receiver can choose to ignore this information and send an ack
anyway. Despite its apparent cleverness, this solution is a bad idea in today’s TCP. See the
exercises for details.

98 CHAPTER 4 Principles in Action

SENDER RECEIVER
Block 1, w=1

Block 2, w=1
Block 3, w=1

Block 4, w=0

i

Ack 4

\

FIGURE 4.23 Telegraphing the sender’s intentions using a withhold bit w.

EXERCISES

* Another technique for reducing acks is to piggyback acks on data flowing from the
receiver to the sender. To support this, most transport protocols, such as TCP, have extra
fields in data packets to convey reverse ack information. However, piggybacking has the
same classical trade-off between latency and piggybacking efficiency. How long should
the receiver transport wait for reverse data? On the other hand, there are common
applications where the sender application knows this information. How could the solution
outlined earlier be extended to support piggybacking as well as ack batching?

* Recall that Chapter 3 outlined a set of cautionary questions for evaluating purported
improvements. For example, Q3 asks whether a change can affect the rest of the system.
Why might aggressive ack withholding interact with other aspects of the transport
protocol, such as flow and congestion control [Ste94]?

4.13 INCREMENTALLY READING A LARGE DATABASE

Suppose a user continuously reads a large database stored on a Web site. The Web page can
change and the reader only wants the incremental (P12a) updates since the last read of the
database. Thus, in Figure 4.24 there is a database of highly popular food items that is being read
constantly by readers around the world who wish to keep up with culinary fashion. Fortunately,
food fashions change slowly.

Thus a reader that last read at 2 pm and reads again at 6 pm only wants the differences:
Coke to Pepsi, and Wheaties to Cheerios. If, on the other hand, a different user reads at 3 pm
and then at 6 pm, she, too, only wants the difference: Wheaties to Cheerios. This leads to the
following problem.

ProsLEM

Find a way for the database to efficiently perform such incremental queries. One solution is
to have the database remember what each user has previously read. However, it is unreasonable

4.13 Incrementally Reading a Large Database 99

Last update Last update Last update
2 pm 3pm 6 pm
)))
Coke Pepsi Pepsi
Apples _ Apples _ Apples
Pies g Pies g Pies
Wheaties Wheaties Cheerios
—— —— —

FIGURE 4.24 A slowly changing database of food items shown at three different times: 2 pm, 3
pm, and 6 pm. Notice that only the soft drink has changed from 2 to 3 pm and that only the cereal has
changed from 3 to 6 pm. Thus a reader who is constantly monitoring the database wishes to find only the
differences from the last time the database was read.

for the database to remember what each user has previously read, since there may be millions
of users. Find another solution that is less burdensome for the database program.

Hint: 1f the database does not store any information about the last Read performed by a user, then
it follows that user Read requests must pass some information (P10) about the last Read request
made by the same user. Passing the entire details of the last Read would be overkill and inefficient.
What simple piece of information can succinctly characterize the user’s last request? Now consider
adding redundant state (P12) at the database that can easily be indexed using the information passed
by the user to facilitate efficient incremental query processing.

SoLurion

As said earlier, user Read requests must pass some information (P10) about the last Read
request made by the same user. The most succinct and relevant piece of information about the
last user request is the time at which it was made. If user requests pass the time of the last Read,
then the database needs to be organized to efficiently compute all updates after any given time.
This can be done by storing copies of the database at all possible earlier times. This is clearly
inefficient and can be avoided by storing only the incremental changes (P12a). This leads to
the following algorithm.

Add an update history list to the database, with most recent updates closer to the head of
the list. Read requests carry the time 7T of the last Read, so a Read request can be processed
by scanning the update list from the head to find all updates after 7.

For example, in Figure 4.25 the head of the update history list has the latest change
(compare with Figure 4.24) at 6 pm from Wheaties to Cheerios and the next earliest change at
3 pm from Coke to Pepsi. Consider a Read request that has a last Read time of 5 pm. In this
case, when scanning the list from the head, the request processing will find the 6 pm update
and stop when it reaches the 3 pm update because 3 < 5. Thus the Read request will return
only the first update.

EXERCISES

* If a single entry changes multiple times, a single entry change can be stored redundantly in
the list, which costs space and time. What principle can you use to avoid this redundancy?

100

CHAPTER 4 Principles in Action

Last update
6 pm

()
Wheaties - --»- Cheerios |—>| Coke ---» Pepsi .
{ 6 pm 3pm] Pepsi
t Apples

Update history list Pies

Cheerios
—

FIGURE 4.25 Solving the incremental-update problem using an update history list.

Assume the database is just a collection of records and that you want each record to appear
at most once in the incremental list.

* If the number of records is large or the foregoing trick is not adopted, the incremental list
size will grow very big. Suggest a sensible policy for periodically reducing the size of the
incremental list.

4.14 BINARY SEARCH OF LONG IDENTIFIERS

The next-generation Internet (IPv6) plans to use larger, 128-bit addresses to accommodate more
Internet endpoints. Suppose the goal is to look up 128-bit addresses. Assume the algorithm
works on a machine whose natural word size is 32 bits. Then each comparison of two 128-bit
numbers will take 128/32 = 4 operations to compare each word individually. In general,
suppose each identifier in the table is W words long. In our example, W = 4. Naive binary
search will take W -log N comparisons, which is expensive. Yet this seems obviously wasteful.
If all the identifiers have the same first W — 1 words, then clearly log N comparisons are
sufficient. The problem is to modify binary search to take log N + W comparisons. The
strategy is to work in columns, starting with the most significant word and doing binary search
in that column until equality is obtained in that column. At that point, the algorithm moves to
the next word to the right and continues the binary search where it left off.

Thus in Figure 4.26, which has W = 3, consider a search for the three-word identifier
BMW. Pretend each character is a word. Start by comparing in the leftmost column in the
middle element, as shown by the arrow labeled 1.! Since the B in the search string matches the
B at the arrow labeled 1, the search moves to the right (not shown) to compare the M in BMW
with the N in the middle location of the second column. Since N < M, the search performs the
second probe at the quarter position of the second column. This time the two M’s match and
the search moves rightward and finds W, but (oops!) the search has found AMW, not BMW as
desired. This leads to the following problem.

lMany implementors implement binary search to pick the 4th element from the top (i.e., the first B) as the
middle and not the 5th element as we have done. Keep this somewhat unusual convention in mind while following
the example.

4.14 Binary Search of Long Identifiers 101

€ » W words wide
A C E
A D C
A---2- » M ----- > W
B ° M * w
----- » B -----> N X
Probe 1 B 2 N Y
B N Z
C N D

FIGURE 4.26 Binary search of long identifiers can result in a multiplicative factor of W, the number
of words in an identifier. The naive method of reducing this to an additive factor by moving to the right
on equality fails.

ProsLEmM
Find some state that can be added to each element in each column that can fix this algorithm
to work correctly in log N + W comparisons.

Hint: The problem is caused by the fact that when the search moved to the quarter position in column
2, it assumed that all elements in the quarter of the second column begin with B. This assumption
is false in general. What state can be added to avoid making this false assumption, and how can the
search be modified to use this state?

SoLurion

The trick is to add state to each element in each column, which can constrain the binary
search to stay within a guard range. This is shown in Figure 4.27. In the figure, for each word
like B in the leftmost (most significant) column, add a pointer to the range of all other words
that also contain B in this position. Thus the first probe of the binary search for BMW starts
with the B in BNX. On equality, the search moves to the second column, as before. However,
search also keeps track of the guard range corresponding to the B’s in the first column. The
figure shows that the guard range includes only rows 4 through 7. This guard range is stored
with the first B compared (see arrows in Figure 4.27).

Thus when the search moves to column 2 and finds that M in BMW is less than the N in
BNX, it attempts to halve the range as before and to try a second probe at the third entry (the
M in AMT). However, the third entry is lower than the high point of the current guard range (4
through 6, assuming the first element is numbered 1). So without doing a compare, the search

A C E
A 3 D C
A ----- > M W
B 4> M ----5->W
-------- > N X
Probe 1 EB 2 (N %
B (N A
C N D

FIGURE 4.27 Adding a guard range to every element in a column to allow binary search to work
correctly when switching columns.

102

CHAPTER 4 Principles in Action

tries to halve the binary search range again. This time the search tries entry 4, which is in the
guard range. The search finds equality, moves to the right, and finds BMW, as desired.

In general, every multiword entry Wy, Wa,. .., W, will store a precomputed guard range.
The range for W; points to the range of entries that have Wy, Wa,. .., W; in the first i words.
This ensures that on a match with W; in the ith column, the binary search in column i + 1 will
search only in this guard range. For example, the N entry in BNY (second column) has a guard
range of 5-7, because these entries all have BN in the first two words.

The resulting search strategy takes log, N + W probes if there are N identifiers. The cost
is the addition of two 16-bit pointers to each word. Since most word sizes are at least 32 bits,
this results in adding 32 bits of pointer space for each word, which can at most double memory
usage. Besides adding state, a second dominant idea is to use precomputation (P2a) to trade a
slower insertion time for a faster search. The idea is due to Butler Lampson.

EXERCISE

* (This is harder than the usual exercises.) The naive method of updating the binary search
data structure requires rebuilding the entire structure (especially because of the
precomputed ranges) when a new entry is added or deleted. However, the whole scheme
can be elegantly represented by a binary search tree, with each node having the usual >
and < pointers but also an = pointer, which corresponds to moving to the next column to
the right, as shown earlier. The subtree corresponding to the = pointer naturally represents
the guard range. The structure now looks like a trie of binary search trees. Use this
observation and standard update techniques for balanced binary trees and tries to obtain
logarithmic update times.

4.15 VIDEO CONFERENCING VIA ASYNCHRONOUS TRANSFER MODE

In asynchronous transfer mode (ATM), the network first sets up a virtual circuit through a
series of switches before data can be sent. Standard ATM allows one-to-many virtual circuits,
where a virtual circuit (VC) can connect a single source to multiple receivers. Any data sent
by the source is replicated and sent to every receiver in the one-to-many virtual circuit.

Although it is not standardized, it is also easy to have many-to-many VCs, where every
endpoint can be both a source and a receiver. The idea is that when any source sends data, the
switches replicate the data to every receiver. Of course, the main problem in many-to-many
VCs is that if two sources talk at the same time, then the data from the two sources can be
arbitrarily interleaved at the receivers and cause confusion. This is possibly why many-to-many
VCs are not supported by standards, though it is often easy for switch hardware to support
many-to-many VCs.

Figure 4.28 shows a simple topology consisting of an ATM switch that connects N work-
stations. To showcase the bandwidth of the switch, the system designers have designed a
videoconferencing application. The conferencing application can allow users at any of the N
workstations to have a videoconference with each other. The application should bring up a
screen (on every workstation in the conference) that displays at least the current speaker and
also plays the speech of the current speaker. In addition, in the event of a conversation, it is
desirable to see the expressions of the participants. The designers soon run into the following
problem.

4.15 Video Conferencing via Asynchronous Transfer Mode 103

N 1-to-many VCs

AAA

Y

ATM
switch

A

YYY

FIGURE 4.28 A videoconferencing system that uses an ATM switch with the ability to support
many-to-many virtual circuits.

ProBLEmM

The naivest solution would use up to N2 point-to-point connections between every pair
of participating workstations. A better solution is shown in Figure 4.28. It uses up to N many-
to-many VCs between each participating workstation and the other workstations. The video
and speech of each workstation is connected by a one-to-many virtual circuit to every other
participating workstation. Thus every participating workstation gets the video output of all
participants and the application can choose which one (or ones) to display. Unfortunately, the
ATM switch requires that bandwidth on the switch be statically divided among the N one-to-
many VCs. Given a minimum bandwidth for video quality of B,,;, and a total switch bandwidth
of B, this limits the number of participating workstations to be less than B/B,,;,,. Is there a more
scalable solution?

Hint: Consider exploiting the switch hardware’s ability to support many-to-many VCs (P4c). However,
to prevent confusion, only one source should transmit at a time in any many-to-many VC. Instead
of developing a complex protocol to ensure such a constraint, what hardware can be added (P5) to
ensure this constraint?

SoLurion

As suggested in the hint, the designers chose to exploit the many-to-many VC capability
of the switch to replace N one-to-many VCs with a constant number of many-to-many VCs.
This allowed the fixed switch bandwidth to scale to a large number of participants. However,
this generic idea requires elaboration. How many many-to-many VCs should be used? How
is the potential confusion caused by many-to-many VCs resolved? Here are the details of a
solution worked out by Jon Turner at Washington University.

First, consider the use of a single many-to-many VC named C. A naive solution to the
confusion problem entails a protocol (say, a round-robin protocol) that ensures that only one
workstation at a time connects its video output to C. Such protocols require coordination,
and the coordination adds latency and expense. Instead, as systems thinkers, the designers
observed that, at a minimum, only the current speaker needs to be displayed.

Thus the designers added extra hardware (P5) in the form of a speech detector to the input
at each workstation. If the detector detects significant speech activity at a workstation X, then

104

CHAPTER 4 Principles in Action

Current I - 2 many-to-many VCs

speaker

Previous
speaker

Current
speaker

FIGURE 4.29 Replacing N one-to-many VCs with two many-to-many VCs through the use of a
speech detector and a simple hardware state machine at each input.

the detector connects the video input of X to C; otherwise, the video input of X is not connected
to C. Since this hardware was quite cheap, the extra scalability came at a reasonable price.

Next, the designers observed that keeping a video image of the last speaker provides visual
continuity in the expected case when there is a dialog between two participants. Thus instead
of one many-to-many VC, they used two many-to-many VCs, C and L, one for the current
speaker and one for the last speaker, as shown in Figure 4.29.

EXERCISES

* Write pseudocode (using some state variables) for the hardware at each workstation to
update its connections to C and L. Assume the speech detector output is a function.

* What happens if more than one user speaks at one time? What could you add to the
hardware state machine so that the application displays something reasonable? For
instance, it would be unreasonable for the images of the two speakers to be morphed
together in this case.

PART 1l

Playing with Endnodes

The supreme accomplishment is to blur the line between work and play.

— ARNOLD TOYNBEE

The second part of the book deals with endnode algorithmics. This is the applica-
tion of network algorithmics to building fast protocol implementations at endnodes,
especially at servers. If you like, you can think of it as a systematic collection of
techniques for building fast servers. The techniques are applied mostly in a software
setting. Much of it has to do with getting around operating system structure to enable
high-speed data transfers. We study how to reduce the overhead incurred by copying,
control transfer, demultiplexing, timers, and other generic protocol-processing tasks.

CHAPTER 5

Copying Data

Copy from one, it’s plagiarism; copy from two, it’s research.

— WILSON MIZNER

Imagine an office where every letter received is first sent to shipping and receiving. Shipping
and receiving opens the letter, figures out which department it’s meant for, and makes a
photocopy for their records. They then hand it to the security department, which pores over
every line of the letter, looking for signs of industrial esponiage. To maintain an audit trail
for possible later use, the security department also makes a photocopy of the letter, for good
measure. Finally, the letter, somewhat the worse for wear, reaches the intended recipient in
personnel.

You would probably think this a pretty ludicrous state of affairs, worthy to be featured in
a Charlie Chaplin movie. But then you might be surprised to learn that most Web servers, and
computers in general, routinely make a number of extra copies of received and sent messages.
Unlike photocopies, which take up only a small amount of paper, power, and time, extra
copying in a computer consumes two precious resources: memory bandwidth and memory
itself. Ultimately, if there are k copies involved in processing a message in a Web server, the
throughput of the Web server can be k times slower.

Thus this chapter will focus on removing the obvious waste (P1) involved in such unnec-
essary copies. A copy is unnecessary if it is not imposed by the hardware. For example, the
hardware does require copying bits received by an adaptor to the computer memory. However,
as we shall see, there is no essential reason (other than those imposed by conventional operating
system structuring) for copying between application and operating system buffers. Eliminating
redundant copies allows the software to come closer to realizing the potential of the hardware,
one of the goals of network algorithmics.

This chapter will also briefly talk about other operations (such as checksumming and
encryption) that touch all the data in the packet and other techniques to more closely align
protocol software to hardware constraints, such as bus bandwidths and caches. While we will
briefly repeat some of the relevant operating systems and architectural facts, it will help the
reader to be familiar with endnode architecture and operating system models of Chapter 2.
In summary, this chapter surveys techniques for reducing the costs of data manipulation without
sacrificing modularity and without major changes to operating system design.

This chapter is organized as follows. Section 5.1 describes why and how extra data copies
occur. Section 5.2 describes a series of techniques to avoid copies by local restructuring of the
operating system and network code at an endnode. Section 5.3 shows how to avoid both copy

107

108 CHAPTER 5 Copying Data

and control overhead for large transfers, using remote DMA techniques that involve protocol
changes.

Section 5.4 broadens the discussion to consider the file system in, say, a Web server, and
it shows how to avoid wasteful copies between the file cache and the application. Section 5.5
broadens the discussion to consider other operations that touch all the data, such as check-
summing and encryption, and introduces a well-known technique called integrated layer
processing. Section 5.6 broadens the discussion beyond copying to show that without careful
consideration of cache effects, instruction cache effects can swamp the effects of copying for
small messages.

Although this is the first chapter of the book that is devoted to techniques for overcoming
a specific bottleneck, the techniques are based on the principles described in Part I of the book.
The techniques and the corresponding principles are summarized in Figure 5.1.

Quick Reference Guide

The most useful sections for an implementor today are as follows. Section 5.3.1 on remote direct
memory access (RDMA) describes techniques to avoid memory copying overheads in computing and
storage clusters. Section 5.4.2 describes a fairly radical way, called 10-lite (involving some operating
system surgery), to improve the performance of a server by consistently passing buffers by reference,
even between the file and networking systems. 10-lite builds on an idea called fbufs that is introduced in
Section 5.2.3. Section 5.4.3 describes a less radical but effective method called /0 splicing to directly
connect 1/0 subsystems. Finally, Section 5.6.1 describes techniques to improve I-cache performance.

fNumber Principle Used In

P13 [Memory location (on adaptor) as degree of freedom | Afterburner

P2b [Lazy copying using copy-on-write Mach

P11a |[Cache VM mappings per path Solaris fbufs
P7 Uniform fbuf space across processes

P10 [Pass buffer name and offset in packet RDMA systems
P4 VM mapping to avoid copies in cache Flash

and application

P11a [Cache VM mappings per path Flash-lite
Buffer sequence numbers enable checksum caching

P6 New system call that splices /O Sendfile()

P1 Avoid repeated memory access across ILP

manipulations

P13 Layout code to minimize i-cache misses x-kernel

P13 |Layer processing order as degree of freedom LDRP

\. J

FIGURE 5.1 Techniques for copy avoidance and cache efficiency that are discussed in this chapter,
together with the corresponding principles.

5.1 Why Data Copies 109

CPU MEMORY
4 \
W i ati Copy 3
eb server application 221 Serverbuffer |<€--,
Lwrite() read()! | i
Kernel i TCP/IP File system "> Socket buffer Copy 2
\ J ; .
File cache buffer [5%
E » MEMORY BUS
: “Copy 1
Copyd | ' ' DISK
momee e
- /O BUS
(NETWORK ADAPTORJ
Network

FIGURE 5.2 Redundant copies involved in handling a GET request at a server.

5.1 WHY DATA COPIES

In Figure A.1 in the Appendix, we describe how TCP works in the context of a Web server.
Figure A.1 only shows the sending of the GET request for a file, followed by the file data itself
in two TCP segments. What Figure A.1 does not show is how the Web server processes the GET
request. In this chapter, we ignore the control transfer required to transfer the request to some
application server process. Instead, Figure 5.2 shows the sequence of data transfers involved in
reading file data from the disk (in the worst case) to the sending of the corresponding segments
via the network adaptor.

The main hardware players in Figure 5.2 are the CPU, the memory bus, the I/O bus, the
disk, and the network adaptor. The main software players are the Web server application and
the kernel. There are two main kernel subsystems involved, the file system and the networking
system. For simplicity, the picture shows only one CPU in the server (many servers are
multiprocessors) and focuses only on requests for static content (many requests are for dynamic
content that is served by a computer-generated imagery (CGI) process).

Intuitively, the story is simple. The file is read from disk into the application buffer via,
say, a read() system call. The combination of the HTTP response and the application buffer
is then sent to the network over the TCP connection to the client by, say, a write() system
call. The TCP code in the network subsystem of the kernel breaks up the response data into

IThe picture makes it appear that the code for the file system and the TCP/IP code is on the processor. In reality,
the code is also stored in memory and is fetched by the processor. However, the portion of the code that fits into the
processor instruction cache indeed can be considered to be in the processor.

110

CHAPTER 5 Copying Data

bite-size segments and transmits them to the network adaptor after adding a TCP checksum to
each segment.

In practice, the story is often more messy in the details. First, the file is typically read
into a piece of kernel memory, called the file cache, in what we call Copy 1. This is a good
idea because subsequent requests to a popular file can be served from main memory without
slow disk I/O. The file is then copied from the file cache into the Web server application buffer
in Copy 2 shown in Figure 5.2. Since the application buffer and the file cache buffer are in
different parts of main memory, this copy can only be done by the CPU’s reading the data from
the first memory location and writing into the second location across the memory bus.

The Web server then does a write() to the corresponding socket. Since the application
can freely reuse its buffer (or even deallocate it) at any time after the write(), the network
subsystem in the kernel cannot simply transmit out of the application buffer. In particular, the
TCP software may need to retransmit part of the file after an unpredictable amount of time, by
which time the application may wish to use the buffer for other purposes.

Thus UNIX (and many other operating systems) provides what is known as copy semantics.
The application buffer specified in the write() call is copied to a socket buffer (another buffer
within the kernel, at a different address in memory than either the file cache or the application
buffer). This is called Copy 3 in Figure 5.2. Finally, each segment is sent out to the network
(after IP and link headers have been pasted) by copying the data from the socket buffer to
memory within the network adaptor. This is called Copy 4.

In between, before transmission to the network, the TCP software in the kernel must make
a pass over the data to compute the TCP checksum. Techniques for efficiently implementing
the TCP checksum are described in Chapter 9, but for now it suffices to think of the TCP
checksum as essentially computing the sum of 16-bit words in each TCP segment’s data.

Each of the four copies and the checksum consume resources. All four copies and the
checksum calculation consume bandwidth on the memory bus. The copies between memory
locations (Copies 2 and 3) are actually worse than the others because they require one Read and
one Write across the bus for every word of memory transferred. The TCP checksum requires
only one Read for every word and a single Write to append the final checksum. Finally, Copies
1 and 4 can be as expensive as Copies 2 and 3 if the CPU does the heavy lifting for the copy
(so-called programmed I/O); however, if the devices themselves do the copy (so-called DMA),
the cost is only a single Read or Write per word across the bus.

The copies also consume I/O bus bandwidth and ultimately memory bandwidth itself.
A memory that supplies a word of size W bits every x nanoseconds has a fundamental limit
on throughput of W/x bits per nanosecond. For example, even assuming DMA, these copies
ensure that the memory bus is used seven times for each word in the file sent out by the server.
Thus the Web server throughput cannot exceed 7/7, where T is the smaller of the speed of the
memory and the memory bus.

Second, and more basically, the extra copies consume memory. The same file (Figure 5.2)
could be stored in the file cache, the application buffer, and the socket buffer. While memory
seems to be cheap and plentiful (especially when buying a PC!), it does have some limits, and
Web servers would like to use as much as possible for the file cache to avoid slow disk I/O.
Thus triply replicating a file can reduce the file cache by a factor of 3, which in turn can
dramatically reduce the cache hit rate and, hence, overall server performance.

In summary, redundant copies hurt performance in two fundamental and orthogonal ways.
First, by using more bus and memory bandwidth than strictly necessary, the Web server runs

5.2 Reducing Copying via Local Restructuring 111

slower than bus speeds, even when serving documents that are in memory. Second, by using
more memory than it should, the Web server will have to read an unduly large fraction of files
from disk instead of from the file cache.

Note also that we have only described the scenario in which static content is served.
In reality the SPECweb benchmarks assume that 30% of the requests are for dynamic content.
Dynamic content is often served by a separate CGI process (other than the server application)
that communicates this content to the server via some interprocess communication mechanism,
such as a UNIX pipe, which often involves another copy.

Ideally, all these pesky extra bus traversals should be removed. Clearly, Copy 1 is not
required if the data is in cache and so we can ignore it (if it’s not in cache, the server runs
at disk speed, which is too slow anyway). Copy 2 seems unnecessary. Why can’t the data be
sent directly from the file cache memory location to the network? Similarly, Copy 3 seems
unnecessary. Copy 4 is unavoidable.

5.2 REDUCING COPYING VIA LOCAL RESTRUCTURING

Before tackling the full complexity of eliminating all redundant copies in Figure 5.2, this
section starts by concentrating on Copy 3, the fundamental copy made from the application to
kernel buffers (or vice versa) when a network message is sent (received). This is a fundamental
issue for networking, independent of file system issues. It also turns out that general solutions
that eliminate all redundant I/O copies (Section 5.4) build on the techniques developed in this
section.

This section assumes that the protocol is fixed but the local implementation (at least
the kernel) can be restructured. The goal, of course, is to perform minimal restructuring in
order to continue to leverage the vast amount of investment in existing kernel and application
software. Section 5.2.1 describes techniques based on exploiting adaptor memory. Section 5.2.2
describes the core idea behind copy avoidance (by remapping shared physical pages) and its
pitfalls. Section 5.2.3 shows how to optimize page remapping using precomputation and
caching based on I/O streams; however, this technique involves changing the application
programming interface (API). Finally, Section 5.2.4 describes another technique, one that
uses virtual memory but does not change the APL

5.2.1 Exploiting Adaptor Memory
The simple idea here is to exploit a degree of freedom (P13) by realizing that memory can be
located anywhere on the bus in a memory-mapped architecture. Recall from Chapter 2 that
memory mapping means that the CPU talks to all devices, such as the adaptor and the disk, by
reading and writing to a portion of the physical memory space that is located on the device.
Thus while kernel memory is often resident on the memory subsystem, there is no reason
why part of the kernel memory cannot be on the adaptor itself, which typically contains some
memory. By leveraging off the existing adaptor memory (P4) and utilizing this degree of
freedom in terms of placement of kernel memory, we can place kernel memory on the adaptor.
The net result is that once the data is copied from application to kernel memory it is already
in the adaptor and so does not need to be copied again for transmission to the network. This is
shown in Figure 5.3.

112 CHAPTER 5 Copying Data

CPU MEMORY

Application Server buffer

Lwrite()
Kernel i TCP/IP

' N———
; MEMORY BUS
Single copy E
(piggyback checksum in software !
or use checksum hardware) |
| |
- : 1/0 BUS

Socket buff <

ocket butter NETWORK ADAPTOR

Net\'fvork

FIGURE 5.3 The Witless (afterburner) approach eliminates the need for the kernel-to-adaptor copy
by placing kernel buffers in the adaptor.

Compare Figure 5.3 to Figure 5.2. Notice that Figure 5.3 ignores any disk-to-memory
transfer. Essentially, the useless Copy 3 in Figure 5.2 is now combined with the essential Copy
4 in Figure 5.2 to form a single copy in Figure 5.3.

What about the checksum? We will see this in more general form in Section 5.5, but
the main idea is to use principle P2¢, expense sharing. When data is being moved from
the application buffer to the adaptor resident kernel memory by the processor (using so-called
programmed I/O, or PIO, which is I/O under processor control), the CPU is reading every word
of the packet anyway. Since such bus reads are expensive, the CPU might as well piggyback
the checksum computation with the copy process by keeping a register that accumulates the
running sum of words that are transferred.

This idea, first espoused by Van Jacobson and called the Witless (or simple-minded)
approach, was never built. Later this approach was used by Banks and Prudence [BP93] at
Hewlett-Packard labs and called the Afterburner adaptor. In the Afterburner approach, the
CPU did not transfer data from memory to the adaptor. Instead, the adaptor did so, using
so-called direct memory access, or DMA. Thus since the CPU is no longer involved in the
copy process, the adaptor should do the checksum. The Afterburner adaptor had special (but
simple) checksum hardware that checksummed words as the DMA transfer takes place.

While the idea is a good one, it has three basic flaws. First, it implies that the network
adaptor needs lots of memory to provide support for many high-throughput TCP connections
(which require large window sizes); the memory required may make the adaptor more expen-
sive than one wishes. Second, in the Witless approach, where the checksum is calculated by
the CPU, doing the checksum while copying a received packet to the application buffer can

5.2 Reducing Copying via Local Restructuring 113

imply that corrupted data can be written to application buffers. Though this can be discovered
at the end, when the checksum does not compute, it does cause some awkwardness to prevent
applications from reading incorrect data. A third problem with delayed acknowledgments is
explored in the exercises.

5.2.2 Using Copy-on-Write
While the basic idea in the Witless approach can be considered to be eliminating the kernel-
to-adaptor copy, the alternate idea pursued in the next three subsections is to eliminate the
application-to-kernel copy (in most cases) using virtual memory remappings. Recall that one
reason for the separate copy was the possibility that the application would modify the buffer and
hence violate TCP semantics. A second reason is that the application and kernel use different
virtual address spaces.

Some operating systems (notably Mach) offer a facility called copy-on-write (COW) that
allows a process to replicate a virtual page in memory at low cost. The idea is to make the copy
point to the original physical page P from which it was copied. This only involves updating a
few descriptors (a few words of memory) instead of copying a whole packet (say, 1500 bytes
of data). However, the nice thing about copy-on-write is that if the original owner of the data
modifies the data, the OS will detect this condition automatically and generate two separate
physical copies, P and P’. The original owner now points to P and can make modifications
on P; the owner of the copied page points to the old copy, P’. This works fine if the vast majority
of times pages are not modified (or only a few pages are modified) by the original owner.

Thus in a copy-on-write system, the application could make a copy-on-write copy for the
kernel. In the hopefully rare event that the application modifies its buffer, the kernel makes
an (expensive) physical copy. However, that should be uncommon. Clearly, we are using lazy
evaluation (P2b) to minimize overhead in the expected case (P11). Finally, in Figure 5.4 the
checksum can be piggybacked either with the copy to or from adaptor memory or by using
CRC hardware on the adaptor.

Unfortunately, many operating systems, such as UNIX? and Windows, do not offer copy-
on-write. However, much of the same effect can be obtained by understanding the basis behind
the copy-on-write service, which is the use of virtual memory.

IMPLEMENTING COPY-ON-WRITE

Recall from Chapter 2 that most modern computers use virtual memory. Recall that the pro-
grammer works with an abstraction of infinite memory that is a linear array into which she (or
more accurately her compiler) assigns variable locations, so, say, location X would be location
1010 in this imaginary (or virtual) array. These virtual addresses are then mapped into physical
memory (which can reside on disk or in main memory) using a page table (Chapter 2).

For any virtual address, the high-order bits (e.g., 20 bits) form the page number, and the
low-order bits (e.g., 12 bits) form the location within a page. Main memory is also divided into
physical pages such that (say) every group of 2!2 memory words is a physical page. Recall
that a virtual address is mapped to a physical address by mapping the corresponding virtual
page to a physical page number by looking up a page table indexed by the virtual page number.
If the desired page is not memory resident, the hardware generates an exception that causes the

2System V UNIX does implement copy-on-write when a process is forked. The pages shared between the child
and the parent process are shared with the copy-on-write bit set.

114 CHAPTER 5 Copying Data

CPU MEMORY

Application Server plus ---.

: ket buff i
Lwrite() : socket buffer '

! E Copy to a spare page
Kernel i TCP/IP + only if application writes

\ : i
: <’

MEMORY BUS

Single copy E
(piggyback checksum in software ! ' ,
or use checksum hardware) !
; /0 BUS
<--------)
NETWORK ADAPTOR

Net\;vork

FIGURE 5.4 Using copy-on-write.

operating system to read the page from disk into main memory. Recall also that the overhead of
reading page tables from memory can be avoided in the common case using a TLB (translation
look-aside buffer), which is a processor resident cache.

Looking under the hood, virtual memory is the basis for the copy-on-write scheme. Sup-
pose virtual page X is pointing to a physical memory-resident page P. Suppose that the
operating system wishes to replicate the contents of X onto a new virtual page, Y. The hard
way to do this would be to allocate a new physical page, P’, to copy the contents of P to P/,
and then to point Y to P’ in the page table. The simpler way, embodied in copy-on-write, is
to map the new virtual page, Y, back to the old physical page, P, by changing a page table
entry. Since most modern operating systems use large page sizes, changing a page table entry
is more efficient than copying from one physical page to another.

In addition, the kernel also sets a COW protection bit as part of the page table entry for the
original virtual page, X. If the application tries to write to page X, the hardware will access the
page table for X, notice the bit set, and generate an exception that calls the operating system.
At this point the operating system will copy the physical page, P, to another location, P/, and
then make X point to P’, after clearing the COW bit. ¥ continues to point to the old physical
page, P. While this is every bit as expensive as physical page copying, the point is that this
expense is incurred only in the (hopefully) rare case when an application writes to a COW page.

The explanation of how COW works should present the following opportunity. While
operating systems such as UNIX and Windows do not offer COW, they still offer virtual
memory. Virtual memory (VM) presents a level of indirection that can be exploited by changing
page table entries to finesse physical copying. Thus much of the core idea behind Figure 5.4
can be reused in most operating systems. All that remains is to find an alternate way to protect
against application Writes in place of COW protection.

5.2 Reducing Copying via Local Restructuring 115

)
Packet

data
—

) *\)
Process 1 Write 5 Process 2
Page Table ' Page Table

vPiot_ 7/ ~ tvps
~——— ~———

FIGURE 5.5 Basic operations involved in making a copy of a page using virtual memory.

5.2.3 Fhbufs: Optimizing Page Remapping
Even ignoring the aspect of protecting against application writes, Figure 5.5 implies that a
large buffer can be transferred from application to kernel (or vice versa) with a Write to the
page table. This simplistic view of page remapping is somewhat naive and misleading.
Figure 5.5 shows a concrete example of page remapping. Suppose the operating system
wishes to make a fast copy of data of Process 1 (say, the application) in Virtual Page (VP) 10
to some virtual page (e.g., VP 8) in the page table of Process 23’s (say, the kernel). Naively,
this seems to require only changing the page table entry corresponding to Virtual Page 8 in
Process 2 to point to the packet data to which that Virtual Page table entry 10 in Process 1
already points. However, there are several additional pieces of overhead that are glossed over
by this simple description.

* Multiple-level page tables: Most modern systems use multiple levels of page table
mappings because it takes too much page table memory to map from, say, 20 bits of a
virtual page. Thus the real mapping may require changing mappings in at least a first- and
a second-level page table. For portability, there are also both machine-independent and
machine-dependent tables. Thus there are several Writes involved, not just one.

* Acquiring locks and modifying page table entries: Page tables are shared resources
and thus must be protected using locks that must be acquired and released.

» Flushing translation look-aside buffers (TLBs): As we said earlier, to save translation time,
commonly used page table mappings are cached in the TLB. When a new virtual page
location for VP 8 is written, any TLB entries for VP 8 must be found and flushed (i.e.,
removed) or corrected.

* Allocating VM in destination domain: While we have assumed that virtual memory
location 8 was the location for the destination page, some computation must be done to
find a free page table entry in the destination process before the copy can take place.

» Locking the corresponding pages: Physical pages can be swapped out to disk to make
room for other virtual pages currently on disk. To prevent pages from being swapped out,
pages have to be locked, which is additional overhead.

All these overheads are exacerbated in multiprocessor systems. The net result is that while
the page table mapping can seem very good (the mapping seems to take a constant time,
independent of the size of the packet data), the constant factors (see Q4 in the discussion of
caveats) are actually a big overhead. This was experimentally demonstrated by experiments

116

CHAPTER 5 Copying Data

performed by Druschel and Peterson [DP93] in the early 1990s. In the decade that followed,
if anything, page mapping overheads have only increased.

Druschel and Peterson, however, did not stop with the experiments but invented an oper-
ating system facility called fbufs (short for “fast buffers”), which actually removes most or
all of the four sources of page remapping overhead. Their idea can be described as follows in
terms of the principles used in this book.

FBUFS

The main idea in fbufs is to realize that if an application is sending a lot of data packets to
the network through the kernel, then a buffer will probably be reused multiple times, and
thus the operating system can precompute (P2a) all the page mapping information for the
buffer ahead of time and then avoid much of the page mapping overhead during the actual
data transfer. Alternatively, the mappings can be computed lazily (P2b) when the data transfer
is first started (causing high overhead for the first few received packets) but can be cached
(P11a) for the subsequent packets. In this version, page remapping overheads are eliminated
in the common case.

The simplest way to do this would be to use what is called shared memory. Map a number of
pages Pi,. .., P, into the virtual memory tables of the kernel as well as all sending applications
A1,...,Ax. However, this is a bad idea, because we now can have (say) application A reading
the packets sent by application A».> This would violate security and fault-isolation goals.

A more secure notion would be to reserve (or lazily establish) mapped shared pages for
each application-to-kernel transfer, and vice versa. For example, there could be one set of
buffers (pages) for FTP, one set for HTTP, and so on. More generally, some operating systems
define multiple security subsystems besides kernel and application. Thus the fbuf designers call
a path a sequence of security domains. For our simple examples described earlier, it suffices to
think of a path as either kernel, application or application, kernel (e.g., FTP, kernel or kernel,
HTTP). We will see why paths are unidirectional — that is, why each application needs two
paths in both directions — in a minute.

Figure 5.6 shows a more complex example of paths, where the Ethernet software is imple-
mented as a kernel-level driver, the TCP/IP stack is implemented as a user-level security
domain, and, finally, the Web application is implemented at the application layer. Each security
domain has its own set of page tables. The receiving paths are Ethernet, TCP/IP, Web and
Ethernet, OSIL, FTP.

To implement the fbuf idea the operating system could take some number of physical
pages Pi,...,Pr and premap them onto the page tables of the Ethernet driver, the TCP/IP
code, and the Web application. The same operation could be performed with a different set
of physical pages for Ethernet, OSI, and FTP. Thus we are using Principle 2a to precompute
mappings. Reserving physical pages for each path could be wasteful, because traffic is bursty;
instead, a better idea is to lazily establish (P2b) such mappings when a path becomes busy.

Lazy establishment avoids the overheads of updating multiple levels of page tables, acquir-
ing locks, flushing TLBs, and allocating destination virtual memory after the first few data
packets arrive and are sent. Instead, all this work is done once, when the transfer first starts.
To make fbufs work, it is crucial that when a packet arrives, the lowest-level driver (or even the

31t is worth knowing that the virtual memory hardware normally enforces this security constraint by making
sure that any accesses by A can access only physical pages mapped into the page tables of A;.

5.2 Reducing Copying via Local Restructuring 117

m

©omain2) X ... Ao
Path 1 Path 2
oy =)

(Domain 1)

(Domain 0)
Ethernet T3 Path 1 Cached buffers
12 Path 2 Cached buffers

FIGURE 5.6 Premapping or lazily establishing buffer pages into the page tables of each domain in
a path avoids the expense of page remapping in the real-time path, after the initial setup.

adaptor itself) be able to quickly figure out what the complete path the packet will be mapped
to when receiving a packet from the network. This function, called early demultiplexing, is
described in detail in Chapter 8. Intuitively, in Figure 5.6 this is done by examining all the
packet headers to determine (for instance) that a packet with an Ethernet, IP, and HTTP header
belongs to Path 1.

The driver (or the adaptor) will then have a list of free buffers for that path, which will
be used by the adaptor to write the packet to; when the adaptor is done it will pass the buffer
descriptor to the next application in the path. Note that a buffer descriptor is only a pointer to
a shared page, not the page itself. When the last application in the path finishes with the page,
it passes it back to the first application in the path, where it again becomes a free buffer, and
SO on.

At this point, the reader may wonder why paths are unidirectional. Paths are made unidi-
rectional because the first process on each path is assumed to be a writer and the remaining
processes are assumed to be readers. This can be enforced during the premapping by setting
a write-allowed bit for the first application in its page table entry, and a read-only bit in the
page table entries of all the other applications. Clearly, this is asymmetric in both directions
and requires unidirectional paths. But this does ensure some level of protection.

This is shown in Figure 5.7 with just two domains in a path. Note that the writer writes
packets into buffers described by a queue of free fbufs and then puts the written descriptor on to
a queue of written fbufs that are read by the next application (only one is shown in Figure 5.7).

So far, it is possible that premapped page 8 in the first application on a path is mapped to
page 10 in the second application. This is painful because when the second application reads
a descriptor for page 8, it must somehow know that it corresponds to its own virtual page 10.
Instead, the designers used the principle of avoiding unnecessary generality (P7) and insisted
that the fbuf get mapped to the same virtual page in all applications on the path. This can be
done by reserving some number of initial pages in the virtual memory of all processes to be
fbuf pages.

At this point, we may feel that we are finished, but there are still a few thorny problems.
To achieve protection, we allowed only a single writer and had multiple readers. However,
that means that pages are immutable; only the writer can touch them. But what about adding
headers when one goes down the stack. The solution to this problem is shown in Figure 5.8,
where a packet is really an aggregate data structure with pointers to individual fbufs so that
headers can be added by adding an ordinary buffer or an fbuf to the aggregate.

118

CHAPTER 5 Copying Data

Packet
data

Writer Reader
) SR
Process 1 Written Process 2
Page Table once Page Table
VP10 w /| initially [N g —tvp10
(preallocated)

Written fbufs

Free fbufs

FIGURE 5.7 The single writer optimization.

AGGREGATE OBJECT

Prepend header X~ — Strip header

FIGURE 5.8 Using aggregate objects to allow adding layers to add headers while allowing only a
single writer.

.
.
.

This is not as big a deal as it sounds because the commonly used UNIX mbufs (see
Chapter 9) are also composites of buffers strung together.*

So far, the fbuf scheme has used the underlying VM mapping ideas in Figure 5.4 except
that it has made them more efficient by amortizing the mapping costs over (hopefully) a large
number of packet transfers. Page table updates are removed in the common case. This can be
done in ordinary operating systems. In fact, after the fbufs paper, Thadani and Khalidi [TK95]
extended the idea and implemented it in Sun’s Solaris operating system. But this begs the
question: How are standard copy semantics preserved? What if the application does a Write?
A standard operating system such as UNIX cannot depend on copy-on-write as in Figure 5.4.

The ultimate answer in fbufs is that standard copy semantics are not preserved. The API
is changed. Application writers must be careful not to write to an fbuf when it has been handed
to the kernel until the fbuf is returned by the kernel in a free list. To protect against buggy or
malicious code, the kernel can briefly toggle the write-enable bit when an fbuf is transferred

4To be precise, UNIX mbufs are strung together in a linear topology, while buffer aggregates form a more
general tree topology, but the performance costs due to chaining and indexing are similar.

5.2 Reducing Copying via Local Restructuring 119

from the application to the kernel; the bit is set again when the fbuf is given back. If the
application does a Write when it does not have write permission, an exception is generated
and the application crashes, leaving other processes unaffected.

Since the toggling of the write-enable bits requires some of the overhead that fbufs worked
hard to avoid, the fbuf facility also allows another form of fbufs, called volatile. Observe that
if the writer is a trusted entity (such as the kernel), then there is no point enforcing write
protection. If the kernel has a bug that causes it to make unexpected writes, the whole system
will crash anyway.

Changing the API in this way sounds dramatic. Does this mean that the huge amount
of existing UNIX application software (which uses the networking stack) must be rewritten?
Since this is infeasible, there are several ways out. First, the existing API can be augmented
with new system calls. For example, the Solaris extensions in Thadani and Khalidi [TK95] add
auf_write() call in addition to the standard write() call. Applications interested in performance
can be rewritten using these new calls.

Second, the extensions can be used in implementing common I/O substrates (such as the
UNIX stdio library) that are a part of several applications. Applications that are linked to this
library do not need to be changed and yet can potentially benefit in performance.

Eventually, the pragmatic consideration is not whether the API changes but how hard it is
to modify applications to benefit from the API changes. The experiences described in Thadani
and Khalidi [TK95] and Pai et al. [PDZ99b] for a number of applications indicate that the
changes required in an application to migrate to an fbuf-like API are small and localized.

5.2.4 Transparently Emulating Copy Semantics

One reaction to the new fbuf API is simply to modify applications to gain performance. It is
worth pointing out that while the changes may be simple and localized, the mental model that
a programmer has of a buffer changes in a fairly drastic way. In the standard UNIX API, the
application assigns buffer addresses; in fbufs, the buffers are assigned by the kernel from the
fbuf address space. In the standard UNIX API, the programmer can design the buffer layout
anyway he pleases, including the use of contiguous buffers. In fbufs, data received from
the network can be arbitrarily scattered into pieces linked together by a buffer aggregate, and
the application programmer must deal with this new buffer model chosen by the kernel.

Thus a reasonable question is whether many of the benefits of fbufs can be realized
without modifying the UNIX API. Theoretically, application software will continue to run, and
one might get performance without recoding applications.

In a series of papers, Brustoloni and Steenkiste (e.g., Ref. BS96) showed that there
is a clever mechanism, which they call TCOW (for transient copy-on-write), that makes this
possible. While preserving the API theoretically allows unmodified applications to enjoy better
performance, there is no experimental confirmation of this possibility. Thus in practice, it is
likely that applications have to be modified (perhaps in more intuitive ways) to take advantage
of the underlying kernel implementation changes. Nevertheless, the idea is simple and clever
and worth pointing out.

Recall that the standard API requires allowing an application to write or deallocate a
buffer passed to the kernel at any time. The fbuf design changes the API by making it illegal
for an application to do this. Instead, to preserve the API while doing only virtual memory
mappings, the operating system must deal with these two potential threats, application writes
and application deallocates, during the period the buffer is being used by the kernel to send or

120

CHAPTER 5 Copying Data

retransmit a packet. In the Genie system [BS96], VM mapping is used, as in fbufs, but these
two threats are dealt with as follows.

Countering Write Threats by Modifying the VM Fault Manager: First, when an application
does a Write, the buffer is marked specially, as Read Only. Thus if the application does a Write,
the VM fault manager is invoked. Normally, this should cause an exception. But, of course,
if the OS is preserving copy semantics, this should not be an error. Thus Genie modifies the
exception handler as follows. First, for each such page/buffer, Genie keeps track of whether
there are outstanding sends (sends to the network) using a simple counter that is incremented
when the Send starts and decremented when the Send completes. Second, the fault handler is
modified to make a separate copy of the page for the application (which incorporates the new
Write) if there is an outstanding Send. Of course, this makes performance suffer, but it does
preserve the standard copy semantics of APIs such as UNIX. This technique, called transient
copy-on-write protection, is invoked only when needed — when the buffer is also being read
out by the network subsystem.

Countering Deallocate Threats by Modifying the Pageout Daemon: In a standard virtual
memory system, there is a process that is responsible for putting deallocated pages into a free
list from which pages may be written to disk. This pageout daemon can be modified not to
deallocate a page when the page is being used to send or receive packets.

Interestingly these two ideas are both instances of Principle P3¢, shifting computation in
space. The work of checking for unexpected writes is moved to the VM fault handler, and the
work of dealing with deallocates is moved to the page deallocation routine.

These two ideas are sufficient for sending a packet but not for receiving. On receiving,
Genie needs to depend, like fbufs, on hardware support® in the adaptor to split a packet’s
headers into one buffer and the remaining data into a page-size buffer that can be swapped to
the application’s buffer.

To do so without a physical copy, the kernel’s data buffer must start at the same offset within
the page as the application’s receive buffer. For a large buffer, the first and last pages (which
can be partially filled) are probably most efficiently handled by a physical copy; however,
the intermediate pages that are full can simply be swapped from the kernel to the application
by the right page table mappings. There is a cute optimization called reverse copyout that is
explored in the exercises.

Given the complexity that underlies page table remapping, it is unclear how page remap-
ping is done efficiently in Genie. One possibility is that Genie uses the same fbuf idea of
caching VM mappings on a path basis® to avoid the overhead of TLB flushing, dealing with
multiple page tables, and so on.

When all is said and done, can the TCOW idea benefit legacy applications? There is no
experimental confirmation of this in Brustaloni and Steenkiste [BS96] and Brustoloni [Bru99]
because the experiments use a simple copy benchmark and not an existing application such as

SHardware support for parsing in the adaptor is the simplest alternative proposed by the Genie system; there are
a number of more baroque mechanisms proposed as part of the Genie system to get around this hardware requirement,
but they seem too complicated and full of side effects to be useful in practice.

5The Genie experiments were done on an ATM network, where the virtual circuit identifier can provide a quick
mapping to the path.

5.3 Avoiding Copying Using Remote DMA 121

a Web server. Fundamentally, it seems hard for an existing legacy application to benefit from
the new kernel implementation of the existing API.

Consider an application running over TCP that supplies a buffer to TCP. Since there is no
feedback to the application (unlike fbufs), the application does not know when it can safely
reuse the buffer. If the application overwrites the buffer too early while TCPis holding the buffer
for retransmission, then safety is not compromised, but performance is compromised because
of the physical copy involved in copy-on-write. It appears improbable that an unmodified
application could choose the times to modify buffers in accordance with TCP sending times
and would have aligned its buffers well enough to allow page swapping to work well.

Thus applications do need to be modified to take full advantage of the Genie system. Even
if they do, there is still the hard problem of knowing when to reuse a buffer, because of the
lack of feedback. The application could monitor TCOW faults and accordingly modify its
reuse pattern. But if applications need to be modified in subtle ways to take full advantage of
the new kernel, it is unclear what benefit was gained from preserving the API. Nevertheless,
the ideas in Genie are fun to study, and they fall nicely within the general area of network
algorithmics.

5.3 AVOIDING COPYING USING REMOTE DMA

While fbufs provide a reasonable solution to the problem of avoiding redundant application-to-
kernel copies, there is a more direct solution that also removes an enormous amount of control
overhead. Normally, if a 1-MB file is transferred between two workstations on an Ethernet,
the file is chopped up into 1500-byte pieces. The CPU is involved in processing each of these
1500-byte pieces to do TCP processing and copying each packet (possibly via a zero-copy
interface such as fbufs) to application memory.

On the other hand, recall from Chapter 2 how a CPU orchestrates a direct memory access
(DMA) operation between, say, disk and memory for, say, a 1-MB transfer. The CPU sets
up the DMA, tells the disk the range of addresses into which the data must be written, and
goes about its business. One megabyte of data later, the disk interrupts the CPU to essentially
say, “Master, your job is done.” Note that the CPU does not micromanage every piece of this
transfer, unlike in the earlier case of the corresponding network transfer.

This analogy suggests the vision of doing DMA across the network, or RDMA as it is
sometimes called. In fact, it is hardly surprising that this networking feature was first proposed
in VAX Clusters by a group of computer architects [KLS86]. It is said that breakthroughs often
come via outsiders to an area. There is an apocryphal story about how one of the inventors of
VAX Clusters came to the networking people at DEC and asked to learn about networking.
They laughed at him and gave him a copy of the standard undergraduate text at that time.
He came back 6 months later with the RDMA design.

The intent is that data should be transferred between two memories in two computers
across the network without per-packet mediation by the two CPUs. Instead, the two adaptors
conspire to read from one memory and to write to the other: DMA across the network. To realize
this vision two problems must be solved: (1) how the receiving adaptor knows where to place
the data — it cannot ask the host for help without defeating the intent; (2) how security is
maintained. The possibility of rogue packets coming over the network and overwriting key
pieces of memory should make one pause.

122 CHAPTER 5 Copying Data

This section starts by describing this very early idea and then moves on to describe modern
incarnations of this idea in the Fiber Channel and RDMA [Cona] proposals.

5.3.1 Avoiding Copying in a Cluster

In the last few years, clusters of workstations have become accepted as a cheaper and more
effective substitute for large computers. Thus many Web servers are really server farms. While
this appears to be recent technology, 20 years ago Digital Equipment Corporation (DEC)
introduced a successful commercial product called VAX Clusters to provide a platform for
scalable computing for, say, database applications. The heart of the system was a 140-Mbit
network called the computer interconnect, or CI, which used an Ethernet-style protocol. To this
interconnect, customers could connect a number of VAX computers and network-attached
disks. The issue of efficient copying was motivated by the need to transfer large amounts of
data between the remote disk and the memory of a VAX. RDMA was born from this need.

RDMA requires that packet data containing part of a large file go into its final destination
when it gets to the destination adaptor. This is trickier than it sounds. In traditional networking,
when the packet arrives the processor is involved in at least examining the packet and deciding
where the packet is to go. Even if the CPU looks at headers, it can only tell based on the
destination application which queue of receive buffers to use.

Suppose the receiving application queues Pages 1, 2, and 3 to the receiving adaptor for
Application 1. Suppose the first packet arrives and is sent to Page 1, the third packet arrives
out of order and is put in Page 2 instead of Page 3. Assume that Pages 1, 2, and 3 should store
the receiving file. The CPU can always remap pages at the end, but remapping all the pages at
the end of the transfer for a large file can be painful. Out-of-order arrival can always happen,
even on a FIFO link, because of packet loss.

Instead, the idea in VAX Clusters is first to have the destination application lock a number
of physical pages (such as Pages 11 and 16 in Figure 5.9) that comprise the destination memory
for the file transfer. The logical view presented, however, is a buffer of consecutive logical
pages (e.g., Pages 1 and 2 in Figure 5.9) called, say, B. This buffer name B is passed to the
sending application.

The source now passes (P10, pass information in protocol headers) the buffer name and
offset with each packet it sends. Thus when sending Packet 3 out of order in our last example,

Buffer name B

\BL A page 11
\

B1 II'i\ page 16
B2
DESTINATION
ADAPTOR

FIGURE 5.9 Doing DMA across the network.

5.3 Avoiding Copying Using Remote DMA 123

Packet 3 will contain B and Page 3 and so can get stored in Page 3 of the buffer even though
it arrives before Packet 2. Thus after all packets arrive there is no need for any further page
remapping. This is an example of P10: passing information, such as a buffer name, in message
headers.

To realize the ideal of not bothering the processor on every packet arrival, there are several
additional requirements. First, the adaptor must implement the transport protocol (and do all
the checking for duplicates, etc.), as in TCP processing. Second, the adaptor must be able to
determine where the data begins and where the headers stop so as only to copy the data into
the destination buffer.

Finally, it is somewhat cavalier to allow any packet carrying a buffer ID from the network
to be written directly into memory. This could be a security hole. To mitigate against this, the
buffer IDs contain a random string that is hard to guess. More importantly, VAX Clusters are
used only between trusted hosts in a cluster. It is more difficult to imagine scaling this approach
to Internet data transfers.

5.3.2 Modern-Day Incarnations of RDMA

VAX Clusters introduced a very early storage area network. Storage area networks (SANs)
are back-end networks that connect many computers to shared storage, in terms of network-
attached disks. There are several recent successors to VAX Clusters that provide SAN
technology. These range from the venerable Fiber Channel [Ben95] technology to modern
upstarts such as InfiniBand [Assa] and iSCSI [SSMeO1].

FIBER CHANNEL

In 1988, the American National Standards Institute (ANSI) Task Group X3T11 began work
on a standard called Fiber Channel [Ben95]. One of the goals of Fiber Channel was to take the
standard SCSI (small computer system interface) between a workstation and a local disk and
extend it over larger distances. Thus in many Fiber Channel installations, SCSI is still used as
the protocol that runs over Fiber Channel.

Fiber Channel goes further than VAX Clusters in the underlying network, using modern
network technology such as point-to-point fiber links connected with switches. This allows
speeds of up to 1 Gbps and allows a larger distance span than in the Vax Cluster network.
Switches can even be remotely connected, allowing a trading firm to have backup storage of
all trades at a remote site. The use of switches requires attention to such issues as flow control,
which is done very carefully to avoid dropping packets where possible.

Finally, Fiber Channel makes slightly more concession to security than VAX Clusters.
In VAX Clusters, any device with the right name can overwrite the memory of any other
device. Fiber Channel allows the network to be virtualized into zones. Nodes in a zone cannot
access the memory of nodes in other zones. Some recent products go even further and propose
techniques based on authentication.

However, other than these differences in the underlying technology, the underlying ideas
are the same. RDMA via named buffers is still a key enabling idea.

INFINIBAND

Infiniband starts with the observation that the internal I/O bus used within many workstations
and PCs, the PCI bus, is showing its age and needs replacement. With a maximum bandwidth
of 533 MB/sec, the PCI bus is being overwhelmed by modern high-speed peripherals, such

124

CHAPTER 5 Copying Data

as Gigabit Ethernet interface cards. While there are some temporary alternatives, such as the
PCI-X bus, the internal computer interconnect needs to scale in the same way as the external
Internet has scaled from, say, 10-Mbit Ethernet to Gigabit Ethernet.

Also, observe that there are three separate networking technologies within a computer:
the network interface (e.g., Ethernet), the disk interface (e.g., SCSI over Fiber Channel), and
the PCI bus. Occam’s razor suggests substituting these three with one network technology.
Accordingly, Compagq, Dell, HP, IBM, and Sun banded together to form the Infiniband Trade
Association.

The Infiniband specifications use many of the ideas in Fiber Channel’s underlying network
technology. The interconnect is also based on switches and point-to-point links. Infiniband has
a few additional twists. It uses the proposal for 128-bit IP addresses in the next-generation
Internet as a basis for addressing. It allows individual physical links to be virtualized into
separate virtual links called lanes. It has features for quality of service and even multicast.
Once again, RDMA is the key technology to avoid copies.

ISCSI

At the time of writing, Fiber Channel parts appear to be priced higher than equivalent-speed
Gigabit Ethernet parts. Given that IP has invaded various other networking spaces, such as
voice, TV, and radio, a natural consequence is to invade the storage space. This, the argument
goes, should drive down prices (while also opening up new markets for network vendors).
Further, Fiber Channel and Infiniband are being extended to connect remote data centers over
the Internet. This involves using transport protocols that are not necessarily compatible with
TCP in terms of reacting to congestion. Why not just adapt TCP for this purpose instead of
trying to modify these other protocols to be TCP-friendly?

For the purposes of this chapter, the most interesting thing about iSCSI is the way it must
emulate RDMA over standard IP protocols. In particular, recall that in all RDMA implemen-
tations, the host adaptor implements the transport protocol in hardware. In the Internet world,
the transport protocol is TCP. Thus adaptors must implement TCP in hardware. This is not too
hard, and chips that perform TCP offload are becoming widely available.

The harder parts are as follows. First, as we saw in Case Study 1 of Chapter 2, TCP is
a streaming protocol. The application writes bytes to a queue, and these bytes are arbitrarily
segmented into packets. The RDMA idea, on the other hand, is based on messages, each of
which has a named buffer field. Second, RDMA over TCP requires a header to hold named
buffers.

The RDMA [Cona] proposal solves both these problems by logically layering three pro-
tocols over TCP. The first protocol, MPA, adds a header that defines message boundaries in
the byte stream. The second and third protocols implement the RDMA header fields but are
separated as follows. Notice that when a packet carries data, all that is needed is a buffer name
and offset. Thus this header is abstracted out into a so-called DDA (for direct data access)
header together with a command verb (such as READ or WRITE).

The RDMA protocol that is layered over DDA adds a header with a few more fields. For
example, for an RDMA remote READ, the initial request must specify the remote buffer name
(to be read) and the local name (to be written to). One of these two buffer names can be placed
in the DDA header, but the other must be placed in the RDMA header. Thus, except for control
messages such as initiating a READ, all data carries only a DDA header and not an RDMA
header.

5.4 Broadening to File Systems 125

During the evolution from VAX Clusters to the RDMA proposal, one interesting general-
ization was to replace a named buffer with an anonymous buffer. In this case, the DDA header
contains a queue name, and the packet is placed in a buffer corresponding to the buffer at the
head of the free queue at the receiver.

5.4 BROADENING TO FILE SYSTEMS

So far this chapter has concentrated only on avoiding redundant copies that occur while sending
data between an application (such as a Web server) and the network. However, Figure 5.2
shows that even after removing all redundant overhead due to network copying, there are still
redundant copies involving the file system. Thus in this section, we will cast our net more
widely. We leverage our intellectual investment by extending the copy-avoidance techniques
discussed so far to the file system.

Recall from Figure 5.2 that to process a request for File X, the server may have to read X
from disk (Copy 1) into a kernel buffer (representing the file cache) and then make a copy from
the file cache to the application buffer (Copy 2). Copy 1 goes out of the picture if the file is
already in cache, a reasonable assumption for popular files in a server with sufficient memory.
The main goal is to remove Copy 2. Note that in a Web server, unnecessarily doubling the
number of copies not only halves the effective bus bandwidth but potentially halves the size of
the server cache. This in turn reduces server performance by causing a larger miss rate, which
implies that a larger fraction of documents is served at disk speeds and not bus speeds.

This section surveys three techniques for removing the redundant file system copy
(Copy 2). Section 5.4.1 describes a technique called shared memory mapping that can reduce
Copy 2 but is not well integrated with the network subsystem. Section 5.4.2 describes IO-Lite,
essentially a generalization of fbufs to include the file system. Finally, Section 5.4.3 describes
a technique called I/0 splicing that is used by many commercial Web servers.

5.4.1 Shared Memory

Modern UNIX variants [Ste98] provide a convenient system call known as mmap() to allow
an application such as a server to map a file into its virtual memory address space. Other
operating systems provide equivalent functions. Conceptually, when a file is mapped into an
application’s address space, it is as if the application has cached a copy of the file in its memory.
This seems redundant because the file system also maintains cached files. However, using the
magic of virtual memory (P4, leverage off system components), the cached file is really only
a set of mappings, so other applications and the file server cache can gain common access to
one set of physical pages for the file.

The Flash Web server [PDZ99a] avoids Copy 1 and Copy 2 in Figure 5.2 by having the
server application map frequently used files into memory. Given that there are limits on the
number of physical pages that can be allocated to file pages and limits on page table mappings,
the Flash Web server has to treat these mapped files as a cache. Instead of caching whole files,
it caches segments of files and uses an LRU (least recently used) policy to unmap files that
have not been used for a while.

Note that such cache maintenance functions are duplicated by the file system cache (which
has a more precise view of resources such as free pages because it is kernel resident). However,
this can be looked on as a necessary evil to avoid Copies 1 and 2 in Figure 5.2. While Flash uses

126

CHAPTER 5 Copying Data

mmap() to avoid file system copying, it runs over the UNIX API. Hence, Flash is constrained
to make an extra copy in the network subsystem (Copy 3 in Figure 5.2). Just when progress is
being made to eliminate Copy 2, pesky Copy 3 reappears again!

Copy 3 can be avoided by combining emulated copying using TCOW [BS96] with mmap().
However, this has some of the disadvantages of TCOW mentioned earlier. It is also not a
complete solution that generalizes to avoid copying for interaction with a CGI process via a
UNIX pipe.

5.4.2 10-Lite: A Unified View of Buffering

While combining emulated copy with mmap() does away with all redundant copying, it still
has some missing optimizations. First, it does nothing to avoid the copying between any CGI
application generating dynamic content and the Web server. Such an application is typically
implemented as a separate process’ that sends dynamic content to the server process viaa UNIX
pipe. But pipes and other similar interprocess communication typically involve copying the
content between two address spaces.

Second, notice that none of our schemes so far has done anything about the TCP checksum,
an expensive operation. But if the same file keeps hitting in the cache, other than the first
response containing the HTTP header, all subsequent packets that return the file contents stay
the same for every request. Why can’t the TCP checksums be cached? However, that requires
a cache that can somehow map from packet contents to checksums. This is inefficient in a
conventional buffering scheme.

This section describes a buffering scheme called IO-Lite that generalizes the fbuf ideas
to include the file system. I0-Lite not only eliminates all redundant copies in Figure 5.2,
but also eliminates redundant copying between the CGI process and the server. It also has a
specialized buffer-numbering scheme that lets a subsystem (such as TCP) efficiently realize
that it is resending an earlier packet.

IO-Lite is the intellectual descendant of fbufs, though integration with the file system
adds significantly more complexity. It is first worth noting that fbufs cannot be combined with
mmap, unlike TCOW, which is combined with mmap in Brustoloni [Bru99]. This is because
in mmap the application picks the address and format of an application buffer, while in fbufs
the kernel picks the address and format of a fast buffer. Thus if the application has mapped a
file using a buffer in the application virtual address space, the buffer cannot be sent using an
fbuf (kernel address space) without a physical copy.

Since fbufs cannot be combined with mmap, 10-Lite generalizes fbufs to include the
file system, making mmap unnecessary. Also, IO-Lite is implemented in a a general-purpose
operating system (UNIX), as opposed to fbufs. But setting aside these two differences, I0-Lite
borrows all the main ideas from fbufs: the notion of read-only sharing via immutable buffers
(called slices in 10 lite), the use of composite buffers (called buffer aggregates), and the notion
of a lazily created cache of buffers for a path (called an /O stream in 10-Lite).

"Because of the overhead of copying data between a CGI process generating dynamic content and the server
process, some vendors have proposed merging the CGI code within the server process. However, that makes the
system more brittle because faulty third-party content-generation software can crash the server. Better solutions, such
as Windows ASP, propose incorporating safe languages into Web pages such that the server executes the code and
puts the result in the page it serves. Thus, despite the references to CGI processes in this chapter, CGI may well be
obsolete.

5.4 Broadening to File Systems 127

CPU MEMORY
e \ R
Server buffer
Web server application BEN pijeeosaccsaog [+-1----- Cached response header
: Socket buffer
i Pl 1|==[;=======5 [t-q----- Cached checksum
Jwrite() read() ; Filo cache
Kernel 1 TCP/IP File system - buffer
[5 Y
JREEE 10-Lite buffer <--.
A i
E » MEMORY BUS
: \Copy 1
——) @
- /O BUS
(NETWORK ADAPTORJ
Net\lNork

FIGURE 5.10 10-Lite removes all the redundant copying in Figure 5.2 by effectively passing around
pointers (via VM mappings) to a single IO-Lite buffer. Assuming the file, the TCP checksum, and the
HTTP response are all cached, the Web server only has to transmit these cached values in a single copy
to the network interface.

Despite the core similarities, IO-Lite requires solving difficult problems to integrate with
the file system. First, IO-Lite must deal with complex sharing patterns, where several applica-
tions may have buffers pointing to the IO-Lite buffer together with the TCP code and the file
server. Second, an I0-Lite page can be both a virtual memory page (backed up by the paging
backup file on disk) and at the same time a file page (backed up by the actual disk copy of
the file). Thus IO-Lite has to implement a complex replacement policy that integrates both
the standard page replacement rules together with file cache replacement policies [PDZ99b].
Third, the goal of running over UNIX requires careful thought to find a clean way to integrate
IO-Lite without major surgery throughout UNIX.

Figure 5.10 shows the steps in responding to the same GET request pictured in Figure 5.2.
When the file is first read from disk into the file system cache, the file pages are stored as
IO-Lite buffers. When the application makes a call to read the file, no physical copy is made,
but a buffer aggregate is created with a pointer to the IO-Lite buffer. Next, when the application
sends the file to TCP for transmission, the network system gets a pointer to the same [1O-Lite
pages. To prevent errors, the I0-Lite system keeps a reference count for each buffer and
reallocates a buffer only when all users are done.

Figure 5.10 also shows two more optimizations. The application keeps a cache of HTTP
responses for common files and can often simply append the standard response with minimal
modifications. Second, every buffer is given a unique number (P12, add redundant state) by
IO-Lite, and the TCP module keeps a cache of checksums indexed by buffer number. Thus
when a file is transmitted multiple times, the TCP module can avoid calculating the checksum

128

CHAPTER 5 Copying Data

after the first time. Notice that these changes eliminate all the redundancy in Figure 5.2, which
speeds up the processing of a response.

IO-Lite can also be used to implement a modified pipe program that eliminates copying.
When this IPC mechanism is used between the CGI process and the server process, all copying
is eliminated without compromising the safety and fault isolation provided by implementing
the two programs as separate processes. [O-Lite can also allow applications to customize their
buffer-caching strategy, allowing fancier caching strategies for Web servers based on both size
and access frequency.

It is important to note that IO-Lite manages these performance feats without com-
pletely eliminating the UNIX kernel and without closely tying the application with the
kernel. The Cheetah Web server [EKO95] built over the Exokernel operating system takes
a more extreme position, allowing each application (including the Web server) to com-
pletely customize its network and file system. The Exokernel mechanisms allow such extreme
customization from each application without compromising safety. By dint of these customiza-
tions, the Cheetah Web server can eliminate all the copies in Figure 5.2 and also eliminate the
TCP checksum calculation using a cache.

While Cheetah does allow some further tricks (see the Exercises), the enormous soft-
ware engineering challenge of designing and maintaining custom kernels for each application
makes approaches such as IO-Lite more attractive. IO-Lite comes close to the perfor-
mance of customized kernels like Cheetah with a much smaller set of software engineering
challenges.

5.4.3 Avoiding File System Copies via I/0 Splicing

In the commercial world, Web servers are measured by commercial tests such as the SPECweb
tests [Conb] for Web servers and the Web polygraph tests [Assb] for Web proxies. In the proxy
space, there is an annual cache-off, in which all devices are measured together to calculate
the highest cache hit rate, normalized to the price of the device. The SPECweb benchmarks
use a different system, in which manufacturers submit their own experimental results to the
benchmark system, though these results are audited. In the Web polygraph tests at the time of
writing, a Web server technology based on I/O-Lite ideas was among the leaders.

However, in the SPECweb benchmarks, a number of other Web servers also show impres-
sive performance. Part of the reason for this is just faster (and more expensive) hardware.
However, there are two simple ideas that can avoid the need for complete model shifts as is
the case in IO-Lite.

The first idea is to push the Web server application completely into the kernel. Thus in
Figure 5.2, all copies can be eliminated because the application and the kernel are part of the
same entity. The major problem with this approach is that such in-kernel Web servers have to
deal with the idiosyncrasies of operating system implementation changes. For example, for
a popular high-performance server that runs over Linux, every internal change to Linux can
invalidate assumptions made by the server software and cause a crash. Note that a conventional
user-space server does not have this problem because all changes to the UNIX implementation
still preserve the APL.

The second idea keeps the server application in user space but relies on a simple idea called
I/0 splicing to eliminate all the copying in Figure 5.2. I/O splicing, shown in Figure 5.11, was
first introduced in Fall and Pasquale [FP93]. The idea is to introduce a new system call that
combines the old call to read a file with the old call (P6, efficient specialized routines) to send

5.5 Broadening beyond Copies 129

CPU MEMORY
e N T
Web server application
sendfile()
N2
Kernel REaE File cache buffer f«--,
) :
5 ! MEMORY BUS
: \Copy 1
Copy 2 ; (’ @ DISK
— /0 BUS
(NETWORK ADAPTORJ
Net\;vork

FIGURE 5.11 1In1/O splicing, all the indirection caused by copying to and from user-space buffers is
removed by a single system call that “splices” together the I/O stream from the disk with the I/O stream
to the network. As always, Copy 1 can be removed for files in the cache.

a message to the network. By allowing the kernel to splice together these two hitherto-separate
system calls, we can avoid all redundant copies. Many systems have system calls such as
sendfile(), which are now used by several commercial vendors. Despite the success of this
mechanism, mechanisms based on sendfile do not generalize well to communication with CGI
processes.

5.5 BROADENING BEYOND COPIES

Clark and Tennehouse, in a landmark paper, suggested generalizing Van Jacobson’s idea
(described earlier) of integrating checksums and copying. In more detail, the Jacobson idea is
based on the following observation. When copying a packet word from a location (say, W10 in
adaptor memory in Figure 5.12) to a location in memory (say, M9 in memory in Figure 5.12),
the processor has to load W10 into a register and then store that register to M9. Typically, most
RISC processors require that, between a load and a store, the compiler insert a so-called delay
slot, or empty cycle, to keep the pipeline working correctly (never mind why!). That empty
cycle can be used for other computation. For example, it can be used to add the word just read
to a register that holds the current checksum. Thus with no extra cost the copy loop can often
be augmented to be the checksum loop as well.

But there are other data-intensive manipulations, such as encrypting data and doing format
conversions. Why not, Clark and Tennehouse [CT90] argued, integrate all such manipulations
into the copy loop? For example, in Figure 5.12 the CPU could read W10 and then decrypt

130

CHAPTER 5 Copying Data

CPU

Store M9, RO —>> M9
(add RO to Csum)
Load W10, RO

N

W10
Adaptor Memory

J

FIGURE 5.12 Integrating checksumming and copying.

W10 and write the decrypted word to M9 rather than have that done in another loop. They
called this idea integrated layer processing, or ILP. The essential idea is to avoid obvious waste
(P1), in terms of reading (and possibly) writing the bytes of a packet several times for multiple
data-manipulation operations on the same packet.

Thus ILP is a generalization of copy-checksum integration to other manipulations (e.g.,
encryption, presentation formatting). However, it has several challenges.

* Challenge 1: Information needed for manipulations is typically at different layers (e.g.,
encryption is at the application layer, and checksumming is done at the TCP layer).
Integrating the code from different layers without sacrificing modularity is hard.

* Challenge 2: Each manipulation may operate on different-size chunks and different
portions of the packet. For example, TCP works in 16-bit quantities for a 16-bit checksum,
while the popular DES encryption works in 64-bit quantities. Thus while working with one
32-bit word, the ILP loop has to deal with two TCP checksum words and half a DES word.

* Challenge 3: Some manipulations may be dependent on each other. For example, one
should probably not decrypt a packet if the TCP checksum fails.

* Challenge 4: ILP can increase cache miss rate because it can reduce locality within a
single manipulation. If we did TCP separately and DES separately instead of in a single
loop, the code we’d use at each instant is smaller for the two single loops as opposed to the
single loop. This makes it more likely that the code will be found in the instruction cache
in the more naive implementation. Increasing integration beyond a certain point can
destroy code locality so much that it may even have adverse effects. Some studies have
shown this to be a major issue.

The first three challenges show that ILP is hard to do. The fourth challenge suggests
that integrating more than a few operations can possibly even reduce performance. Finally, if
the packet data is used multiple times, it could well reside in the data cache (even in a naive
implementation), making all the bother about integrating loops unnecessary. Possibly for these
reasons, ILP has remained a tantalizing idea. Beyond the copy—checksum combination, there
has been little follow-up work in integrating other manipulations in academic or commercial
systems.

5.6 Broadening beyond Data Manipulations 131

5.6 BROADENING BEYOND DATA MANIPULATIONS

So far this chapter has concentrated on reducing the memory (and bus) bandwidth caused
by data-manipulation operations. First, we concentrated on removing redundant data copying
between the network and the application. Second, we addressed redundant copying between
the file system, the application, and the network. Third, we looked at removing redundant
memory reads and writes using integrated layer processing when several data-manipulation
operations operate over the same packet. What is common to all these techniques is an attempt
to reduce pressure on the memory and the I/O bus by avoiding redundant reads and writes.

But once this is done, there are still other sources of pressure that appear within an endnode
architecture as shown in Figure 5.2. This is alluded to in the following excerpt from e-mail
sent after the alpha release of a fast user-level Linux Web server [RicO1]:

With zero-copy sendfile, data movement is not an issue anymore, asynchronous net-
work 10 allows for really inexpensive thread scheduling, and system call invocation
adds a very negligible overhead in Linux. What we are left with now is purely wait
cycles, the CPUs and the NICs are contending for memory and bus bandwidth.

In essence, once the first-order effects (such as eliminating copies) are taken care of,
performance can be improved only by paying attention to what might be thought of as second-
order effects. The next two subsections discuss two such architectural effects that greatly
impact the use of bus and memory bandwidth: the effective use of caches and the choice of
DMA versus PIO.

5.6.1 Using Caches Effectively
The architectural model of Figure 5.2 avoids two important details that were described in
Chapter 2. Recall that the processor keeps one or more data caches (d-caches), and one or
more instruction caches (I-caches). The data cache is a table that maps from memory addresses
to data contents; if there are repeated reads and writes to the same location L in memory and
L is cached, then these reads and writes can be served directly out of the data cache without
incurring bus or memory bandwidth. Similarly, recall that programs are stored in memory;
every line of code executed by the CPU has to be fetched from main memory unless it is cached
in the instruction cache.

Now, packet data benefits little from a data cache, for there is little reuse of the data and
copying involves writing to a new memory address, as opposed to repeated reads and writes
from the same memory address. Thus the techniques already discussed to reduce copies are
useful, despite the presence of a large processor data cache. However, there are two other items
stored in memory that can benefit from caches. First, the program executing the protocol code
to process a packet must be fetched from memory, unless it is stored in the I-cache. Second,
the state required to process a packet (e.g., TCP connection state tables) must be fetched from
memory, unless it is stored in the d-cache.

Of these two other possible contenders for memory bandwidth, the code to be executed
is potentially a more serious threat. This is because the state, in bytes, required to process a
packet (say, one connection table entry, one routing table entry) is generally small. However,
for a small, 40-byte packet, even this can be significant. Thus avoiding the use of redundant
state (which tends to pollute the d-cache) wherever possible can improve performance, as was
described in Problem 11 of Chapter 4.

132

CHAPTER 5 Copying Data

However, the code required to execute all of the networking stack (Data Link, TCP, IP,
socket layer, and kernel entry and exit) can be much larger. For example, measurements in
Blackwell [Bl1a96] show a total code size of 34 KB using a 1995 NetBSD TCP implementation.
Given that even large packets on an Ethernet are at most 1.5 KB, the effort to load the code
from memory can easily dwarf the effort to copy the packet multiple times.

In particular, if the I-cache is 8 KB (typical for older machines, such as the early Alpha
machines used in Blackwell [Bla96]), this means that at most a quarter of the networking stack
can fit in the cache. This in turn could imply that all or most of the code has to be fetched from
memory every time a packet needs to be processed. Modern machines have not improved their
I-cache sizes significantly. The Pentium IIT uses 16 KB. Thus effective use of the I-cache could
be a key to improved performance, especially for small packets.

We now describe two techniques that can be used to improve I-cache effectiveness: code
arrangement and locality-driven-layer processing.

CODE ARRANGEMENT

It is hard to realize when one is writing networking code that the actual layout of code in
memory (and hence in the I-cache) is a degree of freedom that can be exploited (P13) with
some effort. The key idea in code arrangement [MPBM96] is to lay out code in memory to
optimize the common case (P11) such that commonly used code fits in the I-cache and the
effort of loading the I-cache is not wasted.

At first glance, this seems to require no extra work. Since a cache should favor frequently
used code over infrequently used code, this should happen automatically. Unfortunately, this
is incorrect because of the following two aspects of the way I-caches are implemented.

* Direct mapping: An I-cache is a mapping of memory addresses to contents; the mapping is
usually implemented by a simple hash function that optimizes for the case of sequential
access. Thus most processors use direct-mapped I-caches, where the low-order bits of a
memory address are used to index the I-cache array. If the high-order bits match, the
contents are returned directly from cache; otherwise, a Read to memory is done across the
bus, and the new data value and high-order bits are stored in the same location.

Figure 5.13 shows the effect of this implementation artifact. The figure on the left
shows the memory layout of code for two networking functions, with black code denoting
infrequently used code. Since the I-cache size is only half the total size of the code, it is
possible for two frequently accessed lines of code (such as X and Y, with addresses that
are the same modulo the I-cache size) to map to the same location in the I-cache. Thus if
both X and Y are used to process every packet, they will keep evicting each other from the
cache even though they are both frequently used.

* Multiple instructions per block: Many I-caches can be thought of as an array of blocks,
where multiple instructions (say, eight) are stored in a block. Thus when an instruction is
fetched, all eight instructions in the same block are also fetched on the assumption of
spatial locality: With sequential access, it seems probable that the other seven instructions
will also be fetched, and it is cheaper to read multiple instructions from memory at the
same time.

Unfortunately, much of networking code contains error checks such as “If error E do
X, else do Z.” Z is hardly ever executed, but a compiler will often arrange the code for Z
immediately after X. For example, in Figure 5.13 imagine that code for Z immediately

5.6 Broadening beyond Data Manipulations 133

A '
I-cache
size .
F1's code i F1 and F2's
frequently used code
F2's code F1 and F2's

infrequently used code

Relocate

FIGURE 5.13 The figure on the left shows networking code that is laid out in memory so that
frequently used (white) and infrequently used (black) code are arbitrarily intermixed. Using a direct-
mapped cache of half the size of the total code can lead two frequently used instructions, such as X and
Y, to collide. This problem can be avoided by relocating all frequently used code to be contiguous, as
shown on the right.

follows X. If X and Z fall in the same block of eight instructions, then fetching frequently
accessed X also results in fetching infrequently used Z. This makes loading the cache less
efficient (more useless work) and makes the cache less useful after loading (less useful
code in cache).

Note that both of these effects are caused by the fact that real caches imperfectly reflect
temporal locality. The first is caused by an imperfect hash function that can cause collisions
between two frequently used addresses. The second is caused by the fact that the cache also
optimizes for spatial locality.

Both effects can be mitigated by reorganizing networking code [MPBM96] so that all
frequently used code is contiguous (see right of Figure 5.13). For example, in the case “If error
E do X, else do Z,” the code for Z can be moved far away from X. This does require an extra
jump instruction to be added to the code for Z so that it can jump back to the code that followed
Z in the unoptimized version. However, this extra jump is taken only in the error case, and so
it is not much of a cost.

This is an example of realizing that the memory location of code is a degree of freedom
that can be optimized (P13) and an example of optimizing the expected case (P11) despite
increasing the code path for infrequently used code.

LocALITY-DRIVEN LAYER PROCESSING

Code reorganization can help up to a point but fails if the working set (i.e., the set of instruc-
tions actually accessed for almost every packet) exceeds the I-cache size. For example, in
Figure 5.13, if the size of the white, frequently used instructions is larger than the I-cache,
code reorganization will still help (fewer loads from memory are required because each load

134

CHAPTER 5 Copying Data

TIME
—P1 P2 _
arrival » Conventional
P1 P1 P1 P2 P2 P2 processing

Data link Network Transport Data link Network Transport

> Locality-driven

P1 P2 P1 P2 P1 P processing

Data link Data link Network Network Transport Transport

FIGURE 5.14 1In a conventional processing timeline (shown from left to right), all the networking
layers of packet P1 are processed before those of packet P2. In locality-driven receiver processing, each
layer code is executed multiple times for multiple received packets (two in the picture) before moving
on to the next layer.

loads only useful instructions). However, every instruction will still have to be fetched from
memory.

While the working set of the networking stack may fit into a modern I-cache (which is
getting bigger), it is possible that more complicated protocols (that run over TCP/IP) may
not. The idea behind locality-driven layer processing [Bla96] is to be able to use the I-cache
effectively as long as the code for each layer of the networking stack fits into the I-cache.
By repeatedly processing the code for the same layer across multiple packets, the expense of
loading the I-cache is shared (P2¢) over multiple packets.

Consider the top timeline in Figure 5.14. In a conventional processing timeline (shown
from left to right in the figure), all the networking layers of packet P1 are processed before
those of packet P2. Imagine that two packets P1 and P2 arrive at a server. In a conventional
implementation, all the processing of P1 is finished, starting with the data link layer (e.g.,
Ethernet driver) and ending with the transport (e.g., TCP) layer. Only then is the processing
of packet P2 started.

The main idea in locality-driven processing is to exploit another degree of freedom (P13)
and to process all the layer code for as many received packets as possible before moving on
to the next layer. Thus in the bottom timeline, after the data link layer code for P1 is finished,
the CPU moves on to execute the data link layer code for P2, not the network layer code for
P1. This should not affect correctness because code for a layer should not depend on the state
of lower layers. By contrast, integrated layer processing has more subtle dependencies and
failure cases.

Thus if the code for each layer (e.g., the data link layer) fits into the I-cache while the code
for all layers does not, then this optimization amortizes the cost of loading the I-cache over
multiple packets. This is effectively using batch processing (P2¢, expense sharing). The larger
the size of the batch, the more effective the use of the I-cache.

The implementation can be made to tune the size of the batch dynamically [Bla96].
The code can batch-process up to, say, k packets from the queue of arrived packets, where k
is a parameter that limits the latency. If the system is lightly loaded, then only one message
at a time will be processed. On the other hand, if the system is heavily loaded, the batch size
increases to make more effective use of memory bandwidth when it is most needed.

5.7 Conclusions 135

SOFTWARE ENGINEERING CONSIDERATIONS

Optimizations such as code restructuring (Figure 5.13) and locality-driven processing
(Figure 5.14) also need to be evaluated by their effects on code modularity and maintenance.
After all, one could rewrite the kernel and all applications using assembly language to more
perfectly optimize for memory bandwidth. But it would be difficult to get the code to work or
be maintainable.

Code restructuring is best done by a compiler. For example, error-handling code can be
annotated with hints [MPBM96] suggesting which branches are more frequently taken (gener-
ally obvious to the programmer), and a specially augmented compiler can restructure the code
for I-cache locality. Algorithms for this purpose are described in Mosberger et al. [MPBM96].

On the other hand, locality-driven processing preserves modularity within layers. Com-
munication between layers must be changed as follows. If each layer code passes a packet to
the code for a higher layer with a procedure call, this code must be modified to add packets to
a queue for the higher layer. Similarly, when a layer is called, it removes packets from its read
queue until the queue is exhausted; after processing each packet, it places it on the queue for
its next-higher layer. This strategy works well when each layer can reuse buffers from other
layers, as is the case for UNIX mbufs. Overall, the code changes may not be severe.

5.6.2 Direct Memory Access versus Programmed 1/0

Earlier sections stated that the Witless scheme uses programmed I/O, or PIO (i.e., the pro-
cessor or CPU is involved on every word transferred between memory and adaptor), while
other schemes, such as VAX Clusters, use DMA (where the adaptor copies data directly to
memory). It may seem that DMA is always better than PIO. However, comparisons between
DMA and PIO are tricky because each method has subtle implications for the overall memory
bandwidth used.

For instance, PIO has one advantage in that the data flows through the processor and thus
ends up in the processor cache. This can be useful to prevent loss of memory bandwidth for
subsequent access. Also, with PIO it is easy to integrate other functions, such as checksums,
without requiring adaptor hardware to do the same function.

However, some studies have shown that if data arrives and is used much later (e.g., one
scheduling quantum later) by the application, then placing data in the d-cache too early is
wasteful of the d-cache and lowers rather than raises d-cache hit rate. On the other hand, DMA
can steal cycles from the CPU and also requires some careful cache invalidation when data is
written into a memory location (that could also be cached). So the jury is still out. The choice
between the two is best decided on a case-by-case basis, taking into account architectural
considerations and the application at hand. A more detailed study of the issues involved can
be found in Mogul and Ramakrishnan [MR97].

9.7 CONCLUSIONS

As networks get faster, links today, such as Gigabit Ethernet, are often faster than the buses
and memories within desktop computers and servers. Thus memory and bus bandwidth are
crucial resources. This chapter describes techniques to optimize the use of memory and bus
bandwidth for processing IP and Web packets, the dominant traffic streams found today in the
Internet.

136

CHAPTER 5 Copying Data

To this end, the chapter started by showing how to remove redundant copies involved
in processing an IP packet using adaptor memory or virtual memory remapping. We then
showed how to remove redundant copies involved in processing Web requests at a server
by generalizing virtual memory remapping to include the file system or by combining file
system and network I/O in a single system call. We then showed how to combine various data
manipulations in one fell swoop. All of these techniques require changes to the application
and kernel, but the changes are fairly localized and mostly preserve modularity.

We finally showed that, without care, protocol processing can dwarf copy overhead, and we
described techniques to optimize the instruction cache. Comments such as Riccardi’s [Ric01]
indicate that modern Web servers may already be optimized for zero-copy implementations
using sendfile()-style system calls. However, Riccardi [Ric01] indicates that such servers still
burn processor cycles waiting for memory. Thus, techniques to improve I-cache efficiency
may provide the next round of optimizations for Web servers. Figure 5.1 presents a summary
of the techniques used in this chapter, together with the major principles involved.

It is important to state that all the performance problems involved in building a modern
Web server have not been eliminated. Complex Web sites, such as amazon.com, often use
several tiers of processing to respond to Web requests, including an application server, a Web
server, and a database server. Such database-driven Web servers introduce new bottlenecks that
may require new techniques beyond those described in this chapter. However, the underlying
principles should hopefully remain the same.

In terms of principles, this chapter is about the repeated use of P1, avoiding obvious
waste, where the waste is unnecessary reads and writes that consume precious memory and
bus bandwidth. At first glance, principle P1 seems vacuous or at best a cliché. What makes
this principle deeper is that the waste is not apparent unless one broadens one’s vision to see
as much of the system as possible.

Within each local subsystem (e.g., application to kernel, kernel to network, disk to file
system) there is no wasted memory bandwidth. It is only when one follows the adventures of a
received packet that one discovers the redundancy between application-to-kernel and kernel-
to-network copies. It is only when one broadens one’s view even further to see the contortions
involved in responding to a Web request that one notices the further redundancies involving the
file system. Only when one broadens one’s view further still does one see all the manipulations
involved in processing a packet and the wasted reads to memory. Finally, it is only when one
examines the loading of instructions that one sees the alarming possibility that the protocol
code can be several times larger than the packet size.

Thus the use of the first principle of network algorithmics requires a synoptic eye, one
that sees the whole system, from HTTP and its headers, to the file system, and down to the
instruction caches. While this seems daunting in complexity, Chapter 2 has already argued that
simple models of hardware, architecture, operating systems, and protocols can make such a
holistic viewpoint possible. For example, I-caches have a number of complex variants, but a
simple model of a direct-mapped I-cache with multiple instructions per block is not hard for
an operating system designer to keep in mind.

Finally, compared to the beauty and complexity of theoretical techniques such as the
ellipsoid algorithm for linear programming and the theory of rapidly mixing Markov chains,
techniques in systems such as copy avoidance seem drab and shallow. However, one can argue
that the complexity of systems is not in depth (i.e., the complexity of each component by itself)
but in breadth (i.e., the complex relationships between components). Perhaps the breadth

5.8 Exercises 137

of understanding (HTTP, file system, networking code, instruction cache implementation)
required to optimize memory bandwidth in a Web server provides some evidence for this
thesis.

5.8 EXERCISES

1. Data caches and copies: A normal data cache is a mapping from a memory location
address to a piece of content. If the content is frequently accessed, then the content can be
accessed directly from the fast cache instead of making a memory access. Assuming the
cache is a write-back cache, even writes can be written to the cache instead of memory
and only written to memory when the cache is overwritten. A modern cache block is fairly
large (128 bits), with a mapping from a 32-bit address to 128 bits of data starting at that
address.

We want to address the copying problem where various modules (including the

network and file system) copy data via intermediate buffers that are soon overwritten
(e.g., socket buffer, application buffer). The chapter did so with software changes. Here
we consider whether changing the hardware architecture can help without software
changes such as 10-Lite, fbufs, and mmap.

Even an ordinary data cache may help remove some of the overhead when copying data
from location L to location M. Explain why. (Assume that location M is a temporary
buffer that is soon overwritten, as in a socket buffer. Assume that if only a single word
is written in a large cache block, the remaining words can be marked invalid.)
Intuitively, this problem is asking whether there is an equivalent of copy-on-write
(used to reduce copying between virtual address spaces) in the world of data caches.

Now assume a different data cache design, where a cache is a mapping from one or
more addresses to the same content. Thus a cache has changed from a one-to-one
mapping to a many-to-one mapping. For example, assume a cache where two locations
can point to the same content. Thus a cache entry may be (L, M, C), where L and M are
addresses and C is the common contents of L and M. A memory access to either L or M
will return C. What is the advantage over the previous scheme in the previous item?

This is all very speculative and wild. Comment on the disadvantages of the idea in the
previous item. In particular, many caches use a technique called ser associativity,
where a simple hash function (e.g., low-order bits) is used to select a small set of cache
entries that the hardware searches in parallel. Why might the multiple address per
cache entry interact poorly with the set associative search?

2. Application-level optimizations for Web servers: Operating systems such as the
Exokernel [EKO95] take an even more extreme viewpoint and allow the application to
customize kernel features for its benefit without compromising safety for other
applications. One interesting optimization is to combine the final TCP FIN with the read
of the last data segment (an optimization allowed by TCP).

Why does this optimization help small Web transfers (which are quite common)?

Why is this optimization hard to do in a regular Web server, and why is it easier if the
application is integrated with the kernel, as in the Exokernel?

138 CHAPTER 5 Copying Data

» Explain how this optimization can be migrated to an ordinary Web server by passing
information across the interface (P9) without compromising safety.

3. Reverse copyout: The emulated copy-on-write paper [BS96] describes an interesting
degree of freedom (P13) for copying page-aligned data between two modules (say,
system and application). Imagine that you wish to copy a partial page from an application
page, X, to a system page, Y. If the page is full, assume that you can swap the two pages
efficiently. Assume the partial page has useful data D and some remainder R.

o If the amount of data D is small compared to R, it is simpler to copy D to the destination
page in Y. On the other hand, if D is large (say, almost all of the page) compared to R,
devise a simple strategy to minimize copying. Note that if the destination page, Y, has
some other data in the remainder of the page, that data must remain after the copy.

* What is a simple threshold you would use to choose between these two strategies?

CHAPTER 6

Transferring Control

Control thy passions, lest they take vengeance on thee.

— EPICETUS

In a Scott Adams cartoon, Dilbert complains to Dogbert that he is embarassed to work at a
company where even paying a simple invoice takes 6 months. The invoice first comes into
the mail room for aging, spends some time at the secretary’s desk, goes to the desk of the
main decision maker, and finally ends up in accounts payable. When processing an invoice
in Dilbert’s company, the flow of control works its way through layers of command, each of
which incurs significant overhead.

A management consultant might suggest that Dilbert’s company streamline the processing
of an invoice by eliminating mediating layers wherever possible and by making each layer
as responsive as possible. However, each layer has some reason for existence. The mailroom
aggregates mail delivery service for all departments in the company. The secretary protects
the busy boss from interrupts and weeds out inappropriate requests. The boss must eventually
decide whether the invoice is worth paying. Finally, the mundane details of disbursing cash
are best left to accounts payable.

A modern CPU processing a network message also goes through similar layers of medi-
ation. The device, for example, an Ethernet adaptor, interrupts the CPU, asking somewhat
stridently for attention. Control is passed to the kernel. The kernel batches interrupts wherever
possible, does the network layer processing for the packet, and finally schedules the applica-
tion process (say, a Web server) to run. As always, the reception of a single packet provides
too limited a picture of the overall processing context. For instance, a Web server will parse
the request (such as a GET) in the network packet, look for the file, and institute proceedings
to retrieve the file from disk. When the file gets read into memory, a response containing the
requested file is sent back, prepended with an HTTP header.

While Chapter 5 concentrated on reducing the overhead of operations that touch the data
in a packet (e.g., copying, checksumming), this chapter concentrates on reducing the control
overheads involved in processing a packet. As in Chapter 5, we start by examining the control
overheads involved in sending or receiving a packet. We then broaden to our canonical network
application, a Web server.

This chapter is organized as follows. Section 6.1 starts by describing the control flow costs
involved in a computer: interrupt overheads (involved when a device asks asynchronously for
attention), system calls (involved when a user asks the kernel for service, thus moving the
flow of control across a protection boundary), and process-context switching (allowing a new

139

140 CHAPTER 6 Transferring Control

\
{Number Principle Used In

P8 Go beyond downcalls used in specifications Upcalls

P8 Process per message, not per layer x-Kernel

P13 Link protocol implementation with user code Mach variants

P13 Process per disk access Flash

P13 Modularize by task, not clients Haboob Web server

P4 VM mapping to avoid copies in cache and application | Flash

P15 Bitmap tree Fast ufalloc()

P12a |Incrementally compute interest vector Fast select()

P9 Pass hints from protocol to select ()

P12 Remember interest across calls

P3c Move protection from kernel to adaptor ADCs

P2 Have kernel authorize adaptor on initialization

P13 |Batch process interrupts Most OSs

P2b | Execute protocol in the context of the receive process| LRP (Lazy Receiver
L Processing))

FIGURE 6.1 Techniques for reducing control overhead that are discussed in this chapter, together
with the corresponding principles.

process to run when the current process is stymied waiting for some resource or has run too
long). Thus the rest of this chapter is organized around reducing these control overhead costs,
from the largest (context switching) to the smallest (interrupt overhead).

Accordingly, Section 6.2 concentrates on reducing process-context switching by describ-
ing how to structure networking code (e.g., TCP/IP) to avoid context switching. Section 6.3 then
describes how to structure application code (e.g, a Web server) to reduce context-switching
costs. Sections 6.4 and 6.5 focus on reducing or eliminating system call overhead. Section 6.4
shows how to reduce overhead in the implementation of a crucial system call used by event-
driven Web servers to decide which of the connections they are handling are ready to be
serviced. Section 6.5 goes further and describes user-level networking that bypasses the kernel
in the common case of sending and receiving a packet. Finally, Section 6.6 briefly describes
simple ideas to avoid interrupt overhead.

The techniques described in this chapter (and the corresponding principles invoked) are
summarized in Figure 6.1.

Quick Reference Guide

The most useful sections for an implementor today are as follows. Section 6.3 describes how to
structure application code (e.g, a Web server) to reduce context-switching costs, presenting alternatives
to event-driven Web servers. Section 6.4 focuses on reducing the overhead of the select() system call

6.1 Why Control Overhead? 141

(or similar calls in other operating systems) used by event-driven servers to decide which client to service
next. Section 6.5 shows how to eliminate system call overhead using techniques such as VIA (virtual
interface adaptor).

6.1 WHY CONTROL OVERHEAD?

Chapter 5 started with areview of the copying overhead involved in a Web server by showing the
potential copies (Figure 5.2) involved in responding to a GET request at a server. By contrast,
Figure 6.2 shows the potential control overhead involved in a large Web server that handles
many clients. Note that in comparison with Figure 5.2 for Web copies, Figure 6.2 ignores all
aspects of data transfer. Thus Figure 6.2 uses a simplified architectural picture that concentrates
on the control interplay between the network adaptor and the CPU (via interrupts), between the
application and the kernel (via system calls), and between various application-level processes
or threads (via scheduler invocations). The reader unfamiliar with operating systems may wish
to consult the review of operating systems in Chapter 2. For simplicity, the picture shows only
one CPU in the server (many servers are multiprocessors) and a single disk (some servers
use multiple disks and disks with multiple heads). Assume that the server can handle a large
number (say, thousands) of concurrent clients.

For the purposes of understanding the possible control overhead involved in serving a
GET request, the relevant aspects of the story are slightly different from that in Chapter 5.
First, assume the client has sent a TCP SYN request to the server that arrives at the adaptor
from which it is placed in memory. The kernel is then informed of this arrival via an interrupt.
The kernel notifies the Web server via the unblocking of an earlier system call; the Web server
application will accept this connection if it has sufficient resources.

Process per group; groups defined by application structure
\

Scheduling overhead II*- vl it N el :
vs. loss of currency «Client 1. Client50 1 % Client 51... Client 74,1+, Client 751 Web server
application
System call overhead | lwrite() read()) FindActive()J
. . Tracking active files
Scheduling overhead TCP/IP | File system and connections Kernel
Interrupt overhead ‘ CPU
Packet :
received |
BUS.n e : MEIV:ORY DIISK
(NETWORK ADAPTORJ
Network

FIGURE 6.2 Control overhead involved in handling a GET request at a server.

142

CHAPTER 6 Transferring Control

In the second step of processing, some server process parses the Web request. For example,
assume the request is GET File 1. In the third step, the server needs to locate where the file
is on disk, for example, by navigating directory structures that may also be stored on disk.
Once the file is located, in the fourth step, the server process initiates a Read to the file system
(another system call). If the file is in the file cache, the read request can be satisfied quickly;
failing a cache hit, the file subsystem initiates a disk seek to read the data from disk. Finally,
after the file is in an application buffer, the server sends out the HTTP response by writing to
the corresponding connection (another system call).

So far the only control overhead appears to be that of system calls and interrupts. How-
ever, that is because we have not examined closely the structure of the networking and
application code.

First, if the networking code is structured naively, with a single process per layer in the
stack, then the process scheduling overhead (on the order of hundreds of microseconds) for
processing a packet can easily be much larger than a single packet arrival time. This potential
scheduling overhead is shown in Figure 6.2 with a dashed line to the TCP/IP code in the kernel.
Fortunately, most networking code is structured more monolithically, with minimal control
overhead, although there are some clever techniques that can do even better.

Second, our description of Web processing has focused on a single client. Since we are
assuming a large Web server that is working concurrently on behalf of thousands of clients, it
is unclear how the Web server should be structured. At one extreme, if each client is a separate
process (or thread) running the Web server code, concurrency is maximized (because when
client 1 is waiting for a disk read, client 2 could be sending out network packets) at the cost of
high process scheduling overhead.

On the other hand, if all clients are handled by a single event-driven process, then context-
switching overhead is minimized, but the single process must internally schedule the clients to
maximize concurrency. In particular, it must know when file reads have completed and when
network data has arrived.

Many operating systems provide a system call for this purpose that we have generically
called FindActive() in Figure 6.2. For example, in UNIX the specific name for this generic
routine is the select() system call. While even an empty system call is expensive because of the
kernel-to-application boundary crossing, an inefficient select() implementation can be even
more expensive.

Thus there are challenging questions as to how to structure both the networking and
server code in order to minimize scheduling overhead and maximize concurrency. For this
reason, Figure 6.2 shows the clients partitioned into groups, each of which is implemented
in a single process or thread. Note that placing all clients in a single group yields the event-
driven approach, while placing each client in a separate group yields the process- (or thread-)
per-client approach.

Thus an unoptimized implementation can incur considerable process-switching overhead
(hundreds of microseconds) if the application and networking code is poorly structured. Even
if process-structuring overhead is removed, system calls can cost tens of microseconds, and
interrupts can cost microseconds. To put these numbers in perspective, observe that on a 10-GB
Ethernet link, a 40-byte packet can arrive at a PC every 3.2 psec.

Given that 10-Gbps links are already arriving, it is clear that careful attention has to be paid
to control overhead. Note that, as we have seen in Chapter 2, as CPUs get faster, historically
the control overheads associated with context switching, system calls, and interrupts have

6.2 Avoiding Scheduling Overhead in Networking Code 143

not improved at the same rate. Some progress has been made with more efficient operating
systems such as Linux, but the progress will not be sufficient to keep up with increasing link
speeds.

We now begin attacking the bottlenecks described in Figure 6.2.

6.2 AVOIDING SCHEDULING OVERHEAD IN NETWORKING CODE

One of the major difficulties with implementing a protocol is to balance modularity (so you
implement a big system in pieces and get each piece right, independent of the others) and
performance (so you can get the overall system to perform well). As a simple example, con-
sider how one might implement a networking stack. The “obvious modularity” would be to
implement the transport protocol (e.g., TCP) as a process, the routing protocol (e.g., IP) as
a process, and the applications as a separate process. If that were the case, however, every
received packet would take at least two process-context switches, which are expensive. There
are, however, a number of creative alternatives that allow modularity as well as efficiency.
These were first pointed out by Dave Clark in a series of papers.

Figure 6.3 provides an example that Clark [Cla85] used to illustrate his ideas. It consists
of a simple application that reads data from a keyboard and sends it to the network using a
reliable transport protocol. When the data is received by some receiver on the network, the
data is displayed on the screen. The vertical slices show the various protocol layers, with
the topmost slice (routines such as display-get-data and display-receive) being the application
protocol, the second slice (routines such as transport-receive and transport-send) being the
transport protocol, and the bottom slice (routines such as net-receive and net-dispatch) being
the network protocol. The naive way to implement this protocol would be to have a process per
slice, which would involve three processes and two full-scale context switches per received
or sent packet.

Instead, Clark suggests using only two processes each at the sender and two processes
at the receiver (shown as boxed vertical sections) to implement the network protocol stack.
In Figure 6.3 the leftmost two sections correspond to receiver processes and the rightmost
two sections correspond to sender processes. Thus the sender has a Keyboard Handler process

RECEIVE RECEIVE SEND KEYBOARD
PROCESS INTERRUPT PROCESS HANDLER
HANDLER l
) e 2
display— display— keyboard—
receive get-data handler
transport— transport— transport— transport—
receive get—port send arm-to—send
net— nit— njt—
receive dispatch send
& < A & J
Wake
Interrupt

FIGURE 6.3 Implementing a protocol using upcalls.

144

CHAPTER 6 Transferring Control

that gathers data coming in from the keyboard and calls transport-arm-to-send when it has
got some data. Notice that transport-arm-to-send is a transport-layer function that is exported
to the Keyboard Handler process and is executed by the Keyboard Handler process. At this
point the Keyboard Handler can suspend itself (a context switch). Transport-arm-to-send only
tells the transport protocol that this connection wished to send data; it does not transfer data.

However, the transport-send process may not send data immediately because of flow
control limitations. When the flow control limits are removed (because of acks arriving), the
Send Process will execute the transport-send routine for this connection. The send call will first
upcall the application protocol, which exports a routine called display-get-data that actually
provides the transport protocol with the data for the application. This is advantageous because
the application may have received more keyboard data by the time the transport protocol is
ready to send, and one might as well send as much data as possible in a packet. Finally, within
the context of the same process, transport adds a transport-layer header and makes a call to the
network protocol to actually send the packet.

At the receiving end, the packet is received by the receive interrupt handler using a
network-layer routine called net-dispatch that needs to find which process to dispatch the
received packet to. To find out, net-dispatch makes an upcall to transport-get-port. This is
a routine exported by the transport layer that looks at port numbers in the header to figure
out which application (e.g., FTP) must handle the packet. Then a context switch is made and
the Receive Handler relinquishes control and wakes up the Receive Process, which executes
network-layer functions, transport-layer functions, and finally the application-level code to
display the data. Note that a single process is executing all the layers of protocol.

The idea was a bit unusual at the time because the conventional dogma until that point was
that layers should only use services of layers below; thus calls between layers had, historically,
been “downcalls.” However, Clark pointed out that downcalls were perhaps required for
protocol specifications but were not the only alternative for protocol implementations. In our
example in particular, upcalls are used to obtain data (e.g., the upcall to display-get-data) and
for advice from upper layers (upcall to transport-get-port).

While upcalls are commonly used in real implementations, there is probably no difference
between an upcall and a standard procedure call except for its possible novelty in the context
of a networking layered implementation. However, the more important idea, which is perhaps
more lasting, is the idea of using only one or two processes to process a message, each process
consisting of routines from two or more protocol layers. This idea found its way into systems
like the x-kernel [HP91] and into user-level networking, which is described in the next section.

More generally, the idea of considering alternative implementation structures that pre-
serve modularity without sacrificing performance is a classic example of Principle P8, which
says that implementors should consider alternatives to reference implementations described
in specifications. Notice that each protocol layer can still be implemented modularly but the
upcalled routines can be registered by upper layers when the system starts up.

6.2.1 Making User-Level Protocol Implementations Real

Most modern machines certainly do not implement each protocol layer in a separate process.
Instead, in UNIX all the protocol code (transport, network, and data link) is handled as part of
a single kernel “process.” When a packet arrives via an interrupt, the interrupt handler notes
the arrival of the packet, possibly queues it to memory, and then schedules a kernel process
(via what is sometimes called a software interrupt) to actually process the packet.

6.2 Avoiding Scheduling Overhead in Networking Code 145

Demux —> Process 1 Process 2
process T

KERNEL

(driver)

FIGURE 6.4 Demultiplexing a packet to the final destination process using an intermediate
demultiplexing process is expensive.

The kernel process does the data link, network, and transport-layer code (using upcalls);
by looking at the transport port numbers, the kernel process knows the application. It then
wakes up the application. Thus every packet is processed using at least two context switches:
one from the interrupt context to the kernel process doing protocol handling, and one from the
kernel process to the process running the application code (e.g., the Web, FTP).

The idea behind user-level protocol implementation is to realize the aspect of Clark’s idea
shown in the receive process of Figure 6.3, where the protocol handlers execute in the same
process as the application and can communicate using upcalls. User-level implementations
have two possible advantages: We can potentially bypass the kernel and go directly from the
interrupt handler to the application, as in the Clark model, saving a context switch. Also, the
protocol code can be written and debugged in user space, which is a far friendlier place to
implement protocols (debugging tools work in user space and do not work well at all in the
kernel).

One extreme way to do this was advocated in Mach, where all protocols were implemented
in user space. Also, protocols were allowed to be significantly more general than in Clark’s
example of Figure 6.3. Thus when a receiving interrupt handler received a packet, it had no
way of easily telling to which process it should dispatch the packet (since the network-layer
implementations done in the final process contained the demultiplexing code). In particular,
one can’t just call transport to examine the port number (as in Clark’s example) since we can
have lots of possible transport protocols and lots of possible network protocols.

A naive method was initially used, as shown in Figure 6.4. This involved a separate
demultiplexing process that received all packets and examined them to determine the final
destination process, which is then dispatched to. This is quite sad, because our efforts so far
have been to reduce context switches, but the new demultiplexing process is actually adding
back the missing context switch.

The simple idea used to remedy this situation is to pass extra information (P9) across the
application—kernel interface so that each application can pass information about what kinds of
packets it wants to process. This is shown in Figure 6.5. For example, a mail application may
wish for all packets whose Ethernet-type field is IP, whose IP protocol number specifies TCP,
and whose TCP destination port number is 25.

Recall that we are talking about the mail application implementing all of IP, TCP, and
mail. To do so, the kernel defines an interface, which is typically some form of program-
ming language. For example, the earliest one was the CSPF (CMU Stanford packet filter),
which specifies the fields for packets using a stack-based programming language. A more
commonly used language is BPF (Berkeley packet filter), which uses a stack-based language;
a more efficient language is PathFinder. These demultiplexing algorithms are described in
Chapter 8.

146

CHAPTER 6 Transferring Control

,~---Process 1 Process 2---~,
' KERNEL '
Filter for Filter for
Process 1 Process 2
Arriving
F1 F3 Packet

FIGURE 6.5 The packet filter approach to demultiplexing.

Note that one has to be careful about passing information from an application to a ker-
nel; any such information should be checked so that malicious or wrong applications cannot
destroy the kernel. In particular, one has to prevent applications from providing arbitrary code
to kernels, which then causes havoc. Fortunately, there are software technologies that can
“sandbox” foreign code so it can do damage only within its own allotted space of memory
(its sandbox). For example, a stack-based language can be made to work on a specified size
of stack that can be bounds checked at every point. This form of technology has culminated
recently in execution of arbitrary Java applets received from the network.

Clearly, if packets are dispatched from the kernel interrupt handler (using the collection
of packet filters) to the receiving process, the receiving process should implement the protocol
stack. However, replicating the TCP/IP code in every application would cause a lot of code
redundancy. Thus TCP/IP is generally (in such systems) implemented as a shared library that
is linked in (a single copy is used to which the application has a pointer, but with the code
written in a so-called reentrant way, to allow reuse).

This is not as easy as it looks because there is some TCP state that is common to all connec-
tions, though most are TCP state connection specific. There are other problems because the last
write done by an application should be retransmitted by TCP, but the application may exit its
process after its last write. However, these problems can be fixed. User-level implementations
have been written [TNML93, MB93] to provide excellent performance. Fundamentally, they
exploit a degree of freedom (P13) in observing that protocols do not have to be implemented
in the kernel.

6.3 AVOIDING CONTEXT-SWITCHING OVERHEAD IN APPLICATIONS

The last section concentrated on removing process-scheduling overhead for processing a single
packet received by the network by effectively limiting the processing to fielding one interrupt
(which, as we discuss in Section 6.6, can also be removed or amortized over several packets)
and dispatching the packet to the final process in which the application (that processes the
packet) resides. If the destination process is currently running, then there is even no process-
scheduling overhead. Thus after all optimizations there can be close to no control overhead
for processing a packet.

This is analogous to Chapter 5, in which the first few sections showed how to process a
received packet with zero copies. However, in that chapter after broadening one’s viewpoint to

6.3 Avoiding Context-Switching Overhead in Applications 147

see the complete application processing, it became apparent that there were further redundant
copies caused by interactions with the file system.

In a similar fashion, this section broadens beyond the processing of a single packet to
consider how an application processes packets. Once again, as in Chapter 5, we consider a
Web server (Figure 6.2) because it is a canonical example of a server that needs to be made
more efficient and because of its importance in practice.

In what follows, we will use a Web server as an example of a canonical server that may
require the handling of a large number of connections. In another example, Barile [Bar04]
describes a TCP-to-UDP proxy server for a telephony server that can handle 100,000 concurrent
connections.

How should a Web server be structured? Before tackling this question, it helps to under-
stand the potential concurrency within a single Web server. Readers familiar with operating
systems may wish to skim over the next three paragraphs. These are included for readers not
as familiar with the secret life of a workstation.!

Even with a single CPU and a single disk head, there are opportunities for concurrency.
For example, assume that in processing a read for File 1, File 1 is not in cache. Thus the CPU
initiates a disk read. Since this may take a few milliseconds to complete, and the CPU can do
an instruction almost every nanosecond, it is obvious waste to idle the CPU during this read.
Thus a more sensible strategy is to have the CPU switch to processing another client while
Client 1’s disk read is in progress. This allows processing by the disk on behalf of Client 1 to
be overlapped with processing by the CPU for Client 2.

A second example of concurrency between the CPU and a device (that is relevant to a
Web server) is overlapping between network I/O (as performed by the adaptor) and the CPU.
For example, after a server accepts a connection, it may do a Read to an accepted connection
for Client 1. If the CPU waits for the Read to complete it may wait a long time, potentially also
several milliseconds. This is because the remote client has to send a packet that has to make
its way through the network and finally be written by the adaptor to the socket corresponding
to Client 1 at the server.

By switching to another client, processing by the network on behalf of Client 1 is over-
lapped with processing by the CPU on behalf of some other client. Similarly, when doing a
Write to the network, the Write may be blocked because of the lack of buffer space in the socket
buffer. This buffer space may be released much later when acknowledgments arrive from the
destination.

The last three paragraphs show that for a Web server to be efficient, every opportunity for
concurrency must be exploited to increase effective throughput. Thus a CPU in a Web server
must switch between clients when one client is blocked waiting for I/O. We now consider
various ways to structure a server application and their effects on concurrency and scheduling
overhead.

6.3.1 Process per Client
In terms of programming, the simplest way to implement a Web server is to structure the
processing of each client as a separate process. In other words, every client is in a separate
group by itself in Figure 6.2. In Chapter 2, we saw that the operating system scheduler juggles

IRecall that the intent of network algorithmics and of this book is to allow all constituencies — for example,
hardware designers — to understand the relevant issues.

148

CHAPTER 6 Transferring Control

between processes, assigning a new process to a CPU when a current process is blocked. Most
modern operating systems also can take into account multiple CPUs and schedule the CPUs
such that all CPUs are doing useful work wherever possible.

Thus the Web server application need not do the juggling between clients; the operating
system does this automatically on the application’s behalf. For example, when Client 1 is
blocked waiting for the disk controller, the operating system may save all the context for the
Client 1 process to memory and allow the Client 2 process to run by restoring its context from
memory.

This simplicity, however, comes at a cost. First, as we have seen, process-context switching
and restoring is expensive. It requires reads and writes from memory to registers to save and
restore context. Recall that the context includes changing the page tables being used (because
page tables are per process); thus any virtual memory translations cached within the TLB need
to be cached. Similarly, the contents of the data cache and the instruction cache are likely to
represent the tastes and preferences of the previously resident process; thus much of it may
be useless to the new process. When all caches fail, the initial performance of the switched-in
process can be very poor.

Further, spawning a new process when a new client comes in, as was done by some initial
Web servers, is also expensive.> Fortunately, the overhead to create and destroy processes
when clients come and go can be avoided by precomputation and/or lazy process deletion
(P2, shifting computation in time). When a client finishes its request processing and the
connection is terminated, rather than destroy the process, the process can be returned to a pool
of idle processes. The process can then be assigned to the next new client that needs a process
to shepherd its request through the server.

A second issue is the problem of matchmaking between new arriving clients and processes
in the process pool. A naive way to do this is as follows. Each new client is handed to a well-
known matchmaking process, which then hands off each new client to some available process in
the pool. However, operating system designers have realized the importance of matchmaking.
They have invented system calls (for instance, the Accept call in UNIX) to do matchmaking
at the cost of a system call invocation, as opposed to requiring a process-context switch.

When a process in the pool is done it makes an Accept call and waits in line in a kernel
data structure. When a new client comes in, its socket is handed off to the idle process that is
first in line. Thus the kernel provides matchmaking services directly.

6.3.2 Thread per Client

Even after removing the overheads of creating a process on demand and the overhead of match-
making, processes are an expensive solution. Since slow wide-area connections to servers are
very common and the rate of arrivals to popular Web servers can easily exceed 2000 per second,
it is not unusual for a Web server to have 6000 concurrent clients being served at once.

As we have seen, even if the processes are already created, switching between processes
incurs TLB