MULTIMEDIA OVER IP
WIRELESS NETWDRKS

COMPRESSION, NETWORKING
. MIHAELA VAN DER SCHAAR - PHILIP A. CHOU




MULTIMEDIA OVER IP AND WIRELESS
NETWORKS



This page intentionally left blank



MULTIMEDIA OVER IP AND
WIRELESS NETWORKS

COMPRESSION, NETWORKING,
AND SYSTEMS

Edited by

Philip A. Chou

Microsoft Corporation

Mihaela van der Schaar
University of California, Los Angeles

AMSTERDAM ¢ BOSTON e HEIDELBERG ® LONDON
| NEW YORK ® OXFORD e PARIS ® SAN DIEGO
b SAN FRANCISCO e SINGAPORE ¢ SYDNEY ® TOKYO

b
£

ELSEVIE Academic Press is an imprint of Elsevier

ACADEMIC
PRESS



Academic Press is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper. 6

Copyright © 2007, Elsevier Inc. All rights reserved.

Chapter 9 — Portions reprinted, with permission, from Raouf Hamzaoui, Vladimir Stankovic, and Zixiang
Xiong, “Optimized error protection of scalable image bit streams” IEEE Signal Processing Magazine,
Volume 22, Issue 6, November 2005, Page(s): 91-107. © 2005 IEEE.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions @elsevier.com. You may
also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Support
& Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Multimedia over IP and wireless networks : compression, networking, and systems / edited by Philip A.
Chou, Mihaela van der Schaar.
p. cm.

ISBN-10: 0-12-088480-1

ISBN-13: 978-0-12-370856-4

1. Multimedia communications. 2. Computer networks. 3. Multimedia systems. I. Chou, Philip A.

II. Schaar, Mihaela van der.

TK5105.15.M95 2007

006.7-dc22

2007003425

ISBN 13: 978-0-12-088480-3
ISBN 10: 0-12-088480-1

For information on all Academic Press publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America
07 08 09 10 11 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER  BOOKAID g0 Foundation




Table of Contents

About the Editors vii
About the Authors ix
Part A Overview 1
Chapter 1  Multimedia Networking and Communication: Principles

and Challenges 3
Mihaela van der Schaar and Philip A. Chou

Part B Compression 11

Chapter

2

Error-Resilient Coding and Decoding Strategies for Video
Communication 13
Thomas Stockhammer and Waqar Zia

Chapter 3  Error-Resilient Coding and Error Concealment Strategies
for Audio Communication 59
Dinei Floréncio

Chapter 4  Mechanisms for Adapting Compressed Multimedia to
Varying Bandwidth Conditions 81
Antonio Ortega and Huisheng Wang

Chapter 5  Scalable Video Coding for Adaptive Streaming Applications 117
Béatrice Pesquet-Popescu, Shipeng Li, and
Mihaela van der Schaar

Chapter 6  Scalable Audio Coding 159
Jin Li

Part C IP Networking 185

Chapter 7  Channel Protection Fundamentals 187

Raouf Hamzaoui, Viladimir Stankovic, Zixiang Xiong,
Kannan Ramchandran, Rohit Puri, Abhik Majumdar, and
Jim Chou



vi

Chapter

Chapter

Chapter

Part D

Chapter

Chapter

Chapter

Part E
Chapter

Chapter

Chapter

Part F
Chapter

Chapter

Chapter

Index

TABLE OF CONTENTS

8  Channel Modeling and Analysis for the Internet
Hayder Radha and Dmitri Loguinov

9  Forward Error Control for Packet Loss and Corruption

Raouf Hamzaoui, Vladimir Stankovi¢, and Zixiang Xiong

10 Network-Adaptive Media Transport
Mark Kalman and Bernd Girod

Wireless Networking

11 Performance Modeling and Analysis over Medium Access

Control Layer Wireless Channels
Syed Ali Khayam and Hayder Radha

12 Cross-Layer Wireless Multimedia
Mihaela van der Schaar

13 Quality of Service Support in Multimedia Wireless
Environments
Klara Nahrstedt, Wanghong Yuan, Samarth Shah,
Yuan Xue, and Kai Chen

Systems

14 Streaming Media on Demand and Live Broadcast
Philip A. Chou

15 Real-Time Communication: Internet Protocol Voice and
Video Telephony and Teleconferencing
Yi Liang, Yen-Chi Lee, and Andy Teng

16 Adaptive Media Playout
Eckehard Steinbach, Yi Liang, Mark Kalman, and
Bernd Girod

Advanced Topics

17 Path Diversity for Media Streaming
John Apostolopoulos, Mitchell Trott, and Wai-Tian Tan

18 Distributed Video Coding and Its Applications

Abhik Majumdar, Rohit Puri, Kannan Ramchandran, and

Jim Chou

19 Infrastructure-Based Streaming Media Overlay Networks

Susie Wee, Wai-Tian Tan, and John Apostolopoulos

229

271

293

311

313

337

409

451

453

503

527

557

559

591

633

671



ABOUT THE EDITORS

Mihaela van der Schaar received her Ph.D. degree from Eindhoven University
of Technology, Eindhoven, The Netherlands, in 2001. She is currently an Assis-
tant Professor in the Electrical Engineering Department at UCLA. Prior to this,
between 1996 and June 2003 she was a senior researcher at Philips Research in
the Netherlands and the USA, where she led a team of researchers working on
multimedia coding, processing, networking, and streaming algorithms and archi-
tectures. She has published extensively on multimedia compression, processing,
communications, networking, and architectures and holds 28 granted U.S. patents
and several more pending. Since 1999, she has been an active participant to the
ISO Motion Picture Expert Group (MPEG) standard, to which she made more
than 50 contributions and for which she received three ISO recognition awards.
She chaired the ad hoc group on MPEG-21 Scalable Video Coding for three
years, and also co-chaired the MPEG ad hoc group on Multimedia Test-bed. She
is a senior member of IEEE, and was also elected as a Member of the Technical
Committee on Multimedia Signal Processing (MMSP TC) and Image and Mul-
tidimensional Signal Processing Technical Committee (IMDSP TC) of the IEEE
Signal Processing Society. She was an Associate Editor of IEEE Transactions
on Multimedia and SPIE Electronic Imaging Journal from 2002 to 2005. Cur-
rently, she is an Associate Editor of IEEE Transactions on Circuits and Systems
for Video Technology and an Associate Editor of IEEE Signal Processing Letters.
She served as a General Chair for the Picture Coding Symposium (PCS) in 2004.
She received the NSF CAREER Award in 2004, the IBM Faculty Award in 2005,
the Okawa Foundation Award in 2006, and the Best Paper Award for her paper
published in 2005 in the IEEE Transactions on Circuits and Systems for Video
Technology.

Philip A. Chou received a B.S.E. degree from Princeton University, Princeton,
NJ, in 1980, and an M.S. degree from the University of California, Berkeley, in

vii



viii ABOUT THE EDITORS

1983, both in electrical engineering and computer science, and a Ph.D. degree
in electrical engineering from Stanford University in 1988. From 1988 to 1990,
he was a Member of Technical Staff at AT&T Bell Laboratories in Murray Hill,
NJ. From 1990 to 1996, he was a Member of Research Staff at the Xerox Palo
Alto Research Center in Palo Alto, CA. In 1997, he was the manager of the com-
pression group at VXtreme in Mountain View, CA, before it was acquired by
Microsoft in 1997. From 1998 to the present, he has been a Principal Researcher
with Microsoft Research in Redmond, Washington, where he currently manages
the Communication and Collaboration Systems research group. Dr. Chou also
served as a Consulting Associate Professor at Stanford University from 1994 to
1995, an Affiliate Associate Professor at the University of Washington since 1998,
and an Adjunct Professor at the Chinese University of Hong Kong since 2006. Dr.
Chou’s research interests are data compression, information theory, communica-
tions, and pattern recognition, with applications to video, images, audio, speech,
and documents. Dr. Chou served as an Associate Editor in source coding for the
IEEE Transactions on Information Theory from 1998 to 2001 and as a Guest As-
sociate Editor for special issues in the IEEE Transactions on Image Processing
and the IEEE Transactions on Multimedia in 1996 and 2004, respectively. From
1998 to 2004, he was a Member of the IEEE Signal Processing Society’s Image
and Multidimensional Signal Processing Technical Committee (IMDSP TC). He
served as Program Committee Chair for the inaugural NetCod 2005 workshop,
and he currently serves on the organizing committee for ICASSP 2007. He is a
Fellow of the IEEE, a member of Phi Beta Kappa, Tau Beta Pi, Sigma Xi, and the
IEEE Computer, Information Theory, Signal Processing, and Communications
Societies, and was an active member of the MPEG committee. He is the recipient,
with Anshul Seghal, of the 2002 ICME Best Paper award, and he is the recipient,
with Tom Lookabaugh, of the 1993 Signal Processing Society Paper award.



ABOUT THE AUTHORS

John Apostolopoulos received his B.S., M.S., and Ph.D. degrees in EECS from
Massachusetts Institute of Technology (MIT). He joined Hewlett-Packard Labo-
ratories in 1997, where he is a Principal Research Scientist and Project Manager
for the Streaming Media Systems Group. He also teaches and conducts joint re-
search at Stanford University, where he is a Consulting Assistant Professor in EE.
He received a Best Student Paper Award for part of his Ph.D. thesis, the Young
Investigator Award (Best Paper Award) at VCIP 2001 for his paper on multi-
ple description video coding and path diversity for reliable video communication
over lossy packet networks, and in 2003 was named “one of the world’s top 100
young (under 35) innovators in science and technology” (TR100) by Technology
Review. He contributed to both the U.S. Digital Television and JPEG-2000 Se-
curity (JPSEC) standards. His research interests include improving the reliability,
fidelity, scalability, and security of media communication over wired and wireless
packet networks.

Kai Chen received his Ph.D. degree in Computer Science from the University
of Illinois at Urbana-Champaign in 2004. He received his M.S. and B.S. degrees
from University of Delaware and Tsinghua University, respectively. He is cur-
rently working at Google Inc.

Jim Chou received B.S. and M.S. degrees in electrical engineering from the Uni-
versity of Illinois at Urbana-Champaign in 1995 and 1997, respectively. He re-
ceived the Ph.D. degree in electrical engineering from the University of Califor-
nia, Berkeley in 2002. He has worked at TRW, Bytemobile, and Sony Research in
the past. Jim holds two U.S. patents and has several patents pending. Currently,
Jim is a Video Architect at C2 Microsystems. His research interests include cod-
ing theory, wireless video transmission, digital watermarking, and estimation and
detection theory.

Philip A. Chou is Principal Researcher and Manager of the Communication and
Collaboration Systems group at Microsoft Research. He also holds affiliate pro-

ix



X ABOUT THE AUTHORS

fessor positions at the University of Washington and the Chinese University of
Hong Kong. Prior to coming to Microsoft, Dr. Chou was Compression Group
Manager at VXtreme (a startup company acquired by Microsoft) in 1997, a Mem-
ber of Research Staff at the Xerox Palo Alto Research Center from 1990 to 1996,
a Consulting Associate Professor at Stanford from 1994 to 1995, and a Member
of the Technical Staff at AT&T Bell Laboratories from 1988 to 1990. Dr. Chou
received a Ph.D. from Stanford University in 1988, an M.S. from the University
of California, Berkeley, in 1983, and a B.S.E. from Princeton University in 1980.
His research interests include data compression, information theory, communica-
tions, and pattern recognition, with applications to video, images, audio, speech,
and documents. Dr. Chou is a Fellow of IEEE.

Dinei Floréncio received B.S. and M.S. degrees from the University of Brasilia,
Brazil, and a Ph.D. degree from the Georgia Institute of Technology, Atlanta, all
in electrical engineering. He has been a researcher in the communication and col-
laboration systems group at Microsoft Research since 1999. From 1996 to 1999,
he was a Member of Research Staff at the David Sarnoff Research Center. From
1994 to 1996, he was an Associated Researcher with AT&T Human Interface Lab
(now part of NCR), and an intern at the (now defunct) Interval Research in 1994.
He is a Senior Member of the IEEE. He has published over 25 referred papers,
has been granted 20 U.S. patents, and has received the 1998 Sarnoff Achievement
Award.

Bernd Girod is Professor of Electrical Engineering and (by courtesy) Computer
Science in the Information Systems Laboratory of Stanford University, California.
He was Chaired Professor of Telecommunications in the Electrical Engineering
Department of the University of Erlangen-Nuremberg from 1993 to 1999. His
research interests are in the areas of video compression and networked media sys-
tems. Prior visiting or regular faculty positions include the Massachusetts Institute
of Technology, Georgia Institute of Technology, and Stanford University. He has
been involved with several startup ventures as founder, director, investor, or advi-
sor, among them Vivo Software, 8x8 (Nasdaq: EGHT), and RealNetworks (Nas-
daq: RNWK). Since 2004, he has served as the Chairman of the new Deutsche
Telekom Laboratories in Berlin. He received an Engineering Doctorate from Uni-
versity of Hannover, Germany, and an M.S. degree from Georgia Institute of Tech-
nology. Professor Girod is a Fellow of IEEE.

Raouf Hamzaoui received an M.Sc. degree in mathematics from the University
of Montreal, Canada, in 1993, the Dr. rer. nat. degree from the Faculty of Applied
Sciences of the University of Freiburg, Germany, in 1997, and the Habilitation
degree in computer science from the University of Konstanz, Germany, in 2004.



ABOUT THE AUTHORS xi

From 2000 to 2002, he was an Assistant Professor with the Department of Com-
puter Science of the University of Leipzig, Germany. From 2002 to August 2006,
he was an Assistant Professor with the Department of Computer and Information
Science of the University of Konstanz. Since September 2006, he has been a Pro-
fessor for Media Technology in the School of Engineering and Technology at De
Montfort University, Leicester, United Kingdom. His research interests include
image and video compression, multimedia communication, channel coding, and
algorithms.

Mark Kalman received a B.S. in Electrical Engineering and a B.Mus. in Compo-
sition from Johns Hopkins University in 1997. He completed his M.S. and Ph.D.
degrees, both in Electrical Engineering, at Stanford University in 2001 and 2006,
respectively. He is currently with Pure Digital Technologies, Inc., in San Fran-
cisco, California.

Syed Ali Khayam received his B.E. degree in Computer Systems Engineering
from National University of Sciences and Technology (NUST), Pakistan, in 1999
and his M.S. degree in Electrical Engineering from Michigan State University
(MSU) in 2003. He received his Ph.D. from MSU in December 2006. He worked
at Communications Enabling Technologies from October 2000 to August 2001.
His research interests include analysis and modeling of statistical phenomena in
computer networks, network security with emphasis on detection and mitigation
of self-propagating malware, cross-layer design for wireless networks, and real-
time multimedia communications.

Yen-Chi Lee received a B.S. and M.S. degrees in Computer Science and Informa-
tion Engineering from National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.,
in 1997 and 1999, respectively, and a Ph.D. degree in Electrical and Computer
Engineering from Georgia Institute of Technology, Atlanta, in 2003. In 2003, he
joined Nokia Research Center, Irving, TX, as a research engineer, where he con-
ducted research on video teleconferencing over GSM GPRS/EGPRS networks.
He has been with Qualcomm Inc., San Diego, CA, as a video system engineer
since 2004. His current research focuses on the areas of video compression tech-
niques and real-time wireless video communications; particularly, error-resilient
video coding and error control, low-delay video rate control, and channel rate
adaptation. Yen-Chi has published 16 research papers and currently holds 14
pending patent applications.

Jin Li is currently a Senior Researcher at Microsoft Research (MSR) Redmond.
He received his Ph.D. from Tsinghua University in 1994. Before moving to Red-
mond, he worked at the University of Southern California, the Sharp Laboratories



xii ABOUT THE AUTHORS

of America, and MSR Asia. Since 2000, Dr. Li has also served as an adjunct pro-
fessor at Tsinghua University. Dr. Li has more than 80 referred conference and
journal papers in a diversified research field of media compression and commu-
nication and peer-to-peer content delivery. He holds 18 issued U.S. patents, with
many more pending. Dr. Li is an Area Editor for the Journal of Visual Commu-
nication and Image Representation (Academic Press) and an Associate Editor of
IEEE Transactions on Multimedia. He is a Senior Member of IEEE. He was the
recipient of the 1994 Ph.D. Thesis Award from Tsinghua University and the 1998
Young Investigator Award from SPIE Visual Communication and Image Process-
ing.

Shipeng Li received B.S. and M.S. degrees from the University of Science and
Technology of China (USTC), Hefei, China, in 1988 and 1991, respectively, and
a Ph.D. degree from Lehigh University, Bethlehem, PA, in 1996, all in electrical
engineering. He was with the Electrical Engineering Department, USTC, from
1991 to 1992. He was a Member of Technical Staff with Sarnoff Corporation,
Princeton, NJ, from 1996 to 1999. He has been a Researcher with Microsoft Re-
search Asia, Beijing, China, since May 1999 and has contributed to some tech-
nologies in MPEG-4 and H.264. His research interests include image/video com-
pression and communications, digital television, multimedia, and wireless com-
munication.

Yi Liang’s expertise is in the areas of networked multimedia systems, real-time
voice and video communication, and low-latency media streaming over wire-line
and wireless networks. Currently holding positions at Qualcomm CDMA Tech-
nologies, San Diego, CA, he is responsible for the design and development of
video and display system architecture for multimedia handset chipsets. From 2000
to 2001, he conducted research with Netergy Networks, Inc., Santa Clara, CA,
on voice-over-IP systems that provide superior quality over best-effort networks.
From 2001 to 2003, he led the Stanford-Hewlett-Packard Labs low-latency video
streaming project, in which he and his colleagues developed error-resilience tech-
niques for rich-media-communication-over-IP networks at very low latency. In
the summer of 2002 at Hewlett-Packard Labs, Palo Alto, CA, he developed an
accurate loss-distortion model for compressed video and contributed in the de-
velopment of the pioneering mobile streaming media content delivery network
(MSM-CDN) that delivers rich media over 3G wireless. Yi Liang received a Ph.D.
degree in Electrical Engineering from Stanford University in 2003 and a B.Eng.
degree from Tsinghua University, Beijing, China, in 1997.

Dmitri Loguinov received a B.S. degree (with honors) in computer science from
Moscow State University, Russia, in 1995 and a Ph.D. degree in computer sci-
ence from the City University of New York in 2002. Since 2002, he has been



ABOUT THE AUTHORS xiii

an Assistant Professor of Computer Science with Texas A&M University, Col-
lege Station. His research interests include peer-to-peer networks, Internet video
streaming, congestion control, topology modeling, and Internet traffic measure-
ment.

Abhik Majumdar received a B.Tech. degree from the Indian Institute of Technol-
ogy (IIT), Kharagpur, and M.S. and Ph.D. degrees from the University of Califor-
nia, Berkeley, in 2000, 2003, and 2005, respectively, all in Electrical Engineering.
He is currently with Pure Digital Technologies, San Francisco, CA. His research
interests include multimedia compression and networking and wireless communi-
cations. Dr. Majumdar was awarded the Institute Silver Medal from L.I.T. Kharag-
pur for outstanding achievement in the graduating class of 2000.

Klara Nahrstedt is a Full Professor at the University of Illinois at Urbana-
Champaign, Computer Science Department. Her research interests are directed
toward multimedia distributed systems, quality of service (QoS) management in
wired and mobile ad hoc networks, QoS-aware resource management in distrib-
uted multimedia systems, QoS-aware middleware systems, quality of protection
in multimedia systems, and tele-immersive applications. She is the co-author of
the widely used multimedia book Multimedia: Computing, Communications and
Applications, published by Prentice Hall in 1995, and the multimedia book Mul-
timedia Systems, published by Springer-Verlag in 2004. She is the recipient of
the Early NSF Career Award, the Junior Xerox Award, and the IEEE Commu-
nication Society Leonard Abraham Award for Research Achievements. She is
the Editor-in-Chief of the ACM/Springer Multimedia Systems Journal, and the
Ralph and Catherine Fisher Professor. Klara Nahrstedt received her B.A. in math-
ematics from Humboldt University, Berlin, in 1984, and an M.Sc. degree in nu-
merical analysis from the same university in 1985. She was a research scien-
tist in the Institute for Informatik in Berlin until 1990. In 1995, she received
her Ph.D. from the University of Pennsylvania in the Department of Computer
and Information Science. She is a Member of ACM and a Senior Member of
IEEE.

Antonio Ortega received the Telecommunications Engineering degree from the
Universidad Politecnica de Madrid, Spain, in 1989 and the Ph.D. in Electri-
cal Engineering from Columbia University, New York, NY in 1994. His Ph.D.
work was supported by a Fulbright Scholarship. In 1994, he joined the Electrical
Engineering-Systems department at the University of Southern California, where
he is currently a Professor and Associate Chair of the Department. He is a Se-
nior Member of IEEE, and a Member of ACM. He has been Chair of the Image
and Multidimensional Signal Processing Technical Committee (IMDSP TC) and



xiv ABOUT THE AUTHORS

a member of the Board of Governors of the IEEE SPS (2002). He was the Tech-
nical Program Co-chair of ICME 2002 and has served as Associate Editor for the
IEEE Transactions on Image Processing and the IEEE Signal Processing Letters.
He received the National Science Foundation (NSF) CAREER award, the 1997
IEEE Communications Society Leonard G. Abraham Prize Paper Award, and the
IEEE Signal Processing Society 1999 Magazine Award. His research interests are
in the areas of multimedia compression and communications. His recent work
focuses on distributed compression, multiview coding, compression for recogni-
tion and classification applications, error-tolerant compression, and information
representation for wireless sensor networks.

Béatrice Pesquet-Popescu is an Associate Professor at ENST Paris, where she is
currently the leader of the Multimedia Group. Her current research interests are
in scalable and robust video coding, adaptive wavelets, and multimedia applica-
tions. EURASIP gave her a Best Student Paper Award in the IEEE Signal Process-
ing Workshop on Higher-Order Statistics in 1997; in 1998, she received a Young
Investigator Award granted by the French Physical Society, and she received, to-
gether with D. Turaga and M. van der Schaar, the 2006 IEEE Circuits and Systems
Society CSVT Transactions Best Paper Award for the paper “Complexity Scalable
Motion Compensated Wavelet Video Encoding.” She has authored more than one
hundred book chapters, journal articles, and conference papers in the field and
holds more than 20 patents in wavelet-based video coding. She is a Member of the
IEEE Multimedia Signal Processing Technical Committee, an elected EURASIP
AdCom Member, and a Senior Member of IEEE.

Rohit Puri received a B.Tech. degree from the Indian Institute of Technology,
Bombay, the M.S. degree from the University of Illinois at Urbana-Champaign,
and a Ph.D. degree from the University of California, Berkeley, in 1997, 1999,
and 2002, respectively, all in electrical engineering. From 2003 to 2004, he was
with Sony Electronics Inc., San Jose, CA. He was then with the EECS Depart-
ment, University of California, Berkeley, as a Research Engineer. He is currently
a Senior Video Architect at PortalPlayer Inc., San Jose, CA. His research inter-
ests include multimedia compression, distributed source coding, multiple descrip-
tions coding, and multi-user information theory. Dr. Puri was awarded the Insti-
tute Silver Medal by the Indian Institute of Technology, Bombay, for outstanding
achievement in the graduating class, in 1997. He was a recipient of the 2004 Eli-
ahu L. Jury Award at the University of California, Berkeley, for the best doctoral
thesis in the area of systems, signal processing, communications, and controls.

Hayder Radha is a Professor of Electrical and Computer Engineering at Michi-
gan State University (MSU). He received his Ph.M. and Ph.D. degrees from
Columbia University in 1991 and 1993, an M.S. degree from Purdue University



ABOUT THE AUTHORS XV

in 1986, and a B.S. degree (honors) from MSU in 1984 (all in electrical engineer-
ing). From 1996 to 2000, he worked for Philips Research as a Principal Member of
Research Staff and Consulting Scientist in the Video Communications Research
Department. From 1986 to 1996, he worked at Bell Labs in the areas of digital
communications, image processing, and broadband multimedia networking. He
served as Co-chair and Editor of the Broadband and LAN Video Coding Experts
Group of the ITU-T. He was a Philips Research Fellow, and he is a recipient of
the Bell Labs Distinguished Member of Technical Staff, AT&T Circle of Excel-
lence, College of Engineering Withrow Distinguished Scholar, and the Microsoft
Research Content and Curriculum Awards.

Kannan Ramchandran received M.S. and Ph.D. degrees from Columbia Uni-
versity in Electrical Engineering in 1984 and 1993, respectively. From 1984 to
1990, he was a Member of Technical Staff at AT&T Bell Labs in the telecommu-
nications R&D area. From 1993 to 1999, he was on the faculty of the Electrical
and Computer Engineering Department at the University of Illinois at Urbana-
Champaign and was a Research Assistant Professor at the Beckman Institute and
the Coordinated Science Laboratory. Since fall 1999, he has been an Associate
Professor in the Electrical Engineering and Computer Sciences department, Uni-
versity of California, Berkeley. His current research interests include distributed
algorithms for signal processing and communications, multi-user information the-
ory, wavelet theory and multiresolution signal processing, and unified algorithms
for multimedia signal processing, communications, and networking. Dr. Ram-
chandran was a recipient of the 1993 Eliahu I. Jury Award at Columbia University
for the best doctoral thesis in the area of systems, signal processing, and commu-
nications. His research awards include the National Science Foundation (NSF)
CAREER award in 1997, ONR and ARO Young Investigator Awards in 1996 and
1997, and the Okawa Foundation Award at the University of California, Berkeley,
in 2000. In 1998, he was selected as a Henry Magnusky Scholar by the Electrical
and Computer Engineering department at the University of Illinois, an honor that
recognizes excellence among junior faculty. He is the co-recipient of two Best Pa-
per Awards from the IEEE Signal Processing Society, has been a Member of the
IEEE Image and Multidimensional Signal Processing Committee and the IEEE
Multimedia Signal Processing Committee, and has served as an Associate Editor
for the IEEE Transactions on Image Processing.

Samarth Shah received his B.E. degree in Computer Science and Engineering
from the University of Madras, India, in 1998 and completed his Ph.D. in Com-
puter Science at the University of Illinois at Urbana-Champaign in 2005. Since
2005, he has been working at Motorola Inc. in Libertyville, Illinois, in the area of
VoIP-over-WiFi.



xvi ABOUT THE AUTHORS

Vladimir Stankovi¢ received the Dipl.-Ing. degree in electrical engineering from
the University of Belgrade, Serbia, in 2000, and the Dr.-Ing. degree from the
University of Leipzig, Germany, in 2003. From 2002 to 2003, he was with the
Department of Computer and Information Science, University of Konstanz, Ger-
many. From June 2003 to February 2006, he was with the Department of Electrical
and Computer Engineering at Texas A&M University, College Station, first as a
Postdoctoral Research Associate and then as a Research Assistant Professor. In
February 2006, Dr. Stankovi¢ joined the Department of Communication Systems,
Lancaster University, Lancaster, United Kingdom, as a lecturer. His research fo-
cuses on multimedia networking, network information theory, and wireless com-
munications.

Eckehard Steinbach (IEEE M’96) studied Electrical Engineering at the Uni-
versity of Karlsruhe, Germany, the University of Essex, United Kingdom, and
ESIEE in Paris. From 1994 to 2000, he was a member of the research staff of
the Image Communication Group at the University of Erlangen-Nuremberg (Ger-
many), where he received an Engineering Doctorate in 1999. From February 2000
to December 2001, he was a Postdoctoral Fellow with the Information Systems
Laboratory of Stanford University. In February 2002, he joined the Department
of Electrical Engineering and Information Technology of Munich University of
Technology, Germany, where he is currently an Associate Professor for Media
Technology. His current research interests are in the area of networked and inter-
active multimedia systems.

Thomas Stockhammer has been working at the Munich University of Tech-
nology, Germany and was visiting researcher at Rensselear Polytechnic Institute
(RPI), Troy, NY and at the University of San Diego, California (UCSD). He has
published more than 80 conference and journal papers, is member of different
program committees, and holds several patents. He regularly participates and con-
tributes to different standardization activities, such as JVT, IETF, 3GPP, ITU, and
DVB, and has co-authored more than 100 technical contributions. He is acting
chairman of the video ad hoc group of 3GPP SA4. He is also co-founder and
CEO of Novel Mobile Radio (NoMoR) Research, a company working on the
simulation and emulation of future mobile networks. He is working as a research
and standardization consultant for Siemens Mobile Devices and now consults for
Digital Fountain, the leading provider for forward error correction. His research
interests include video transmission, cross-layer and system design, forward error
correction, content delivery protocols, rate—distortion optimization, information
theory, and mobile communications.

Wai-Tian Tan joined Hewlett-Packard Laboratories in December 2000, where he
is a member of the Streaming Media Systems Group. He received a B.S. degree



ABOUT THE AUTHORS xvii

from Brown University in 1992, an M.S.E.E. degree from Stanford University in
1993 and a Ph.D. degree from the University of California, Berkeley, in 2000. He
worked for Oracle Corporation from 1993 to 1995. His research focuses on adap-
tive media streaming, both at the end-point and inside the delivery infrastructure.

Chia-Yuan (Andy) Teng was born in Taipei, Taiwan, China, in 1964. He received
a college diploma from National Taipei Institute of Technology, Taipei, Taiwan,
in 1984, a M.S. degree in Electrical Engineering from National Sun Yat-Sen Uni-
versity, Kaoshiung, Taiwan, in 1989, and a Ph.D. degree in Electrical Engineering
and Computer Science from the University of Michigan, Ann Arbor, in 1996. In
1989, he was with the Industrial Technology Research Institute (ITRI), Hsinchu,
Taiwan. From 1990 to 1992, he was a Faculty Member of the Department of EE,
Chien-Hsin Institute of Technology, Chunli, Taiwan. From 1996 to 1998, he was
with the Corporate Research, Thomson Multimedia, where he participated in the
standardization and research of digital TV, satellite, and cable systems. From 1998
to 2004, he was with the San Diego R&D Center, Nokia Mobile Phones, where
he was a Technical Team Leader in DSP entity and involved in the development
and design for multimedia, streaming, and DSP firmware. Dr. Teng joined Qual-
comm Corporation in Aug. 2004, where he is currently a Staff Engineer/Manager
in the Video Systems Group. His research interests include video/image coding,
video/image processing, multimedia streaming, Internet protocols, and video tele-
phony.

Mitchell Trott received B.S. and M.S. degrees in Systems Engineering from Case
Western Reserve University in 1987 and 1988, respectively, and a Ph.D. in elec-
trical engineering from Stanford University in 1992. He was an Associate Pro-
fessor in the Department of Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology (MIT) from 1992 until 1998, and director
of research at ArrayComm from 1997 through 2002. He is now a member of the
Streaming Media Systems Group at Hewlett-Packard Laboratories. His research
interests include streaming media systems, multi-user and wireless communica-
tion, and information theory.

Mihaela van der Schaar is currently an Assistant Professor in the Electrical
Engineering Department at UCLA. She has published extensively on multime-
dia compression, processing, communications, networking, and architectures and
holds 28 granted U.S. patents. Since 1999, she has been an active participant to
the ISO Motion Picture Expert Group (MPEG) standard, to which she made more
than 50 contributions and for which she received three ISO recognition awards.
She was an Associate Editor of IEEE Transactions on Multimedia and SPIE Elec-
tronic Imaging Journal and is currently an Associate Editor of IEEE Transactions



xviii ABOUT THE AUTHORS

on Circuits and System for Video Technology and of IEEE Signal Processing Let-
ters. She received the NSF CAREER Award in 2004, the IBM Faculty Award in
2005, the Okawa Foundation Award in 2006, and the Best Paper Award for her
paper published in 2005 in the IEEE Transactions on Circuits and Systems for
Video Technology.

Huisheng Wang received the B.Eng. degree from Xi’an Jiaotong University,
China, in 1995 and the M.Eng. degree from Nanyang Technological University,
Singapore, in 1998, both in electrical engineering. She is currently pursuing her
Ph.D. degree in the Department of Electrical Engineering-Systems at the Uni-
versity of Southern California, Los Angeles. From 1997 to 2000, she worked in
Creative Technology Ltd., Singapore as a R&D software engineer. She was also
a research intern at La Jolla Lab, ST Microelectronics, San Diego, CA, and at HP
Labs, Palo Alto, CA. Her research interests include signal processing, multimedia
compression, networking, and communications.

Susie Wee is the Director of the Mobile and Media Systems Lab in Hewlett-
Packard Laboratories (HP Labs). She is responsible for research programs in mul-
timedia, networked sensing, next-generation mobile multimedia systems, and ex-
perience design. Her lab has activities in the U.S., Japan, and the United Kingdom,
and includes collaborations with partners around the world. Wee’s research inter-
ests broadly embrace the design of mobile streaming media systems, secure scal-
able streaming methods, and efficient video delivery algorithms. In addition to her
work at HP Labs, Wee is a Consulting Assistant Professor at Stanford University.
She received Technology Review’s Top 100 Young Investigators Award in 2002,
served as an Associate Editor for the IEEE Transactions on Image Processing and
IEEE Transactions on Circuits, Systems, and Video Technologies. She is currently
a Co-Editor of the JPEG-2000 Security standard (JPSEC). Wee received her B.S.,
M.S., and Ph.D. degrees in electrical engineering from the Massachusetts Institute
of Technology (MIT).

Zixiang Xiong received a Ph.D. degree in Electrical Engineering in 1996 from
the University of Illinois at Urbana-Champaign. He is currently an Associate Pro-
fessor in the Department of Electrical and Computer Engineering at Texas A&M
University, College Station. His research interests are network information the-
ory, code designs and applications, networked multimedia, and genomic signal
processing.

Yuan Xue received her B.S. in Computer Science from Harbin Institute of Tech-
nology, China in 1998 and her M.S. and Ph.D. in Computer Science from the
University of Illinois at Urbana-Champaign in 2002 and 2005, respectively. Cur-
rently, she is an Assistant Professor at the Department of Electrical Engineering



ABOUT THE AUTHORS Xix

and Computer Science of Vanderbilt University. She is a recipient of the Vodafone
fellowship. Her research interests include wireless and sensor networks, peer-to-
peer and overlay systems, QoS support, and network security. She is a Member of
the IEEE and ACM.

Wanghong Yuan received his B.S. and M.S. degrees in 1996 and 1999, respec-
tively, from the Department of Computer Science, Beijing University, and his
Ph.D. degree in 2004 from the Department of Computer Science, University of
Illinois at Urbana-Champaign. He is a software engineer at Microsoft Corpo-
ration. Before joining Microsoft, he was a research engineer at DoCoMo USA
Labs from 2004 to 2006. His research and development interests include operat-
ing systems, networks, multimedia, and real-time systems, with an emphasis on
the design of energy-efficient and QoS-aware operating systems.

Wagqar Zia received his B.Sc. degree in electrical engineering from the Univer-
sity of Engineering and Technology, Taxila, Pakistan in 2000. He worked on
embedded digital video processing for three years in Streaming Networks Ltd.,
Islamabad, Pakistan. He received his M.Sc. degree in Information and Communi-
cation Systems from Hamburg University of Technology, Germany, in 2005. He
then started working on his Ph.D. under the supervision of Prof. Klaus Diepold
and Thomas Stockhammer at the Technical University of Munich, Germany. His
work focuses on complexity-constrained error-robust video communication on
handheld devices. He has also actively participated in recent 3GPP standardiza-
tion and has co-authored several technical contributions along with pursuing his
research work.



This page intentionally left blank



PART A

OVERVIEW

CHAPTER 1 Multimedia Networking and Communication: Principles and
Challenges
(Mihaela van der Schaar and Philip A. Chou)



This page intentionally left blank



Multimedia Networking
and Communication:
Principles and Challenges

Mihaela van der Schaar and Philip A. Chou

In case you haven’t noticed, multimedia communication over IP and wireless net-
works is exploding. Applications such as BitTorrent, used primarily for video
downloads, now take up the lion’s share of all traffic on the Internet. Music file
sharing, once on the legal cutting edge of massive copyright infringement on col-
lege campuses around the world, has moved into the mainstream with signifi-
cant legal downloads of music and video to devices such as the iPod and nu-
merous other portable media players. Multimedia podcasting to client comput-
ers and portable devices is a phenomenon exploding in its own right. Internet
radio, pioneered in the late 1990s, is now being joined in a big way by peer-
to-peer television such as CoolStreaming and PPLive. Audio and video on de-
mand over the Internet, also available since the late 1990s on the Web sites of
well-funded organizations such as CNN.com and MSNBC.com, are now at the
core of a multitude of new music and video businesses from Napster to iTunes
to MTV’s Urge service, and will be expanding imminently to full-length movie
delivery on demand. Moreover, Web sites such as YouTube have made publishing
videos on demand available to anyone with a home video camera, which these
days is nearly everyone with a mobile phone. Indeed, most mobile phones to-
day can actively download and upload both photos and videos, sometimes in real
time. Internet telephony is exploding, with popular applications such as Skype
and others enabling wideband voice and video conferencing over the Internet. In
general, voice over IP (VoIP) is revolutionizing the telecommunications indus-
try, as circuit-switched equipment from PBX to long haul equipment is being
replaced by soft IP switches. Enhanced television is also being delivered into the
living room over IP networks by traditional telephone providers through DSL.
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Once inside the home, consumer electronics manufacturers, and increasingly, the
computer industry and its partners, are distributing audio and video over WiFi to
monitors and speaker systems around the house. Now that the analog-to-digital
revolution is nearly complete, we are undergoing an all-media-over-IP revolution,
with radio, television, telephony, and stored media all currently being delivered
over IP wireline and wireless networks. To top it all off, brand new types of media,
such as game data for interactive gaming over the Internet, are strongly emerging.

Despite having unleashed a plethora of new multimedia applications, the In-
ternet and wireless networks provide only limited support for multimedia. The
Internet and wireless networks have inherently unpredictable and variable condi-
tions. If averaged over time, this variability may not significantly impact delay-
insensitive applications such as file transfer. However, variations in network con-
ditions can have considerable consequences for real-time multimedia applications
and can lead to unsatisfactory user experience. Multimedia applications tend to be
delay sensitive, bandwidth intense, and loss tolerant. These properties can change
the fundamental principles of communication design for these applications.

The concepts, theories, and solutions that have traditionally been taught in in-
formation theory, communication, and signal processing courses may not be di-
rectly applicable to highly time-varying channel conditions, adaptive and delay-
sensitive multimedia applications, and interactive multiuser transmission environ-
ments. Consequently, in recent years, the area of multimedia communication and
networking has emerged not only as a very active and challenging integrative
research topic across the borders of signal processing and communication, but
also as a core curriculum that requires its own set of fundamental concepts and
algorithms that differ from those taught in conventional signal processing and
communication courses.

This book aims at providing the reader with an in-depth understanding of the
theoretical foundations, key design principles, algorithms, and existing standards
for multimedia communication and networking.

This introductory chapter provides motivation for studying the topic of mul-
timedia communication, the addressed applications, and associated challenges.
Subsequently, a road map of the various chapters is provided. A suggested use for
graduate instruction and self-study is also provided.

1.1 DIMENSIONS OF MULTIMEDIA COMMUNICATION
1.1.1 Multimedia Communication Applications
The emergence of communication infrastructures such as the Internet and wire-

less networks enabled the proliferation of the aforementioned multimedia appli-
cations. These applications range from simple music downloading to a portable



Section 1.1: DIMENSIONS OF MULTIMEDIA COMMUNICATION 5

device, to watching TV through the Internet on a laptop, or to viewing movie trail-
ers posted on the Web via a wireless link. Some of these applications are new to
the Internet revolution, while others may seem more traditional, such as sending
VoIP to an apparently conventional telephone, sending television over IP to an
apparently conventional set top box, or sending music over WiFi to an apparently
conventional stereo amplifier.

An obvious question that comes to mind when considering all the aforemen-
tioned applications is how to jointly discuss these applications. What do they have
in common and how do they differ? To provide an answer to this seemingly simple
question, we will discuss the various dimensions of these multimedia communi-
cation applications.

1.1.2 Streaming Versus Downloading

Conventional downloading applications (e.g., file transfer such as FTP) involve
downloading a file before it is viewed or consumed by a user. Examples of such
multimedia downloading applications are downloading an MP3 song to a portable
device, downloading a video file to a computer via BitTorrent, or downloading a
podcast. (Despite its name, podcasting is a “pull” technology with which a Web
site is periodically polled for new multimedia content.) Downloading is usually
a very robust way to deliver media to a user. However, downloading has two po-
tentially important disadvantages for multimedia applications. First, a large buffer
is required whenever a large media file (e.g., an MPEG-4 movie) is downloaded.
Second, the amount of time required for the download can be relatively large,
thereby requiring the user to wait minutes or even hours before being able to con-
sume the content. Thus, while downloading is simple and robust, it provides only
limited flexibility both to users and to application designers.

An alternative to downloading is streaming. Streaming applications split the
media bit stream into separate chunks (e.g., packets), which can be transmitted
independently. This enables the receiver to decode and play back the parts of the
bit stream that are already received. The transmitter continues to send multimedia
data chunks while the receiver decodes and simultaneously plays back other, al-
ready received parts of the bit stream. This enables low delay between the moment
data is sent by the transmitter to the moment it is viewed by the user. Low delay
is of paramount importance for interactive applications such as video conferenc-
ing, but it is also important both for video on demand, where the user may desire
to change channels or programs quickly, and for live broadcast, where the con-
tent length is unbounded a priori, but the delay must be finite. Another advantage
of streaming is its relatively low storage requirements and increased flexibility
for the user, compared to downloading. However, streaming applications, unlike
downloading applications, have deadlines and other timing requirements to ensure
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continuous real-time media playout. This leads to new challenges for designing
communication systems to best support multimedia streaming applications.

1.1.3 Streaming Media on Demand, Live Broadcast, and Real-Time
Communication

Multimedia streaming applications can be partitioned into three classes by delay
tolerance. Interactive audio and video telephony, teleconferencing, and gaming
have extremely low delay tolerance, usually no more than 200 ms of end-to-end
delay for comfortable interaction. In contrast, live broadcast applications (e.g.,
Internet radio), which typically have no interactivity, have a large delay tolerance,
say up to 30 s, because the delay cannot be detected without interactivity and
without a reference, such as a neighbor who is listening to a conventional radio.
(Cheers coming from a neighbor’s apartment 30 s before a goal can certainly
ruin the surprise!) Intermediate in terms of delay tolerance is the application of
streaming media on demand, which has only moderate interactivity requirements,
such as channel changing and VCR-like control. The differences in delay toler-
ance among these three classes of multimedia applications have profound effects
on their design, particularly with respect to error recovery. Low-delay, low bit
rate applications such as telephony can afford only error-resilience techniques,
whereas high-delay or high bandwidth applications can afford complete error re-
covery using either forward error correction or retransmission-based techniques.

It is worth noting here that although applications in all three classes play out
multimedia in real time, the phrase “real-time communication” is commonly used
only for the first application, that is, audio and video telephony, conferencing, and
gaming, whereas the phrase “streaming” is often associated only with the latter
two applications.

1.1.4 Online Versus Off-Line Encoding

Another essential difference between multimedia communication applications is
whether the content is encoded online, as in the case of real-time communication
or live broadcast applications, or is encoded off-line, as in the case of streaming
media on demand. The advantage of online encoding is that the communication
channel can be monitored and the source and channel coding strategies can be
adapted correspondingly. For instance, the receiver can inform the transmitter of
the information that is lost and the encoder can adjust correspondingly. The ad-
vantage of off-line encoding is that the content can be exhaustively analyzed and
the encoding can be optimized (possibly in nonreal time over several passes of the
data) for efficient transmission.



Section 1.1: DIMENSIONS OF MULTIMEDIA COMMUNICATION 7

1.1.5 Receiver Device Characteristics

The constraints of the receiver devices on which the various applications are
consumed by the end user also have an important impact on multimedia com-
munication. In particular, the available storage, power, and computational capa-
bilities of the receiving device need to be explicitly considered when designing
complete multimedia communication solutions. For instance, the design of mul-
timedia compression, scheduling, and error protection algorithms at the receiver
should explicitly consider the ability of the receiver to cope with packet loss.
Also, receiver-driven streaming applications can enable the end device to proac-
tively decide which parts of the compressed bit streams should be transmitted
depending on the display size and other factors.

1.1.6 Unicast, Multicast, and Broadcast

Multimedia communication can be classified into one of three different cate-
gories: unicast, multicast, and broadcast, depending on the relationship between
the number of senders and receivers. Unicast transmission connects one sender to
one receiver. Examples of such applications include downloading, streaming me-
dia on demand, and point-to-point telephony. A main advantage of unicast is that
a back channel can be established between the receiver and the sender. When such
a back channel exists, the receiver can provide feedback to the sender about ex-
perienced channel conditions, end-user requirements, end-device characteristics,
and so on, which can be used accordingly to adapt compression, error protection,
and other transmission strategies.

Multicast transmission connects the sender to multiple receivers that have
elected to participate in the multicast session, over IP multicast or application
level multicast. Multicast is more efficient than multiple unicasts in terms of net-
work resource utilization and server complexity. However, a disadvantage of mul-
ticast compared to unicast is that the sender cannot target its transmission toward
a specific receiver.

Broadcast transmission connects a sender to all receivers that it can reach
through the network. An example is broadcast over a wireless link or a shared
Ethernet link. As in multicast, the communication channel may be different for
different receivers. In this book, when we refer to the live broadcast application,
we are usually talking about a solution in which a live signal is actually multicast
over the network.

1.1.7 Metrics for Quantifying Performance

Unlike conventional communication applications, multimedia communication ap-
plications cannot be simply evaluated in terms of the achieved throughput, packet
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loss rates, or bit error rates, as these applications are delay sensitive and not all
the various transmitted bits are “created equal,” that is, have the same importance.
Instead, multimedia performance needs to be quantified in terms of metrics such
as the perceived quality or objective metrics such as the Peak Signal-to-Noise Ra-
tio (PSNR) between transmitted and received media data. Hence, the importance
of each bit or packet of multimedia data depends on its delay requirements (i.e.,
when it needs to be available at the receiver side) and impact on the resulting
PSNR. These new evaluation criteria fundamentally change the design principles
for multimedia communication systems compared to communication systems for
traditional delay-insensitive, loss-intolerant applications.

1.2 ORGANIZATION OF THE BOOK

This book aims at providing an in-depth understanding of the theoretical founda-
tions, key design principles, algorithms, and existing standards for the aforemen-
tioned multimedia networking and communication scenarios. The book is divided
into five major parts.

The first part of the book discusses how multimedia data can be efficiently
compressed to enable optimized transmission over the Internet and wireless net-
works. Unlike traditional compression techniques such as MPEG-2, which were
designed solely for storage (e.g., on DVD disks) or transmission over error-free
networks with relatively large and guaranteed bandwidth, compression schemes
that enable efficient multimedia communication over the Internet and wireless
networks need to have the ability to cope with different channel conditions, char-
acterized by different bit error rates, packet loss rates, access bandwidths, or time-
varying available bandwidths. Chapter 2 discusses error-resilient techniques for
video transmission over such error-prone networks, while Chapter 3 presents al-
gorithms and solutions for error-resilient audio transmission. To cope with the
changes in bandwidth, Chapter 4 provides a thorough analysis of the various
mechanisms for bandwidth adaptation, as the network often offers heterogeneous,
time-varying channel conditions. To effectively cope with adaptive streaming ap-
plications or multicasting applications, where a variety of receivers would like to
simultaneously access the same multimedia content, Chapter 5 introduces exist-
ing and emerging scalable video coding algorithms, while Chapter 6 discusses
scalable audio coding.

The second part of the book focuses on efficient solutions for bit stream trans-
mission over IP networks. Chapter 7 introduces the fundamentals of channel pro-
tection needed to insulate bit streams from the error-prone nature of the channels
over which they are transmitted. Chapter 8 discusses how to effectively model
and characterize the complex communication channels within networks such as
the Internet. Having an accurate model of the channel becomes paramount when
finding an efficient trade-off between the bit rates allocated to source and channel
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protection. Chapter 9 focuses on Forward Error Correction (FEC) mechanisms
aimed at effectively protecting multimedia bit streams at the application layer.
These solutions can successfully exploit the available knowledge of the multime-
dia bit streams. Chapter 10 focuses on the corresponding retransmission-based
mechanisms. Unlike FEC mechanisms, retransmission-based mechanisms can be
instantaneously adapted to each channel realization. However, the retransmission-
based algorithms are not well suited to the multicast case or the live broadcast sce-
nario, where many receivers are connected to a single sender. FEC mechanisms
must be used here instead.

The third part of the book focuses on multimedia transmission over wireless
networks. Chapter 11 discusses MAC-centric channel models characterizing the
specific behavior of wireless networks, thereby offering insights into the chal-
lenges associated with multimedia streaming over such networks. Chapter 12
shows how to cope with these challenges, how the various layers of the protocol
stack can collaborate to ensure efficient wireless multimedia communication, and
how the cross-layer design deployed at one station influences multiuser interac-
tion and fairness in such environments. Chapter 13 provides various solutions for
providing the necessary quality of service guarantees in such wireless environ-
ments.

The fourth part of the book discusses efficient multimedia system design, which
is essential for ensuring that the streaming solutions are efficiently optimized and
deployed. Chapter 14 presents approaches to streaming media on demand as well
as live broadcast, while Chapter 15 presents approaches to real-time communica-
tion applications such as telephony and conferencing. To ensure the continuous
playout of multimedia despite packet loss and jitter, Chapter 16 exploits the “time
elastic” behavior of these applications by discussing the concept of adaptive me-
dia playout.

The final part of the book presents several advanced topics on multimedia com-
munication. Chapter 17 discusses how multimedia compression and transmission
algorithms can take advantage of the multipath diversity existing in the Internet
and wireless networks. Chapter 18 presents distributed video coding principles,
algorithms, and their applications to, for example, low-cost encoding for multi-
media streaming. Chapter 19 introduces the capabilities, architectures, and design
principles of building overlays on top of the existing Internet and wireless in-
frastructures for enhanced support to multimedia applications.

1.3 SUGGESTED USE FOR GRADUATE INSTRUCTION AND
SELF-STUDY

This book is intended as a textbook for a graduate-level course on multimedia
networking and communication or as reference text for researchers and engineers
working in the areas of multimedia communication, multimedia compression,
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multimedia systems, wireless communication, and networking. This book can be
used for either a semester-length course or a quarter-length course if some of the
advanced topics are left for self-study or as part of a research project associated
with the class.

One of the best ways to understand the challenges and theory for multimedia
communication and networking discussed in this book is through the completion
of a multimedia-related project. This is because the importance of the various
principles and techniques taught in such a course, as well as their interrelation-
ships, become apparent when solving “real” multimedia communication prob-
lems. Students should be encouraged to choose a project topic related to their
interests and/or research backgrounds. The summary and further reading sections
concluding the various chapters can be used as a starting point for defining rele-
vant class projects. For instance, students having a background on wireless com-
munication can choose a project topic on cross-layer wireless multimedia trans-
mission or multimedia transmission over multihop wireless networks, students
having interests on information theory can select projects on joint source-channel
coding or distributed source coding, and students with a background on signal,
speech, or image processing can investigate topics related to robust multimedia
compression, scalable coding, error concealment, or adaptive media playout.

1.4 SUPPLEMENTARY MATERIAL FOR THE BOOK

Supplementary material for this book can be found athttp: //boocks.elsevier.
com/companions/0120884801. This includes an additional chapter to this
book, Chapter 20, which presents state-of-the-art techniques for multimedia trans-
mission over peer-to-peer networks. Also, the Web page contains slides, exercises,
and additional material for the various chapters, which can be used by potential in-
structors for a class on multimedia communication and networking. For feedback
about the book or the material posted on this Web site, the reader can contact the
coeditors of this book, Mihaela van der Schaar (mihaela@ee.ucla.edu) and Phil
Chou (pachou@microsoft.com).
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Error-Resilient Coding and
Decoding Strategies for
Video Communication

Thomas Stockhammer and Wagqar Zia

2.1 INTRODUCTION

Video is becoming more and more popular for a large variety of applications and
networks. Internet and wireless video, especially, has become part of our daily
lives. However, despite many advances in terms of bandwidth and capacity en-
hancements in different networks, the data transmission rate will always be a
scarce resource due to physical limitations, especially for high quality high bit
rate applications. Therefore, good compression is as important as ever. Further-
more, real-time delivery of multimedia data is required for several application
scenarios, such as conversational applications, streaming, broadcast, or video-on-
demand services. Under such real-time constraints, unfortunately the Quality-of-
Service (QoS) available in current and next generation networks is in general
not sufficient to guarantee error-free delivery to all receivers. Therefore, in addi-
tion to the capability of easy integration into existing and future networks, video
codecs must provide means of dealing with various transmission impairments. In
communication environments, standardized solutions are desirable at terminals
to ensure compatibility. That is why video coding standards such as MPEG-4
and H.264/AVC have become popular and attractive for numerous network en-
vironments and application scenarios. These standards, like numerous previous
standards and more recent standards such as VCI, use a hybrid coding approach,
namely Motion Compensated Prediction (MCP). MCP is combined with trans-
form coding of the residual. We will focus on MCP-coded video in the remainder
of this chapter and mainly concentrate on tools and features integrated in the lat-
est video coding standard H.264/AVC [19,45] and its test model software JM.

13



14 Chapter 2: ERROR-RESILIENT CODING AND DECODING STRATEGIES

We will focus on specific tools for improved error resilience within standard-
compliant MCP-coded video. More advanced error-resilience features, such as
multiple description coding, distributed video coding, and combinations with net-
work prioritization and forward error correction, are left to the remaining chapters
of this book and the references therein. It is assumed that the reader has some ba-
sic knowledge of the encoding and decoding algorithms of MCP-coded video, for
example, as discussed in [14].

2.2 VIDEO COMMUNICATION SYSTEMS
2.2.1 End-to-End Video Transmission

Figure 2.1 provides an abstraction of a video transmission system. In order to keep
this work focused, we have excluded capturing and display devices, user inter-
faces, and security issues; most computational complexity issues are also ignored.
Components that enhance system performance, for example, a feedback chan-
nel, will also be introduced later in this chapter. In contrast to still images, video
frames inherently include relative timing information, which has to be maintained
to assure perfect reconstruction at the receiver’s display. Furthermore, due to sig-
nificant amounts of spatiotemporal statistical and psychovisual redundancy in nat-
ural video sequences, video encoders are capable of reducing the actual amount
of transmitted data significantly. However, excessive lossy compression results in
noticeable, annoying, or even intolerable artifacts in the decoded video. A trade-
off between rate and distortion is always necessary. Real-time transmission of
video adds additional challenges. According to Figure 2.1, the video encoder gen-
erates data units containing the compressed video stream, which is stored in an
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FIGURE 2.1: Simplified lossy video transmission system.
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encoder buffer before the transmission. The transmission system may delay, lose,
or corrupt individual data units. Furthermore, each processing and transmission
step adds some delay, which can be fixed, deterministic, or random. The encoder
buffer and the decoder buffer compensate for variable bit rates produced by the
encoder as well as channel delay variations to keep the end-to-end delay constant
and to maintain the time line at the decoder. Nevertheless, in general the initial
playout delay cannot be too excessive and strongly depends on the application
constraints.

2.2.2 Video Applications

As discussed in Chapter 1, digitally coded video is used in a wide variety of ap-
plications, in different transmission environments. These applications can operate
in completely different bit rate ranges. For example, HDTV applications require
data rates in the vicinity of 20 Mbit/s, whereas simple download-and-play ser-
vices such as MMS on mobile devices might be satisfied with 20 Kbit/s, three
orders of magnitude less. However, applications themselves have certain char-
acteristics, which are of importance for system design. For example, they can
be distinguished by the maximum tolerable end-to-end delay and the possibility
of online encoding (in contrast to the transmission of pre-encoded content). In
particular, real-time services, such as broadcasting, unicast streaming, and con-
versational services, come with significant challenges, because generally, reliable
delivery of all data cannot be guaranteed. This can be due to the lack of a feedback
link in the system or due to constraints on the maximum end-to-end delay. Among
these applications, conversational applications with end-to-end delay constraints
of less than 200 to 250 ms are most challenging for the system design.

2.2.3 Coded Video Data

In contrast to analog audio, for example, compressed digital video cannot be ac-
cessed at any random point due to variable-length entropy coding as well as the
syntax and semantics of the encoded video stream. In general, coded video can
be viewed as a sequence of data units, referred to as access units in MPEG-4
or network abstraction layer (NAL) units in H.264. The data units themselves are
self-contained, at least on a syntactic level, and they can be labeled with data unit-
specific information; for example, their relative importance for video reconstruc-
tion quality. However, on a semantic level, due to spatial and temporal prediction,
the independent compression of data units cannot be guaranteed without signifi-
cantly harming compression efficiency. A concept of directed acyclic dependency
graphs on data units has been introduced in [6], which formalizes these issues.
The data units themselves are either directly forwarded to a packet network or
encapsulated into a bit or byte stream format containing unique synchronization
codes and then injected into a circuit-switched network.
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2.2.4 Transmission Impairments

The process of introduction of errors and its effects are markedly different in
IP and wireless-based networks. For wireless networks, fading and interference
cause burst errors in the form of multiple lost bits, while congestion can result
in lost packets in an IP network. Nowadays, even for wireless networks, systems
include means to detect the presence of errors on physical layer segments and
the losses are indicated to higher layers. Intermediate protocol layers such as the
User Datagram Protocol (UDP) [32] might decide to completely drop erroneous
packets and the encapsulated data units.

Furthermore, video data packets are treated as lost if they are delayed more
than a tolerable threshold defined by the application. Hence for the remainder of
this chapter we will concentrate on the effects of entire data units lost and present
means to deal with such losses in video applications. Detailed description of the
processes of introduction of losses in IP and wireless-based networks will be given
in Chapter 8 and Chapter 11, respectively.

2.2.5 Data Losses in MCP-Coded Video

Figure 2.2 presents a simplified yet typical system when MCP video is transmitted
over error-prone channels. Assume that all macroblocks (MBs) of one frame s;
are contained in a single packet P;, for example, in an NAL unit in the case of
H.264/AVC. Furthermore, assume that this packet is transmitted over a channel
that forwards correct packets to the decoder, denoted as C; = 1, and perfectly
detects and discards corrupted packets at the receiver, denoted as C; = 0.

In case of successful transmission, the packet is forwarded to the regular de-
coder operation. The prediction information and transform coefficients are re-
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FIGURE 2.2: Simplified lossy video transmission system.
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trieved from the coded bit stream to reconstruct frame §,_;. The frame is for-
warded to the display buffer and also to the reference frame buffer to be used in
the MCP process to reconstruct following inter-coded frames, for example, §;. In
the less favorable case that the coded representation of the frame is lost, that is,
at our reference time r = 0, C; = 0, so-called error concealment is necessary. In
the simplest form, the decoder just skips the decoding operation and the display
buffer is not updated, that is, the displayed frame is still §;_;. The viewer will im-
mediately recognize the loss of fluent motion since a continuous display update is
not maintained.

However, in addition to the display buffer, the reference frame buffer is also
not updated as a result of this data loss. Even in case of successful reception of
packet Py 1, the inter-coded frame §;1 reconstructed at the decoder will in gen-
eral not be identical to the reconstructed frame §;4; at the encoder. The reason is
obvious, as the encoder and the decoder refer to a different reference signal in the
MCP process, resulting in a so-called reconstruction mismatch. Therefore, there
will again be a mismatch in the reference signal when decoding $;7. Hence it is
obvious that the loss of a single packet P; affects the quality of all the inter-coded
frames $;41, $/4+2, St+3, . ... This phenomenon, present in any predictive coding
scheme, is called error propagation. If predictive coding is applied in the spatial
and temporal domains, it is referred to as spatiotemporal error propagation.

Therefore, for MCP-coded video, the reconstructed frame at the receiver, §;,
not only depends on the actual channel behavior C;, but on the previous channel
behavior Cj1.,; ={Ci, ..., C;} and we write §,(C1.,]). An example for error prop-
agation is shown in Figure 2.3. The top row presents the sequence with perfect
reconstruction; in the bottom row only packet P; at time ¢ = 0 is lost. Although
the remaining packets are again correctly received, the error propagates and is still
visible in decoded frame §;—g. At time ¢ = 9, the encoder transmits an intra-coded
image, and since no temporal prediction is used for coding this image, temporal
error propagation is terminated at this time. It should be noted, however, that even

L\ |
P\ ﬁ\\

FIGURE 2.3: Example for error propagation in a typical hybrid video
coding system.
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with inter-coded images, the effect of a loss is reduced with every correct recep-
tion. This is because inter-coded frames might consist of intra-coded regions that
do not use temporal prediction. An encoder might decide to use intra-coding when
it finds that temporal prediction is inefficient for coding a certain image region.

Following the intra image at ¢ = 9, the decoder will be able to perfectly recon-
struct the encoded images until another data packet is lost for f > 9.

Therefore, a video coding system operating in environments where data units
might get lost should provide one or several of the following features:

1. means that allow completely avoiding transmission errors,

2. features that allow minimizing the visual effects of errors in a frame, and

3. features to limit spatial as well as spatiotemporal error propagation in hy-
brid video coding.

In the remainder of this chapter we restrict ourselves to forward predictive MCP
video coding, although most of the concepts generalize to any kind of dependen-
cies. A formal description of packetized video with slice structured coding and
error concealment, as well as the extension of operational encoder control for
error-prone video transmission, are discussed in Section 2.3.

2.3 ERROR-RESILIENT VIDEO TRANSMISSION
2.3.1 System Overview

The operation of an MCP video coding system in a transmission environment is
depicted in Figure 2.4. It extends the simplified presentation in Figure 2.2 by the
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addition of typical features used when transmitting video over error-prone chan-
nels. However, in general, for specific applications not all features are used, but
only a suitable subset is extracted. Frequently, the generated video data belonging
to a single frame is not encoded as a single data unit, but MBs are grouped in
data units and the entropy coding is such that individual data units are syntacti-
cally accessible and independent. The generated video data might be processed in
a transmission protocol stack and some kind of error control is typically applied,
before the video data is transmitted over the lossy channel. Error control features
include Forward Error Correction (FEC), Backward Error Correction (BEC), and
any prioritization methods, as well as any combinations of those. At the receiver,
it is essential that erroneous and missing video data are detected and localized.
Commonly, video decoders are fed only with correctly received video data units,
or at least with an error indication, that certain video data has been lost. Video
data units such as NAL units in H.264 are self-contained and therefore the de-
coder can assign the decoded MBs to the appropriate locations in the decoded
frames. For those positions where no data has been received, error concealment
has to be applied. Advanced video coding systems also allow reporting the loss of
video data units from the receiver to the video encoder. Depending on the appli-
cation, the delay, and the accurateness of the information, an online encoder can
exploit this information in the encoding process. Likewise, streaming servers can
use this information in their decisions. Several of the concepts briefly mentioned
in this high-level description of an error-resilient video transmission system will
be elaborated and investigated in more detail in remaining sections.

2.3.2 Design Principles

Video coding features such as MB assignments, error control methods, or ex-
ploitation of feedback messages can be used exclusively or jointly for error ro-
bustness purposes, depending on the application. It is necessary to understand that
most error-resilience tools decrease compression efficiency. Therefore, the main
goal when transmitting video goes along the spirit of Shannon’s famous separa-
tion principle [38]: Combine compression efficiency with link layer features that
completely avoid losses such that the two aspects, compression and transport, can
be completely separated. Nevertheless, in several applications and environments,
particularly in low delay situations, error-free transport may be impossible. In
these cases, the following system design principles are essential:

1. Loss correction below codec layer: Minimize the amount of losses in the
wireless channel without completely sacrificing the video bit rate.

2. Error detection: If errors are unavoidable, detect and localize erroneous
video data.

3. Prioritization methods: If losses are unavoidable, at least minimize losses
for very important data.
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4. Error recovery and concealment: In case of losses, minimize the visual
impact of losses on the actually distorted image.

5. Encoder—decoder mismatch avoidance: In case of losses, limit or com-
pletely avoid encoder and decoder mismatch to avoid the annoying effects
of error propagation.

This chapter will focus especially on the latter three design principles. However,
for completeness, we include a brief overview on the first two aspects. The re-
mainder of this book will treat many of these advanced issues.

2.3.3 Error Control Methods

In wireless systems, below the application layer, error control such as FEC and
retransmission protocols are the primary tools for providing QoS. However, the
trade-offs among reliability, delay, and bit rate have to be considered. Neverthe-
less, to compensate the shortcomings of non-QoS-controlled networks, for ex-
ample, the Internet or some mobile systems, as well as to address total blackout
periods caused, for example, by network buffer overflow or a handoff between
transmission cells, error control features are introduced at the application layer.
For example, broadcast services make use of application-layer FEC schemes. For
point-to-point services, selective application layer retransmission schemes have
been proposed. For delay-uncritical applications, the Transmission Control Pro-
tocol (TCP) [31,40] can provide QoS. The topics of channel protection techniques
and FEC will be covered in detail in Chapter 7 and Chapter 9, respectively. We
will not deal with these features in the remainder of this chapter, but concentrate
on video-related signal processing to introduce reliability and QoS.

2.3.4 Video Compression Tools Related to Error Resilience

Video coding standards such as H.263, MPEG-4, and H.264 only specify the de-
coder operation in case of reception of an error-free bit stream as well as the syn-
tax and semantics of the video bit stream. Consequently, the deployment of video
coding standards still provides a significant amount of freedom for encoders and
decoding of erroneous bit streams. Depending on the compression standard used,
different compression tools are available that offer some room for error-resilient
transmission.

Video compression tools have evolved significantly over time in terms of the
error resilience they offer. Early video compression standards, such as H.261, had
very limited error-resilience capabilities. Later standards, such as MPEG-1 and
MPEG-2, changed little in this regard, since they were tailored mostly for storage
applications. With the advent of H.263, things started changing dramatically. The
resilience tools of the first version of H.263 [18] had only marginal improvements
over MPEG-1; however, later versions of H.263 (referred as H.263+ and H.263++,
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respectively) introduced several new tools that were tailored specifically for the
purpose of error resilience and will be discussed in this section. These tools re-
sulted in a popular acceptance of this codec; it replaced H.261 in most video
communication applications. In parallel to this work, the new emerging standard
MPEG-4 Advanced Simple Profile (ASP) [17] opted for an entirely different ap-
proach. Some sophisticated resilience tools, such as Reversible Variable Length
Coding (RVLC) and resynchronization markers, were introduced. However, de-
spite their strong concept, these tools did not gain wide acceptance. One of the
reasons for this is that these tools target to solve the issues of lower layers in the
application layer, which is not a widely accepted approach. For example, RVLC
can be used at the decoder to reduce the impact of errors in a corrupted data
packet. However, as discussed in Section 2.2.4, errors on the physical layer can
be detected and lower layers might discard these packets instead of forwarding
them to the application.

Up to date, the final chapter in error-resilient video coding is H.264/AVC. This
standard is equipped with a wide range of error-resilience tools. Some of these
tools are modified and enhanced forms of the ones introduced in H.263++. The
following section gives a brief overview of these tools as they are formulated in
H.264/AVC and the concepts behind these. Considering the rapid pace of evolu-
tion of these tools, it is also important to know the origin of these tools in previous
standards.

Some specific error-resilience features such as error-resilient entropy coding
schemes and arbitrary slice ordering will not be discussed. The interested reader
is referred to [43,60]. It is also worth considering that most features are general
enough to be used for multiple purposes rather than being assigned to a specific
application. Some of the tools have a dual purpose of increased compression ef-
ficiency along with error resilience, which seems to be contradictory initially, but
this ambiguity will be resolved. In later sections of this chapter, we will present
some of these tools in action in different applications and measure their impact on
system performance.

Slice Structured Coding

For typical digital video transmission over networks, it is not suitable to transmit
all the compressed data belonging to a complete coded frame in a single data
packet for a variety of reasons. Most importantly, variations are expected in the
sizes of such data packets because of a varying amount of redundancy in different
frames of a sequence. In this case the lower layers have to subdivide the packet to
make it suitable for transmission. In case of a loss of a single such division, the
decoder might be unable to decode an entire frame with only one synchronization
point available for an entire coded frame.
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To overcome this issue, slices provide spatially distinct resynchronization
points within the video data for a single frame (Figure 2.5). A number of MBs
are grouped together; this is accomplished by introducing a slice header, which
contains syntactic and semantic resynchronization information. The concept of
slices (referred to as group of blocks [GOB] in H.261 and H.263) exists in dif-
ferent forms in different standards. Its usage was limited to encapsulate individ-
ual rows of MBs in H.263 and MPEG-2. In this case, slices will still result in
variable sized data units because of the varying amount of redundancy in dif-
ferent regions of a frame. Slices take their most flexible and advanced form in
H.264/AVC. The encoder can select the location of the synchronization points
at any MB boundary. Intra prediction and motion vector prediction are not al-
lowed over slice boundaries. An arbitrary number of MBs can be assigned to a
slice, which results in different modes of operation. For example, the encoder
can decide to allocate either a fixed number of MBs or a fixed number of bits
to a slice. The later mode of operation, with a predefined data size of a slice,
is especially useful from a network perspective, since the slice size can be bet-
ter matched to the packet size supported by the network layer. In this case, a
loss of a data unit on network layer will result in a loss of a discrete number of
slices, and a considerable portion of a picture might remain unaffected by the
loss.

Hence in H.264/AVC, slices are the basic output of the video encoder and form
an independently accessible entity. Provision of access to those units is provided
either by the use of unique synchronization markers or by the appropriate encap-
sulation in underlying transport protocols. The details of slice structured coding
modes and the implications are discussed in Section 2.4.2.
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FIGURE 2.5: A sketch of a picture divided into several slices, demar-
cated by gray boundaries.
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Flexible MB Ordering

In previous video compression standards, such as MPEG-1, MPEG-2 and H.263,
MBs are processed and transmitted in raster—scan order, starting from the top-left
corner of the image to the bottom right. However, if a data unit is lost, this usually
results in the loss of a connected area in a single frame.

In order to allow a more flexible transmission order of MBs in a frame in
H.264/AVC, Flexible Macroblock Ordering (FMO) allows mapping of MBs to
so-called slice groups. A slice group itself may contain several slices. For exam-
ple, in Figure 2.6, each shaded region (a slice group) might be subdivided into
several slices. Hence slice group can be thought of as an entity similar to a picture
consisting of slices in the case when FMO is not used. Therefore, MBs may be
transmitted out of raster—scan order in a flexible and efficient way. This can be
useful in several cases. For example:

e Several concealment techniques at the decoder rely on the availability of
correctly received neighbor MBs to conceal a lost MB. Hence a loss of
collocated image areas results in poor concealment. Using FMO, spatially
collocated image areas can be interleaved in different slices. This will result
in a greater probability that neighboring MB data is available for concealing
the lost MB.

e There might exist a Region Of Interest (ROI) within the images of a video
sequence, for example, the face of the caller in a video conferencing system.
Such regions can be mapped to a separate slice group than the background
to offer better protection against losses in the network layer.

Slice Group 1

Slice Group 2

FIGURE 2.6: MBs of a picture (dotted lines) allocated to two slice
groups. Light-gray MBs belong to one slice group, and dark-gray MBs
belong to the other.



24 Chapter 2: ERROR-RESILIENT CODING AND DECODING STRATEGIES

A description of different modes and specific applications of FMO are given in
Section 2.4.2.

Scalability

Scalable coding usually refers to a source coder that simultaneously provides en-
coded version of the same data source at different quality levels by extracting a
lower quality reconstruction from a single binary description. Scalable coding can
be realized using embedded bit streams, that is, the bit stream of a lower resolu-
tion is embedded in the bit stream of higher resolution. Unlike one-dimensional
sources such as speech or audio, where usually the quality levels are defined by the
quantization distortion, for video the quality can be changed in basically three di-
mensions, namely spatial resolution, temporal resolution or frame rate, and quan-
tization distortion. Scalable video coding is realized in standards in many differ-
ent variants and will be extensively treated in Chapter 5. Commonly, scalability
is synonymously used with a specific type of scalability referred to as successive
refinement. This specific case addresses the view point that information is added
such that the initial reproduction is refined. In this case, the emphasis is on a good
initial reproduction.

Data Partitioning

The concept of data partitioning originates from the fact that loss of some syntax
elements of a bit stream results in a larger degradation of quality compared to
others. For example, the loss of MB mode information or motion vector (MV)
information will, for most cases, result in a larger distortion compared to loss of
a high-frequency transform coefficient. This is intuitive, since, for example, MB
mode information is required for interpreting all the remaining MB information
at the decoder.

In the case of data loss in the network, data partitioning results in the so-called
graceful degradation of video quality. Graceful degradation targets the reduction
of perceived video quality that is, to some extent, proportionate to the amount of
data lost. In this case, the emphasis is on a good final reproduction quality, but at
least an intermediate reconstruction is possible.

The concept of categorizing syntax elements in the order of their importance
started with MPEG-4 and H.263++. For these standards, video coded data was
categorized into header information, motion information, and texture information
(transformed residual coefficients), listed here in the order of their importance.
Figure 2.7 shows the interleaved structure of data when using the data partition-
ing mode. For example, combining this concept with that of RVLC and resyn-
chronization markers, it could be possible to retrieve most of header and MV
information even for the case of data lost within the transform coefficients parti-
tion.
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FIGURE 2.7: The layout of a compressed video data without using
data partitioning (top) and with data partitioning (bottom) in H.263++.
A packet starts with a synchronization marker, while for the data parti-
tioning mode, two additional synchronization points are available, such as
the header marker and the MV marker.

In the H.264/AVC data partitioning mode, each slice can be segmented into
header and motion information, intra information, and inter texture information
by simply distributing the syntax elements to individual data units. Typically, the
importance of the individual segments of the partition is in the order of the list.
In contrast to MPEG-4, H.264/AVC distinguishes between inter- and intra-texture
information because of the more important role of the latter in error mitigation.
The partitions of different importance can be protected with Unequal Error Pro-
tection (UEP), with the more important data being offered more protection and
vice versa. Due to this reordering only on the syntax level, coding efficiency is
not sacrificed, but obviously the loss of individual segments still results in error
propagation with similar but typically less severe effects as those shown in Fig-
ure 2.3. Some detailed investigations of synergies of data partition and UEP can
be found in [13,24,42].

Redundant Slices

An H.264/AVC encoder can transmit a redundant version of a normally trans-
mitted slice using possibly different encoding parameters. Such a redundant slice
can be simply discarded by the decoder during its normal operation. However,
in the case when the original slice is lost, this redundant data can be used to re-
construct the lost regions. For example, in a system with frequent data losses,
an H.264/AVC encoder can exploit this unique feature to send the redundant,
coarsely quantized version of an ROI along with the regular representation of it.
Hence the decoder will be capable of displaying the lost ROI, albeit at a lower
quality. It is worthwhile to notice that this will still result in an encoder—decoder
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mismatch of reference pictures, since the encoder being unaware of the loss uses
the original slice as a reference, but this effect will be less severe compared to the
case when this tool is not used.

Flexible Reference Frame Concept

Standards such as H.263 version 1 and MPEG-2 allow only a single reference
frame for predicting a P-type frame and at most two frames for predicting a B-
type frame. However, there is a possibility of significant statistical dependencies
between other pictures as well. Hence using more frames than just the recent
frame as reference has a dual advantage: increased compression efficiency and
improved error resilience at the same time. Here we focus on the latter effect ex-
clusively. This concept has been recognized as especially useful for transmission
over error-prone channels.

In prior codecs, if the encoder is aware of the only reference picture being lost
at the decoder, the only available option to limit error propagation was to transmit
intra-coded information. However, intra-coded data has significantly large size
compared to temporally predicted data, which results in further delays and losses
on the network. H.263+ and MPEG-4 proposed tools, such as the Reference Pic-
ture Selection (RPS), allows flexible selection of a reference picture on a slice
or GOB bases. Hence temporal prediction is still possible from other correctly re-
ceived frames at the decoder. This results in improved error resilience by avoiding
using corrupted picture areas as reference. In H.264/AVC, this restrictive concept
has been generalized to allow reference frames to be selected in a flexible way
on an MB basis (Figure 2.8). There is also the possibility of using two weighted
reference signals for MB inter prediction. Frames can be kept in short-term and
long-term memory buffers for future reference. This concept can be exploited by
the encoder for different purposes, for compression efficiency, for bit rate adap-
tivity, and for error resilience.

Flexible reference frames can also be used to enable subsequences in the com-
pressed stream to effectively enable temporal scalability. The basic idea is to use
a subsequence of “anchor frames” at a lower frame rate than the overall sequence
frame rate, shown as P frames in Figure 2.9. Other frames are inserted in between
these frames to achieve the overall target frame rate, shown as P’ frames in Fig-
ure 2.9. Here, as an example, every third frame is a P frame. These P’ frames
can use the low frame rate P frames as reference, but not the other way around.
This is shown by the chain of prediction arcs in Figure 2.9. If such a P’ frame
is lost, the error propagates only until the next P is received. Hence P frames
are more important to protect against error propagation than P’ frames, and some
prioritization techniques at lower layers can make use of this fact. This concept is
similar to using B frames in prior standards, except that a one-directional predic-
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FIGURE 2.8: A sketch of an H.264/AVC inter-predicted frame at a
given time ¢, with different MBs referencing different frames. The frame
interval in this sketch is T.

FIGURE 2.9: H.264/AVC inter prediction with subsequences. Arcs
show the reference frame used for prediction.

tion chain avoids any buffering overhead as with the bidirectionally predicted B
pictures.

Some use cases of the flexible concept specifically for error-resilience purposes
are presented in Section 2.5. More details on this mode can be studied in Subsec-
tion 2.5.4 and [9,63,64,69].
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Intra Information Coding

Even though temporal redundancy might exist in a frame, it is still necessary to
have the possibility of switching off temporal prediction in hybrid video coding.
This feature enables random access and also provides error robustness. Any video
coding standard allows encoding image regions in intra mode, such as without
reference to a previously coded reference frame. In a straightforward way, com-
pletely intra-coded frames might be inserted. These frames will be referred to as
“intra frames” in the remainder of this chapter. In H.264/AVC, the flexible ref-
erence frame concept allows the usage of several reference frames; not limited
to just the temporally preceding frame. Hence in H.264/AVC, intra frames are
further distinguished as Instantaneous Decoder Refresh (IDR) frames and “open
GOP” intra frames, whereby the latter do not provide the random access prop-
erty as possibly frames “before” the intra frame are used as reference for “later”
predictively coded frames (Figure 2.10).

In addition, intra information can be introduced for just parts of a predictively
coded image. Again most video coding standards allow encoding of single MBs
for regions that cannot be predicted efficiently or due to any other case the en-
coder decides for nonpredictive mode. H.264/AVC intra-coded MBs gain signifi-
cant compression by making use of spatial prediction from neighboring blocks. To
limit error propagation, in H.264/AVC this intra mode can be modified such that
intra prediction from inter-coded MBs is disallowed. In addition, encoders can
also guarantee that MB intra updates result in Gradual Decoding Refresh (GDR),
that is, entirely correct output pictures after a certain period of time. Some ad-
vanced techniques for the purpose of error resilience, based on intra updates, and
their impact on system performance will be discussed in Section 2.5.3.

P P P 7 P P P P P IDR P P

FIGURE 2.10: Inter prediction with open GOP intra “I” (left) and
IDR (right). Temporal prediction (shown by arcs) is not allowed from the
frames coded before an IDR frame.
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Switching Pictures

H.264/AVC includes a feature that allows applying predictive coding even in the
case of different reference signals. This unique feature is enabled by introducing
Switching-Predictive (SP) pictures for which the MCP process is performed in
the transform domain rather than in the spatial domain and the reference frame is
quantized—usually with a finer quantizer than that used for the original frame—
before it is forwarded to the reference frame buffer. These so-called primary SP
(PSP) frames, which are introduced to the encoded bit stream, are in general
slightly less efficient than regular P-frames but significantly more efficient than
regular I-frames. The major benefit results from the fact that this quantized ref-
erence signal can be generated mismatch free using any other prediction signal.
In case that this prediction signal is generated by predictive coding, the frames
are referred to as secondary SP (SSP) pictures, which are usually significantly
less efficient than P-frames, as an exact reconstruction is necessary. To generate
this reference signal without any predictive signal, so-called Switching Intra (SI)
pictures can be used. SI pictures are only slightly less inefficient than common
intra-coded pictures and can also be used for adaptive error-resilience purposes.
Further details on this unique feature within H.264/AVC are covered in Chapter 4
and [22].

2.4 RESYNCHRONIZATION AND ERROR CONCEALMENT
2.4.1 Formalization of H.264 Packetized Video

By the use of slices and slice groups as introduced in Section 2.3, video coding
standards, particularly H.264/AVC, provide a flexible and efficient syntax to map
the Nyg MBs of each frame s; of the image sequence to individual data units.
The encoding of s; results in one or more data units P; with sequence number i.
The video transmission system considered is shown in Figure 2.4. Assume that
each data unit P; is transmitted over a channel that either delivers the data unit P;
correctly, indicated by C; = 1, or loses the data unit, that is, C; = 0. A data unit
is also assumed to be lost if it is received after its nominal Decoding Time Stamp
(DTS) has expired. We do not consider more complex concepts with multiple
decoding deadlines, also referred to as Accelerated Retroactive Decoding [11,
21], in which late data units are processed by the decoder to at least update the
reference buffer, resulting in reduced long-term error propagation.

At the receiver, due to the coding restriction of slices and slice groups, as well
as with the information in slice headers, the decoder is able to reconstruct the
information of each correctly received data unit and its encapsulated slice. The
decoded MBs are then distributed according to the mapping M in the frame.
For all MBs positions, for which no data has been received, appropriate error
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concealment has to be invoked before the frame is forwarded to the reference and
display buffer. The decoded source §; obviously depends on the channel behavior
for all the data units P; corresponding to the current frame s;, but due to the
predictive coding and error propagation in general, it also depends on the channel
behavior of all previous data units, C; = C[y.;,]. This dependency is expressed as
5:(Cy).

Due to the bidirectional nature of conversational applications, a low-delay, low-
bit rate, error-free feedback channel from the receiver to the transmitter, as indi-
cated in Figure 2.4, can be assumed, at least for some applications. This feedback
link allows sending some back channel messages. These messages make the trans-
mitter aware of the channel conditions so that it may react to these conditions.
These messages are denoted as B(C;). The exact definition and applications of
such messages are described in Section 2.5. In our framework we model the feed-
back link as error free, but the feedback message delay is normalized to the frame
rate such that B(C;_s) expresses a version of B(C;) delayed by § frames, with
6=0,1,2,.... The exploitation of this feedback link and different types of mes-
sages having assigned specific semantics in the encoding process are discussed
later.

2.4.2 Video Packetization Modes

At the encoder the application of slice structured coding and FMO allows limiting
the amount of lost data in case of transmission errors. Especially with the use of
FMO, the mapping of MBs to data units basically provides arbitrary flexibility.
However, there exist a few typical mapping modes, which are discussed in the
following.

Without the use of FMO, the encoder typically can choose between two slice
coding options: one with a constant number of MBs, Nmg,pu, within one slice
resulting in an arbitrary size, and one with the slice size bounded to some max-
imum number of bytes Spax, resulting in an arbitrary number of MBs per slice.
Whereas with the former mode, the similar slice types as present in H.263 and
MPEG-2 can be formed, the latter is especially useful for introducing some QoS,
as commonly the slice size and the resulting packet size determine the data unit
loss rate in wireless systems. Examples of the two different packetization modes
and the resulting locations of the slice boundaries in the bit stream are shown in
Figure 2.11. With the use of FMO, the flexibility of the packetization modes is
significantly enhanced, as shown in the examples in Figure 2.12. Features such as
slice interleaving, dispersed MB allocation using checkerboard-like patterns, one
or several foreground slice groups and one left-over background slice groups, or
subpictures within a picture are enabled. Slice interleaving and dispersed MB allo-
cation are especially powerful in conjunction with appropriate error concealment,
that is, when the samples of a missing slice are surrounded by many samples of
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a) Constant number of MB per slice b) Maximum number of bytes per slice
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FIGURE 2.11: Different packetization modes: (a) constant number of
MBs per slice with variable number of bytes per slices and (b) maximum
number of bytes per slice with variable number of MBs per slice.

Slice Group #0

FIGURE 2.12: Specific MB allocation maps: foreground slice groups
with one left-over background slice group, checkerboard-like pattern with
two slice groups, and subpictures within a picture.

correctly decoded slices. This is discussed in the following section. For dispersed
MB allocation typically and most efficiently checkerboard patterns are used, if no
specific area of the video is treated with higher priority.

Video data units may also be packetized on a lower transport layer, for example,
within RTP [59], by the use of aggregation packets, with which several data units
are collected into a single transport packet, or by the use of fragmentation units,
that is, a single data unit is distributed over several transport packets.

2.4.3 Error Concealment

With the detection of a lost data unit at the receiver, the decoder conceals the lost
image area. Error concealment is a nonnormative feature in any video decoder,
and a large number of techniques have been proposed that span a wide range of



32 Chapter 2: ERROR-RESILIENT CODING AND DECODING STRATEGIES

performance and complexity. The basic idea is that the decoder should generate a
representation for the lost area that matches perceptually as close as possible to the
lost information without knowing the lost information itself, within a manageable
complexity. These techniques are based on best effort, with no guarantee of an
optimal solution. Since the concealed version of the decoded image will still differ
from its corresponding version at the encoding end, error propagation will still
occur in the following decoded images until the reference frames are synchronized
once again at the encoder and the decoder. This subject will be addressed in detail
in Section 2.5.4.

Most popular techniques in this regard are based on a few common assump-
tions:

e Continuity of image content in spatial domain; natural scene content typi-
cally consists of smooth texture.

e Temporal continuity; smooth object motion is more common compared to
abrupt scene changes and collocated regions in image tend to have similar
motion displacement.

Such techniques exploit the correctly received information of the surrounding area
in the spatial and temporal domains to conceal the lost regions. Here we mainly
focus on the techniques that conceal each lost MB individually and do not modify
the correctly received data.

To simplify the discussion in this section and unless specified otherwise, “data
loss” refers to the case that all the related information of one or several MBs
is lost, for example, MB mode, transformed residual coefficients, and MVs (for
the case of inter-coded MBs). This assumption is quite practical as typically a
corrupted packet will be detected and discarded before the video decoder.

There exists an exhaustive amount of literature proposing different error con-
cealment techniques. However, only a few simple schemes are commonly used
in practical applications. We will put emphasis on error concealment with some
practical relevance, but provide reference to other important error concealment
methods. In general, error concealment needs to be assessed in terms of perfor-
mance and complexity.

Spatial Error Concealment

The spatial error concealment technique is based on the assumption of continuity
of natural scene content in space. This method generally uses pixel values of sur-
rounding available MBs in the same frame as shown in Figure 2.13. Availability
refers to MBs that either have been received correctly or have already been con-
cealed. We consider the case of loss of a 16 x 16 MB. The most common way of
determining the pixel values in a lost MB is by using a weighted sum of the closest
boundary pixels of available MBs, with the weights being inversely related to the
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FIGURE 2.13: Pixels used for spatial error concealment (shaded pixels)
of a lost MB (thick frame), M = N = 16.

distance between the pixel to be concealed and the boundary pixel. For example,
at a pixel position i, j in Figure 2.13, an estimate X; ; of the lost pixel X; ; is

Xij=a{BXi 1+ 0 =B Xite}+ 1 —a){yX_ 1+ 1 -y)Xis,}. 21

Here in this equation, «, B, and y are weighing factors that will determine the
relative impact of pixel values of vertical versus horizontal, upper versus lower,
and left versus right neighbors, respectively. The top-left pixel of the lost MB is
considered as origin. As discussed earlier, the weighing factors are set accord-
ing to the inverse of the distances from the pixel being estimated. This technique
as proposed in [33] is widely used in practice because of its simplicity and low
complexity. Since this technique works on the assumption of continuity in spatial
domain, discontinuity is avoided in concealed regions of the image. Obviously,
this technique will result in blurred reconstruction of the lost region, since natural
scene content is not perfectly continuous and lost details will not be recovered.
Typically the spatial error concealment technique is never used alone in appli-
cations, rather it is combined with other techniques, as discussed in the follow-
ing sections. It is worthwhile to note that since this technique heavily relies on
the availability of horizontal and vertical neighbor pixels, decoders applying this
technique can benefit from the application of FMO; for example, by the use of a
checkerboard-like pattern.
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More sophisticated methods with higher complexity have been proposed in the
literature. These methods target to recover some of the lost texture. Some of them
are listed in the following.

e In [66], a spatial error concealment technique is proposed that is based on
an a priori assumption of continuity of geometric structure across the lost
region. The available neighboring pixels are used to extract the local geo-
metric structure, which is characterized by a bimodal distribution. Missing
pixels are reconstructed by the extracted geometric information.

e Projection onto convex sets in the frequency domain is proposed in [47].
In this method each constraint about the unknown area is formulated as a
convex set, and a possible solution is iteratively projected onto each convex
set to obtain a refined solution.

Temporal Error Concealment

Temporal error concealment relies on the continuity of a video sequence in time.
This technique uses the temporally neighboring areas to conceal lost regions.

In the simplest form of this technique, known as the Previous Frame Conceal-
ment (PFC), the spatially corresponding data of the lost MB in the previous frame
is copied to the current frame. If the scene has little motion, PFC performs quite
well. However, as soon as the region to be concealed is displaced from the cor-
responding region in the preceding frame, this technique will, in general, result
in significant artifacts in the displayed image. However, due to its simplicity, this
technique is widely used, especially in decoders with limited processing power.

b~
(@)
~

FIGURE 2.14: Neighboring available MBs (T, R, B, and L) used for
temporal error concealment of a lost MB C. MB L is encoded in 16 x 8
inter mode, and the average of its two MVs is used as a candidate.
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FIGURE 2.15: Boundary pixels of MB C used for the boundary-
matching criteria.

A refinement of PFC attempts to reconstruct the image by making an estimate
of the lost motion vector. For example, with the assumption of a uniform motion
field in the collocated image areas, motion vectors of the neighboring blocks are
good candidates to be used as displacement vectors to conceal the lost region.
Good candidate MVs for this technique are the MVs of available horizontal and
vertical inter-coded neighbor MBs. If a neighboring MB is encoded in an inter
mode other than the inter 16 x 16 mode, one approach is to use the average of the
MVs of all the blocks on the boundary of the lost MB. In general, more than one
option for the application of displacement vectors exists; for example, using the
horizontal neighbor, the vertical neighbor, the zero displacement vector, etc. To
select one of the many candidates, a boundary-matching-based technique can, for
example, be applied (Figure 2.15). In this case, from the set of all candidate MVs
S, the MV ¥ for temporal error concealment is selected according to

15
2
er(v;) = Z (Xx+m,y(vi) - Xx+m,y71) )
m=0
15
2
er(vi) = Z (Xx+15,y+n(Ui) - Xx+l6,y+n) ,
n=0
15
2
ep(vi) = Z (Xx+m,y+15(Ui) - Xx+m,y+l6) ,
m=0

U = arg H_liISI (er(vi) + er(vi) + e (). (2.2)

i
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Here, for each motion vector v; € S, errors €7, g, and e are calculated for top,
right, and bottom edges, respectively. The first term of error functions is the pixel
recovered from the reference frame using the selected motion vector v;, while the
second element is an available boundary pixel of a neighboring MB. The upper-
left pixel of the lost MB has a pixel offset x, y. Finally, the vector that results in
minimum overall error is selected, since this vector gives a block that possibly fits
best in the lost area. Obviously, it is possible that none of the candidate vectors are
suitable and in such a case temporal error concealment results in fairly noticeable
discontinuity artifacts in the concealed regions.

Several variants and refinements of the temporal error concealment technique
have been proposed, usually with some better performance at the expense of
sometimes significantly higher complexity. A nonexhaustive list is provided in
the following:

e In [4], overlapped block motion compensation is proposed. In this case an
average of three 16 x 16 pixel regions is used to conceal the missing MB.
One of these regions is the 16 x 16 pixel data used to conceal the lost MB by
the process described earlier, the second and third regions are retrieved from
the previous frame by using the motion vectors of horizontal and vertical
neighbor MBs, respectively. These three regions are averaged to get the
final 16 x 16 data used for concealment. Averaging in this way can reduce
artifacts in the concealed regions.

e In [2], it is proposed to use the median motion vector of the neighboring
blocks for temporal concealment. However, the benefits of this technique
have been relativized in, for example, [57].

e In [57], Sum of Absolute Differences (SAD) is used instead of Sum of
Squared Differences (SSD) for the boundary-matching technique. This re-
sults in reduced computational complexity.

e A simpler variant is used in practice [3]: It is proposed to only apply the
motion vector of top MB, if available, otherwise zero MV is used (i.e., PFC
is used if top MB is not inter coded or is lost as well).

e In [30], a multihypothesis error concealment is proposed. This technique
makes use of the multiple reference frames available in an H.264/AVC de-
coder for temporal error concealment. The erroneous block is compensated
by a weighted average of correctly received blocks in more than one previ-
ous frame. The weighting coefficient used for different blocks can be deter-
mined adaptively.

e In [20], the idea presented in [30] is extended. In this proposal, temporal
error concealment is used exclusively. However, two variants of temporal
error concealment are available: the low-complexity concealment technique
governed by (2.2) and the multihypothesis temporal error concealment. The
decision as to which technique is used is based on the temporal activity
(SAD) in the neighboring regions of the damaged block. For low activity,
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the low-complexity technique is used, while multihypothesis temporal error
concealment is used for higher activity.

Also, the adaptive combination of spatial concealment with temporal error con-
cealment is of some practical interest and will therefore be discussed in more
detail in the following.

Hybrid Concealment

Neither the application of spatial concealment nor temporal concealment alone
can provide satisfactory performance: if only spatial concealment is used, con-
cealed regions usually are significantly blurred. Similarly, if only temporal error
concealment is applied, significant discontinuities in the concealed regions can
occur, especially if the surrounding area cannot provide any or not sufficiently
good motion vectors. Hence to achieve better results, the hybrid temporal—spatial
technique might be applied. In this technique, MB mode information of reliable
and concealed neighbors can be used to decide whether spatial error concealment
or temporal error concealment is more suitable. For intra-coded images only spa-
tial concealment is used. For inter-coded images, temporal error concealment is
used only if, for example, in the surrounding area more than half of the available
neighbor MBs (shown in Figure 2.14) are inter coded. Otherwise, spatial error
concealment is used. This ensures that a sufficient number of candidate MVs are
available to estimate the lost motion information. We refer to this error conceal-
ment as Adaptive temporal and spatial Error Concealment (AEC) in the following.

Other techniques have been proposed to decide between temporal and spatial
concealment mode:

e A simple approach in [57] proposes the use of spatial concealment for intra-
coded images and temporal error concealment for all inter-coded images
invariably.

e In [48],itis suggested that if the residual data in a correctly received neigh-
boring inter-predicted MB is smaller than a threshold, temporal error con-
cealment should be used.

Miscellaneous Techniques

In addition to the signal-domain MB-based approaches, other techniques have
been proposed in the literature, for example,

e Model based or object concealment techniques, as proposed in [5,51], do
not assume simple a priori assumptions of continuity as given earlier. These
techniques are based on the specific texture properties of video objects, and
as such are a suitable option for multiobject video codec, that is, MPEG-4.
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An object-specific context-based model is built and this model governs the
assumptions used for concealment of that object.

Frequency-domain concealment techniques [16,29] work by reconstruct-
ing the lost transform coefficients by using the available coefficients of the
neighboring MBs as well as coefficients of the same MB not affected by
the loss. These initial proposals are specifically for DCT transform block
of 8 x 8 coefficients. For example, in [16], based on the assumption of con-
tinuity of the transform coefficients, lost coefficients are reconstructed as
a linear combination of the available transform coefficients. However, no-
ticeable artifacts are introduced by this technique. As a more realistic con-
sideration, in [29] the constraint of continuity holds only at the boundaries
of the lost MB in spatial domain.

In an extension to the spatial and temporal continuity assumptions, it is
proposed in [34] that the frames of video content are modeled as a Markov
Random Field (MRF). The lost data is suggested to be recovered based
on this model. In [35] the authors proposed a less complex but suboptimal
alternative to implement this model for error concealment. For example,
for temporal error concealment, only the boundary pixels of the lost MB
are predicted based on a MAP estimate, instead of predicting the entire MB.
These predicted pixels are used to estimate the best predicted motion vector
to be used for temporal error concealment. In [39], the MAP estimate is
used to refine an initial estimate obtained from temporal error concealment.

Selected results

A few selected results from various important concealment techniques are pre-
sented in Figure 2.16. From left to right, a sample concealed frame when using
PFC, spatial, temporal, and AEC is shown. PFC simply replaces the missing infor-
mation by the information at the same location in the temporally preceding frame.
Hence, it shows artifacts in the global motion part of the background as well as
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FIGURE 2.16: Performance of different error concealment strategies:

PFC,

AEC.

spatial concealment only, temporal error concealment only, and
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in the foreground. Spatial error concealment based on weighted pixel averaging
smoothes the erroneously decoded image and removes strange block artifacts, but
also many details. Temporal error concealment relying on motion vector recon-
struction with boundary-matching-based techniques keeps details, but results in
strange artifacts in uncovered areas. Finally, AEC—a combination of temporal
and spatial error concealment—keeps many details but also avoids strange block
artifacts and is therefore very appropriate with feasible complexity. In the remain-
der of this chapter we will assume exclusively AEC, which reduces to PFC in the
case that all MBs of a picture are transmitted in a single packet.

For a further detailed study of error concealment techniques, the reader is re-
ferred to [36,52,54,56] and the references therein.

2.4.4 Selected Performance Results for Wireless Test Conditions

To get an insight in error-resilient video coding for 3G mobile communication
scenarios, we take a look at a few selected results. The simulated scenario is of a
packet-switched conversational application and is specified in detail by 3GPP [8].
This application is characterized by its stringent low-delay and low-complexity
requirements, since the processing has to be done in real time on hand-held de-
vices. As a result, the maximum allowed buffering at the encoder is limited to
250 ms and only the first frame is encoded as intra, to limit any delays caused by
buffering overheads. A simple random intra MB refresh technique is used, with
5% MBs of every frame coded in intra mode. The most recent frame is used for
motion compensation to limit the complexity. With these limitations, we observe
the impact of slice size on error resilience of the application. Two channel config-
urations are compared: one with moderate Radio Link Control (RLC) Packet Data
Unit (PDU) loss rate of 0.5% and the other with a higher loss rate of 1.5%. The
Radio Access Bearer (RAB) in this test supports transmission of 128 Kbps, with
a radio frame size of 320 bytes. Here as an example we use the Quarter Com-
mon Intermediate Format (QCIF) sized test sequence foreman at 15 frames per
second. The encoder is configured to match the maximum throughput of channel
while taking into account packetization overheads. The criterion used here as a
metric of perceived video quality is PSNR of luma (Y) signal.

Figure 2.17 compares the Y PSNR of the decoded video at a loss rate of 1.5%
for two cases: transmitting an entire frame in a slice versus a fixed slice size of
150 bytes. At the given bit rate, a compressed frame has an average size of roughly
1000 bytes. The error-free performance for both cases is also plotted as a refer-
ence. Obviously, using a smaller slice size of 150 bytes results in typically lower
PSNR in an error-free case because of two reasons: increased packetization over-
head and prediction limitations on slice boundaries. However, this configuration
outperforms in the case of lossy channel throughout the observed period. A few
selected frames are also presented for comparison. The effects of losses already
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FIGURE 2.17: (Bottom) Plot of Y PSNR with two different slice
modes. Results for an error-free case are given as a reference. (Top) A few
selected frames for the two slice modes for comparison.

start appearing in the fifth frame. While transmitting one frame per slice results
in loss of an entire frame for a lost RLC PDU, the loss affects only a small area
of the image for fixed slice size. The spatiotemporal error propagation is much
smaller in this case.

Figure 2.18 shows the comparative effects of various slice sizes for different
channel loss scenarios. A single point on the curves is obtained by averaging the
Y PSNR, denoted as PSNR, for several channel realizations to achieve higher
statistical significance. The error-free curve shows the effects of reduced com-
pression and hence smaller PSNR for smaller slice sizes. However, at a loss rate
of 0.5%, the drawbacks of using larger slice sizes become obvious. The advan-
tage of using slice sizes smaller than 350 bytes does not sufficiently compensate
for their overhead. However, increasing slice size beyond this results in a drop
of PSNR. This is because of a greater portion of a frame affected by a lost RLC
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FIGURE 2.18: Plot of PSNR versus slice size with RLC PDU loss rate
as a parameter.

PDU. The performance degradation is much more drastic for a loss rate of 1.5%,
shown by a significant drop of PSNR for larger slice sizes.

2.5 ERROR MITIGATION

2.5.1 Motivation

As already discussed, error propagation is the major problem when transmitting
MCP-coded video over lossy channels. Therefore, if the encoder is aware that the
channel will likely be lossy or even knows that the decoder has experienced the
loss of certain data units, it should change its encoding behavior, despite sacrific-
ing some compression efficiency. To illustrate this, selected frames for different
encoding strategies when transmitting over channels with the same bit rate and
error rate constraints are shown in Figure 2.19. The first line, referred to as (a),
shows the case where no specific error-resilience tools are applied. The already
elaborated problem of error propagation is obvious in later frames. For the se-
quence in the second line, referred to as (b), the same bit rate and error statistics
are applied, but the encoder chooses to select intra-coded MBs in a suitable way. It
can be observed that the error propagation is less of an issue but that some residual
artifacts are still visible. In addition, the error-free video has lower quality as its
compression efficiency is reduced due to the increased amount of intracoding un-
der an identical bit rate constraint. Error propagation can be completely avoided if
interactive error control is used, as shown in the third row, labeled with (c). How-
ever, in this case also, compression efficiency is sacrificed, especially if necessary
feedback of the decoder state is delayed. Details on the appropriate selection of
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FIGURE 2.19: Selected frames of a decoded video sequence for a
packet lossy channel with same bit rate and error constraints: (a) no er-
ror robustness, (b) adaptive intra updates, and (c) interactive error control.

MB modes in error-prone environments, especially taking into account the trade-
off between quantization distortion and reduced error propagation, are discussed
in the following.

2.5.2 Operational Encoder Control

The tools for increased error resilience in hybrid video coding, in particular those
to limit error propagation, do not significantly differ from the ones used for com-
pression efficiency. Features such as multiframe prediction or intra coding of in-
dividual MBs are not primarily error-resilience tools. They are mainly used to
increase coding efficiency in error-free environments, although design freedom is
left to the video encoder. The encoder implementation is responsible for appropri-
ate selection of one of the many different encoding parameters, the so-called op-
erational coder control. Thereby, the encoder must take into account constraints
imposed by the application in terms of bit rate, encoding and transmission de-
lay, complexity, and buffer size. When a standard decoder is used, such as an
H.264/AVC compliant decoder, the encoding parameters should be selected by
the encoder such that good rate—distortion performance is achieved. Since the
encoder is limited by the syntax of the standard, this problem is referred to as
syntax-constrained rate—distortion optimization [28]. In case of H.264/AVC, for
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example, the encoder must appropriately select parameters such as motion vec-
tors, MB modes, quantization parameters, reference frames, or spatial and tempo-
ral resolution, as shown in Figure 2.20. This also means that bad decisions at the
encoder can lead to poor results in coding efficiency, error resilience, or both. For
compression efficiency, operational encoder control based on Lagrangian multi-
plier techniques has been proposed. The distortion dj ,, usually (at least in the
H.264/AVC test model) reflects the SSD between the original MB s;, and the re-
constructed version of the MB §, 5, if coded with option m, that s,

dpn =Y Ispi = Fp.mil*, 2.3)
i

and the rate ry ,, is defined by the number of bits necessary to code MB b with
option m. Finally, the coding mode is selected for MB b as

Yy m*p=arg min(dpm + AoTbm), (2.4)
meQ®

whereby O defines the set of selectable options, for example, MB modes. For the
Lagrangian parameter Ao it is proposed in [46] and [62] that if the SSD is applied
as a distortion measure, then A should be directly proportional to the square of
the step size A of a uniform quantizer applied. The procedure in (2.4) can be
applied to select motion vectors, reference frames, and MB modes. However, it is

FIGURE 2.20: H.264/AVC video encoder with selectable encoding pa-
rameters highlighted.
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obviously contradictory if the same decision procedure is applied to obtain good
selections for compression efficiency and error resilience. This will be further
discussed in the following.

2.5.3 Adaptive Intra Updates

In the presence of errors it has long been recognized that the introduction of more
frequent nonpredictively coded image parts is of major importance. In early work
on this subject, for example, [15,25,68], it has been proposed to introduce intra-
coded MBs, regularly, randomly, or preferably in a certain pseudo-random update
pattern. In addition, sequence characteristics and bit rate influence the appropriate
percentage of intra updates.

Recognizing this, it has been proposed [67,7,61] to modify the selection of the
coding modes according to (2.4) to take into account the influence of the lossy
channel. When encoding MB b with a certain coding mode m;, it is suggested to
replace the encoding distortion dp ;, by the decoder distortion

gb,m(ct) £ ”Sh,t — 8. (Cr, m)| 2,

(2.5)

which obviously depends on the reconstructed pixel values §; (C;, m) and therefore
also on the channel behavior C; and the selected coding mode m.

In general, the channel behavior is not deterministic and the channel realization
C, observed by the decoder, is unknown to the encoder. Thus it is not possible
to directly determine the decoder distortion (2.5) at the encoder. However, we
can assume that the encoder has at least some knowledge of the statistics of the
random channel behavior, denoted as (f',. In a Real-Time Transport Protocol (RTP)
[37] environment, the Real-Time Control Protocol (RTCP), for example, can use
a feedback channel to send receiver reports on the experienced loss and delays
statistics, which allow the encoder to incorporate these statistics into the encoding
process. Assume that the statistics on the loss process are perfectly known to
encoder, that is, B(C;) = é,, and assume that the loss process is stationary. Then,
the encoder is able to compute the expected distortion

Eb,m £ E@[ {d~b,m (éz)} = E@r { “Sb,z - §b,t(étv m) || 2}- (2.6)

A similar procedure can be applied to decisions on reference frames and motion
vectors. The selection of motion vectors based on the expected distortion has, for
example, been proposed in [65]. The estimation of the squared expected pixel dis-
tortion in packet loss environment has been addressed in several contributions. For
example, in [7,23], and [61], methods used to estimate the distortion introduced
due to transmission errors and the resulting error propagation have been proposed.
In all these proposals the quantization noise and the distortion introduced by the
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transmission errors (the so-called drift noise) are linearly combined. Since the
encoder needs to keep track of an estimated pixel distortion, additional complex-
ity and memory are required in the encoder. The most recognized method, the
so-called Recursive Optimal per-Pixel Estimate (ROPE) algorithm [67], however,
provides an accurate estimation for baseline H.263 and MPEG-4 simple profile-
like algorithms, using simple temporal error concealment, by keeping track of the
first and second moment of the decoded pixel value 5(C;), namely E{5(C;)} and
E{5%(C,)}, respectively.

A powerful yet complex method has been proposed in [44] by applying a Monte
Carlo-like method. An estimate of the decoder distortion Eb, m 1n (2.6) is obtained
as

ane e Zdbm(cm)— Z||sbz—sb,(cm,m>||” @.7)

nl nl

withC, ;,n=1,..., N¢, representing N¢ independent realizations of the random
channel C;, and estimate of the loss probability at the receiver represented as p.
An interpretation of (2.7) leads to a simple solution to estimate the expected pixel
distortion Ebym. For more details we refer to [44]. To obtain an estimate of the
loss probability p at the receiver, the feedback channel can be used in practical
systems.

2.5.4 Interactive Error Control

The availability of a feedback channel, especially for conversational applications,
has led to different standardization and research activities in recent years to in-
clude this feedback in the video encoding process. Assume that, in contrast to the
previous scenario where only the statistics of the channel process C are known to
the encoder, in the case of timely feedback we can even assume that a é-frame
delayed version C;_s of the loss process experienced at the receiver is known at
the encoder. This characteristic can be conveyed from the decoder to the encoder
by sending acknowledgment for correctly received data units, negative acknowl-
edgment messages for missing slices, or both types of messages.

In less time-critical applications, such as streaming or downloading, the en-
coder could obviously decide to retransmit lost data units in case it has stored a
backup of the data unit at the transmitter. However, in low-delay applications the
retransmitted data units, especially in end-to-end connections, would in general
arrive too late to be useful at the decoder. In case of online encoding, the observed
and possibly delayed receiver channel realization, C;_g, can still be useful to the
encoder, although the erroneous frame has already been decoded and concealed at
the decoder. The basic goal of these approaches is to reduce, limit, or even com-
pletely avoid error propagation by integrating the decoder state information into
the encoding process.
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The exploitation of the observed channel at the encoder has been introduced
in [41] and [12] under the acronym Error Tracking for standards such as MPEG-
2, H.261 or H.263 version 1, but has been limited by the reduced syntax capa-
bilities of these video standards. When receiving the information that a certain
data unit—typically including the coded representation of several or all MBs of
a certain frame s;_s—has not been received correctly at the decoder, the encoder
attempts to track the error to obtain an estimate of the decoded frame §; | serv-
ing as reference for the frame to be encoded, s;. Appropriate actions after having
tracked the error are discussed in [12,41,53,56,61]. However, all these concepts
have in common that error propagation in frame §; is only removed if frames
S/—s+1, - --,8—1 have been received at the decoder without any error.

Nevertheless, this promising performance when exploiting decoder state infor-
mation at the encoder has been recognized by standardization bodies, and the
problem of continuing error propagation has been addressed by extending the
syntax of existing standards. In MPEG-4 [17, version 2] a tool to stop temporal
error propagation has been introduced under the acronym New Prediction (NEW-
PRED) [10,27,50]. Similarly, in H.263+ Annex N [18, Annex N] RPS for each
Group-of-Blocks (GOB) is specified. If combined with slice structured mode as
specified in H.263+ Annex K [18, Annex K], as well as Independent Segment
Decoding (ISD) as specified in H.263+ Annex R [18, Annex R], the same NEW-
PRED techniques can be applied within the H.263 codec family.

NEWPRED relies on the availability of timely feedback, online encoding, and
the possibility that the encoder can choose other reference frames than the tempo-
rally preceding ones. In addition, it allows one to completely eliminate error prop-
agation in frame §; even if additional errors have occurred for the transmission of
frames §;_s+1, . .., 8;—1. Different encoder operation modes have been discussed
in the literature [10], which can basically be distinguished in a mode where only
acknowledged areas are used for reference and another mode, in which the opera-
tion is only altered when information is received that the decoder is missing some
data units.

In H.263++ Annex U [18, Annex U], NEWPRED was introduced exclusively
for the purpose of improving error resilience. In H.264/AVC, the extended syn-
tax allowing selection of reference frames on an MB or even sub-MB basis has a
dual impact: enhanced compression efficiency and, at the same time, ease of in-
corporating methods for limiting error propagation [61]. We will in the following
introduce conceptual operation modes when combining decoder state information
in the encoding process.

Therefore, we assume that at the encoder each generated data unit P; is as-
signed a decoder state Cepc,; € {ACK, NAK, OAK}, whereby Cepc,; = ACK re-
flects that data unit P; is known to be correctly received at the decoder, Cenc,i =
NAK reflects that data unit P; is known to be missing at the decoder, and
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Cenc,i = OAK reflects that for data unit P; the acknowledgment message is still
outstanding and it is not known whether this data unit will be received correctly.

With feedback messages conveying the observed channel state at the receiver,
that is, B(C;) = C;, and a back channel that delays the back channel messages by
8 frames, we assume in the remainder that for the encoding of s;, the encoder is
aware of the following information:

ACK if tPTS,i S T_y’[_g and Cl - 1,
Cenc,i = NAK lf TPTS,[ < TS,[—(S and Ci = 0, (28)

OAK if Tprs,i Z Tg1-6,

where Tprs ; is the Presentation Time Stamp (PTS) of P; and t, ;s is the sampling
time of s;_s.

This information about the decoder state Cepc ; can be integrated in a modified
rate—distortion optimized operational encoder control similar to what has been
discussed in Subsection 2.5.2. In this case the MB mode mj, is selected from
a modified set of options, @, with a modified distortion dAb,m for each selected
option m as

Vo mj=arg min(dpm + Ap5rhm)- 2.9)

meQ

In the following we distinguish four different operation modes, which differ only
by the set of coding options available to the encoder in the encoding process, O,
as well as the applied distortion metric, 3;,, m- The encoder’s reaction to delayed
positive acknowledgment (ACK) and negative acknowledgment (NAK) messages
is shown in Figure 2.21, assuming that frame d is lost and the feedback delay is
6 =2 frames for three different feedback modes.

Feedback Mode 1: Acknowledged Reference Area Only

Figure 2.21a shows this operation mode: Only the decoded representation of
data units P; that have been positively acknowledged at the encoder, that is,
Cenc,i = ACK, are allowed to be referenced in the encoding process. In the con-
text of operational encoder control, this is formalized by applying the encoding
distortion in (2.9), that is, ﬁb,m =dp.m, as well as the set of encoding options
that is restricted to acknowledged areas only, that is, 0= Oack.:- Note that the
restricted option set Oack,; depends on the frame to be encoded and is applied
to the motion estimation and reference frame selection process. Obviously, if no
reference area is available, the option set is restricted to intra modes only, or if no
satisfying match is found in the accessible reference area, intra coding is applied.
With this mode in use, an error might still be visible in the presentation of a single
frame; however, error propagation and reference frame mismatch are completely
avoided.
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FIGURE 2.21: Operation of different feedback modes. (a) Feedback
Mode 1. (b) Feedback Mode 2. (c) Feedback Mode 3.

Figure 2.22a shows the performance in terms of average Peak Signal-to-Noise
Ratio (PSNR), denoted by PSNR, for feedback mode 1 with different feedback de-
lays § compared to the channel-adaptive mode selection scheme for foreman, error
pattern 10 (as given in test conditions specified in [58]), AEC, and Nyvp,pu = 33.
The number of reference frames is Nief = 5, except for § = 8 with Nyer = 10. The
results show that for any delay this system with feedback outperforms the best
system without any feedback. For small delays, the gains are significant and for
the same average PSNR the bit rate is less than 50% compared to the forward-
only mode. With increasing delay the gains are reduced, but compared with the
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FIGURE 2.22: Average PSNR (PSNR) versus bit rate for different feed-
back modes for sequence foreman. (a) Average PSNR (PSNR) versus bit
rate for Feedback Mode 1. (b) Average PSNR (PSNR) versus bit rate for
Feedback Mode 2 (solid lines), Feedback mode 1 replotted for compari-
son (dashed lines). (c) Average PSNR (PSNR) versus bit rate for Feedback
Mode 3 (solid lines), Feedback mode 2 replotted for comparison (dashed
lines).
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highly complex mode decision without feedback, this method is still very attrac-
tive. Obviously, these high delay results are strongly sequence dependent but for
other sequences similar results have been verified.

Feedback Mode 2: Synchronized Reference Frames

Feedback mode 2 as shown in Figure 2.21b differs from mode 1 in that not only
positively acknowledged data units but also a concealed version of data units with
decoder state Cenc,; = NAK are allowed to be referenced. This is formalized by
applying the encoding distortion in (2.9), that is, C?b,m = dp,m, but the restricted
reference area and the option set in this case also include concealed image parts,
0= Onak.r 2 Oack,:- The critical aspect when operating in this mode results
from the fact that for the reference frames to be synchronized the encoder must
apply exactly the same error concealment as the decoder.

Figure 2.22b shows the performance in terms of average PSNR, denoted as
PSNR, for feedback mode 2 with different feedback delays § compared to the
curves in Figure 2.22a for the same parameters. The results for feedback mode 2
show similar results as for feedback mode 1. However, the advantage of feedback
mode 2 can be seen in two cases: for low bit rates and for delays 6 < Nt — 1.
This is so because referencing concealed areas is preferred over intra coding by
the rate—distortion optimization. For higher bit rates this advantage vanishes as
the intra mode is preferred anyways over the selection of “bad” reference areas.
For delay § = 4 with Nr =5, that is, only a single reference frame is available
at the encoder, the gains of feedback mode 2 are more obvious, since for feed-
back mode 1, in case of a lost slice, the encoder basically is forced to use intra
coding.

Feedback Mode 3: Regular Prediction with Limited Error Propagation

Feedback modes 1 and 2 are mainly suitable in cases of higher loss rates. If the
loss rates are low or negligible, the performance is significantly degraded by the
longer prediction chains due to the feedback delay. Therefore, in feedback mode 3
as shown in Figure 2.21c¢ it is proposed to only alter the prediction in the encoder
in case of the reception of a NAK. Again, the encoding distortion in (2.9) is ap-
plied, that is, c?b,m = dp m, but the reference area and the option set in this case
are altered only in case of receiving a NAK to already acknowledged image parts,

A

that is, O = OACK (» OF, as applied in our case to acknowledged and concealed
image parts, 0= ONak ;- Areas that are possibly corrupted by error propagation
are also excluded as references. This mode obviously performs well in cases of
lower error rates. However, for higher error rates error propagation still occurs
quite frequently.
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Figure 2.22c shows the performance in terms of average PSNR for feedback
mode 3 compared to channel-adaptive mode selection and feedback mode 2, again
for the same parameters as in Figure 2.22a. Note that feedback mode 2 and feed-
back mode 3 are identical for zero feedback delay. However, surprisingly, for
increasing delay, feedback mode 3 performs significantly worse than feedback
mode 2. The error propagation, though only present for at maximum § — 1 frames,
degrades the overall quality much more significantly; the gain in compression ef-
ficiency cannot compensate the distortion due to packet losses. Obviously, the
performance depends on the sequence characteristics and especially on the loss
rate. For lower rates it is expected (and shown later) that the differences between
feedback modes 2 and 3 are less significant, but in general feedback mode 2 is
also preferable over feedback mode 3 from the subjective performance.

Feedback Mode 4: Unrestricted Reference Areas with Expected Distortion Update

For completeness we present an even more powerful feedback mode, which ex-
tends feedback mode 3 to address error propagation with more intra updates. We
also discuss its drawbacks and justify why it is hardly used. In [61] and [67] tech-
niques have been proposed that combine the error-resilient mode selection with
available decoder state information in the encoder. In this case the set of encoding
options is not altered, that is, O = O, but only the computation of the distortion is
altered. Only for all data units with outstanding acknowledgment at the encoder,
that is, Cenc,; = OAK, is the randomness of the observed channel state consid-
ered; for all other data units the observed channel state is no longer random. The
expected distortion in this case is computed as

E{éi} {gbm(é’)} if Cene,i = OAK,

- ] (2.10)
Ecy {db,m(ci)} if Cenc.i # OAK.

dh,m -

Compared to feedback modes 1 and 2, this method is especially beneficial if the
feedback is significantly delayed. Compared to feedback mode 3, it reduces the
unsatisfying performance in case of error propagation. Note that for § — oo this
mode turns into the mode selection without any feedback at all, and for § = O this
mode is identical to feedback mode 2 and feedback mode 3. However, whenever
the encoder gets information on the state of a certain data unit at the decoder, the
statistics in the encoder have to be recomputed. Thus, the computational, storage,
and implementation complexities are significantly increased [67].

2.5.5 Selected Performance Results for Internet Test Conditions

To verify the conclusions of the previous subsection at least partly for other er-
ror rates, bit rates, and test sequences we have evaluated selected error-resilience
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FIGURE 2.23: Average PSNR (PSNR) over packet error rate for fore-
man, QCIF, with frame rate f; = 7.5 fps and paris, CIF. MPEG-4 with
optimized random intra updates is compared to H.264 in various configu-
rations. (a) foreman, 64 kbit/s, (b) paris, 384 kbit/s.
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tools as presented previously. Test cases as suggested in [58] have been used. That
is, we evaluate performance on four IP packet loss traces with 3, 5, 10, and 20%
average loss rates, respectively. Note that the 5% trace is especially bursty. Also,
the Common Intermediate Format (CIF) test sequence paris encoded at frame
rate f; = 15 frames per second (fps) is evaluated. Figure 2.23 shows PSNR as
a function of packet loss rate! for foreman at 64 kbit/s and paris at 384 kbit/s.

IThe labels on the abscissa specify the corresponding error pattern rather than random packet loss
rates. Note that the 5% error file is burstier than the others, resulting in somewhat unexpected results.
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Various error-resilience tools in H.264/AVC are compared to the MPEG-4 simple
profile with an optimized ratio of random intra updates. The results are consistent
for both sequences. The significance of the difference between different schemes
is mainly explained by different sequence characteristics. It is observed that for
error-free transmission abandoning any error-resilience tools obviously results in
the best performance. The performance gains in terms of compression efficiency
of H.264 over the MPEG-4 simple profile is also visible. If feedback mode 2 is
used, in our case with feedback delay § = 2, we have to sacrifice some compres-
sion efficiency as the prediction signal is in general worse as it is further in the
past. This does not apply for feedback mode 3. However, the performance in an
error-free transmission environment is less relevant for our investigations. With
increasing loss rates it is obvious that any kind of error-resilience feature in gen-
eral improves the performance. Thereby, it is again recognized that reducing error
propagation is much more important than packetization modes such as FMO, in
our case with a checkerboard pattern and two packets per frame. Again, with the
average PSNR as the measure of interest, the best performance without any feed-
back is obtained using channel-adapted rate—distortion-optimized mode selection
according to (2.4) with each packet containing an entire source frame. Additional
significant performance improvements can be achieved by the introduction of de-
coder feedback information. Thereby, for lower error rates feedback mode 3 out-
performs feedback mode 2, but feedback mode 2 provides very consistent results
over a large variety of error rates.

From these results, as well as subjective observations, it can be concluded that
avoiding error propagation is basically the most important issue in error-prone
video transmission. If no feedback is available, an increased percentage of intra
MBs, selected by channel-adapted optimization schemes, performs best. When-
ever feedback is available, it is suggested that interactive error control be applied.
For short delays or low error rates, it is suggested to modify the prediction only in
case of the reception of NACK message. In all other cases, it is suggested to ref-
erence only those areas for which the encoder is sure that the decoder has exactly
the same reference area.

2.6 SUMMARY AND FURTHER READING

This chapter provides some background when transmitting MCP-coded standard-
compliant video over error-prone channels. It is important to understand that video
can benefit significantly if the transmitter can be sure that the video will be de-
livered reliably. Typically, the introduction of error-resilience tools in the video
coding layer is very costly in terms of compression efficiency. The overhead is in
general much better spent in lower layers of the protocol stack. Nevertheless there
exist applications in which errors are inevitable. If the video encoder is not aware
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of distortions on the transmission link, this in general leads to dramatic quality
degradations due to instantaneous errors as well as spatial-temporal error propa-
gation. Whereas the effect of instantaneous errors can be decreased by the use of
specific packetization modes, the usually more severe effect of error propagation
can be reduced by the application of more frequent intra information, interactive
error control, or a combination of both. Preferably, for good overall performance,
the selection of error-resilience tools is integrated in rate—distortion-optimized
mode selection whereby the channel characteristics should be taken into account
in this optimization. In general, standard-compliant decoders such as H.264/AVC
can effectively operate even in harsh transmission environments if the encoder is
appropriately designed for the transmission conditions and application constraints
and the decoder includes some form of appropriate error concealment.

Additional literature on different subjects for error-resilient video transmission
is plentiful; some work has already been discussed. In case of detailed interest
in different subjects the reader is first of all encouraged to cover the remaining
chapters of this book. Furthermore, magazines as well as journals have published
special issues that deal exclusively with error-resilient video transmission, for ex-
ample, [1,26,49,55,63], which provide a good starting point to dive into deep wa-
ters of error-resilient video transmission. Enjoy it!
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Error-Resilient Coding and
Error Concealment
Strategies for Audio
Communication

Dinei Floréncio

3.1 INTRODUCTION

In this chapter we review the main techniques for error concealment in packet
audio. As explained in Chapters 7-10, forward error correction (FEC) or repeat
request solutions are often adequate for streaming media and broadcast. These
can virtually eliminate information loss, guaranteeing that every bit is actually
received at the decoder side. Nevertheless, these techniques will also require the
introduction of additional delay, and the higher the protection level desired, the
higher the delay required. Real-time communication (RTC) applications are very
delay sensitive and will not be able to fully exploit these techniques to reduce
100% of the losses. For this reason, RTC needs are quite unique. We need error
concealment, and we need FEC techniques that can be applied without excessive
increase in delay. In this chapter we look at some of the techniques used in error
concealment for speech and look at media-aware FEC techniques, with particular
interest in RTC.

Compression and error concealment are tightly related. Compression tries to
remove as much redundancy from the signal as possible, but the more redun-
dancy is removed, the more important each piece of information is, and therefore
the harder it is to conceal lost packets. More specifically, speech is a dynamic
but slowly varying signal; the key way of compressing speech is by only trans-
mitting signal changes in relation to the previous or expected state. Nevertheless,
only transmitting these changes in a differential form means that if you lose some
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information (e.g., due to a packet loss), the decoder does not know the current
state of the signal any more. It is always expected that the segment corresponding
to the missing data will not be properly decoded. But with differential coding,
subsequent frames may also be affected. Furthermore, it is easier to replace any
missing speech segments if one has received the correct signal in the vicinity of
the missing segment. For all these reasons, error concealment may significantly
depend on the compression technology used.

We will start this chapter by looking at some of the basic ideas behind packet
loss concealment for speech. With that objective, in Section 3.2 we introduce the
basic concealment techniques used in nonpredictive speech codecs. The job of
concealing losses becomes harder as the codec removes more and more redun-
dancy from the signal. In Section 3.3, we discuss some of the techniques used
to reduce the impact of the feedback loop in CELP (Codebook Excited Linear
Prediction) and other predictive codecs. In Section 3.4, we present some recent
results in loss concealment for transform coders, which are used both in speech
and in audio applications. Finally, in Section 3.5 we discuss recent research in
media-aware FEC techniques. Particular attention is paid to speech, due to its im-
portance in RTC, but many of the recent advances in loss concealment techniques
we will discuss apply also to audio. For example, the same principles used in the
overlapped transform concealment techniques can be used for most audio codecs,
and the media-aware FEC can be applied to most audio or video coders. We also
point out that this chapter is closely related to the ideas presented in Chapters 15
and 16.

3.2 LOSS CONCEALMENT FOR WAVEFORM SPEECH CODECS

When digital systems started replacing analog equipment a few decades ago,
processing power was scarce and expensive, and coding techniques still prim-
itive. For those reasons, most early digital systems used a very simple coding
scheme: PCM (Pulse Code Modulation). In this digital representation of speech,
there isn’t really any coding in the compression sense. The signal is simply sam-
pled and quantized. More specifically, the speech signal is typically sampled at
8 KHz, and each sample is encoded with 8-bit precision, using one of two quanti-
zation schemes, usually referred to as A-law and p-law. This gives a total rate of
64 Kbps. The PCM system used in telephony has been standardized by the ITU
(International Telecommunication Union) in the standard G.711 [1]. For Voice
over Internet Protocol (VoIP) or other packet network applications, the speech
samples will be grouped into frames (typically 10 ms in duration) and sent as
packets across the network, one frame per packet. Note that a frame corresponds
to a data unit in the terminology of Chapter 2. Note that, since there is no real
coding, there is no dependence across packets: packets can be received and de-
coded independently. When G.711 was first adopted, the main motivation was
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quality: A digital signal was not subject to degradation. At the same time, a 64-
Kbps digital channel had a significant cost, and there was a strong push toward
increased compression. With the evolution of speech compression technology, and
increased processing power, more complex speech codecs were also standardized
(e.g., [3-6]), providing better compression. Curiously, today, in many applica-
tions bandwidth is not necessarily a significant constraint any more, and we are
starting to see basic PCM-coded speech increasing in usage again. Furthermore,
many error concealment techniques operate in the time domain, and therefore are
best understood as applying to PCM-coded speech. For this reason, in this section
we review the basic concept of packet loss as applied to speech and look at some
common techniques to conceal loss in PCM coded speech.

We assume speech samples are PCM coded and grouped in 10-ms frames be-
fore transmission. Since we assume packets are either received error free or not
received at all, this implies that any loss incurred in the transmission process will
imply a missing segment of 10 ms (or a multiple thereof). Figure 3.1 shows a seg-
ment of a speech signal. The signal is typical of a voiced phoneme. Figure 3.1(a)
shows the original signal, whereas 3.1(b) shows a plot where 20 ms (i.e., two
packets) is missing. As can be inferred from the picture, a good concealment al-
gorithm would try to replace the missing segment by extending the prior signal
with new periods of similar waveforms. This can be done with different levels of
complexity, yielding also different levels of artifacts. We will now investigate a
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FIGURE 3.1: (a) A typical speech signal. (b) Original signal with two
missing frames. (c) Concealed loss using Appendix I of G.711.
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simple concealment technique, described in the Appendix I of Recommendation
G.711 [2]. The results of applying that algorithm are illustrated in Figure 3.1(c).

3.2.1 A Simple Algorithm for Loss Concealment: G.711 Appendix I

The first modification needed in the G.711 decoder in order to allow for the er-
ror concealment is to introduce a 30 sample delay. This delay is used to smooth
the transition between the end of the original (received) segment and the start of
the synthesized segment. The second modification is that we maintain a circular
buffer containing the last 390 samples (48.75 ms). The signal in this buffer is used
to select a segment for replacing the lost frame(s).

When a loss is detected, the concealment algorithm starts by estimating the
pitch period of the speech. This is done by finding the peak of the normalized
cross-correlation between the most recent 20 ms of signal and the signal stored in
the buffer. The peak is searched in the interval 40 to 120 samples, corresponding
to a pitch of 200 to 66 Hz.

After the pitch period has been estimated, a segment corresponding to 1.25
periods is taken from the buffer and is used to conceal the missing segment. More
specifically, the selected segment is overlap-added with the existing signal, with
the overlap spanning 0.25 of the pitch period. Note that this overlap will start in
the last few samples of the good frame (which is the reason we had to insert the
30 sample delay in the signal). The process is repeated until enough samples to
fill the gap are produced. The transition between the synthesized signal and the
first good frame is also smoothed by using an overlap-add with the first several
samples of the received frame.

Special treatment is given to a number of situations. For example, if two or
more consecutive frames are missing, the method uses a segment several pitch pe-
riods long as the replication method, instead of repeating several times the same
pitch period. Also, after the first 10 ms, the signal is progressively attenuated, such
that after 60 ms the synthesized signal is zero. This can be seen in Figure 3.1(c),
where the amplitude of the synthesized signal starts to decrease slightly after 160
samples, even though the synthesized signal is still based on the same (preceding)
data segment. Also, note that since the period of the missing segment is not iden-
tical to the synthesized segment, the transition to the new next frame may present
a very atypical pitch period, which can be observed in Figure 3.1(c) around sam-
ple 1000.

The reader is directed to the ITU Recommendation [2] for more details of
the algorithm. Results of the subjective tests performed with the algorithm, as
well as some considerations about bandwidth expansion, can be found in [7]. Al-
ternatively, the reader may refer to Chapter 16, which gives details of a related
timescale modification procedure. For our purposes, it suffices to understand that
the algorithm works by replicating pitch periods. Other important elements are
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the gradual muting when the loss is too long and the overlap-add to smooth tran-
sitions. These elements will be present in most other concealment algorithms.

By the nature of the algorithm, it can be easily understood why it works well
for single losses in the middle of voiced phonemes. As expected, the level of ar-
tifacts is higher for unvoiced phonemes and transitions. More elaborate conceal-
ment techniques will address each of these issues more carefully, further reducing
the level of artifacts, at the cost of complexity. One possibility is to use an LPC
filter and do the concealment in the “residual domain” [8,9]. Note that this is un-
related to the concealment of CELP codecs (which we will investigate in the next
section). Here we simply use LPC to improve the extrapolation of the signal; the
coefficients are actually computed at the decoder. In CELP codecs, we have to
handle the problem of lost LPC coefficients.

3.3 LOSS CONCEALMENT FOR CELP SPEECH CODECS

In the previous section we looked at error concealment for PCM coded speech.
In PCM coded speech, each speech frame is encoded independently (in fact, each
sample is encoded independently). For this reason, the loss of one packet does
not impair the decoding of subsequent frames. However, since no redundancy
is removed from the signal, toll quality speech using G.711 requires 64 Kbps.
Many other codecs will remove more redundancy from the signal, and there-
fore require a lower rate. More recent codecs are actually quite aggressive in
removing redundancy. For example, several flavors of CELP coding have been
used in speech codecs standardized by the ITU, including G.728 [3], G.729 [4],
and G.722.2 [6]. Other organizations have also standardized several other CELP
codecs, including the European Telecommunications Standards Institute (ETSI),
which standardized several GSM (Global System for Mobile Communications)
codecs [10] and the 3GPP (Third Generation Partnership Project) AMR (Adap-
tive Multi-Rate) codec [11], as well as the US Department of Defense (DoD),
which standardized one of the first LPC codecs, the DoD FS-1016 [12], and more
recently a 2.4-Kbps mixed excitation linear prediction (MELP) codec, the MIL-
STD-3005 [14].

While a full understanding of a CELP codec is outside the scope of this chap-
ter, we will need a basic understanding in order to deal with the concealment
techniques used in association with these codecs. We will now present a quick
summary of important elements of a CELP codec.

Figure 3.2 shows a block diagram of a typical CELP decoder. The first impor-
tant element in these codecs is the use of a Linear Prediction (LP) filter, indi-
cated as “LPC Synthesis Filter” in the figure. The second element is the use of
a codebook as the input to the filter (thus the name “code excited linear predic-
tion, CELP”’). We are mostly concerned with the decoding operation so that we
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FIGURE 3.2: Block diagram of a basic CELP codec.

can verify what will happen when a frame is lost. In Figure 3.2, the wide arrows
indicate the places where data or parameters are received. We see that the decoder
will receive information relating to the LP filter (possibly including a long-term
predictor, based on pitch) and on what part of the codebook to use as excitation.
Specific CELP codecs will vary in how the codebook is populated, if the codebook
is adaptive or not, and on how the filter coefficients are encoded and transmitted.
Other differences, less relevant to our problem, relate to how the search on the
codebook is performed, how filter coefficients are interpolated, and so on. More
details about CELP codecs can be obtained from several sources, for example,
from [13].

To understand the key elements of loss concealment for CELP codecs, we will
now take a look at the loss concealment technique used in G.729. This ITU codec
is a typical CELP codec and operates at 8 Kbps. It uses 10-ms frames and two
codebooks: a fixed algebraic codebook and an adaptive codebook (based on the
recent past excitation signal). The LPC filter is transmitted by first converting
from LPC coefficients to Line Spectral Pairs (LSP), which are then differentially
encoded by a vector quantization scheme. When a frame is lost, the decoder will
take four specific actions to conceal the loss:

e Repeat the synthesis filter parameters. Since the differential information
from the lost frame is not available, the same parameters of last received
frame are used.

e Attenuate the adaptive and fixed codebook gains. The fixed codebook gain
is reduced by 2% at each 5-ms subframe. The adaptive codebook gain is
attenuated by 10% at each subframe and is also limited to 0.9. Note that re-
ducing these gains will decrease the output energy, helping to hide artifacts
produced by the concealment.

e Generate the replacement excitation. Since no excitation is received regard-
ing the lost frame, a replacement excitation needs to be generated. The way
the excitation is generated depends on the periodicity classification of the
previous frame. If the previous frame was classified as periodic, the excita-
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tion is generated by the adaptive codebook only, and the pitch delay is set
to the same as the previous frame. If more then one frame is lost, each lost
frame will increment the pitch by one. However, if the previous frame was
classified as aperiodic, the excitation is taken only from the fixed codebook.
The entry of the codebook to be used as excitation is based on a pseudo-
random algorithm.

e Attenuate the memory of the gain predictor. Since the gains are transmitted
on a recursive basis, by using a predictor, the exact state of the predictor is
lost when a frame is missing. That will imply that even if the next frame
is received without errors, the gains will not be correctly decoded. To help
alleviate this problem, the value of the gain predictor is updated with an
attenuated version of the codebook energy.

Note that the first three actions are related to generating the signal segment cor-
responding to the lost frame. The fourth item is related to reducing the artifacts
produced in future frames, due to the mismatch in the internal state of the decoder.
Rosenberg [15] analyzed the behavior of G.729 under losses and concluded that
the artifacts produced by the internal state mismatch are actually more significant
(subjectively) than the artifacts introduced by synthesizing the lost frame per se.
This parallels the findings for video detailed in the previous chapter. He also con-
cluded that the artifacts due to the mismatch last for approximately 70 to 100 ms.

Error concealment algorithms for CELP codecs are generally very codec spe-
cific. The error concealment used in G.729 is relatively simple, but it is a good
example of how error concealment for CELP codecs work. Because of the im-
portance of mitigating the effects of the internal state mismatch, more elaborate
concealment techniques are highly associated with the particular codec they ap-
ply to. Furthermore, many modern CELP codecs are already designed with error
concealment in mind and provide an associated algorithm that usually performs
well. An example of a more elaborate concealment technique is the one used in
the Wideband Adaptive Multirate codec (AMR-WB). This codec is standardized
as the 3GPP recommendation TS 26.190 and as ITU G.722.2 [6]. The error con-
cealment algorithm is described in standards ITU G.722.2 Annex I and in 3GPP
TS 26.191. It follows the same basic principles of the technique described earlier,
but it increases the performance at higher loss rates by having several different
procedures for each one of six different states. The states are essentially a mea-
sure of how reliable the current state of the codec is. The reader is directed to the
specification for more details of the concealment algorithm [6].

3.4 LOSS CONCEALMENT FOR LAPPED TRANSFORM CODECS

Linear transforms are widely used in signal compression. They have the primary
objective of concentrating the signal energy on a few coefficients, thus preparing
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the data for the subsequent quantization and entropy coding. Block transforms
(e.g., the Discrete Cosine Transform, DCT) are convenient in that they make each
block of data independent, constraining the effect of any error (either by quan-
tization or by loss) to that single block of data. Nevertheless, by not exploiting
correlation between adjacent samples in different blocks, they may often pro-
duce a structured noise (blocking artifacts), which is readily identifiable in the
decoded signal as a buzzing sound. Overlapped transform coders occupy an im-
portant niche between block codes and fully predictive coders. They still limit the
data to a certain block of samples, but their basis functions do not have disconti-
nuities at block boundaries. Instead, basis functions spread over to (i.e., overlap)
neighboring data blocks. This significantly reduces blocking artifacts, while pre-
serving or even improving the compression qualities of the transform. For these
reasons, overlapped transforms are used in numerous audio and speech codecs
(e.g., MP3, Windows Media Audio [WMA], and ITU-G722.1).

A loss concealment technique based on exploiting the partial information avail-
able about certain samples has been recently introduced [16]. The technique can
be used with essentially any linear transform where some of the coefficients are
missing. Important cases include missing “frames” of overlapped transform (e.g.,
Modulated Lapped Transform, MLT) coefficients, or wavelet coefficients, or even
single or multiple missing transform coefficients within a block of a block trans-
form (e.g., DCT). However, since we are mostly interested in concealment of
missing blocks in real-time speech and audio communication over packet net-
works, we will focus our discussion on the case of overlapped transforms.

When using an overlapped transform based codec, if a frame or block of coef-
ficients is lost, partial information is available about the missing segment. While
this information is not of enough quality to be used directly, it provides important
clues about the missing segment. In this section we discuss ways in which to ex-
ploit this partial information to maximize the quality of the recovered signal. In
particular, we apply some of the techniques to single-frame loss concealment on
the ITU-G722.1 codec [5].

In order to better understand the scenario, let us take a look at how an
overlapped transform is used for coding purposes. Figure 3.3a shows a one-
dimensional signal. In this example, the signal is split into overlapping blocks
of 2N samples, as shown in Figure 3.3b. Then, at each block, N transform coeffi-
cients are obtained by multiply/accumulate operations with the N basis functions
constituting the transform. Figure 3.4 shows the first few basis functions of a
typical transform. On the decoder side, the basis functions are scaled by the trans-
form coefficients and added. Subsequent frames of the signal are then overlapped
and added. Figure 3.3c shows the contribution of each overlapping block, before
addition. Note that the recovered segments have the same length but are not iden-
tical to the original segments: the original signal is recovered only after adding
the overlapping parts. Now, suppose the information about one of the blocks was
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FIGURE 3.3: A sample speech signal. (a) Original signal. (b) Sig-
nal split into overlapping segments and windowed. (c) Corresponding
segments after decoding. (d) Overlapped/added signal with one missing
block. (e) Error concealment using simple block repetition.
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FIGURE 3.4: A few basis functions of the MLT transform. From top to
bottom: 1st, 2nd, 3rd, 10th, and 50th basis functions.
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lost. A total of 2N samples—spawning the lost block—cannot be reconstructed
correctly. If we replace the lost coefficients with zeros, we would have the recon-
structed signal indicated in Figure 3.3d. Note that in this example, although only
N coefficients are missing, a total of 2N samples do not reconstruct correctly, due
to the overlapping nature of the transform. Nevertheless, overlapped transforms
like the MLT are critically sampled. This means that some partial information is
available about the 2N incomplete samples. More specifically, a total of N linear
equations are available regarding these 2N samples. We will now examine how
this can be used to improve the loss concealment.

3.4.1 Speech Codecs

The ITU standard recommends that lost blocks be replaced with the previous
block. While this technique is reasonable for low loss rates, artifacts are still
present and become significant at loss rates that are common in the Internet.
In particular, replication of coefficients does not take into account the alignment
of pitch periods between past and lost frames. (See examples of speech codecs,
G.722.1.)

In Section 3.2.1 we presented one of the main principles behind loss conceal-
ment for speech: pitch replication. As we will see, the algorithm presented in [16]
can be seen as an elaborate pitch replication system. It uses the partial information
available to synthesize a signal that has similar spectral characteristics and aligns
well with the surrounding blocks.

The MLT transform can be decomposed into a windowing operation, followed
by a folding and a DCT. Each block of coefficients can thus be written in matrix
form as

m=dct(FJx), 3.1

where m is the N x 1 vector of the resulting transform coefficients, F is the
N x 2N fold-over matrix

0 0 Lo 0000 -0 0 -+ 0 07
0 1 00 100 0 0 0 0 0
10 0 0 0100 0 0 0 0

F=19 o 00 001 0 0 0 o -1 |G
00 0 0 000 1 0 0 “1 0
Lo 0 00 000 0 1 -1 0o 0
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and J is a scaling matrix, that is, an N x N diagonal matrix with the windowing
coefficients

7. = | sin(T/2N G +0.5)), ifi=], 33
Y {0, otherwise. (3-3)

Furthermore, we will often need to refer to the signal before the DCT is applied.
Let’s call that z. So, we write

z=FJx. (3.4)

Note that in (3.2) the nonzero elements of the folding matrix form two nonover-
lapping subblocks. In other words, we can decompose F in four submatrices,
where two of them are zero matrices:

A0
F= [ 0 F2i| . 3.5)

Similarly, we write

|0 _|x _|« _|,n
N O P ) R ) RPN e

Looking at the block diagonal structure of F' and J, we can easily see that only
the first half of the samples of x is used in computing the first half of the folded
vector F'Jx (and similarly for the second half). That is, we can write

z1 = F1Jix1. 3.7

Therefore, if the next block of coefficients (which would also be using the sec-
ond half of samples of x) is lost, we can use this partial knowledge about the
samples to try to estimate x7.

More specifically, suppose an isolated block is lost (i.e., both the preceding and
the subsequent blocks to the missing block of coefficients are correctly received).
The missing (incomplete) set of samples is 2N long. By computing the inverse
DCT of the received data (but before applying the unfolding matrix), we have
access to y. We can therefore write the following equation, applying to the first
incomplete N samples:

20 = FrJyxo. (3.8)

Note that the x; and x; in (3.7) and (3.8) refer to different blocks. To avoid
confusion, we will now add a time index to our notation. Namely to represent
blocks at different time instants we will add a superscript index, indicating the
block ordering. For example, x” will mean the vector x and time instant .
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Assume the block at time n is missing, but both the previous and the subsequent
blocks are correctly received. So, since block n is missing, but we have received
blocks n — 1 and n + 1, we can write

ngl . Fr 0 H 0 x{l (3.9)
le1+1 ) Fi 0 x; ' '

Note that the matrices containing Fi, F3, Ji, and J> are now rotated in relation
to the original F and J matrices. For simplicity, let’s refer to these modified (block
rotated) matrices in the aforementioned equation as G and H. We therefore write

-1
2

1
5t

=GHx". (3.10)

Note that this is an underdetermined system of equations. We know z;_l and

z;‘H, and we are trying to estimate the 2N samples of x". This underdetermined
system could be solved for the minimum energy vector x” using the Moore—
Penrose generalized inverse of GH. This would provide the minimum energy
signal segment x that satisfies the received (partial) information. Nevertheless,
simulations show that this is not a good choice for x, as the nature of the matrix
J tends to concentrate the energy in the higher gain samples. A better choice is to
find the solution minimizing the energy of the windowed signal Hx. This solution
does distribute more evenly the energy across the samples of x. Nevertheless, it
still does not use the information about the neighboring frames. Before proceeding
to describe the best mode, let us introduce a small change in interpretation. Let us
introduce an identity matrix [ in (3.10), which becomes

4!

!
&t

=GHIx". @3.11)

We now interpret / not as a simple identity matrix, but as a matrix whose columns
form a basis for the space of x. In this context, the basis I consists simply of
impulses at each sample location. Using the generalized inverse of G H would be
minimizing the energy of the basis representation over these impulses. That takes
into account the partial information about the missing samples, but it does not
take into account all the prior information we have about the missing segment:
the properly received signal segments just before (and possibly after) the missing
segment. To fully exploit that information, we will reshape the aforementioned
equation by introducing two small modifications. The first modification improves
the signal continuity across frames by removing the no-excitation response. The
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second biases the reconstructed signal toward having the same spectrum and pitch
as the neighboring segments.

To account for the signal continuity, we estimate the LPC filter corresponding
to the previous block and compute the no-excitation response of the LPC filter
into the missing segment, X. We then modify (3.11) to account for x and write

1
/3l

2] amn-oms
— GHX=GHIX", (3.12)
where ¥ = x — X.

To account for the spectral continuity, we invoke our interpretation of [ as a
basis for the vector x (now x) to claim we should not be minimizing the energy
of x. Instead, we should be minimizing the energy of the representation of x
under a basis whose functions have a spectrum corresponding to the desired LPC
spectrum. To that end, we apply the LPC filter to the identity matrix, to obtain a
new basis L, where each column of L corresponds to a time-shifted version of the
impulse response of the LPC filter.

Finally, we compute an estimate of the periodicity and pitch period for the seg-
ment and apply that to the basis functions as well. Each column of L is now a
series of “colored” pulses, each apart by the pitch period, each with the impulse
response of the LPC filter, and each with decreasing amplitude, based on the esti-
mated periodicity index. For simplicity, we still call this final basis matrix L. The
representation on this new basis is not x any more, so let’s call it 7. We now have

Zn—l
2 | -GH¥=GHL™, (3.13)
Zg-&-l

which is then solved by the pseudo inverse of G H L, that is,

n—1
= (GHL) ([Ziﬂ } - GH)E) , (3.14)
Z

2

where § denotes the pseudo inverse. Note that this is the solution that minimizes
the LPC residual of x, as we wanted. The final solution for x is obtained by simply
computing

x"=Lr" 4+ X. (3.15)

Figure 3.5 shows a sample of the results obtained by the concealment algo-
rithm. The first signal is the original, the second is the signal reconstructed using
the proposed technique, and the third is the results of concealment by a pitch
replication method. In both cases every third packet is lost.
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FIGURE 3.5: Sample results. (a) Original signal. (b) Concealed using
the partial information method, after losing every third frame. (c) Con-
cealed using the pitch replication method.

In this section, we presented an error concealment technique that exploits the
partial information available for the missing segment of a signal encoded by an
overlapped transform. The discussion was centered around a speech codec, sim-
ply because speech is of foremost importance for real-time communication. Nev-
ertheless, the same principle can be applied to other overlapped transform codecs.
In particular, the same ideas apply to error concealment in music, as long as we
remove the conditions relating to pitch and introduce a higher order model to
account for the harmonic nature of music.

3.5 FORWARD ERROR CORRECTION TECHNIQUES FOR SPEECH

In the previous sections, we discussed several error concealment techniques, tar-
geted at alleviating the consequences of packet losses. Some of these techniques
are reasonably effective and will provide quite adequate speech quality, especially
at low loss rates. Nevertheless, as the loss rates increase, concealment becomes
increasingly hard and is prone to leave a number of artifacts. For this reason,
Forward Error Correction (FEC) is often used—either in isolation or as a com-
plementary measure—against packet losses. FEC techniques can range from sim-
ple packet replication techniques to more elaborate schemes, including media-
dependent FEC. In this section, we discuss media-dependent FEC and present a
framework for optimum rate distortion bit allocation. We will also present a case
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study based on the AMR-WB codec [6]. More general FEC methods can be found
in Chapters 7 and 9.

3.5.1 Delay and FEC

Generally speaking, FEC schemes allow the receiver to correctly decode a mes-
sage, even if some of the packets are lost. This is done by adding redundant in-
formation to the stream. The information can be included in a separate packet, or
appended to existing packets. For example, one could send a parity packet after
every three data packets, as illustrated in Figure 3.6. In this scheme, if one of the
three packets is lost, one can use the parity packet to recover the original infor-
mation without loss. This increase in robustness is useful, but it also increases
the bandwidth requirement by 33% (by sending one extra packet for every three
original packets). Furthermore, there is also a delay cost: if the first of the three
packets is lost, the receiver has to wait until receiving the parity packet before de-
coding the lost packet. In this example, this would add an extra two-frame delay.
Partially to reduce this added delay, most FEC schemes for real-time communica-
tion simply repeat the packet. More information about standard FEC techniques
will be discussed in Chapters 7 and 9. But for now, let’s simply mention that using
an FEC code that spreads over N blocks will essentially add up to N blocks delay.
For this reason it is highly desirable for FEC codes to spread the smallest number
of blocks possible.

3.5.2 Media-Dependent FEC

As we mentioned, it is desirable that the FEC technique introduces as little extra
delay as possible. Ideally, we would like FEC codes that spread only a single
block. Unfortunately, under the traditional FEC techniques, the only such “code”
available is packet repetition. That happens because traditional FEC try to protect
the bits of the message. When one is sending media, protecting individual bits is

(t=1) (t=2) (t=3) (t=4) (t=5) (t=6)

Frame1 Frame2 Frame3 Frame4 Frame5 Frame6
Fri+Fr2 Fr4+Fr5
+Fr3 +Fr6

FIGURE 3.6: FEC example with a 4:3 redundancy. Each fourth block
is an XOR of the previous three blocks.
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not as important anymore, but instead, the idea is to protect the signal. In other
words, a rate—distortion trade-off can now be applied. Looked at from this point of
view, packet repetition is clearly suboptimal. For example, in a 10% loss scenario,
the error correction information is only used 10% of the time and yet uses the
same rate as the primary packet.

In traditional FEC codes, the sender inserts bit redundancy in the transmitted
packets, and the receiver will either perfectly receive the frame or receive noth-
ing. There is no rate—distortion trade-off. In media-dependent FEC methods, in
contrast, the transmitter sends multiple descriptions of the same frame so that in
case of packet loss, another packet containing the same data, albeit different qual-
ity, can be used to recover the loss. Hence, each packet will carry an appropriate
representation of the current frame, along with a coarse representation of one or
more previous frames. Clearly, there is a trade-off between attributing rate to re-
dundant information instead of to the current frame. By increasing the amount of
redundant information, we increase the probability and the quality of loss recov-
ery while sacrificing from the quality of the most recent frame. An example of
such media-dependent FEC schemes is the one presented in [17]. Earlier work in-
cludes the Robust Audio Tool [18], which limits the repeat packet to be the same
as the original one. The problem can be formulated as follows. Given a model for
the channel and a total transmission rate R (i.e., fixed packet size), what is the
optimum partition of the bit budget between redundant and current frames such
that a distortion measure Dr is minimized? We consider each frame as a signal
segment and each packet may contain information units regarding one or more
frames. The units can contain raw data or a representation of data derived by some
compression algorithm (e.g., LPC coefficients, prediction errors). We model each
packet as a collection of multiple units corresponding to different segments of the
signal, each possibly having a different rate. For each packet, ry is the rate of the
present segment and r; is the rate of (i — 1)th past segment. The number of these
units and the rate of each unit can be either fixed by the optimization algorithm
prior to transmission or adaptively changed based on the input signal. Figure 3.7
shows an example, with four consecutive packets, with each packet carrying in-
formation about the current frame, as well as lower fidelity information about the
two previous packets.

Another point of interest is whether each unit is dependent on previous units
(i.e., differential coding). We will analyze here the case in which each segment of
data is processed independently. This would be the case, for example, of encod-
ing video with all I-frames or encoding speech using G.722.1 (“Siren”) or G.711
(PCM). The case of history-dependent algorithms, where each segment is sent as
a unit, is handled in detail in [19].

We now analyze the optimization problem where each frame is encoded in-
dependently of neighboring frames. The optimal rate of each packet is chosen to
minimize the average distortion given the loss model. We start our discussion with
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FIGURE 3.7: Media-aware FEC example with a factor of 3 redun-
dancy. The current block carries the frame with full resolution and pre-
vious blocks with decreasing degree of accuracy.

the case where there is only a single-rate distortion function to be used, the bit
rate allocation is fixed (i.e., independent of the actual signal), the loss model is
i.i.d., and delay is ignored. This can then be extended to more complex scenarios.
Assume no inter-frame coding and a fixed rate—distortion function D(r). The
distortion D(r) is the average distortion due to using rate r for a generic com-
pression algorithm using only data in the current frame. As an example, suppose
there are three units in each packet, as in Figure 3.7, and the packet loss is an
i.i.d. Bernoulli process with loss probability p. Since the loss event is i.i.d., with-
out loss of generality, we can restrict our decoder to use the first packet received,
even though we may receive multiple units for the same segment. It follows au-
tomatically that the optimum solution requires r; > r> > r3. Since the probability
of a packet being received is 1 — p, and since if we receive a packet we will use
the r; contained in that packet for reconstruction of the corresponding frame, the
distortion for this frame will be D(r1) with probability (1 — p). However, there
is a probability p that this packet is not received. In that case, we will wait for
the next packet, which contains the same frame, but coded at rate r,. That packet
has itself probability (1 — p) of being received. Therefore, the probability that we
use the data contained in that packet is going to be p(1 — p), and in that case the
distortion is going to be D(r,). We can proceed similarly with the third packet to
conclude that the distortion contributed by that packet is p2(1 — p)D(r3). Finally,
if none of the three packets containing information about this segment is received,
we will use some other loss concealment technique, which we assume will itself
induce a distortion K. The same computation will hold for any particular segment
(frame) of the signal. Therefore, the expected distortion at any time is given by

Dr =(1—p)D(r1) + p(1 — p)D(r2) + p*(1 — p)D(r3) + p°K.  (3.16)

The distortion K directly depends on the loss concealment strategy, and we as-
sume it to be comparable to D(0). If we do not include any delay considerations,
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FIGURE 3.8: Optimization procedure. Each rate is used. The optimum
solution is the one that implies the same derivative on each of the (scaled)
curves.

the optimization problem can be formulated as

N
min  Dr(ri,....ry), St Zri <R, (3.17)

r1,r2,.., N, N i
where N is the total number of units to be used and R is the total rate. Since we
assume no inter-frame coding, the R—D curves are the same for the first unit and
for subsequent (FEC) units. This can be seen in Figure 3.8, which illustrates the
contribution of each of the terms in (3.16). Note in the figure that the curve corre-
sponding to each unit has the same shape, but has been appropriately scaled by the
associated probability, as prescribed by (3.16). In this example, the total distor-
tion D7 is the sum of the three different rate distortion curves, where each curve
is simply the product of D(r) and the respective probability coefficient coming
from the channel model. Hence, given N, the problem (for convex rate—distortion
functions) is formulated as an unconstrained optimization using Lagrange multi-

pliers,

N
min NDT(rl,...,rN)+eri, (3.18)

r1:12,--,IN>» X
i=1
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where A is the Lagrange multiplier. The optimal configuration is reached when

0Dt _ oDt . oDt
ory o orp a ory

(3.19)

Since we assume the encoding of each unit is independent (no inter-frame coding),
the partial derivatives are simplified to

oDt
ar

_ Dy
rl or

_ 9Dy

(3.20)
r2 or

r3

In other words, the problem is now reduced to finding the optimum rate points
ri", ..., 1y such that the slopes of the scaled-rate distortion curves are the same at

each r and ZZN=1 r¥ < R. This is illustrated in Figure 3.8.

Note that whenever N is not given a priori, it must be included as a parameter
in the optimization. In principle, the induced delay is N, because to present the
frames at a constant rate, the receiver has to wait for the N packets before de-
coding a frame. (However, we will see in Chapter 16 that adaptive playout can
be used to keep the average delay below N.) Since (3.16) does not include any
penalty for latency, the optimization in (3.20) will artificially favor a large N.
Nevertheless, note that even if there is no penalty for latency, there is always a
finite value of N such that the algorithm stops and favors the quality instead of
error recovery. If we define ordered curves in the figure as Dy, ..., D; (e.g., for
Figure 3.8, i = 3), then the number of units that would be included will be upper

bounded by

N
N*:argmﬁxZDi_l(DN(rzm) <R, (3.21)

i=1

where bi (r) is the derivative of the function D;(r) and bl_ ! (r)is the inverse of

Dj(r). After getting an upper bound, N can be computed by decreasing N and
recomputing the distortion until D7 starts to increase. Since N is generally small,
this exhaustive search in N is usually not a problem.

This procedure will determine the optimum rate allocation to each packet and
to each error correcting packet. Each subsequent (error correcting) packet will
always be at the same or lower rate as the previous packet. If a packet is lost,
but a subsequent packet containing the error correcting information is received,
the decoder will replace the lost information with that contained in the correction
packet. In other words, this can be viewed as a forward error correction technique
where the objective is to recover the signal, not the bits. In the same way the origi-
nal (source) encoding may have introduced signal distortions in order to optimize
the channel utilization, the channel coding may also introduce its own distortion,
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FIGURE 3.9: Subjectively weighted SNR after decoding for several er-
ror rates. Top curve is for original (single packet) AMR, dotted line for re-
peat only, and lower (dashed line) results are for media-aware FEC, which
typically selects a lower rate for correction packets.

also to optimize the channel utilization. Furthermore, the aforementioned method
guarantees that both the channel and source coding are operating at optimal con-
dition, therefore the name “combined source-channel coding.”

The optimization procedure presented in this section assumed an intra-only
coder, a fixed rate—distortion function, and an i.i.d. loss model. Each and all of
these constraints can be removed under certain assumptions. Details can be found
in [19], which also includes an example of applying this technology to a AMR-
WB codec. Figure 3.9 shows a plot of final quality as a function of error rate when
applying this technology and compares that to a repeat-only FEC strategy.

3.6 OTHER ERROR-RESILIENT CODING TECHNIQUES

In previous sections we looked at two main ways to alleviate the consequences
of packet loss: concealment and FEC. In the first technique, we try to synthesize
the missing information based on surrounding (i.e., received) blocks. The second
technique sends some additional redundant information (FEC), which helps re-
cover the missing information, either in its natural form or with reduced fidelity.
A few other techniques fall somewhere between these two, in the sense that in-
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stead of adding redundancy, they will leave some redundancy in the signal at
coding time. Ideally this is done in a well-planned way, leaving only the redun-
dancy that will be most effective in recovering the lost packets. This is in contrast
to some older techniques (e.g., G.711), where redundancy was left in the signals
mostly to simplify computation. An example of such an error-resilient technique
can be seen in the Siren codec (G.722.1), which intentionally does not use dif-
ferential coding, to increase robustness to noise. A few other techniques used to
improve error resilience include Multiple Description Coding (Chapter 17) and
unequal error protection (Chapter 9), which can be used with standard codecs, but
are particularly useful when used with scalable codecs (Chapter 6).

3.7 SUMMARY AND FURTHER READING

In this chapter we have looked at Error Concealment Strategies and Error Re-
silient Coding for Audio Communication. We looked at some of the basic tech-
niques that are used in concealing packet losses, applied to several kinds of
codecs, including frame-independent codecs, overlapped transform codecs, and
fully predictive codecs. We looked at some of the techniques incorporated into
international standards, and looked at a few additional techniques. We saw that
many codecs are available and can be used for specific application. The particular
choice of a codec will generally involve system design issues, for example, com-
putational complexity, bandwidth availability, backward compatibility, and so on.
Furthermore, commercial considerations often play a major role as well. These
include existing intellectual property right, licensing terms, availability of source
code, and so on. For example, many of the codecs mentioned were designed for
a specific application. As a general rule, CELP codecs tend to perform well in
terms of rate/distortion for most rates above 2400 bps, as long as encoding clean
speech. For example, mostly all codecs used in cellular phone systems are CELP
based. However, when coding music or when background noise becomes more
prevalent, waveform codecs start to present good performance. Indeed, while
the ITU and the GSM have standardized several CELP codecs to use at differ-
ent rates, in telecommunication systems some of the primary VoIP systems use
waveform-based codecs. For example, Microsoft Messenger uses Siren/G711.1
as the default codec. This can be partially attributed to the fact that bandwidth
constraints on VoIP are not as severe as in cellular systems and partially to the
fact that use of a close-talking microphone is not expected in the desktop environ-
ment.

The main objective of this chapter was to look at the different techniques avail-
able. A number of subsequent chapters will look at related topics, in particular
about aspects related to FEC, scalable audio coding, and adaptive playout. These
are techniques that are particularly important for speech communication.
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Mechanisms for Adapting
Compressed Multimedia to
Varying Bandwidth
Conditions

Antonio Ortega and Huisheng Wang

4.1 INTRODUCTION

Most currently deployed networks provide no quality of service (QoS) guarantees.
Thus it is clearly necessary for bandwidth adaptation mechanisms to be available
in order for real-time multimedia delivery applications to be successful. These
mechanisms allow applications to adjust gracefully to changes in available chan-
nel bandwidth. Without these adaptation tools, changes in available bandwidth
will lead to significant quality degradation, leading occasionally to total service
interruption. This is an even more pressing need when one considers the increas-
ing heterogeneity of both networks and network access devices.

Consider, for example, a hypothetical application where a traveling user is in-
terested in accessing video captured by a wireless home surveillance camera. This
user gains remote access to the video feed using a wireless network device, such
as a cell phone. In order to provide a smooth, constant quality playback, such a
system would have to be robust to bandwidth fluctuations due to multiple causes;
for example, variations in traffic within the home network, load of the cable mo-
dem access network, distance of the user to the nearest base station, and load in
the wireless access network. This is in addition to traffic fluctuations along the
relevant paths within the Internet backbone.

Clearly, one possible way to tackle the problem would be to engineer appli-
cation and network resources so as to avoid altogether these bandwidth fluctua-
tions, or at least reduce their amplitude. Indeed, in all the most successful deploy-
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ments of digital video systems (cable and satellite broadcasting) some form of
bandwidth reservation is in place so that each video transmission receives a fixed
bandwidth. These systems are in fact (i) closed, so that a single service provider
controls all the communication links and thus how many video transmissions oc-
cur at any given time, and (ii) reliable, so that, except for rare outages, bandwidth
levels available to each video transmission remain constant.

While these applications have been very successful commercially, current in-
terest is driven by multimedia applications that operate over open, heterogeneous
and potentially unreliable networks. Witness, for example, the current growth in
voice over IP (VoIP) systems. Interest in deploying other such applications (from
video conferencing to video on demand) over these networks is considerable, but
the technical challenges are very significant.

This chapter is devoted to tools and techniques that allow applications that
involve transmission of multimedia streams to cope with significant changes in
transmission bandwidth. We call these bandwidth adaptation mechanisms. Note
that there are other tools available to improve the quality of multimedia delivery
over these challenging network environments. In particular, techniques for mul-
timedia resilience and error concealment allow the decoder to either eliminate
the effect of losses or excessive delays (by introducing redundancy) or to “mask”
their effect on the decoded media (using error concealment). In many cases these
techniques are applied to a design based on worst case assumptions, for example,
the designer may determine what the maximum packet loss rate for the system
is likely to be and then select appropriate error-resilience techniques to ensure
sufficient quality even at those loss rates.

Instead, our main focus is on dynamic adaptation: various components of the
application actively monitor and react to changes in network behavior by making
adjustments to the data being sent to the receiver.

Our simple traveling user example illustrates the importance of bandwidth
adaptation mechanisms; in their absence variations in available bandwidth may
lead to packet losses in the video stream and thus to very abrupt variations in
video quality, and possibly to complete interruption of service. For example, if the
surveillance camera is set to encode video at a certain rate regardless of network
conditions, then usable video quality may not be available unless the minimum
bandwidth encountered at all links along the network route exceeds the bandwidth
required by the application. This example also indicates that there are many pos-
sible mechanisms for adaptation, such as the fact that, the two end applications
could communicate with each other, or intermediate nodes of the network could
modify the video stream (e.g., via transcoding) to make it conform to the avail-
able bandwidth. One of the goals of this chapter will be to describe alternative
adaptation mechanisms and illustrate their relative merits. Note that bandwidth
adaptation cannot guarantee loss-free transmission, so mechanisms to minimize
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the impact of losses and for error concealment may also be needed, as discussed
in Chapters 2, 3, 8, 9, and 10.

All practical multimedia networking systems currently in use incorporate some
form of bandwidth adaptation. For example, widely deployed commercial sys-
tems such as Windows Media Player and RealPlayer make use of adaptation tech-
nologies, namely Intelligent Streaming [6] and SureStream [19], respectively. In
both systems, multiple redundant representations of the same content are created,
with each version optimized for a specific transmission rate. During transmission,
the streaming server dynamically adapts to the bandwidth changes by switching
between these streams in such a way as to maximize the reconstructed video qual-
ity.

These systems, and alternative ones to be discussed in more detail in this chap-
ter, operate by

(i) observing the characteristics of the network environment (e.g., bandwidth
availability, packet loss rates) and

(ii) increasing/decreasing the rate of the multimedia stream so as to maximize
quality available to the users.

The performance of these systems will depend on many factors, such as the
type and accuracy of information that is available about the network state; where
this information is acquired; and constraints on how the streaming rate can be
adjusted.

Note that the multimedia codec being used is a very important factor in deter-
mining what forms of adaptation are feasible. Some media codecs are designed so
as to facilitate bandwidth adaptation; for example, this is the case when scalable
coding (described in Chapter 5) is used. With a scalable codec a media sequence
is encoded into a number of layers, or as an embedded stream with fine granu-
larity, such that the transmitter can easily select a subset of layers or bits to send
based on the current channel condition.

This chapter provides a general overview of bandwidth adaptation mechanisms,
focusing on where the adaptation occurs (e.g., at the sender end, or somewhere in
the network), who decides how to adapt (e.g., sender- vs. receiver-driven adapta-
tion is possible), how the adaptation is supported by various codecs (e.g., scalable
vs. nonscalable systems), and the trade-offs in performing the adaptation with
different options using a number of criteria (e.g., in terms of delay, latency, com-
plexity, quality).

Note that our main goal is to provide an overview of various classes of tech-
niques available for bandwidth adaptation and to summarize their relative merits.
A more detailed and quantitative performance comparison falls outside of the
scope of this chapter and, given the complexity of these systems, may indeed be
difficult to develop. Note also that most of our discussions will be relevant to
general streaming media systems, although often our specific examples (in partic-
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ular our discussion of coding techniques) will focus on the case of video stream-
ing.

4.1.1 A Simplified System—Definition of Major Components

To facilitate the discussion, in what follows we consider simplified systems with
three components. A sender provides the media data, which could be encoded
from a live media input or could be obtained from a pre-encoded stream. A client
initiates the request for a media stream and plays it back to the end user. A proxy is
an intermediate node of the network that facilitates the interaction between client
and sender. Note that in some cases a proxy contains all the information requested
by the client and thus in effect acts as the sender. Our focus in this chapter will
be on scenarios where the sender is the “main” source for the media stream, and
where the proxy plays an auxiliary role.

More complex systems can be used in practice [4,11,41,52], for example, multi-
ple proxies could play a role, or the content could be delivered from more than one
sender, to multiple users, through multiple network routes, etc. In recent years,
peer-to-peer (P2P) networks [45,54,57] have also been studied as alternatives to
traditional client—server architectures. However, a discussion of the simpler sys-
tem is sufficient to understand the various bandwidth adaptation mechanisms.

4.1.2 Chapter Outline

The chapter is organized as follows. In Section 4.2, we first discuss how the
bandwidth variations affect the received multimedia quality, especially for delay-
constrained transmission. Here we introduce an important concept, namely that
of an end-to-end delay constraint for a multimedia communication system. Then
we provide a global overview of a bandwidth adaptation system architecture in
Section 4.3, discussing the trade-off and criteria to choose a particular adaptation
mechanism for a given application. In Section 4.4, we describe different cod-
ing techniques that can be used to adjust the coding rate of a multimedia source
to match the available bandwidth, and briefly review the optimization techniques.
Finally, Section 4.5 provides a summary of the main ideas introduced in this chap-
ter.

4.2 IMPACT OF AVAILABLE BANDWIDTH ON MULTIMEDIA
QUALITY

In order to understand bandwidth adaptation mechanisms for multimedia appli-
cations, it is necessary to understand first the impact of bandwidth variations on
received media quality.
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4.2.1 Downloading and Streaming

In contrast to data communication or to simple media downloading, real-time
media streaming is often subject to strict delay constraints. The main difference
with respect to a download application is that media playback starts as data is
still being received, so that playback could be interrupted if the decoder ran out
of data to decode.

Typical streaming applications operate as follows:

1. Data request. A request is sent to the media sender so that data streaming
to the receiver starts.

2. Client buffer loading. As data starts to reach the client, decoding does not
start immediately. Instead the client waits to have “enough” data to start
decoding.

3. Playback. Once there is sufficient data available at the client, playback
starts and at that point only relatively minor adjustments in the playback
timing are possible, so that the rate at which media is played back (e.g., the
number of video frames per second) needs to remain nearly constant.! An
example of playback adaptation can be found in [39] and in Chapter 16.

There are multiple strategies for clients to determine that enough data is avail-
able to begin decoding. For example, a target total number of bits may have to be
buffered before playback starts. Alternatively, a predetermined time for buffering
(e.g., a few seconds) could be chosen so that users always experience the same
time latency before playback starts. Finally, a more practical approach may be to
wait until the number of bits that represents a selected playback time has been
received (e.g., the number of bits needed to encode a video segment with a prede-
termined duration). Details can be found in Chapter 14.

Note that the primary concern in many applications is playback latency, rather
than storage at the receiver. Thus, in applications such as streaming to a com-
puter, where there is plenty of memory available, the amount of data loaded be-
fore playback may still be kept small to limit the initial latency in the system. Note
also that latency is particularly important when the user is expected to frequently
switch media sources, as the latency penalty will be incurred every time the user
switches.

Regardless of which technique is chosen to preload the buffer, at the time when
playback starts, the decoder will have a certain number of bits available for de-
coding. This available data translates into a playback duration (e.g., if there are

"More precisely, the number of frames per second received needs to be consistent with what the
receiver expects to play back. Thus, adaptation mechanisms that involve both transmitter and receiver
are possible (e.g., so that fewer frames per second are transmitted and played back when bandwidth
availability is reduced).
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N compressed frames in the decoder buffer and K frames/second are decoded,
then the decoder will be able to play from the buffer for N/K seconds). Thus the
amount of data available in the decoder buffer at a given time tells us for how long
playback could proceed, even if no data was to be received from the network.

4.2.2 Available Bandwidth and Media Quality

To understand the need for bandwidth adaptation, consider what would happen
if reductions in channel bandwidth were not matched by reductions in the source
coding rate. Assume a constant media playback rate, for example, a fixed number
of frames per second in a video application. When network bandwidth becomes
lower, if the number of bits per frame does not change, then the number of frames
per second received is bound to decrease. Since the receiver continues playing
frames at the same rate, eventually there will be no frames left for playback in
the receiver buffer and thus playback will be interrupted. This will be a decoder
buffer underflow.

Thus, as network bandwidth fluctuates, bandwidth adaptation is needed to en-
sure that playback is not interrupted. Roughly speaking, this requires that the
number of frames/second provided by the network matches (on average) the num-
ber of frames/second consumed for playback at the receiver. The general goal of
bandwidth adaptation mechanisms will be to manage the quality of the frames
transmitted so that when the available bandwidth is reduced, the rate (and hence
the quality) of transmitted frames is also reduced. In essence, the goal is to avoid
service interruptions by lowering the media quality in a “graceful” manner.

We next provide a more detailed discussion of the delay constraints that are
present in a real-time media communications system.

4.2.3 Delay-Constrained Transmission

Consider, as an example of delay-constrained transmission, a real-time video
transmission system where all operations have to be completed within a prede-
termined time interval. The end-to-end delay from a video source to a destination
contains the following five components, as illustrated in Figure 4.1:

e Encoding delay AT,: the delay required to capture and encode a video
frame.

e Encoder buffer delay AT,p: the time the encoded media data corresponding
to a given frame spends in the transmission buffer. Note that this delay
could be zero if the channel bandwidth is higher than the bit rate produced
by the encoder, that is, data transmission would start as soon as video data
is placed in the buffer.
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FIGURE 4.1: Delay components of a communication system.

o Transmission channel delay AT,: the delay for encoded data being trans-
mitted through the network, caused by transmission, congestion, and pos-
sible retransmission over a lossy channel.

e Decoder buffer delay ATyp: the time for encoded data to wait in the de-
coder buffer for decoding. This delay allows smoothing out the variations
in transmission delay and in rates across frames.

e Decoding delay ATy: the delay for decoding process and final display.

Both encoding and decoding delays are usually fixed, so that we focus primarily
on the remaining delay terms. Note that when considering pre-encoded media,
the encoding delay is not considered as the video is already encoded off-line and
ready for transmission. In this case we can consider that the encoding buffer is of
infinite size and contains the complete encoded sequence.

In summary, the main constraint in the system is the status of the decoder buffer,
that is, as long as the decoder buffer contains data, decoding can proceed. Thus
bandwidth adaptation mechanisms should be designed with the objective of en-
suring that the decoder buffer is not “starved” of data. In some cases, accurate
and timely information about the decoder buffer state is available, which can then
be used to make bandwidth adjustments (this would be the case, for example, if
the client makes bandwidth adaptation decisions). In other cases, exact informa-
tion may not be available, but the state of the buffer could be estimated using, for
example, estimates of available bandwidth.

Different applications may have different delay requirements. For example, for
live interactive video, a round-trip delay between 150 and 400 ms is usually re-
quired, while an initial play-out delay up to a few seconds is acceptable for nonin-
teractive video streaming. Once selected, end-to-end delay requirements impose
a constraint on the encoding rate for each frame.

4.3 OVERVIEW OF BANDWIDTH ADAPTATION ARCHITECTURES

We are now ready to define more precisely what we consider as bandwidth adap-
tation mechanisms: These are techniques that enable the rate of a media stream to
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be modified during a playback session (i.e., while a user is connected and receiv-
ing content for playback) in order to accommodate changes in the network (e.g.,
changes in available bandwidth, congestion, and packet losses).

In order to provide a rough classification of bandwidth adaptation architectures,
note that defining a specific mechanism requires choosing:

e Adaptation points, that is, the locations in the network where the bit stream
is adapted to match specific bandwidth requirements. For example, adapta-
tion could take place at the sender, at a proxy, or even at the client applica-
tion.

e Decision agents, that is, the component within the system where decisions
about transmission rate changes are made. This decision could be made at
the sender, a proxy, or the client, based on whatever information is available
at that point in the network.

e Coding techniques, that is, the source coding techniques designed to facili-
tate bandwidth adaptation. Note that not every technique is appropriate for
a certain combination of adaptation point and decision agent. These tech-
niques are discussed in Section 4.4.

It is important to note that, in general, bandwidth adaptation decisions need not
be made at the same point in the network where the adaptation itself takes place.
A concrete example of this situation is client-driven techniques where each client
evaluates the status and parameters of its own transmission link and requests to
the sender changes to the streaming parameters; in this case bandwidth adaptation
decisions are made by clients and put in place by the sender.

In general, the choice of adaptation point and decision agent for a particular
system depends on what information is available to each component of the system
(client, sender, or proxy if there is any), on available computational resources, and
on the characteristics of the bit stream.

4.3.1 Trade-Offs

Before discussing specific architectures in detail it is useful to understand how
operating at client, server, or proxy leads to different trade-offs.

First, note that adaptation decisions should be based on available information
about (i) the state of the network (e.g., bandwidth availability) and (ii) the relative
importance of information encoded in the media stream (e.g., how much degrada-
tion will result from dropping one of the layers in a scalable representation, or in
general the rate—distortion characteristics of different parts of the stream).

Figure 4.2 illustrates that source-related information is likely to be known more
accurately at the sender (which can analyze media as it encodes or extracts rel-
evant information from an existing stream) than at the client (which must rely
on information provided to it by the server). Similarly, more efficient adaptation
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FIGURE 4.2: Trade-off between the accuracy of source information
and channel information available at various network locations.

decisions are possible when information about the state of the network is timely
and accurate. Ideally, information should be available about the channel behavior
observed by the client. Thus the client has access to more accurate information in
a more timely way, as it observes packet arrival events. Figure 4.2 also illustrates
that since the most accurate information is not available in a single place, some
algorithms will entail information exchange between client and sender. Exam-
ples include where the client sends packet status feedback to the sender or where
the sender provides the client with information about the source, such as an “RD
preamble” [40].

Second, two major factors affect the performance of a bandwidth adaptation
algorithm for a single client, namely (i) the granularity with which bandwidth
can be adapted and (ii) the speed with which changes can be made to react to
variations in network behavior.

Figure 4.3 illustrates that when actual adaptation (i.e., change in the rate at
which data is sent to the client) is performed at the server, finer granularity can be
achieved. Conversely, when adaptation takes place at the server the reaction time
may be longer because packets resulting from adaptation will take longer to arrive
at the client.

Third, it is often important to consider system-level trade-offs. Not only how
a particular client’s quality is affected by bandwidth adaptation, but rather how
adaptation affects overall network performance. Figure 4.4 illustrates how system
scalability and overall network utilization are affected by choices made in the
bandwidth adaptation mechanism. If decisions on how to change the bandwidth,
and even adaptation itself, are performed close to the client, the system will be
easier to scale, since more of the computation cost will be borne by the clients.
However, if bandwidth adaptation is performed close to the clients this will be to
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FIGURE 4.4: Comparison on service scalability and overall network
utilization when serving multiple clients.

the detriment of overall network utilization, since data rate reductions will only
reduce utilization close to the client.

4.3.2 Where Should the Adaptation Points Be?

As introduced earlier, an adaptation point is the system component where the
bandwidth of the stream is physically changed. Each possible choice of location
for the adaptation points has different advantages in terms of various performance
metrics of interest.



Section 4.3: OVERVIEW OF BANDWIDTH ADAPTATION ARCHITECTURES 91

4.3.2.1 Sender

The sender has the most flexibility in terms of compression format, since it can
adjust the coding parameters in real time (in case live encoding to single users
is performed), and can switch between several simultaneously produced streams
(simulcast), etc. Moreover, the sender is typically least constrained in terms of
storage and processing. Generally, then, adaptation at the sender provides the most
flexibility from a source coding perspective. In practice, this means that when
the sender performs bandwidth adaptation, this makes it possible to achieve finer
grain bandwidth adaptation will be possible, as shown in Figure 4.3, with least
penalty in terms of quality at the receiver.

There are several drawbacks in server-driven bandwidth adaptation. The sender
is furthest away from the client; thus when congestion occurs in the network there
may be a delay before the bandwidth adaptation can take effect (see Figure 4.3).
Moreover, depending on where network information is being captured, this infor-
mation may be unreliable. If bandwidth changes are requested by the client (see
Section 4.3.3), and are thus based on more reliable information about the state
of the network, letting the adaptation happen at the server means that the delay
in reacting can be significant, which can reduce the effectiveness of bandwidth
adaptation. If the sender itself is estimating the network state, it will be able to
adapt faster, but may not have sufficiently accurate information about the network
to be effective.

Adaptation at the server also presents problems in terms of scalability in cases
where data is being broadcast to multiple clients. First, each server may be limited
in the number of clients it can provide content to simultaneously, in particular if
compression or bandwidth adaptation is computationally expensive. Second, the
server may have to create separate versions of the same content for clients with
different Internet access bandwidths, for example, one for 56K modem connec-
tions, and another for DSL, etc. This will in turn create a heavy traffic load in the
local network around the server, which may also have a negative impact on other
content being served.

Physical adaptation is closely related to the coding techniques applied in a par-
ticular application. Since the sender can access the source more flexibly, a number
of adaptation techniques have been proposed. Such techniques include source rate
control (i.e., adjusting coding parameters during the encoding process [29,76]),
rate—distortion optimized packet scheduling [16,48], and switching between dif-
ferent bit streams or layers [19,67].

4.3.2.2 Client

Bandwidth adaptation at the client essentially means that the client does not de-
code all the content it receives. This would be beneficial only in terms of low-
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ering the complexity of decoding or avoiding decoding of lower priority data
that is likely to be corrupted. This type of adaptation in general requires a cod-
ing format that supports complexity scalability. The reconstructed quality is re-
lated to the complexity of the decoder used. For example, van der Schaar and
de With [70] proposed to reduce the memory costs of an MPEG-2 decoder by
re-compressing the I- and P-reference pictures prior to motion-compensated re-
construction. Transform coding and motion estimation algorithms with complex-
ity scalability have also been studied [35,36,55]. In addition to the complexity-
scalable modifications of existing decoders, recent research has also attempted to
model the complexity based on the compressed source characteristics and the de-
coding platform capabilities [69]. Clearly, such a system would have no impact on
the traffic being carried by the network, and thus would not contribute to reduced
congestion.

4.3.2.3 Proxy

Proxies are a good compromise between server and client adaptation. A proxy is
responsible for a smaller number of clients than a server, which improves scala-
bility and traffic balancing, and is also closer to the clients so it can respond faster
to changes that affect the client. Most often, the source information at the proxy is
stored as a pre-encoded stream received from the original media server, and thus
transcoding is widely employed for adaptation at this point. For example, Shen
et al. [59] have proposed a transcoding-enabled proxy caching system to provide
different appropriate video quality to different network environments.

4.3.3 Sender-, Client-, and Proxy-Driven Adaptation

Note that there are many situations where the changes in source coding rate are
implemented at one point in the network, based on decisions made somewhere
else. A particular case of interest is that where the client makes decisions about
data to be transmitted and submits these to the server.

4.3.3.1 Client-Driven Decisions

Information about the status of decoded data is best when bandwidth adaptation
decisions are made by the client, in particular when these decisions are based on
accurate and fine grain information, for example, arrival or not arrival of indi-
vidual packets. The client-driven approach can also help reduce the processing
complexity at the server side, thus allowing the server to support more clients
simultaneously.

Examples of this method include the Adaptive Stream Management (ASM)
process of the SureStream technology used in RealSystem 8 [19]. Two major
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components involved in this process are a compressed media file, which con-
tains multiple independently encoded streams of a given source, and an ASM rule
book, which describes various forms of channel adaptation that involve selecting
combinations of encoded streams as a function of the channel status (including
bandwidth, packet loss, and loss effect on the reconstructed signal). The ASM
rule book is sent to the client at the beginning of a session. During transmission,
the client monitors the rate and loss statistics of arriving packets, and then in-
structs the server to subscribe to a rule, or combination of rules, to match the
current channel behavior. Another example is that of receiver-driven adaptation
in the context of multicast delivery [15,46].

A drawback is that, while the client makes the decisions, these need to be im-
plemented in either a server or a proxy, as in the example given earlier. This is
because bandwidth adaptation at the client can only help in reducing the com-
plexity of decoding. Thus there will be some latency before the changes in band-
width can be implemented. Another potential drawback is that some clients, such
as low-power hand-held devices, may not have sufficient computation power to
implement a complex decision process.

4.3.3.2 Proxy-Driven Decisions

In this type of system, proxies can estimate the state of the network (or get this
information from the client) and then decide on appropriate changes to the band-
width to be used by the media stream. For example, a proxy can select certain
packets to be forwarded to the client, change transcoding parameters, or send in-
structions to the server so that the server can modify the information it transmits.
Chakareski et al. [10] have proposed a rate—distortion optimized framework in
the scenario of proxy-driven streaming. At any given time, the proxy determines
which packets should be requested from the media server and which should be
retransmitted directly from the proxy to the client in order to meet rate constraints
on the last hop while minimizing the average end-to-end distortion. Approaches
that have investigated the role of proxies in terms of both streaming and caching
also include [50]. The proxy, usually located at the edge of a backbone network,
coordinates the communication between the source server and the client, and can
potentially achieve better bandwidth usage than a client- or server-driven system.

4.3.3.3 Server-Driven Decisions

Finally, in this scenario estimates of network state are provided to the server,
which decides on data to be sent to each client. Feedback is often required for this
approach. The server-based approach has the most information about the source
(e.g., about possible rate—distortion operating points) and thus can work with a
more flexible and efficient adaptation algorithm in terms of source coding. In



94 Chapter 4: BANDWIDTH ADAPTATION MECHANISMS

addition, the server can regulate connections with different clients as a whole to
improve overall bandwidth utilization. The main disadvantage of this approach is
that the server may not have reliable or timely information about the state of the
network near the client.

As an example, the work of Hsu et al. [29] performs source rate control by
assigning quantizers to each of the video blocks under the rate constraints at the
encoder, where the available channel rate is estimated by incorporating the chan-
nel information provided by the feedback channel and a priori channel model.
Related work [30] shows that source rate control algorithms can also be applied
for various types of network-related rate constraints. Intelligent transport mecha-
nisms, such as optimal packet scheduling for a scalable multimedia representation
[16,48], can also be performed at the server.

4.3.4 Criteria and Constraints

This section provides an overview of different criteria that can be applied to se-
lect a bandwidth adaptation mechanism for a given application. We emphasize
that this is, by necessity, a qualitative discussion. Many of the techniques that are
mentioned in this chapter have only been proposed in a research context and have
not been fully tested in a more realistic network environment. Moreover, a quan-
titative comparison of the various methods is likely to be very complex, as should
be clear given the number of criteria to be considered in general.

4.3.4.1 Media Quality

Clearly, the ultimate criterion to evaluate the performance of a bandwidth adap-
tation mechanism should be the resulting subjective media quality at the receiver
in the presence of typical bandwidth variations. Some progress has been made in
devising objective metrics that can capture the perceptual quality of media under
various compression strategies [34,37,68]. These objective metrics are most ad-
vanced for the analysis of audio sources, somewhat less so for video applications.
Approaches that can compare meaningfully different methods in the presence of
variations in the network behavior (e.g., bandwidth fluctuations, packet losses)
are not that readily available.

Service interruptions, such as those that might occur if no bandwidth adaptation
is used, are obviously undesirable, and so one could, for example, compare differ-
ent techniques in terms of their outage probability (the probability that perceptual
quality over a given period of time drops below acceptable levels). A comparison
would still be challenging: for example, an end user may deem two configurations
with different, but nonnegligible, outage probability to be equally unacceptable.

Quality evaluation is also more complicated once a bandwidth adaptation
mechanism is put into place because these mechanisms are dynamic in nature.
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Thus, they operate only when the bandwidth falls below certain levels and lead
to changes in the media quality (e.g., in the context of video, variations in frame
rate, frame resolution, frame quality). In this situation, it is unclear whether users
will base their quality assessment on the perceived “average” quality, the worst
case quality level, the duration of the worst quality, etc.

Many currently deployed practical media streaming systems generally select
one of multiple streams, that is, the one whose bandwidth best matches the band-
width available to the end user; in many cases no adaptation is possible within
a stream. Thus system designers only have a limited amount of real-life experi-
ence with bandwidth adaptation mechanisms. It also follows from this that the
impact of various such mechanisms on perceptual media quality is not as well
understood.

In summary, while progress has been made toward understanding subjective
quality metrics for various types of media, challenges remain in addressing situ-
ations where quality adaptations (not to mention information losses) take place.
For this reason, and also to facilitate bandwidth adaptation mechanisms, objective
quality metrics, such as peak signal-to-noise ratio (PSNR), are often used. For
example, authors have proposed optimizing average PSNR (e.g., [29]) or min-
imizing the loss in PSNR introduced by bandwidth adaptation, with respect to
the PSNR achieved when the media stream transmitted at a given target bit rate

(e.g., [16]).
4.3.4.2 End-to-End Delay, Reaction Time, and Latency

As discussed earlier, a longer end-to-end delay facilitates preserving a consistent
quality level in the face of bandwidth fluctuations. Roughly speaking, a longer
end-to-end delay leads to more multimedia units (e.g., video frames) being stored
in the decoder buffer so that the application can absorb short-term variations in
bandwidth.

When the end-to-end delay is not long, the reaction time of the adaptation sys-
tem to changes in bandwidth becomes important. The system has to detect rel-
evant variations in network behavior and then trigger the necessary changes in
the media stream so as to best match bandwidth availability. Ideally, this should
happen sufficiently fast so that the end user does not suffer from negative conse-
quences of mismatch between network availability and stream requirements.

Note that this leads to interesting design trade-offs in the context of the adapta-
tion architectures discussed earlier. For example, a faster reaction may be possible
if the sender makes adaptation decisions, but these may suffer from a somewhat
worse knowledge of network status at the client.

Long end-to-end delay is a practical solution only for one-way transmission
applications. For two-way communications, a long delay will limit the interac-
tivity. Even in the case of one-way communications, excessive end-to-end delays
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lead to higher initial latencies, which would be undesirable if the user switches
multimedia streams frequently.

4.3.4.3 Complexity

An interesting challenge in architecting a bandwidth adaptation mechanism is that
several components (client, proxy, and sender) can play a role. Thus, taking into
account complexity requires identifying first which of these components is least
constrained in terms of complexity.

While it may appear at first obvious that the server will be richer in computation
resources, this may not be true in general. In particular, for applications such that
each sender is responsible for multiple clients, overall computation power at the
sender may be significant, but computation power for each client served may have
to be limited in order to ensure scalability.

4.3.4.4 Storage

Storage constraints are unlikely to be of much importance, except for mobile ap-
plications. It is also worth mentioning the complexity implications of shared stor-
age. While massive storage is often available at a very low cost, there may be
significant computation costs involved in managing a large number of streams be-
ing produced out of a shared storage device. In this context, bandwidth adaptation
tasks (e.g., switching between two pre-encoded versions of a media stream) may
add to the complexity of the system.

4.3.4.5 Information Overhead

Consider existing digital video delivery systems (e.g., a digital cable system) and
compare them with systems such as those we have discussed. In a digital cable
system bandwidth is expected to be reliable and there is minimal interaction be-
tween receiver and sender.

Instead, proposed bandwidth adaptation architectures often require auxiliary
information to be exchanged between client and sender. Examples of this extra
information include estimates of channel state, acknowledgments of reception of
information, and rate distortion “preambles.”

4.3.5 Examples

Depending on the type of application, network characteristics, and optimization
criteria, it is possible that different bandwidth adaptation architectures may be
preferable. This section sketches some examples that allow us to discuss how
particular choices of architecture can be made. Note that we are not proposing
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a concrete methodology for architecture selection. Moreover, there may be sev-
eral architectures that are suitable for a given scenario. Thus, these examples are
meant to illustrate possible approaches in the design process, rather than to claim
optimality for any of the different approaches.

In the case of one-to-one interactive two-way communication, such as video
conferencing, a relatively short end-to-end delay, usually between 150 and
400 ms, is required. Thus it may be preferable for the decision agent and the adap-
tation point to be located close to each other so as to avoid excessive delay before
adaptation takes place. One possible solution is presented in Table 4.1. When a
server receives feedback indicating a channel status change, it estimates the new
available channel bandwidth [29] and then makes the corresponding adaptation
decision. The adaptation can be as simple as skipping transmission of some of
the packets to prevent video freezing or losing connections. More advanced tech-
niques can also be applied, such as, for example, adjusting the video codec para-
meters to increase or decrease the encoding rate. However, the limited bandwidth
and stringent delay requirement in this case may limit the potential performance
gains achievable through adaptation.

In the case of one-to-one one-way streaming, a longer initial play-out delay, of
up to a few seconds, is likely to be acceptable. A more appropriate solution for
this case would then be client-driven streaming, such as the SureStream technol-
ogy used in RealSystem [19]. During the streaming session, a client monitors the
bandwidth and loss characteristics of its connection and makes decisions based
on more accurate and fine grain channel information. Then it instructs the server
to take certain actions, for example, switching to different streams, or selectively
transmitting only the number of layers in a layered codec that the given link can
support, such that the end-to-end distortion can be minimized over the current
channel condition.

In the case of Internet broadcast or multicast, the traditional single-server-
based delivery system faces several major problems, including service scalabil-
ity and traffic load unbalance, as discussed in Section 4.3.2. To address these
problems, today’s content delivery networks employ multiple geographically dis-

Table 4.1: Examples of bandwidth adaptation architectures for different video
communication applications

Application Bandwidth esti- Decision agent ~ Adaptation
mator point

One-to-one interactive two-  Server Server Server

way communication

One-to-one one-way Client Client Server

streaming

Internet broadcast Client Proxy Proxy
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tributed edge servers to either forward the incoming live content or deliver the
on-demand content from their local cached storages to their local clients. It is pos-
sible to directly extend the client-driven server-adaptation technique to multicast
delivery. However, it may be better if proxy servers can take a more active role
in the bandwidth adaptation process, as the bandwidth limitations often occur in
the access network, such as a DSL connection. This proxy-based architecture, as
shown in Table 4.1, can reduce the reaction time, avoid congestion in the Internet,
and provide appropriate qualities for clients with different connections.

4.4 CODING TECHNIQUES FOR BANDWIDTH ADAPTATION

Previous sections have discussed general bandwidth adaptation architectures un-
der the assumption that a mechanism would be available to adjust the number of
bits transmitted to represent multimedia sources. In this section we provide an
overview of coding techniques that can be used in practice to adjust the coding
rate of transmitted multimedia sources.

Many criteria can be used to compare different coding techniques. Since their
primary goal is to enable representation of the sources at different rate levels, one
primary concern is what reproduction quality is achievable at each of those rate
levels. Thus, as for all coding techniques, it will be important to know the rate
distortion (RD) characteristic of each possible operating point.

In addition, there are other criteria that are specific to bandwidth adaptation
scenarios.

First, it will be useful to provide as many rate operating points as possible (i.e.,
so that fine grain adaptation is possible). Generally speaking, finer grain in the
adaptation will come at the cost of increases in achievable distortion for a given
rate.

Second, some coding techniques will only allow adaptation to take place at the
encoder, while others will enable adaptation anywhere in the network. The latter
model will typically also lead to some RD inefficiency.

Finally, adaptation granularity can be evaluated not only in terms of achievable
rate points, but also in terms of temporal constraints. In some applications it may
be desirable to adjust the rate of individual temporal components (e.g., frames in
a video sequence), which again may come at the cost of reduced RD performance.

4.4.1 Rate Control

Rate control techniques are used during the encoding process. They rely on ad-
justing multiple coding parameters to meet a target encoding rate. We focus here
on rate control techniques for video, as in both audio and speech coding variable
bit rate encoding techniques (which tend to lead to more challenging rate control)
are not as popular.
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In the case of video, when the same coding parameters (e.g., quantization step
size, prediction mode) are used throughout a video session, the number of bits per
frame will change depending on the video content so that the output bit rate will
vary from frame to frame. Thus, when video content is “easy” to encode (e.g., low
motion and low complexity scenes) and a given quantization selection is chosen,
the rate will tend to be lower than if the same combination of quantizers was used
for a more complex scene. Even though the encoder and decoder buffers can help
smooth the (short term) variations in the rate per frame, a rate-control algorithm
is usually needed in order to allocate bits among all coding units (e.g., frame,
macroblock, or others) to maximize the end quality subject to the rate constraint.

All major video coding standards provide mechanisms for flexible coding para-
meter selection, with the chosen parameters being communicated to the decoder
as overhead. To illustrate the key concepts, here we concentrate on a hybrid video
coding structure, which is an essential component of all major standards, and in
particular on one based on block-based motion-compensated prediction and Dis-
crete Cosine Transform (DCT) coding. In such a framework, a frame is divided
into a number of macroblocks (MB), each containing a luminance block (of size
16 x 16) and two chrominance blocks (e.g., 8 x 8§ Cb and 8 x 8 Cr).

A series of coding decisions have to be made in compressing each frame:

1. Type of frame (e.g., I-, P-, or B-frame) to be chosen or whether the frame
is to be skipped, that is, not encoded at all.

2.  Mode to be used for each MB, for example, Intra, Inter, Skip, etc.

3. Ifan MB is coded in INTRA mode,

(a) What quantization step size (QP) should be used to code the DCT
coefficients of each block?

(b) If intra prediction is allowed, for example, in H.264, how to perform
intra prediction; that is, how to generate the reference block from the
neighboring blocks in the same frame.

4. If an MB is coded in INTER mode,

(a) What motion compensation should be used, for example, with or
without overlapping, reference frame selection, search range, and
block size?

(b) How to code the residual frame, for example, which QP should be
chosen?

The options just listed are by no means exhaustive; they are intended to serve
as an illustration of the range of coding mode choices available in modern video
coders. Note that as the number of possible modes increases so does the com-
plexity of the encoding process and the importance of selecting efficient rate con-
trol algorithms. In fact, one can attribute much of the substantial coding gains
achieved by recent standards, such as H.264/MPEG-4 part 10 AVC [2], to the ad-
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dition of several new coding modes combined with efficient mode decision tools
based on RD criteria.

A very common approach to rate control is to modify the QP [29,65]. A large
QP can reduce the number of encoded bits at the expense of an increased quanti-
zation error, and vice versa. However, changing QP only while keeping the other
coding modes constant may not achieve the optimal performance. For example,
coding in INTER mode is effective in most cases when changes in video con-
tent are due to the motion of objects in the scene. Instead, INTRA mode may
be more appropriate in situations when there is a significant difference between
coded and reference images, such as uncovered regions (part of the scene is un-
covered by a moving object) or lighting changes. However, the optimal selection
of INTER/INTRA coding for a given block may in fact be different at different
QPs. More general rate-control algorithms should optimize different coding pa-
rameters as well, such as frame rate, coding modes for each frame and MB, and
motion estimation methods [13,24,76].

Each combination of these coding parameters results in a different trade-off
between rate and distortion. Thus efficient parameter settings will be those that
are chosen based on rate—distortion optimized techniques. The typical problem
formulation seeks to select the coding parameters that minimize the distortion
under constraints on the rate (usually the average bit rate over a short interval).
Many solutions have been proposed, with some based on heuristic approaches
and others following well-known techniques such as Lagrangian optimization or
dynamic programming. More details on this topic can be found in [53,65] and
references therein.

The computation involved in the optimization approach mainly includes two
parts: (1) collection of rate—distortion data, which may require to actually code
the source with all different parameter settings, and (2) the optimization algorithm
itself. Both parts can be computationally intensive but often the data collection it-
self represents the bulk of the complexity, which has led to the development of
numerous approaches to model the R—D characteristics of multimedia data [20,
27,28,43]. Two main types of modeling approaches have been reviewed in [28].
One class of techniques [27] involves defining models for both the coding system
and the source so that R-D functions can be estimated before actually compress-
ing the source. The modeling accuracy depends on the robustness of the R-D
model to handle different source characteristics. The second class of techniques
requires actually coding the source several times and then processing the observed
R-D data to obtain a complete R—D curve. Examples include the estimation algo-
rithms proposed in [20,43]. These approaches are usually more computationally
intensive, as well as more accurate, since they estimate the parameters from the
actual coding results of the corresponding source.

In summary, the choice of an appropriate rate-control algorithm depends on
the multimedia application, especially on whether it is delay constrained. For in-
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stance, a complicated approach can be used for off-line coding. However, heuristic
approaches may be more practical for online live multimedia communications.

4.4.2 Transcoding

The term “media transcoding” is normally used to describe techniques where a
compressed media bit stream format is converted into format. It is often used at
either the server or the proxy when the source is only available as a pre-encoded
stream so as to match limitations in transmission, storage, processing, or display
capabilities of specific network, terminals, or display devices. Transcoding is one
of the key technologies for end-to-end compatibility of two or more different net-
works or systems operating with different characteristics and constraints.

Because the transcoder takes as an input a compressed media stream, the de-
coded quality of the transcoder output is limited by the input stream, which has
certain information loss compared to the original source. However, the transcoder
has access to all the coding parameters and statistics, which can be easily ex-
tracted from the input stream. This information can be used not only to reduce the
transcoding complexity, but also to improve the quality of the transcoded stream
using a rate—distortion optimization algorithm.

A typical application of transcoding is to adapt the bit rate of a precompressed
video stream to a reduced channel bandwidth. Clearly, we can first reconstruct
video back to the pixel domain by decoding the input compressed bit stream and
then re-encode the decoded video to meet the target bit rate. The rate control
techniques described earlier can then be used at the encoding stage. However, the
whole process (decoding and encoding) is very computationally expensive, and
more efficient techniques have been developed that reuse information contained
in the original input bit stream.

The main drawback of these more efficient transcoding techniques is the drift
problem (which will also arise in some of the other coding techniques intro-
duced in this chapter). Drift is created if the reference frame used for motion
compensation at the encoder is different from that used at the decoder. This hap-
pens, for example, when the transcoder simply requantizes the residual DCT
coefficients with a larger QP to reduce the output bit rate. When a decoder re-
ceives the transcoded bit stream, it reconstructs the frame at a reduced quality
and stores it into the frame buffer. If this frame is used as prediction for fu-
ture frames, the mismatch error is added to the residual of the predicted frame,
leading to a degraded quality for all the following frames until the next I frame.
Based on the trade-off between complexity and coding quality, we briefly de-
scribe two basic transcoding architectures, namely, open-loop and closed-loop
transcoders.

Figure 4.5a shows an open-loop architecture based on a requantization ap-
proach [51]. The bit stream is dequantized and requantized to match the bit rate
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FIGURE 4.5: Transcoding architectures for bit-rate reduction [72]:
(a) Open loop. (b) Closed loop.

target. Another open-loop approach is to discard the high-frequency DCT coef-
ficients [22,66] to reduce the rate. All these operations work on the DCT coeffi-
cients directly, and thus the computation load is light but this architecture leads to
drift.

A closed-loop architecture introduces an extra drift-compensation module, as
shown in Figure 4.5b [7], to eliminate the mismatch between the reference frames
at the encoder and decoder. The frame memory in the configuration holds a dif-
ference signal and is added to the residual component to compensate for the
prediction mismatch. The additional DCT/IDCT can be removed by using DCT-
domain MC [12,47,62]; several simplified DCT-domain transcoders are described
in [8,42]. Compared to the straightforward approach with cascaded decoder and
encoder, this approach usually requires less computation to achieve almost equiv-
alent quality with the exception of slight inaccuracy due to nonlinearity introduced
by clipping and rounding operations or floating point inaccuracies [79]. Even for
the cascaded pixel-domain transcoder, the encoder can be simplified by reusing
the motion vectors and other information.

Regardless of the transcoding architecture, a rate-control algorithm is applied
to yield the desired bit rate. As discussed in [56], a two-pass rate-control ap-
proach typically performs better than a single-pass approach, since information
obtained from the results of the first pass (e.g., selected RD operating points of
all frames) can be used in the second pass of the algorithm to improve the qual-
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ity. A transcoder can be regarded as a special two-pass approach [78], where the
first pass creates the input compressed bit stream and the second pass creates the
output compressed stream based on the results of the first pass. For example, bit
allocation to each frame ideally depends on the frame complexity, which is not
easy to estimate for real-time video encoding but can be obtained more accu-
rately from the number of bits each frame spent in the input bit stream. Similarly,
optimal requantization for transcoding [26,63,75] requires the knowledge of the
original DCT coefficients statistics, which can be estimated from the input com-
pressed bit stream as well.

In addition to being used for bit rate adaptation, video transcoding is also
widely employed for spatial resolution and frame rate adaptation. More details
on different transcoding techniques are well discussed elsewhere [72,78].

4.4.3 Scalable Coding

The coding methods discussed so far in this chapter aim to optimize the media
quality for a fixed bit rate. This poses a problem when multiple users are trying to
access the same media source through different network links and with different
computing powers. Even in the case of a single user accessing one media source
over a link with varying channel capacity, relying on an often complex rate-control
algorithm to make rate adjustments in real time may not be practical (e.g., if the
changes in rate have to occur in a very short time frame). Scalable coding is thus
designed to facilitate bandwidth adaptation over a given bit rate range, as well as
to provide error resilience for potential transmission errors.

Scalable coding, or layered coding [1,3,21,38,61], specifies a multilayer format
in which a video sequence is coded into a base layer and one or more enhancement
layers. The base layer provides a minimum acceptable level of quality, and each
additional enhancement layer incrementally improves the quality. Thus, graceful
degradation in the face of bandwidth drops or transmission errors can be achieved
by decoding only the base layer, while discarding one or more of the enhance-
ment layers. The enhancement layers are dependent on the base layer and cannot
be decoded if the base layer is not received. A scalable compressed bit stream
typically contains multiple embedded subsets, each of which represents the orig-
inal video content in a particular amplitude resolution (called SNR scalability),
spatial resolution (spatial scalability), temporal resolution (temporal scalability),
or frequency resolution (frequency scalability or, in some cases, data partition).
Scalable coders can have either coarse granularity or fine granularity. In MPEG-4
fine granularity scalability (FGS) [38], the enhancement-layer bit stream can be
truncated at any point, where the reconstructed video quality increases with the
number of bits received.

Unfortunately, all current scalable video coding standards suffer to some degree
from a combination of lower coding performance and higher coding complexity,
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as compared to nonscalable coding. A key issue is how to exploit temporal cor-
relation efficiently in scalable coding. It is well known that motion prediction
increases the difficulty of achieving efficient scalable coding because scalability
leads to multiple possible reconstructions of each frame [58]. In this situation
either (i) the same predictor is used for all layers, which leads to either drift or
coding inefficiency, or (ii) a different predictor is obtained for each reconstructed
version and used for the corresponding layer of the current frame, which leads to
added complexity. MPEG-2 SNR scalability with a single motion-compensated
prediction (MCP) loop and MPEG-4 FGS exemplify the first approach. MPEG-
2 SNR scalability uses the enhancement-layer information in the MCP loop for
both base and enhancement layers, which leads to drift if the enhancement layer
is not received. MPEG-4 FGS provides flexibility in bandwidth adaptation and
error recovery because the enhancement layers are coded in “intra” mode, which
results in low coding efficiency, especially for sequences that exhibit high tempo-
ral correlation. Some advanced approaches with multiple MCPs are described
elsewhere [5,31,58,71,77]. In summary, the design goal in scalable coding is
to minimize the reduction in coding efficiency while realizing the scalability to
match the network requirements. More details on scalable video coding can be
found in Chapter 5, and details on scalable audio coding can be found in Chap-
ter 6.

An alternative to bandwidth adaptation and reliable communication is Multi-
ple Description Coding (MDC) [25,74]. With this coding scheme, a video se-
quence is coded into a number of separate bit streams (referred to as descriptions)
so that each description alone provides acceptable quality and incremental im-
provement can be achieved with additional descriptions. Each description is in-
dividually packetized and transmitted through separate channels or through one
physical channel that is divided into several virtual channels by using appropriate
time-interleaving techniques. Each description can be decoded independently to
provide an acceptable level of quality. For this to be true, all the descriptions must
have some basic information about the source, and therefore they are likely to be
correlated. Some hybrid approaches have also been proposed recently to combine
the advantages of layered coding and MDC [18,73].

Scalable coding techniques allow media servers to adapt to varying network
conditions in real time. To do this, an intelligent transport mechanism is required
to select the right packets (layers or descriptions) to send at a given transmis-
sion time to maximize the playback quality at the decoder. Some recent work
has been focused on rate—distortion optimized scheduling algorithms for scalable
video streaming [16,48]. In this case, each packet is not equally important due
to different distortion contributions, playback deadlines, and packet dependencies
caused by temporal prediction and layering. Runtime feedback information is em-
ployed to make the transport decisions based on the current network condition and
decoder receiving status. See also Section 4.4.5.
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4.4.4 Bit Stream Switching

Although scalable coding can potentially provide flexible bandwidth adaptation
over unpredictable best-effort networks, current coding techniques still suffer
from relatively low coding efficiency, especially when the bit rate range is large.
As a result, bit stream switching techniques are widely used in many commercial
video streaming systems [6,19] to create multiple versions of the same content at
different bit rates and dynamically switch among them to accommodate the band-
width variations. In this section, we introduce three major switching techniques,
namely multiple bit rate coding, SP/SI pictures, and stream morphing.

4.4.4.1 Multiple Bit Rate (Simulcast) Coding

In this approach each media source is simply compressed into multiple indepen-
dent nonscalable bit streams at different bit rates and qualities. During the trans-
mission, the server switches to a particular bit stream whose transmission yields
the minimum reconstructed distortion based on the estimation of actual channel
bandwidth and loss characteristics. Ideally, once a change in network bandwidth
is detected, the server will immediately switch to a more appropriate stream to re-
flect the change promptly. However, because of motion prediction, switching be-
tween bit streams at arbitrary locations, such as a P-frame, may introduce severe
drift effects since the reference frames are different at the encoder and decoder.

The simplest way to achieve a drift-free switching is to insert I-frames peri-
odically in each stream and let the switching from stream to stream occur only
at those I-frames. Obviously, because adaptation requests only take effect when
an I-frame is reached, this increases the latency of bandwidth adaptation. To pro-
vide more flexible adaptation, the frequency of I-frames has to be increased at
a cost of significantly increased bit rates to achieve the same quality. Thus, al-
lowing more effective stream switching comes at the cost of a decrease in video
quality for a given target bit rate. In addition, the flexibility of bandwidth adap-
tation also depends on the number of different bit streams available, each coded
at a different bit rate. The more bit streams are available, the more accurate and
finer level bandwidth adjustments can be supported. The inefficiency of coding
I-frames results in a much larger storage requirement on the media server when
the number of supported bit streams is large. The trade-off between coding effi-
ciency and switching flexibility thus becomes a main consideration on the design
of a drift-free switching approach.

More efficient approaches for drift-free switching aim at removing the over-
head associated with I-frames, which exists even for normal transmission without
switching between bit streams. In order to facilitate switching at inter frames (i.e.,
P-/B-frames), an extra bit stream is created at each predefined switching point at
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an increased rate cost when switching happens, while keeping the coding effi-
ciency for normal transmission at the same or close to the one without support-
ing the switching functionality. One way is to encode the difference of reference
frames at the switching points and transmit this as an additional bit stream, which
can be used for drift compensation at the decoder. The mismatch can be removed
if lossless compression is applied. Another way is to introduce a specially en-
coded P-frame, called an S-frame [23], to achieve switching at the location of
inter frames. As illustrated in Figure 4.6a, to initiate switching from bit stream 1
to bit stream 2 at time ¢, an S-frame (frame Sy2 ;) is encoded as a P-frame with
the previously reconstructed frame at time ¢ — 1 in bit stream 1 (frame P ;_;) as
the reference frame and the reconstructed frame at time ¢ in bit stream 2 (frame
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FIGURE 4.6: Switching from bit stream 1 to bit stream 2 through spe-
cially encoded frames: (a) S-frame and (b) SP-frame.
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P, ;) as the target frame. This approach cannot completely eliminate the drift.
However, by reducing the QP of the S-frame, the drift amount can be controlled
and made relatively small. Another disadvantage of this approach is that the rate
required for S-frames can be very large due to the small QP that is required. The
SP-/SI-frames to be introduced in the next section provide an improved drift-free
switching approach to the S-frames. In addition to switching between nonscalable
bit streams, bit stream switching can also be performed for several independently
coded scalable streams [67].

4.4.4.2 SP/SI Pictures

The extended profile of H.264/MPEG-4 part 10 AVC [2] introduces two new
frame types referred to as SP-frames and SI-frames [33]. SP- and SI-frames facili-
tate switching between multiple independently coded bit streams and also provide
“VCR-like” functionalities, such as random access, fast forward, fast backward,
and so on.

Within each encoded bit stream, SP-frames are created at the switching points
in two different types, namely primary SP-frame and secondary SP-frame (see
Figure 4.6b). The primary SP-frame (frames SP; ; and SP» ; in Figure 4.6b) is cre-
ated by motion-compensated prediction from the previously reconstructed frames
in the same bit stream, while the corresponding secondary SP-frame (frame SP> ;
as an example) is generated, with identical reconstructed values as the primary SP-
frame (frame SP» ;), by using the previously reconstructed values from another bit
stream. A primary SP-frame is encoded with almost the same coding efficiency
as the corresponding P-frame. The difference between SP- and P-/S-frames lies in
that, due to the special encoding of the secondary SP-frame, the pair of SP-frames
can be identically reconstructed even if they are predicted using different frames.
Compared to I-frames, SP-frames can achieve same switching functionality with
significantly fewer bits by exploiting motion-compensated predictive coding. An
alternative to a secondary SP-frame is an SI-frame, using only intra prediction to
produce identical reconstructed values as the corresponding primary SP-frame. It
is mainly used when motion prediction is not efficient, such as switching between
bit streams representing completely different video sequences, or for random ac-
cess in which decoding of the current frame does not depend on any previous
frames.

4.4.4.3 Stream Morphing

Stream morphing [44] has been introduced as an interesting alternative to scal-
able video coding and is related to techniques that have been proposed for effi-
cient scalable DPCM coding [58,60,64]. Scalable coding schemes operate in the
signal domain to separate an input into different layers. For example, in a closed
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loop system, the video sequence obtained from reconstructing the base layer is
subtracted from the original video sequence, which is in turn compressed. Al-
ternatively, an open loop system (e.g., one based on wavelet transforms) would
directly separate the input sequence into “components” (e.g., subbands), com-
press these separately, and form the layers by grouping various of these compo-
nents.

Stream morphing is based on the following observation. Consider a video se-
quence encoded with a nonscalable codec (say MPEG-2) at two different target
rates. Clearly there will be some redundancy between the two bit streams since
they represent the same sequence, albeit at different rates. For example, most
blocks will have the same motion vectors at both rates, large DCT coefficients in
the residual signal will tend to be in the same locations, etc. A stream morphing
technique would use the low rate stream as the base layer. Then the enhance-
ment layer will contain a bit stream with a special syntax that allows the decoder
to reconstruct the high rate bit stream from the low rate bit stream. For exam-
ple, this enhancement layer could include differential information with respect to
the motion vectors included in the base layer. Note that this is a transformation
between bit streams. Thus one of the principal differences between stream mor-
phing and standard scalability tools is that decoding the base layer is not needed
to reproduce the signal at the highest quality. Instead, the base layer bit stream
is “morphed” into the high-resolution bit stream, on which a standard decoder is
used (e.g., the MPEG-2 decoder in our example). Note also that the quality levels
at the decoder are exactly determined by the two (or more) originally encoded
versions.

4.4.5 Overview of Optimization Techniques for Bandwidth Adaptation

Recall that bandwidth adaptation requires (i) observing the state of the network,
(ii) estimating or observing the state of the decoder, and then (iii) based on band-
width availability and decoder state, deciding what information should be sent
next to the decoder. In this section we discuss briefly this decision process. Our
focus here is in highlighting the challenges involved and how these have to be
addressed by proposed techniques.

Ideally the goal in deciding what information is sent to the decoder should be
to maximize the expected quality at the decoder. Note that we consider expected
quality because there is uncertainty about the actual quality available at the de-
coder; changes in bandwidth, packet losses, and so forth will affect the resulting
quality.

To facilitate the discussion, in what follows we assume that information avail-
able for transmission has already been packetized. The role of the decision mecha-
nisms under consideration is essentially to prioritize the transmission so that most
“important” information is sent first.
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Optimization of expected quality at the decoder is complex because of multiple
factors:

e The expected distortion is hard to estimate.
e The candidate packets may depend on each other.
e Atany given time there are many candidate packets.

Estimating the expected distortion at the transmitter requires first determining
both the current “state” of the transmission channel and its expected behavior in
the near future. Various types of channel models are considered in Chapters 7
and 11. The type of channel models available, for example, with memory [29] or
without it [16,48], depends on the systems being considered. Observations may
include packet receipt feedback, received power measurements, etc. While the ac-
curacy of the models may be questionable, it is also likely that even an inaccurate
model will provide enough information to improve on a system that makes no
assumptions about the transmission channel.

In addition, estimations of expected distortion are based on the reconstruction
quality achievable when different sets of packets are received. In cases where
pre-encoded data is being transmitted it is possible, in theory, to quantify ex-
actly achievable distortion in each scenario. In practice, however, techniques that
require less computation and provide estimates of expected distortion may be
preferable. For example, some methods may attach some importance to each
packet, where the importance is based on some simplifications about the decoding
process (e.g., frames that depend on frames received in error are not decoded, no
error concealment is applied); see, for example, [16,48]. Then optimization tech-
niques would seek to maximize the expected “importance” of packets received.

Most widely used video coding techniques make use of prediction across
frames. This complicates distortion estimation, since a packet loss may affect
multiple future frames. A very powerful technique used to capture the dependen-
cies is that formalized by Chou and Miao [16], which leads to the creation of
a directed acyclic graph to represent all the packets being transmitted. With this
type of technique it is possible to attach more importance to packets from which
multiple other packets depend. As we had indicated earlier for the channel model,
even a rough model of these dependencies (which may not provide exact dis-
tortion values) is likely to provide better results than techniques that completely
ignore the existence of these dependencies.

Optimization complexity should definitely be of concern. As has been demon-
strated by various authors (see [9-11,14,16,17,32,48,49,73,80,81]) efficient tech-
niques can be developed once knowledge of the structure of the media stream
(including dependencies) and an estimate of the channel state are available. This
can be done by estimating the expected distortions if several different candidate
packets (not necessarily all available ones) were transmitted. This distortion can
be estimated for one decision (the next packet to be transmitted) or more than one.
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After this evaluation, the packet leading to a lower expected distortion is chosen,
and this decision process is repeated for the next packet.

4.5 SUMMARY AND FURTHER READING

The heterogeneous and time-variant nature of today’s networks imposes a num-
ber of challenges for real-time video communication. In this chapter, we have
discussed alternative techniques for bandwidth adaptation and their relative mer-
its. The main points made in this chapter are summarized as follows.

We classify bandwidth adaptation architectures based on three basic de-
sign decisions, namely selection of adaptation points, decision agents, and
source coding techniques. Bandwidth adaptation is made based on available
source and channel information. The source-related information is known
more accurately at the sender, while channel information is more accurate
at the client. A proxy, located in the middle of the network, can achieve a
good compromise between server and client adaptation.

When the sender acts as the adaptation point, the highest degree of flex-
ibility is possible in terms of source coding, which facilitates achieving
finer granularity rate adaptation, reducing the quality penalty at the receiver.
However, this may lead to a longer reaction time if network state informa-
tion is provided by the receiver. Adaptation decisions may be inefficient if,
instead, the sender itself has to estimate the state of the network without
waiting for receiver feedback. Adaptation at the sender makes scaling to
a large number of receivers more difficult, as it increases the computation
load at the sender. Adaptation at the client can reduce decoding complexity,
but will have no impact on the network traffic.

If the sender is the decision agent, it will have access to more accurate
source information, but may not have reliable or timely information about
the network state near the receiver. This approach helps improve overall
bandwidth utilization when multiple receivers are served by the sender. In
contrast, if the client acts as the decision agent, there is potential for better
adaptation decisions given the higher accuracy network and packet arrival
information. However, when decisions made by the receiver have to be put
in place by the sender, the latency involved can lead to lower adaptation
efficiency.

Rate control techniques are used during the encoding process to adjust cod-
ing parameters to meet a target encoding rate. Transcoding techniques, of-
ten used at either the server or the proxy, take a compressed media stream
as an input and convert it to another compressed stream. Scalable coding
provides flexible bandwidth adaptation over a given bit rate range rather
than at a fixed bit rate. Different from the aforementioned techniques, bit
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stream switching techniques encode the same media content into multiple
versions at different bit rates and dynamically switch among them to ac-
commodate the bandwidth variations. In this chapter we have discussed
several switching techniques: multiple bit rate coding, SP/SI pictures, and
stream morphing. The trade-off between coding efficiency (to reduce over-
head) and switching flexibility is a main consideration on the design of
various switching techniques.

Further details on many of the bandwidth adaptation techniques described in
this chapter can be found in other literature, as well as in other chapters in this
book. For example, Ortega and Ramchandran [53] and Sullivan and Wiegand [65]
discuss rate—distortion optimization for image and video compression; Vetro et
al. [72] and Xin et al. [78] provide overviews of transcoding; and Goyal [25]
and Wang et al. [74] review state-of-the-art multiple description coding. For more
details on rate—distortion-optimized streaming, the article by Chou and Miao [16]
can serve as a starting point. Although this chapter focused on the fundamentals
of bandwidth adaptation on a simple client—server system, there is considerable
interest in more complex systems with multiple paths used for media transport,
such as content delivery networks and P2P networks. The interested reader is
referred to the work of Apostolopoulos et al. [4], Padmanabhan et al. [54], and
Rejaie and Ortega [57].
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Scalable Video Coding for
Adaptive Streaming
Applications

Béatrice Pesquet-Popescu, Shipeng Li, and Mihaela van der Schaar

5.1 INTRODUCTION

The transmission of multimedia content over IP networks such as the Internet
and wireless networks has been growing steadily over the past few years. More-
over, multimedia streaming and the set of applications that rely on streaming are
expected to continue growing. Meanwhile, the current quality of streaming mul-
timedia, in general, and video, in particular, can still be greatly improved. To
achieve a higher level of quality and further proliferation of IP video, many tech-
nical challenges have to be addressed in the two areas of video coding and net-
working (streaming). A framework that addresses both the video coding and the
networking challenges associated with IP-based video streaming is scalability.
From a video coding point of view, scalability plays a crucial role in delivering
the best possible video quality over unpredictable, “best-effort” networks. Band-
width variation is one of the primary characteristics of “best-effort” networks,
and current IP networks are a prime example of such networks. Video scalability
enables an application to adapt the streamed video quality to changing network
conditions (and specifically to bandwidth variation) and device complexities [40].
From a networking point of view, scalability is needed to enable a large number
of users to view any desired video stream, at anytime, and from anywhere.
Scalable techniques try to avoid simulcast solutions, in which several encoders
run in parallel. Simulcast solutions usually require knowledge of the network and
decoder capabilities in advance in order to select the best encodings. To avoid net-
work overload, the number of bit streams that can be simultaneously multiplexed
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is limited. Even though point-to-multipoint connections are enabled by the simul-
cast solution, there is a clear loss in efficiency.

Consequently, any scalable video coding solution has to enable a very simple
and flexible streaming framework, and hence, it must meet the following require-
ments.

1. The solution must enable a streaming server to perform only minimal real-
time processing and rate control while outputting a very large number of
simultaneous unicast (on-demand) streams.

2. The scalable video coding approach over IP networks has to be highly
adaptable to unpredictable bandwidth variations due to heterogeneous ac-
cess technologies of the receivers (e.g., analog modem, cable mode, xDSL,
wireless mobile, and wireless LANSs) or due to dynamic changes in net-
work conditions (e.g., congestion events).

3. The video coding solution must enable low-complexity decoding and low-
memory requirements to provide common receivers (e.g., set top boxes and
digital televisions), in addition to powerful computers, the opportunity to
stream and decode any desired Internet video content.

4. The streaming framework and related scalable video coding approach
should be able to support both multicast and unicast applications. This,
in general, eliminates the need for coding content in different formats to
serve different types of applications.

5. The scalable bit stream must be resilient to packet loss events, which are
quite common over IP networks.

These requirements are the primary drivers behind the design of the existing and
emerging scalable video coding schemes.

5.2 SCALABILITY MODES IN CURRENT VIDEO CODING
STANDARDS

5.2.1 Spatial, Temporal, and SNR Coding Structures

There are three basic types of scalability in scalable video coding: spatial, tempo-
ral, and quality (or SNR) scalabilities. In a spatial scalable scheme, full decoding
leads to high spatial resolution, while partial decoding leads to reduced spatial
resolutions (reduction of the format). In a temporal scalable scheme, partial de-
coding provides lower decoded frame rates (temporal resolutions). In an SNR
scalable scheme, temporal and spatial resolutions are kept the same, but the video
quality (SNR) varies depending on how much of the bit stream is decoded.

Current standards, such as H.263, H.264, MPEG-2, and MPEG-4 (both part 2
and part 10), are based on a predictive video coding scheme (see Figure 5.1).
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Although they were not initially designed to address these issues, current stan-
dards tried to upgrade their video coding schemes in order to include scalability
functionalities. However, this integration generally came at the expense of coding
efficiency (performance).

In a standard environment, scalability is achieved through a layered structure,
where the encoded video information is divided into two or more separated bit
streams corresponding to the different layers (see Figure 5.2).

e The base layer (BL) is generally highly and efficiently compressed by a
nonscalable standard solution.

e The enhancement layer(s) (EL) encode(s) the residual signal to produce
the expected scalability (it delivers, when combined with the base layer
decoding, a progressive quality improvement in case of SNR scalability, a
higher spatial resolution for spatial scalability, and a higher frame rate for
temporal scalability).

To achieve spatial scalability in the hybrid scheme presented in Figure 5.3,
the input video sequence is first spatially decimated to yield the lowest resolution
layer, which is encoded by a standard encoder. A similar coding scheme is em-
ployed for the enhancement layer. To transmit a higher resolution version of the
current frame, two predictions are formed: one is obtained by spatially interpolat-
ing the decoded lower resolution image of the current frame (spatial prediction)
and the other by temporally compensating the higher resolution image of the pre-
dicted frame with motion information (temporal prediction). The two predictions
are then adaptively combined for a better prediction and the residue after predic-
tion is coded and transmitted. In Figure 5.3, a scheme with two resolution levels
is depicted, but the same principle can be used to produce several spatial resolu-
tion enhancement levels. This solution corresponds to a Laplacian pyramid and is
noncritically sampled, or redundant (the number of output samples is higher than
the number of input samples).

The drawback of this approach is that the different encoding loops with their
own motion estimation steps are used in parallel, at the encoder side, and sev-
eral motion compensation loops are necessary at the decoder side, thus in-
creasing the computational complexity both at the encoder and at the decoder.
A possible advantage of this scheme is the flexibility in choosing the downsam-
pling/upsampling filters, in particular for reducing aliasing at lower resolutions.

Related to the spatial scalability, there is the issue of motion vector scalability.
Indeed, the different resolution levels will need motion vector fields with different
resolutions and, possibly, accuracies. For the aforementioned Laplacian pyramid
coding, the simplest approach is to estimate and encode the motion vectors, start-
ing from the lowest resolution and going to the highest. From one layer to the
other, the motion vector size needs to be doubled. Additionally, a refinement of
the motion vector can be performed at higher resolutions. At this point, the pre-
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cision and the accuracy of the motion can also be increased at higher levels. By
precision we understand here the size of the block considered for motion estima-
tion and compensation. When doubling the resolution, the dimensions of the block
also double, and the motion representation loses in precision. Therefore, it may be
convenient to split the block in smaller subblocks (two rectangular or four square
ones) and look for refinement vectors in the subblocks. The decision to split or
keep the lower resolution precision may be taken based on a rate—distortion cri-
terion. Once the lowest resolution motion vector field is encoded, the next levels
can be either encoded independently, with a possible loss in efficiency, or only the
refinement vector(s) can be encoded in the refinement layer. The interested reader
is referred to [22] for a more detailed discussion on motion vector scalability and
its impact on the prediction complexity.

Temporal scalability involves partitioning of the group of pictures (GOP) into
layers having the same spatial resolution. A simple way to achieve temporal scal-
ability is to put some of the B frames from an IBBP ... stream into one or several
enhancement layers. This solution comes at no cost in terms of coding efficiency.
In a more general setting, the base layer may contain I, P, and B frames at the low
frame rate, while the enhancement layers can only use frames from the immedi-
ately lower temporal layer and previous frames from the same enhancement layer
for temporal prediction. Generally, temporal prediction from future frames in the
same enhancement layer is prohibited in order to avoid reordering in the enhance-
ment layers. An example with one enhancement layer is presented in Figure 5.4.

The layered solution can be seen as an upgrade of standard solutions in order
to provide scalability. The main shortcoming of these schemes comes from the
fact that the information redundancy between the different layers cannot be fully
exploited. This functionality is thus achieved at the expense of implementation
complexity and coding efficiency.

Enhancement layer

Base layer

time

FIGURE 5.4: General framework for layered temporal scalability.
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A general problem with introducing scalability in a predictive video coding
scheme is the so-called drift effect. It occurs when the reference frame used for
motion compensation in the encoding loop is not available or not completely
available at the decoder side. Therefore both the encoder and the decoder have
to maintain their synchronization on the same bit rate in the case of SNR scalabil-
ity, resolution level for spatial scalability, and frame rate in the case of temporal
scalability.

For SNR scalability, a layered encoder exploits correlations across subflows
to achieve better overall compression: the input sequence is compressed into a
number of discrete layers arranged in a hierarchy that provides progressive refine-
ment. A strategy often used in the scalable extensions of current standards (i.e.,
in MPEG-2 and H263) is to encode the base layer using a large quantization step,
whereas the enhancement layers have a refinement goal and use finer quantizers
to encode the base layer coding error. This solution is illustrated in Figure 5.5 and
is discussed in more detail later.

5.2.2 Successive Approximation Quantization and Bit Planes
To realize the SNR scalability concept discussed earlier, an important category of

embedded scalar quantizers is the family of embedded dead zone scalar quantiz-
ers. For this family, each transform coefficient x is quantized to an integer

sign(x)~{ﬂ+£J, ifﬂ+£>0,
i = 0p(x)= 26N 2P 2t 2P
0, otherwise,

where |a]| denotes the integer part of a; & < 1 determines the width of the dead
zone; A > 0 is the basic quantization step size (basic partition cell size) of the
quantizer family; and b € Z indicates the quantizer level (granularity), with
higher values of b indicating coarser quantizers. In general, b is upper bounded
by a value Bpax, selected to cover the dynamic range of the input signal. The
reconstructed value is given by the inverse operation,

0 ip =0,

Pl
yi =0 (ip)= sign(ib)-<|ib|—§7+5>2bAv ir #0,

where 0 < § < 1 specifies the placement of the reconstructed value yf’ within
the corresponding uncertainty interval (partition cell), defined as Cf; ,and i is the
partition cell index, which is bounded by a predefined value for each quantizer
level (i.e., 0 <i < Mj, — 1, for each b). Based on the aforementioned formulation,
it is rather straightforward to show that the quantizer Qo has embedded within it
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all the uniform dead zone quantizers with step sizes 2°A, b € Z . Moreover, it
can be shown that, under the appropriate settings, the quantizer index obtained by
dropping the b least-significant bits (LSBs) of iy is the same as that which would
be obtained if the quantization was performed using a step size of 2°A, b € Z
rather than A. This means that if the b LSBs of iy are not available, one can still
dequantize at a lower level of quality using the inverse quantization formula.

The most common option for embedded scalar quantization is successive ap-
proximation quantization (SAQ). SAQ is a particular instance of the general-
ized family of embedded dead zone scalar quantizers defined earlier. For SAQ,
Mp,.. = Mp,.—1 == My=2 and § =0, which determines a dead zone
width twice as wide as the other partition cells, and § = 1/2, which implies that
the output levels yf’ are in the middle of the corresponding uncertainty inter-
vals Cf; . SAQ can be implemented via thresholding by applying a monotonically
decreasing set of thresholds of the form

Tp—1 =

Ty
>
with Bmax > b > 1. The starting threshold T, is of the form T, = aXmax,
where xmax 1S the highest coefficient magnitude in the input transform decompo-
sition, and « is a constant that is taken as o > 1/2.

Let us consider the case of using a spatial transform for the compression of the
frames. By using SAQ, the significance of the transform coefficients with respect
to any given threshold 7} is indicated in a corresponding binary map, denoted by
WP, called the significance map. Denote by w(k) the transform coefficient with
coordinates k = (k1, x2) in the two-dimensional transform domain of a given in-
put. The significance operator s°(-) maps any value x (k) in the transform domain
to a corresponding binary value w” (k) in W?, according to the rule

0, if|x(K)| <Tp,

b b
w’ (k) =s"(x(k)) =
(0 () {l, if [x(K)| = Tj.
In general, embedded coding of the input coefficients translates into coding the
significance maps wb , for every b with By > b > 0.

In most state-of-the-art embedded coders, for every b this is effectively per-
formed based on several encoding passes, which can be summarized in the fol-
lowing:

Nonsignificance pass: encodes s”(x(k)) in the list of nonsignificant coefficients
(LNO). If significant, the coefficient coordinates k are transferred into the re-
finement list (RL).

Block Significance pass: For a block of coefficients with coordinates Kpjock, this
pass encodes sP (x (Kplock)) and sign(x (Kpjock)) if they have descendant blocks
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(under a quad tree decomposition structure) that were not significant compared
to the previous bit plane.

Coefficient Significance pass: If the coordinates of the coefficients of a signifi-
cant block are not in the LNC, this pass encodes the significance of coefficients
in blocks containing at least one significant coefficient. Also, the coordinates
of new significant coefficients are placed into the RL. This pass also moves the
coordinates of nonsignificant coefficients found in the block into the LNC for
the next bit plane level(s).

Refinement pass: For each coefficient in the RL (except those newly put into the
RL during the last block pass), encode the next refinement of the significance
map.

5.2.3 Other Types of Scalability

In addition to the aforementioned scalabilities, other types of scalability have been
proposed.

o Complexity scalability: the encoding/decoding algorithm has less complex-
ity (CPU/memory requirements or memory access) with decreasing tempo-
ral/spatial resolution or decreasing quality [40].

e Content (or object) scalability: a hierarchy of relevant objects is defined in
the video scene and a progressive bit stream is created following this impor-
tance order. Such methods of content selection may be related to arbitrary-
shaped objects or even to rectangular blocks in block-based coders. The
main problem of such techniques is how to automatically select and track
visually important regions in video.

e Frequency scalability: this technique, popular in the context of transform
coding, consists of allocating coefficients to different layers according to
their frequency. Data partitioning techniques may be used to implement
this functionality. The interested reader is referred to Chapter 2 of this book
for more information on data partitioning.

Among existing standards, the first ones (MPEG-1 and H.261) did not provide
any kind of scalability. H.263+ and H.264 provide temporal scalability through
B-frames skipping.

5.3 MPEG-4 FINE GRAIN SCALABLE (FGS) CODING AND ITS
NONSTANDARDIZED VARIANTS

5.3.1 SNR FGS Structure in MPEG-4

The previously discussed conventional scalable coding schemes are not able to
efficiently address the problem of easy, adaptive, and efficient adaptation to time-
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varying network conditions or device characteristics. The reason for this is that
they provide only coarse granularity rate adaptation and their coding efficiency
often decreases due to the overhead associated with an increased number of layers.

To address this problem, FGS coding has been standardized in the MPEG-4
standard, as it is able to provide fine-grain scalability to easily adapt to various
time-varying network and device resource (e.g., power) constraints [6,44]. More-
over, FGS can enable a streaming server to perform minimal real-time processing
and rate control when outputting a very large number of simultaneous unicast
(on-demand) streams, as the resulting bit stream can be easily truncated to ful-
fill various (network) rate requirements. Also, FGS is easily adaptable to unpre-
dictable bandwidth variations due to heterogeneous access technologies (Internet,
wireless cellular or wireless LANs) or to dynamic changes in network conditions
(e.g., congestion events). Moreover, FGS enables low-complexity decoding and
low-memory requirements that provide common receivers (e.g., set top boxes and
digital televisions), in addition to powerful computers, the opportunity to stream
and decode any desired streamed video content. Hence, receiver-driven stream-
ing solutions can only select the portions of the FGS bit stream that fulfill these
constraints [40,45].

In MPEG-4 FGS, a video sequence is represented by two layers of bit streams
with identical spatial resolution, which are referred to as the base layer bit stream
and the fine granular enhancement layer bit stream, as illustrated in Figure 5.6.

Bit-plane D SNR
a g and entrop > FGS stream

FGS EL Encoder s

Original
Video ) DCTI_,I Q |— VLC|- BL stream

6]
O

_|
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I3)
=
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| I—

FIGURE 5.6: MPEG-4 FGS encoder.
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FIGURE 5.7: The structure of bit planes of Y, U, and V components.

The base layer bit stream is coded with nonscalable coding techniques, whereas
the enhancement layer bit stream is generated by coding the difference between
the original DCT coefficients and the reconstructed base layer coefficients using
a bit-plane coding technique [1,6,7]. The residual signal is represented with bit
planes in the DCT domain, where the number of bit planes is not fixed, but is
based on the number of bit planes needed to represent the residual magnitude in
binary format. Before a DCT residual picture is coded at the enhancement layer,
the maximum number of bit planes of each color component (Y, U, and V) is
first found. In general, three color components may have different numbers of bit
planes. Figure 5.7 gives an example of 5 bit planes in Y component and 4 bit
planes in U and V components. These three values are coded in the picture header
of the enhancement layer stream and transmitted to the decoder.

All components have aligned themselves with the least significant bit (LSB)
plane. The FGS encoder and decoder process bit planes from the most significant
bit (MSB) plane to the LSB plane. Because of the possible different maximum
numbers of bit planes on Y, U, and V components, the first MSB planes may
contain only one or two components. In the example given by Figure 5.7, there is
only Y component existing in the MSB plane. In this case, bits for the coded block
pattern (CBP) of each macroblock can be reduced significantly. Every macroblock
in a bit plane is coded with row scan order.

Since the enhancement layer bit stream can be truncated arbitrarily in any frame
(see Figure 5.8), MPEG-4 FGS provides the capability of easily adapting to chan-
nel bandwidth variations.

5.3.2 MPEG-4 Hybrid Temporal-SNR Scalability with an All-FGS Structure

As mentioned earlier, temporal scalability is an important tool for enhancing the
motion smoothness of compressed video. Typically, a base layer stream coded
with a frame rate fpy is enhanced by another layer consisting of video frames
that do not coincide (temporally) with the base layer frames. Therefore, if the
enhancement layer has a frame rate of fgy, then the total frame of both base and
enhancement layer streams is fp;, + fEL.
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FIGURE 5.8: An MPEG-4 FGS two-layer bit stream.

In the SNR FGS scalability structure described in the previous section, the
frame rate of the transmitted video is locked to the frame rate of the base layer re-
gardless of the available bandwidth and corresponding transmission bit rate. Since
one of the design objectives of FGS is to cover a relatively wide range of band-
width variation over IP networks (e.g., 100 kbps to 1 Mbps), it is quite desirable
that the SNR enhancement tool of FGS be complemented with a temporal scala-
bility tool. It is also desirable to develop a framework that provides the flexibility
of choosing between temporal scalability (better motion smoothness) and SNR
scalability (higher quality) at transmission time. This, for example, can be used
in response to user preferences and/or real-time bandwidth variations at transmis-
sion time [44]. For typical streaming applications, both of these elements are not
known at the time of encoding the content.

Consequently, the MPEG-4 framework for supporting hybrid temporal-SNR
scalabilities building on the SNR FGS structure is described in detail in [44]. This
framework provides a new level of abstraction between encoding and transmission
processes by supporting both SNR and temporal scalabilities through a single en-
hancement layer. Figure 5.9 shows the hybrid scalability structure. In addition to
the standard SNR FGS frames, this hybrid structure includes motion-compensated
residual frames at the enhancement layer. These motion-compensated frames are
referred to as FGS Temporal (FGST) pictures [44].

As shown in Figure 5.9, each FGST picture is predicted from base layer frames
that do not coincide temporally with that FGST picture, and therefore, this leads



(©)

()

Enhancement Layer

Enhancement Layer

P

TLIIT,

Base Layer

Enhancement Layer

&

TTITT

Base Layer

F F F
G G G
S S S
s T i &
A A A A A
T i T Lo\ iy Lo\ L
? ] v P
Base Layer
(b) Enhancement Layer
F F F
G G G
S S S
T T T
[ I L t
Base Layer

Enhancement Layer

JTLTLL

P P
(IR

Base Layer

ONIAOD (SOD) ATAVIVIS NIVID ANIA #-DUJIN :€°S Uondng

FIGURE 5.9: FGS hybrid temporal-SNR scalability structure with (a) bidirectional and (b) forward prediction
FGST pictures and (c) examples of SNR-only (top), temporal-only (middle), or both temporal and SNR (bottom)
scalability.

1€1



132 Chapter 5: SCALABLE VIDEO CODING

FGS Layer

>
»

A
Temporal Layer
Base Layer II,—/—\V-‘E-/—PE,—/—b

FIGURE 5.10: Multilayer FGS—temporal scalability structure.

to the desired temporal scalability feature. Moreover, the FGST residual signal is
coded using the same fine granular video coding method employed for compress-
ing the standard SNR FGS frames.

Each FGST picture includes two types of information: (a) motion vec-
tors (MVs) that are computed in reference to temporally adjacent base layer
frames and (b) coded data representing the bit planes DCT signal of the
motion-compensated FGST residual. The MVs can be computed using standard
macroblock-based matching motion-estimation methods. Therefore, the motion-
estimation and compensation functional blocks of the base layer can be used by
the enhancement layer codec.

The FGST picture data is coded and transmitted using a data-partitioning strat-
egy to provide added error resilience. Under this strategy, after the FGST frame
header, all motion vectors are clustered and transmitted before the residual sig-
nal bit planes. The MV data can be transmitted in designated packets with greater
protection. More details on hybrid SNR—temporal FGS can be obtained from [44].
Finally, these scalabilities can be further combined in a multilayer manner, and an
example of this is shown in Figure 5.10.

5.3.3 Nonstandard FGS Variants

To improve the coding efficiency of FGS, various temporal prediction structures
have been proposed. For example, in [8], an additional motion compensation loop
is introduced into the enhancement layer using the reconstructed high-quality ref-
erence. Furthermore, an improved method is proposed in [9] where an estimation-
theoretic framework is presented to obtain the prediction optimally considering
both the reconstructed high-quality reference and the base layer information.
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This optimization translates into consistent performance gains in compression ef-
ficiency at the enhancement layer. Nonetheless, the main disadvantage of such
schemes is the high complexity due to the multiple motion estimation loops for
the enhancement layer coding.

However, the FGS scheme can also benefit from temporal dependency at the
FGS enhancement layer based on one prediction loop. Motion-Compensated FGS
(MC-FGS) was first proposed to address this problem in [10]. A high-quality ref-
erence, generated from the enhancement layer, can be utilized in the motion com-
pensation loop to get better prediction. However, in case there is a close-loop
structure at the enhancement layer, it could induce drift errors when the enhance-
ment layer cannot be guaranteed at the decoder side due to network bandwidth
fluctuations. Several methods used to reduce the drift in the MC-FGS structure
are discussed in [10].

To introduce temporal prediction into the FGS enhancement layer coding with-
out severe drift errors, several alternative techniques have been proposed. Progres-
sive FGS (PFGS) proposed in [12,13] explores a separate motion compensation
loop for the FGS enhancement layer to improve the compression performance and
provides means to eliminate the drift error as well. There are two key points in
the PFGS coding. One is to use as many predictions from the enhancement ref-
erence layers as possible (for coding efficiency) instead of always using the base
layer as in MPEG-4 FGS. The other point is to keep a prediction path from the
base layer to the highest quality layer across several frames, for error recovery
and channel adaptation. Such a prediction path enables lost or erroneous higher
quality enhancement layers to be automatically reconstructed from lower layers
gradually over a few frames. Thus, PFGS trades off coding efficiency for drift
error reduction.

In [14], a robust FGS (RFGS) technique was presented by incorporating the
ideas of leaky [10,15] and partial predictions to deal with the drift error. In RFGS,
the high-quality reference used in the enhancement layer compensation loop is
constructed by combining the reconstructed base layer image and part of the en-
hancement layer. A frame-based fading mechanism is introduced to cope with the
mismatch error. Specifically, at each frame, a uniformly leaky factor between O
and 1 is applied to the enhancement layer before adding to the base layer image
to alleviate the error propagation. Moreover, an adaptive leaky prediction based
on the RFGS is proposed in [16] where the leaky factor is determined for each bit
plane of enhancement layer according to its significance and location to further
improve the coding performance.

Furthermore, several techniques are proposed to achieve more flexible trade-
off between drift errors and coding efficiency at the macroblock level rather than
at the frame level. The macroblock-based PFGS (MPFGS) is one such scheme
[17,18]. In MPFGS, three INTER modes, HPHR, LPLR, and HPLR, are pro-
posed for the enhancement layer macroblock encoding (see Figure 5.11). In fact,



134 Chapter 5: SCALABLE VIDEO CODING

Low quality
reference

High quality
reference

LPLR mode HPHR mode HPLR mode
Prediction e

Reconstruction —_—=

FIGURE 5.11: INTER modes for the enhancement macroblocks in
MPFGS.

the HPHR mode is used to get high coding efficiency by using higher quality
reference, while the HPLR mode is imposed to attenuate the drifting error by in-
troducing the mismatch error into the encoding process. Assuming that the base
layer is always available at the decoder, LPLR and HPLR modes help reset the
drift errors potentially caused by the HPHR mode. A decision-making mecha-
nism is presented in MPFGS to choose the optimal prediction mode for each
enhancement layer macroblock by considering the error propagation effects and
taking advantage of the HPLR mode to achieve a flexible trade-off between high
coding efficiency and low drifting error. Another macroblock-based approach is
presented in [19,20], called enhanced mode-adaptive FGS (EMFGS). Three pre-
dictors, the reconstructed base layer macroblock, the reconstructed enhancement
layer macroblock, and the average of the previous two, are proposed in EMFGS.
A uniformly fading factor, 0.5, is used to form the third predictor. Also, a mode-
selection algorithm is provided to decide the encoding mode of the enhancement
layer macroblock.

Another network-aware solution was presented in [45] to alleviate the FGS
coding inefficiencies based on the available network conditions—video transcal-
ing (TS), which can be viewed as a generalization of (nonscalable) transcoding.
With TS, a scalable video stream that covers a given bandwidth range is mapped
into one or more scalable video streams covering different bandwidth ranges. The
TS framework exploits the fact that the level of heterogeneity changes at different
points of the video distribution tree over wireless and mobile Internet networks.
This provides the opportunity to improve the video quality by performing the
appropriate TS process. An Internet/wireless network gateway represents a good
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candidate for performing TS, thus improving the performance of FGS-based com-
pression schemes.

5.4 MOTION-COMPENSATED WAVELET VIDEO CODECS

As wavelets inherently provide a hierarchical representation of the analyzed con-
tent and also have proved very attractive for spatial and quality scalability in still
image coding, an intense effort has been deployed since the late-1980s to extend
these decompositions in the temporal direction. This can be done by considering
the video sequence as a volume of pixels and applying the temporal transform
on samples along the temporal dimension. Temporal subbands are then spatially
transformed also using a wavelet transform.

5.4.1 Motion-Compensated Temporal Filtering (MCTF)

The idea of temporal extensions of subband decompositions appeared in the late
1980s, with the works of Karlsson and Vetterli [1] and Kronander [2]. In these
works the classical temporal closed-loop prediction scheme was replaced by a
temporal subband decomposition, which didn’t take into account any motion com-
pensation. Later it was shown that motion prediction was also important in these
schemes [3] in order to reduce the detail energy subbands, thus leading to much
better compression performance and visual quality, and ideally the temporal trans-
form should be applied along the motion trajectories.

The simplest temporal wavelet transform is the Haar transform, performing
sums and differences of pairs of frames to obtain respectively approximation and
detail subbands. It is illustrated in Figure 5.12 on a group of frames (GOF) of
eight frames, which allows performing a maximum of three levels of dyadic de-
composition. A review of various MCTF structures for scalable video coding can
be found in [42].

Due to the two-tap low-pass and high-pass filters and downsampling by a factor
of 2, no boundary problems appear when decomposing a GOF of size 2 into a
number of up to L resolution levels.

Moreover, if motion estimation and compensation is performed between pairs
of successive frames, without overlapping, the number of operations and the num-
ber of motion vector fields are the same as for coding the same number of frames
in a predictive scheme (and equal to 2 — 1). However, as pairs of pixels have
to be processed in successive frames in order to obtain the coefficients of the ap-
proximation and detail frames, the motion invertibility becomes a very important
problem.

For example, in a block-based motion-compensated prediction, which is the
most usual technique for temporal prediction, the same area in the reference frame
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FIGURE 5.12: Temporal Haar wavelet decomposition of a GOF.

can be used to predict several areas in the current frame, while parts of the refer-
ence frame are not used at all for prediction. This gives rise to multiple connected
and unconnected pixels (see Figure 5.13) [3,4]. In order to avoid such problems,
other motion models, such as meshes, can be employed [30].

Moreover, in order to take advantage of in-place calculations and guaranteed
reversibility of the scheme even for nonlinear operations (such as the operations
involving motion compensation), a lifting implementation of the wavelet filter
bank was proposed [5,21]. This way, after splitting the input samples in odd and
even indexed ones, theoretically any biorthogonal filter bank with finite impulse
responses can be represented with a finite number of predict-update (see Fig-
ure 5.14) steps, possibly followed by multiplication with a constant.

In the case of temporal decomposition of the video, motion estimation is first
performed between input frames, and the motion vector fields (denoted by v in
Figure 5.15) are used for motion-compensated operations in both the predict and
the update steps.

An important remark is that the predict operator can use all the even indexed
input frames (denoted by x7;,) to perform the motion-compensated prediction of
the odd indexed frames (denoted by {x7:+1}), while the update operator can use
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FIGURE 5.15: Spatiotemporal motion-compensated lifting scheme.

all the detail frames ({ Hy, }) thus computed to obtain the approximation subband
frames ({L;, }). The predict and update operators then also involve the motion vec-
tors used to match corresponding positions. Therefore, in the # 4+ 2D framework
they actually become spatiotemporal operators:

2(t—k
Hy(n) = x4 (m) — P({xz(t—k)’ 02,(3_1 )}keTkp>’ VneS,

L@ =x2®) + U({Hie vy M ), Wpes,

where vij is the motion vector field used to predict the current frame i from the
reference frame j, Tkp (respectively T}') is the support of the temporal predict
(respectively update) operator, and the spatial position is denoted by n or p.

In the simplest case of the Haar multiresolution analysis, the previous relations
become

Hi(m) = xp41(n) — x2 (n - U%;_H), Vne S,
Li(p)=xxP +H(p+vyt"), Vpes.

However, from the temporal prediction viewpoint, it is better to make use of
longer filters. The biorthogonal 5/3 filter bank has been most studied. In this
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case, both forward and backward motion vectors need to be used for a bidirec-
tional prediction. The analysis equations have the form

1
Hi(m) = xz141(m) — 5 [x2(n = v3}, ) + 222 (n =03 {7)], Vmes,

1
L) =x2 (@) + g [Ha(p+ v ") + H(p+vy (7). vpes.

Due to the fact that a bidirectional prediction is used in this structure, the num-
ber of motion vector fields is double compared with the Haar decomposition, and
therefore the coding of this information may represent an important part of the bit
stream at low bit rates. Efficient algorithms are needed to further exploit redun-
dancies between motion vector fields at the same temporal decomposition level
or at different levels [23].

To effectively deal with the problem of motion-compensated temporal wavelet
filtering associated with fractional precision motion vectors, many-to-one map-
ping for the covered areas and nonreferred pixels for the uncovered areas [31],
proposes a new and general lifting structure (see Figure 5.16) that unifies all the
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FIGURE 5.16: The Barbell lifting scheme.
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previous works to solve this problem and enables any traditional motion compen-
sation techniques in block-based motion prediction coding to be easily adopted in
the MCTF framework. The core of this work is a so-called Barbell lifting scheme,
in which instead of a single pixel value, a function of a set of pixel values is used
as the input to the lifting step. The Barbell lifting scheme essentially moves any
existing effective motion prediction schemes in traditional video coding to the
MCTF frames.

A new update scheme, energy distributed update (EDU), is proposed in [32]
to avoid a second set of motion vectors or complex and inaccurate inversion of
the motion information used in the traditional update step. The idea is to update
where predict is made by distributing high-pass signals to the low-pass frame.
Meanwhile, it provides further coding efficiency gain.

5.4.2 Three-Dimensional (3D) Wavelet Coefficients Coding

After 3D (temporal and spatial) wavelet analysis, a video sequence will be de-
composed into a certain number of 3D subbands. For example, in Figure 5.17,
a three-level wavelet (motion compensated) decomposition is performed in the
temporal direction, followed by a three-level 2D spatial dyadic decomposition
within each of the resulting temporal bands.

The next step in 3D wavelet video coding is to encode the transformed 3D
wavelet coefficients in each subband efficiently. Since the subband structure in 3D
wavelet decomposition for video sequence is very similar to the subband structure

N
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FIGURE 5.17: Separable 3D wavelet transform. Three-level dyadic
temporal (motion compensated) wavelet decomposition, followed by
three-level 2D spatial dyadic decomposition.



Section 5.4: MOTION-COMPENSATED WAVELET VIDEO CODECS 141

in 2D wavelet decomposition for image, it is natural to extend many existing 2D
wavelet-based image coding techniques, such as SPIHT [33], EBCOT [34], and
EZBC [35], to the 3D case. As a matter of fact, almost all the existing 3D wavelet
coefficients coding schemes use one form of these 3D extensions, such as 3D
SPIHT [38], 3D ESCOT [36,37], and 3D EZBC [38,39].

Generally speaking, after 3D (motion compensated) wavelet decomposition,
there is not only spatial similarity inside each frame across the different scale, but
also temporal similarity between two frames at the same temporal scale. Further-
more, temporal linkages of coefficients between frames typically show more cor-
relation along the motion trajectory. An efficient 3D wavelet coefficient coding
scheme should exploit these properties as much as possible. Several algorithms
for texture coding in 3D wavelet schemes have been developed.

5.4.2.1 3D SPIHT

3D SPIHT is an extension of the concept of SPIHT still image coding to 3D video
coding. As we know, the SPIHT algorithm takes advantages of the nature of en-
ergy clustering of subband/wavelet coefficients in frequency and space and ex-
ploits the similarity between subbands. It utilizes three basic concepts: (1) search-
ing for sets in spatial-orientation trees in a wavelet transform; (2) partitioning
the wavelet transform coefficients in these trees into sets defined by the level of
the highest significant bit in a bit plane representation of their magnitudes; and
(3) coding and transmitting bits associated with the highest remaining bit planes
first.

There is no constraint to dimensionality in the SPIHT algorithm itself, as pixels
are sorted regardless of dimensionality. The 3D SPIHT scheme can be easily ex-
tended from 2D SPIHT, with the following three similar characteristics: (1) par-
tial ordering by magnitude of the 3D wavelet transformed video with a 3D set
partitioning algorithm; (2) ordered bit plane transmission of refinement bits; and
(3) exploitation of self-similarity across spatiotemporal orientation trees.

For the 3D wavelet coefficients, a new 3D spatiotemporal orientation tree and
its parent—offspring relationships are defined. For pure dyadic wavelet decompo-
sition with an alternate separable wavelet transform in each dimension, a straight-
forward extension from the 2D case is to form a node in 3D SPIHT as a block with
eight adjacent pixels, two in each dimension, hence forming a node of 2 x 2 x 2
pixels. The root nodes (at the highest level of the pyramid) have one pixel with no
descendants and the other seven pointing to eight offspring in a 2 x 2 x 2 cube
at corresponding locations at the same level. For nonroot and nonleaf nodes, a
pixel has eight offspring in a 2 x 2 x 2 cube one level below in the pyramid. For
nondyadic decomposition similar to the 2D wavelet packet decomposition case,
the 2 x 2 x 2 offspring nodes are split into pixels in these smaller subbands at
the corresponding orientation in the nodes at the original level. For the common
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FIGURE 5.18: Parent—offspring relationship in a spatiotemporal de-
composition.

t 4 2D type of wavelet decomposition the parent—offspring relationship is shown
in Figure 5.18. With such defined 3D spatiotemporal trees, the coefficients can be
compressed into a bit stream by feeding the 3D data structure to the 3D SPIHT
coding kernel. The 3D SPIHT kernel will sort the data according to the magnitude
along the spatiotemporal orientation trees (sorting pass) and refine the bit plane
by adding necessary bits (refinement pass).

5.4.2.2 3D ESCOT

The 3D SPIHT coding scheme provides natural scalability in rate (quality). How-
ever, it is difficult to provide temporal or spatial scalabilities due to the inherent
spatiotemporal tree structure. Even with extra effort, it can only provide partial
temporal or spatial scalabilities by modifying the decoder or encoder [35]. How-
ever, 3D ESCOT [36,37] can provide full rate, temporal and spatial scalabilities by
constraining the encoding of wavelet coefficients independently within each sub-
band. Meanwhile, the R-D optimized bit stream truncation process after encoding
guarantees a bit stream with the best video quality given a bit rate constraint.
The 3D ESCOT scheme is in principle very similar to EBCOT [34] in the JPEG-
2000 standard, which offers high compression efficiency and other functionalities
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(e.g., error resilience and random access) for image coding. In extending the 2D
EBCOT algorithm to 3D ESCOT, a different coding structure is used to form a
new set of 3D contexts for arithmetic coding that makes the algorithm very suit-
able for scalable video compression. Specifically, each of the subbands is coded
independently in the extended coding structure. The advantage of doing so is that
each subband can be decoded independently to achieve flexible spatial/temporal
scalability. The user can mix an arbitrary number of spatiotemporal subbands in
any order to obtain the desired spatial or temporal resolution.

Unlike the EBCOT encoder [34] in JPEG2000, the ESCOT encoder takes a
subband as a whole entity. There are two reasons for this. (1) Normally a video
frame has lower resolution than a still image. Not splitting a subband further into
many small 3D blocks brings better coding efficiency of the context-based adap-
tive arithmetic coder. (2) Taking a subband as a whole entity is also convenient
for incorporating the possible motion model in the coding process, since within
the same 3D subband, the motion vector may point from any coefficients on a
temporal plane to any other coefficients on other temporal planes.

As in the 2D EBCOT case, the contexts for 3D ESCOT are also formed with
immediate neighbors in the same subband. The difference is that the immediate
neighbors are now in three directions instead of two: horizontal, vertical, and tem-
poral (Figure 5.19). In addition, the temporal neighbors not only may be spatially
collocated in different frames, but also may be neighbors pointed to by motion
vectors across frames with a certain motion model [36,37].

The encoding of the 3D wavelet coefficients in the 3D ESCOT scheme is done
bit plane by bit plane. For each bit plane, the coding procedure consists of three
distinct passes: Significance Propagation, Magnitude Refinement, and Normal-
ization, which are applied in turn. Each pass processes a “fractional bit plane.” In
each pass, the scanning order is along the horizontal direction first, the vertical di-
rection second, and finally the temporal direction. In the Significance Propagation
pass, samples that are not yet significant but have a “preferred neighborhood” are

@ Current sample
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) o \ @ Vertical Neighbor

@ Temporal Neighbor
@] o & ) Diagonal Neighbor

o

FIGURE 5.19: Immediate neighbors of a sample in 3D ESCOT coding.
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processed. A sample has a “preferred neighborhood” if and only if the sample has
at least a significant immediate diagonal neighbor for a HHH (high frequency in
three directions) subband or a significant immediate horizontal, vertical, or tem-
poral neighbor for the other types of subbands. In the Magnitude Refinement pass,
the samples that have been significant in the previous bit planes are encoded. In
the Normalization pass, those samples that have not yet been coded in the previous
two passes are coded.

In the previous stage, each subband is coded separately up to a specific pre-
cision and each forms an independent bit stream. The objective of optimal bit
stream truncation is to construct a final bit stream that satisfies the bit rate con-
straint and minimizes the overall distortion. As in the EBCOT algorithm [34], the
end of each pass at each “fractional” bit plane is a candidate truncation point with
a precalculated R—D value pair for that subband. A straightforward way to achieve
R-D optimized truncation is to find the convex hull of the R-D pairs at the end of
each fractional bit plane and truncate only at the candidate truncation points that
are on the convex hull.

To achieve quality scalability, a multilayer bit stream may be formed, where
each layer represents a quality level. Depending on the available bandwidth and
the computational capability, the decoder can choose to decode up to the layer it
can handle. The fractional bit plane coding ensures that the bit stream is finely
embedded. Since each subband is independently coded, the bit stream of each
subband is separable. The encoder can choose to construct a bit stream favoring
spatial scalability or temporal scalability. Also, the decoder can easily extract only
a few subbands and decode only these subbands. Therefore, the implementation
of resolution scalability and temporal scalability is natural and easy.

5.4.2.3 3D EZBC

3D EZBC is an extension of the EZBC image coder [35] to allow coding of three-
dimensional wavelet coefficients. The concept of EZBC is inspired by the success
of two popular embedded image coding techniques: zero-tree/-block coding, such
as SPIHT [33], and context modeling of the subband/wavelet coefficients, such as
EBCOT [34]. As discussed, zero-tree/-block coding takes advantage of the natural
energy clustering of subband/wavelet coefficients in frequency and in space and
exploits the similarity between subbands. Moreover, instead of all pixels, only
a small number of elements in the lists [33] need to be processed in individual
bit plane coding passes. Thus, processing speed for this class of coders is very
fast. However, in the context model based coders [34], individual samples of the
wavelet coefficients are coded bit plane by bit plane using context-based arith-
metic coding to effectively exploit the strong correlation of subband/wavelet coef-
ficients within and across subbands. Nevertheless, unlike zero-tree/-block coders,
these algorithms need to scan all subband/wavelet coefficients at least once to
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FIGURE 5.20: Quad tree decomposition in 3D EZBC.

finish coding of a full bit plane, with an implied higher computation cost. The
EZBC algorithm combines the advantages of these two coding techniques, that is,
low computation complexity and effective exploitation of correlation of subband
coefficients, using both ZeroBlocks of subband/wavelet coefficients and context
modeling.

Similar to EZBC for image coding, 3D EZBC is based on quad tree represen-
tation of the individual subbands and frames. The bottom quad tree level, or pixel
level, consists of the magnitude of each subband coefficient. Each quad tree node
of the next higher level is then set to the maximum value of its four corresponding
nodes at the current level; see Figure 5.20. In the end, the top quad tree node corre-
sponds to the maximum magnitude of all the coefficients from the same subband.
As in EZBC, 3D EZBC uses this quad tree-based zero-block coding approach for
hierarchical set-partition of subband coefficients to exploit the strong statistical
dependency in the quad tree representation of the decomposed subbands. Further-
more, to code the significance of the quad tree nodes, context-based arithmetic
coding is used. The context includes eight first-order neighboring nodes of the
same quad tree level and the node of the parent subband at the next lower quad
tree level. Experiments have shown that including a node in the parent subband in
the interband context model is very helpful in predicting the current node, espe-
cially at higher levels of a quad tree.

Like SPIHT and other hierarchical bit plane coders, lists are used for tracking
the set-partitioning information. However, the lists in 3D-EZBC are separately
maintained for nodes from different subbands and quad tree levels. Therefore,
separate context models are allowed to be built up for the nodes from different
subbands and quad tree levels. In this way, statistical characteristics of quad tree
nodes from different orientations, subsampling factors, and amplitude distribu-
tions are not mixed up. This ensures a resolution scalable bit stream while main-
taining the desirable low complexity feature of this class of coders.

5.4.3 Variants and Extensions: UMCTEF, 3-bands

The concept of “unconstrained MCTF” (UMCTF) [10,43] allows very useful ex-
tensions of the MCTF. By selecting the temporal filter coefficients appropriately,
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multiple reference frames and bidirectional prediction can be introduced, such
as in H.264, in the MC-wavelet framework. No update step is used, however,
which makes this scheme comparable with an open-loop multiresolution predic-
tive structure. We can adaptively change the number of reference frames, the rel-
ative importance attached to each reference frame, the extent of bidirectional fil-
tering, and so on. Therefore, with this filter choice, the efficient compensation
strategies of conventional predictive coding can be obtained by UMCTEF, while
preserving the advantages of conventional MCTF.

Other extensions of the temporal transform are aimed at providing nondyadic
scalability factors. This can be achieved by M-band filter banks, for which a gen-
eral framework was proposed in [25]. In particular, a three-band filter bank in
lifting form was proposed in [24] and is illustrated in Figure 5.21. For simplicity,
Figure 5.21 shows only predict and update blocks; however, as in the dyadic case,
they involve motion estimation/compensation.

Following the notation in Figure 5.21, the analysis equations, which lead to one
approximation and two detail subbands, are

H*(m) = x341(m) — P ({x3 }ren).
H7 () =x3_1(n) — P~ ({x3}en),
Lt(p) = X3t(p) + U+({Ht+}teN) + U_({Hti}teN)'

Note that in this scheme all the frames indexed by multiples of three are used
by the two prediction operators. For example, by choosing frames x3;, and x3;43
for the prediction of frame x3,4; and likewise choosing frames x3;_3 and x3; for
predicting frame x3;_1, a structure similar to the classical IBBP ... structure can
be obtained.
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FIGURE 5.21: Three-band lifting scheme.
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FIGURE 5.22: A three-band lifting-like scheme.

However, the simplest choice, corresponding to a Haar-like transform, is to
have identity predict operators and linear update operators. In this case, the analy-
sis equations become

H'(m) = x341() — x3,(n— 03’ ),

H;” () = x3_1(n) — x3(n —v3/_,),
1
Li(p) =) + 3 (B (P +v3fy)) + H (p+v3i))).

More complex lifting-like schemes (as in Figure 5.22) have been proposed in [26],
as well as other possible M-band motion-compensated temporal structures.

These structures allow a frame rate adaptation from 30 to 10 fps, for example,
or from 60 to 20 fps. Flexible frame rate changes can be achieved by cascading
dyadic and M-band filter banks.

Another direction for the extension of spatiotemporal transforms is to replace
the 2D wavelet decomposition by other spatial representations, such as wavelet
packets [27] or general filter banks [29], which also allow for more flexible spatial
scalability factors [28].

5.4.4 Switching Spatial and Temporal Transforms

The interframe wavelet video coding schemes presented in the previous sections
employ MCTF before the spatial wavelet decomposition is performed. Through-
out the chapter we refer to this class of interframe wavelet video coding schemes
as t +2D MCTF. Despite their good coding efficiency performance and low com-
plexity, these types of MCTF structures have also several drawbacks.
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1. Limited motion-estimation efficiency. t + 2D MCTF are inherently limited
by the quality of the matches provided by the employed motion estimation
algorithm. For instance, discontinuities in the motion boundaries are rep-
resented as high frequencies in the wavelet subbands, and the “Intra/Inter”
mode switch for motion estimation is not very efficient in ¢ + 2D MCTF
schemes, as the spatial wavelet transform is applied globally and cannot
encode the resulting discontinuities efficiently. Moreover, the motion esti-
mation accuracy, motion model, and adopted motion estimation block size
are fixed for all spatial resolutions, thereby leading to suboptimum imple-
mentations compared with nonscalable coding that can adapt the motion
estimation accuracy based on the encoded resolution. Also, because the
motion vectors are not naturally spatially scalable in # 4 2D MCTF, it is
necessary to decode a large set of vectors even at lower resolutions.

2. Limited efficiency spatial scalability. If the motion reference during ¢ + 2D
MCTF is, for example, at HD resolution and decoding is performed at a
low resolution (e.g., QCIF), this leads to “subsampling phase drift” for the
low resolution video.

3. Limited spatiotemporal decomposition structures. In t + 2D MCTF, the
same temporal decomposition scheme is applied for all spatial subbands.
Hence, the same levels of temporal scalability are provided independent of
the spatial resolution.

A possible solution for the aforementioned drawbacks is to employ “in-band
temporal filtering” schemes, where the order of motion estimation and compensa-
tion and that of the spatial wavelet transform (2D-DWT) are interchanged, which
we denote as 2D + ¢ MCTF schemes. The spatial wavelet transform for each frame
is entirely performed first and multiple separate motion compensation loops are
used for the various spatial wavelet bands in order to exploit the temporal correla-
tion present in the video sequence (see Figure 5.23). In contrast to the method of
Figure 5.15, where spatial decomposition steps were interleaved with the temporal
tree, MCTF can now also be applied to spatial high-pass (wavelet) bands. Subse-
quently, coding of the wavelet bands after temporal decorrelation can be done us-
ing spatial-domain coding techniques such as bit plane coding followed by arith-
metic coding or transform-domain coding techniques based on DCT, wavelets,
and so on.

5.4.5 Motion Estimation and Compensation in the Overcomplete Wavelet Domain

Due to the decimation procedure in the spatial wavelet transform, the wavelet co-
efficients are not shift invariant with reference to the original signal resolution.
Hence, translation motion in the spatial domain cannot be accurately estimated
and compensated from the wavelet coefficients, thereby leading to a significant



FIGURE 5.23: Multiresolution motion compensation coder using “in-band prediction.”
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FIGURE 5.24:  Shift variance of the Haar wavelet transform. Right sig-
nal shifted by one sample to the right, low-pass and high-pass coefficients
in Haar DWT and Haar ODWT.

coding efficiency loss (see Haar 1D-DWT case in Figure 5.24). To avoid this in-
efficiency, motion estimation and compensation should be performed in the over-
complete wavelet domain rather than in the critically sampled domain (see Haar
1D-ODWT case in Figure 5.24). Overcomplete discrete wavelet data (ODWT) can
be obtained through a similar process as the critically sampled discrete wavelet
signals by omitting the subsampling step. Consequently, the ODWT generates
more samples than DWT, but enables accurate wavelet domain motion compen-
sation for the high-frequency components, and the signal does not bear frequency-
inversion alias components.

Despite the fact that ODWT generates more samples, an ODWT-based encoder
still needs to only encode the critically sampled coefficients. This is because the
overcomplete transform coefficients can be generated locally within the decoder.
Moreover, when the motion shift is known before analysis and synthesis filtering
are performed, it is only necessary to compute those samples of the overcomplete
representation that correspond with the actual motion shift.

The ¢t + 2D MCTF schemes (Figure 5.25a) can be easily modified into 2D 4 ¢
MCTF (Figure 5.25b).
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FIGURE 5.25: (a) The encoding structure that performs open-loop en-
coding in the spatial domain — ¢ + 2D MCTFE. (b) The encoding struc-
ture that performs open-loop encoding in the wavelet domain (in-band) —
2D +t MCTF.

More specifically, in 2D + t MCTF, the video frames are spatially decomposed
into multiple subbands using wavelet filtering, and the temporal correlation within
each subband is removed using MCTF (see [19,20]). The residual signal after the
MCTF is coded subband by subband using any desired texture coding technique
(DCT based, wavelet based, matching pursuit, etc.). Also, all the recent advances
in MCTF can be employed for the benefit of 2D + ¢ schemes, which have been
first introduced in [46—48].
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5.5 MPEG-4 AVC/H.264 SCALABLE EXTENSION

As scalable modes in other standards, MPEG-4 AVC/H.264 scalable extension
enables scalabilities while maintaining the compatibility of the base layer to the
MPEG-4 AVC/H.264 standard. MPEG-4 AVC/H.264 scalable extension provides
temporal, spatial, and quality scalabilities. Those scalabilities can be applied si-
multaneously. In MPEG-4 AVC/H.264, any frame can be marked as a reference
frame that can be used for motion prediction for the following frames. Such
flexibility enables various motion-compensated prediction structures (see Fig-
ure 5.26).

The common prediction structure used in the MPEG-4 AVC/H.264 scalable
extension is the hierarchical-B structure, as shown in Figure 5.26. Frames are
categorized into different levels. B-frames at level i use neighboring frames at
level i — 1 as references. Except for the update step, MCTF and hierarchical-B
have the same prediction structure. Actually, at the decoder, the decoding process
of hierarchical-B and that of MCTF without the update step is the same. Such
a hierarchical prediction structure exploits both short-term and long-term tem-
poral correlations as in MCTF. The other advantage is that such a structure can
inherently provide multiple levels of temporal scalability. Other temporal scala-
bility schemes compliant with MPEG-4 AVC/H.264 have been presented in [25]
and are shown to provide increased efficiency and robustness on error-prone net-
works.

To achieve SNR scalability, enhancement layers, which have the same motion-
compensated prediction structure as the base layer, are generated with finer quan-
tization step sizes. At each enhancement layer, the differential signals to the pre-
vious layer are coded. Basically it follows the scheme shown in Figure 5.26.

To achieve spatial scalability, the lower resolution signals and the higher reso-
lution signals are coded into different layers. Also, coding of the higher resolution
signals uses bits for the lower resolution as prediction. In contrast to previous cod-
ing schemes, the MPEG-4 AVC/H.264 scalable extension can set a constraint on
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FIGURE 5.26: Four-level hierarchical-B prediction structure.
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the interlayer prediction among different resolutions in which only intra-coded
macroblocks are reconstructed to predict the higher resolution, whereas for inter-
coded macroblocks, only the motion-compensated residue signals are allowed to
predict the corresponding residue signals at the higher resolution. The advantage
of such a constraint is that it reduces the decoding complexity because the decoder
does not need to do motion compensation for the lower layer. The drawback is that
such constraint may have a coding performance penalty.

5.6 SPATIOTEMPORAL-SNR TRADE-OFFS FOR IMPROVED VISUAL
PERFORMANCE

In [41], it was shown that performing trade-offs among spatial, temporal, and
SNR resolutions as a function of content characteristics often results in a consid-
erably improved user experience for multimedia applications. Nevertheless, this
multidimensional flexibility also brings two major challenges. First, no objective
measure exists that can quantify the impact on the video quality after multidi-
mensional adaptation (MDA) operations in a synergistic manner, as each compo-
nent of MDA affects the video quality in a very distinct way. Second, even with
an acceptable quality measurement, effective methods for modeling the relation-
ship between video quality and various adaptation operations are important for
deciding the right MDA given a resource constraint. To solve this challenge, a
general classification-based prediction framework was used successfully in [41]
for selecting the preferred MDA operations based on subjective quality evalua-
tion. For this purpose, domain-specific knowledge or general unsupervised clus-
tering was first deployed to construct distinct categories within which the videos
share similar preferred MDA operations. Thereafter, a machine learning-based
method was applied where the low-level content features extracted from the com-
pressed video streams are employed to train a framework for the problem of joint
spatiotemporal-SNR adaptation selection.

5.7 SUMMARY AND FURTHER READING

New perspectives in video compression are reinforced by recent advances in scal-
able video coding. MCTF-based coders provide high flexibility in bit stream scal-
ability across different temporal, spatial, and quality resolutions. In addition, they
provide better error resilience than conventional (prediction based) coders. In fact,
MCTF-based coders are better able to separate relevant from irrelevant informa-
tion. The temporal low-pass bands highlight information that is consistent over
a large number of frames, establishing a powerful means for exploiting multiple
frame redundancies not achievable by conventional frame-to-frame or multiframe
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prediction methods. Moreover, noise and quickly changing information that can-
not be handled by motion compensation appear in the temporal, high-pass bands,
which can supplement the low-pass bands for more accurate signal reproduction
whenever desirable, provided that a sufficient data rate is available. Hence, the de-
noising process that is often applied as a preprocessing step before conventional
video compression is an integral part of scalable MCTF-based coders.

Due to the nonrecursive structure, higher degrees of freedom are possible for
both encoder and decoder optimization. In principle, a decoder could integrate
additional signal synthesis elements whenever the received information is incom-
plete, such as frame-rate up-conversion, film grain noise overlay, or other ele-
ments of texture and motion synthesis, which could easily be integrated as a part
of the MCTF synthesis process without losing any synchronization between en-
coder and decoder. From this point of view, even though many elements of MCTF
in the lifting interpretation can be regarded as extensions of proven techniques
from MC prediction-based coders, this framework exhibits and enables a number
of radically new options in video encoding. However, when a wavelet transform
is applied for encoding of the low-pass and high-pass frames resulting from the
MCTF process, the commonalities with 2D wavelet coding methods are obvi-
ous. If the sequence of spatial and temporal filtering is exchanged (2D + ¢ in-
stead of ¢ 4+ 2D wavelet transform), MCTF can be interpreted as a framework for
further interframe compression of (intra frame restricted) 2D wavelet representa-
tions such as JPEG 2000. From this point of view, a link between the previously
separate worlds of 2D wavelet coding with their excellent scalability properties
and compression-efficient motion-compensated video coding schemes is estab-
lished by MCTE. This shows the high potential for future developments in the
area of motion picture compression, even allowing seamless transition between
intra frame and inter frame coding methods, depending on the application re-
quirements for flexible random access, scalability, high compression, and error
resilience. Furthermore, scalable protection of content, allowing access manage-
ment for different resolution qualities of video signals, is a natural companion of
scalable compression methods.

Nevertheless, a number of topics can be identified that still require further re-
search, but may also lead to even higher compression performance of this new
class of video coding algorithms. These include

e Strategies for motion estimation and motion vector encoding, including
consideration of prediction and update steps, bidirectional prediction, and
update filtering, as well as combined estimation over different levels of the
temporal wavelet tree.

e Application and optimization of nonblock-based motion compensation,
which is more natural used in combination with spatial wavelet decom-
position.

e Scalability of motion information.
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Optimum adaptation of the spatial/temporal decomposition trees, including
consideration of integrated solutions of spatial/temporal filtering.
Optimization of spatial/temporal encoding, including psychovisual proper-
ties.

Rate—distortion optimum truncation of scalable streams, including the
trade-offs at various rates.

Creation of complexity-scalable video coding bit streams.
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Scalable Audio Coding

Jin Li

6.1 INTRODUCTION

High-performance audio codecs bring digital music into practical reality. The
most popular audio compression technology today is MP3 [8], which stands for
layer III of the MPEG-1 audio compression standard. Developed in the early
1990s, MP3 does not perform very well in terms of compression efficiency. More
advanced audio compression technologies have been proposed later, such as the
MPEG-4 Advanced Audio Codec [1,10], Real Audio, and Windows Media Audio
(WMA). The latter two are commercial audio coders developed by RealNetworks
and Microsoft, respectively. Most existing audio codecs optimize only on a sin-
gle target compression ratio, striving to deliver the best perceptual audio quality
given the length of the bit stream or to deliver the shortest length of the bit stream
given a constraint on playback quality. However, such a goal is far from enough,
especially considering the unique characteristics of audio (as well as other media
file) compression. Unlike data compression, where all content must be exactly
preserved during the compression, audio compression is elastic and tolerates dis-
tortion. It is always possible to compress the audio a little more or a little less,
with slightly more or less distortion. In fact, in many applications, it is difficult to
foresee the exact compression ratio required at the time the audio is compressed.
The ability to quickly change the compression ratio afterward has important ap-
plications and led to better user experience in audio storage and transmission.
For example, if the compression ratio is adjustable, the compressed audio can be
stretched to meet the exact requirements of the customer. We can build a stretch-
able audio recording device, which at first uses the highest possible compression
quality (lowest possible compression ratio) to store the compressed audio. Later,
when the length of the compressed audio at the highest quality exceeds the mem-
ory of the device, the compressed bit stream of the existing audio file can be
truncated to leave memory for newly recorded audio content. A device with scal-
able audio compression technology can perform this stretch step again and again,
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continuously increasing the compression ratio of the existing media, and freeing
up storage space to squeeze in new content. As discussed in Chapter 4, the ability
to quickly adjust the compression ratio is also very useful in the media commu-
nication/streaming scenario, where the server and the client may adjust the size
of the compressed audio to match the instantaneous bandwidth and condition of
the network, and thus reliably deliver the best possible media quality over the
network. Moreover, multiple description coding [9] may also be obtained from a
scalable coded audio bit stream. The idea is to apply more protection (using an
erasure code with more parity packets) toward the head of the bit stream and to
apply less protection toward the tail of the bit stream. Thus, with any number of
packet losses, a prefix of the compressed bit stream is always preserved. As a re-
sult, the quality of the delivered audio may degrade gracefully with an increase in
packet loss probability.

The straightforward way of adjusting the compression ratio of a compressed
audio file is to first decode the compressed media file and then re-encode it. The
computational complexity involved in the decoding and re-encoding operation can
be quite costly. Moreover, there is usually a performance penalty involved, as the
re-encoded audio is usually lower quality compared with directly encoding the au-
dio file at the target compression ratio. Transcoding technologies have been devel-
oped to adjust the compression ratio of traditionally compressed bit streams, such
as MP3 bit streams. Compared with decoding and then re-encoding, transcoding
achieves modest computation savings by skipping some of the compression oper-
ations, mainly the inverse and forward transform and (for video transcoding) mo-
tion estimation. Almost all existing transcoding techniques still need to perform
the entropy decoding and re-encoding; therefore, the speed of the transcoding is
not very fast, usually at least 25% of that of media encoding.

In comparison, scalable/embedded coders allow the compressed bit stream to
be directly manipulated. Popularized by Shapiro in his embedded zerotree wavelet
(EZW) [12] image coder, embedded coder has the attractive property that the high
compression ratio bit stream is embedded in the low compression ratio bit stream.
Increasing the compression ratio can thus be done very quickly by extracting from
a master bit stream the subset of the bit stream that corresponds to the applica-
tion bit stream. In the case of embedded image compression, this operation can
be further simplified to truncating the existing bit stream. In the domain of im-
age compression, it has been shown [4,11,13] that embedded coding cannot only
achieve flexible bit stream adjustment, but also obtain state-of-the-art compres-
sion performance and reasonable computational complexity. In fact, the most re-
cent image compression standard, JPEG-2000 [14], defines an embedded image
coder.

It is a misconception that you have to pay for the scalable functionality with
compression performance. Just as embedded image coding did not take off un-
til highly efficient bit plane entropy coding was developed, highly efficient em-
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bedded audio coding needs unique technologies that suit its need for embed-
ded coding. In this chapter, we develop an embedded audio coder (EAC) with
performance that exceeds or matches that of the best available audio coders.
The key technology that empowers EAC with such high performance is the
use of implicit auditory masking and a high-performance subbit plane entropy
coder.

6.2 SCALABLE AUDIO CODING FRAMEWORK

The embedded audio coder is a fully scalable audio waveform coder. There are
three components of the EAC: an encoder, a decoder, and a parser. The encoder
turns the input audio waveform into a compressed bit stream with the highest
desirable bit rate, audio sampling rate, and number of audio channels. We call
the compressed bit stream formed by the encoder the master bit stream, since
all scaled bit streams (which we call application bit streams) will be formed by
extracting subsets of bits from the master bit stream. The decoder turns the com-
pressed bit stream, whether the master bit stream or the application bit stream,
back into an audio waveform. The parser extracts a subset of the master bit stream
to form an application bit stream with a reduced rate, reduced sampling rate, or
reduced number of audio channels.

The framework of the EAC encoder is shown in Figure 6.1. The input audio
waveform first goes through a channel mixer (MIX). Each channel of mixed au-
dio is then separately transformed and quantized. After that, the transformed and
quantized audio coefficients are split into sections, with each section of audio
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FIGURE 6.1: Embedded audio coding framework.
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coefficients corresponding to one mixed channel of a particular time span and
frequency range. Next, an embedded entropy coder is applied to each section to
encode the coefficients into an embedded bit stream. Each section bit stream can
be truncated after compression to trade distortion versus coding rate. Finally, a bit
stream assembler puts together the embedded bit streams of the sections to form
the master bit stream of the compressed audio.

Because the master bit stream is formed by concatenating together separately
coded section bit streams, the master bit stream may be reshaped in a number of
ways. In fact, the EAC parser takes the master bit stream as input and outputs an
application bit stream with a possibly reduced bit rate, reduced number of audio
channels, reduced sampling rate, or a combination of all. To scale by number of
audio channels or audio sampling rate, the EAC parser simply drops the sections
that are not needed any more. To scale by bit rate, the EAC parser further truncates
the embedded bit stream of each section. The reshaped bit streams of needed
sections are then put together to form the application bit stream.

The EAC decoder simply reverses the operation of the EAC encoder. It first de-
multiplexes the master bit stream or the application bit stream into a compressed
bit stream for each section. Then, the compressed bit stream for each section is
fed into a separate entropy decoder. The decoded coefficients are combined, in-
verse quantized, and transformed. Finally, a channel remixer recovers the playable
audio waveform.

In the following, we will describe in detail the components of the EAC en-
coder: the channel mixer, the audio transform, the quantizer, the section splitter,
the embedded entropy coder, and the bit stream assembler.

6.3 CHANNEL MIXER: SCALE BY NUMBER OF AUDIO CHANNELS

The channel mixer combines the input audio into a number of mixed channels. If
the input audio is mono, the MIX simply passes through the audio. If the input
audio is stereo, we may combine and mix the left (L) and right (R) audio channels

into chy and chy, as follows:
chy | L
HEIA! 6D

where the mixing matrix M takes the form

¢ F
M; = NG (6.2)
2

If the input audio has more than two channels, a multichannel mixer will be used
to mix the multichannel audio. For example, the operation to mix six input audio
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channels can be described as

Ch1 L
chy M; . 0 0 R
chy | C
chy |~ | 0 Mol s | ©6.3)
chs 0 1 RS
che LFE

where the six input channels, Left Front (L), Right Front (R), Center Front (C),
Low Frequency Enhancement (LFE), Left Surround (LS), and Right Surround
(RS), are mixed into six output channels ch;, in which i denotes the ith mixed
channel. The matrix M is the stereo mixing matrix in (6.2), and Mj is the multi-
channel to stereo fold-down matrix,

1 o B X
]l « B x
1
M, = | ,
1
1

where «, 8 and x are constant fold-down parameters. Both mixing matrices M
and M have the desirable properties that a small set of mixed audio channels
may represent a scaled-down representation of the original multichannel audio.
For example, ch; represents the audio component L + R and may serve as a
good mono representation of the stereo audio, should the playback device only
support mono playback. ch; and chy form a scaled-down stereo representation of
the six-channel input audio. The MIX operation thus ensures that the compressed
bit stream can be scaled by audio channels.

6.4 AUDIO TRANSFORM

After channel mixing, the waveform of each mixed audio channel is transformed
by a modified discrete cosine transform (MDCT) or a modulated lapped transform
(MLT) [5]. We switch the MDCT window between a long and a short window. The
long window is used for homogeneous audio segments, while the short window is
used for audio segments with large energy fluctuations to reduce the effect of pre-
echoing. Assuming the input audio is sampled at 44.1 kHz, the size of the long
MDCT window (W;) is 2048 samples, while the size of the short MDCT window
(Ws) is 256 samples.
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The MDCT is defined
7 2Nl Qk+14+ N)2m + Dx
X(m)=,/= Z w(k)x (k) cos , m=0,...,N—1,
N ~ 4N

(6.4)

where N is the length of the MDCT window (W; or W), X (m) is the value of the

MDCT coefficient, x (k) is the input audio samples, and w(k) is the window func-

tion. The MDCT can be decomposed into two operations: windowing and time

domain aliasing (TDA) and the discrete cosine transform of type IV (DCT-1V).
The windowing/TDA operation takes the form

x(k) w(N —1—k) w(k) x(k)
x(N—1-k )" —w(k) wiN—1-k )J\xN=1-K )"
fork=0,...,N/2—1, (6.5)

where w(k) is a window function that fulfills the time domain aliasing cancella-
tion (TDAC) condition

wk)Y+w(N—-1-k?=1, k=0,...,N/2—1. (6.6)

One of the most widely used window functions in audio compression is the Sine

Window,
k = Sill i k + by 6 ;

Another popular window is the Kaiser—Bessel Derived (KBD) window, which
does not have an analytic expression.
After the windowing/TDA operation, the DCT-1V is applied:

N-—1
X(m)=\/%2x(k)cos (2k+1):12vm+1)”, m=0,....N—1. (68)
k=0

The DCT-IV can be implemented by a prerotation, an FFT, and a postrotation.

The operation of the MDCT with switching window is depicted in Figure 6.2.
Each channel of mixed audio is separated into frames of length W; (the size of the
long window). Each frame can be occupied by a single long window or can be split
into W;/W; (in the default configuration, 8) short windows. If two consecutive
frames are both long windows, a long window TDA operation is applied between
the frames. Between two short windows, or between a long and a short window,
a short window TDA operation is applied. After the TDA operation, a DCT-IV
operation is applied to the signal.
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FIGURE 6.2: MDCT with a switching window.

The MDCT operation can be easily inverted, as both the TDA and the DCT-IV
operation can be inverted. The inverse TDA operation is

x (k) w(N —1—k) —w(k) x(k)
x(N—1-k )™ w(k) wN=1-k) ) \x(N=1-k) )"
fork=0,...,N/2—1, 6.9)

and the inverse DCT-IV operation is

N—1
x(k)=\/%ZX(m)cos(ZkH)ﬁva)”, k=0,...N—1. (6.10)
m=0

6.5 QUANTIZATION AND SECTION SPLIT

After the MDCT transform, all MDCT coefficients are uniformly quantized ac-
cording to the rule

| X (m)]
; J (6.11)

q(m) = sign(X<m)){

where X (m) is an MDCT coefficient, g(m) is the quantization result, § is the
quantization step size, sign(x) returns the sign of the coefficient x, and |x] de-
notes the largest integer that is less or equal than x. The quantization process is
conventional: uniform with a central dead zone twice the size of the quantization
step size §. However, the quantizer does not determine the ultimate quality of the
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encoded audio. Because the quantized coefficients will be encoded by a subbit
plane-embedded entropy coder with a truncatable bit stream, additional distortion
can be introduced by the entropy coding module and the bit stream assembler
module. Thus, the main functionality of the quantization module is to map the co-
efficients from a floating point representation to an integer representation so that
they can be more efficiently processed by the entropy coding module. The default
quantization step size in EAC is rather fine, for example, § = 1/128.

To improve the efficiency of the entropy coder, we group the quantized coef-
ficients of a certain number of consecutive frames into a time slot. In the default
configuration, a time slot consists of 16 frames, that is, 16 long MDCT windows
or 128 short windows. A time slot therefore consists of 32,768 samples, which is
about 0.74 second if the input audio is sampled at 44.1 kHz.

For sampling rate scalability, we may further split the coefficients in the time
slot into a number of sections, each section covering the coefficients of a par-
ticular frequency range. For example, for a possible 2x and 4x sampling rate
reduction, we split the coefficients into three sections of 0-0.25x, 0.257-0.507,
and 0.50r-1.00. By throwing away the coefficients corresponding to 0.507—
1.007r, and inversely transforming by a MDCT with a half window size for both
long and short MDCT windows, we can decode the bit stream into audio with a
2x sampling rate reduction. Similarly, by throwing away the coefficients corre-
sponding to 0.257-0.50r and 0.507—1.007, and inversely transforming by an
MDCT with a quarter window size, we can decode the audio with a 4x sam-
pling rate reduction. Such an audio sampling rate reduction can be considered as
passing the audio waveform through a low-pass filter that first transforms the au-
dio by MDCT, throws away half (or three-quarters) of the coefficients, and then
inversely transforms the coefficients with an MDCT at half (or quarter) window
size. It provides an effective means of sampling rate reduction of the compressed
audio, which is very useful if the decoding device does not have a good high
frequency response or it wants to save computational power.

6.6 EMBEDDED SUBBIT PLANE ENTROPY CODING

The section of the quantized coefficients in a time slot is encoded by an embedded
subbit plane entropy coder, which is one of the most complicated components in
EAC. We will explain in detail the working of the subbit plane entropy coder
in the following. First, we review the human auditory system in Section 6.6.1.
Then we explain the implicit auditory masking approach in Section 6.6.2. We
discuss the embedded coding unit (ECU) and the subbit plane entropy coder in
Sections 6.6.3 and 6.6.4, respectively. We describe the arithmetic entropy coding
unit in Section 6.6.5.
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6.6.1 Human Auditory Masking

A detailed description of the human auditory system is beyond the scope of this
chapter. The interested reader may refer to [7]. However, it is worth noticing that
the characteristic of the human auditory system that most affects audio compres-
sion is auditory masking.

The human auditory system can be roughly divided into 26 critical bands, each
of which is a bandpass filter bank with bandwidth on the order of 50 to 100 Hz
for bands below 500 Hz and up to 5000 Hz for bands at high frequencies. Within
each critical band, there is an auditory masking threshold, also referred to as the
psychoacoustic masking threshold or the threshold of the just noticeable distor-
tion (JND) [2]. Audio waveforms with an energy level below the JND threshold
will not be audible. The auditory JND threshold is highly correlated to the spec-
tral envelope of the signal. This is in contrast to the JND threshold in the human
visual system, where the masking of a weak visual signal by a nearby strong sig-
nal occurs only over a very short range, and the dominant visual sensitivity is
the same for a certain frequency regardless of the input signal. Let the auditory
JND threshold of a critical band k at time i be TH; ;. The JND threshold can
be calculated as the maximum of a quiet threshold and a masking threshold. The
quiet threshold TH_ST} dictates the sensitivity of the auditory system for criti-
cal band k without the presence of any strong audio signal. It can be calculated
through an equal loudness curve, such as the Fletcher—Munson curve [7] shown
as the solid line in Figure 6.3. According to the quiet threshold, the sensitivity
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of the ear is nearly constant for a large range (1-8 kHz) and drops dramatically
before 500 Hz and after 10 kHz. Nevertheless, in audio compression, the auditory
JND threshold is largely shaped by masking, which is an effect by which a low-
level signal (the maskee) can be made inaudible by a simultaneously occurring
strong signal (the masker) as long as the masker and the maskee are close enough
to each other in time and frequency. The auditory masking threshold consists of
three components: the simultaneous intra-band mask, the simultaneous inter-band
mask, and the temporal mask. The most basic form of auditory masking is simul-
taneous intra-band masking, where the maskee and the masker are at the same
time instant and within the same critical band. The intra-band masking threshold
TH_INTRA, \ is directly proportional to the average spectral energy AVE; ; of the
masker in critical band k at the same time instant i, and can be expressed in dB as

TH_INTRA,; 1 (dB) = AVE; 1 (dB) — Rpye, 6.12)

where Ry, is a constant offset value determined through the psychoacoustic ex-
perimentation. The second form of masking is simultaneous inter-band masking,
where the maskee and the masker are at the same time instant, but at neighbor-
ing critical bands. The level of such inter-band masking TH_INTER; ; can be
formulated as

TH_INTER; = max(TH; x—1 — Rnigh, TH; x+1 — Riow), (6.13)

where Rpigh and Ryow are the attenuation factors toward the high- and low-
frequency critical bands, respectively. The higher frequency coefficients are more
easily masked; thus the attenuation Rpjgp is smaller than Rjow. Combining quiet,
intra- and inter-band auditory masking, the auditory masking threshold created by
a strong audio signal identified as the “masker” is illustrated in Figure 6.3, where
the auditory JND threshold is shown as the dashed line. Any signal below the JND
threshold, for example, compression distortion, will not be audible by human ears.

The third form of masking is temporal masking, which dictates that a strong
signal can also mask a weak signal in the same critical band, but in the immedi-
ate preceding or following time interval. The duration within which premasking
applies is less than one-tenth that of the postmasking, which is in the order of 50
to 200 ms. The temporal masking threshold TH_TIME; . can be expressed as

TH_TIME; y = max(TH;_1 y — Rposh TH; 1k — Rpre)a (6.14)

where Rpre and Rpost are the attenuation factors for the preceding and following
time intervals, respectively. A sample temporal masking generated by a masker is
shown in Figure 6.4.

The combined auditory JND threshold is the maximum of the quiet threshold,
the simultaneous intra- and inter-band masking, and the temporal masking thresh-
old,
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FIGURE 6.4: Auditory masking threshold: temporal masking.

TH; ; = max(TH_STy, TH_INTRA, , TH_INTER; s, TH_TIME; ;).  (6.15)

Calculation of the JND threshold requires the iteration of (6.13)—(6.15). Thus, if
the input audio consists of several strong maskers, the combined JND threshold
will be the maximum of the masking threshold generated by the individual masks.

6.6.2 Implicit Auditory Masking

Using the auditory masking effect, an audio coder can devote fewer bits to the
coefficients that are less sensitive to the human ear and more bits to the auditorily
sensitive coefficients, thus improving the quality of the coded audio. In EAC, the
auditory masking module is integrated with the embedded entropy coding module.
It is done in a unique way with two distinctive features. First, the auditory JND
threshold is derived from the partially coded coefficients and does not need to be
transmitted. Second, the auditory JND threshold is used to determine the order
that the bits of the coefficients are encoded, rather than to change the coefficients
(by adopting a different quantizing step size for different critical bands). We call
the approach implicit auditory masking because the auditory JND threshold is
implicitly derived during the coding process.

To illustrate this distinctiveness, we show the process of encoding using tradi-
tional auditory masking in Figure 6.5 and that of the implicit auditory masking
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FIGURE 6.5: Encoding using traditional auditory masking.
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FIGURE 6.6: Encoding using implicit auditory masking.

in Figure 6.6. In traditional auditory masking, the encoder calculates the JND
threshold based on the spectral envelope of the input audio waveform. The JND
threshold is then encoded as a part of the compressed bit stream and is transmit-
ted to the decoder. The encoder also quantizes the transform coefficients with a
step size proportional to the JND threshold, that is, the coefficients are quantized
coarsely in the critical bands with a larger JND threshold and are quantized finely
in those with a smaller JND threshold. The approach is simple and suits a nonscal-
able coder. In scalable audio coding, it is not efficient. First, sending the auditory
JND threshold consumes a nontrivial number of bits, which can be as much as
10% of the total number of coded bits. Since the auditory masking module is ap-
plied before the entropy coding module, the JND threshold must be transmitted
with the same precision regardless of the compression ratio. The JND threshold
overhead thus eats significantly into the bit budget, especially if the compressed
bit stream is later scaled to a low bit rate. Second, as shown in Section 6.6.1,
the JND threshold is shaped by the energy distribution of the input audio, while
the same energy distribution is revealed through the bit plane coding process of
the embedded entropy coder. As a result, the information is coded twice, which
wastes precious coding bits.

The framework of implicit auditory masking is shown in Figure 6.6. Compared
to Figure 6.5, the auditory masking operation is now integrated into the loop of
the entropy coding module and is performed as follows. We first set the initial
auditory JND threshold to the quiet threshold. A portion of the transform coeffi-
cients, for example, the top bit planes, is then encoded. Afterward, an updated au-
ditory JND threshold is calculated based on the spectral envelope of the partially
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coded transform coefficients. Since the decoder may derive the same auditory
JND threshold from the same coded coefficients, the values of the auditory JND
threshold need not be sent to the decoder. Using this implicitly calculated JND
threshold, both the encoder and the decoder figure out which portion of the trans-
form coefficients is to be encoded next. After the next portion of the coefficients
has been encoded, the auditory JND threshold is updated again, which is then
used to guide the coding order of the remaining portion of the coefficients. The
process iterates among the operation of sending a portion of the quantized MDCT
coefficients, updating the JND threshold, and using the updated JND threshold
to determine the portions to be sent next. It only stops when a certain end crite-
rion has been met, for example, the quantized coefficients have been encoded to
the least significant bit plane (LSB), a desired coding bit rate has been reached,
or a desired coding quality has been reached. By deriving the auditory masking
threshold implicitly from the partially coded coefficients, bits normally required
for the auditory JND threshold are saved. The saving can be especially significant
at a low bit rate or when the coding bit stream is later truncated to a lower bit rate.
Implicit auditory masking may thus significantly improve compression efficiency.
Moreover, in all existing audio coders, the auditory JND threshold is carried as a
header in the bit stream. In contrast, implicit auditory masking does not have an
error-sensitive header. The EAC-compressed bit stream is thus less susceptible to
transmission errors and therefore offers better error protection in a noisy channel,
such as in a wireless environment. A third advantage of implicit auditory masking
results from the fact that instead of coding the auditorily insensitive coefficients
coarsely, the EAC encodes them at a later stage. By using auditory masking to
govern the coding order, rather than to quantize the coefficients, the quality of the
compressed audio becomes less sensitive to the accuracy of the JND threshold,
as slight deviations in the threshold simply cause certain audio coefficients to be
coded later.

6.6.3 Embedded Coding Unit

The section of quantized coefficients in a time slot is ultimately encoded by a
subbit plane entropy coder. It encodes the audio coefficient bit by bit, and in a
rate-distortion optimized order.

The subbit plane entropy coder of EAC is a general version of the simple bit
plane coder, which works as follows. Let i index the time interval, j index the
frequency component, and k index the critical band. Let x; ; be a coefficient at
time interval i, frequency j, and s; x be a critical band k at time interval i. Let
each audio coefficient be represented in binary sign and magnitude form as

[£br—1bp—2 -+~ bol, (6.16)

where by _1 is the most significant bit (MSB), by is the least significant bit (LSB),
and = is the sign of the coefficient. A group of bits of the same significance
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from different coefficients forms a bit plane. For example, bits by _1 of all coef-
ficients form the most significant L — 1 bit plane. The bit plane coder encodes
the coefficients bit plane by bit plane: first the most significant bit plane, then the
second most significant bit plane, and so on. This way, if the output-compressed
bit stream is truncated, at least part of each coefficient can be decoded.

The subbit plane coder in EAC goes one step further in recognizing that bits in
the same bit plane can be different in their rate and distortion contributions. First,
the coefficients represented by the bits may have different JND thresholds that
lead to vastly different subjective distortions even if the objective distortions are
the same. Second, the bits can be statistically different considering their neighbor
coefficients and coding histories. An illustration of subbit plane is shown in Fig-
ure 6.7. Since the coefficients in EAC are actually arranged in a 2D array indexed
by the time interval i and frequency j, the actual bit array is 3D. However, it is
difficult to draw a 3D bit array; therefore, we show a slice of the bit array in 2D in
Figure 6.7. Note that the sign of the coefficient is also part of the bit array, as the
‘plus’ and ‘minus’ signs can be represented by 0 and 1, respectively. Let by, be
a bit in a coefficient x, which is to be encoded. If all more significant bits in the
same coefficient x are Os, the coefficient x is said to be insignificant (because if
the bit stream is terminated right before bit b, has been coded, coefficient x will
be reconstructed as zero), and the current bit b, is to be encoded in the mode of
significance identification. Otherwise, the coefficient is said to be significant, and
the bit by is to be encoded in the mode of refinement. We distinguish between
significance identification and refinement because a significance identification bit

SIGNIFICANT REFINEMENT
IDENTIFICATION

bg bs|bs by b, b, b, SIGN

45 110/ 1]+ H &Rsfemrﬁgﬁ:e\NCE(PN)
crimicaL) /4 0/10
BAND 1 PREDICTED
21 1101 SIGNIFICANCE (PS)
14 1110
4 11070/~ [ REFINEMENT (REF)
CRITICAL -18 0/10]- |
BAND 2 4 1100+
-1 010:1]-

FIGURE 6.7: Subbit plane-embedded entropy coding.
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has a very high probability of being 0, while a refinement bit is usually equally
distributed between 0 and 1. The sign of the coefficient only needs to be encoded
immediately after the coefficient turns significant, that is, a first nonzero bit in
the coefficient is encoded. For the bit array in Figure 6.7, the significance iden-
tification and the refinement bits are separated by a solid bar. For a critical band
si k, we call the band insignificant if all the coefficients in the critical band are
insignificant. It becomes significant when at least one coefficient is significant.
EAC defines three subbit planes in a bit plane: the predicted significance (PS),
the refinement (REF), and the predicted insignificance (PN). The PS subbit plane
consists of bits of coefficients that are insignificant but has at least one neigh-
bor known to be significant. The REF subbit plane consists of bits of coefficients
that are already significant, that is, in the refinement mode. The PN subbit plane
consists of bits of coefficients that are insignificant with no neighbors known to
be significant. The subbit plane design is motivated by previous work on image
coding [4] and the JPEG 2000 standard [14], which show that bits in different
subbit planes contribute different decreases in average distortion per coding bit
spent. For the sample bit array in Figure 6.7, we show the subbit plane types with
different shades for the first three bit planes of the bit array.

We call a subbit plane of a critical band as an embedded coding unit (ECU).
ECU is the smallest unit in the EAC reordering operation. The coding orders of
ECUs are determined by the instantaneous JND threshold of the critical band.
First, the initial auditory JND thresholds are calculated by using the quiet thresh-
old. Using the initial threshold, the coding order of the ECUs is determined, and
a set of high-priority ECUs is encoded. After a number of ECUs have been en-
coded or after a certain update interval, the auditory JND threshold is recalculated
by both the encoder and decoder based on the partially coded coefficients at the
moment. The updated JND threshold is then used to determine the formation and
the coding order of the remaining ECUs. The process iterates until a certain end
condition is met.

Note that we deliberately chose to update the JND threshold infrequently rather
than updating after the encoding of one ECU or even after encoding one bit. This
is in order to reduce the computational cost required of updating the JND thresh-
old. Because in EAC, a slightly outdated JND threshold only leads to a slightly
nonoptimal coding order of the ECUs, its impact on compression performance is
minimal.

We mark the identity of each ECU by the critical band the ECU resides in and
an ID that identifies the subbit plane. The ID is a rational number whose integer
part is just the bit plane index and whose fractional part is assigned according to
the subbit plane class. Currently, the PS, REF, and PN subbit planes are assigned
with fractional values 0.875, 0.125, and 0.0, respectively. As an example, the ID
of the PS subbit plane of bit plane 7 is 7.875. The fractional value is designed
with the consideration of the average rate-distortion contribution of each subbit
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plane class. Within each critical band, EAC encodes the ECUs according to the
descending order of their IDs. For a critical band with a total of L bit planes, the
first ECU to be encoded is the PN subbit plane of bit plane L — 1 (ID: L — 1.0)
because all coefficients are insignificant at bit plane L — 1. The next three subbit
planes to be encoded are the PS (ID: L — 1.125), REF (ID: L — 1.875), and PN
(ID: L — 2.0) subbit planes of bit plane L — 2. Subsequently, the subbit planes
of bit plane L — 3 are encoded. With the order of ECUs within a critical band al-
ready determined, the implicit auditory masking process only needs to determine
the order of the ECUs among different critical bands. Conveniently, this can be
done by determining the critical bands whose ECUs are next in line to be coded.
We assign two important properties to each critical band: an instantaneous JND
threshold and a progress indicator. The instantaneous JND thresholds are based
on the partially reconstructed coefficient values of already coded coefficients, and
the progress indicator records the ID of the next ECU to be encoded. It is the gap
between the progress indicator and the instantaneous JND threshold that deter-
mines the coding order of ECUs. The coding process of the subbit plane entropy
coder with implicit auditory masking can thus be described as follows.

1. [Initialization.
The maximum bit plane L of all coefficients is calculated. The progress
indicators of all critical bands are set to the PN subbit plane of bit plane
L — 1 (with ID: L — 1). The initial instantaneous JND threshold of each
critical band is set according to the quiet threshold. We also mark all critical
bands as insignificant.

2. Finding the current gap.
For each critical band, we calculate a gap between its progress indicator
and the instantaneous JND threshold. The gap is closely related to the
level of the coding noise over the auditory JND threshold, the noise-to-
mask ratio (NMR). The largest gap among all critical bands is defined as
the current gap. The value of the current gap can be negative, which sim-
ply means that the coefficients with signal energy level below the auditory
JND threshold are encoded. It can be easily proven that the instantaneous
JND threshold is monotonically increasing and the progress indicator is
monotonically decreasing. Therefore, the current gap shrinks in every iter-
ation.

3. Encoding all critical bands with gap equal to the current gap.
We encode all critical bands with gap value the same as the current gap in
this iteration. Such a process leads to the encoding of the ECUs with the
largest reduction of NMR per coding bit spent. This encoding step may
further consist of the following substeps.
(a) Critical band skipping.

If a chosen critical band is insignificant (not a single coefficient is
significant), a status bit is encoded to indicate whether the critical
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band turns significant after the coding of the current bit plane. This is
an optional step. However, it speeds up the coding/decoding operation
significantly, as large areas of zero bits can be skipped with this step.
(b) Encoding the ECU of the critical band.
We locate the ECU, that is, the subbit plane that is next in line to
be coded for each critical band. For each bit in the subbit plane, its
context is calculated and the string of bit and context pairs are then
compressed by a modern context adaptive entropy coder. The process
of context calculation and subbit plane entropy coding is detailed in
Section 6.6.4.
(c) Moving the progress indicator.
After the subbit plane is encoded, the progress indicator moves for-
ward to the ID of the next subbit plane to be encoded.
4. Recording rate-priority points.
After all critical bands of the current gap have been encoded, we record the
current coding rate R; and the current gap S;. These will be used in the bit
stream assembler stage for rate-distortion optimization.
5. Updating the instantaneous JND threshold.
The instantaneous JND thresholds of all critical bands are updated based
upon the already coded ECUs. There are tricks so that the encoder and de-
coder can recalculate the JND thresholds very efficiently, using on average
less than one arithmetic operation per coefficient. For details, please refer
to [3].
6. Repeating steps 1-5.
The steps 1-5 are repeated until a certain end criterion is reached, for ex-
ample, the desired coding bit rate/quality has been reached, or all bits in all
coefficients have been encoded.

6.6.4 Subbit Plane Context Adaptive Entropy Coder

The significance identification bits, refinement bits, and sign bits are not statis-
tically equivalent even within their own categories. Statistical analysis demon-
strates that if an MDCT coefficient x; ; has a large magnitude, its neighboring
coefficients in time and frequency may have a higher probability of having large
magnitudes as well. Moreover, its frequency harmonics (at double and/or triple
frequency) may have large magnitudes too. To account for such statistical differ-
ences, we entropy encode the significance identification bits, refinement bits, and
sign bits with context, each of which is a number derived from the already coded
coefficients in the neighborhood of the current coefficient. The bits within the
same context are assumed to be independent identically distributed (i.i.d.). The
subsequent entropy coding can then automatically gather statistics for bits within
each context, that is, the probability of being one, and use the statistics for effi-



176 Chapter 6: SCALABLE AUDIO CODING

cient entropy coding. Such technique is called context adaptive entropy coding
and is frequently used in modern image/audio/video coding systems.

We first describe the contexts for the refinement bits and sign bits because they
are simpler. The context for the refinement bits depends on the significance sta-
tus of the four immediate neighbor coefficients, which for coefficient x; ; are the
coefficients with the same frequency but for the preceding (x;_1, ;) and follow-
ing (x; 11, ;) time intervals, and coefficients for the same time interval but at lower
(x;, j—1) and higher (x; j11) frequencies. The refinement context is formed accord-
ing to Table 6.1. Depending on the number of bit planes after significance iden-
tification, we assign the refinement bit to one of three refinement coding context
categories: 10, 11, and 12. If one of the four neighbor coefficients is unreachable
as it falls out of the current time slot or the current section or belongs to a frame
with different window size, it is considered insignificant.

To determine the context for sign coding, we calculate a horizontal sign count &
and a vertical sign count v. We separate the four neighbor coefficients into two
pairs, a horizontal pair (x; ;1 and x; j;1) and a vertical pair (x;_1,; and x; 41 ;).
For each pair, the sign count is calculated according to Table 6.2. The expected
sign and the context of sign coding can thus be further calculated according to
Table 6.3. Depending on the sign and significance status of the neighbors, the
sign bit is assigned with one of five context categories: 13, 14, 15, 16, and 17.
The context for the refinement and sign coding is designed with reference to the
context used in the JPEG 2000 standard [14]. However, the significance identifi-
cation context is specially tailored for audio coding. To calculate the context of the
significance identification bit, we not only use the significance status of the four
neighbor coefficients, but use the significance status of the half-harmonics x; ;2
and the MDCT window size. The use of the half-harmonic frequency is due to the
fact that most sound-producing instruments produce harmonics of the base tone.
Therefore, there is a strong correlation among the coefficient and its harmonics.
The context used for the significance identification can be found in Table 6.4. De-

Table 6.1: Context for the refinement bit.

Context Description
10 Current refinement bit is the first bit after significance identification
and there is at least one significant coefficient among the immediate
four neighbors.

11 Current refinement bit is the first bit after significance identification
and there is no significant coefficient in the immediate four
neighbors.

12 Current refinement bit is at least two bits away from significance

identification.
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Table 6.2: Calculation of sign count.

Sign count Description
—1 Both coefficients are negative significant or one
is negative significant and the other is insignificant.

0 Both coefficients are insignificant or one
is positive significant and the other is negative significant.

1 Both coefficients are positive significant or one
is positive significant and the other is insignificant.

Table 6.3: Expected sign and context for sign coding.

Sign count h —1 —1 —1 0 0 0 1 1 1

v -1 0 1 —1 0 1 -1 0 1
Expected sign - - + - + + — + +
Context 13 14 15 16 17 16 15 14 13

Table 6.4: Context for significance identification (S: significant, N: nonsignifi-
cant, *: arbitrary).

Context MDCT window size Significance status of coefficient
Xi,j—1 Xi—1,j Xi+1,j Xi,j/2
0 2048 N N N N
1 2048 * S * *
2 2048 S N * *
3 2048 N N S *
4 2048 N N N S
5 256 N N N N
6 256 * S * *
7 256 S N * *
8 256 N N S *
9 256 N N N S

pending on the significance status of the four neighbors and the half-harmonics,
we classify the significance identification bit into one of 10 contexts: 0-9.

As a summary, a total of 18 contexts are used for embedded audio coefficient
coding. Of these, there are 10 contexts for significance identification, 3 for refine-
ment coding, and 5 for sign coding.

6.6.5 Context Adaptive Entropy Coder

Through the aforementioned process, the section of quantized audio coefficients
is turned into a sequence of bits, each of which is attached with a context. All bits



178 Chapter 6: SCALABLE AUDIO CODING

associated with the same context are assumed to be independently and identically
distributed (i.i.d.). Let the number of contexts be N, and let there be n; bits in
context i, within which the probability of the bits to take value 1 is p;. Using
classic Shannon information theory, the entropy of such a bit-context sequence
can be calculated as

—1
H =" ni[—pilog, pi — (1 = p)logy(1 = p)]. (6.17)

=

The task of the context entropy coder is thus to convert the sequence of bit-context
pairs into a compact bit stream representation with length as close to the Shannon
limit as possible. Several coders are available for such task. The coders used in
EAC include the adaptive Golomb coder [6] and the QM coder. It is observed that
the adaptive Golomb coder has about the same compression efficiency as the QM
coder, with roughly the same complexity.

In the following, we describe the implementation of the QM coder with fo-
cus on three key aspects: general arithmetic coding theory, fixed point arithmetic
implementation, and probability estimation.

The Elias Coder

The basic theory of the MQ coder can be traced to the Elias Coder, or recursive
probability interval subdivision. The process can be graphically illustrated in Fig-
ure 6.8. Let $9S1.5,---S,, be a series of bits that is sent to the arithmetic coder.

1 Coding
P result:
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G lp | e

(Shortest binary

1tP, bit stream ensures that
e interval
1tP, B=0.100 0000000 to
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FIGURE 6.8: Elias coder: Probability interval subdivision.
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Let P; be the probability that the bit S; is 1. We may form a binary representation
(the coded bit stream) of the original bit sequence by the following process:

1.

Initialization.

Let the initial probability interval be (0.0, 1.0). We denote the current prob-
ability interval as (C, C + A), where C is the bottom of the probability in-
terval and A is the size of the interval. After initialization, we have C = 0.0
and A =1.0.

Probability interval subdivision.

The binary symbols SpS1S2 - - - S, are encoded sequentially. For each sym-
bol §;, the probability interval (C, C + A) is subdivided into two subin-
tervals (C,C + A(1 — P;)) and (C + A(1 — P;),C + A). Depending on
whether the symbol S; is 1, one of the two subintervals is selected. That is,

c=cC, A=A(1—-P;) forS;=0, and 6.18)
C=C+A-(1—-P), A=A-P for S, =1. '
Bit stream output.

Let the final coding bit stream be referred to as k1 - - - ky,, where m is the
compressed bit stream length. The final bit stream creates an uncertainty
interval where the lower bound B and upper bound D can be expressed as

D =0kiky - -ky111---,

(6.19)
B =0.k1kz-- -k, 000---.

As long as the uncertainty interval (B, D) is contained in the probability
interval (C, C 4+ A), the coding bit stream uniquely identifies the final prob-
ability interval, and thus uniquely identifies each subdivision in the Elias
coding process. The entire binary symbol string SoS1.52 - - - S, can thus be
recovered from the compressed representation. It can be shown that it is
possible to find a final coding bit stream with length

m < [—log, A1 +2 (6.20)

to represent the final probability interval (C, C 4+ A), where [x] returns the
smallest integer that is larger than or equal to x. Notice A is the probability
of the occurrence of the binary strings SoS152 - - - S, and the entropy of the
symbol stream can be calculated as

H= Y —AlogA. 6.21)
S()S]“'Sn

The arithmetic coder thus encodes the binary string within 2 bits of its en-
tropy limit, no matter how long the symbol string is. This is very efficient.
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The Arithmetic Coder: Finite Precision Arithmetic Operation

Exact implementation of Elias coding requires infinite precision arithmetic, an
unrealistic assumption in real applications. Using finite precision, Elias coding
becomes arithmetic coding. Observing the fact that the coding interval A becomes
very small after a few operations, we may normalize the coding interval parame-
ters C and A as

C=15[0kky---kp]1+27L-1.5.C,,

A=27F.15 A, (©:22)
where L is a normalization factor determining the magnitude of the interval A.
The fixed-point integers A, and C, are fixed-point integers representing values
between (0.75, 1.5) and (0.0, 1.5), respectively. Bits k1 k; - - - k1 are the output bits
that have already been determined (in reality, certain carryover operations have to
be handled to derive the true output bit stream). By representing the probability
interval with the normalization L and fixed-point integers Ay and Cy, it is possi-
ble to use fixed-point arithmetic and normalization operations for the probability
interval subdivision operation. Moreover, since the value of A, is close to 1.0, we
may approximate A, - P; with P;. The interval subdivision operation (6.18) may
thus be calculated

C, =Cy, Ay =A,— P forS;=0, and

(6.23)
C=CH+A,—P, A, =P for §; =1,
which can be done quickly without any multiplication. The compression perfor-
mance suffers a little, as the coding interval now has to be approximated with a
fixed-point integer, and A, - P; is approximated with P;. However, experiments
show that the degradation in compression performance is less than 3%, which is
well worth the saving in implementation complexity.

Probability Estimation

In the arithmetic coder it is necessary to estimate the probability P; of being 1
for each binary symbol S;. This is where context comes into play. Within each
context, the symbols are coded as if they are independently distributed. We es-
timate the probability of the symbol within each context through observation of
the past behaviors of symbols in the same context. For example, if we observe n;
symbols in context i, with o; symbols being 1, we may estimate the probability
that a symbol takes on the value 1 in context i through Bayesian estimation as

_0,'+1

. 6.24
12 (6.24)

i
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In the QM coder, probability estimation is implemented through a state-transition
machine. It may estimate the probability of the context more efficiently and may
take into consideration the nonstationary characteristic of the symbol string. Nev-
ertheless, the principle is still to estimate the probability based on past behavior
of the symbols in the same context.

6.7 BIT STREAM ASSEMBLER

Finally, a bit stream assembler module allocates the available coding bits among
the time slots, channels, and sections, and produces the final compressed bit
stream.

Recall from Section 6.6.3 that each section of quantized MDCT coefficients
is compressed separately into an embedded bit stream. We record a rate and a
priority value each time the current gap shrinks. Let R; . 5 ; and S; . s,; be the rate
and priority value for time slot ¢, channel c, section s, and truncation point i. The
main functionality of the bit stream assembler module is thus to find the proper
truncation point for each section of bit stream and to generate a combined bit
stream.

The bit stream assembly module may operate in a number of modes. It may
operate in distortion controlled mode. In this case, the user may define a desired
NMR Sgesired for the compressed bit stream. The bit stream assembler module
then truncates all segments with distortion smaller than the desired NMR away,
and leaves only those segments with distortion greater than threshold. The trun-
cation point i for time slot 7, channel ¢, and section s can be expressed as

i = argm]?X(St,c,s,i > Sdesired)- (6.25)

The bit stream assembler may operate in rate controlled mode. The user defines
a total bit rate Ry for the entire compressed audio file (for variable bit rate
coding) or a bit rate R for each time slot (for constant bit rate coding). The bit
stream assembler then searches for the right priority value S, which truncates the
embedded section bit streams according to (6.25) and allows the total length of
the truncated bit streams to stay just below the bit rate limit.

After the truncation points for each section are determined, the bit stream as-
sembler combines the section bit streams into an EAC master bit stream. The bit
stream syntax of the master bit stream is as follows. (It is also the syntax of the
application bit stream that is derived from the master bit stream.) The EAC bit
stream starts with a global header, which identifies the EAC bit stream and stores
global codec information such as the parameters of the transform module and
entropy coding module. The global header is then followed by the compressed
bit streams of individual time slot. The time slot is again led by a header, which
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FIGURE 6.9: EAC bit stream syntax (master and application bit
stream).

records the lengths of the compressed bit streams in the time slot, and the lengths
of the compressed bit streams of the individual sections. The time slot header is
then followed by the truncated embedded bit stream of each section of each audio
channel of that time slot. The syntax of the EAC master bit stream is shown in
Figure 6.9.

Finally, the bit stream assembler generates a companion file that holds the struc-
tural information of the EAC bit stream. In EAC, the companion file stores the rate
R; ¢.5.;i and priority S; . ; value pairs of all sections up to the truncation points.
The companion file is not necessary for decoding an EAC bit stream or scaling
the EAC bit stream by the number of audio channels or audio sampling rate. If
the compressed audio is scaled by channels, the compressed bit streams of the
unused channels are removed from the bit stream. If the compressed audio is
switched into a lower sampling rate, the compressed bit streams of the sections
corresponding to higher sampling rate are dropped. When the EAC bit stream is
scaled by bit rate, the companion file is used. In this case, the EAC parser reads
both the EAC master bit stream and the associated companion file. Then, the
bit stream assembler is called upon to redetermine the truncation points of the
bit streams of each section based on the new desired bit rate. An application bit
stream of a different coding bit rate can thus be generated.

6.8 SUMMARY AND FURTHER READING

The main objective of this chapter is to get the reader familiar with scalable au-
dio coding technology. We looked at the concepts, framework, and fundamental
building blocks of scalable audio compression. Using EAC, an embedded audio
coder, as an example, we provided a framework for fine grain scalable audio cod-
ing. We studied the individual building blocks of EAC, including the channel
mixer, the audio transform, the quantization and section split unit, the auditory
masking module, the embedded subbit plane entropy coder, and the bit stream
assembler. Throughout the chapter, we explained how scalable audio coding dif-
fers from nonscalable audio coding in terms of technology used. This knowledge
should aid the reader in building and using scalable audio coding technologies in
his or her own work.
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Scalable audio coding is a very attractive feature for audio storage and trans-
mission. We gave a brief description on how scalable coded audio can be used
in storage applications in Section 6.1. Scalable coding is one of the fundamental
aspects of advanced media transmission technologies. Examples of using scalable
coding to improve quality of service in media delivery can be found extensively
in Chapters 2, 4, 9, 10, and 14 of this book.
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Channel Protection
Fundamentals

Raouf Hamzaoui, Vladimir Stankovi¢, Zixiang Xiong,
Kannan Ramchandran, Rohit Puri, Abhik Majumdar, and
Jim Chou

7.1 INTRODUCTION

In many ways, the Internet (or a wireless network for that matter) can be regarded
simply as a communication channel in a classical communication system. This
chapter discusses the fundamentals of channel protection that lie beneath the error
control techniques used to communicate multimedia over the Internet and wireless
networks.

The goal of a classical communication system is to transfer the data generated
by an information source efficiently and reliably over a noisy channel. The basic
components of a digital communication system are shown in Figure 7.1: a source
encoder, channel encoder, modulator, demodulator, channel decoder, and source
decoder.

The source encoder removes the redundancy in the digital data produced by
the information source and outputs an information sequence. If the information
source is analog, its output must be digitized before it is processed by the source
encoder. The channel encoder adds redundancy to the information sequence so
that channel errors can be detected or corrected. The output of the channel encoder
is a finite sequence of symbols called a channel codeword. The set of possible
channel codewords is called a channel code. The modulator maps the channel
codeword to a signal that is suitable for transmission over a physical channel. The
demodulator converts the received signal into a discrete sequence of real numbers
of the same length as the channel codeword. In hard decision decoding, each
real number in the sequence is mapped to a channel code symbol before being
processed by the channel decoder. When the real numbers are left unquantized
or quantized to a number of levels that is greater than the size of the channel

187
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Source Source Encoder Channel Encoder Modulator

Channel

Destination Source Decoder Channel Decoder Demodulator

FIGURE 7.1: Basic components of a digital communication system.

code alphabet, one speaks of soft decision decoding. The channel decoder tries
to recover the input to the channel encoder from the output of the demodulator.
Finally, the source decoder produces an estimate of the information sequence.

In this chapter, we look in detail at the basic constituents of a communication
system. In Section 7.2, we briefly explain the notions of entropy of an information
source, mutual information, rate—distortion function, and capacity of a channel.
These notions are needed to introduce four fundamental theorems due to Claude
Shannon: the noiseless coding theorem [45], the source coding theorem [46], the
channel coding theorem [45], and the source-channel coding theorem [46]. Our
exposition mainly follows that of McEliece [17], where proofs of the theorems can
be found. For simplicity, we focus on discrete memoryless sources and channels.
References are provided for extensions and generalizations. Shannon’s coding
theorems give an insight on what can be achieved by a communication system.
Unfortunately, the theorems are not constructive. Optimal codes were shown to
exist, but it was not explained how to construct them. The remainder of the chap-
ter is dedicated to practical system design. Section 7.3 contains an overview of
the most important channel codes. Section 7.4 reviews state-of-the-art modula-
tion techniques, focusing on a promising method called hierarchical modulation.
Section 7.5 considers communication systems where feedback information can be
sent from the receiver to the transmitter. In this situation, error control based on
error detection and retransmission (automatic repeat request [ARQ]) can be more
efficient than error correction alone (forward error correction [FEC]). We review
the most important ARQ techniques and discuss hybrid methods that combine
ARQ and FEC.

7.2 SHANNON’S SOURCE AND CHANNEL THEOREMS

An information source is given by a sequence of random variables X, each of
which takes values in an alphabet A. We say that the source is discrete if the al-
phabet A is finite or countable. We say that the source is memoryless if the random
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variables X, are independent and identically distributed. For simplicity, a discrete
memoryless source X, will be denoted by a random variable X whose probability
distribution p(x) is the probability distribution common to all the random vari-
ables X,,.

Definition 7.1 (Entropy of a discrete memoryless source). Let X be a discrete
memoryless source with alphabet A. The entropy of X is

H(X)==)_p(x)log p(x),

where the sum is taken over all x € A for which p(x) > 0.

Any base of the logarithm can be used in the expression for the entropy. When
this base is two, the entropy is measured in bits.

The entropy of a discrete memoryless source X measures the amount of un-
certainty in the source. Since the entropy is completely defined by the probability
distribution of X, we speak also of the entropy of the random variable X.

Given the discrete random variables X, Yy, ..., Y,, the conditional entropy
H(X | Yy,...,Y,) is the average uncertainty remaining in X after observing
Y1,...,Y,. Formally, with H(X | y1,..., ) = —pr(x | Y1,..., yn)log p(x |
Vls-e-s Yn), We set

HX Y1 Y= Y pOi oy HX | Y1)
YiseesVn

The difference I(X;Y) = H(X) — H(X|Y) is known as the mutual information
of the two random variables X and Y. It expresses the amount of information
provided by Y on X.

7.2.1 Source Coding

A code C of size M over an alphabet B is a set of M words, possibly varying in
length, made up of symbols from B. The words in C are called codewords. The
length of a codeword ¢ (i.e., the number of symbols in ¢) is denoted |c|. When
all the codewords in C have the same length k, we say that C is a block code of
length k.

7.2.1.1 Lossless Source Coding

To compress a discrete source X,, over alphabet A without information loss, one
can use a lossless encoding scheme (C, f), which consists of a code C (known as
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a source code) and an injective map f : A — C (known as an encoder). A source
code C is uniquely decodable if for all positive integers k and all codewords
ci,d;, i =1,...,k, the equality ¢| *---x ¢ =dp * --- % di implies that ¢; = d;
foralli =1, ..., k. Here % denotes concatenation.

The average codeword length of an encoding scheme (C, f) with respect to a
discrete memoryless source X can be expressed L =" p(x)|f(x)].

Shannon’s noiseless coding theorem [45] says that the entropy of a discrete
memoryless source X over alphabet A gives the smallest average number of code
symbols (from the alphabet B) needed to losslessly represent one source symbol
(from the alphabet A), when the base of the logarithm is |B|. Before stating the
theorem more precisely, we must define the extension of a discrete source. The
kth extension of a source X,, is the source Xﬁ = (X(n—1)k+1> - - - » Xnk) obtained
by blocking X, into blocks of length k. Thus if X, is a discrete memoryless
source taking values in A, then X ,’j is a discrete memoryless source taking values
in A%, where AF is the set of all words of length k over A.

Theorem 7.1 (Shannon’s noiseless coding theorem). Let X be a discrete mem-
oryless source. Let X* be its kth extension. Let Ly, be the minimum average code-
word length over all encoding schemes for X* whose codes are uniquely decod-
able. Then

H(X) < L <H(X)+1
k- k

7.2.1.2 Lossy Source Coding

Suppose now that the symbols generated by a discrete memoryless source X over
alphabet A are to be reproduced by symbols from a finite alphabet A called the re-
producing alphabet. A single-letter distortion measure d : A X A — R measures
the distortion d(x, y) when symbol x € A is reproduced as y € A. The distor-
tion between a word X = (x1,...,xx) € A¥ and a word y = (y1,..., ) € Ak is
defined as d(x,y) = Y, d(x;, yi).

A lossy compression scheme (C, k, M, f) for the memoryless source X is given
by a block code C of length k and size M over the reproducing alphabet A, and
a mapping f from AX to C. This compression scheme allows us to represent any
sequence of k source symbols with [log, M bits. Thus the rate of a block code
of length k and size M is defined to be (log, M)/ k bits per symbol.

Example 1. Let A = {0, 1}, A= {0, 1}, and C = {00, 11}. Then the mapping
f : A> = C given by £(00) =00, f(01) =00, f(10) = 11, f(11) = 11 defines
a lossy compression scheme (C, 2,2, f) for the source X. By using the binary
representation 00 — 0 and 11 — 1, any sequence of two source symbols can be
represented by one bit.
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The average distortion of the lossy compression scheme (C, k, M, f) with re-
spect to the source X and the single-letter distortion measure d is

1
DEC. kM, fy=2 Y p(d(x, f (),

xe Ak
where for x = (xq, ..., xx), p(X) = ]_[ff:1 p(xi).

Example 2. In Example 1, suppose that the distortion measure d is given by
d(x,y)=0if x =y and d(x, y) = 1, otherwise. Suppose also that Pr{X =0} =
p(0) = p, where 0 < p < 1/2. Then the average distortion of the lossy compres-
sion scheme (C, 2,2, f) is p(1 — p).

Let Y be a random variable that is jointly distributed with X according to the
joint probability distribution p(x, y) = p(x) p(y|x) for some conditional proba-
bility distribution p(y|x) = py|x(y|x). As a function of the conditional probabil-
ity distribution py,x, the average distortion when X is reproduced as Y is thus

Dipyix)= Y, px)p(lnd(x,y).

xeA,yeA

Note that the smallest value that can be taken by D(py x) is

Duin =Y _ p(x)m'gd(x, y)-

xeA ye

Definition 7.2 (Rate-distortion function). Let X be a discrete memoryless
source over alphabet A, and let Abea reproducing alphabet. The rate—distortion
function of the source X with respect to a single-letter distortion measure d :
A x A — RT is the function

R(D) = min 1(X;Y),
pyix:D(py|x)<D

for all D > Dypin, where the minimum is taken over all conditional distributions
p(y|x) subject to the constraint D(py|x) < D.

Henceforth we assume that the base of the logarithm in the mutual information
is 2, so that R(D) is measured in bits.
We can now state Shannon’s source coding theorem [46].
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Theorem 7.2 (Shannon’s source coding theorem). Let X be a discrete memo-
ryless source over alphabet A, and let Abea reproducing alphabet. Let R(D)
be the rate—distortion function of the source X with respect to a single-letter
distortion measure d : A x A — R*. Then for any D' > D and R' > R(D),
there exists a lossy compression scheme (C,k, M, f) such that M < 2R ana
D(CC,k,M, f)< D'

The theorem roughly says that one can reproduce the source symbols with an
average distortion that is smaller than D by spending no more than R(D) bits per
source symbol.

7.2.2 Channel Coding

A discrete channel takes at every time unit # a symbol from a finite input alphabet
Ayx and outputs symbols from a finite output alphabet Ay.

Let X,, be the random variable that gives the nth input symbol of the channel
and let Y, be the random variable that gives the nth output symbol of the chan-
nel. We say that the channel is memoryless if Pr{Y, =y | X, = x} = p(y|x) is
independent of n for all y € Ay and x € Ay, the transition probabilities p(y|x)
satisfy p(y|x) > 0 and ZyeAy pOlx)=1,and Pr{Y1=y1,....,Ya =yn | X1 =

Xty .., Xp=xn} =[1i_; p(ilx;) for all n.

Definition 7.3 (Channel capacity). The capacity of a discrete memoryless chan-
nel with input alphabet Ay, output alphabet Ay, and transition probabilities
p(y|x), ye Ay, x € Ax is

C=maxI(X;Y),
Px

where X is a random variable that gives the input symbol to the channel and Y
is a random variable that gives the corresponding output symbol according to the
joint probability distribution p(x, y) = p(x)p(y|x), for some source distribution
p(x) = px(x).

Since we assume that the base of the logarithm in the mutual information is 2,
C is measured in bits.

Example 3. The binary symmetric channel (BSC) is a discrete memoryless chan-
nel with Ax = Ay = {0, 1} and transition probabilities p(0|1) = p(1]|0) = p and
p0]0) = p(1|1) = 1 — p. When a bit is sent over the BSC, it is either corrupted
with probability p or correctly received with probability 1 — p. It is easy to prove
that the capacity of the BSCis 1 + plog p + (1 — p)log(1 — p) [15].
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Example 4. The binary erasure channel (BEC) is a discrete memoryless channel
with Ay = {0, 1}, Ay = {0, 1, ?} and transition probabilities p(?|0) = p(?|1) =p
and p(0]0) = p(1]1) =1 — p. When a bit is sent over the BEC, it is either erased
with probability p or correctly received with probability 1 — p. The capacity of
the BEC is 1 — p [15]. More details on the BEC are provided in Chapter 8.

We now consider the situation when the symbols generated by a discrete source
U with source alphabet A are to be sent over a discrete channel with input alphabet
Ayx and output alphabet Ay. To protect the source symbols against transmission
errors, redundancy is added. For this, we use a channel code, which is a block
code C of length n over Ayx. We also use a channel encoding scheme, which is
an injective function from A to C. Using the channel encoding scheme, blocks
(u1,...,ur) of source symbols of length k£ are mapped to channel codewords
of length n. The channel codewords are then sent over the channel where errors
may occur. Next, a function g from A} to C called a channel decoding scheme
is used to map a received word y = (y1, ..., yn) to a channel codeword. Finally,
this channel codeword is mapped to the corresponding source word (i1, ..., i)
(since the encoding scheme is injective, this source word is unique when it exists).
The rate of transmission of this system (or code rate of the code C) is % It char-
acterizes the speed with which source information is transmitted over the channel
or equivalently the redundancy introduced by the channel code.

An ideal channel decoding scheme for this system minimizes the probability of
a word decoding error

Pezz Z PrHY =y |X=c}Pr{X=c},

ceC yeAy g(y)#e

where Y = (Y1, ...,Y,) and X = (X1, ..., X;). This is realized with maximum
a posteriori decoding, where the received word y = (y1, ..., y») is mapped to
a channel codeword ¢ = (c1, ..., ¢;) that maximizes the probability Pr{X =c |
Y =y}. In practice, however, one uses maximum-likelihood decoding, where y
is mapped to a channel codeword ¢ that maximizes the probability Pr{Y =y |
X =c¢}. Itis easy to see that maximum-likelihood decoding is equivalent to max-
imum a posteriori decoding when all channel codewords are generated with the
same probability. Another important decoding scheme is known as minimum dis-
tance decoding where the received word y = (y1, ..., y,) is mapped to a channel
codeword ¢ = (cy, ..., c,) that has smallest Hamming distance to y. Here the
Hamming distance is defined as follows.

Definition 7.4 (Hamming distance). Let x = (x1,...,x,) andy = (¥1, ..., ¥u)
be two words of the same length. The Hamming distance dy (X, y) between x and
y is equal to the number of indices k € {1, 2, ..., n} such that x; # y.
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Given a BSC with bit error probability p, we have
Pr{Y=y|X=c}=pin¥ (1 - pyr=dney, (7.1)

If0 < p < 1/2, the probability in (7.1) is largest when dg (¢, y) is smallest. There-
fore minimum distance decoding and maximum-likelihood decoding are equiva-
lent for this channel.

An alternative to minimizing the probability of a word decoding error is to min-
imize the information symbol error rate p, defined as p, = % Zf:l pé’), where
p,gi) = Pr{u; # u;}. When the symbols are bits, the information symbol error rate
is called the information bit error rate (BER). Note that %Pe < pe < P,. To min-
imize the information symbol error rate, the decoder uses the symbol maximum
a posteriori (MAP) rule, where for i = 1, ..., k, the reconstructed information
symbol #; is computed as a symbol u € A that maximizes the a posteriori proba-
bility Pr{U; =u | Y =y}. Here U; is the random vector that corresponds to the
information symbol u;, i =1, ... k.

The channel coding theorem [45] states that the source information can be
transmitted reliably over a noisy channel, provided the rate of transmission is
below the capacity of the channel. In other words, any rate below the channel
capacity is achievable.

Theorem 7.3 (Shannon’s channel coding theorem). Consider a discrete mem-
oryless channel with input alphabet Ax and capacity C. For any positive number
R < C and ¢ > 0, there exists a channel code C = {c1, ..., ¢y} of length n over
Ax and a channel decoding scheme g such that

1) M >2[Rnl,
2) If codeword c; is sent over the channel and word 'y is received, then
Prig(y) #ci} <eforalli=1,..., M.

7.2.3 Source-Channel Coding

Suppose now that the output of the channel decoding scheme is mapped to a word
of length k over a reproduction alphabet A. The average distortion of the resulting
transmission system is %E [d(U, V)], where the random vector U describes a word
of k successive source symbols, the random vector V describes the corresponding
word of k reconstructed symbols, and E denotes the expectation operator.

The source-channel coding theorem [46] says what a system can achieve in
terms of average distortion and rate of transmission.

Theorem 7.4 (Shannon’s source-channel coding theorem). Given a discrete
memoryless source characterized by rate—distortion function R(D), a discrete
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memoryless channel characterized by capacity C > 0, any D > Dy, and any
r < C/R(D), there exist for sufficiently large k and n an encoding scheme that
maps source words of length k into channel words of length n and a decoder
that maps channel output words of length n into reproduced words of length k
such that the expected distortion is at most D and the transmission rate k/n is at
least r.

The encoding scheme promised by the theorem is a concatenation of a lossy
compression scheme and a channel encoding scheme. The theorem is also known
as the separation theorem because the lossy compression scheme and the channel
encoding scheme can be designed independently.

7.2.4 Extensions

Shannon’s theorems can be extended to more general information sources. For
example, we say that a discrete source X, is stationary if the random process
X, is stationary. The nth marginal entropy of a stationary source is H, = H (X}, |
Xu—1,..., X1). One can show that when the source is stationary, the sequence H,
is decreasing and bounded below by zero. This allows us to define the entropy of
a stationary source as follows.

Definition 7.5 (Entropy of a stationary source). Let X,, be a stationary source.
The entropy of the source (also often called the entropy rate of the source) is
defined H = lim,_, o H,,.

With this definition, Shannon’s noiseless coding theorem can be extended
to stationary sources that satisfy the asymptotic equipartition property [3]. The
source coding theorem can also be extended to sources with abstract alphabets,
including the set of real numbers in particular [22].

Shannon’s channel coding theorem can be extended to other channels, the most
famous one being the additive white Gaussian noise (AWGN) channel. In the
time-discrete AWGN channel, both the channel input alphabet Ay and the chan-
nel output alphabet Ay are the set of real numbers R. The relationship between
the random variable X, that gives the nth input to the channel and the random
variable Y, that gives the nth output of the channel is given by Y, = X, + Z,,
where {Z,} is a sequence of independent, identically distributed, Gaussian ran-
dom variables with mean 0 and variance Ny/2. One can show [15] that for this
channel reliable transmission is possible as long as the rate of transmission is
smaller than the capacity

1 2P
C = —log,| 1 + — | bits per transmission,
2 No
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where P is a constraint on the expected value of the random variable X2. If
we denote by R the rate of transmission, by E; = P the symbol energy, and by
E, = E/R the energy per bit, then the condition R < C gives E;/ Ny > 22; '3 1
for reliable transmission. Here Ej, /Ny is called the bit energy to noise spectral
density ratio and 22; —1 is the Shannon bound. Since R > 0, we must also have
Eyp/No > log,2 or 10logyq E»/No > —1.6 dB, which is called the theoretical
Shannon limit.

In the time-continuous AWGN channel, the relationship between the transmit-
ted signal s () (the output of the modulator) and the received signal r (¢) (the input
of the demodulator) is r(t) = s(t) + n(t), where n(t) is a white Gaussian noise.

The capacity of a band-limited AWGN channel is [15]

P
C=Wlo 1 + ——— | bits per second,
25) ( NoW ) p

where W is the channel bandwidth in Hz, Ny /2 is the power spectral density of
the noise, and P is a constraint on the average power. When P is much smaller
than NoW, the channel is called a wideband AWGN channel. One can prove [11]
that if binary modulation is used and the demodulated signal is sampled at a rate
of 2W, then Ej/Ng must be larger than the practical Shannon limit of 0.2 dB to
achieve a BER of 107 for a rate of transmission R = 1/2.

7.3 CHANNEL CODING AND ERROR CONTROL FOR BIT ERRORS
AND PACKET LOSSES

Channel codes can be divided into two classes: linear and nonlinear. Linear codes
are easier to implement and, as a result, have received a greater amount of at-
tention historically. We will also confine our attention to linear codes in this
section. We first describe linear block codes, including cyclic redundancy check
(CRC) codes for error detection, Reed—Solomon codes, low-density parity-check
(LDPC) codes, irregular repeat-accumulate (IRA) codes, tornado codes, digital
fountain codes, and lattice codes. We then describe convolutional codes, rate-
compatible punctured convolutional (RCPC) codes, and turbo codes. We discuss
the properties of these codes and mention efficient algorithms for encoding and
decoding, emphasizing their computational complexity. We also explain how the
problem of burst errors (explained further in Chapter 8) can be alleviated with
interleaving.

7.3.1 Linear Block Codes

In a linear block code, the codeword symbols are taken from a field. A formal
definition of a field is beyond the scope of this text and may be found in a math-
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ematics book on abstract algebra (see [12]). Informally, a field consists of a set
of elements, together with two operations called addition and multiplication that
must fulfill a given number of properties. Some examples of well-known fields are
the set of real numbers and the set of rational numbers. These fields are known as
infinite fields because they contain an infinite number of elements. Linear block
codes, however, typically consist of elements from a finite field. In particular, con-
sider the finite field GF(2) = {0, 1}. The addition operation for GF'(2) is modulo-2
addition and the multiplication operation is defined similarly to the multiplication
operation for two binary numbers:

0+0=0 0+1=1 1+1=0
0x0=0 0x1=0 1x1=1.

Finite fields are also called Galois fields. The size of a Galois field must be a
power of a prime. Conversely, for any prime power ¢, one can construct a Galois
field of size ¢. Let GF(g) be a finite field of size ¢ and let n be a positive integer.
Then it is easy to check that [GF(g)]" is a linear space over GF(q). An (n, k)
linear block code C over GF(q) is a k-dimensional linear subspace of the linear
space [GF(g)]". In particular, for any two codewords ¢y, ¢y € C, the sum of the
codewords is also a codeword, ¢; + ¢, € C. Since C is a k-dimensional linear
space, we can find a set of k basis vectors so that every codeword can be expressed
as a linear combination of the basis vectors. In vector-matrix notation, we can
express every codeword ¢ of C as

c=1uG, (7.2)

where uis a 1 x k vector of field elements and G is a k x n matrix whose k rows are
k basis vectors. The matrix G is known as a generator matrix and elementary row
operations can be performed on G to form another matrix G’ that will generate
an equivalent code. If G is manipulated to be of the form G = [I|P] where I is
the k x k identity matrix and P is a k x (n — k) matrix, then G is said to be in
systematic form and the first £ symbols of the codeword ¢ will be identical to the
k symbols of u. The final n — k symbols of ¢ are referred to as parity symbols.
The performance of a block code is often measured by the number of errors
that it can correct or the amount of noise that it can remove. The performance is
usually dependent on two things: (1) the decoder that is used to decode a received
word to a codeword and (2) the distance between each pair of codewords in the
block code. Let us first consider the distance between a pair of codewords. For
block codes, the Hamming metric or the Euclidean metric is usually used to mea-
sure the distance between pairs of codewords. The Hamming distance is useful
for measuring the distance between two codewords whose symbols belong to a
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finite field. Sometimes in communications applications, however, each field ele-
ment of the codeword is mapped to a real number. In such scenarios, it is useful
to use a Euclidean metric to determine the distance between codewords. For ex-
ample, if each codeword, ¢; = (¢;.1,¢i2,...,¢i.n), 1s mapped to a vector of real
numbers, r; = (ri 1,7%i2, ..., i n), then the Euclidean distance between two code-
words ¢;, ¢; may be defined as

de(ci,¢j) = \/(ri,l —rj )2+ rip—rj2)?+ -4 (ripg—rja)> (7.3)

Now, if we let dmin represent the minimum distance between any pair of code-
words, and if an arbitrary codeword is transmitted over a noisy channel, then the
codeword may be successfully recovered if the decoder decodes the received word
to the closest codeword and the amount of noise is less than dpi, /2. Note that if
the block code is linear, then the minimum distance dpi, is simply the smallest
weight of a nonzero codeword. Here the weight of a codeword is the number of
its nonzero symbols.

For the Hamming distance, successful decoding translates into there being less
than dpin/2 changes to the symbols of the original codeword, where dp;, rep-
resents the minimum Hamming distance between any pair of codewords. For the
Euclidean distance, successful decoding translates into the magnitude of the noise
being less than dpin /2. For the aforementioned, we may visualize the correct de-
coding region of each codeword to be a sphere with radius dpj,/2 (as in Fig-
ure 7.2), and thus if a codeword is corrupted by noise, as long as the noise does
not perturb the codeword to be outside of its correct decoding region, then suc-

= = codeword

Q = correct decoding

region

FIGURE 7.2: Example of a codebook that consists of several code-
words with a minimum distance of dp,j,. The correct decoding regions are
shown as spheres centered around the codewords with a radius of dpin /2.
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cessful decoding will be guaranteed. It is apparent that for a given n and k, it is
desirable to find a code that maximizes dpin.

Once a code with parameters n, k, and dpy;, is found, efficient encoding and
decoding algorithms for generating the code are necessary to enable the code to
be practical.

In general, if the minimum distance of a linear code is ¢, then the receiver
can detect up to t — 1 transmission errors. However, by using minimum distance
decoding, where the received word is decoded to a nearest codeword, a linear
code of minimum distance ¢ allows the correction of up to L%J errors. It can
be shown that a linear code of minimum distance ¢ can simultaneously correct e,
errors and detect ey errors if e +e4 <t — 1 with e, < e¢;. Moreover it can correct
e erasures and e, errors simultaneously if e, + 2e, <t — 1.

The minimum distance of an (n, k) linear code must be less than or equal to
n —k + 1. Linear (n, k) codes whose minimum distance is equal to n — k + 1 are
called maximum-distance separable (MDS) codes.

Linear codes can be simply modified to obtain new linear codes. Puncturing
a linear code consists of removing a number of coordinate positions from each
codeword. If an (n, k) linear MDS code is punctured, then the resulting code
is an (n — 1, k) linear MDS code. Shortening a linear code consists of keeping
only codewords with the same symbol in a given position and then deleting this
position. If an (n, k) linear MDS code is shortened by keeping only codewords
with the zero symbol in a given position, then the resulting codeisan (n — 1,k —1)
linear MDS code.

The encoding scheme for an (n, k) linear code can be implemented in 0(n?)
time. However, there is no efficient way to decode a general linear code with
maximum-likelihood decoding [8]. Usually one uses syndrome decoding. To ex-
plain syndrome decoding, we must introduce the parity check matrix. The parity
check matrix H of an (n, k) linear code with generator matrix G isan (n — k) X n
matrix whose rows are orthogonal to the rows of the generator matrix, that is,

GH =o0. (7.4)

The parity check matrix may be viewed as a generator matrix for a code that lies
in the null space of G. It is clear that for any codeword ¢ that is generated by G,

cH” =0. (7.5)
Now, if we add an error vector, e to ¢, then
(c+e)H =0+ eH =s5, (7.6)

where we call s the syndrome of (¢ + e). If we let each syndrome correspond to
an error vector, then the function of a syndrome decoder is to first compute the
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Table 7.1: Standard array of a binary code. The first row contains all
codewords of the code. Each following row is formed by taking a min-
imum weight vector, adding it to the first row, and then checking if the
resulting addition is already part of the standard array. If the resulting
addition is not part of the standard array, then it is added as a new row
to the standard array. This process is continued until the standard array
is filled.

C =0 (%) Cok

e e +c¢p... €| + Cy

() ey +c¢r... ey + Cok

e3 e3+¢y ... e3 + Cyk
€yn—k_| €yn—k _q +c... €yn—k _q +c2k

syndrome of the received vector and then subtract the corresponding error vector
from the received vector. Another way of viewing syndrome decoding is through
a standard array [36]. A standard array of a binary code is formed by setting aside
a 2% x 2k array and populating the first row of the array with all 2€ possible
codewords with the all-zero codeword occupying the first column of the first row.
Next, we generate all possible weight 1 error vectors and add each error vector to
the first row to generate another row. This process is continued by increasing the
weight of the error vector and filling the rows until the entire array is populated as
in Table 7.1. If the result of an addition of an error vector with the first row equals
a row that is already in the standard array, then the error vector is skipped and
the next error vector is used to generate further rows. The result will be an array,
where each row corresponds a shift of all of the codewords by an error vector.
The first column will contain the error vectors and each row may be indexed by
the syndrome. Therefore, syndrome decoding may be viewed as indexing a row
of the standard array and then adding the first element of the row to the received
vector.

Example 5. Consider a (3, 1) binary repetition code. This block code consists of
two codewords, {000, 111}. A generator matrix for the code is

G=[111]. (7.7)

The corresponding parity check matrix is

H:[l 0 1]. (7.8)
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And we can tabulate the standard array as follows:

000 111
001 110
010 101 (7.9)
100 011

Notice that the minimum weight codeword is (1, 1, 1) and therefore the minimum
distance of the code is 3. This implies that one error may be corrected if a min-
imum distance decoder is used for decoding. Alternatively, up to two errors may
be detected.

Since the decoding of general linear block codes is not efficient, special classes
of linear codes with fast decoding algorithms were developed. The most popular
of these is the class of cyclic codes. An (n, k) linear code is a cyclic code if
for each codeword (cy, ..., cy—1,cn), the right shift (¢,,cy,...,cy,—1) is also a
codeword.

7.3.1.1 CRC Codes

CRC codes are shortened cyclic binary codes used for error detection. Given a
generator polynomial g(x) =Y 7_, gix', gi €{0, 1} of degree r, the codeword
for a binary information sequence u = (u1, ..., ux) is the concatenation u*p of u
and the word p of length r associated to the polynomial p(x) = x"u(x)mod g(x).
Here we use the unique correspondence between a word w = (uq, ..., u;) of
length m and the polynomial w(x) = wy + wox + --- + wx™ 1 of degree at
most m — 1. Suppose that the codeword u * p is sent over a binary symmetric
channel and let u’ x p’ be the received word. Here u’ and p’ are words having
the same length as u and p, respectively. Then the decoder computes p”(x) =
x"u’(x)mod g(x) and declares an error if p”(x) is not equal to p’(x). Some of
the most popular generator polynomials are the CRC-12 polynomial 1+ x 4+ x2 +
x3 + x4+ x12, the CRC-16 polynomial 1 + x% + x'3 +x!®, and the CRC-CCITT
polynomial 1 + x3 + x!2 4+ x!'®. A CRC code with generator polynomial g(x) =
Yo gix', g0 #0, g # 0 can detect any burst error of length k < r. Agarwal
and Ivanov [2] provided an O (nm2"*™) algorithm for computing the probability
of undetected error for a CRC code of length n whose generator polynomial has
degree r and m nonzero coefficients. The encoding and decoding of CRC codes
can be efficiently implemented with shift register circuits.

7.3.1.2 Reed-Solomon Codes

Reed-Solomon codes are nonbinary linear block codes over a finite field GF(g).
Let o be an element of order n in GF(q) [i.e., n is the smallest positive inte-
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ger such that «” = 1, where 1 is the identity element for the multiplication in
GF(q)].Letr € {1, ..., n}. The set of all vectors (co, - .., cy—1) in [GF(g)]" such
that Z;’;& ciald =0, j=1,...,r, is called a Reed—Solomon code of redun-
dancy r over GF(g). This code is an (n,n — r) cyclic code of minimum distance
r + 1. Thus, Reed—Solomon codes are MDS codes. Therefore an (n, k) Reed—
Solomon code can correct ey symbol erasures and e; symbol errors simultane-
ously if ep + 2e; < n — k. In particular, in a channel where only erasures can
occur, all codeword symbols of an (1, k) Reed—Solomon codeword can be cor-
rectly recovered if at least k symbols are received.

Reed-Solomon codes are suitable for the correction of burst errors. An (n, k)
Reed-Solomon code can be decoded in O (n2) time with Berlekamp’s iterative
algorithm [7]. Guruswami and Sudan [23] developed a polynomial-time algo-
rithm for Reed—Solomon codes that finds a list of all codewords within a distance
[n — /n(k — 1) — 17 from a received word. Thus, the algorithm is guaranteed to
determine the list of all potentially sent codewords if at most [n —v/n(k — 1) — 1]
errors occurred during transmission. The complexity of the algorithm is O (') if
exactly [n — +/n(k — 1) — 1] errors occurred and only O (1) otherwise. The al-
gorithm of Berlekamp [7] is a hard-decision decoding algorithm, which does not
exploit all available information at the receiver when the demodulator allows soft
decisions. Efficient soft-decision decoding algorithms for Reed—Solomon codes
were proposed by Koetter and Vardy [28] and Jiang and Narayanan [26]. For
example, the algorithm of Jiang and Narayanan [26] outperforms hard-decision
decoding by up to 3.1 dB at decoding error probability 107> when decoding a
(15,7) Reed—Solomon code over a binary-input AWGN channel.

7.3.1.3 LDPC Codes

LDPC codes were introduced by Gallager [21]. They have attracted increased
interest since MacKay and Neal [34,35] reported their outstanding performance
on a binary-input AWGN channel. An (n, k) LDPC code is a linear code with a
sparse parity-check matrix H = (h;;). It can also be described with a bipartite
graph, called Tanner graph, whose set of nodes consists of variable nodes and
check nodes. Variable nodes correspond to the n codeword symbols, while check
nodes correspond to the (n — k) equations defined by the parity-check constraint.
A variable node is connected to a check node if the codeword symbol correspond-
ing to the variable node is involved in the parity equation defining the check node.
That is, check node i is connected to variable node j if #;; = 1. In a regular LDPC
code, each column has the same number d,, of ones and each row has the same
number d, of ones. Thus, in the Tanner graph of the code each variable node has
degree d, and each check code has degree d,, as shown in Figure 7.3. In an irreg-
ular LDPC code, the degrees of the variable nodes and check nodes are chosen
according to some nonuniform distribution. Efficient encoding of LDPC codes
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Tanner graph

Parity-check matrix of a regular LDPC code

S = O =

0
1
1
0

-0 = O
-0 = O

0
1
1
0

—_ o o ~
—_ o o ~

Variable nodes

FIGURE 7.3: Tanner graph of a regular LDPC code of length 8. The
degree of the variable nodes is d,, = 2, and the degree of the check nodes
isd. =4.

is discussed in [40], where it is shown in particular that some of the best LDPC
codes can be encoded in O (n) time with high probability. Because of the sparse-
ness of their Tanner graph, LDPC codes can be decoded in O (n) time with an
iterative procedure known as probabilistic decoding [21], message passing, sum-
product algorithm [49], or belief propagation [37]. These algorithms alternately
pass information between adjacent variable nodes and check nodes to compute
estimates of the a posteriori probabilities of the codeword symbols. The decoded
codeword is based on the estimates obtained after convergence or if a maximum
number of iterations is reached. Chung er al. [14] were able to design a rate-% ir-
regular LDPC code of length 107 bits that is only 0.04 dB away from the Shannon
limit for a binary-input AWGN channel and a bit error rate of 107°.

7.3.1.4 IRA Codes

Irregular repeat-accumulate (IRA) codes were introduced by Jin and colleagues
[27] as a generalization of the repeat-accumulate (RA) codes of [16]. IRA codes
can be encoded in linear time. They are decoded with the sum-product algorithm,
achieving on the binary-input AWGN channel a performance competitive with
that of the best LDPC codes of comparable complexity.

7.3.1.5 Tornado Codes

Tornado codes [31,32] are (n, k) erasure codes that allow encoding and decod-
ing with time complexity linear in the block length n. This speed-up over Reed—
Solomon codes is obtained at the cost that slightly more than k encoding symbols
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are required to reconstruct all k£ information symbols. More precisely, Luby et
al. [32] prove that for any ¢ > 0, one can construct a Tornado code that recovers
all k information symbols from only (1 + ¢)k encoding symbols with probability
1—0m34.

7.3.1.6 Digital Fountain Codes

Luby [30] recently introduced a new class of powerful erasure correcting codes
called Luby Transform (LT) codes. LT codes are rateless in the sense that a poten-
tially limitless stream of encoding symbols (or a digital fountain) can be generated
for a given information sequence. Thus, in contrast to classical block codes, one
need not design the code a priori for a fixed n. With LT codes, each encoding
symbol can be generated from k information symbols in O (logk) time on aver-
age, and one can recover all k information symbols from k + O (v/klog?(k/8))
encoding symbols with probability 1 — § in O (klogk) time, on average.

By concatenating an LDPC code as an outer code and an LT code as an inner
code, Shokrollahi [47] was able to construct rateless codes called Raptor codes
whose erasure correcting performance is similar to that of LT codes, but can be
encoded and decoded in only O (k) time.

7.3.1.7 Lattice Codes

Codes over finite fields can also be interpreted as codes over real numbers by map-
ping each element of the finite field to a real number. For example, in the binary
(3, 1) repetition code, the binary digit O can be mapped to the real value —a and
the binary digit 1 can be mapped to the real value +a so that the two codewords
are (—a, —a, —a) and (+a, +a, +a). Minimum distance decoding then means
decoding the received vector to the codeword that is closest in Euclidean dis-
tance. In this section, we will consider a class of codes called lattice codes, which
contain codewords that are amenable to Euclidean distance decoding instead of
Hamming distance decoding.

Informally, a lattice A is an infinite regular array of points that covers an m-
dimensional space uniformly. A lattice is defined by a set of basis vectors so that
any point in the lattice can be represented as a linear combination of the basis vec-
tors. More precisely, if the basis vectors are given as vi = (v1,1, V1,2, ..., V1,m),
Vo= (121,22, .-, V2m)s -+, Vu = (Un.1, Un,2, - . ., Up,m) Where m > n, then we
can define a generator matrix, G, to be a matrix that contains the basis vectors as
the rows of the matrix and any lattice point can be written as

A=¢G,

where ¢ is an n-dimensional vector of integers [13]. For example, a genera-
tor matrix for the m-dimensional integer lattice (often written as Z™) is the m-
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dimensional identity matrix. The lattice points of the m-dimensional integer lat-
tice consist of all the possible m-dimensional vectors of integers.

The conventional method of using a lattice for channel coding is to take a finite
subset of lattice points and define a one-to-one mapping between the lattice points
and binary vectors that represent the information that is to be sent over a channel.
The goal of using lattice codes for channel coding is to maximize the amount of
information that can be conveyed over the channel for a given power constraint.
As an example, consider the problem of sending bits over an AWGN channel. One
method of addressing this problem is to choose a lattice and then map vectors of
bits to a finite subset of the lattice. The lattice points will then represent the real
values that are sent over the channel and corrupted by noise. The decoder will
receive a noisy sequence of points and attempt to recover the bits by decoding
the noisy values to the closest lattice points in Euclidean distance. The decoding
region for each lattice point is often referred to as its Voronoi region and is defined
to be the set of points whose Euclidean distance to the given lattice point is closer
than that to any other lattice point.

To illustrate the above concepts, consider the hexagonal lattice defined by the
generator matrix

10
GC=1, &
2 2

A pictorial representation of the lattice points that are generated by the afore-
mentioned generator matrix is given in Figure 7.4, where a finite subset of the

FIGURE 7.4: Example of a hexagonal lattice. A finite subset of the
lattice points is shown, and the Voronoi region of each lattice point is a
hexagon.
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hexagonal lattice is shown. If we take four of the lattice points as our finite sub-
set, then we can define a mapping of this subset to binary vectors of length two. In
Figure 7.4, we chose four lattice points and arbitrarily assigned two-dimensional
bit vectors to the lattice points. A transmitter may then parse a bit string into vec-
tors of length two and map each vector to a lattice point. Each of the lattice points
represent a two-dimensional real vector that will be corrupted by additive white
Gaussian noise. The Voronoi region of each lattice point is shown as a hexagon.
Therefore, if the additive noise is not large enough to perturb a lattice point out-
side of its Voronoi region, then the decoder will be able to successfully decode
the bits sent by the encoder.

7.3.2 Convolutional Codes

A class of codes that are often used with both Hamming distance decoders and
Euclidean distance decoders are convolutional codes. For simplicity, we restrict
our description to binary convolutional codes. Like an (n, k) linear block code,
an (n, k) convolutional code maps length-k blocks of information symbols into
length-n blocks of output symbols, but each output block depends on the current
and previous information blocks. A convolutional code can in general be defined
by a linear finite state machine (LFSM). For a binary (n, k) convolutional code
of memory v, the LFSM can be expressed as v stages of k shift registers that are
connected by n different modulo-2 adders, as in Figure 7.5. At each time instant,
k bits are shifted in to the LFSM and # bits are output from the LESM. The shift
registers in combination with the modulo-2 adders serve to constrain the possible
output sequences. The goal of designing a convolutional code is to constrain the
possible output sequences to be separated by a large distance. For example, if

FIGURE 7.5: A linear finite state machine representation of a convolu-
tional code. There are k input bits, n output bits, and the memory is v.
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the convolutional code is to be used with a Hamming distance decoder, then it is
desirable to design the convolutional code so that the possible output bit sequences
are separated by a large Hamming distance. However, if the convolutional code
is to be used with a Euclidean distance decoder, then a mapping between the
output bit sequences and vectors of real values must be defined and it is desirable
to design the convolutional code so that the possible vectors of real values are
separated by a large Euclidean distance. In general, better convolutional codes
can be found as the memory is increased.

As is common with LFSMs, it is often beneficial to express the LFSM as a
state transition diagram. The states represent the contents of the registers in the
LFSM, and the transitions between states are determined by the input bits. As an
example, consider the convolutional code shown in Figure 7.6a. The parameters
of the code are given as v =2, k = 1, and n = 2. In the example, bits are shifted
into the registers one at a time and the input bit is represented as the variable u.
The contents of the registers that represent the state of the convolutional code are
given as variables s1 and s. The output bits of the convolutional code are given
as variables c¢; and c;. We can represent the convolutional code as a state diagram
by assigning a circle to each possible state (as in Figure 7.6b) and representing
the transitions between states with arrows. As can be seen from Figure 7.6 the
input bit, in combination with the current state of the convolutional code, will
determine the following state of the convolutional code. For example, if at a given
time instant the state of the registers is given as 01 and the input bit is 1, then 1
will be shifted out of the right-most register and the input bit will be shifted into
the left-most register. As a result, the following state of the convolutional code
will be 10.

paC
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FIGURE 7.6: (a) Convolutional code example with parameters v = 2,
k=1, and n = 2. (b) State diagram representation of convolutional code.
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Any convolutional code can also be expressed as a vector-matrix product
¢(D) =u(D)G(D), (7.10)

where ¢(D) = [c1(D), c2(D), ..., ci(D),...,c,(D)] is a row vector of n poly-
nomials, with the ith polynomial representing the ith output bit sequence. A bit
sequence, {bg, b1, ..., by} can be represented as a polynomial bg +b1D + - - - +
b, D™ by weighting the ith bit in time by D’ where D is a variable representing
delay. Similarly, u(D) = [u1 (D), u2(D), ..., u;j(D), ..., ur(D)] is a row vector
of k polynomials, with the jth polynomial representing the jth bit sequence. The
matrix G(D) is a k x n matrix that contains generator polynomials that specify
the relationship between the input polynomials and the output polynomials. For
example, consider the convolutional code shown in Figure 7.6a. The first output
bit is the modulo-2 addition of the current input bit and the previous input bit in
time. We can write a polynomial equation for the first output bit as

c1(D)=u(D) + Du(D),

where the variable D represents delay. The second output bit is equal to the
modulo-2 addition of the current input bit, the bit from the previous time instant,
and the bit from two time instants ago. We can write a polynomial equation for
the second output bit as

¢2(D) = u(D) + Du(D) + D*u(D). (7.11)

Now, the two equations just given can be combined into the form of (7.10) where
the generator matrix can be expressed as

G(D)=[1+D 1+ D+ D?]

and ¢(D) = [c1(D), c2(D)], u(D) = [u(D)]. The aforementioned representation
of a convolutional code is often useful for analyzing the performance characteris-
tics of a code.

Another representation of a convolutional code is as a trellis. A pictorial repre-
sentation of a trellis can be formed by aligning all of the possible states in a verti-
cal column for each time instant and then connecting the states in accordance with
the state transition diagram. The trellis representation of a convolutional code is
particularly useful for decoding, as quick decoding algorithms such as the Viterbi
decoding algorithm can be derived from the trellis representation. An example of
a trellis representation of the convolutional code in Figure 7.6a is given in Fig-
ure 7.7, where the states are represented as dots and the transitions are labeled by
the input bit that causes the transition and the resulting output bits.
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FIGURE 7.7: Trellis representation of convolutional code given in Fig-
ure 7.6a.

The goal of the decoder is to find the codeword from the convolutional code
closest to the received sequence in either Hamming distance or Euclidean distance
(if the output bits of the convolutional code are mapped to real values). This can be
done efficiently by using the trellis diagram. If we let y) represent the received
block (of length ) at time instant i and let cb(,'l.),sl._)‘yi .1 represent the output block
(of length n) at time instant i corresponding to the transition between states s; and
si+1 that results from input block u; (of length k), then mathematically the goal
of the decoder is to find the output sequence ¢ that is closest in distance to the
received sequence,

¢ = argmind(c, y).
ceC

In the equation just given, C represents the set of valid codewords, ¢ = {c,(d?)), So—>51»

1 .
c,(“), S1=>82 <+ c,%?sm_mm 1) represents a valid sequence of output blocks, and

y ={ y(o), y(z), e, y(’”)} represents a sequence of received blocks. Furthermore,
d(c,y) is the distance metric between the output sequence and the received se-
quence and can be written as a summation of distances between the received
blocks and the output blocks at the various time instants,

m
die.y) =Y d(c@ .- v?). (7.12)
i=0

Assuming that the trellis starts in state zero (i.e., all of the registers of the convo-
lutional code are cleared to zero), a naive approach to finding the codeword se-
quence that is closest to the received sequence would be to calculate the distance
of the received sequence to each path in the trellis that starts in state zero and then
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declare the path that is closest to the received sequence as the decoded codeword.
This method is inefficient because the amount of computation grows exponen-
tially with the length of the sequence. A more efficient decoding algorithm can be
realized by using the Viterbi algorithm. The Viterbi algorithm begins at the first
stage of the trellis by calculating the distance between all branches of the trellis
that emerge from state zero and the corresponding block in the received sequence
(e., d (c,ﬁ?ﬁ So—>515 y(o))). In general, there will be 2% branches that emerge from
any state, so the Viterbi algorithm starts by calculating 2 distance metrics. For
the next stage in the trellis, we can prune paths that end in the same state s.
More specifically, for all paths that converge to the same state, we can keep the
path that has the minimum distance up to that state and prune all other paths. This
works because if multiple paths converge to the same state, then any path that may
emerge from this state will have an associated distance that will be added to the
distance associated with the path that ends in that state. Mathematically, we can
break up the total distance metric for any path that goes through a state at time i
as the distance metric from state O at time O to state s; at time { and the distance
metric from state s; to state s,,4+1 at the end of the trellis:

i—2
d(C, y) = Zd(clg{,’),sj'—)sj‘+1f y(])) + d(c“i—lei_l—n“i s y(ii]))
j=0
“ 1 .
+ Y d (e 500 D). (7.13)

J=i

From (7.13), we see that all paths that merge at state s; will have the same possible
distances Z’j":i d (c,(/j)y Sj=Sj41 y(f )} added to the existing distance of the path and
therefore a path with a larger distance at state s; cannot achieve a smaller overall
distance than a path with a smaller distance at state s;. As a result, we can prune
the total number of paths to be no larger than the total number of states. In other
words, at each time instant, at most 2'* paths are kept (one path for each state).
At time instant m, the minimum-distance path can be determined and traced back
to state 0 at time instant 0. The output sequence associated with the minimum
distance path is the decoded codeword.

Because the time complexity of the Viterbi algorithm is exponential in the
memory order, faster but suboptimal sequential decoding algorithms (e.g., the
Fano and Stack algorithms [50]) are used in many time-critical applications.
A generalization of the standard Viterbi algorithm is the list Viterbi algorithm
(LVA) [44,41], which finds the L most likely paths instead of only the most likely
one.

Symbol MAP decoding (see Section 7.2.2) of convolutional codes can be done
with soft-input soft-output algorithms. Two of the most prominent ones are the
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BCIJR algorithm of Bahl and colleagues [4] and the soft-output Viterbi algorithm
of Hagenauer and Hoeher [25]. Both algorithms output for each information bit
uj, i =0,...,km, an a posteriori log-likelihood ratio (LLR)

Pr{U; =1]Y =y}
PrilU; =0|Y =y}

Auj) =log

whose sign specifies the reconstructed source bit ;.

A family of convolutional codes can be generated from a single convolutional
code, called a mother code, with rate % Some output symbols of the mother
encoder are punctured, which allows the construction of a family of codes with
rates %, npp_ Theees %, where p is the puncturing period. To obtain RCPC codes
[24], all protection symbols of the higher rate-punctured code are used by the
lower rate codes (the higher rate codes are embedded into the lower rate codes).
A nice feature of RCPC codes is that if a higher rate code does not provide enough
protection, one can switch to a lower rate code simply by adding extra redundant
symbols. Another good feature of RCPC codes is that the same Viterbi trellis can
be used for all rates.

As mentioned earlier, a convolutional code may be used as either a Hamming
distance code or a Euclidean distance code. If the convolutional code is used as
a Euclidean distance code, then a mapping between the possible output bits at
any given time instant and a set of real values must be defined. One method of
defining a mapping is to first choose a constellation of real values such as a finite
subset of lattice points and then define a bijective mapping between the lattice
points and the possible output bit vectors. For example, the convolutional code
shown in Figure 7.6a has two output bits, which can assume one of four possi-
ble two-bit combinations, so we can define a mapping between the four possible
two-bit combinations and the four lattice points shown in Figure 7.4. Recall, how-
ever, that the goal of code design is to maximize the minimum distance between
possible output sequences, and the aforementioned procedure may not maximize
the minimum distance for a given convolutional code and a given set of constel-
lation points. A proper Euclidean distance code design should jointly consider
the convolutional code and the set of constellation points in defining the map-
ping between bits and constellation points. This concept was first introduced by
Ungerboeck [48], and the resulting codes are often referred to as trellis-coded
modulation (TCM) codes.

TCM codes are usually formed by letting a convolutional code index a parti-
tion of constellation points [48]. Forney [20] and Conway and Sloane [13] inde-
pendently utilized this heuristic to define a set of codes that are derived from a
convolutional code that indexes a lattice partition. More specifically, both Forney
and Conway and Sloane showed that good trellis codes can be obtained by parti-
tioning a well-known lattice and then searching for a convolutional code to index
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the partition. In this chapter, we will denote a lattice partition as A/A’, where A’
is a sublattice of A and partitions A into cosets of A’. A coset of A’ is formed by
choosing a lattice point, A € A, and adding this element to all of the lattice points
in A’. We denote the coset as A’ + A. For example, consider the lattice partition
7Z/47Z, where Z is the integer lattice formed by the 1 x 1 identity matrix and 47Z
is a sublattice of Z that is formed by scaling the integer lattice by 4. Four disjoint
cosets may be formed from 47Z by adding the lattice points {0, 1, 2, 3} to 4Z. No-
tice that the union of the four cosets is equal to Z. One method of arriving at the
four cosets of 47 is to use a partition tree, Z/27/47. The first level of the tree is
a partition of Z into two cosets that consist of the even and odd lattice points of
Z (i.e., 2Z and 2Z + 1). The next level of the partition tree further partitions 27
into 47 and 4Z + 2 and partitions 2Z + 1 into 4Z + 1 and 47 + 3. A pictorial
representation of the partition tree, Z/27/47Z, is given in Figure 7.8. Each of the
branches of the partition tree is labeled as either O or 1. This labeling defines a
mapping between two-bit vectors and cosets of 4Z. For example, the coset 4Z + 1
corresponds to the bit label 10. Now, if we allow the output of a rate—% convolu-
tional code to index the labeling of the partition tree for each time instant, then
a trellis code may be formed from Z/4Z by searching all rate—% convolutional
codes of a given constraint length to find the convolutional code that maximizes
the minimum Euclidean distance between codewords. Note that in the aforemen-
tioned, a finite subset of the lattice points must be used to form the trellis code to
ensure that there is no ambiguity in decoding a sequence of lattice points to a bit
sequence.

The performance of a TCM code is measured by the signal-to-noise ratio (SNR)
that is needed to achieve a given probability of error. For high SNRs, it has been

FIGURE 7.8: An example of the partition tree Z/27Z/4Z. The branches
of the tree are labeled by either O or 1 and represent a mapping from bits
to cosets of 47Z.
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shown that the probability of error for a TCM code can be approximated as

d2.
P~ KminQ( &> (7.14)

2
4oy

where Q is the Q function, dpip represents the minimum distance of the TCM
code and K, represents the number of codewords that have a distance of dmin
from a given codeword. We use cr[%, to represent the variance of the channel noise.
Though effective, the performance of TCM codes is considerably worse than in-
formation theoretic bounds.

7.3.3 Interleaving

While the codes described earlier are convenient for memoryless channels with
small error rates, most of them are not suited to the protection against errors that
occur in bursts. When errors occur in bursts, as in fading channels, a transmitted
codeword is either free of errors or contains a large number of successive errors.
The problem of burst errors can be alleviated with special codes (e.g., Fire codes
[17]). An alternative is interleaving, which shuffles the symbols from different
codewords before transmission. When a long burst error occurs, the erroneous
symbols are distributed among many codewords where they appear as short burst
errors. In block interleaving (Table 7.2), the channel codewords are placed in the
rows of an array, and the codeword symbols are sent columnwise. In cross (or
convolutional) interleaving, as shown in Figure 7.9, a set of ordered shift registers
with linearly increasing memory size is used to separate the output symbols of the
channel encoder.

7.3.4 Turbo Codes

In 1993, Berrou et al. [9,10] amazed the coding community by introducing a novel
class of error-correcting codes, turbo codes, which, for a binary-input AWGN

Table 7.2: Block interleaver of size 4 x 7. To transmit four codewords of length
7, the codeword symbols are sent columnwise, in the order 1,8, 15,22,...,7,
14,21, 28. A burst error of length four produces no more than a single error in a
transmitted codeword.

1. Codeword 1 2 3 4 5 6 7
2. Codeword 8 9 10 11 12 13 14
3. Codeword 15 16 17 18 19 20 21
4. Codeword 22 23 24 25 26 27 28
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— 1 [

FIGURE 7.9: Cross interleaver with four shift registers. The memory
sizes of the shift registers are 0, m, 2m, and 3m, respectively. At time unit
i, a symbol is inserted into shift register i, which outputs its right-most
symbol. Suppose that m = 1 and the input symbols are 0, 1, 2,3,4,5,6, 7,
8, .... After interleaving, the symbols are sent in the order 0,4, 1, 8, 5, .. ..

Cok

Uk

FIGURE 7.10: A recursive systematic convolutional code.

channel, achieved a BER of 107> with code rate 1/2 and E},/ Ny as close as 0.5 dB
to the practical Shannon limit (see Section 7.2.4).

A turbo code is a parallel concatenation of two or more codes connected by
pseudo-random interleavers. The constituent codes are usually identical, recursive
systematic convolutional (RSC) codes of rate 1/2. An example of an RSC encoder
is shown in Figure 7.10. Its main property is the existence of a feedback in the
shift-register realization.

Figure 7.11 shows a classical turbo encoder with two constituent RSC codes.
In contrast to a serial code concatenation where the output of one encoder forms
the input for the next one, in a parallel concatenation, both encoders operate on
the same input block. In Figure 7.11, an input information block of length & bits,
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RSC Encoder 1

Puncturing —»
k-bit
Interleaver

()

RSC Encoder 2

FIGURE 7.11: A classical turbo encoder with two RSC codes.

u= (ug,...,ux), is encoded by the first RSC encoder; at the same time, it is
passed through a k-bit interleaver and fed into the second RSC encoder. For each
input bit u;, the output consists of that bit u#; and the two parity-check bits ¢y ;
and ¢2 ; from the two RSC encoders. The output corresponding to the input block
u is the codeword ¢ = (uy, ..., Uk, C1,1,---,Cl ks C2,15 - - -, C2,k). The code rate of
the turbo code is 1/3. Higher code rates can be obtained by puncturing the output
bits of the two encoders [1]. For example, rate 1/2 can be obtained by alternately
puncturing the parity bits of the two RSC encoders. A turbo code is essentially
a block code, thus encoding can be seen as a multiplication of the information
block by a generator matrix.

One of the many novelties in the turbo code realization is the existence of a
block interleaver between the two RSC coders. The interleaver introduces ran-
domness to the code while leaving enough structure in it so that decoding is phys-
ically feasible. The size of the interleaver (the length of the information block) is
usually very large (in the order of thousands bits) to ensure good performance. If
the size is large enough, any pseudo-random interleaver will perform well. How-
ever, for short interleaver sizes, the performance of the code can be significantly
enhanced by a clever design of the interleaver [5].

A typical turbo decoder consists of two soft-input soft-output decoders (see
Section 7.3.2), two k-bit interleavers identical to the encoder interleaver, and a
deinterleaver, as shown in Figure 7.12. The decoding is based on the symbol MAP
rule (see Section 7.2.2). The a posteriori LLRs for the information bits u, ..., uj
are estimated in an iterative way by exchanging information between the two
constituent decoders. Suppose that the systematic part of the codeword, ¢g =
(u1, ..., ux),is received as yo, while the two parity parts, ¢; = (c1,1,...,c1,k) and
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k-bit
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FIGURE 7.12: Block scheme of a classical turbo decoder.

¢ =(c2,1,...,C2k), are received as y; and yp, respectively. In the first iteration,
the first decoder generates a reliability information L (i) for each information bit
uj, i=1,...,k, based on its input, (yo, y1). This soft-decision output, called ex-

trinsic information, is interleaved and fed to the second decoder. Using its input
(y2 and the interleaved version of yg), the second decoder computes a reliability
information L5 (i) for each information bit. Next, the extrinsic information from
the first decoder, the extrinsic information from the second decoder, and a channel
log-likelihood ratio log %ﬁ:gﬁig are summed to provide a first approxima-
tion of the a posteriori LLRs. In the second iteration, the extrinsic information
Lg(i ) is deinterleaved and sent to the first decoder, which exploits this new in-
formation to update its extrinsic information. The procedure repeats until the a
posteriori LLRs converge or a maximum number of iterations is reached.

Turbo coding with iterative decoding is currently one of the best error-
correcting techniques. It significantly outperforms convolutional codes of the
same constraint length. One of the key properties of turbo codes is the sharp
performance improvement with the increase of the input block length. Thus, to
achieve near-capacity performance, large block lengths are needed, which cause
huge latency. Therefore, applications of turbo codes are currently limited to those
that are not delay sensitive. For example, the new CCSDS telemetry channel
coding standard for satellite and deep-space communications uses turbo codes.
SMART-1, launched in September 2003 by the European Space Agency, is the
first probe that exploits turbo codes. Turbo codes have also been adopted by
the leading third-generation (3G) cellular standards, such as CDMA2000 and
UMTS.
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7.4 HIERARCHICAL MODULATION

Hierarchical modulation [19] is a digital modulation technique that enables trans-
mission of two independent information bit streams with unequal priority on a
single channel. As part of the digital terrestrial television standard DVB-T [18],
it offers new possibilities in organizing scarce radio frequency bandwidth. In this
section, we first outline the main concepts underlying hierarchical modulation
and compare it to standard digital nonhierarchical modulation techniques; then,
we give examples of possible applications.

Figure 7.13 shows constellations of four basic linear digital modulation tech-
niques [38,39]. Each possible digital state (constellation point) in the phase di-
agram (represented by a dot in Figure 7.13) uniquely determines one phase of
the carrier signal. Each transmitted bit stream is assigned to one constellation
point. The performance of a digital modulation technique can be measured using
its achieved data rate (or, equivalently, the number of bits assigned to each dig-
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FIGURE 7.13: Constellations of four standard digital modulation tech-
niques: BPSK (top left), 4-QAM (top right), 16-QAM (bottom left), and
64-QAM (bottom right).
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ital state) and minimum tolerated signal-to-noise ratio for reliable demodulation
(which reflects robustness to channel noise). Normally, higher level modulation
techniques achieve larger data rates at the expense of a lower robustness.

Binary Phase Shift Keying (BPSK) allows transmission of one bit per modu-
lation signal. The phase of a carrier signal takes two possible values (separated
by ) depending on the transmitted bit. 4-Quadrature Amplitude Modulation (4-
QAM), also referred to as Quadrature Phase Shift Keying (QPSK or 4-PSK),
transmits two bits on each carrier. Thus, it achieves twice the data rate of BPSK.
In Figure 7.13, one possible constellation realization is presented, where the car-
rier phases are /4, 3w /4, St /4, and 7 /4. In 16-QAM and 64-QAM, because
there are 4x4 and 8 x 8 different constellation points, respectively, four and six
bits, respectively, can be sent per modulation signal. The assignment of the bit
streams to the digital states is usually determined using Gray-code mapping so
that the assignments of the closest constellation points differ in one bit. The data
rate is increased compared to 4-QAM at the expense of a lower noise tolerance
(due to smaller distances between neighboring states in the phase diagram). For
example, compared to 4-QAM with the same code rate, the minimum tolerated
signal-to-noise ratio is approximately 6 dB and 12 dB higher with 16-QAM and
64-QAM, respectively [19].

Note that in all modulation techniques discussed so far, a single information
bit stream (possibly coded) is transmitted per one modulation signal. Hierarchi-
cal modulation, however, enables transmission of two separate information bit
streams in a single modulation signal. One bit stream, called high-priority (HP)
bit stream, is embedded within another, called low-priority (LP) bit stream. The
main idea is to decouple the bit stream assigned to a digital state into two sub-
streams: the first substream is HP, which determines the number of the quadrant
(0, 1, 2, or 3) where the digital state is located; the second substream (LP) carries
the information about the position of the digital state in the specified quadrant.
As a result, hierarchical modulation can be viewed as a combination of 4-QAM
(used for the HP bit stream) and either 4-QAM or 16-QAM (used for the LP bit
stream).

Two hierarchical modulation constellations are shown in Figure 7.14. In the
first constellation (the upper figure), 4-QAM is embedded in 16-QAM (thus, it
is called “4-QAM in 16-QAM”); in the second one, 4-QAM is embedded in 64-
QAM (“4-QAM in 64-QAM”). In both cases, the first two bits constitute the HP
bit stream intended for an HP service/client; the remaining two or four bits are
the LP bit stream intended for an LP service/client. In the example shown in
Figure 7.14 (bottom), 10 is sent to the HP clients and 0101 to the LP clients.

Note that the HP bit stream is always modulated as 4-QAM. Thus, as in classic
nonhierarchical 4-QAM, it carries two bits per modulation signal. However, be-
cause the LP bit stream can be seen at the receiver as an additional noise in the
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FIGURE 7.14: Hierarchical modulation: “4-QAM in 16-QAM” (top)
and “4-QAM in 64-QAM” (bottom).
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quadrant of the received signal, the HP bit stream is less robust than nonhierar-
chical 4-QAM (i.e., a higher minimum tolerated signal-to-noise ratio is needed).

The LP bit stream is essentially either 4-QAM [Figure 7.14 (top)] or 16-QAM
[Figure 7.14 (bottom)] modulated. Thus, it carries two or four bits and has the
same data rate as the corresponding nonhierarchical modulation method. The
noise sensitivity is comparable to that of the whole constellation [16-QAM in
Figure 7.14 (top) or 64-QAM in Figure 7.14 (bottom)]. Note that the total rate
of the HP and LP bit streams is equal to the rate of the whole nonhierarchical
constellation (16-QAM or 64-QAM).

The HP bit stream is obviously more robust to channel noise than the LP bit
stream; indeed, a transition of the carrier phase (due to channel noise) from one
digital state to the other within a quadrant is more likely to occur than a transi-
tion to a state in another quadrant. However, the robustness of the HP and LP bit
streams can be further improved by channel coding (i.e., by adding error protec-
tion) or by changing the constellation’s « factor, as in Figure 7.15. The « = a/b
factor [18] is defined as the ratio between a, the minimum distance separating
two constellation points that carry two different HP bit streams, and b, the mini-
mum distance separating any two constellation points. Constellations with & > 1
are called nonuniform constellations. The increase of « makes the HP bit stream
more robust at the expense of a less robustness of the LP bit stream. (The DVB-T
standard uses « € {1, 2, 4}.) Thus, hierarchical modulation splits the actual com-
munication channel in two virtual channels whose characteristics depend on the
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FIGURE 7.15: A nonuniform 16-QAM constellation witha = b/a = 2.
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whole constellation (64-QAM), « factor, and code rates of the HP and LP bit
streams.

Hierarchical modulation was originally proposed to enable two different cov-
erage areas for a given transmitter in digital terrestrial TV. It offers great design
flexibilities and simplifies network planning. Its value has become even more ap-
parent with recent increasing demands for delivery of different services over het-
erogeneous networks, where communication channels between the sender and the
clients are extremely diverse in available bandwidths and channel noise.

For example, suppose that two digital TV programs are to be transmitted simul-
taneously. With nonhierarchical modulation, the two programs must be broadcast
over two separate frequency channels: 4-QAM can be used for the first channel
(achieving a data rate of two bits per modulation signal) and 16-QAM for the
second channel (with a data rate of four bits per modulation signal). With hierar-
chical modulation (“4-QAM in 64-QAM”), only one channel is needed: the first
program can be transmitted as an HP bit stream (at a data rate of two bits per
modulation signal), while the second TV program can be transmitted as an LP bit
stream (at a data rate of four bits per modulation signal). Then, the coverage ra-
dius (which is determined by the noise tolerance) of the second TV program will
be roughly the same as in the nonhierarchical case; the coverage radius of the first
program, however, will be smaller than with nonhierarchical 4-QAM, but can be
enlarged by increasing the « factor (at the expense of a smaller coverage radius of
the second TV program) or by using error protection (at the expense of decreasing
the information rate). Thus, one immediate advantage of hierarchical modulation
over a nonhierarchical one is the savings in transmission channels because two
streams with different data rates and different coverage areas can be transmitted
on a single frequency channel.

Hierarchical modulation efficiently addresses the problem of heterogeneity in
clients’ available bandwidths, receiver resolution capabilities, and channel condi-
tions. For example, a single frequency channel can be used to broadcast a video
bit stream to mobile (or portable) receivers and fixed receivers. The mobile re-
ceivers will decode the HP bit stream, whereas the fixed receivers will be able, in
addition, to decode the LP bit stream (due to their large roof top antenna gains).

Hierarchical modulation can be combined with quality/resolution scalable
video coders. Then, the LP bit stream plays the role of the enhancement layer,
which improves the quality/resolution of the HP (base layer) bit stream. Depend-
ing on transmission conditions, the receiver will be able to decode at the higher
or lower quality/resolution level.

Another application is simulcast of the High Definition TV formats, together
with the Standard Definition formats. (Transmitting the Standard Definition to-
gether with the High Definition formats is necessary because all the receivers do
not have screens that support the latter formats.) Here, the HP bit stream carries
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the Standard Definition TV formats, and thus will be available to all receivers,
whereas the LP bit stream carries the High Definition TV formats only.

Comparisons between hierarchical and nonhierarchical modulation in different
scenarios can be found in [42].

7.5 AUTOMATIC REPEAT REQUEST, HYBRID FEC/ARQ

In this section, we present error protection techniques that use retransmissions.
Here we assume the presence of a feedback channel from the receiver to the trans-
mitter. We first describe pure ARQ techniques, which are based on error detection
and retransmission of the corrupted packets. Then we explain type I hybrid ARQ
protocols that combine error correction coding and ARQ techniques. Finally, we
overview type II hybrid-ARQ protocols where the transmitter answers a retrans-
mission request by sending additional parity symbols.

7.5.1 Pure ARQ Protocols

In a pure ARQ system, an information block of length & is encoded into a channel
codeword of length n with an error-detecting code. The codeword is sent over the
channel and the received word is decoded. If no errors are detected, the transmit-
ted codeword is assumed to be received correctly and need not be retransmitted.
Otherwise, the codeword must be sent again until it is received correctly. To send
feedback information to the transmitter, the receiver can use a positive acknowl-
edgment (ACK) to indicate that the codeword was received correctly or a negative
acknowledgment (NACK) to indicate a transmission error. The efficiency of an
ARQ scheme is measured by its reliability and throughput. The reliability is the
probability that the receiver accepts a word that contains an undetectable error.
The throughput is the ratio of the average number of bits successfully accepted
per unit of time to the total number of bits that could be transmitted per unit of
time [29]. In the following, we overview the most important ARQ schemes. De-
tails can be found in [29] and [50].

7.5.1.1 Stop-and-Wait ARQ

In stop-and-wait ARQ, the transmitter sends a codeword and waits for an ac-
knowledgment for that codeword. If an ACK is received, the next codeword is
sent. If an NACK is received, the same codeword is retransmitted until it is re-
ceived correctly, as in Figure 7.16. Stop-and-wait ARQ has a simple implemen-
tation. In particular, the codewords are not numbered. Its major drawback is the
idle time spent by the transmitter waiting for an ACK.
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FIGURE 7.16: Stop-and-wait ARQ.

7.5.1.2 Go-Back-N ARQ

In go-back-N ARQ, the transmitter sends the codewords continuously without
waiting for an acknowledgment. Suppose that the acknowledgment for codeword
¢; arrives after codewords c;j, ..., ¢c;4+ny—1 have been sent. If this acknowledgment
is of the ACK type, the transmitter sends codeword c; . Otherwise, the code-
words ¢j, ..., ciyN—1 are sent again, as in Figure 7.17. On the receiver side, when
an error is detected in a received word, this word and the N — 1 subsequently
received ones are ignored. Note that a buffer for N codewords is required at the
transmitter side.

7.5.1.3 Selective-Repeat ARQ

Selective-repeat ARQ is similar to go-back ARQ. The difference is that when an
NACK for codeword c; is received, only ¢; is retransmitted before the transmis-
sion proceeds where it stopped, as in Figure 7.18. In addition to the N-codeword
buffer at the transmitter, a buffer is needed at the receiver so that the decoded
codewords can be delivered in the correct order. This buffer must be large enough
to avoid overflow. Selective-repeat ARQ with a finite-size buffer is presented in
[29]. An alternative is to combine selective-repeat ARQ with go-back-N ARQ
[29]. Here the transmitter switches from selective-repeat ARQ to go-back-N ARQ
whenever p retransmissions of a codeword have been done without receiving an
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FIGURE 7.17: Go-back-N ARQ.
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FIGURE 7.18: Selective-repeat ARQ.
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ACK. It switches back to selective-repeat ARQ as soon as an ACK is received. In
this way, the buffer size of the receiver can be limited to w(N — 1) + 1.

7.5.2 Hybrid ARQ Protocols

FEC and ARQ can be combined to provide for channels with high error rates
better reliability than FEC alone and larger throughput than ARQ alone.

7.5.2.1 Type-1 Hybrid ARQ Protocols

In a type-I hybrid ARQ system, each information block is encoded with a channel
code with error detecting and error correcting capabilities. This can be a single
linear code (see Section 7.3.1) or a concatenation of an error detection code as
an outer code and an error correction code as an inner code. If the received word
can be correctly decoded, then the decoded codeword is accepted. Otherwise, a
retransmission is requested for the codeword.

7.5.2.2 Type-1I Hybrid-ARQ Protocols

The basic difference between a type-I hybrid ARQ protocol and a type-II hybrid
ARQ protocol is that in the latter the transmitter sends additional parity bits in-
stead of the whole codeword when it receives a retransmission request for this
codeword. The following example [50] illustrates the method. An (n, k) MDS
code C is used to encode the information block. The resulting codeword is split in
two. The first half can be seen as a codeword ¢; from an (n/2, k) code C; and the
second one as a codeword ¢, from an (n/2, k) code C;. Here the two codes C; and
C, are obtained by puncturing the code C. The transmitter starts by sending ¢;. If
the received word y; cannot be correctly decoded, a retransmission is requested.
The transmitter then sends the codeword ¢,, which is received as y». The receiver
concatenates y; and y» and uses the stronger code C to decode the resulting word.

7.6 SUMMARY AND FURTHER READING

The first part of this chapter presented the fundamental results of information
theory, which culminate in Shannon’s joint source-channel coding theorem. While
this theorem is useful in understanding the theoretical performance bounds for
the communication of data over an unreliable channel, it does not explain how
a practical communication system should be designed. Practical system design
should consider source coding, channel control, and modulation. Practical source
coding for media data is described in other chapters of this book (Chapter 5 for
video coding and Chapter 6 for audio coding). State-of-the-art channel coding
techniques are overviewed in the second part of the chapter. The main message is
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that channel coding techniques, in particular Turbo codes and LDPC codes, have
reached a level of maturity that allows them to achieve performance close to the
theoretical bounds announced by Shannon. Another important achievement in the
area of channel coding is development of the class of digital fountain codes for
protection against packet loss. The third part of the chapter discussed hierarchical
modulation, an emerging modulation technique for digital video broadcasting.
The last part of the chapter gave a brief survey of error control techniques that
rely on data retransmission. These techniques, which require a two-way channel,
can be used with error detection only or combined with error correcting codes.

We conclude this chapter with suggestions for further reading. A rigorous treat-
ment of source coding can be found in [6] and [17]. Excellent descriptions of
modern channel codes are given in [43] and [33]. The best reference for the latest
advances in source and channel coding is the IEEE Transactions on Information
Theory.
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Channel Modeling and
Analysis for the Internet

Hayder Radha and Dmitri Loguinov

8.1 INTRODUCTION

Performance modeling and analysis of channels and networks play a crucial role
in the design and development of multimedia applications. In particular, having
an insight into the expected number of packet losses, which could occur when
sending video or audio content over the Internet, provides multimedia application
designers an important premise for developing resilience techniques to protect
that content. Furthermore, real-time multimedia applications are sensitive to end-
to-end delay parameters, including delay jitter. These parameters influence the
particular techniques used for recovering lost packets. For example, depending
on the application and its level of tolerance for end-to-end delay, the application
designer may choose to adopt a strategy for recovering lost packets that is based
on retransmission, Forward Error Correction (FEC), or both.

This chapter covers fundamental analysis tools that are used to characterize
the loss performance of channels and networks that carry multimedia packets.
We focus on models and analysis tools for Internet multimedia applications. In
addition to performance analysis and modeling tools, experimental performance
studies are crucial for designing multimedia applications and services. Hence, this
chapter consists of two major parts. The first part emphasizes core and relatively
simple analysis tools that lead to key results and widely used formulas. Although
some of these results and formulas are basic, rather abstract, and generic in nature
(i.e., applicable to a variety of applications), their use for performance analysis of
multimedia applications is invaluable. The second part of this chapter describes a
comprehensive Internet video study conducted for gaining insight into a variety of
end-to-end performance parameters that are crucial for real-time multimedia ap-
plications. The study reveals many interesting and practical issues, and it provides
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significant insight that is difficult (if not impossible) to gain based on pure analy-
sis or modeling. The later (second) part also analyzes the performance parameters
collected from the aforementioned Internet video study.

The analytical tools needed for characterizing channels and networks lie within
basic concepts from probability theory, random processes, and information the-
ory. Here, it is assumed that the reader has the appropriate background in prob-
ability theory and random processes. We later focus on some of the key, basic
and relevant concepts and definitions from information theory that can be used
for characterizing Internet links and routes. For popular Internet multimedia ap-
plications, packet losses represent the most crucial performance parameter. The
information theory concepts covered in this chapter identify performance bounds
for given loss measures.

8.2 BASIC INFORMATION THEORY CONCEPTS OF CHANNEL
MODELS

Information theory [1-3] provides core channel models that are used to represent
a wide range of communication and networking scenarios. We begin by highlight-
ing the information-theoretic definition of a discrete memoryless channel (DMC)
and then focus on simple DMC channel models applicable to basic links and
routes over the Internet (Figure 8.1).

A DMC is characterized by the relationship between its input X and its out-
put Y, where X and Y are two (hopefully) dependent random variables. There-
fore, a DMC is usually represented by the conditional probability p(y|x) of the
channel output Y given the channel input X. Furthermore, and since X and Y are
dependent on each other, their mutual information /(X; Y) has a nonzero (i.e.,
strictly positive) value,

p(x,y)
I1(X;Y)= I
X;Y) ;E p(x, y)log ———— S0

An important measure is the maximum amount of information that ¥ can pro-
vide about X for a given channel p(y|x). This measure can be evaluated by maxi-
mizing the mutual information 7 (X; Y) over all possible sources characterized by
the marginal probability mass function p(x) of the channel input X. This maxi-
mum measure of the mutual information is known as the “information” channel
capacity C:

C=maxI(X;Y).
p(x)

Based on this definition, the channel capacity C is a function of the parameters
that characterize the conditional probability p(y|x) between the channel input X
and the channel output Y. The following section focuses on a particular channel.
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X Channel Y

— pO|x) —

FIGURE 8.1: A representation of a DMC channel.

1 -6 O

FIGURE 8.2: A representation of the Binary Erasure Channel.

8.2.1 The Binary Erasure Channel (BEC) Channel

The simplest DMC channel model that could be used for representing an Internet
link or route is the Binary Erasure Channel (Figure 8.2). The BEC is characterized
by the following.

e The input X is a binary (Bernoulli) random variable that can be either a
Zero or a one.

e A loss parameter §, which represents the probability that the input is lost
(“erased” or “deleted”) when transmitted over the BEC channel.

e The output Y is a ternary random variable that could take on one of three
possible values: zero, one, or “erasure.” The latter output occurs when the
channel loses the transmitted input X .

More specifically, a BEC is characterized by the conditional probability mea-
sures

Pr[Y:“erasure”|X=O]=8 and Pr[Y:“erasure”lX:l]:S,
Pr[Y=0|X=0]=1-¢ and Pr[Y=1|X=1]=1-3,
Pr[Y=1]X=0]=0 and Pr[Y=0|X=1]=0.

Therefore, no errors occur over a BEC, as Pr[Y =0 | X =1]=Pr[Y =1 | X =
0]=0.
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Due to the loss symmetry of the BEC (i.e., the conditional probability of losing
a bit is independent of the bit value), it can be easily shown that the overall loss
probability is also the parameter §. In other words,

Pr[Y = “erasure”] =4.

By using the definition of information channel capacity C = max ) I (X; Y),
it can be shown [1,2] that the channel capacity of the BEC is a rather intuitive
expression,

cC=1-54.

This capacity, which is measured in “bits” per “channel use,” can be achieved
when the channel input X is a uniform random variable with Pr[X = 0] =Pr[X =
11=1/2.

Despite its simplicity, the BEC provides a rough, yet very useful estimate of the
maximum throughput one can achieve over an Internet link, or an end-to-end route
between a server and a client. For example, if one measures the average packet
loss probability over a link or route to be §, then the throughput of the route is
1 — &, which is the same as the capacity of a BEC with parameter §. The next sec-
tions expand on the basic BEC channel in three aspects that provide more realistic
modeling of practical links and routes: (1) cascaded channels, (2) channels with
input vectors of bits (i.e., packets) rather than binary bits, and (3) channels with
feedback from the receiver to the transmitter.

8.2.2 Cascaded BEC Channels

Packets that carry multimedia content usually traverse multiple links over a path
between the source and the receiver. Hence, these links can be modeled as cas-
caded channels, and here we begin with cascaded BEC channels. First, let’s as-
sume that we have two BEC channels that are in cascade with each other. This,
for example, could represent two Internet links over which multimedia packets
are routed. The two BEC channels could have different loss probabilities,

Pr[Y1 = “erasure” | Xl] =41 and Pr[Yz = “erasure” | X2] = 47,

where (X1, Y1) and (X», Y2) are the input—output pairs for the first and second
links, respectively. In this case, we know that the maximum throughput (as mea-
sured by the channel capacity) that can be received at the output Y7 of the first
channel is C; = 1 — §;. Hence, the second link can be used only (1 — 1) frac-
tion of the time. We also know that the maximum throughput of the second link
is Cy = 1 — §,. Therefore, the overall throughput of the cascaded channel is
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C = (1 —461)(1 — 87). This channel capacity assumes that the two channels are
independent of each other and that both are DMC channels.

This result can be generalized to L cascaded links of BEC-independent chan-
nels. In this case, each link could have a different loss probability,

Pr[Yi = “erasure” | X,-] =6, i=1,2,...,L.

The overall channel capacity of the L cascaded BEC links is

L
c=[Ja-s.
i=1

This end-to-end path of L BEC channels is equivalent to a BEC channel with an
effective end-to-end loss probability

L
s=1-[]a-s.
i=1

Notethat C=1—-6=1— (1 — ]_[iLzl(l — 8;)). As in the single channel case,
the capacity in this cascaded case is measured in bits per channel use. Moreover,
the overall capacity C of the end-to-end route is bounded by the capacity Cpin
of the link with the smallest capacity among all cascaded channels in the route.
In other words, C < Cpin = min;(C;). Hence, knowledge of the minimum ca-
pacity link provides an easy way for identifying the performance bound of the
end-to-end route. As mentioned earlier, it is important to note that this bound
is measured in terms of “per channel use.” Therefore, Cpin should not be con-
fused by the “bottleneck™ bandwidth By, that is commonly referred to by the
networking community. In this case, the bottleneck bandwidth usually represents
the maximum transmission rate (e.g., 1.544 Megabits per second for a T1 line)
that a particular link within the end-to-end path could support, and where this link
has the minimum transmission rate: By, = min; (B;). Here, B; can be thought of
as the number of channel uses per second for link i. In general, a multimedia ap-
plication must use a total rate Ry taking into consideration both the bottleneck
bandwidth and the minimum end-to-end capacity. For example, let’s assume that
the transmission rates and link bandwidths are measured in bits per second. We
also know that a BEC link is based on a “per channel use” where “channel use” is
measured in bits (i.e., every time we use the BEC channel, we are transmitting a
bit). Hence, the effective (maximum) throughput of a BEC link i in terms of bits
per second can be expressed as R; = B;C;. Hence, the total rate Ry used by an
application should be bounded by the following effective performance through-
put: Riotal < min; (R;) = min; (B; C;) in bits per second.
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8.2.3 The “Packet” Erasure Channel (PEC)

A simple generalization of the BEC is needed to capture the fact that multimedia
content is usually packetized and transmitted over Internet links as “integrated
vectors” of bits rather than individual bits. In other words, when a multimedia
packet is lost, that packet is lost in its totality. Hence, for bits that belong to the
same packet, these bits are 100% dependent on each other: either all the bits are
transmitted successfully (usually without errors) or all the bits are erased (e.g.,
lost due to congestion).

We refer to this simple generalization as the Packet Erasure Channel. (In some
literature, this type of channel may be referred to as an M-ary Erasure Channel
as a generalization of the Binary Erasure Channel.) In this case, the input is a
vector of random variables: X = (X, X2, ..., X,), where each element X; is a
binary random variable. The output of the channel includes the possible “erasure”
outcome and all possible input vectors. In other words, we have the following
conditional probability measures for the PEC:

Pr[?:“erasure”|7]=5 and Pr[7=7|Y]:1—6.

Note that these conditional probability measures are independent of the par-
ticular input vector X (i.e., packet). Consequently, it is not difficult to show that
the PEC has the same basic measures, such as channel capacity, as the BEC.
Therefore, C = 1 — §. The capacity in this case is measured in “packets” per
“channel use.” Similarly, a cascade of L links of PEC channels has an effec-
tive loss probability 6 =1 — ]_[lL: 1(1 —§;) and end-to-end capacity C =1 -8 =
| ]_[l-l‘zl(l —8i) = ]_[iLzl(l — §;) in packets per channel use.

8.2.4 The BEC Channel with Feedback

It is quite common for many Internet applications, including multimedia ones,
to support some form of feedback from the receiver to the transmitter. This
could include feedback regarding requests for retransmissions of lost packets, a
process that is commonly used in transport layer protocols such as TCP and in
multimedia-specific variations of such protocols. For example, retransmissions of
UDP/RTP packets carrying video or audio content are quite common over unicast
Internet streaming sessions and are usually based on timely feedback from the
receiver to the transmitter.

In this case, a crucial question is: what happens to the overall performance
bounds of such channels with feedback? In particular, can we improve the maxi-
mum throughput or channel capacity Crp by supporting feedback assuming that
the feedback messages do not consume any of the capacity used in the forward
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direction (i.e., between the transmitter and the receiver)? Information theory pro-
vides an interesting and arguably a surprising answer [1,2]. For any discrete mem-
oryless channel (DMC), including BEC and PEC channels, feedback does not
improve (or worsen for that matter) the throughput/capacity performance of the
channel: C = Cpp.

Therefore, the results listed earlier for the basic (without feedback) BEC and
PEC channels are also applicable for these channels with feedback. For the sce-
nario of cascaded BEC/PEC channels, this is true if the feedback is implemented
on an end-to-end basis. Here, end-to-end feedback means that only the transmit-
ter and the receiver are involved in the feedback (i.e., the final receiver node in
the chain is providing feedback to the very first transmitter node without the in-
volvement of any of the intermediate nodes in the feedback process). Hence, for
cascaded BEC/PEC channels with feedback on an end-to-end basis, we have

L L
CFB:C:1—8:1—(1—H(1—8,~)>:H(1—8,~).
i=1

i=1

However, if the feedback is done on a link-by-link basis, then the overall channel
capacity of a cascaded set of links is bounded by the capacity of the “bottleneck”
link. In other words, the capacity in this case is

Crp = Cpin = min(C;) = min(1 — §;).
1 l

It is important to note that the relationship C = Crp (in the case of end-to-end
feedback) does not imply that a multimedia application should not use feedback
on an end-to-end basis. On the contrary, feedback is crucial for the following
reason. End-to-end feedback helps an application achieve (or at least get close
to) the end-to-end capacity Crp = ]_[l-L=1 (1 — 8;), which may not be achievable
“in practice” without feedback. It is well known, for example, that multimedia
streaming applications could benefit from employing feedback to recover lost
packets through retransmission. In particular, consider a case when a multime-
dia application is streaming a multimedia content that is coded with a (source)
rate R packets per second. Let’s assume that R < BC, where B is the available
bandwidth (in packets per second) and C is the effective (end-to-end) capacity (in
packets per use on an end-to-end basis). Hence, the probability of a packet loss
is 6 = 1 — C. Therefore, without any feedback and retransmission, the effective
throughput that the application can achieve is R — 6 R = (1 — §) R packets per
second. Naturally, R > (1 — §)R. However, if the application employs feedback
with retransmission, then the application can recover the lost packets (assuming
delay is not an issue), and consequently it can achieve a throughput of R packets
per second (i.e., streaming the multimedia source reliably). In other words, feed-
back with retransmission can help the application use access bandwidth that is
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not being fully utilized by the application to achieve better reliability. Note that,
in practice, even when the application (basic) source rate R is lower than the ef-
fective capacity, R < BC, packets will be lost, and therefore, retransmission can
be very useful.

The aforementioned results for channel capacity with feedback are applicable
to memoryless channels. Meanwhile, it has been well established that channels
with memory could increase their capacity by employing feedback. The perfor-
mance aspects of channels with memory are addressed next.

8.3 PACKET LOSSES OVER CHANNELS WITH MEMORY

Packet losses over Internet links and routes exhibit a high level of correlation
and tend to occur in bursts. This observation, which has been well established
by several Internet packet-loss studies, indicates that Internet links and routes ex-
hibit memory. Consequently, although the DMC channel models discussed earlier
could be useful for providing rough estimates of the loss behavior over the Inter-
net, improved models are needed for more accurate estimates of the actual loss
patterns. The most popular analysis and modeling tool used to capture memory
is based on Markov chains. Channels that are modeled using Markov chains are
sometimes referred to as Markov channels.

Bounds for the performance of channels with memory, including Markov chan-
nels, are significantly more difficult to derive and express as compared to DMC
channels. In particular, performance bounds, such as capacity of channels with
memory, do not have simple closed-form expressions as the case for DMC mod-
els. Recursive formulas for evaluating the channel capacity of general Markov
channels have been developed though [4,5]. A special case of Markov channels
is the Gilbert—Elliott channel, which consists of a two-state Markov chain. Recur-
sive formulas for evaluating the channel capacity of the Gilbert—Elliott channel [4]
and for (more general) finite-state Markov channels [5] have been developed.

This chapter focuses on the most basic (and probably most popular) Markov-
based erasure channel model, which is the two-state Markov-state channel. This
two-state Markov chain model of an erasure channel with memory is also known
as the Gilbert model.

The Gilbert model of the two-state Markov chain is shown in Figure 8.3. Here,
G and B represent the Good state and the Bad state, respectively. If the process
(channel) is in the Good state, the transmitted packet is received without any
errors; if the process is in the Bad state, the transmitted packets are lost (i.e.,
“erased”). At time zero, the system can start from the Good or the Bad state; this
is known as the initial state. The system could also end in the Good or the Bad
state.

This Gilbert channel is characterized by two parameters. A common parameter
pair that is used for representing a Gilbert channel is the pair of transitional prob-
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FIGURE 8.3: State diagram of the Gilbert model.

abilities: pgp and ppc. These probabilities are conditional probabilities with the
following interpretations. pgp is the probability that the channel transits to the bad
state given that the channel is in the good state. Similarly, pp¢ is the probability
that the channel transits to the good state given that the channel is in the bad state.
From these two conditional probabilities, one can measure the other transitional
probabilities of staying in the same state: pgg = 1 — pgp and ppp =1 — ppg-

From the transitional probabilities pgp and ppg, one can express the overall
(“average”) probability 7 (G) of being in the good state and the overall probability
7 (B) of being in the bad state:

DPBG and 7(B) = PGB

n(G)=—" o
PGB + PBG PGB + PBG

Note that the probability w(B) of being in a bad state provides the average
loss probability of the two-state Markov channel. In other words, 7 (B) plays
the same role as the loss probability é of the BEC channel. However, while the
BEC channel could be completely characterized by a single parameter (i.e., §), the
Gilbert model needs two parameters as highlighted earlier. Also note that 7 (G) +
w(B)=1.

An important performance measure for multimedia applications is the number
of packets received given that the transmitter sends n packets over routes with
memory. This measure, for example, could help application developers identify
the level of resilience needed when transmitting a block of n video packets; this
block of n packets may correspond to the number of packets in a Group of Pictures
(GoP) of an MPEG stream. Another example could arise when the n packets may
represent a Forward-Error-Correction (FEC) block with both £ media data (e.g.,
video) packets and (n — k) parity packets that are used to recover lost packets
within the n-packet FEC block. Although there is no closed-form solution for the
channel capacity of Markov channels, it is possible to derive closed-form expres-
sions for certain probability measures of losses over these channels. We present a
closed-form expression for the probability of receiving an arbitrary number i of
packets when the transmitter sends n packets over a two-state Markov channel.
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Let ¢ (n, i) be the probability that the sender transmits n packets over a Gilbert
channel and the receiver correctly receives i packets. It can be shown [6,7] that
this probability can be expressed as

¢(n’ l) = 7T(G) (¢GOGi (n) + ¢G()B,' (i’l)) + jT(B)(¢BoGi (n) + ¢B()B,' (n))7

where
i\ (n—i—1
(m) < m—1 >pGBpBGplGGmprl " 0<i<n,
bGoG; (n) = § =1
0 i=0,
n i=n,

PG
i . . |
i n—i-— mtl m i —iem—1 '
pGB PeGcPcG PBB 0<i<n,
¢GoB; (n) = mz::()<m>< m )

0 i=n,

i1
i—1 n—i 1 1 n—i— .
Z( m )( m )PGBP%r Pog' " P " 0<isn,
¢B()G,'(n)= m=0

0 i=0,
il .
i— n—i 1 1 1 i—1 .
Z( m )(m+1)Pg; Pad g e T T 0 <i<n,
PByB; (n) = { "0
PEB i=0,
0 i=n.

Here, ¢ G, (n) is the probability that the sender transmits n packets and the
receiver receives i packets given that the channel starts in a good state and ends
in a good state. Similarly, interpretations can be inferred for ¢, p; (1), ¢g,c; (n),
and ¢, ; (n). For example, ¢, g, (n) is the probability that the sender transmits 7
packets and the receiver receives i packets given that the channel starts in a good
state and ends in a bad state.

8.3.1 Packet Correlation over Channels with Memory

It is worth noting that the desired probability measure ¢ (n,i) can be com-
pletely evaluated using any two parameters that characterize the underlying
Gilbert erasure channel. Traditionally, the transitional probabilities pgp and ppg
(or pe =1 — pgp and ppp = 1 — ppg) are used for such characterization.
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A more useful insight and analysis can be gained by considering other parame-
ter pairs. In particular, the average loss rate p and the packet correlation p can
be used to represent the state transition probabilities, where pgp = p(1 — p) and
pc =1 —p)1—p).

The steady-state probabilities are directly related to the average loss ratep:
7(G)=1— p and 7 (B) = p. The packet erasure correlation p provides an aver-
age measure of how the states of two consecutive packets are correlated to each
other. In particular, when p = 0, the loss process is memoryless and the afore-
mentioned probability measures reduce to the special case of a memoryless BEC.
However, as the value of p increases, then the states of two consecutive packets
become more and more correlated. Hence, we find that the parameters p and p
provide an intuitive, insightful, and broad characterization for the impact of chan-
nel coding on networks with losses.

Figure 8.4 plots the probability that a receiver correctly receives i packets when
the source send n packets over the Gilbert channel. Here, 7 is set to 30, the average
loss rate p is set to 1%, and the packet correlation p is changed from O to 0.9. As
compared with the Binomial model (where p = 0), we can see that as p increases,
the probability of receiving a smaller number of packets increases. For a given
p, as i increases, ¢ (n, i) increases exponentially; this increase slows down as p
increases. When p = (0.9, we can see that ¢ (n, i) has a small spike at i =0 and a
big spike at i = 30. This observation is consistent with the analytical intuition; as
the correlation is strong, once the process initially starts in a bad or a good state,
it has the inertia to stay at that state. For p = 0.01 and p = 0.9, the transition
probabilities are pgg = 0.999, pgp = 0.001, ppg = 0.099, and ppp = 0.901,
respectively.

0 5 10 15 20 2 30
number of correctly received packets, i

FIGURE 8.4: Probability of receiving i packets given that the transmit-
ter sends n = 30 packets, for loss probability p = 0.1.
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nuraber of correctly received packets, i

FIGURE 8.5: A detailed view of the probability of receiving i packets
given that the transmitter sends n packets.

Figure 8.5 is a detailed view when the received packets i changes from 25
to 30. Figure 8.5 shows that as the packet correlation increases, the probability of
receiving a higher number of packets decreases.

8.3.2 Packet Losses over Cascaded Channels with Memory

As highlighted earlier, Internet routes and paths consist of multiple links that can
be modeled as cascaded channels. Further, each of these links/channels usually
exhibits memory. Hence, the case of cascaded channels with memory represents
an important scenario for modeling the performance of Internet end-to-end paths.
In this section, we extend the results of the aforementioned section while making
the simplifying assumption that the cascaded links are independent of each other.

Let ¢;(nj,i;) be the probability of receiving i; packets while transmitting 7 ;
packets over a channel j with memory (e.g., a Markov channel). First, let’s as-
sume that we have only two channels that are cascaded with each other, and hence
Jj =1, 2. We are interested in measuring the probability ¢ (n,i) of receiving i
packets at the output of these cascaded channels (i.e., the output of the second
channel with index j = 2) when the transmitter sends n packets into the input of
the first channel (i.e., the input of the first channel with index j = 1). Based on
the notation adopted earlier, we have n =n1, i1 = ny, and i = i. Note that receiv-
ing i» =i packets at the output of the second channel (which is the output of the
overall two-cascaded channels) implies that the number of packets n, =i trans-
mitted into the input to the second channel, j = 2, must be at least i» = i; in other
words, ny = i1 > ip = i. Further, since n > i1, (n =n1) > (ny =1iy1) > (i =1i)
(Figure 8.6).
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FIGURE 8.6: A representation of the reception of i packets when trans-
mitting n packets over two-cascaded channels with memory.

Hence, the desired probability ¢ (n,i) of receiving i packets at the output of
these two cascaded channels when the transmitter sends n packets into the input
of the first channel can be expressed as

n

i)=Y $i(n1,iD)a(na, i2).

i1(=np)=i

In other words,

n
P, i)=Y ¢1(n, i1$a(i1, ).
i1=i
Hence, if the cascaded channels with memory are both Gilbert channels, then
the desired probability of receiving i packets at the output of the second chan-

nel given that n packets are transmitted at the input of the first channel can be
expressed as

n

¢n.i) =Y (T(G1)($1.GoG:, (1) + b1.GoB;, (1))

i=i
+ n(Bl)(¢l,BoGil (Vl) + qbl,BoBl‘1 (Vl)))
x (7(G2) (2,606, (i1) + $2,608: (i1))
+ 7 (B2) (#2,8,6: (i1) + $2, 8,8 (i1))).
Here, ¢ 6,6, (n) (¢} B,B; (1)) is the probability that the transmitter sends n
packets and the receiver receives i packets over the jth channel given that the

channel begins and ends in a good (bad) state. Also, (G ) (7 (B;)) is the proba-
bility that the jth channel is in a good (bad) state.
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The aforementioned expressions for ¢ (n, i) over two-cascaded channels can be
generalized to N channels with memory. In particular, one can infer the follow-
ing probability of receiving i packets at the output of N cascaded channels with
memory given that the transmitter sends n packets:

¢(n,i)=ZZ-~ Z d1(n,i1)@2(i1,i2) - dn-1(N-2,iN-1)

i1=iip=i] IN-1=IN-2

X on(in-1,1).

A more compact representation of this probability is

$(n, z)—ZZ Z ¢1(n, l1)<]_[¢](t lz,>)¢N(zN 1),

i1=ii2=i) IN-1=IN—2

8.4 WIDE-SCALE INTERNET STREAMING STUDY
8.4.1 Overview

The Internet is a complex interconnection of computer networks whose behav-
ior and structure are usually challenging to measure. Numerous studies have at-
tempted to shed light on the performance of the Internet; however, they tradition-
ally examined backbone and campus-network characteristics and paid little atten-
tion to the conditions experienced by average home users during their daily activi-
ties. Among several traditional approaches, the Internet has been studied from the
perspective of TCP connections by Paxson [27], Bolliger et al. [10], Caceres et al.
[16], Mogul [25], and several others (e.g., [9]). Paxson’s study included 35 geo-
graphically distributed sites in nine countries; Bolliger and colleagues employed
11 sites in seven countries and compared the throughput performance of various
implementations of TCP during a 6-month experiment; whereas the majority of
other researchers monitored transit TCP traffic at a single backbone router [8,
25] or inside several campus networks [16] for the duration ranging from sev-
eral hours to several days. The methodology used in both large-scale TCP ex-
periments [10,27] was similar and involved a topology where each participating
site was paired with every other participating site for an FTP-like transfer. Al-
though this setup approximates well the current use of TCP in the Internet, future
entertainment-oriented streaming services, however, are more likely to involve a
small number of backbone video servers and a large number of home users.

We should further mention that the Internet has been studied extensively by var-
ious researchers using ICMP ping and traceroute packets [8,17-19,26,27],
UDP echo packets [11,14,15], and multicast backbone (MBone) audio packets
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[35,36]. With the exception of the last one, similar observations apply to these
studies—neither the setup nor the type of probe traffic represented realistic real-
time streaming scenarios. Among the studies that specifically sent audio/video
traffic over the Internet [12,13,20,21,32-34], the majority of experiments involved
only a few Internet paths, lasted for a short period of time, and focused on an-
alyzing the features of the proposed scheme rather than the impact of Internet
conditions on real-time streaming.

In this work, we argue that studying network conditions observed by regular
users is an important research topic and take a fundamentally different measure-
ment approach that looks at Internet dynamics from the angle of Internet users
rather than network operators. In our experiments, video streaming clients con-
nect to the Internet through several dial-up ISPs in the United States and emulate
the behavior of an average end user in the late 1990s and early 2000s." In ad-
dition to choosing a different topological setup for the experiment, our work is
different from the previous studies in the following three aspects. First, recall that
the sending rate of a TCP connection is driven by its congestion control, which
can sometimes cause increased packet loss and higher end-to-end delays in the
path along which it operates (e.g., during slow start or after timeouts). In our ex-
periment, we aimed to measure the frue end-to-end path dynamics without the
bias of congestion control applied to slow modem links. Our decision not to use
congestion control was additionally influenced by the evidence that the majority
of streaming traffic in the current Internet employs constant bit rate (CBR) video
streams [30], where users explicitly select the desired streaming rate from content
providers’ Web pages. Second, TCP uses a positive ACK retransmission scheme,
whereas current real-time applications (such as [30]) employ NACK-based re-
transmission to reduce the amount of traffic from users to streaming servers. As
a consequence, end-to-end path dynamics perceived by a NACK-based protocol
could differ from those sampled by TCP along the same path: real-time applica-
tions acquire samples of the round-trip delay (RTT) at rare intervals, send signifi-
cantly less data along the path from the receiver to the sender, and bypass certain
aspects of TCP’s retransmission scheme (such as exponential timer backoff). Fi-
nally, TCP relies on window-based flow control, whereas real-time applications
usually utilize rate-based flow control. In many video coding schemes, a real-time
streaming server must maintain a certain target streaming rate for the decoder to
avoid underflow events, which are caused by packets arriving after their decoding
deadlines. As a result, a real-time sender may operate at different levels of packet

"'Market research reports (e.g., [22,23,28]) show that in Q2 of 2001 approximately 89% of Internet-
enabled U.S. households used dial-up access to connect to the Internet. As of March 2006, 34% of
polled Americans used dial-up, many of whom had no plans or desire to switch to broadband [37].
Furthermore, countries with less developed network infrastructure are expected to experience dial-up-
like (including high-latency satellite and cellular) Internet access for the foreseeable future.
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burstiness and instantaneous sending rate than a TCP sender, as the sending rate
of a TCP connection is governed by the arrival of positive ACKs from the receiver
rather than by the application.

In what follows in the rest of this chapter, we present the methodology and ana-
lyze the results of a 7-month, large-scale, real-time streaming experiment that in-
volved three nationwide dial-up ISPs, each with several million active subscribers
in the United States. The topology of the experiment consisted of a backbone
video server streaming MPEG-4 video sequences to unicast home users located
in more than 600 major U.S. cities. The streaming was performed in real time (i.e.,
with a real-time decoder), utilized UDP for the transport of all messages, and re-
lied on simple NACK-based retransmission to attempt recovery of lost packets
before their decoding deadlines.

8.4.2 Methodology
8.4.2.1 Setup for the Experiment

We started our work by attaching a Unix video server to the UUNET backbone
via a T1 link as shown in Figure 8.7. To support the clients’ connectivity to the In-
ternet, we selected three major nationwide dial-up ISPs: AT&T WorldNet, Earth-
link, and IBM Global Network (which we call ISP, ISP, and ISP, respectively),
each with at least 500 V.90 (i.e., 56 kb/s) dial-up numbers in the United States.
Our experiment emulated the activity of hypothetical Internet users who dialed
local access numbers to reach the Internet and streamed video sequences from a
backbone server. Although the clients were physically located in our laboratory in
the state of New York, they dialed long-distance phone numbers and connected to
the Internet through ISPs’ access points in each of the 50 states. Our database of
phone numbers included 1813 different V.90 access numbers in 1188 major U.S.
cities.

Philips
Research
USA

T1 link

National
dial-up ISP

modem link

client

FIGURE 8.7: Setup of the experiment.



Section 8.4: WIDE-SCALE INTERNET STREAMING STUDY 245

After the phone database was in place, we designed and implemented special
software, which we call the dialer, that dialed phone numbers from the database,
connected to the ISPs using the point-to-point protocol (PPP), issued a parallel
traceroute to the server, and, upon success, started the video client with the in-
structions to stream a 10-min video sequence from the server. Our implementation
of traceroute (built into the dialer) used ICMP instead of the more traditional UDP,
sent all probes in parallel instead of sequentially (hence the name “parallel”), and
recorded the IP time-to-live (TTL) field of each returned “TTL-expired” message.
The use of ICMP packets and parallel traceroute facilitated much quicker discov-
ery of routers, and the analysis of the TTL field in the returned packets allowed
the dialer to compute the number of hops in the reverse path from each intermedi-
ate router to the client machine using a simple fact that each router reset the TTL
field of each generated “TTL-expired” packet to some default value. The majority
of routers used the default TTL equal to 255, while some initialized the field to
30, 64, or 128. Subtracting the received TTL from the default TTL produced the
number of hops along the reverse path. Using the information about the number of
forward and reverse hops for each router, the dialer was able to detect asymmetric
end-to-end paths, which is studied in Section 8.4.8.

In our analysis of data, we attempted to isolate clearly modem-related patholo-
gies (such as packet loss caused by a poor connection over the modem link
and large RTTs due to data-link retransmission) from those caused by congested
routers of the Internet. Thus, connections that were unable to complete a trace-
route to the server, those with high bit-error rates (BER), and those during which
the modem could not sustain our streaming rates were all considered useless for
our study and were excluded from the analysis in this section. In particular, we
utilized the following methodology. We defined a streaming attempt through a
given access number to be successful if the access point of the ISP was able to
sustain the transmission of our video stream for its entire length at the stream’s
target IP bit rate r. Success was declared if the video client finished streaming
while the aggregate (i.e., counting from the very beginning of a session) packet
loss at all times ¢ was below a certain threshold 8, and the aggregate incoming
bit rate was above another threshold §,. The experiments reported in this section
used B, equal to 15% and B, equal to 0.9, whose combination was experimen-
tally found to quite effectively filter out modem-related failures. The packet-loss
threshold was activated after 1 min of streaming and the bit rate threshold after
2 min to make sure that slight fluctuations in packet loss and incoming bit rate at
the beginning of a session were not mistaken for poor connection quality. After
a session was over, the success or failure of the session was communicated from
the video client to the dialer, the latter of which kept track of the time of day and
the phone number that either passed or failed the streaming test.

In order to make the experiment reasonably short, we considered all phone
numbers from the same state to be equivalent; consequently, we assumed that
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a successful streaming attempt through any phone number of a state indicated
a successful coverage of the state regardless of which phone number was used.
Furthermore, we divided each 7-day week into 56 three-hour timeslots (i.e., 8
time slots per day) and designed the dialer to select phone numbers from the
database such that each state would be successfully covered within each of the
56 time slots at least once. In other words, each ISP needed to sustain exactly
50 x 56 = 2800 successful sessions before the experiment was allowed to end.

8.4.2.2 Real-Time Streaming

For the purpose of the experiment, we used an MPEG-4 encoder to create two
10-min QCIF (176 x 144) video streams coded at five frames per second (fps).
The first stream, which we call S}, was coded at the video bit rate of 14 kb/s, and
the second steam, which we call $;, was coded at 25 kb/s. The experiment with
stream S lasted during November—December 1999 and the one with stream S5
was an immediate follow-up during January—May 2000.

During the transmission of each video stream, the server split it into 576-byte
IP packets. Video frames always started on a packet boundary; consequently, the
last packet in each frame was allowed to be smaller than others (in fact, many P
[prediction-coded] frames were smaller than the maximum payload size and were
carried in a single UDP packet). As a consequence of packetization overhead, the
IP bit rates (i.e., including IP, UDP, and our special 8-byte headers) for streams
S1 and S were 16.0 and 27.4 kb/s, respectively. The statistics of each stream are
summarized in Table 8.1.

In our streaming experiment, the term real time refers to the fact that the video
decoder was running in real time. Recall that each compressed video frame has a
specific decoding deadline, which is usually based on the time of the frame’s en-
coding. If a compressed video frame is not fully received by the decoder buffer at
the time of its deadline, the video frame is discarded and an underflow event is reg-
istered. Moreover, to simplify the analysis of the results, we implemented a strict
real-time decoder model, in which the playback of the arriving frames continued
at the encoder-specified deadlines regardless of the number of underflow events
(i.e., the decoding deadlines were not adjusted based on network conditions). Note
that in practice, better results can be achieved by allowing the decoder to freeze
the display and rebuffer a certain number of frames when underflow events be-
come frequent (e.g., as done in [30]).

Table 8.1: Summary of streams statistics.

Stream Size, MB Packets Video bit rate, Average frame size,
kb/s bytes
S1 1.05 4188 14.0 350

S 1.87 5016 25.0 623
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In addition, many CBR video coding schemes include the notion of ideal start-
up delay [29,30] (the delay is called “ideal” because it assumes a network with
no packet loss and a constant end-to-end delay). This ideal delay must always be
applied to the decoder buffer before the decoding process may begin. The ideal
start-up delay is independent of the network conditions and solely depends on the
decisions made by the encoder during the encoding process.? On top of this ideal
start-up delay, the client in a streaming session must usually apply an additional
start-up delay in order to compensate for delay jitter (i.e., variation in the one-way
delay) and permit the recovery of lost packets via retransmission. This additional
start-up delay is called the delay budget (Dyudget) and reflects the values of the
expected delay jitter and round-trip delay during the length of the session. Note
that in the context of Internet streaming, it is common to call Dyygger simply “start-
up delay” and to completely ignore the ideal start-up delay (e.g., [21]). From this
point on, we will use the same convention. In all our experiments, we used Dpudget
equal to 2700 ms, which was manually selected based on preliminary testing.
Consequently, the total start-up delay (observed by an end user) at the beginning
of each session was approximately 4 s.

8.4.2.3 Client—Server Architecture

For the purpose of our experiment, we implemented a client—server architecture
for MPEG-4 streaming over the Internet. The server was fully multithreaded to
ensure that the transmission of packetized video was performed at the target IP
bit rate of each streaming session and to provide a quick response to clients’
NACK requests. The streaming was implemented in bursts of packets (with the
burst duration Dy, varying between 340 and 500 ms depending on the bit rate) for
the purposes of making the server as low overhead as possible (e.g., RealAudio
servers have been reported to use Dj, = 1800 ms [24]).

The second and the more involved part of our architecture, the client, was de-
signed to recover lost packets through NACK-based retransmission and to collect
extensive statistics about each received packet and each decoded frame. Further-
more, as it is often done in NACK-based protocols, the client was in charge of
collecting round-trip delay samples. The measurement of RTTs involved the fol-
lowing two methods. In the first method, each successfully recovered packet pro-
vided a sample of the RTT, which was the duration between sending a NACK and
receiving the corresponding retransmission. In our experiment, in order to avoid
the ambiguity of which retransmission of the same packet actually returned to the
client, the header of each NACK request and each retransmitted packet contained
an extra field specifying the retransmission sequence number of the packet.

2We will not elaborate further on the ideal start-up delay, except to mention that it was approximately
1300 ms for each stream.
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The second method of measuring the RTT was used by the client to obtain ad-
ditional samples of the round-trip delay in cases where network packet loss was
too low. The method involved periodically sending simulated retransmission re-
quests to the server if packet loss was below a certain threshold. In response to
these simulated NACKSs, the server included the usual overhead of fetching the
needed packets from the storage and sending them to the client.? In our experi-
ment, the client activated simulated NACKs, spaced 30 seconds apart, if packet
loss was below 1%.

We tested the software and the concept of a wide-scale experiment of this sort
for 9 months before we felt comfortable with the setup, the reliability of the soft-
ware, and the exhaustiveness of the collected statistics. In addition to extensive
testing of the prototype, we monitored various statistics reported by the clients in
real time (i.e., on the screen) during the experiments for sanity and consistency
with previous tests. Overall, the work reported in this section took us 16 months
to complete.

Our traces consist of six datasets, each collected by a different machine.
Throughout this section, we use notation D; to refer to the dataset collected
by the client assigned to ISP, (x = a, b, ¢) during the experiment with stream
S, (n = 1,2). Furthermore, we use notation D, to refer to the combined set
{D¢U DU DE).

8.4.3 Overview of Experimental Results

In dataset D1, the three clients performed 16,783 long-distance connections to the
ISPs’ remote modems and successfully completed 8429 streaming sessions. Typ-
ical reasons for failing a session were PPP-layer connection problems, inability
to reach the server (i.e., failed traceroute), high bit-error rates, and low (14.4—
19.2 kb/s) modem connection rates. In D5, the clients performed 17,465 connec-
tions and sustained 8423 successful sessions. In dataset D1, the clients traced the
arrival of 37.7 million packets, and in D, the arrival of an additional 47.3 mil-
lion (for a total of 85 million). In terms of bytes, the first experiment transported
9.4 GB of video data and the second one transported another 17.7 GB (for a total
of 27.1 GB).

Recall that each experiment lasted as long as it was needed to cover the entire
United States. Depending on the success rate within each state, the access points
used in the experiment comprised a subset of our database. In D, the experiment
covered 962 dial-up points in 637 U.S. cities, and in Dy, it covered 880 dial-up
points in 575 U.S. cities. Figure 8.8 shows the per-state distribution of the number

3Server overhead was below 10 ms for all retransmitted packets and did not have a major impact on
our characterization of the RTT process later in this section.
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FIGURE 8.8: The number of unique cities per state that participated in
both experiments (i.e., in {D1 U D»}).

of distinct cities in each state covered by both experiments, which represents 1003
access points in 653 cities.

Analysis of the success rates observed during the experiment suggests that in
order to receive real-time streaming material at 16 to 27.4 kb/s, an average U.S.
end user equipped with a V.90 modem needs to make approximately two dialing
attempts to his/her local ISPs. The success rate of streaming sessions during the
different times of the day is illustrated in Figure 8.9 (top). Note the dip by a factor
of two between the best (i.e., 12-3 a.m.) and the worst (i.e., 9 p.m.—12 a.m.) times
of the day.

During this measurement study, each session was preceded by a parallel trace-
route that recorded the IP addresses of all discovered routers (DNS and WHOIS
lookups were done off-line after the experiments were over). The average time
needed to trace an end-to-end path was 1731 ms, with 90% of the paths traced un-
der 2.5 s and 98% under 5 s. Dataset D recorded 3822 distinct Internet routers,
D, recorded 4449 distinct routers, and both experiments combined produced
the IP addresses of 5266 unique router interfaces. The majority of the discov-
ered routers belonged to the ISPs’ networks (51%) and UUNET (45%), which
confirmed our intuition that all three ISPs had direct peering connections with
UUNET. Interestingly, the traces showed approximately 200 routers that belonged
to five additional Autonomous Systems (AS), indicating that certain end-to-end
paths were routed across additional ISPs.
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FIGURE 8.9: Success of streaming attempts during the day (top). Dis-
tribution of the number of end-to-end hops (bottom).

The average end-to-end hop count was 11.3 in D (6 minimum and 17 maxi-
mum) and 11.9 in D, (6 minimum and 22 maximum). Figure 8.9 (bottom) shows
the distribution of the number of hops in the encountered end-to-end paths in each
of D1 and D;. As Figure 8.9 shows, the majority of paths (75% in D and 65%
in D) contained between 10 and 13 hops.

Throughout the rest of the section, we restrict ourselves to studying only suc-
cessful (as defined earlier) sessions in both D and D,. We call these new purged
datasets with only successful sessions D1, and D, respectively (purged datasets
D,’ip are defined similarly forn =1, 2 and x = a, b, ¢). Recall that {D;, U D)}
contains 16,852 successful sessions, which are responsible for 90% of the bytes
and packets, 73% of the routers, and 74% of the U.S. cities recorded in { D U D5}.
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8.4.4 Packet Loss

8.4.4.1 Overview

Numerous studies have focused on Internet packet loss; however, due to the enor-
mous diversity of the Internet, only a few of them agree on the average packet
loss rate or the average loss-burst length (i.e., the number of packets lost in a
row). Among prior conclusions, the average Internet packet loss was reported to
vary between 11 and 23% by Bolot [11] depending on the inter-packet transmis-
sion spacing, between 0.36 and 3.54% by Borella et al. [14,15] depending on the
studied path, between 1.38 and 11% by Yajnik et al. [36] depending on the loca-
tion of the MBone receiver, and between 2.7 and 5.2% by Paxson [27] depending
on the year of the experiment. In addition, 0.49% average packet loss rate was
reported by Balakrishnan et al. [9], who analyzed the dynamics of a large number
of TCP Web sessions at a busy Internet server.

In dataset D, the average recorded packet loss rate was 0.53% and in D3,
it was 0.58%. Even though these rates are much lower than those traditionally
reported by Internet researchers during the last decade due to the much lower
transmission rates used in our study, they are still much higher than those adver-
tised by backbone ISPs (i.e., 0.01-0.1%). We thus speculate that the majority of
loss occurred at the “edges” of the Internet rather than at its core. Approximately
38% of the sessions in {Dj, U D3} did not experience any packet loss, 75%
experienced loss rates below 0.3%, and 91% experienced loss rates below 2%.
However, 2% of the sessions suffered packet loss rates 6% or higher.

As expected, average packet loss rates exhibited a wide variation during the day.
Figure 8.10 (top) shows the evolution of loss rates as a function of the time slot
(i.e., the time of day), where each point represents the average of approximately
1000 sessions. As Figure 8.10 shows, the variation in loss rates between the best
(3—6 a.m.) and the worst (3—6 p.m.) times of the day was by a factor of two in D1,
and by a factor of three in D;,. The apparent discontinuity between time slots 7
(21:00-0:00) and 0 (0:00-3:00) is due to a coarse timescale in Figure 8.10 (top).
On finer timescales (e.g., minutes), loss rates converge to a common value near
midnight. A similar discontinuity in packet loss rates was reported by Paxson [27]
for North American sites, where packet loss during time slot 7 was approximately
twice as high as that during time slot 0.

The average per-state packet loss shown in Figure 8.10 (bottom) varied quite
substantially from 0.2% in Idaho to 1.4% in Oklahoma, but virtually did not de-
pend on the state’s average number of end-to-end hops to the server (correlation
coefficient p was —0.04) or the state’s average RTT (correlation —0.16). How-
ever, as discussed later, the average per-state RTT and the number of end-to-end
hops were, in fact, positively correlated.
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8.4.4.2 Loss Burst Lengths

We next attempt to answer the question of how bursty Internet packet loss was dur-
ing the experiment. Figure 8.11 (top) shows the distribution (both the histogram
and the CDF) of loss-burst lengths in {D;, U D;,}. Note that Figure 8.11 stops
at burst length 20, which covers more than 99% of the bursts. Even though the
upper tail of the distribution had very few samples, it was fairly long and reached
burst lengths of over 100 packets.

Figure 8.11 (top) is based on 207,384 loss bursts and 431,501 lost packets. The
prevalence of single-packet losses, given the fact that the traffic in our experi-
ment was injected into the Internet in bursts at the T1 speed, leads to one pos-
sibility that router queues sampled in our experiment predominantly overflowed
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on timescales smaller than the time needed to transmit a single IP packet over a
T1 link (i.e., 3 ms for the largest packets and 1.3 ms for the average-size pack-
ets). However, interference of cross-traffic between video packets at prebottleneck
routers (i.e., which causes expansion of interpacket dispersion) or usage of RED
makes it much more difficult to accurately assess the duration of loss events in-
side routers. To investigate the presence of RED in the Internet, we contacted
several backbone and dial-up ISPs whose routers were recorded in our trace and
asked them to comment on the deployment of RED in their backbones. Among
the ISPs that responded to our request, the majority had purposely disabled RED
and the others were running RED only for select customers at border routers, but
not on the public backbone. Ruling out RED, another difficulty of computing the
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duration of congestion-related loss at routers is the fact that single-packet losses
were underrepresented in our traces, as packets that were lost in bursts longer
than one packet could have been dropped by different routers along the path from
the server to the client. Therefore, using end-to-end measurements, an application
cannot distinguish between n (n > 2) single-packet losses at n different routers
from an n-packet bursty loss at a single router. Both types of loss events appear
identical to an end-to-end application even though the underlying cause is quite
different. Consequently, we conclude that even though the analysis of our datasets
points toward transient (i.e., 1-3 ms) buffer overflows in the Internet routers sam-
pled by our experiment, a more detailed study is needed to verify this finding and
sample packet-loss durations at individual routers.

As previously pointed out by many researchers, the upper tail of loss-burst
lengths usually contains a substantial percentage of all lost packets. In each of D1,
and D,,, single-packet bursts contained only 36% of all lost packets, bursts 2
packets or shorter contained 49%, bursts 10 packets or shorter contained 68%,
and bursts 30 packets or shorter contained 82%. At the same time, 13% of all lost
packets were dropped in bursts at least 50 packets long.

Traditionally, the burstiness of packet loss is measured by the average loss-
burst length. In dataset D1, the average burst length was 2.04 packets. In dataset
D»,,, the average burst length was slightly higher (2.10), but not high enough to
conclude that the higher bit rate of stream S, was clearly responsible for burstier
packet loss. Furthermore, the conditional probability of packet loss, given that the
previous packet was also lost, was 51% in D1, and 53% in D;,. These numbers
are consistent with those previously reported in the literature. Bolot [11] observed
the conditional probability of packet loss to range from 18 to 60% depending on
interpacket spacing during transmission, Borella et al. [15] from 10 to 35% de-
pending on the time of day, and Paxson [27] reported 50% conditional probability
for loaded (i.e., queued behind the previous) TCP packets and 25% for unloaded
packets. Using Paxson’s terminology, the majority of our packets were loaded
since the server sent packets in bursts at a rate higher than the bottleneck link’s
capacity.

8.4.4.3 Loss Burst Durations

To a large degree, the average loss-burst length depends on how closely the pack-
ets are spaced during transmission. Assuming that bursty packet loss comes from
buffer overflows in drop-tail queues rather than from consecutive hits by RED
or from bit-level corruption, it is clear that all packets of a flow passing through
an overflown router queue will be dropped for the duration of the instantaneous
congestion. Hence, the closer together the flow’s packets arrive to the router, the
more packets will be dropped during each queue overflow. This fact was clearly
demonstrated in Bolot’s [11] experiments, where UDP packets spaced 8 ms apart
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suffered larger loss-burst lengths (mean 2.5 packets) than packets spaced 500 ms
apart (mean 1.1 packets). Yajnik et al. [36] reported a similar correlation be-
tween loss-burst lengths and the distance between packets. Consequently, instead
of analyzing burst lengths, one might consider measuring burst durations in time
units since the latter does not depend on interpacket spacing during transmis-
sion.

Using our traces, we can only infer an approximate duration of each loss burst
because we do not know the exact time when the lost packets were supposed to
arrive to the client. Hence, for each loss event, we define the loss-burst duration
as the time elapsed between the receipt of the packet immediately preceding the
loss burst and the packet immediately following it. Figure 8.11 (bottom) shows
the distribution (CDF) of loss-burst durations in seconds. Although the distrib-
ution tail is quite long (up to 36 s), the majority (more than 98%) of loss-burst
durations in both datasets D1, and D;, fall under 1 s. We speculate that some of
this effect was caused by data-link retransmission on the modem link, which may
also be responsible for large delays in modern wireless and satellite networks.
Paxson’s [27] study similarly observed large loss-burst durations (up to 50 s);
however, only 60% of loss bursts studied by Paxson were contained below 1 s. In
addition, our traces showed that the average distance between lost packets in the
experiment was 172-188 good packets, or 21-27 s, depending on the streaming
rate.

8.4.4.4 Heavy Tails

In conclusion of this section, it is important to note that packet losses sometimes
cannot be modeled as independent events due to buffer overflows that last long
enough to affect multiple adjacent packets. Consequently, future real-time proto-
cols should expect to deal with bursty packet losses (Figure 8.11) and possibly
heavy-tailed distributions of loss-burst lengths (see later). Several researchers re-
ported a heavy-tailed nature of loss-burst lengths with shape parameter « of the
Pareto distribution fitted to the length (or duration) of loss bursts ranging from
1.06 [8] to 2.75 [15]. However, Yajnik et al. [36] partitioned the collected data
into empirically chosen stationary segments and reported that loss-burst lengths
could be modeled as exponential (i.e., not heavy-tailed) within each stationary
segment.

Using intuition, it is clear that packet loss and RTT random processes in both
D1, and D), are expected to be nonstationary. For example, the nonstationarity
can be attributed to the time of day or the location of the client. In either case, we
see three approaches to modeling such nonstationary data. In the first approach,
one would analyze 16,852 CDF functions (one for each session) for stationarity
and heavy tails. Unfortunately, an average session contained only 24 loss bursts,
which was insufficient to build a good distribution function for statistical analysis.
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The second approach would be to combine all sessions into groups that are intu-
itively perceived to be stationary (e.g., according to the access point or the time
slot) and then perform similar tests for stationarity and heavy tails within each
group. We might consider this direction for future work. The third approach is
to assume that all data samples belong to some stationary process and are drawn
from a single distribution, which is commonly performed by researchers for sim-
plicity of analysis. Using the last approach, Figure 8.12 (top) shows a log—log plot
of the complementary CDF function from Figure 8.11 (top) with a least-squares
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fit of a straight line representing a heavy-tailed distribution (the dotted curve is
the exponential distribution fitted to data). The fit of a straight line is quite good
(with correlation p = 0.99) and provides a strong indication that the distribution
of loss-burst lengths in the combined dataset { D1, U D3} is heavy tailed. How-
ever, the exponential distribution in Figure 8.12 (top) decays too quickly to even
remotely fit the data.

Finally, consider a Pareto distribution with CDF F(x) =1 — (8/x)%* and PDF
f(x) =aB*x*"!, where « is the shape parameter and f is the location parame-
ter. Using Figure 8.12 (top), we establish that a Pareto distribution with « = 1.34
(finite mean, but infinite variance) and 8 = 0.65 fits our data very well.

8.4.5 Underflow Events

The impact of packet losses on real-time applications is understood fairly well.
Each lost packet that is not recovered before its deadline causes an underflow
event. In addition to packet loss, real-time applications suffer from large end-to-
end delays. However, not all types of delay are equally important to real-time
applications. As shown later, one-way delay jitter was responsible for 90 times
more underflow events in our experiment than packet loss combined with large
RTTs.

Delays are important for two reasons. First, large round-trip delays make re-
transmissions late for their decoding deadlines. However, the RTT is important
only to the extent of recovering lost packets and, in the worst case, can cause
only lost packets to be late for decoding. However, delay jitter (i.e., one-way
delay variation) can potentially cause each data (i.e., nonretransmitted) packet
to be late for decoding. In {D1, U D3,}, packet loss affected 431,501 packets,
out of which 159,713 (37%) were discovered to be missing after their decoding
deadlines had passed. As a result, NACKs were not sent for these packets. Out
of 271,788 remaining lost packets, 257,065 (94.6%) were recovered before their
deadlines, 9013 (3.3%) arrived late, and 5710 (2.1%) were never recovered. The
fact that more than 94% of “recoverable” lost packets were actually received be-
fore their deadlines indicates that retransmission is a very effective method of
overcoming packet loss in real-time applications. Clearly, the success rate will
be even higher in networks with smaller RTTs or applications with larger start-up
delays. In fact, these results can be used to properly select Dyydge for applications
operating in similar network conditions to ensure the desired level of lost-packet
recovery.

Before studying underflow events caused by delay jitter, we introduce two types
of late retransmissions. The first type consists of packets that arrived after the
decoding deadline of the last frame of the corresponding GoP. These packets were
completely useless and were discarded. The second type of late packets, which
we call partially late, consists of those packets that missed their own decoding



258 Chapter 8: CHANNEL MODELING AND ANALYSIS FOR THE INTERNET

deadline, but arrived before the deadline of the last frame of the same GOP. Since
the video decoder in our experiment could decompress frames at a substantially
higher rate than the target fps, the client was able to use partially late packets for
motion-compensated reconstruction of the remaining frames from the same GOP
before their corresponding decoding deadlines. Out of 9013 late retransmissions,
4042 (49%) were partially late. Using each partially late packet, the client was
able to save on average 4.98 frames from the same 10-frame GOP in D;, and
4.89 frames in D;, by employing the catch-up technique described earlier (for
more discussion, see [31]).

In contrast to 174,436 underflows caused by packet loss, one-way delay jitter
was responsible for 1,167,979 underflows in data (i.e., nonretransmitted) pack-
ets. Hence, the total number of packets missing at the time of decoding was
174,436 + 1,167,979 = 1,342,415 (1.7% of the number of sent packets), which
means that 87% of underflow packets were produced by large one-way delay jit-
ter rather than by packet loss. Even if the clients had not attempted to recover
any of the 431,501 lost packets, 73% of the missing packets at the time of de-
coding would have been caused by large delay jitter. In terms of user-perceived
metrics, 1.3 million underflow packets caused a freeze-frame effect on average
for 10.5 s per 10-min session in Dj, and 8.6 s in Dj,, which can be con-
sidered excellent given the small amount of delay budget used in the experi-
ments.

To further understand the phenomenon of late packets, Figure 8.12 (bottom)
plots the CDFs of the amount of time by which late packets missed their deadlines
(i.e., the amount of time that was needed to add to delay budget Dyudger = 2700 ms
in order to avoid a certain percentage of underflow events). As Figure 8.12 shows,
25% of late retransmissions missed their deadlines by more than 2.6 s, 10% by
more than 5 s, and 1% by more than 10 s (the tail of the CDF extends up to
98 s). At the same time, one-way delay jitter had a more adverse impact on
data packets: 25% of late data packets missed their deadlines by more than 7 s,
10% by more than 13 s, and 1% by more than 27 s (the CDF tail extends up to
56 s).

One common way of reducing the number of late packets caused by large RTTs
and delay jitter is to apply a higher start-up delay Dpyugget at the beginning of a
session. An additional approach is to freeze the display and effectively increase
the start-up delay during the session as need arises. The final approach works for
streaming prerecorded content and allows the receiver to request that the server
transmit video traffic at a faster-than-ideal bit rate at certain times to compensate
for delayed packets and to increase the amount of buffered frames at the decoder
(available bandwidth permitting). Using a strict no-freeze model of this work,
only the first approach was viable, which would require a 13-s total delay budget
to save 99% of late retransmissions and 84% of late data packets under similar
streaming conditions.
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8.4.6 Round-Trip Delay
8.4.6.1 Overview

We should mention that circuit-switched long-distance links through PSTN be-
tween our clients and remote access points did not significantly influence the
measured end-to-end delays because the additional delay on each long-distance
link was essentially the propagation delay between New York and the location
of the access point. Since the propagation delay is determined by the speed of
light and geographic distance, most links experienced bias of no more than ap-
proximately 32 ms, which is the round-trip delay of a 3000-mile link. Clearly,
this delay is negligible compared to the queuing and transmission delays experi-
enced by our packets along the entire end-to-end path. Figure 8.13 (top) shows
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the histogram of round-trip delays in each of Dy, and D3, (660,439 RTT sam-
ples in both datasets). Although the tail of the combined distribution reached the
enormous values of 126 s for simulated and 102 s for real retransmissions, the
majority (75%) of the samples were below 600 ms, 90% below 1 s, and 99.5%
below 10 s. The average RTT was 698 ms in D1, and 839 ms in D;,. The mini-
mum RTT was 119 and 172 ms, respectively. Although very rare, extremely high
RTTs were found in all six datasets D‘fp - D5 . Out of more than 660,000 RTT
samples in {D1, U Dy}, 437 were at least 30 s, 32 at least 50 s, and 20 at least
75 s.

Although pathologically high RTTs may seem puzzling at first, there is a sim-
ple explanation. Modem error correction protocols (i.e., the commonly used V.42)
implement retransmission for corrupted blocks of data at the physical or data-link
layer.* Error correction is often necessary if modems negotiated data compres-
sion (i.e., V.42bis) over the link and is desirable if the PPP Compression Control
Protocol is enabled on the data-link layer. In all our experiments, both types of
compression were enabled, imitating the typical setup of a home user. Therefore,
if a client established a connection to a remote modem at a low bit rate (which was
sometimes accompanied by a significant amount of noise in the phone line), each
retransmission at the physical layer took a long time to complete before data were
delivered to the upper layers. In addition, large IP-level buffers on either side of
the modem link further delayed packets arriving to or originating from the client
host.

Note that the purpose of classifying sessions into failed and successful in Sec-
tion 8.4.2.1 was to avoid reporting pathological conditions caused by modem
links. Since less than 0.5% of RTTs in {D1, U D)} were seriously affected by
modem-level retransmission and bit errors (i.e., had RTTs higher than 10 s), we
conclude that our heuristic was successful in filtering out the majority of patholog-
ical connections and that future application-layer protocols running over a modem
link should be prepared to experience RTTs on the order of several seconds.

8.4.6.2 Heavy Tails

Mukherjee [26] reported that RTTs along certain Internet paths could be modeled
by a shifted gamma distribution. Even though the shape of the PDF in Figure 8.13
(top) resembles that of a gamma function, the distribution tails in Figure 8.13 de-
cay much slower than those of an exponential distribution (see later). Using our
approach from Section 8.4.4.4 (i.e., assuming that each studied Internet random

4Since the telephone network beyond the local loop in the United States is mostly digital, we believe
that dialing long-distance numbers had no significant effect on the number of bit errors during the
experiment.
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process is stationary), we extracted the upper tails of the PDF functions in Fig-
ure 8.13 (top) and plotted the results on a log—log scale in Figure 8.13 (bottom).
Figure 8.13 shows that a straight line (without loss of generality fitted to the PDF
of D, in the figure) provides a good fit to data (correlation 0.96) and allows us
to model the upper tails of both PDF functions as a Pareto distribution with PDF
f(x) =aBf*x~*"! where shape parameter « equals 1.16 in dataset D1, and 1.58
in Dy, (as before, the distribution has a finite mean, but an infinite variance).

8.4.6.3 Variation of the RTT

We conclude the discussion of the RTT by showing that it exhibited a variation
during the day similar to that of packet loss shown previously in Figure 8.10
(top) and that the average RTT was correlated positively with the length of the
corresponding end-to-end path. Figure 8.14 (top) shows the average round-trip
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delay during each of the eight time slots of the day (as before, each point in
Figure 8.14 represents the average of approximately 1000 sessions). Figure 8.14
confirms that the worst time for sending traffic over the Internet is between 9 a.m.
and 6 p.m. EDT and shows that the increase in the delay during peak hours is
relatively small (i.e., by 30-40%).

Figure 8.14 (bottom) shows the average RTT sampled by the clients in each of
the 50 U.S. states. The average round-trip delay was consistently high (i.e., above
1 s) for three states: Alaska, New Mexico, and Hawaii. However, the RTT was
consistently low (below 600 ms) also for three states: Maine, New Hampshire,
and Minnesota. These results, except Minnesota, can be directly correlated with
the distance from New York; however, in general, we found that the geographical
distance of the access point from the East Coast had little effect on the average
RTT. For example, certain states in the Midwest had small (600-800 ms) average
round-trip delays and certain states on the East Coast had large (800-1000 ms)
average RTTs. A more substantial link can be established between the number of
end-to-end hops and the average RTT, as shown in Figure 8.14 (bottom). Even
though the average RTT of many states did not exhibit a clear dependency on the
average length of the path, the correlation between the RTT and the number of
hops in Figure 8.14 (bottom) was reasonably high with p = 0.52. This result was
intuitively expected, as the RTT is essentially the sum of queuing and transmission
delays at intermediate routers.

8.4.7 Delay Jitter

As discussed earlier, in certain streaming situations round-trip delays are much
less important to real-time applications than one-way delay jitter because the lat-
ter can potentially cause significantly more underflow events. In addition, due to
asymmetric path conditions (i.e., uneven congestion in the upstream and down-
stream directions), large RTTs are not necessarily an indication of bad network
conditions for a NACK-based application. In many sessions with high RTTs dur-
ing the experiment, the outage was caused by the upstream path, while the down-
stream path did not suffer from extreme one-way delay variation and data packets
were arriving to the client throughout the entire duration of the outage. Hence, we
conclude that the RTT is not necessarily a good indicator of a session’s quality
during streaming and that one-way delay jitter should be used instead.

Assuming that delay jitter is defined as the difference between one-way delays
of each two consecutively sent packets, an application can sample both positive
and negative values of delay jitter. Negative values are produced by two types of
packets—those that suffered a packet compression event (i.e., the packets’ arrival
spacing was smaller than their transmission spacing) and those that became re-
ordered. The former case is of great interest in packet-pair bandwidth estimation
studies and otherwise remains relatively unimportant. The latter case is studied



Section 8.4: WIDE-SCALE INTERNET STREAMING STUDY 263

in Section 8.4.8 under packet reordering. However, positive values of delay jitter
represent packet expansion events, which are responsible for late packets. Con-
sequently, we analyzed the distribution of only positive delay jitter samples and
found that although the highest sample was 45 s, 97.5% of the samples were less
than 140 ms and 99.9% under 1 s. As the aforementioned results show, large val-
ues of delay jitter were not frequent, but once a packet was significantly delayed
by the network, a substantial number of the following packets were delayed as
well, creating a “snowball” of underflows. This fact explains the large number
of underflow events reported in previous sections, even though the overall delay
jitter was relatively low.

8.4.8 Packet Reordering

8.4.8.1 Overview

Real-time protocols often rely on the assumption that packet reordering in the
Internet is a rare and insignificant event for all practical purposes (e.g., [21]).
Although this assumption simplifies the design of a protocol, it also makes the
protocol poorly suited for use over the Internet. Certainly, there are Internet paths
along which reordering is either nonexistent or extremely rare. At the same time,
there are paths that are dominated by multipath routing effects and often experi-
ence reordering (e.g., Paxson [27] reported a session with 36% of packets arriving
out of order).

Unfortunately, there is not much data documenting reordering rates experi-
enced by IP traffic over modem links. Using intuition, we expected reordering
in our experiments to be extremely rare given the low bit rates of streams S
and S,. However, we were surprised to find out that certain paths experienced
consistent reordering with a relatively large number of packets arriving out of or-
der, although the average reordering rates in our experiments were substantially
lower than those reported by Paxson [27].

For example, in dataset D , we observed that out of every three missing’
packets one was reordered. Hence, if users of ISP, employed a streaming protocol
that used a gap-based detection of lost packets [21] (i.e., the first out-of-order
packet triggered an NACK), 33% of NACKs would be redundant and a large
number of retransmissions would be unnecessary, causing a noticeable fraction of
ISP’s bandwidth to be wasted.

Since each missing packet is potentially reordered, the true frequency of re-
ordering can be captured by computing the percentage of reordered packets rel-
ative to the total number of missing packets. The average reordering rate in our
experiment was 6.5% of the number of missing packets, or 0.04% of the number

5Missing packets are defined as gaps in sequence numbers.
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of sent packets. These numbers show that our reordering rates were at least by
a factor of 10 lower than those reported by Paxson [27], whose average reorder-
ing rates varied between 0.3 and 2% of sent packets depending on the dataset.
This difference can be explained by the fact that our experiment was conducted
at substantially lower end-to-end bit rates, as well as by the fact that Paxson’s
experiment involved several paths with extremely high reordering rates.

Out of 16,852 sessions in {D1, U D3y}, 1599 (9.5%) experienced at least one
reordering. Interestingly, the average session reordering rates in our datasets were
very close to those in Paxson’s 1995 data [27] (12% sessions with at least one
reordering), despite the fundamental differences in sending rates. The highest re-
ordering rate per ISP in our experiment occurred in D¢ e where 35% of missing
packets (0.2% of sent packets) turned out to be reordered. In the same D“p, almost
half of the sessions (47%) experienced at least one reordering event. Furthermore,
the maximum number of reordered packets in a single session occurred in Dll’ »
and was 315 packets (7.5% of sent packets).

Interestingly, the reordering probability did not show any dependence on the
time of day (i.e., the time slot) and was virtually the same for all states.

8.4.8.2 Reordering Delay

To further study packet reordering, we define two metrics that allow us to measure
the extent of packet reordering. First, let packet reordering delay D, be the delay
from the time when a reordered packet was declared as missing to the time when
the reordered packet arrived to the client. Second, let packet reordering distance
d, be the number of packets (including the very first out-of-sequence packet, but
not the reordered packet itself) received by the client during reordering delay D,..
These definitions are illustrated in Figure 8.15, where reordering distance d, is
two packets and reordering delay D, is the delay between receiving packets 3
and 2.

Figure 8.16 (top) shows the histogram of D, in {D;, U D>p}. The largest re-
ordering distance d, in the combined dataset was 10 packets, and the largest re-
ordering delay D, was 20 s (however, in the latter case, d, was only 1 packet).
Although quite large, the maximum value of D, is consistent with previously re-
ported numbers (e.g., 12 s in Paxson’s data [27]). The majority (90%) of samples
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FIGURE 8.15: The meaning of reordering delay D;,..
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FIGURE 8.16: Histogram of reordering delay D, in {D1, U D3} (top).
Histogram of reordering distance d, in {D1, U D;,} (bottom).

in Figure 8.16 (top) were below 150 ms, 97% below 300 ms, and 99% below
500 ms.

8.4.8.3 Reordering Distance

We next analyze the suitability of TCP’s triple-ACK scheme in helping NACK-
based protocols detect reordering. TCP’s fast retransmit relies on three consec-
utive duplicate ACKs (hence the name “triple-ACK”) from the receiver to de-
tect packet loss and avoid unnecessary retransmissions. Therefore, if reordering
distance d, is either 1 or 2, the triple-ACK scheme successfully avoids dupli-
cate packets; if d, is greater than or equal to 3, it generates a duplicate packet.
Figure 8.16 (bottom) shows the PDF of reordering distance d, in both datasets.
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Using Figure 8.16, we can infer that TCP’s triple-ACK would be successful for
91.1% of the reordering events in our experiment, double-ACK for 84.6%, and
quadruple-ACK for 95.7%. Note that Paxson’s TCP-based data [27] show simi-
lar, but slightly better, detection rates, specifically 95.5% for triple-ACK, 86.5%
for double-ACK, and 98.2% for quadruple-ACK.

8.4.9 Asymmetric Paths

Recall that during the initial executions of the traceroute, our dialer recorded the
TTL field of each received “TTL-expired” packet. These fields allowed the di-
aler to compute the number of hops between the router that generated a particular
“TTL-expired” message and the client. Suppose some router i was found at hop
fi in the upstream (i.e., forward) direction and at hop r; in the downstream (i.e.,
reverse) direction. Hence, we can conclusively establish that an n-hop end-to-
end path is asymmetric if a router exists for which the number of downstream
hops is different from the number of upstream hops (i.e., 3i, 1 <i <n: f; #r;).
However, the opposite is not always true—if each router has the same number of
downstream and upstream hops, we cannot conclude that the path is symmetric
(i.e., it could be asymmetric as well). Hence, we call such paths possibly symmet-
ric.

In {D1, U Dy,}, 72% of the sessions sent their packets over definitely asym-
metric paths. In that regard, two questions prompt for an answer. First, does path
asymmetry depend on the number of end-to-end hops? To answer this question,
we extracted path information from {D;, U D;,} and counted each end-to-end
path through a particular access point exactly once. Figure 8.17 shows the per-
centage of asymmetric paths as a function of the number of end-to-end hops in
the path. As Figure 8.17 shows, almost all paths with 14 hops or more were asym-
metric, as well as that even the shortest paths (with only 6 hops) were prone to
asymmetry. This result can be explained by the fact that longer paths are more
likely to cross over AS boundaries or intra-AS administrative domains. In both
cases, “hot-potato” routing policies may cause path asymmetry.

The second question we attempt to answer is whether path asymmetry has any-
thing to do with reordering. In {D1, U D;,}, 95% of all sessions with at least one
reordered packet were running over an asymmetric path. Consequently, we can
conclude that if a session in our datasets experiences a reordering event along a
path, then the path is most likely asymmetric. However, a new question that arises
is whether the opposite is true as well: if a path is asymmetric, will a session
be more likely to experience a reordering? To answer the last question, we have
the following numbers. Out of 12,057 sessions running over a definitely asym-
metric path, 1522 experienced a reordering event, which translates into 12.6%
reordering rate. However, out of 4795 sessions running over a possibly symmet-
ric path, only 77 (1.6%) experienced a reordering event. Hence, an asymmetric
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FIGURE 8.17: Percentage of asymmetric routes in {Dj, U D;,} as a
function of the number of end-to-end hops.

path is eight times more likely to experience a reordering event than a possibly
symmetric path.

Even though there is a clear link between reordering and asymmetry in our
datasets, we speculate that the two could be related through the length of each end-
to-end path. In other words, longer paths are more likely to experience reordering
as well as be asymmetric. Hence, rather than saying that reordering causes asym-
metry or vice versa, we can explain the result by noting that longer paths are
more likely to cross AS-level routing boundaries during which both “hot-potato”
routing (which causes asymmetry) and IP-level load balancing (which causes re-
ordering) are apparently quite frequent.

Clearly, the findings in this section depend on the particular ISP employed by
the end user and the autonomous systems that user traffic traverses. Large ISPs
(such as the ones studied in this work) often employ numerous peering points
(hundreds in our case), and path asymmetry rates found in this section may not
hold for smaller ISPs. Nevertheless, our data allow us to conclude that home users
in the United States experience asymmetric end-to-end paths with a much higher
frequency than symmetric ones.

8.5 SUMMARY AND FURTHER READING

In this chapter, introductory information theory concepts that are related to char-
acterizing packet losses over the Internet were presented. The most basic channel
model that can be used to capture packet losses over network routes is the Bi-
nary Erasure Channel or its simple extension the Packet Erasure Channel. For a
given probability § of symbol loss (bit loss for a BEC and a packet loss for a
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PEC), these channels have a capacity of C =1 — § in symbols (bits or packets)
per channel use. Extensions of this basic and fundamental result to cascaded links
and to routes with feedback were outlined. For excellent treatment of information
theory concepts, the reader is referred to [1-3].

All of the results related to the BEC/PEC channels and their extensions are
based on the assumption that the losses are memoryless. Meanwhile, deriving
the capacity of channels with memory is beyond the scope of this introductory
material. Methods for measuring information theory parameters, such as mutual
information and capacity, for channels with memory can be found in [5]. An im-
portant measure for Internet multimedia applications that employ some form of
channel coding is the probability of recovering a desired number of message (or
data) packets when transmitting an FEC block of n packets [that include both k&
message and (n — k) parity packets]. We outlined a set of closed form solutions
of such measure for a basic channel with memory, namely the two-state Markov
channel (i.e., the Gilbert channel). Some details for deriving these closed form
solutions can be found elsewhere [6,7].

The second part of this chapter described a comprehensive Internet video study
conducted for gaining insight into a variety of end-to-end performance parame-
ters crucial for real-time multimedia applications. These performance parameters
included packet loss, loss-burst lengths and durations, roundtrip delay, delay jit-
ter, packet reordering and related delays due to reordering, and video underflow
events. A great deal of work and research efforts has collected very valuable data
regarding Internet performance. Some of these efforts focused on real-time and
multimedia applications, including studies that specifically sent audio/video traf-
fic over the Internet, such as the ones reported in [12,13,20,21,32-34]. The major-
ity of these studies, however, involved only a few Internet paths, lasted for a short
period of time, and focused on analyzing the features of the proposed scheme
rather than the impact of Internet conditions on real-time streaming. However, the
Internet video study reported in this chapter is quite comprehensive and covered a
broad range of performance parameters that are important for Internet multimedia
applications.
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