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1
Multimedia Networking
and Communication:
Principles and Challenges

Mihaela van der Schaar and Philip A. Chou

In case you haven’t noticed, multimedia communication over IP and wireless net-
works is exploding. Applications such as BitTorrent, used primarily for video
downloads, now take up the lion’s share of all traffic on the Internet. Music file
sharing, once on the legal cutting edge of massive copyright infringement on col-
lege campuses around the world, has moved into the mainstream with signifi-
cant legal downloads of music and video to devices such as the iPod and nu-
merous other portable media players. Multimedia podcasting to client comput-
ers and portable devices is a phenomenon exploding in its own right. Internet
radio, pioneered in the late 1990s, is now being joined in a big way by peer-
to-peer television such as CoolStreaming and PPLive. Audio and video on de-
mand over the Internet, also available since the late 1990s on the Web sites of
well-funded organizations such as CNN.com and MSNBC.com, are now at the
core of a multitude of new music and video businesses from Napster to iTunes
to MTV’s Urge service, and will be expanding imminently to full-length movie
delivery on demand. Moreover, Web sites such as YouTube have made publishing
videos on demand available to anyone with a home video camera, which these
days is nearly everyone with a mobile phone. Indeed, most mobile phones to-
day can actively download and upload both photos and videos, sometimes in real
time. Internet telephony is exploding, with popular applications such as Skype
and others enabling wideband voice and video conferencing over the Internet. In
general, voice over IP (VoIP) is revolutionizing the telecommunications indus-
try, as circuit-switched equipment from PBX to long haul equipment is being
replaced by soft IP switches. Enhanced television is also being delivered into the
living room over IP networks by traditional telephone providers through DSL.
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Once inside the home, consumer electronics manufacturers, and increasingly, the
computer industry and its partners, are distributing audio and video over WiFi to
monitors and speaker systems around the house. Now that the analog-to-digital
revolution is nearly complete, we are undergoing an all-media-over-IP revolution,
with radio, television, telephony, and stored media all currently being delivered
over IP wireline and wireless networks. To top it all off, brand new types of media,
such as game data for interactive gaming over the Internet, are strongly emerging.

Despite having unleashed a plethora of new multimedia applications, the In-
ternet and wireless networks provide only limited support for multimedia. The
Internet and wireless networks have inherently unpredictable and variable condi-
tions. If averaged over time, this variability may not significantly impact delay-
insensitive applications such as file transfer. However, variations in network con-
ditions can have considerable consequences for real-time multimedia applications
and can lead to unsatisfactory user experience. Multimedia applications tend to be
delay sensitive, bandwidth intense, and loss tolerant. These properties can change
the fundamental principles of communication design for these applications.

The concepts, theories, and solutions that have traditionally been taught in in-
formation theory, communication, and signal processing courses may not be di-
rectly applicable to highly time-varying channel conditions, adaptive and delay-
sensitive multimedia applications, and interactive multiuser transmission environ-
ments. Consequently, in recent years, the area of multimedia communication and
networking has emerged not only as a very active and challenging integrative
research topic across the borders of signal processing and communication, but
also as a core curriculum that requires its own set of fundamental concepts and
algorithms that differ from those taught in conventional signal processing and
communication courses.

This book aims at providing the reader with an in-depth understanding of the
theoretical foundations, key design principles, algorithms, and existing standards
for multimedia communication and networking.

This introductory chapter provides motivation for studying the topic of mul-
timedia communication, the addressed applications, and associated challenges.
Subsequently, a road map of the various chapters is provided. A suggested use for
graduate instruction and self-study is also provided.

1.1 DIMENSIONS OF MULTIMEDIA COMMUNICATION

1.1.1 Multimedia Communication Applications

The emergence of communication infrastructures such as the Internet and wire-
less networks enabled the proliferation of the aforementioned multimedia appli-
cations. These applications range from simple music downloading to a portable
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device, to watching TV through the Internet on a laptop, or to viewing movie trail-
ers posted on the Web via a wireless link. Some of these applications are new to
the Internet revolution, while others may seem more traditional, such as sending
VoIP to an apparently conventional telephone, sending television over IP to an
apparently conventional set top box, or sending music over WiFi to an apparently
conventional stereo amplifier.

An obvious question that comes to mind when considering all the aforemen-
tioned applications is how to jointly discuss these applications. What do they have
in common and how do they differ? To provide an answer to this seemingly simple
question, we will discuss the various dimensions of these multimedia communi-
cation applications.

1.1.2 Streaming Versus Downloading

Conventional downloading applications (e.g., file transfer such as FTP) involve
downloading a file before it is viewed or consumed by a user. Examples of such
multimedia downloading applications are downloading an MP3 song to a portable
device, downloading a video file to a computer via BitTorrent, or downloading a
podcast. (Despite its name, podcasting is a “pull” technology with which a Web
site is periodically polled for new multimedia content.) Downloading is usually
a very robust way to deliver media to a user. However, downloading has two po-
tentially important disadvantages for multimedia applications. First, a large buffer
is required whenever a large media file (e.g., an MPEG-4 movie) is downloaded.
Second, the amount of time required for the download can be relatively large,
thereby requiring the user to wait minutes or even hours before being able to con-
sume the content. Thus, while downloading is simple and robust, it provides only
limited flexibility both to users and to application designers.

An alternative to downloading is streaming. Streaming applications split the
media bit stream into separate chunks (e.g., packets), which can be transmitted
independently. This enables the receiver to decode and play back the parts of the
bit stream that are already received. The transmitter continues to send multimedia
data chunks while the receiver decodes and simultaneously plays back other, al-
ready received parts of the bit stream. This enables low delay between the moment
data is sent by the transmitter to the moment it is viewed by the user. Low delay
is of paramount importance for interactive applications such as video conferenc-
ing, but it is also important both for video on demand, where the user may desire
to change channels or programs quickly, and for live broadcast, where the con-
tent length is unbounded a priori, but the delay must be finite. Another advantage
of streaming is its relatively low storage requirements and increased flexibility
for the user, compared to downloading. However, streaming applications, unlike
downloading applications, have deadlines and other timing requirements to ensure
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continuous real-time media playout. This leads to new challenges for designing
communication systems to best support multimedia streaming applications.

1.1.3 Streaming Media on Demand, Live Broadcast, and Real-Time
Communication

Multimedia streaming applications can be partitioned into three classes by delay
tolerance. Interactive audio and video telephony, teleconferencing, and gaming
have extremely low delay tolerance, usually no more than 200 ms of end-to-end
delay for comfortable interaction. In contrast, live broadcast applications (e.g.,
Internet radio), which typically have no interactivity, have a large delay tolerance,
say up to 30 s, because the delay cannot be detected without interactivity and
without a reference, such as a neighbor who is listening to a conventional radio.
(Cheers coming from a neighbor’s apartment 30 s before a goal can certainly
ruin the surprise!) Intermediate in terms of delay tolerance is the application of
streaming media on demand, which has only moderate interactivity requirements,
such as channel changing and VCR-like control. The differences in delay toler-
ance among these three classes of multimedia applications have profound effects
on their design, particularly with respect to error recovery. Low-delay, low bit
rate applications such as telephony can afford only error-resilience techniques,
whereas high-delay or high bandwidth applications can afford complete error re-
covery using either forward error correction or retransmission-based techniques.

It is worth noting here that although applications in all three classes play out
multimedia in real time, the phrase “real-time communication” is commonly used
only for the first application, that is, audio and video telephony, conferencing, and
gaming, whereas the phrase “streaming” is often associated only with the latter
two applications.

1.1.4 Online Versus Off-Line Encoding

Another essential difference between multimedia communication applications is
whether the content is encoded online, as in the case of real-time communication
or live broadcast applications, or is encoded off-line, as in the case of streaming
media on demand. The advantage of online encoding is that the communication
channel can be monitored and the source and channel coding strategies can be
adapted correspondingly. For instance, the receiver can inform the transmitter of
the information that is lost and the encoder can adjust correspondingly. The ad-
vantage of off-line encoding is that the content can be exhaustively analyzed and
the encoding can be optimized (possibly in nonreal time over several passes of the
data) for efficient transmission.
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1.1.5 Receiver Device Characteristics

The constraints of the receiver devices on which the various applications are
consumed by the end user also have an important impact on multimedia com-
munication. In particular, the available storage, power, and computational capa-
bilities of the receiving device need to be explicitly considered when designing
complete multimedia communication solutions. For instance, the design of mul-
timedia compression, scheduling, and error protection algorithms at the receiver
should explicitly consider the ability of the receiver to cope with packet loss.
Also, receiver-driven streaming applications can enable the end device to proac-
tively decide which parts of the compressed bit streams should be transmitted
depending on the display size and other factors.

1.1.6 Unicast, Multicast, and Broadcast

Multimedia communication can be classified into one of three different cate-
gories: unicast, multicast, and broadcast, depending on the relationship between
the number of senders and receivers. Unicast transmission connects one sender to
one receiver. Examples of such applications include downloading, streaming me-
dia on demand, and point-to-point telephony. A main advantage of unicast is that
a back channel can be established between the receiver and the sender. When such
a back channel exists, the receiver can provide feedback to the sender about ex-
perienced channel conditions, end-user requirements, end-device characteristics,
and so on, which can be used accordingly to adapt compression, error protection,
and other transmission strategies.

Multicast transmission connects the sender to multiple receivers that have
elected to participate in the multicast session, over IP multicast or application
level multicast. Multicast is more efficient than multiple unicasts in terms of net-
work resource utilization and server complexity. However, a disadvantage of mul-
ticast compared to unicast is that the sender cannot target its transmission toward
a specific receiver.

Broadcast transmission connects a sender to all receivers that it can reach
through the network. An example is broadcast over a wireless link or a shared
Ethernet link. As in multicast, the communication channel may be different for
different receivers. In this book, when we refer to the live broadcast application,
we are usually talking about a solution in which a live signal is actually multicast
over the network.

1.1.7 Metrics for Quantifying Performance

Unlike conventional communication applications, multimedia communication ap-
plications cannot be simply evaluated in terms of the achieved throughput, packet
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loss rates, or bit error rates, as these applications are delay sensitive and not all
the various transmitted bits are “created equal,” that is, have the same importance.
Instead, multimedia performance needs to be quantified in terms of metrics such
as the perceived quality or objective metrics such as the Peak Signal-to-Noise Ra-
tio (PSNR) between transmitted and received media data. Hence, the importance
of each bit or packet of multimedia data depends on its delay requirements (i.e.,
when it needs to be available at the receiver side) and impact on the resulting
PSNR. These new evaluation criteria fundamentally change the design principles
for multimedia communication systems compared to communication systems for
traditional delay-insensitive, loss-intolerant applications.

1.2 ORGANIZATION OF THE BOOK

This book aims at providing an in-depth understanding of the theoretical founda-
tions, key design principles, algorithms, and existing standards for the aforemen-
tioned multimedia networking and communication scenarios. The book is divided
into five major parts.

The first part of the book discusses how multimedia data can be efficiently
compressed to enable optimized transmission over the Internet and wireless net-
works. Unlike traditional compression techniques such as MPEG-2, which were
designed solely for storage (e.g., on DVD disks) or transmission over error-free
networks with relatively large and guaranteed bandwidth, compression schemes
that enable efficient multimedia communication over the Internet and wireless
networks need to have the ability to cope with different channel conditions, char-
acterized by different bit error rates, packet loss rates, access bandwidths, or time-
varying available bandwidths. Chapter 2 discusses error-resilient techniques for
video transmission over such error-prone networks, while Chapter 3 presents al-
gorithms and solutions for error-resilient audio transmission. To cope with the
changes in bandwidth, Chapter 4 provides a thorough analysis of the various
mechanisms for bandwidth adaptation, as the network often offers heterogeneous,
time-varying channel conditions. To effectively cope with adaptive streaming ap-
plications or multicasting applications, where a variety of receivers would like to
simultaneously access the same multimedia content, Chapter 5 introduces exist-
ing and emerging scalable video coding algorithms, while Chapter 6 discusses
scalable audio coding.

The second part of the book focuses on efficient solutions for bit stream trans-
mission over IP networks. Chapter 7 introduces the fundamentals of channel pro-
tection needed to insulate bit streams from the error-prone nature of the channels
over which they are transmitted. Chapter 8 discusses how to effectively model
and characterize the complex communication channels within networks such as
the Internet. Having an accurate model of the channel becomes paramount when
finding an efficient trade-off between the bit rates allocated to source and channel
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protection. Chapter 9 focuses on Forward Error Correction (FEC) mechanisms
aimed at effectively protecting multimedia bit streams at the application layer.
These solutions can successfully exploit the available knowledge of the multime-
dia bit streams. Chapter 10 focuses on the corresponding retransmission-based
mechanisms. Unlike FEC mechanisms, retransmission-based mechanisms can be
instantaneously adapted to each channel realization. However, the retransmission-
based algorithms are not well suited to the multicast case or the live broadcast sce-
nario, where many receivers are connected to a single sender. FEC mechanisms
must be used here instead.

The third part of the book focuses on multimedia transmission over wireless
networks. Chapter 11 discusses MAC-centric channel models characterizing the
specific behavior of wireless networks, thereby offering insights into the chal-
lenges associated with multimedia streaming over such networks. Chapter 12
shows how to cope with these challenges, how the various layers of the protocol
stack can collaborate to ensure efficient wireless multimedia communication, and
how the cross-layer design deployed at one station influences multiuser interac-
tion and fairness in such environments. Chapter 13 provides various solutions for
providing the necessary quality of service guarantees in such wireless environ-
ments.

The fourth part of the book discusses efficient multimedia system design, which
is essential for ensuring that the streaming solutions are efficiently optimized and
deployed. Chapter 14 presents approaches to streaming media on demand as well
as live broadcast, while Chapter 15 presents approaches to real-time communica-
tion applications such as telephony and conferencing. To ensure the continuous
playout of multimedia despite packet loss and jitter, Chapter 16 exploits the “time
elastic” behavior of these applications by discussing the concept of adaptive me-
dia playout.

The final part of the book presents several advanced topics on multimedia com-
munication. Chapter 17 discusses how multimedia compression and transmission
algorithms can take advantage of the multipath diversity existing in the Internet
and wireless networks. Chapter 18 presents distributed video coding principles,
algorithms, and their applications to, for example, low-cost encoding for multi-
media streaming. Chapter 19 introduces the capabilities, architectures, and design
principles of building overlays on top of the existing Internet and wireless in-
frastructures for enhanced support to multimedia applications.

1.3 SUGGESTED USE FOR GRADUATE INSTRUCTION AND
SELF-STUDY

This book is intended as a textbook for a graduate-level course on multimedia
networking and communication or as reference text for researchers and engineers
working in the areas of multimedia communication, multimedia compression,
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multimedia systems, wireless communication, and networking. This book can be
used for either a semester-length course or a quarter-length course if some of the
advanced topics are left for self-study or as part of a research project associated
with the class.

One of the best ways to understand the challenges and theory for multimedia
communication and networking discussed in this book is through the completion
of a multimedia-related project. This is because the importance of the various
principles and techniques taught in such a course, as well as their interrelation-
ships, become apparent when solving “real” multimedia communication prob-
lems. Students should be encouraged to choose a project topic related to their
interests and/or research backgrounds. The summary and further reading sections
concluding the various chapters can be used as a starting point for defining rele-
vant class projects. For instance, students having a background on wireless com-
munication can choose a project topic on cross-layer wireless multimedia trans-
mission or multimedia transmission over multihop wireless networks, students
having interests on information theory can select projects on joint source-channel
coding or distributed source coding, and students with a background on signal,
speech, or image processing can investigate topics related to robust multimedia
compression, scalable coding, error concealment, or adaptive media playout.

1.4 SUPPLEMENTARY MATERIAL FOR THE BOOK

Supplementary material for this book can be found at http://books.elsevier.
com/companions/0120884801. This includes an additional chapter to this
book, Chapter 20, which presents state-of-the-art techniques for multimedia trans-
mission over peer-to-peer networks. Also, the Web page contains slides, exercises,
and additional material for the various chapters, which can be used by potential in-
structors for a class on multimedia communication and networking. For feedback
about the book or the material posted on this Web site, the reader can contact the
coeditors of this book, Mihaela van der Schaar (mihaela@ee.ucla.edu) and Phil
Chou (pachou@microsoft.com).
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2
Error-Resilient Coding and
Decoding Strategies for
Video Communication

Thomas Stockhammer and Waqar Zia

2.1 INTRODUCTION

Video is becoming more and more popular for a large variety of applications and
networks. Internet and wireless video, especially, has become part of our daily
lives. However, despite many advances in terms of bandwidth and capacity en-
hancements in different networks, the data transmission rate will always be a
scarce resource due to physical limitations, especially for high quality high bit
rate applications. Therefore, good compression is as important as ever. Further-
more, real-time delivery of multimedia data is required for several application
scenarios, such as conversational applications, streaming, broadcast, or video-on-
demand services. Under such real-time constraints, unfortunately the Quality-of-
Service (QoS) available in current and next generation networks is in general
not sufficient to guarantee error-free delivery to all receivers. Therefore, in addi-
tion to the capability of easy integration into existing and future networks, video
codecs must provide means of dealing with various transmission impairments. In
communication environments, standardized solutions are desirable at terminals
to ensure compatibility. That is why video coding standards such as MPEG-4
and H.264/AVC have become popular and attractive for numerous network en-
vironments and application scenarios. These standards, like numerous previous
standards and more recent standards such as VCI, use a hybrid coding approach,
namely Motion Compensated Prediction (MCP). MCP is combined with trans-
form coding of the residual. We will focus on MCP-coded video in the remainder
of this chapter and mainly concentrate on tools and features integrated in the lat-
est video coding standard H.264/AVC [19,45] and its test model software JM.
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We will focus on specific tools for improved error resilience within standard-
compliant MCP-coded video. More advanced error-resilience features, such as
multiple description coding, distributed video coding, and combinations with net-
work prioritization and forward error correction, are left to the remaining chapters
of this book and the references therein. It is assumed that the reader has some ba-
sic knowledge of the encoding and decoding algorithms of MCP-coded video, for
example, as discussed in [14].

2.2 VIDEO COMMUNICATION SYSTEMS

2.2.1 End-to-End Video Transmission

Figure 2.1 provides an abstraction of a video transmission system. In order to keep
this work focused, we have excluded capturing and display devices, user inter-
faces, and security issues; most computational complexity issues are also ignored.
Components that enhance system performance, for example, a feedback chan-
nel, will also be introduced later in this chapter. In contrast to still images, video
frames inherently include relative timing information, which has to be maintained
to assure perfect reconstruction at the receiver’s display. Furthermore, due to sig-
nificant amounts of spatiotemporal statistical and psychovisual redundancy in nat-
ural video sequences, video encoders are capable of reducing the actual amount
of transmitted data significantly. However, excessive lossy compression results in
noticeable, annoying, or even intolerable artifacts in the decoded video. A trade-
off between rate and distortion is always necessary. Real-time transmission of
video adds additional challenges. According to Figure 2.1, the video encoder gen-
erates data units containing the compressed video stream, which is stored in an

FIGURE 2.1: Simplified lossy video transmission system.
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encoder buffer before the transmission. The transmission system may delay, lose,
or corrupt individual data units. Furthermore, each processing and transmission
step adds some delay, which can be fixed, deterministic, or random. The encoder
buffer and the decoder buffer compensate for variable bit rates produced by the
encoder as well as channel delay variations to keep the end-to-end delay constant
and to maintain the time line at the decoder. Nevertheless, in general the initial
playout delay cannot be too excessive and strongly depends on the application
constraints.

2.2.2 Video Applications

As discussed in Chapter 1, digitally coded video is used in a wide variety of ap-
plications, in different transmission environments. These applications can operate
in completely different bit rate ranges. For example, HDTV applications require
data rates in the vicinity of 20 Mbit/s, whereas simple download-and-play ser-
vices such as MMS on mobile devices might be satisfied with 20 Kbit/s, three
orders of magnitude less. However, applications themselves have certain char-
acteristics, which are of importance for system design. For example, they can
be distinguished by the maximum tolerable end-to-end delay and the possibility
of online encoding (in contrast to the transmission of pre-encoded content). In
particular, real-time services, such as broadcasting, unicast streaming, and con-
versational services, come with significant challenges, because generally, reliable
delivery of all data cannot be guaranteed. This can be due to the lack of a feedback
link in the system or due to constraints on the maximum end-to-end delay. Among
these applications, conversational applications with end-to-end delay constraints
of less than 200 to 250 ms are most challenging for the system design.

2.2.3 Coded Video Data

In contrast to analog audio, for example, compressed digital video cannot be ac-
cessed at any random point due to variable-length entropy coding as well as the
syntax and semantics of the encoded video stream. In general, coded video can
be viewed as a sequence of data units, referred to as access units in MPEG-4
or network abstraction layer (NAL) units in H.264. The data units themselves are
self-contained, at least on a syntactic level, and they can be labeled with data unit-
specific information; for example, their relative importance for video reconstruc-
tion quality. However, on a semantic level, due to spatial and temporal prediction,
the independent compression of data units cannot be guaranteed without signifi-
cantly harming compression efficiency. A concept of directed acyclic dependency
graphs on data units has been introduced in [6], which formalizes these issues.
The data units themselves are either directly forwarded to a packet network or
encapsulated into a bit or byte stream format containing unique synchronization
codes and then injected into a circuit-switched network.
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2.2.4 Transmission Impairments

The process of introduction of errors and its effects are markedly different in
IP and wireless-based networks. For wireless networks, fading and interference
cause burst errors in the form of multiple lost bits, while congestion can result
in lost packets in an IP network. Nowadays, even for wireless networks, systems
include means to detect the presence of errors on physical layer segments and
the losses are indicated to higher layers. Intermediate protocol layers such as the
User Datagram Protocol (UDP) [32] might decide to completely drop erroneous
packets and the encapsulated data units.

Furthermore, video data packets are treated as lost if they are delayed more
than a tolerable threshold defined by the application. Hence for the remainder of
this chapter we will concentrate on the effects of entire data units lost and present
means to deal with such losses in video applications. Detailed description of the
processes of introduction of losses in IP and wireless-based networks will be given
in Chapter 8 and Chapter 11, respectively.

2.2.5 Data Losses in MCP-Coded Video

Figure 2.2 presents a simplified yet typical system when MCP video is transmitted
over error-prone channels. Assume that all macroblocks (MBs) of one frame st
are contained in a single packet Pt , for example, in an NAL unit in the case of
H.264/AVC. Furthermore, assume that this packet is transmitted over a channel
that forwards correct packets to the decoder, denoted as Ct = 1, and perfectly
detects and discards corrupted packets at the receiver, denoted as Ct = 0.

In case of successful transmission, the packet is forwarded to the regular de-
coder operation. The prediction information and transform coefficients are re-

FIGURE 2.2: Simplified lossy video transmission system.



Section 2.2: VIDEO COMMUNICATION SYSTEMS 17

trieved from the coded bit stream to reconstruct frame ŝt−1. The frame is for-
warded to the display buffer and also to the reference frame buffer to be used in
the MCP process to reconstruct following inter-coded frames, for example, ŝt . In
the less favorable case that the coded representation of the frame is lost, that is,
at our reference time t = 0, Ct = 0, so-called error concealment is necessary. In
the simplest form, the decoder just skips the decoding operation and the display
buffer is not updated, that is, the displayed frame is still ŝt−1. The viewer will im-
mediately recognize the loss of fluent motion since a continuous display update is
not maintained.

However, in addition to the display buffer, the reference frame buffer is also
not updated as a result of this data loss. Even in case of successful reception of
packet Pt+1, the inter-coded frame ŝt+1 reconstructed at the decoder will in gen-
eral not be identical to the reconstructed frame s̃t+1 at the encoder. The reason is
obvious, as the encoder and the decoder refer to a different reference signal in the
MCP process, resulting in a so-called reconstruction mismatch. Therefore, there
will again be a mismatch in the reference signal when decoding ŝt+2. Hence it is
obvious that the loss of a single packet Pt affects the quality of all the inter-coded
frames ŝt+1, ŝt+2, ŝt+3, . . . . This phenomenon, present in any predictive coding
scheme, is called error propagation. If predictive coding is applied in the spatial
and temporal domains, it is referred to as spatiotemporal error propagation.

Therefore, for MCP-coded video, the reconstructed frame at the receiver, ŝt ,
not only depends on the actual channel behavior Ct , but on the previous channel
behavior C[1:t] = {C1, . . . ,Ct } and we write ŝt (C[1:t]). An example for error prop-
agation is shown in Figure 2.3. The top row presents the sequence with perfect
reconstruction; in the bottom row only packet Pt at time t = 0 is lost. Although
the remaining packets are again correctly received, the error propagates and is still
visible in decoded frame ŝt=8. At time t = 9, the encoder transmits an intra-coded
image, and since no temporal prediction is used for coding this image, temporal
error propagation is terminated at this time. It should be noted, however, that even

FIGURE 2.3: Example for error propagation in a typical hybrid video
coding system.
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with inter-coded images, the effect of a loss is reduced with every correct recep-
tion. This is because inter-coded frames might consist of intra-coded regions that
do not use temporal prediction. An encoder might decide to use intra-coding when
it finds that temporal prediction is inefficient for coding a certain image region.

Following the intra image at t = 9, the decoder will be able to perfectly recon-
struct the encoded images until another data packet is lost for t > 9.

Therefore, a video coding system operating in environments where data units
might get lost should provide one or several of the following features:

1. means that allow completely avoiding transmission errors,
2. features that allow minimizing the visual effects of errors in a frame, and
3. features to limit spatial as well as spatiotemporal error propagation in hy-

brid video coding.

In the remainder of this chapter we restrict ourselves to forward predictive MCP
video coding, although most of the concepts generalize to any kind of dependen-
cies. A formal description of packetized video with slice structured coding and
error concealment, as well as the extension of operational encoder control for
error-prone video transmission, are discussed in Section 2.3.

2.3 ERROR-RESILIENT VIDEO TRANSMISSION

2.3.1 System Overview

The operation of an MCP video coding system in a transmission environment is
depicted in Figure 2.4. It extends the simplified presentation in Figure 2.2 by the

FIGURE 2.4: MCP video coding in packet lossy environment: Error-
resilience features and decoder operations.
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addition of typical features used when transmitting video over error-prone chan-
nels. However, in general, for specific applications not all features are used, but
only a suitable subset is extracted. Frequently, the generated video data belonging
to a single frame is not encoded as a single data unit, but MBs are grouped in
data units and the entropy coding is such that individual data units are syntacti-
cally accessible and independent. The generated video data might be processed in
a transmission protocol stack and some kind of error control is typically applied,
before the video data is transmitted over the lossy channel. Error control features
include Forward Error Correction (FEC), Backward Error Correction (BEC), and
any prioritization methods, as well as any combinations of those. At the receiver,
it is essential that erroneous and missing video data are detected and localized.
Commonly, video decoders are fed only with correctly received video data units,
or at least with an error indication, that certain video data has been lost. Video
data units such as NAL units in H.264 are self-contained and therefore the de-
coder can assign the decoded MBs to the appropriate locations in the decoded
frames. For those positions where no data has been received, error concealment
has to be applied. Advanced video coding systems also allow reporting the loss of
video data units from the receiver to the video encoder. Depending on the appli-
cation, the delay, and the accurateness of the information, an online encoder can
exploit this information in the encoding process. Likewise, streaming servers can
use this information in their decisions. Several of the concepts briefly mentioned
in this high-level description of an error-resilient video transmission system will
be elaborated and investigated in more detail in remaining sections.

2.3.2 Design Principles

Video coding features such as MB assignments, error control methods, or ex-
ploitation of feedback messages can be used exclusively or jointly for error ro-
bustness purposes, depending on the application. It is necessary to understand that
most error-resilience tools decrease compression efficiency. Therefore, the main
goal when transmitting video goes along the spirit of Shannon’s famous separa-
tion principle [38]: Combine compression efficiency with link layer features that
completely avoid losses such that the two aspects, compression and transport, can
be completely separated. Nevertheless, in several applications and environments,
particularly in low delay situations, error-free transport may be impossible. In
these cases, the following system design principles are essential:

1. Loss correction below codec layer: Minimize the amount of losses in the
wireless channel without completely sacrificing the video bit rate.

2. Error detection: If errors are unavoidable, detect and localize erroneous
video data.

3. Prioritization methods: If losses are unavoidable, at least minimize losses
for very important data.
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4. Error recovery and concealment: In case of losses, minimize the visual
impact of losses on the actually distorted image.

5. Encoder–decoder mismatch avoidance: In case of losses, limit or com-
pletely avoid encoder and decoder mismatch to avoid the annoying effects
of error propagation.

This chapter will focus especially on the latter three design principles. However,
for completeness, we include a brief overview on the first two aspects. The re-
mainder of this book will treat many of these advanced issues.

2.3.3 Error Control Methods

In wireless systems, below the application layer, error control such as FEC and
retransmission protocols are the primary tools for providing QoS. However, the
trade-offs among reliability, delay, and bit rate have to be considered. Neverthe-
less, to compensate the shortcomings of non-QoS-controlled networks, for ex-
ample, the Internet or some mobile systems, as well as to address total blackout
periods caused, for example, by network buffer overflow or a handoff between
transmission cells, error control features are introduced at the application layer.
For example, broadcast services make use of application-layer FEC schemes. For
point-to-point services, selective application layer retransmission schemes have
been proposed. For delay-uncritical applications, the Transmission Control Pro-
tocol (TCP) [31,40] can provide QoS. The topics of channel protection techniques
and FEC will be covered in detail in Chapter 7 and Chapter 9, respectively. We
will not deal with these features in the remainder of this chapter, but concentrate
on video-related signal processing to introduce reliability and QoS.

2.3.4 Video Compression Tools Related to Error Resilience

Video coding standards such as H.263, MPEG-4, and H.264 only specify the de-
coder operation in case of reception of an error-free bit stream as well as the syn-
tax and semantics of the video bit stream. Consequently, the deployment of video
coding standards still provides a significant amount of freedom for encoders and
decoding of erroneous bit streams. Depending on the compression standard used,
different compression tools are available that offer some room for error-resilient
transmission.

Video compression tools have evolved significantly over time in terms of the
error resilience they offer. Early video compression standards, such as H.261, had
very limited error-resilience capabilities. Later standards, such as MPEG-1 and
MPEG-2, changed little in this regard, since they were tailored mostly for storage
applications. With the advent of H.263, things started changing dramatically. The
resilience tools of the first version of H.263 [18] had only marginal improvements
over MPEG-1; however, later versions of H.263 (referred as H.263+ and H.263++,
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respectively) introduced several new tools that were tailored specifically for the
purpose of error resilience and will be discussed in this section. These tools re-
sulted in a popular acceptance of this codec; it replaced H.261 in most video
communication applications. In parallel to this work, the new emerging standard
MPEG-4 Advanced Simple Profile (ASP) [17] opted for an entirely different ap-
proach. Some sophisticated resilience tools, such as Reversible Variable Length
Coding (RVLC) and resynchronization markers, were introduced. However, de-
spite their strong concept, these tools did not gain wide acceptance. One of the
reasons for this is that these tools target to solve the issues of lower layers in the
application layer, which is not a widely accepted approach. For example, RVLC
can be used at the decoder to reduce the impact of errors in a corrupted data
packet. However, as discussed in Section 2.2.4, errors on the physical layer can
be detected and lower layers might discard these packets instead of forwarding
them to the application.

Up to date, the final chapter in error-resilient video coding is H.264/AVC. This
standard is equipped with a wide range of error-resilience tools. Some of these
tools are modified and enhanced forms of the ones introduced in H.263++. The
following section gives a brief overview of these tools as they are formulated in
H.264/AVC and the concepts behind these. Considering the rapid pace of evolu-
tion of these tools, it is also important to know the origin of these tools in previous
standards.

Some specific error-resilience features such as error-resilient entropy coding
schemes and arbitrary slice ordering will not be discussed. The interested reader
is referred to [43,60]. It is also worth considering that most features are general
enough to be used for multiple purposes rather than being assigned to a specific
application. Some of the tools have a dual purpose of increased compression ef-
ficiency along with error resilience, which seems to be contradictory initially, but
this ambiguity will be resolved. In later sections of this chapter, we will present
some of these tools in action in different applications and measure their impact on
system performance.

Slice Structured Coding

For typical digital video transmission over networks, it is not suitable to transmit
all the compressed data belonging to a complete coded frame in a single data
packet for a variety of reasons. Most importantly, variations are expected in the
sizes of such data packets because of a varying amount of redundancy in different
frames of a sequence. In this case the lower layers have to subdivide the packet to
make it suitable for transmission. In case of a loss of a single such division, the
decoder might be unable to decode an entire frame with only one synchronization
point available for an entire coded frame.
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To overcome this issue, slices provide spatially distinct resynchronization
points within the video data for a single frame (Figure 2.5). A number of MBs
are grouped together; this is accomplished by introducing a slice header, which
contains syntactic and semantic resynchronization information. The concept of
slices (referred to as group of blocks [GOB] in H.261 and H.263) exists in dif-
ferent forms in different standards. Its usage was limited to encapsulate individ-
ual rows of MBs in H.263 and MPEG-2. In this case, slices will still result in
variable sized data units because of the varying amount of redundancy in dif-
ferent regions of a frame. Slices take their most flexible and advanced form in
H.264/AVC. The encoder can select the location of the synchronization points
at any MB boundary. Intra prediction and motion vector prediction are not al-
lowed over slice boundaries. An arbitrary number of MBs can be assigned to a
slice, which results in different modes of operation. For example, the encoder
can decide to allocate either a fixed number of MBs or a fixed number of bits
to a slice. The later mode of operation, with a predefined data size of a slice,
is especially useful from a network perspective, since the slice size can be bet-
ter matched to the packet size supported by the network layer. In this case, a
loss of a data unit on network layer will result in a loss of a discrete number of
slices, and a considerable portion of a picture might remain unaffected by the
loss.

Hence in H.264/AVC, slices are the basic output of the video encoder and form
an independently accessible entity. Provision of access to those units is provided
either by the use of unique synchronization markers or by the appropriate encap-
sulation in underlying transport protocols. The details of slice structured coding
modes and the implications are discussed in Section 2.4.2.

FIGURE 2.5: A sketch of a picture divided into several slices, demar-
cated by gray boundaries.
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Flexible MB Ordering

In previous video compression standards, such as MPEG-1, MPEG-2 and H.263,
MBs are processed and transmitted in raster–scan order, starting from the top-left
corner of the image to the bottom right. However, if a data unit is lost, this usually
results in the loss of a connected area in a single frame.

In order to allow a more flexible transmission order of MBs in a frame in
H.264/AVC, Flexible Macroblock Ordering (FMO) allows mapping of MBs to
so-called slice groups. A slice group itself may contain several slices. For exam-
ple, in Figure 2.6, each shaded region (a slice group) might be subdivided into
several slices. Hence slice group can be thought of as an entity similar to a picture
consisting of slices in the case when FMO is not used. Therefore, MBs may be
transmitted out of raster–scan order in a flexible and efficient way. This can be
useful in several cases. For example:

• Several concealment techniques at the decoder rely on the availability of
correctly received neighbor MBs to conceal a lost MB. Hence a loss of
collocated image areas results in poor concealment. Using FMO, spatially
collocated image areas can be interleaved in different slices. This will result
in a greater probability that neighboring MB data is available for concealing
the lost MB.

• There might exist a Region Of Interest (ROI) within the images of a video
sequence, for example, the face of the caller in a video conferencing system.
Such regions can be mapped to a separate slice group than the background
to offer better protection against losses in the network layer.

   

   

FIGURE 2.6: MBs of a picture (dotted lines) allocated to two slice
groups. Light-gray MBs belong to one slice group, and dark-gray MBs
belong to the other.
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A description of different modes and specific applications of FMO are given in
Section 2.4.2.

Scalability

Scalable coding usually refers to a source coder that simultaneously provides en-
coded version of the same data source at different quality levels by extracting a
lower quality reconstruction from a single binary description. Scalable coding can
be realized using embedded bit streams, that is, the bit stream of a lower resolu-
tion is embedded in the bit stream of higher resolution. Unlike one-dimensional
sources such as speech or audio, where usually the quality levels are defined by the
quantization distortion, for video the quality can be changed in basically three di-
mensions, namely spatial resolution, temporal resolution or frame rate, and quan-
tization distortion. Scalable video coding is realized in standards in many differ-
ent variants and will be extensively treated in Chapter 5. Commonly, scalability
is synonymously used with a specific type of scalability referred to as successive
refinement. This specific case addresses the view point that information is added
such that the initial reproduction is refined. In this case, the emphasis is on a good
initial reproduction.

Data Partitioning

The concept of data partitioning originates from the fact that loss of some syntax
elements of a bit stream results in a larger degradation of quality compared to
others. For example, the loss of MB mode information or motion vector (MV)
information will, for most cases, result in a larger distortion compared to loss of
a high-frequency transform coefficient. This is intuitive, since, for example, MB
mode information is required for interpreting all the remaining MB information
at the decoder.

In the case of data loss in the network, data partitioning results in the so-called
graceful degradation of video quality. Graceful degradation targets the reduction
of perceived video quality that is, to some extent, proportionate to the amount of
data lost. In this case, the emphasis is on a good final reproduction quality, but at
least an intermediate reconstruction is possible.

The concept of categorizing syntax elements in the order of their importance
started with MPEG-4 and H.263++. For these standards, video coded data was
categorized into header information, motion information, and texture information
(transformed residual coefficients), listed here in the order of their importance.
Figure 2.7 shows the interleaved structure of data when using the data partition-
ing mode. For example, combining this concept with that of RVLC and resyn-
chronization markers, it could be possible to retrieve most of header and MV
information even for the case of data lost within the transform coefficients parti-
tion.
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FIGURE 2.7: The layout of a compressed video data without using
data partitioning (top) and with data partitioning (bottom) in H.263++.
A packet starts with a synchronization marker, while for the data parti-
tioning mode, two additional synchronization points are available, such as
the header marker and the MV marker.

In the H.264/AVC data partitioning mode, each slice can be segmented into
header and motion information, intra information, and inter texture information
by simply distributing the syntax elements to individual data units. Typically, the
importance of the individual segments of the partition is in the order of the list.
In contrast to MPEG-4, H.264/AVC distinguishes between inter- and intra-texture
information because of the more important role of the latter in error mitigation.
The partitions of different importance can be protected with Unequal Error Pro-
tection (UEP), with the more important data being offered more protection and
vice versa. Due to this reordering only on the syntax level, coding efficiency is
not sacrificed, but obviously the loss of individual segments still results in error
propagation with similar but typically less severe effects as those shown in Fig-
ure 2.3. Some detailed investigations of synergies of data partition and UEP can
be found in [13,24,42].

Redundant Slices

An H.264/AVC encoder can transmit a redundant version of a normally trans-
mitted slice using possibly different encoding parameters. Such a redundant slice
can be simply discarded by the decoder during its normal operation. However,
in the case when the original slice is lost, this redundant data can be used to re-
construct the lost regions. For example, in a system with frequent data losses,
an H.264/AVC encoder can exploit this unique feature to send the redundant,
coarsely quantized version of an ROI along with the regular representation of it.
Hence the decoder will be capable of displaying the lost ROI, albeit at a lower
quality. It is worthwhile to notice that this will still result in an encoder–decoder
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mismatch of reference pictures, since the encoder being unaware of the loss uses
the original slice as a reference, but this effect will be less severe compared to the
case when this tool is not used.

Flexible Reference Frame Concept

Standards such as H.263 version 1 and MPEG-2 allow only a single reference
frame for predicting a P-type frame and at most two frames for predicting a B-
type frame. However, there is a possibility of significant statistical dependencies
between other pictures as well. Hence using more frames than just the recent
frame as reference has a dual advantage: increased compression efficiency and
improved error resilience at the same time. Here we focus on the latter effect ex-
clusively. This concept has been recognized as especially useful for transmission
over error-prone channels.

In prior codecs, if the encoder is aware of the only reference picture being lost
at the decoder, the only available option to limit error propagation was to transmit
intra-coded information. However, intra-coded data has significantly large size
compared to temporally predicted data, which results in further delays and losses
on the network. H.263+ and MPEG-4 proposed tools, such as the Reference Pic-
ture Selection (RPS), allows flexible selection of a reference picture on a slice
or GOB bases. Hence temporal prediction is still possible from other correctly re-
ceived frames at the decoder. This results in improved error resilience by avoiding
using corrupted picture areas as reference. In H.264/AVC, this restrictive concept
has been generalized to allow reference frames to be selected in a flexible way
on an MB basis (Figure 2.8). There is also the possibility of using two weighted
reference signals for MB inter prediction. Frames can be kept in short-term and
long-term memory buffers for future reference. This concept can be exploited by
the encoder for different purposes, for compression efficiency, for bit rate adap-
tivity, and for error resilience.

Flexible reference frames can also be used to enable subsequences in the com-
pressed stream to effectively enable temporal scalability. The basic idea is to use
a subsequence of “anchor frames” at a lower frame rate than the overall sequence
frame rate, shown as P frames in Figure 2.9. Other frames are inserted in between
these frames to achieve the overall target frame rate, shown as P ′ frames in Fig-
ure 2.9. Here, as an example, every third frame is a P frame. These P ′ frames
can use the low frame rate P frames as reference, but not the other way around.
This is shown by the chain of prediction arcs in Figure 2.9. If such a P ′ frame
is lost, the error propagates only until the next P is received. Hence P frames
are more important to protect against error propagation than P ′ frames, and some
prioritization techniques at lower layers can make use of this fact. This concept is
similar to using B frames in prior standards, except that a one-directional predic-
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FIGURE 2.8: A sketch of an H.264/AVC inter-predicted frame at a
given time t , with different MBs referencing different frames. The frame
interval in this sketch is T.

  

 

    

FIGURE 2.9: H.264/AVC inter prediction with subsequences. Arcs
show the reference frame used for prediction.

tion chain avoids any buffering overhead as with the bidirectionally predicted B

pictures.
Some use cases of the flexible concept specifically for error-resilience purposes

are presented in Section 2.5. More details on this mode can be studied in Subsec-
tion 2.5.4 and [9,63,64,69].
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Intra Information Coding

Even though temporal redundancy might exist in a frame, it is still necessary to
have the possibility of switching off temporal prediction in hybrid video coding.
This feature enables random access and also provides error robustness. Any video
coding standard allows encoding image regions in intra mode, such as without
reference to a previously coded reference frame. In a straightforward way, com-
pletely intra-coded frames might be inserted. These frames will be referred to as
“intra frames” in the remainder of this chapter. In H.264/AVC, the flexible ref-
erence frame concept allows the usage of several reference frames; not limited
to just the temporally preceding frame. Hence in H.264/AVC, intra frames are
further distinguished as Instantaneous Decoder Refresh (IDR) frames and “open
GOP” intra frames, whereby the latter do not provide the random access prop-
erty as possibly frames “before” the intra frame are used as reference for “later”
predictively coded frames (Figure 2.10).

In addition, intra information can be introduced for just parts of a predictively
coded image. Again most video coding standards allow encoding of single MBs
for regions that cannot be predicted efficiently or due to any other case the en-
coder decides for nonpredictive mode. H.264/AVC intra-coded MBs gain signifi-
cant compression by making use of spatial prediction from neighboring blocks. To
limit error propagation, in H.264/AVC this intra mode can be modified such that
intra prediction from inter-coded MBs is disallowed. In addition, encoders can
also guarantee that MB intra updates result in Gradual Decoding Refresh (GDR),
that is, entirely correct output pictures after a certain period of time. Some ad-
vanced techniques for the purpose of error resilience, based on intra updates, and
their impact on system performance will be discussed in Section 2.5.3.

   

 

         

 

FIGURE 2.10: Inter prediction with open GOP intra “I” (left) and
IDR (right). Temporal prediction (shown by arcs) is not allowed from the
frames coded before an IDR frame.
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Switching Pictures

H.264/AVC includes a feature that allows applying predictive coding even in the
case of different reference signals. This unique feature is enabled by introducing
Switching-Predictive (SP) pictures for which the MCP process is performed in
the transform domain rather than in the spatial domain and the reference frame is
quantized—usually with a finer quantizer than that used for the original frame—
before it is forwarded to the reference frame buffer. These so-called primary SP
(PSP) frames, which are introduced to the encoded bit stream, are in general
slightly less efficient than regular P-frames but significantly more efficient than
regular I-frames. The major benefit results from the fact that this quantized ref-
erence signal can be generated mismatch free using any other prediction signal.
In case that this prediction signal is generated by predictive coding, the frames
are referred to as secondary SP (SSP) pictures, which are usually significantly
less efficient than P-frames, as an exact reconstruction is necessary. To generate
this reference signal without any predictive signal, so-called Switching Intra (SI)
pictures can be used. SI pictures are only slightly less inefficient than common
intra-coded pictures and can also be used for adaptive error-resilience purposes.
Further details on this unique feature within H.264/AVC are covered in Chapter 4
and [22].

2.4 RESYNCHRONIZATION AND ERROR CONCEALMENT

2.4.1 Formalization of H.264 Packetized Video

By the use of slices and slice groups as introduced in Section 2.3, video coding
standards, particularly H.264/AVC, provide a flexible and efficient syntax to map
the NMB MBs of each frame st of the image sequence to individual data units.
The encoding of st results in one or more data units Pi with sequence number i.
The video transmission system considered is shown in Figure 2.4. Assume that
each data unit Pi is transmitted over a channel that either delivers the data unit Pi

correctly, indicated by Ci = 1, or loses the data unit, that is, Ci = 0. A data unit
is also assumed to be lost if it is received after its nominal Decoding Time Stamp
(DTS) has expired. We do not consider more complex concepts with multiple
decoding deadlines, also referred to as Accelerated Retroactive Decoding [11,
21], in which late data units are processed by the decoder to at least update the
reference buffer, resulting in reduced long-term error propagation.

At the receiver, due to the coding restriction of slices and slice groups, as well
as with the information in slice headers, the decoder is able to reconstruct the
information of each correctly received data unit and its encapsulated slice. The
decoded MBs are then distributed according to the mapping M in the frame.
For all MBs positions, for which no data has been received, appropriate error
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concealment has to be invoked before the frame is forwarded to the reference and
display buffer. The decoded source ŝt obviously depends on the channel behavior
for all the data units Pi corresponding to the current frame st , but due to the
predictive coding and error propagation in general, it also depends on the channel
behavior of all previous data units, Ct � C[1:it ]. This dependency is expressed as
ŝt (Ct ).

Due to the bidirectional nature of conversational applications, a low-delay, low-
bit rate, error-free feedback channel from the receiver to the transmitter, as indi-
cated in Figure 2.4, can be assumed, at least for some applications. This feedback
link allows sending some back channel messages. These messages make the trans-
mitter aware of the channel conditions so that it may react to these conditions.
These messages are denoted as B(Ct ). The exact definition and applications of
such messages are described in Section 2.5. In our framework we model the feed-
back link as error free, but the feedback message delay is normalized to the frame
rate such that B(Ct−δ) expresses a version of B(Ct ) delayed by δ frames, with
δ = 0,1,2, . . . . The exploitation of this feedback link and different types of mes-
sages having assigned specific semantics in the encoding process are discussed
later.

2.4.2 Video Packetization Modes

At the encoder the application of slice structured coding and FMO allows limiting
the amount of lost data in case of transmission errors. Especially with the use of
FMO, the mapping of MBs to data units basically provides arbitrary flexibility.
However, there exist a few typical mapping modes, which are discussed in the
following.

Without the use of FMO, the encoder typically can choose between two slice
coding options: one with a constant number of MBs, NMB/DU, within one slice
resulting in an arbitrary size, and one with the slice size bounded to some max-
imum number of bytes Smax, resulting in an arbitrary number of MBs per slice.
Whereas with the former mode, the similar slice types as present in H.263 and
MPEG-2 can be formed, the latter is especially useful for introducing some QoS,
as commonly the slice size and the resulting packet size determine the data unit
loss rate in wireless systems. Examples of the two different packetization modes
and the resulting locations of the slice boundaries in the bit stream are shown in
Figure 2.11. With the use of FMO, the flexibility of the packetization modes is
significantly enhanced, as shown in the examples in Figure 2.12. Features such as
slice interleaving, dispersed MB allocation using checkerboard-like patterns, one
or several foreground slice groups and one left-over background slice groups, or
subpictures within a picture are enabled. Slice interleaving and dispersed MB allo-
cation are especially powerful in conjunction with appropriate error concealment,
that is, when the samples of a missing slice are surrounded by many samples of
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FIGURE 2.11: Different packetization modes: (a) constant number of
MBs per slice with variable number of bytes per slices and (b) maximum
number of bytes per slice with variable number of MBs per slice.

  

  

  

 
   

  

  

  

FIGURE 2.12: Specific MB allocation maps: foreground slice groups
with one left-over background slice group, checkerboard-like pattern with
two slice groups, and subpictures within a picture.

correctly decoded slices. This is discussed in the following section. For dispersed
MB allocation typically and most efficiently checkerboard patterns are used, if no
specific area of the video is treated with higher priority.

Video data units may also be packetized on a lower transport layer, for example,
within RTP [59], by the use of aggregation packets, with which several data units
are collected into a single transport packet, or by the use of fragmentation units,
that is, a single data unit is distributed over several transport packets.

2.4.3 Error Concealment

With the detection of a lost data unit at the receiver, the decoder conceals the lost
image area. Error concealment is a nonnormative feature in any video decoder,
and a large number of techniques have been proposed that span a wide range of
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performance and complexity. The basic idea is that the decoder should generate a
representation for the lost area that matches perceptually as close as possible to the
lost information without knowing the lost information itself, within a manageable
complexity. These techniques are based on best effort, with no guarantee of an
optimal solution. Since the concealed version of the decoded image will still differ
from its corresponding version at the encoding end, error propagation will still
occur in the following decoded images until the reference frames are synchronized
once again at the encoder and the decoder. This subject will be addressed in detail
in Section 2.5.4.

Most popular techniques in this regard are based on a few common assump-
tions:

• Continuity of image content in spatial domain; natural scene content typi-
cally consists of smooth texture.

• Temporal continuity; smooth object motion is more common compared to
abrupt scene changes and collocated regions in image tend to have similar
motion displacement.

Such techniques exploit the correctly received information of the surrounding area
in the spatial and temporal domains to conceal the lost regions. Here we mainly
focus on the techniques that conceal each lost MB individually and do not modify
the correctly received data.

To simplify the discussion in this section and unless specified otherwise, “data
loss” refers to the case that all the related information of one or several MBs
is lost, for example, MB mode, transformed residual coefficients, and MVs (for
the case of inter-coded MBs). This assumption is quite practical as typically a
corrupted packet will be detected and discarded before the video decoder.

There exists an exhaustive amount of literature proposing different error con-
cealment techniques. However, only a few simple schemes are commonly used
in practical applications. We will put emphasis on error concealment with some
practical relevance, but provide reference to other important error concealment
methods. In general, error concealment needs to be assessed in terms of perfor-
mance and complexity.

Spatial Error Concealment

The spatial error concealment technique is based on the assumption of continuity
of natural scene content in space. This method generally uses pixel values of sur-
rounding available MBs in the same frame as shown in Figure 2.13. Availability
refers to MBs that either have been received correctly or have already been con-
cealed. We consider the case of loss of a 16× 16 MB. The most common way of
determining the pixel values in a lost MB is by using a weighted sum of the closest
boundary pixels of available MBs, with the weights being inversely related to the
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FIGURE 2.13: Pixels used for spatial error concealment (shaded pixels)
of a lost MB (thick frame), M =N = 16.

distance between the pixel to be concealed and the boundary pixel. For example,
at a pixel position i, j in Figure 2.13, an estimate X̂i,j of the lost pixel Xi,j is

X̂i,j = α
{
βXi,−1 + (1− β)Xi,16

}+ (1− α)
{
γX−1,j + (1− γ )X16,j

}
. (2.1)

Here in this equation, α, β , and γ are weighing factors that will determine the
relative impact of pixel values of vertical versus horizontal, upper versus lower,
and left versus right neighbors, respectively. The top-left pixel of the lost MB is
considered as origin. As discussed earlier, the weighing factors are set accord-
ing to the inverse of the distances from the pixel being estimated. This technique
as proposed in [33] is widely used in practice because of its simplicity and low
complexity. Since this technique works on the assumption of continuity in spatial
domain, discontinuity is avoided in concealed regions of the image. Obviously,
this technique will result in blurred reconstruction of the lost region, since natural
scene content is not perfectly continuous and lost details will not be recovered.
Typically the spatial error concealment technique is never used alone in appli-
cations, rather it is combined with other techniques, as discussed in the follow-
ing sections. It is worthwhile to note that since this technique heavily relies on
the availability of horizontal and vertical neighbor pixels, decoders applying this
technique can benefit from the application of FMO; for example, by the use of a
checkerboard-like pattern.
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More sophisticated methods with higher complexity have been proposed in the
literature. These methods target to recover some of the lost texture. Some of them
are listed in the following.

• In [66], a spatial error concealment technique is proposed that is based on
an a priori assumption of continuity of geometric structure across the lost
region. The available neighboring pixels are used to extract the local geo-
metric structure, which is characterized by a bimodal distribution. Missing
pixels are reconstructed by the extracted geometric information.

• Projection onto convex sets in the frequency domain is proposed in [47].
In this method each constraint about the unknown area is formulated as a
convex set, and a possible solution is iteratively projected onto each convex
set to obtain a refined solution.

Temporal Error Concealment

Temporal error concealment relies on the continuity of a video sequence in time.
This technique uses the temporally neighboring areas to conceal lost regions.

In the simplest form of this technique, known as the Previous Frame Conceal-
ment (PFC), the spatially corresponding data of the lost MB in the previous frame
is copied to the current frame. If the scene has little motion, PFC performs quite
well. However, as soon as the region to be concealed is displaced from the cor-
responding region in the preceding frame, this technique will, in general, result
in significant artifacts in the displayed image. However, due to its simplicity, this
technique is widely used, especially in decoders with limited processing power.

  

 

 

 

FIGURE 2.14: Neighboring available MBs (T , R, B , and L) used for
temporal error concealment of a lost MB C. MB L is encoded in 16× 8
inter mode, and the average of its two MVs is used as a candidate.
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FIGURE 2.15: Boundary pixels of MB C used for the boundary-
matching criteria.

A refinement of PFC attempts to reconstruct the image by making an estimate
of the lost motion vector. For example, with the assumption of a uniform motion
field in the collocated image areas, motion vectors of the neighboring blocks are
good candidates to be used as displacement vectors to conceal the lost region.
Good candidate MVs for this technique are the MVs of available horizontal and
vertical inter-coded neighbor MBs. If a neighboring MB is encoded in an inter
mode other than the inter 16× 16 mode, one approach is to use the average of the
MVs of all the blocks on the boundary of the lost MB. In general, more than one
option for the application of displacement vectors exists; for example, using the
horizontal neighbor, the vertical neighbor, the zero displacement vector, etc. To
select one of the many candidates, a boundary-matching-based technique can, for
example, be applied (Figure 2.15). In this case, from the set of all candidate MVs
S, the MV υ̂ for temporal error concealment is selected according to

εT (υi) =
15∑

m=0

(
Xx+m,y(υi)−Xx+m,y−1

)2
,

εR(υi) =
15∑

n=0

(
Xx+15,y+n(υi)−Xx+16,y+n

)2
,

εB(υi) =
15∑

m=0

(
Xx+m,y+15(υi)−Xx+m,y+16

)2
,

υ̂ = arg min
υiεS

(
εT (υi)+ εR(υi)+ εB(υi)

)
. (2.2)
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Here, for each motion vector υi ε S, errors εT , εR , and εB are calculated for top,
right, and bottom edges, respectively. The first term of error functions is the pixel
recovered from the reference frame using the selected motion vector υi , while the
second element is an available boundary pixel of a neighboring MB. The upper-
left pixel of the lost MB has a pixel offset x, y. Finally, the vector that results in
minimum overall error is selected, since this vector gives a block that possibly fits
best in the lost area. Obviously, it is possible that none of the candidate vectors are
suitable and in such a case temporal error concealment results in fairly noticeable
discontinuity artifacts in the concealed regions.

Several variants and refinements of the temporal error concealment technique
have been proposed, usually with some better performance at the expense of
sometimes significantly higher complexity. A nonexhaustive list is provided in
the following:

• In [4], overlapped block motion compensation is proposed. In this case an
average of three 16× 16 pixel regions is used to conceal the missing MB.
One of these regions is the 16×16 pixel data used to conceal the lost MB by
the process described earlier, the second and third regions are retrieved from
the previous frame by using the motion vectors of horizontal and vertical
neighbor MBs, respectively. These three regions are averaged to get the
final 16× 16 data used for concealment. Averaging in this way can reduce
artifacts in the concealed regions.

• In [2], it is proposed to use the median motion vector of the neighboring
blocks for temporal concealment. However, the benefits of this technique
have been relativized in, for example, [57].

• In [57], Sum of Absolute Differences (SAD) is used instead of Sum of
Squared Differences (SSD) for the boundary-matching technique. This re-
sults in reduced computational complexity.

• A simpler variant is used in practice [3]: It is proposed to only apply the
motion vector of top MB, if available, otherwise zero MV is used (i.e., PFC
is used if top MB is not inter coded or is lost as well).

• In [30], a multihypothesis error concealment is proposed. This technique
makes use of the multiple reference frames available in an H.264/AVC de-
coder for temporal error concealment. The erroneous block is compensated
by a weighted average of correctly received blocks in more than one previ-
ous frame. The weighting coefficient used for different blocks can be deter-
mined adaptively.

• In [20], the idea presented in [30] is extended. In this proposal, temporal
error concealment is used exclusively. However, two variants of temporal
error concealment are available: the low-complexity concealment technique
governed by (2.2) and the multihypothesis temporal error concealment. The
decision as to which technique is used is based on the temporal activity
(SAD) in the neighboring regions of the damaged block. For low activity,
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the low-complexity technique is used, while multihypothesis temporal error
concealment is used for higher activity.

Also, the adaptive combination of spatial concealment with temporal error con-
cealment is of some practical interest and will therefore be discussed in more
detail in the following.

Hybrid Concealment

Neither the application of spatial concealment nor temporal concealment alone
can provide satisfactory performance: if only spatial concealment is used, con-
cealed regions usually are significantly blurred. Similarly, if only temporal error
concealment is applied, significant discontinuities in the concealed regions can
occur, especially if the surrounding area cannot provide any or not sufficiently
good motion vectors. Hence to achieve better results, the hybrid temporal–spatial
technique might be applied. In this technique, MB mode information of reliable
and concealed neighbors can be used to decide whether spatial error concealment
or temporal error concealment is more suitable. For intra-coded images only spa-
tial concealment is used. For inter-coded images, temporal error concealment is
used only if, for example, in the surrounding area more than half of the available
neighbor MBs (shown in Figure 2.14) are inter coded. Otherwise, spatial error
concealment is used. This ensures that a sufficient number of candidate MVs are
available to estimate the lost motion information. We refer to this error conceal-
ment as Adaptive temporal and spatial Error Concealment (AEC) in the following.

Other techniques have been proposed to decide between temporal and spatial
concealment mode:

• A simple approach in [57] proposes the use of spatial concealment for intra-
coded images and temporal error concealment for all inter-coded images
invariably.

• In [48], it is suggested that if the residual data in a correctly received neigh-
boring inter-predicted MB is smaller than a threshold, temporal error con-
cealment should be used.

Miscellaneous Techniques

In addition to the signal-domain MB-based approaches, other techniques have
been proposed in the literature, for example,

• Model based or object concealment techniques, as proposed in [5,51], do
not assume simple a priori assumptions of continuity as given earlier. These
techniques are based on the specific texture properties of video objects, and
as such are a suitable option for multiobject video codec, that is, MPEG-4.
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An object-specific context-based model is built and this model governs the
assumptions used for concealment of that object.

• Frequency-domain concealment techniques [16,29] work by reconstruct-
ing the lost transform coefficients by using the available coefficients of the
neighboring MBs as well as coefficients of the same MB not affected by
the loss. These initial proposals are specifically for DCT transform block
of 8× 8 coefficients. For example, in [16], based on the assumption of con-
tinuity of the transform coefficients, lost coefficients are reconstructed as
a linear combination of the available transform coefficients. However, no-
ticeable artifacts are introduced by this technique. As a more realistic con-
sideration, in [29] the constraint of continuity holds only at the boundaries
of the lost MB in spatial domain.

• In an extension to the spatial and temporal continuity assumptions, it is
proposed in [34] that the frames of video content are modeled as a Markov
Random Field (MRF). The lost data is suggested to be recovered based
on this model. In [35] the authors proposed a less complex but suboptimal
alternative to implement this model for error concealment. For example,
for temporal error concealment, only the boundary pixels of the lost MB
are predicted based on a MAP estimate, instead of predicting the entire MB.
These predicted pixels are used to estimate the best predicted motion vector
to be used for temporal error concealment. In [39], the MAP estimate is
used to refine an initial estimate obtained from temporal error concealment.

Selected results

A few selected results from various important concealment techniques are pre-
sented in Figure 2.16. From left to right, a sample concealed frame when using
PFC, spatial, temporal, and AEC is shown. PFC simply replaces the missing infor-
mation by the information at the same location in the temporally preceding frame.
Hence, it shows artifacts in the global motion part of the background as well as

FIGURE 2.16: Performance of different error concealment strategies:
PFC, spatial concealment only, temporal error concealment only, and
AEC.
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in the foreground. Spatial error concealment based on weighted pixel averaging
smoothes the erroneously decoded image and removes strange block artifacts, but
also many details. Temporal error concealment relying on motion vector recon-
struction with boundary-matching-based techniques keeps details, but results in
strange artifacts in uncovered areas. Finally, AEC—a combination of temporal
and spatial error concealment—keeps many details but also avoids strange block
artifacts and is therefore very appropriate with feasible complexity. In the remain-
der of this chapter we will assume exclusively AEC, which reduces to PFC in the
case that all MBs of a picture are transmitted in a single packet.

For a further detailed study of error concealment techniques, the reader is re-
ferred to [36,52,54,56] and the references therein.

2.4.4 Selected Performance Results for Wireless Test Conditions

To get an insight in error-resilient video coding for 3G mobile communication
scenarios, we take a look at a few selected results. The simulated scenario is of a
packet-switched conversational application and is specified in detail by 3GPP [8].
This application is characterized by its stringent low-delay and low-complexity
requirements, since the processing has to be done in real time on hand-held de-
vices. As a result, the maximum allowed buffering at the encoder is limited to
250 ms and only the first frame is encoded as intra, to limit any delays caused by
buffering overheads. A simple random intra MB refresh technique is used, with
5% MBs of every frame coded in intra mode. The most recent frame is used for
motion compensation to limit the complexity. With these limitations, we observe
the impact of slice size on error resilience of the application. Two channel config-
urations are compared: one with moderate Radio Link Control (RLC) Packet Data
Unit (PDU) loss rate of 0.5% and the other with a higher loss rate of 1.5%. The
Radio Access Bearer (RAB) in this test supports transmission of 128 Kbps, with
a radio frame size of 320 bytes. Here as an example we use the Quarter Com-
mon Intermediate Format (QCIF) sized test sequence foreman at 15 frames per
second. The encoder is configured to match the maximum throughput of channel
while taking into account packetization overheads. The criterion used here as a
metric of perceived video quality is PSNR of luma (Y) signal.

Figure 2.17 compares the Y PSNR of the decoded video at a loss rate of 1.5%
for two cases: transmitting an entire frame in a slice versus a fixed slice size of
150 bytes. At the given bit rate, a compressed frame has an average size of roughly
1000 bytes. The error-free performance for both cases is also plotted as a refer-
ence. Obviously, using a smaller slice size of 150 bytes results in typically lower
PSNR in an error-free case because of two reasons: increased packetization over-
head and prediction limitations on slice boundaries. However, this configuration
outperforms in the case of lossy channel throughout the observed period. A few
selected frames are also presented for comparison. The effects of losses already
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FIGURE 2.17: (Bottom) Plot of Y PSNR with two different slice
modes. Results for an error-free case are given as a reference. (Top) A few
selected frames for the two slice modes for comparison.

start appearing in the fifth frame. While transmitting one frame per slice results
in loss of an entire frame for a lost RLC PDU, the loss affects only a small area
of the image for fixed slice size. The spatiotemporal error propagation is much
smaller in this case.

Figure 2.18 shows the comparative effects of various slice sizes for different
channel loss scenarios. A single point on the curves is obtained by averaging the
Y PSNR, denoted as PSNR, for several channel realizations to achieve higher
statistical significance. The error-free curve shows the effects of reduced com-
pression and hence smaller PSNR for smaller slice sizes. However, at a loss rate
of 0.5%, the drawbacks of using larger slice sizes become obvious. The advan-
tage of using slice sizes smaller than 350 bytes does not sufficiently compensate
for their overhead. However, increasing slice size beyond this results in a drop
of PSNR. This is because of a greater portion of a frame affected by a lost RLC



Section 2.5: ERROR MITIGATION 41

  

 
 

 

 

  

  

FIGURE 2.18: Plot of PSNR versus slice size with RLC PDU loss rate
as a parameter.

PDU. The performance degradation is much more drastic for a loss rate of 1.5%,
shown by a significant drop of PSNR for larger slice sizes.

2.5 ERROR MITIGATION

2.5.1 Motivation

As already discussed, error propagation is the major problem when transmitting
MCP-coded video over lossy channels. Therefore, if the encoder is aware that the
channel will likely be lossy or even knows that the decoder has experienced the
loss of certain data units, it should change its encoding behavior, despite sacrific-
ing some compression efficiency. To illustrate this, selected frames for different
encoding strategies when transmitting over channels with the same bit rate and
error rate constraints are shown in Figure 2.19. The first line, referred to as (a),
shows the case where no specific error-resilience tools are applied. The already
elaborated problem of error propagation is obvious in later frames. For the se-
quence in the second line, referred to as (b), the same bit rate and error statistics
are applied, but the encoder chooses to select intra-coded MBs in a suitable way. It
can be observed that the error propagation is less of an issue but that some residual
artifacts are still visible. In addition, the error-free video has lower quality as its
compression efficiency is reduced due to the increased amount of intracoding un-
der an identical bit rate constraint. Error propagation can be completely avoided if
interactive error control is used, as shown in the third row, labeled with (c). How-
ever, in this case also, compression efficiency is sacrificed, especially if necessary
feedback of the decoder state is delayed. Details on the appropriate selection of
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(a)

(b)

(c)
Frame 1 Frame 8 Frame 18 Frame 28

FIGURE 2.19: Selected frames of a decoded video sequence for a
packet lossy channel with same bit rate and error constraints: (a) no er-
ror robustness, (b) adaptive intra updates, and (c) interactive error control.

MB modes in error-prone environments, especially taking into account the trade-
off between quantization distortion and reduced error propagation, are discussed
in the following.

2.5.2 Operational Encoder Control

The tools for increased error resilience in hybrid video coding, in particular those
to limit error propagation, do not significantly differ from the ones used for com-
pression efficiency. Features such as multiframe prediction or intra coding of in-
dividual MBs are not primarily error-resilience tools. They are mainly used to
increase coding efficiency in error-free environments, although design freedom is
left to the video encoder. The encoder implementation is responsible for appropri-
ate selection of one of the many different encoding parameters, the so-called op-
erational coder control. Thereby, the encoder must take into account constraints
imposed by the application in terms of bit rate, encoding and transmission de-
lay, complexity, and buffer size. When a standard decoder is used, such as an
H.264/AVC compliant decoder, the encoding parameters should be selected by
the encoder such that good rate–distortion performance is achieved. Since the
encoder is limited by the syntax of the standard, this problem is referred to as
syntax-constrained rate–distortion optimization [28]. In case of H.264/AVC, for
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example, the encoder must appropriately select parameters such as motion vec-
tors, MB modes, quantization parameters, reference frames, or spatial and tempo-
ral resolution, as shown in Figure 2.20. This also means that bad decisions at the
encoder can lead to poor results in coding efficiency, error resilience, or both. For
compression efficiency, operational encoder control based on Lagrangian multi-
plier techniques has been proposed. The distortion db,mb

usually (at least in the
H.264/AVC test model) reflects the SSD between the original MB sb and the re-
constructed version of the MB s̃b,m if coded with option m, that is,

db,m =
∑

i

|sb,i − s̃b,m,i |2, (2.3)

and the rate rb,m is defined by the number of bits necessary to code MB b with
option m. Finally, the coding mode is selected for MB b as

∀b m∗b = arg min
m∈O

(db,m + λOrb,m), (2.4)

whereby O defines the set of selectable options, for example, MB modes. For the
Lagrangian parameter λO it is proposed in [46] and [62] that if the SSD is applied
as a distortion measure, then λO should be directly proportional to the square of
the step size 
 of a uniform quantizer applied. The procedure in (2.4) can be
applied to select motion vectors, reference frames, and MB modes. However, it is

FIGURE 2.20: H.264/AVC video encoder with selectable encoding pa-
rameters highlighted.
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obviously contradictory if the same decision procedure is applied to obtain good
selections for compression efficiency and error resilience. This will be further
discussed in the following.

2.5.3 Adaptive Intra Updates

In the presence of errors it has long been recognized that the introduction of more
frequent nonpredictively coded image parts is of major importance. In early work
on this subject, for example, [15,25,68], it has been proposed to introduce intra-
coded MBs, regularly, randomly, or preferably in a certain pseudo-random update
pattern. In addition, sequence characteristics and bit rate influence the appropriate
percentage of intra updates.

Recognizing this, it has been proposed [67,7,61] to modify the selection of the
coding modes according to (2.4) to take into account the influence of the lossy
channel. When encoding MB b with a certain coding mode mb , it is suggested to
replace the encoding distortion db,m by the decoder distortion

d̃b,m(Ct ) �
∥∥sb,t − ŝb,t (Ct ,m)

∥∥2
, (2.5)

which obviously depends on the reconstructed pixel values ŝt (Ct ,m) and therefore
also on the channel behavior Ct and the selected coding mode m.

In general, the channel behavior is not deterministic and the channel realization
C, observed by the decoder, is unknown to the encoder. Thus it is not possible
to directly determine the decoder distortion (2.5) at the encoder. However, we
can assume that the encoder has at least some knowledge of the statistics of the
random channel behavior, denoted as Ĉt . In a Real-Time Transport Protocol (RTP)
[37] environment, the Real-Time Control Protocol (RTCP), for example, can use
a feedback channel to send receiver reports on the experienced loss and delays
statistics, which allow the encoder to incorporate these statistics into the encoding
process. Assume that the statistics on the loss process are perfectly known to
encoder, that is, B(Ct )= Ĉt , and assume that the loss process is stationary. Then,
the encoder is able to compute the expected distortion

db,m � EĈt

{
d̃b,m(Ĉt )

}= EĈt

{∥∥sb,t − ŝb,t (Ĉt ,m)
∥∥2}

. (2.6)

A similar procedure can be applied to decisions on reference frames and motion
vectors. The selection of motion vectors based on the expected distortion has, for
example, been proposed in [65]. The estimation of the squared expected pixel dis-
tortion in packet loss environment has been addressed in several contributions. For
example, in [7,23], and [61], methods used to estimate the distortion introduced
due to transmission errors and the resulting error propagation have been proposed.
In all these proposals the quantization noise and the distortion introduced by the
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transmission errors (the so-called drift noise) are linearly combined. Since the
encoder needs to keep track of an estimated pixel distortion, additional complex-
ity and memory are required in the encoder. The most recognized method, the
so-called Recursive Optimal per-Pixel Estimate (ROPE) algorithm [67], however,
provides an accurate estimation for baseline H.263 and MPEG-4 simple profile-
like algorithms, using simple temporal error concealment, by keeping track of the
first and second moment of the decoded pixel value s̃(Ct ), namely E{s̃(Ct )} and
E{s̃2(Ct )}, respectively.

A powerful yet complex method has been proposed in [44] by applying a Monte
Carlo–like method. An estimate of the decoder distortion db,m in (2.6) is obtained
as

d
(NC)

b,m � 1

NC

NC∑

n=1

d̃b,m(Cn,t )= 1

NC

NC∑

n=1

∥
∥sb,t − ŝb,t (Cn,t ,m)

∥
∥p

, (2.7)

with Cn,t , n= 1, . . . ,NC , representing NC independent realizations of the random
channel Ĉt , and estimate of the loss probability at the receiver represented as p.
An interpretation of (2.7) leads to a simple solution to estimate the expected pixel
distortion db,m. For more details we refer to [44]. To obtain an estimate of the
loss probability p at the receiver, the feedback channel can be used in practical
systems.

2.5.4 Interactive Error Control

The availability of a feedback channel, especially for conversational applications,
has led to different standardization and research activities in recent years to in-
clude this feedback in the video encoding process. Assume that, in contrast to the
previous scenario where only the statistics of the channel process Ĉ are known to
the encoder, in the case of timely feedback we can even assume that a δ-frame
delayed version Ct−δ of the loss process experienced at the receiver is known at
the encoder. This characteristic can be conveyed from the decoder to the encoder
by sending acknowledgment for correctly received data units, negative acknowl-
edgment messages for missing slices, or both types of messages.

In less time-critical applications, such as streaming or downloading, the en-
coder could obviously decide to retransmit lost data units in case it has stored a
backup of the data unit at the transmitter. However, in low-delay applications the
retransmitted data units, especially in end-to-end connections, would in general
arrive too late to be useful at the decoder. In case of online encoding, the observed
and possibly delayed receiver channel realization, Ct−δ , can still be useful to the
encoder, although the erroneous frame has already been decoded and concealed at
the decoder. The basic goal of these approaches is to reduce, limit, or even com-
pletely avoid error propagation by integrating the decoder state information into
the encoding process.
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The exploitation of the observed channel at the encoder has been introduced
in [41] and [12] under the acronym Error Tracking for standards such as MPEG-
2, H.261 or H.263 version 1, but has been limited by the reduced syntax capa-
bilities of these video standards. When receiving the information that a certain
data unit—typically including the coded representation of several or all MBs of
a certain frame st−δ—has not been received correctly at the decoder, the encoder
attempts to track the error to obtain an estimate of the decoded frame ŝt−1 serv-
ing as reference for the frame to be encoded, st . Appropriate actions after having
tracked the error are discussed in [12,41,53,56,61]. However, all these concepts
have in common that error propagation in frame ŝt is only removed if frames
ŝt−δ+1, . . . , ŝt−1 have been received at the decoder without any error.

Nevertheless, this promising performance when exploiting decoder state infor-
mation at the encoder has been recognized by standardization bodies, and the
problem of continuing error propagation has been addressed by extending the
syntax of existing standards. In MPEG-4 [17, version 2] a tool to stop temporal
error propagation has been introduced under the acronym New Prediction (NEW-
PRED) [10,27,50]. Similarly, in H.263+ Annex N [18, Annex N] RPS for each
Group-of-Blocks (GOB) is specified. If combined with slice structured mode as
specified in H.263+ Annex K [18, Annex K], as well as Independent Segment
Decoding (ISD) as specified in H.263+ Annex R [18, Annex R], the same NEW-
PRED techniques can be applied within the H.263 codec family.

NEWPRED relies on the availability of timely feedback, online encoding, and
the possibility that the encoder can choose other reference frames than the tempo-
rally preceding ones. In addition, it allows one to completely eliminate error prop-
agation in frame ŝt even if additional errors have occurred for the transmission of
frames ŝt−δ+1, . . . , ŝt−1. Different encoder operation modes have been discussed
in the literature [10], which can basically be distinguished in a mode where only
acknowledged areas are used for reference and another mode, in which the opera-
tion is only altered when information is received that the decoder is missing some
data units.

In H.263++ Annex U [18, Annex U], NEWPRED was introduced exclusively
for the purpose of improving error resilience. In H.264/AVC, the extended syn-
tax allowing selection of reference frames on an MB or even sub-MB basis has a
dual impact: enhanced compression efficiency and, at the same time, ease of in-
corporating methods for limiting error propagation [61]. We will in the following
introduce conceptual operation modes when combining decoder state information
in the encoding process.

Therefore, we assume that at the encoder each generated data unit Pi is as-
signed a decoder state Cenc,i ∈ {ACK,NAK,OAK}, whereby Cenc,i = ACK re-
flects that data unit Pi is known to be correctly received at the decoder, Cenc,i =
NAK reflects that data unit Pi is known to be missing at the decoder, and
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Cenc,i = OAK reflects that for data unit Pi the acknowledgment message is still
outstanding and it is not known whether this data unit will be received correctly.

With feedback messages conveying the observed channel state at the receiver,
that is, B(Ct )= Ct , and a back channel that delays the back channel messages by
δ frames, we assume in the remainder that for the encoding of st , the encoder is
aware of the following information:

Cenc,i =

⎧
⎪⎨

⎪⎩

ACK if τPTS,i ≤ τs,t−δ and Ci = 1,

NAK if τPTS,i ≤ τs,t−δ and Ci = 0,

OAK if τPTS,i � τs,t−δ,

(2.8)

where τPTS,i is the Presentation Time Stamp (PTS) of Pi and τs,t−δ is the sampling
time of st−δ .

This information about the decoder state Cenc,i can be integrated in a modified
rate–distortion optimized operational encoder control similar to what has been
discussed in Subsection 2.5.2. In this case the MB mode m∗b is selected from

a modified set of options, Ô, with a modified distortion d̂b,m for each selected
option m as

∀b m∗b = arg min
m∈Ô

(d̂b,m + λÔrb,m). (2.9)

In the following we distinguish four different operation modes, which differ only
by the set of coding options available to the encoder in the encoding process, Ô,
as well as the applied distortion metric, d̂b,m. The encoder’s reaction to delayed
positive acknowledgment (ACK) and negative acknowledgment (NAK) messages
is shown in Figure 2.21, assuming that frame d is lost and the feedback delay is
δ = 2 frames for three different feedback modes.

Feedback Mode 1: Acknowledged Reference Area Only

Figure 2.21a shows this operation mode: Only the decoded representation of
data units Pi that have been positively acknowledged at the encoder, that is,
Cenc,i = ACK, are allowed to be referenced in the encoding process. In the con-
text of operational encoder control, this is formalized by applying the encoding
distortion in (2.9), that is, d̂b,m = db,m, as well as the set of encoding options
that is restricted to acknowledged areas only, that is, Ô =OACK,t . Note that the
restricted option set OACK,t depends on the frame to be encoded and is applied
to the motion estimation and reference frame selection process. Obviously, if no
reference area is available, the option set is restricted to intra modes only, or if no
satisfying match is found in the accessible reference area, intra coding is applied.
With this mode in use, an error might still be visible in the presentation of a single
frame; however, error propagation and reference frame mismatch are completely
avoided.
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(a)

(b)

(c)

FIGURE 2.21: Operation of different feedback modes. (a) Feedback
Mode 1. (b) Feedback Mode 2. (c) Feedback Mode 3.

Figure 2.22a shows the performance in terms of average Peak Signal-to-Noise
Ratio (PSNR), denoted by PSNR, for feedback mode 1 with different feedback de-
lays δ compared to the channel-adaptive mode selection scheme for foreman, error
pattern 10 (as given in test conditions specified in [58]), AEC, and NMB/DU = 33.
The number of reference frames is Nref = 5, except for δ = 8 with Nref = 10. The
results show that for any delay this system with feedback outperforms the best
system without any feedback. For small delays, the gains are significant and for
the same average PSNR the bit rate is less than 50% compared to the forward-
only mode. With increasing delay the gains are reduced, but compared with the
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FIGURE 2.22: Average PSNR (PSNR) versus bit rate for different feed-
back modes for sequence foreman. (a) Average PSNR (PSNR) versus bit
rate for Feedback Mode 1. (b) Average PSNR (PSNR) versus bit rate for
Feedback Mode 2 (solid lines), Feedback mode 1 replotted for compari-
son (dashed lines). (c) Average PSNR (PSNR) versus bit rate for Feedback
Mode 3 (solid lines), Feedback mode 2 replotted for comparison (dashed
lines).
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highly complex mode decision without feedback, this method is still very attrac-
tive. Obviously, these high delay results are strongly sequence dependent but for
other sequences similar results have been verified.

Feedback Mode 2: Synchronized Reference Frames

Feedback mode 2 as shown in Figure 2.21b differs from mode 1 in that not only
positively acknowledged data units but also a concealed version of data units with
decoder state Cenc,i = NAK are allowed to be referenced. This is formalized by
applying the encoding distortion in (2.9), that is, d̂b,m = db,m, but the restricted
reference area and the option set in this case also include concealed image parts,
Ô = ONAK,t ⊇ OACK,t . The critical aspect when operating in this mode results
from the fact that for the reference frames to be synchronized the encoder must
apply exactly the same error concealment as the decoder.

Figure 2.22b shows the performance in terms of average PSNR, denoted as
PSNR, for feedback mode 2 with different feedback delays δ compared to the
curves in Figure 2.22a for the same parameters. The results for feedback mode 2
show similar results as for feedback mode 1. However, the advantage of feedback
mode 2 can be seen in two cases: for low bit rates and for delays δ < Nref − 1.
This is so because referencing concealed areas is preferred over intra coding by
the rate–distortion optimization. For higher bit rates this advantage vanishes as
the intra mode is preferred anyways over the selection of “bad” reference areas.
For delay δ = 4 with Nref = 5, that is, only a single reference frame is available
at the encoder, the gains of feedback mode 2 are more obvious, since for feed-
back mode 1, in case of a lost slice, the encoder basically is forced to use intra
coding.

Feedback Mode 3: Regular Prediction with Limited Error Propagation

Feedback modes 1 and 2 are mainly suitable in cases of higher loss rates. If the
loss rates are low or negligible, the performance is significantly degraded by the
longer prediction chains due to the feedback delay. Therefore, in feedback mode 3
as shown in Figure 2.21c it is proposed to only alter the prediction in the encoder
in case of the reception of a NAK. Again, the encoding distortion in (2.9) is ap-
plied, that is, d̂b,m = db,m, but the reference area and the option set in this case
are altered only in case of receiving a NAK to already acknowledged image parts,
that is, Ô = O′ACK,t , or, as applied in our case to acknowledged and concealed

image parts, Ô =O′NAK,t . Areas that are possibly corrupted by error propagation
are also excluded as references. This mode obviously performs well in cases of
lower error rates. However, for higher error rates error propagation still occurs
quite frequently.
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Figure 2.22c shows the performance in terms of average PSNR for feedback
mode 3 compared to channel-adaptive mode selection and feedback mode 2, again
for the same parameters as in Figure 2.22a. Note that feedback mode 2 and feed-
back mode 3 are identical for zero feedback delay. However, surprisingly, for
increasing delay, feedback mode 3 performs significantly worse than feedback
mode 2. The error propagation, though only present for at maximum δ−1 frames,
degrades the overall quality much more significantly; the gain in compression ef-
ficiency cannot compensate the distortion due to packet losses. Obviously, the
performance depends on the sequence characteristics and especially on the loss
rate. For lower rates it is expected (and shown later) that the differences between
feedback modes 2 and 3 are less significant, but in general feedback mode 2 is
also preferable over feedback mode 3 from the subjective performance.

Feedback Mode 4: Unrestricted Reference Areas with Expected Distortion Update

For completeness we present an even more powerful feedback mode, which ex-
tends feedback mode 3 to address error propagation with more intra updates. We
also discuss its drawbacks and justify why it is hardly used. In [61] and [67] tech-
niques have been proposed that combine the error-resilient mode selection with
available decoder state information in the encoder. In this case the set of encoding
options is not altered, that is, Ô =O, but only the computation of the distortion is
altered. Only for all data units with outstanding acknowledgment at the encoder,
that is, Cenc,i = OAK, is the randomness of the observed channel state consid-
ered; for all other data units the observed channel state is no longer random. The
expected distortion in this case is computed as

d̂b,m =
{

E{Ĉi }
{
d̃b,m(Ĉi )

}
if Cenc,i =OAK,

E{Ci }
{
d̃b,m(Ci )

}
if Cenc,i 
=OAK.

(2.10)

Compared to feedback modes 1 and 2, this method is especially beneficial if the
feedback is significantly delayed. Compared to feedback mode 3, it reduces the
unsatisfying performance in case of error propagation. Note that for δ→∞ this
mode turns into the mode selection without any feedback at all, and for δ = 0 this
mode is identical to feedback mode 2 and feedback mode 3. However, whenever
the encoder gets information on the state of a certain data unit at the decoder, the
statistics in the encoder have to be recomputed. Thus, the computational, storage,
and implementation complexities are significantly increased [67].

2.5.5 Selected Performance Results for Internet Test Conditions

To verify the conclusions of the previous subsection at least partly for other er-
ror rates, bit rates, and test sequences we have evaluated selected error-resilience
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FIGURE 2.23: Average PSNR (PSNR) over packet error rate for fore-
man, QCIF, with frame rate fs = 7.5 fps and paris, CIF. MPEG-4 with
optimized random intra updates is compared to H.264 in various configu-
rations. (a) foreman, 64 kbit/s, (b) paris, 384 kbit/s.

tools as presented previously. Test cases as suggested in [58] have been used. That
is, we evaluate performance on four IP packet loss traces with 3, 5, 10, and 20%
average loss rates, respectively. Note that the 5% trace is especially bursty. Also,
the Common Intermediate Format (CIF) test sequence paris encoded at frame
rate fs = 15 frames per second (fps) is evaluated. Figure 2.23 shows PSNR as
a function of packet loss rate1 for foreman at 64 kbit/s and paris at 384 kbit/s.

1The labels on the abscissa specify the corresponding error pattern rather than random packet loss
rates. Note that the 5% error file is burstier than the others, resulting in somewhat unexpected results.
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Various error-resilience tools in H.264/AVC are compared to the MPEG-4 simple
profile with an optimized ratio of random intra updates. The results are consistent
for both sequences. The significance of the difference between different schemes
is mainly explained by different sequence characteristics. It is observed that for
error-free transmission abandoning any error-resilience tools obviously results in
the best performance. The performance gains in terms of compression efficiency
of H.264 over the MPEG-4 simple profile is also visible. If feedback mode 2 is
used, in our case with feedback delay δ = 2, we have to sacrifice some compres-
sion efficiency as the prediction signal is in general worse as it is further in the
past. This does not apply for feedback mode 3. However, the performance in an
error-free transmission environment is less relevant for our investigations. With
increasing loss rates it is obvious that any kind of error-resilience feature in gen-
eral improves the performance. Thereby, it is again recognized that reducing error
propagation is much more important than packetization modes such as FMO, in
our case with a checkerboard pattern and two packets per frame. Again, with the
average PSNR as the measure of interest, the best performance without any feed-
back is obtained using channel-adapted rate–distortion-optimized mode selection
according to (2.4) with each packet containing an entire source frame. Additional
significant performance improvements can be achieved by the introduction of de-
coder feedback information. Thereby, for lower error rates feedback mode 3 out-
performs feedback mode 2, but feedback mode 2 provides very consistent results
over a large variety of error rates.

From these results, as well as subjective observations, it can be concluded that
avoiding error propagation is basically the most important issue in error-prone
video transmission. If no feedback is available, an increased percentage of intra
MBs, selected by channel-adapted optimization schemes, performs best. When-
ever feedback is available, it is suggested that interactive error control be applied.
For short delays or low error rates, it is suggested to modify the prediction only in
case of the reception of NACK message. In all other cases, it is suggested to ref-
erence only those areas for which the encoder is sure that the decoder has exactly
the same reference area.

2.6 SUMMARY AND FURTHER READING

This chapter provides some background when transmitting MCP-coded standard-
compliant video over error-prone channels. It is important to understand that video
can benefit significantly if the transmitter can be sure that the video will be de-
livered reliably. Typically, the introduction of error-resilience tools in the video
coding layer is very costly in terms of compression efficiency. The overhead is in
general much better spent in lower layers of the protocol stack. Nevertheless there
exist applications in which errors are inevitable. If the video encoder is not aware
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of distortions on the transmission link, this in general leads to dramatic quality
degradations due to instantaneous errors as well as spatial–temporal error propa-
gation. Whereas the effect of instantaneous errors can be decreased by the use of
specific packetization modes, the usually more severe effect of error propagation
can be reduced by the application of more frequent intra information, interactive
error control, or a combination of both. Preferably, for good overall performance,
the selection of error-resilience tools is integrated in rate–distortion-optimized
mode selection whereby the channel characteristics should be taken into account
in this optimization. In general, standard-compliant decoders such as H.264/AVC
can effectively operate even in harsh transmission environments if the encoder is
appropriately designed for the transmission conditions and application constraints
and the decoder includes some form of appropriate error concealment.

Additional literature on different subjects for error-resilient video transmission
is plentiful; some work has already been discussed. In case of detailed interest
in different subjects the reader is first of all encouraged to cover the remaining
chapters of this book. Furthermore, magazines as well as journals have published
special issues that deal exclusively with error-resilient video transmission, for ex-
ample, [1,26,49,55,63], which provide a good starting point to dive into deep wa-
ters of error-resilient video transmission. Enjoy it!
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3
Error-Resilient Coding and
Error Concealment
Strategies for Audio
Communication

Dinei Florêncio

3.1 INTRODUCTION

In this chapter we review the main techniques for error concealment in packet
audio. As explained in Chapters 7–10, forward error correction (FEC) or repeat
request solutions are often adequate for streaming media and broadcast. These
can virtually eliminate information loss, guaranteeing that every bit is actually
received at the decoder side. Nevertheless, these techniques will also require the
introduction of additional delay, and the higher the protection level desired, the
higher the delay required. Real-time communication (RTC) applications are very
delay sensitive and will not be able to fully exploit these techniques to reduce
100% of the losses. For this reason, RTC needs are quite unique. We need error
concealment, and we need FEC techniques that can be applied without excessive
increase in delay. In this chapter we look at some of the techniques used in error
concealment for speech and look at media-aware FEC techniques, with particular
interest in RTC.

Compression and error concealment are tightly related. Compression tries to
remove as much redundancy from the signal as possible, but the more redun-
dancy is removed, the more important each piece of information is, and therefore
the harder it is to conceal lost packets. More specifically, speech is a dynamic
but slowly varying signal; the key way of compressing speech is by only trans-
mitting signal changes in relation to the previous or expected state. Nevertheless,
only transmitting these changes in a differential form means that if you lose some
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information (e.g., due to a packet loss), the decoder does not know the current
state of the signal any more. It is always expected that the segment corresponding
to the missing data will not be properly decoded. But with differential coding,
subsequent frames may also be affected. Furthermore, it is easier to replace any
missing speech segments if one has received the correct signal in the vicinity of
the missing segment. For all these reasons, error concealment may significantly
depend on the compression technology used.

We will start this chapter by looking at some of the basic ideas behind packet
loss concealment for speech. With that objective, in Section 3.2 we introduce the
basic concealment techniques used in nonpredictive speech codecs. The job of
concealing losses becomes harder as the codec removes more and more redun-
dancy from the signal. In Section 3.3, we discuss some of the techniques used
to reduce the impact of the feedback loop in CELP (Codebook Excited Linear
Prediction) and other predictive codecs. In Section 3.4, we present some recent
results in loss concealment for transform coders, which are used both in speech
and in audio applications. Finally, in Section 3.5 we discuss recent research in
media-aware FEC techniques. Particular attention is paid to speech, due to its im-
portance in RTC, but many of the recent advances in loss concealment techniques
we will discuss apply also to audio. For example, the same principles used in the
overlapped transform concealment techniques can be used for most audio codecs,
and the media-aware FEC can be applied to most audio or video coders. We also
point out that this chapter is closely related to the ideas presented in Chapters 15
and 16.

3.2 LOSS CONCEALMENT FOR WAVEFORM SPEECH CODECS

When digital systems started replacing analog equipment a few decades ago,
processing power was scarce and expensive, and coding techniques still prim-
itive. For those reasons, most early digital systems used a very simple coding
scheme: PCM (Pulse Code Modulation). In this digital representation of speech,
there isn’t really any coding in the compression sense. The signal is simply sam-
pled and quantized. More specifically, the speech signal is typically sampled at
8 KHz, and each sample is encoded with 8-bit precision, using one of two quanti-
zation schemes, usually referred to as A-law and μ-law. This gives a total rate of
64 Kbps. The PCM system used in telephony has been standardized by the ITU
(International Telecommunication Union) in the standard G.711 [1]. For Voice
over Internet Protocol (VoIP) or other packet network applications, the speech
samples will be grouped into frames (typically 10 ms in duration) and sent as
packets across the network, one frame per packet. Note that a frame corresponds
to a data unit in the terminology of Chapter 2. Note that, since there is no real
coding, there is no dependence across packets: packets can be received and de-
coded independently. When G.711 was first adopted, the main motivation was
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quality: A digital signal was not subject to degradation. At the same time, a 64-
Kbps digital channel had a significant cost, and there was a strong push toward
increased compression. With the evolution of speech compression technology, and
increased processing power, more complex speech codecs were also standardized
(e.g., [3–6]), providing better compression. Curiously, today, in many applica-
tions bandwidth is not necessarily a significant constraint any more, and we are
starting to see basic PCM-coded speech increasing in usage again. Furthermore,
many error concealment techniques operate in the time domain, and therefore are
best understood as applying to PCM-coded speech. For this reason, in this section
we review the basic concept of packet loss as applied to speech and look at some
common techniques to conceal loss in PCM coded speech.

We assume speech samples are PCM coded and grouped in 10-ms frames be-
fore transmission. Since we assume packets are either received error free or not
received at all, this implies that any loss incurred in the transmission process will
imply a missing segment of 10 ms (or a multiple thereof). Figure 3.1 shows a seg-
ment of a speech signal. The signal is typical of a voiced phoneme. Figure 3.1(a)
shows the original signal, whereas 3.1(b) shows a plot where 20 ms (i.e., two
packets) is missing. As can be inferred from the picture, a good concealment al-
gorithm would try to replace the missing segment by extending the prior signal
with new periods of similar waveforms. This can be done with different levels of
complexity, yielding also different levels of artifacts. We will now investigate a
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FIGURE 3.1: (a) A typical speech signal. (b) Original signal with two
missing frames. (c) Concealed loss using Appendix I of G.711.
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simple concealment technique, described in the Appendix I of Recommendation
G.711 [2]. The results of applying that algorithm are illustrated in Figure 3.1(c).

3.2.1 A Simple Algorithm for Loss Concealment: G.711 Appendix I

The first modification needed in the G.711 decoder in order to allow for the er-
ror concealment is to introduce a 30 sample delay. This delay is used to smooth
the transition between the end of the original (received) segment and the start of
the synthesized segment. The second modification is that we maintain a circular
buffer containing the last 390 samples (48.75 ms). The signal in this buffer is used
to select a segment for replacing the lost frame(s).

When a loss is detected, the concealment algorithm starts by estimating the
pitch period of the speech. This is done by finding the peak of the normalized
cross-correlation between the most recent 20 ms of signal and the signal stored in
the buffer. The peak is searched in the interval 40 to 120 samples, corresponding
to a pitch of 200 to 66 Hz.

After the pitch period has been estimated, a segment corresponding to 1.25
periods is taken from the buffer and is used to conceal the missing segment. More
specifically, the selected segment is overlap-added with the existing signal, with
the overlap spanning 0.25 of the pitch period. Note that this overlap will start in
the last few samples of the good frame (which is the reason we had to insert the
30 sample delay in the signal). The process is repeated until enough samples to
fill the gap are produced. The transition between the synthesized signal and the
first good frame is also smoothed by using an overlap-add with the first several
samples of the received frame.

Special treatment is given to a number of situations. For example, if two or
more consecutive frames are missing, the method uses a segment several pitch pe-
riods long as the replication method, instead of repeating several times the same
pitch period. Also, after the first 10 ms, the signal is progressively attenuated, such
that after 60 ms the synthesized signal is zero. This can be seen in Figure 3.1(c),
where the amplitude of the synthesized signal starts to decrease slightly after 160
samples, even though the synthesized signal is still based on the same (preceding)
data segment. Also, note that since the period of the missing segment is not iden-
tical to the synthesized segment, the transition to the new next frame may present
a very atypical pitch period, which can be observed in Figure 3.1(c) around sam-
ple 1000.

The reader is directed to the ITU Recommendation [2] for more details of
the algorithm. Results of the subjective tests performed with the algorithm, as
well as some considerations about bandwidth expansion, can be found in [7]. Al-
ternatively, the reader may refer to Chapter 16, which gives details of a related
timescale modification procedure. For our purposes, it suffices to understand that
the algorithm works by replicating pitch periods. Other important elements are



Section 3.3: LOSS CONCEALMENT FOR CELP SPEECH CODECS 63

the gradual muting when the loss is too long and the overlap-add to smooth tran-
sitions. These elements will be present in most other concealment algorithms.

By the nature of the algorithm, it can be easily understood why it works well
for single losses in the middle of voiced phonemes. As expected, the level of ar-
tifacts is higher for unvoiced phonemes and transitions. More elaborate conceal-
ment techniques will address each of these issues more carefully, further reducing
the level of artifacts, at the cost of complexity. One possibility is to use an LPC
filter and do the concealment in the “residual domain” [8,9]. Note that this is un-
related to the concealment of CELP codecs (which we will investigate in the next
section). Here we simply use LPC to improve the extrapolation of the signal; the
coefficients are actually computed at the decoder. In CELP codecs, we have to
handle the problem of lost LPC coefficients.

3.3 LOSS CONCEALMENT FOR CELP SPEECH CODECS

In the previous section we looked at error concealment for PCM coded speech.
In PCM coded speech, each speech frame is encoded independently (in fact, each
sample is encoded independently). For this reason, the loss of one packet does
not impair the decoding of subsequent frames. However, since no redundancy
is removed from the signal, toll quality speech using G.711 requires 64 Kbps.
Many other codecs will remove more redundancy from the signal, and there-
fore require a lower rate. More recent codecs are actually quite aggressive in
removing redundancy. For example, several flavors of CELP coding have been
used in speech codecs standardized by the ITU, including G.728 [3], G.729 [4],
and G.722.2 [6]. Other organizations have also standardized several other CELP
codecs, including the European Telecommunications Standards Institute (ETSI),
which standardized several GSM (Global System for Mobile Communications)
codecs [10] and the 3GPP (Third Generation Partnership Project) AMR (Adap-
tive Multi-Rate) codec [11], as well as the US Department of Defense (DoD),
which standardized one of the first LPC codecs, the DoD FS-1016 [12], and more
recently a 2.4-Kbps mixed excitation linear prediction (MELP) codec, the MIL-
STD-3005 [14].

While a full understanding of a CELP codec is outside the scope of this chap-
ter, we will need a basic understanding in order to deal with the concealment
techniques used in association with these codecs. We will now present a quick
summary of important elements of a CELP codec.

Figure 3.2 shows a block diagram of a typical CELP decoder. The first impor-
tant element in these codecs is the use of a Linear Prediction (LP) filter, indi-
cated as “LPC Synthesis Filter” in the figure. The second element is the use of
a codebook as the input to the filter (thus the name “code excited linear predic-
tion, CELP”). We are mostly concerned with the decoding operation so that we
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FIGURE 3.2: Block diagram of a basic CELP codec.

can verify what will happen when a frame is lost. In Figure 3.2, the wide arrows
indicate the places where data or parameters are received. We see that the decoder
will receive information relating to the LP filter (possibly including a long-term
predictor, based on pitch) and on what part of the codebook to use as excitation.
Specific CELP codecs will vary in how the codebook is populated, if the codebook
is adaptive or not, and on how the filter coefficients are encoded and transmitted.
Other differences, less relevant to our problem, relate to how the search on the
codebook is performed, how filter coefficients are interpolated, and so on. More
details about CELP codecs can be obtained from several sources, for example,
from [13].

To understand the key elements of loss concealment for CELP codecs, we will
now take a look at the loss concealment technique used in G.729. This ITU codec
is a typical CELP codec and operates at 8 Kbps. It uses 10-ms frames and two
codebooks: a fixed algebraic codebook and an adaptive codebook (based on the
recent past excitation signal). The LPC filter is transmitted by first converting
from LPC coefficients to Line Spectral Pairs (LSP), which are then differentially
encoded by a vector quantization scheme. When a frame is lost, the decoder will
take four specific actions to conceal the loss:

• Repeat the synthesis filter parameters. Since the differential information
from the lost frame is not available, the same parameters of last received
frame are used.

• Attenuate the adaptive and fixed codebook gains. The fixed codebook gain
is reduced by 2% at each 5-ms subframe. The adaptive codebook gain is
attenuated by 10% at each subframe and is also limited to 0.9. Note that re-
ducing these gains will decrease the output energy, helping to hide artifacts
produced by the concealment.

• Generate the replacement excitation. Since no excitation is received regard-
ing the lost frame, a replacement excitation needs to be generated. The way
the excitation is generated depends on the periodicity classification of the
previous frame. If the previous frame was classified as periodic, the excita-
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tion is generated by the adaptive codebook only, and the pitch delay is set
to the same as the previous frame. If more then one frame is lost, each lost
frame will increment the pitch by one. However, if the previous frame was
classified as aperiodic, the excitation is taken only from the fixed codebook.
The entry of the codebook to be used as excitation is based on a pseudo-
random algorithm.

• Attenuate the memory of the gain predictor. Since the gains are transmitted
on a recursive basis, by using a predictor, the exact state of the predictor is
lost when a frame is missing. That will imply that even if the next frame
is received without errors, the gains will not be correctly decoded. To help
alleviate this problem, the value of the gain predictor is updated with an
attenuated version of the codebook energy.

Note that the first three actions are related to generating the signal segment cor-
responding to the lost frame. The fourth item is related to reducing the artifacts
produced in future frames, due to the mismatch in the internal state of the decoder.
Rosenberg [15] analyzed the behavior of G.729 under losses and concluded that
the artifacts produced by the internal state mismatch are actually more significant
(subjectively) than the artifacts introduced by synthesizing the lost frame per se.
This parallels the findings for video detailed in the previous chapter. He also con-
cluded that the artifacts due to the mismatch last for approximately 70 to 100 ms.

Error concealment algorithms for CELP codecs are generally very codec spe-
cific. The error concealment used in G.729 is relatively simple, but it is a good
example of how error concealment for CELP codecs work. Because of the im-
portance of mitigating the effects of the internal state mismatch, more elaborate
concealment techniques are highly associated with the particular codec they ap-
ply to. Furthermore, many modern CELP codecs are already designed with error
concealment in mind and provide an associated algorithm that usually performs
well. An example of a more elaborate concealment technique is the one used in
the Wideband Adaptive Multirate codec (AMR-WB). This codec is standardized
as the 3GPP recommendation TS 26.190 and as ITU G.722.2 [6]. The error con-
cealment algorithm is described in standards ITU G.722.2 Annex I and in 3GPP
TS 26.191. It follows the same basic principles of the technique described earlier,
but it increases the performance at higher loss rates by having several different
procedures for each one of six different states. The states are essentially a mea-
sure of how reliable the current state of the codec is. The reader is directed to the
specification for more details of the concealment algorithm [6].

3.4 LOSS CONCEALMENT FOR LAPPED TRANSFORM CODECS

Linear transforms are widely used in signal compression. They have the primary
objective of concentrating the signal energy on a few coefficients, thus preparing
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the data for the subsequent quantization and entropy coding. Block transforms
(e.g., the Discrete Cosine Transform, DCT) are convenient in that they make each
block of data independent, constraining the effect of any error (either by quan-
tization or by loss) to that single block of data. Nevertheless, by not exploiting
correlation between adjacent samples in different blocks, they may often pro-
duce a structured noise (blocking artifacts), which is readily identifiable in the
decoded signal as a buzzing sound. Overlapped transform coders occupy an im-
portant niche between block codes and fully predictive coders. They still limit the
data to a certain block of samples, but their basis functions do not have disconti-
nuities at block boundaries. Instead, basis functions spread over to (i.e., overlap)
neighboring data blocks. This significantly reduces blocking artifacts, while pre-
serving or even improving the compression qualities of the transform. For these
reasons, overlapped transforms are used in numerous audio and speech codecs
(e.g., MP3, Windows Media Audio [WMA], and ITU-G722.1).

A loss concealment technique based on exploiting the partial information avail-
able about certain samples has been recently introduced [16]. The technique can
be used with essentially any linear transform where some of the coefficients are
missing. Important cases include missing “frames” of overlapped transform (e.g.,
Modulated Lapped Transform, MLT) coefficients, or wavelet coefficients, or even
single or multiple missing transform coefficients within a block of a block trans-
form (e.g., DCT). However, since we are mostly interested in concealment of
missing blocks in real-time speech and audio communication over packet net-
works, we will focus our discussion on the case of overlapped transforms.

When using an overlapped transform based codec, if a frame or block of coef-
ficients is lost, partial information is available about the missing segment. While
this information is not of enough quality to be used directly, it provides important
clues about the missing segment. In this section we discuss ways in which to ex-
ploit this partial information to maximize the quality of the recovered signal. In
particular, we apply some of the techniques to single-frame loss concealment on
the ITU-G722.1 codec [5].

In order to better understand the scenario, let us take a look at how an
overlapped transform is used for coding purposes. Figure 3.3a shows a one-
dimensional signal. In this example, the signal is split into overlapping blocks
of 2N samples, as shown in Figure 3.3b. Then, at each block, N transform coeffi-
cients are obtained by multiply/accumulate operations with the N basis functions
constituting the transform. Figure 3.4 shows the first few basis functions of a
typical transform. On the decoder side, the basis functions are scaled by the trans-
form coefficients and added. Subsequent frames of the signal are then overlapped
and added. Figure 3.3c shows the contribution of each overlapping block, before
addition. Note that the recovered segments have the same length but are not iden-
tical to the original segments: the original signal is recovered only after adding
the overlapping parts. Now, suppose the information about one of the blocks was
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FIGURE 3.3: A sample speech signal. (a) Original signal. (b) Sig-
nal split into overlapping segments and windowed. (c) Corresponding
segments after decoding. (d) Overlapped/added signal with one missing
block. (e) Error concealment using simple block repetition.
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FIGURE 3.4: A few basis functions of the MLT transform. From top to
bottom: 1st, 2nd, 3rd, 10th, and 50th basis functions.
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lost. A total of 2N samples—spawning the lost block—cannot be reconstructed
correctly. If we replace the lost coefficients with zeros, we would have the recon-
structed signal indicated in Figure 3.3d. Note that in this example, although only
N coefficients are missing, a total of 2N samples do not reconstruct correctly, due
to the overlapping nature of the transform. Nevertheless, overlapped transforms
like the MLT are critically sampled. This means that some partial information is
available about the 2N incomplete samples. More specifically, a total of N linear
equations are available regarding these 2N samples. We will now examine how
this can be used to improve the loss concealment.

3.4.1 Speech Codecs

The ITU standard recommends that lost blocks be replaced with the previous
block. While this technique is reasonable for low loss rates, artifacts are still
present and become significant at loss rates that are common in the Internet.
In particular, replication of coefficients does not take into account the alignment
of pitch periods between past and lost frames. (See examples of speech codecs,
G.722.1.)

In Section 3.2.1 we presented one of the main principles behind loss conceal-
ment for speech: pitch replication. As we will see, the algorithm presented in [16]
can be seen as an elaborate pitch replication system. It uses the partial information
available to synthesize a signal that has similar spectral characteristics and aligns
well with the surrounding blocks.

The MLT transform can be decomposed into a windowing operation, followed
by a folding and a DCT. Each block of coefficients can thus be written in matrix
form as

m= dct (FJx), (3.1)

where m is the N × 1 vector of the resulting transform coefficients, F is the
N × 2N fold-over matrix

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 1 1 0 0 0 0 · · · 0 0 · · · 0 0
...

. . .
...

...
...

...
...

...
...

0 1 0 0 1 0 0 0 · · · 0 0 · · · 0 0
1 0 · · · 0 0 · · · 0 1 0 0 · · · 0 0 · · · 0 0
0 0 · · · 0 0 · · · 0 0 1 0 · · · 0 0 · · · 0 −1
0 0 · · · 0 0 · · · 0 0 0 1 · · · 0 0 · · · −1 0
...

...
...

...
...

...
...

. . .
...

...
0 0 · · · 0 0 · · · 0 0 0 0 1 −1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(3.2)
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and J is a scaling matrix, that is, an N ×N diagonal matrix with the windowing
coefficients

Jij =
{

sin
(
π/2N(i + 0.5)

)
, if i = j,

0, otherwise.
(3.3)

Furthermore, we will often need to refer to the signal before the DCT is applied.
Let’s call that z. So, we write

z= FJx. (3.4)

Note that in (3.2) the nonzero elements of the folding matrix form two nonover-
lapping subblocks. In other words, we can decompose F in four submatrices,
where two of them are zero matrices:

F =
[

F1 0
0 F2

]
. (3.5)

Similarly, we write

J =
[

J1 0
0 J2

]
, x =

[
x1
x2

]
, z=

[
z1
z2

]
, and y =

[
y1
y2

]
. (3.6)

Looking at the block diagonal structure of F and J , we can easily see that only
the first half of the samples of x is used in computing the first half of the folded
vector FJx (and similarly for the second half). That is, we can write

z1 = F1J1x1. (3.7)

Therefore, if the next block of coefficients (which would also be using the sec-
ond half of samples of x) is lost, we can use this partial knowledge about the
samples to try to estimate x2.

More specifically, suppose an isolated block is lost (i.e., both the preceding and
the subsequent blocks to the missing block of coefficients are correctly received).
The missing (incomplete) set of samples is 2N long. By computing the inverse
DCT of the received data (but before applying the unfolding matrix), we have
access to y. We can therefore write the following equation, applying to the first
incomplete N samples:

z2 = F2J2x2. (3.8)

Note that the x1 and x2 in (3.7) and (3.8) refer to different blocks. To avoid
confusion, we will now add a time index to our notation. Namely to represent
blocks at different time instants we will add a superscript index, indicating the
block ordering. For example, xn will mean the vector x and time instant n.
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Assume the block at time n is missing, but both the previous and the subsequent
blocks are correctly received. So, since block n is missing, but we have received
blocks n− 1 and n+ 1, we can write

[
zn−1

2

zn+1
1

]

=
[

F2 0

0 F1

][
J2 0

0 J1

][
xn

1

xn
2

]

. (3.9)

Note that the matrices containing F1, F2, J1, and J2 are now rotated in relation
to the original F and J matrices. For simplicity, let’s refer to these modified (block
rotated) matrices in the aforementioned equation as G and H . We therefore write

[
zn−1

2

zn+1
2

]

=GHxn. (3.10)

Note that this is an underdetermined system of equations. We know zn−1
2 and

zn+1
2 , and we are trying to estimate the 2N samples of xn. This underdetermined

system could be solved for the minimum energy vector xn using the Moore–
Penrose generalized inverse of GH . This would provide the minimum energy
signal segment x that satisfies the received (partial) information. Nevertheless,
simulations show that this is not a good choice for x, as the nature of the matrix
J tends to concentrate the energy in the higher gain samples. A better choice is to
find the solution minimizing the energy of the windowed signal Hx. This solution
does distribute more evenly the energy across the samples of x. Nevertheless, it
still does not use the information about the neighboring frames. Before proceeding
to describe the best mode, let us introduce a small change in interpretation. Let us
introduce an identity matrix I in (3.10), which becomes

[
zn−1

2

zn+1
2

]

=GHIxn. (3.11)

We now interpret I not as a simple identity matrix, but as a matrix whose columns
form a basis for the space of x. In this context, the basis I consists simply of
impulses at each sample location. Using the generalized inverse of GH would be
minimizing the energy of the basis representation over these impulses. That takes
into account the partial information about the missing samples, but it does not
take into account all the prior information we have about the missing segment:
the properly received signal segments just before (and possibly after) the missing
segment. To fully exploit that information, we will reshape the aforementioned
equation by introducing two small modifications. The first modification improves
the signal continuity across frames by removing the no-excitation response. The
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second biases the reconstructed signal toward having the same spectrum and pitch
as the neighboring segments.

To account for the signal continuity, we estimate the LPC filter corresponding
to the previous block and compute the no-excitation response of the LPC filter
into the missing segment, x̌. We then modify (3.11) to account for x̌ and write

[
zn−1

2

zn+1
2

]

−GHx̌ =GHIx̂n, (3.12)

where x̂ = x − x̌.
To account for the spectral continuity, we invoke our interpretation of I as a

basis for the vector x (now x̂) to claim we should not be minimizing the energy
of x. Instead, we should be minimizing the energy of the representation of x

under a basis whose functions have a spectrum corresponding to the desired LPC
spectrum. To that end, we apply the LPC filter to the identity matrix, to obtain a
new basis L, where each column of L corresponds to a time-shifted version of the
impulse response of the LPC filter.

Finally, we compute an estimate of the periodicity and pitch period for the seg-
ment and apply that to the basis functions as well. Each column of L is now a
series of “colored” pulses, each apart by the pitch period, each with the impulse
response of the LPC filter, and each with decreasing amplitude, based on the esti-
mated periodicity index. For simplicity, we still call this final basis matrix L. The
representation on this new basis is not x any more, so let’s call it r . We now have

[
zn−1

2

zn+1
2

]

−GHx̌ =GHLrn, (3.13)

which is then solved by the pseudo inverse of GHL, that is,

rn = (GHL)†

([
zn−1

2

zn+1
2

]

−GHx̌

)

, (3.14)

where † denotes the pseudo inverse. Note that this is the solution that minimizes
the LPC residual of x, as we wanted. The final solution for x is obtained by simply
computing

xn = Lrn + x̌. (3.15)

Figure 3.5 shows a sample of the results obtained by the concealment algo-
rithm. The first signal is the original, the second is the signal reconstructed using
the proposed technique, and the third is the results of concealment by a pitch
replication method. In both cases every third packet is lost.
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FIGURE 3.5: Sample results. (a) Original signal. (b) Concealed using
the partial information method, after losing every third frame. (c) Con-
cealed using the pitch replication method.

In this section, we presented an error concealment technique that exploits the
partial information available for the missing segment of a signal encoded by an
overlapped transform. The discussion was centered around a speech codec, sim-
ply because speech is of foremost importance for real-time communication. Nev-
ertheless, the same principle can be applied to other overlapped transform codecs.
In particular, the same ideas apply to error concealment in music, as long as we
remove the conditions relating to pitch and introduce a higher order model to
account for the harmonic nature of music.

3.5 FORWARD ERROR CORRECTION TECHNIQUES FOR SPEECH

In the previous sections, we discussed several error concealment techniques, tar-
geted at alleviating the consequences of packet losses. Some of these techniques
are reasonably effective and will provide quite adequate speech quality, especially
at low loss rates. Nevertheless, as the loss rates increase, concealment becomes
increasingly hard and is prone to leave a number of artifacts. For this reason,
Forward Error Correction (FEC) is often used—either in isolation or as a com-
plementary measure—against packet losses. FEC techniques can range from sim-
ple packet replication techniques to more elaborate schemes, including media-
dependent FEC. In this section, we discuss media-dependent FEC and present a
framework for optimum rate distortion bit allocation. We will also present a case
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study based on the AMR-WB codec [6]. More general FEC methods can be found
in Chapters 7 and 9.

3.5.1 Delay and FEC

Generally speaking, FEC schemes allow the receiver to correctly decode a mes-
sage, even if some of the packets are lost. This is done by adding redundant in-
formation to the stream. The information can be included in a separate packet, or
appended to existing packets. For example, one could send a parity packet after
every three data packets, as illustrated in Figure 3.6. In this scheme, if one of the
three packets is lost, one can use the parity packet to recover the original infor-
mation without loss. This increase in robustness is useful, but it also increases
the bandwidth requirement by 33% (by sending one extra packet for every three
original packets). Furthermore, there is also a delay cost: if the first of the three
packets is lost, the receiver has to wait until receiving the parity packet before de-
coding the lost packet. In this example, this would add an extra two-frame delay.
Partially to reduce this added delay, most FEC schemes for real-time communica-
tion simply repeat the packet. More information about standard FEC techniques
will be discussed in Chapters 7 and 9. But for now, let’s simply mention that using
an FEC code that spreads over N blocks will essentially add up to N blocks delay.
For this reason it is highly desirable for FEC codes to spread the smallest number
of blocks possible.

3.5.2 Media-Dependent FEC

As we mentioned, it is desirable that the FEC technique introduces as little extra
delay as possible. Ideally, we would like FEC codes that spread only a single
block. Unfortunately, under the traditional FEC techniques, the only such “code”
available is packet repetition. That happens because traditional FEC try to protect
the bits of the message. When one is sending media, protecting individual bits is

Frame1 Frame2 Frame3 Frame4

(t=1) (t=2) (t=3) (t=4)

Fr1+Fr2

+Fr3

...Frame5 Frame6

(t=5) (t=6)

Fr4+Fr5

+Fr6

FIGURE 3.6: FEC example with a 4:3 redundancy. Each fourth block
is an XOR of the previous three blocks.
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not as important anymore, but instead, the idea is to protect the signal. In other
words, a rate–distortion trade-off can now be applied. Looked at from this point of
view, packet repetition is clearly suboptimal. For example, in a 10% loss scenario,
the error correction information is only used 10% of the time and yet uses the
same rate as the primary packet.

In traditional FEC codes, the sender inserts bit redundancy in the transmitted
packets, and the receiver will either perfectly receive the frame or receive noth-
ing. There is no rate–distortion trade-off. In media-dependent FEC methods, in
contrast, the transmitter sends multiple descriptions of the same frame so that in
case of packet loss, another packet containing the same data, albeit different qual-
ity, can be used to recover the loss. Hence, each packet will carry an appropriate
representation of the current frame, along with a coarse representation of one or
more previous frames. Clearly, there is a trade-off between attributing rate to re-
dundant information instead of to the current frame. By increasing the amount of
redundant information, we increase the probability and the quality of loss recov-
ery while sacrificing from the quality of the most recent frame. An example of
such media-dependent FEC schemes is the one presented in [17]. Earlier work in-
cludes the Robust Audio Tool [18], which limits the repeat packet to be the same
as the original one. The problem can be formulated as follows. Given a model for
the channel and a total transmission rate R (i.e., fixed packet size), what is the
optimum partition of the bit budget between redundant and current frames such
that a distortion measure DT is minimized? We consider each frame as a signal
segment and each packet may contain information units regarding one or more
frames. The units can contain raw data or a representation of data derived by some
compression algorithm (e.g., LPC coefficients, prediction errors). We model each
packet as a collection of multiple units corresponding to different segments of the
signal, each possibly having a different rate. For each packet, r1 is the rate of the
present segment and ri is the rate of (i − 1)th past segment. The number of these
units and the rate of each unit can be either fixed by the optimization algorithm
prior to transmission or adaptively changed based on the input signal. Figure 3.7
shows an example, with four consecutive packets, with each packet carrying in-
formation about the current frame, as well as lower fidelity information about the
two previous packets.

Another point of interest is whether each unit is dependent on previous units
(i.e., differential coding). We will analyze here the case in which each segment of
data is processed independently. This would be the case, for example, of encod-
ing video with all I-frames or encoding speech using G.722.1 (“Siren”) or G.711
(PCM). The case of history-dependent algorithms, where each segment is sent as
a unit, is handled in detail in [19].

We now analyze the optimization problem where each frame is encoded in-
dependently of neighboring frames. The optimal rate of each packet is chosen to
minimize the average distortion given the loss model. We start our discussion with



Section 3.5: FORWARD ERROR CORRECTION TECHNIQUES FOR SPEECH 75

FIGURE 3.7: Media-aware FEC example with a factor of 3 redun-
dancy. The current block carries the frame with full resolution and pre-
vious blocks with decreasing degree of accuracy.

the case where there is only a single–rate distortion function to be used, the bit
rate allocation is fixed (i.e., independent of the actual signal), the loss model is
i.i.d., and delay is ignored. This can then be extended to more complex scenarios.

Assume no inter-frame coding and a fixed rate–distortion function D(r). The
distortion D(r) is the average distortion due to using rate r for a generic com-
pression algorithm using only data in the current frame. As an example, suppose
there are three units in each packet, as in Figure 3.7, and the packet loss is an
i.i.d. Bernoulli process with loss probability p. Since the loss event is i.i.d., with-
out loss of generality, we can restrict our decoder to use the first packet received,
even though we may receive multiple units for the same segment. It follows au-
tomatically that the optimum solution requires r1 ≥ r2 ≥ r3. Since the probability
of a packet being received is 1− p, and since if we receive a packet we will use
the r1 contained in that packet for reconstruction of the corresponding frame, the
distortion for this frame will be D(r1) with probability (1− p). However, there
is a probability p that this packet is not received. In that case, we will wait for
the next packet, which contains the same frame, but coded at rate r2. That packet
has itself probability (1−p) of being received. Therefore, the probability that we
use the data contained in that packet is going to be p(1− p), and in that case the
distortion is going to be D(r2). We can proceed similarly with the third packet to
conclude that the distortion contributed by that packet is p2(1−p)D(r3). Finally,
if none of the three packets containing information about this segment is received,
we will use some other loss concealment technique, which we assume will itself
induce a distortion K . The same computation will hold for any particular segment
(frame) of the signal. Therefore, the expected distortion at any time is given by

DT = (1− p)D(r1)+ p(1− p)D(r2)+ p2(1− p)D(r3)+ p3K. (3.16)

The distortion K directly depends on the loss concealment strategy, and we as-
sume it to be comparable to D(0). If we do not include any delay considerations,
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FIGURE 3.8: Optimization procedure. Each rate is used. The optimum
solution is the one that implies the same derivative on each of the (scaled)
curves.

the optimization problem can be formulated as

min
r1,r2,...,rN ,N

DT (r1, . . . , rN ), s.t.
N∑

i=1

ri < R, (3.17)

where N is the total number of units to be used and R is the total rate. Since we
assume no inter-frame coding, the R–D curves are the same for the first unit and
for subsequent (FEC) units. This can be seen in Figure 3.8, which illustrates the
contribution of each of the terms in (3.16). Note in the figure that the curve corre-
sponding to each unit has the same shape, but has been appropriately scaled by the
associated probability, as prescribed by (3.16). In this example, the total distor-
tion DT is the sum of the three different rate distortion curves, where each curve
is simply the product of D(r) and the respective probability coefficient coming
from the channel model. Hence, given N , the problem (for convex rate–distortion
functions) is formulated as an unconstrained optimization using Lagrange multi-
pliers,

min
r1,r2,...,rN ,N

DT (r1, . . . , rN )+ λ

N∑

i=1

ri , (3.18)
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where λ is the Lagrange multiplier. The optimal configuration is reached when

∂DT

∂r1
= ∂DT

∂r2
= ∂DT

∂r3
. (3.19)

Since we assume the encoding of each unit is independent (no inter-frame coding),
the partial derivatives are simplified to

∂DT

∂r

∣∣∣∣
r1
= ∂DT

∂r

∣∣∣∣
r2
= ∂DT

∂r

∣∣∣∣
r3

. (3.20)

In other words, the problem is now reduced to finding the optimum rate points
r∗1 , . . . , r∗n such that the slopes of the scaled–rate distortion curves are the same at

each r∗i and
∑N

i=1 r∗i ≤R. This is illustrated in Figure 3.8.
Note that whenever N is not given a priori, it must be included as a parameter

in the optimization. In principle, the induced delay is N , because to present the
frames at a constant rate, the receiver has to wait for the N packets before de-
coding a frame. (However, we will see in Chapter 16 that adaptive playout can
be used to keep the average delay below N .) Since (3.16) does not include any
penalty for latency, the optimization in (3.20) will artificially favor a large N .
Nevertheless, note that even if there is no penalty for latency, there is always a
finite value of N such that the algorithm stops and favors the quality instead of
error recovery. If we define ordered curves in the figure as D1, . . . ,Di (e.g., for
Figure 3.8, i = 3), then the number of units that would be included will be upper
bounded by

N∗ = arg max
N

N∑

i=1

D̂−1
i

(
D̂N(r = 0)

)≤R, (3.21)

where D̂i(r) is the derivative of the function Di(r) and D̂−1
i (r)is the inverse of

D̂i(r). After getting an upper bound, N can be computed by decreasing N and
recomputing the distortion until DT starts to increase. Since N is generally small,
this exhaustive search in N is usually not a problem.

This procedure will determine the optimum rate allocation to each packet and
to each error correcting packet. Each subsequent (error correcting) packet will
always be at the same or lower rate as the previous packet. If a packet is lost,
but a subsequent packet containing the error correcting information is received,
the decoder will replace the lost information with that contained in the correction
packet. In other words, this can be viewed as a forward error correction technique
where the objective is to recover the signal, not the bits. In the same way the origi-
nal (source) encoding may have introduced signal distortions in order to optimize
the channel utilization, the channel coding may also introduce its own distortion,
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FIGURE 3.9: Subjectively weighted SNR after decoding for several er-
ror rates. Top curve is for original (single packet) AMR, dotted line for re-
peat only, and lower (dashed line) results are for media-aware FEC, which
typically selects a lower rate for correction packets.

also to optimize the channel utilization. Furthermore, the aforementioned method
guarantees that both the channel and source coding are operating at optimal con-
dition, therefore the name “combined source-channel coding.”

The optimization procedure presented in this section assumed an intra-only
coder, a fixed rate–distortion function, and an i.i.d. loss model. Each and all of
these constraints can be removed under certain assumptions. Details can be found
in [19], which also includes an example of applying this technology to a AMR-
WB codec. Figure 3.9 shows a plot of final quality as a function of error rate when
applying this technology and compares that to a repeat-only FEC strategy.

3.6 OTHER ERROR-RESILIENT CODING TECHNIQUES

In previous sections we looked at two main ways to alleviate the consequences
of packet loss: concealment and FEC. In the first technique, we try to synthesize
the missing information based on surrounding (i.e., received) blocks. The second
technique sends some additional redundant information (FEC), which helps re-
cover the missing information, either in its natural form or with reduced fidelity.
A few other techniques fall somewhere between these two, in the sense that in-
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stead of adding redundancy, they will leave some redundancy in the signal at
coding time. Ideally this is done in a well-planned way, leaving only the redun-
dancy that will be most effective in recovering the lost packets. This is in contrast
to some older techniques (e.g., G.711), where redundancy was left in the signals
mostly to simplify computation. An example of such an error-resilient technique
can be seen in the Siren codec (G.722.1), which intentionally does not use dif-
ferential coding, to increase robustness to noise. A few other techniques used to
improve error resilience include Multiple Description Coding (Chapter 17) and
unequal error protection (Chapter 9), which can be used with standard codecs, but
are particularly useful when used with scalable codecs (Chapter 6).

3.7 SUMMARY AND FURTHER READING

In this chapter we have looked at Error Concealment Strategies and Error Re-
silient Coding for Audio Communication. We looked at some of the basic tech-
niques that are used in concealing packet losses, applied to several kinds of
codecs, including frame-independent codecs, overlapped transform codecs, and
fully predictive codecs. We looked at some of the techniques incorporated into
international standards, and looked at a few additional techniques. We saw that
many codecs are available and can be used for specific application. The particular
choice of a codec will generally involve system design issues, for example, com-
putational complexity, bandwidth availability, backward compatibility, and so on.
Furthermore, commercial considerations often play a major role as well. These
include existing intellectual property right, licensing terms, availability of source
code, and so on. For example, many of the codecs mentioned were designed for
a specific application. As a general rule, CELP codecs tend to perform well in
terms of rate/distortion for most rates above 2400 bps, as long as encoding clean
speech. For example, mostly all codecs used in cellular phone systems are CELP
based. However, when coding music or when background noise becomes more
prevalent, waveform codecs start to present good performance. Indeed, while
the ITU and the GSM have standardized several CELP codecs to use at differ-
ent rates, in telecommunication systems some of the primary VoIP systems use
waveform-based codecs. For example, Microsoft Messenger uses Siren/G711.1
as the default codec. This can be partially attributed to the fact that bandwidth
constraints on VoIP are not as severe as in cellular systems and partially to the
fact that use of a close-talking microphone is not expected in the desktop environ-
ment.

The main objective of this chapter was to look at the different techniques avail-
able. A number of subsequent chapters will look at related topics, in particular
about aspects related to FEC, scalable audio coding, and adaptive playout. These
are techniques that are particularly important for speech communication.
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4
Mechanisms for Adapting
Compressed Multimedia to
Varying Bandwidth
Conditions

Antonio Ortega and Huisheng Wang

4.1 INTRODUCTION

Most currently deployed networks provide no quality of service (QoS) guarantees.
Thus it is clearly necessary for bandwidth adaptation mechanisms to be available
in order for real-time multimedia delivery applications to be successful. These
mechanisms allow applications to adjust gracefully to changes in available chan-
nel bandwidth. Without these adaptation tools, changes in available bandwidth
will lead to significant quality degradation, leading occasionally to total service
interruption. This is an even more pressing need when one considers the increas-
ing heterogeneity of both networks and network access devices.

Consider, for example, a hypothetical application where a traveling user is in-
terested in accessing video captured by a wireless home surveillance camera. This
user gains remote access to the video feed using a wireless network device, such
as a cell phone. In order to provide a smooth, constant quality playback, such a
system would have to be robust to bandwidth fluctuations due to multiple causes;
for example, variations in traffic within the home network, load of the cable mo-
dem access network, distance of the user to the nearest base station, and load in
the wireless access network. This is in addition to traffic fluctuations along the
relevant paths within the Internet backbone.

Clearly, one possible way to tackle the problem would be to engineer appli-
cation and network resources so as to avoid altogether these bandwidth fluctua-
tions, or at least reduce their amplitude. Indeed, in all the most successful deploy-

81



82 Chapter 4: BANDWIDTH ADAPTATION MECHANISMS

ments of digital video systems (cable and satellite broadcasting) some form of
bandwidth reservation is in place so that each video transmission receives a fixed
bandwidth. These systems are in fact (i) closed, so that a single service provider
controls all the communication links and thus how many video transmissions oc-
cur at any given time, and (ii) reliable, so that, except for rare outages, bandwidth
levels available to each video transmission remain constant.

While these applications have been very successful commercially, current in-
terest is driven by multimedia applications that operate over open, heterogeneous
and potentially unreliable networks. Witness, for example, the current growth in
voice over IP (VoIP) systems. Interest in deploying other such applications (from
video conferencing to video on demand) over these networks is considerable, but
the technical challenges are very significant.

This chapter is devoted to tools and techniques that allow applications that
involve transmission of multimedia streams to cope with significant changes in
transmission bandwidth. We call these bandwidth adaptation mechanisms. Note
that there are other tools available to improve the quality of multimedia delivery
over these challenging network environments. In particular, techniques for mul-
timedia resilience and error concealment allow the decoder to either eliminate
the effect of losses or excessive delays (by introducing redundancy) or to “mask”
their effect on the decoded media (using error concealment). In many cases these
techniques are applied to a design based on worst case assumptions, for example,
the designer may determine what the maximum packet loss rate for the system
is likely to be and then select appropriate error-resilience techniques to ensure
sufficient quality even at those loss rates.

Instead, our main focus is on dynamic adaptation: various components of the
application actively monitor and react to changes in network behavior by making
adjustments to the data being sent to the receiver.

Our simple traveling user example illustrates the importance of bandwidth
adaptation mechanisms; in their absence variations in available bandwidth may
lead to packet losses in the video stream and thus to very abrupt variations in
video quality, and possibly to complete interruption of service. For example, if the
surveillance camera is set to encode video at a certain rate regardless of network
conditions, then usable video quality may not be available unless the minimum
bandwidth encountered at all links along the network route exceeds the bandwidth
required by the application. This example also indicates that there are many pos-
sible mechanisms for adaptation, such as the fact that, the two end applications
could communicate with each other, or intermediate nodes of the network could
modify the video stream (e.g., via transcoding) to make it conform to the avail-
able bandwidth. One of the goals of this chapter will be to describe alternative
adaptation mechanisms and illustrate their relative merits. Note that bandwidth
adaptation cannot guarantee loss-free transmission, so mechanisms to minimize
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the impact of losses and for error concealment may also be needed, as discussed
in Chapters 2, 3, 8, 9, and 10.

All practical multimedia networking systems currently in use incorporate some
form of bandwidth adaptation. For example, widely deployed commercial sys-
tems such as Windows Media Player and RealPlayer make use of adaptation tech-
nologies, namely Intelligent Streaming [6] and SureStream [19], respectively. In
both systems, multiple redundant representations of the same content are created,
with each version optimized for a specific transmission rate. During transmission,
the streaming server dynamically adapts to the bandwidth changes by switching
between these streams in such a way as to maximize the reconstructed video qual-
ity.

These systems, and alternative ones to be discussed in more detail in this chap-
ter, operate by

(i) observing the characteristics of the network environment (e.g., bandwidth
availability, packet loss rates) and

(ii) increasing/decreasing the rate of the multimedia stream so as to maximize
quality available to the users.

The performance of these systems will depend on many factors, such as the
type and accuracy of information that is available about the network state; where
this information is acquired; and constraints on how the streaming rate can be
adjusted.

Note that the multimedia codec being used is a very important factor in deter-
mining what forms of adaptation are feasible. Some media codecs are designed so
as to facilitate bandwidth adaptation; for example, this is the case when scalable
coding (described in Chapter 5) is used. With a scalable codec a media sequence
is encoded into a number of layers, or as an embedded stream with fine granu-
larity, such that the transmitter can easily select a subset of layers or bits to send
based on the current channel condition.

This chapter provides a general overview of bandwidth adaptation mechanisms,
focusing on where the adaptation occurs (e.g., at the sender end, or somewhere in
the network), who decides how to adapt (e.g., sender- vs. receiver-driven adapta-
tion is possible), how the adaptation is supported by various codecs (e.g., scalable
vs. nonscalable systems), and the trade-offs in performing the adaptation with
different options using a number of criteria (e.g., in terms of delay, latency, com-
plexity, quality).

Note that our main goal is to provide an overview of various classes of tech-
niques available for bandwidth adaptation and to summarize their relative merits.
A more detailed and quantitative performance comparison falls outside of the
scope of this chapter and, given the complexity of these systems, may indeed be
difficult to develop. Note also that most of our discussions will be relevant to
general streaming media systems, although often our specific examples (in partic-
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ular our discussion of coding techniques) will focus on the case of video stream-
ing.

4.1.1 A Simplified System—Definition of Major Components

To facilitate the discussion, in what follows we consider simplified systems with
three components. A sender provides the media data, which could be encoded
from a live media input or could be obtained from a pre-encoded stream. A client
initiates the request for a media stream and plays it back to the end user. A proxy is
an intermediate node of the network that facilitates the interaction between client
and sender. Note that in some cases a proxy contains all the information requested
by the client and thus in effect acts as the sender. Our focus in this chapter will
be on scenarios where the sender is the “main” source for the media stream, and
where the proxy plays an auxiliary role.

More complex systems can be used in practice [4,11,41,52], for example, multi-
ple proxies could play a role, or the content could be delivered from more than one
sender, to multiple users, through multiple network routes, etc. In recent years,
peer-to-peer (P2P) networks [45,54,57] have also been studied as alternatives to
traditional client–server architectures. However, a discussion of the simpler sys-
tem is sufficient to understand the various bandwidth adaptation mechanisms.

4.1.2 Chapter Outline

The chapter is organized as follows. In Section 4.2, we first discuss how the
bandwidth variations affect the received multimedia quality, especially for delay-
constrained transmission. Here we introduce an important concept, namely that
of an end-to-end delay constraint for a multimedia communication system. Then
we provide a global overview of a bandwidth adaptation system architecture in
Section 4.3, discussing the trade-off and criteria to choose a particular adaptation
mechanism for a given application. In Section 4.4, we describe different cod-
ing techniques that can be used to adjust the coding rate of a multimedia source
to match the available bandwidth, and briefly review the optimization techniques.
Finally, Section 4.5 provides a summary of the main ideas introduced in this chap-
ter.

4.2 IMPACT OF AVAILABLE BANDWIDTH ON MULTIMEDIA
QUALITY

In order to understand bandwidth adaptation mechanisms for multimedia appli-
cations, it is necessary to understand first the impact of bandwidth variations on
received media quality.
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4.2.1 Downloading and Streaming

In contrast to data communication or to simple media downloading, real-time
media streaming is often subject to strict delay constraints. The main difference
with respect to a download application is that media playback starts as data is
still being received, so that playback could be interrupted if the decoder ran out
of data to decode.

Typical streaming applications operate as follows:

1. Data request. A request is sent to the media sender so that data streaming
to the receiver starts.

2. Client buffer loading. As data starts to reach the client, decoding does not
start immediately. Instead the client waits to have “enough” data to start
decoding.

3. Playback. Once there is sufficient data available at the client, playback
starts and at that point only relatively minor adjustments in the playback
timing are possible, so that the rate at which media is played back (e.g., the
number of video frames per second) needs to remain nearly constant.1 An
example of playback adaptation can be found in [39] and in Chapter 16.

There are multiple strategies for clients to determine that enough data is avail-
able to begin decoding. For example, a target total number of bits may have to be
buffered before playback starts. Alternatively, a predetermined time for buffering
(e.g., a few seconds) could be chosen so that users always experience the same
time latency before playback starts. Finally, a more practical approach may be to
wait until the number of bits that represents a selected playback time has been
received (e.g., the number of bits needed to encode a video segment with a prede-
termined duration). Details can be found in Chapter 14.

Note that the primary concern in many applications is playback latency, rather
than storage at the receiver. Thus, in applications such as streaming to a com-
puter, where there is plenty of memory available, the amount of data loaded be-
fore playback may still be kept small to limit the initial latency in the system. Note
also that latency is particularly important when the user is expected to frequently
switch media sources, as the latency penalty will be incurred every time the user
switches.

Regardless of which technique is chosen to preload the buffer, at the time when
playback starts, the decoder will have a certain number of bits available for de-
coding. This available data translates into a playback duration (e.g., if there are

1More precisely, the number of frames per second received needs to be consistent with what the
receiver expects to play back. Thus, adaptation mechanisms that involve both transmitter and receiver
are possible (e.g., so that fewer frames per second are transmitted and played back when bandwidth
availability is reduced).
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N compressed frames in the decoder buffer and K frames/second are decoded,
then the decoder will be able to play from the buffer for N/K seconds). Thus the
amount of data available in the decoder buffer at a given time tells us for how long
playback could proceed, even if no data was to be received from the network.

4.2.2 Available Bandwidth and Media Quality

To understand the need for bandwidth adaptation, consider what would happen
if reductions in channel bandwidth were not matched by reductions in the source
coding rate. Assume a constant media playback rate, for example, a fixed number
of frames per second in a video application. When network bandwidth becomes
lower, if the number of bits per frame does not change, then the number of frames
per second received is bound to decrease. Since the receiver continues playing
frames at the same rate, eventually there will be no frames left for playback in
the receiver buffer and thus playback will be interrupted. This will be a decoder
buffer underflow.

Thus, as network bandwidth fluctuates, bandwidth adaptation is needed to en-
sure that playback is not interrupted. Roughly speaking, this requires that the
number of frames/second provided by the network matches (on average) the num-
ber of frames/second consumed for playback at the receiver. The general goal of
bandwidth adaptation mechanisms will be to manage the quality of the frames
transmitted so that when the available bandwidth is reduced, the rate (and hence
the quality) of transmitted frames is also reduced. In essence, the goal is to avoid
service interruptions by lowering the media quality in a “graceful” manner.

We next provide a more detailed discussion of the delay constraints that are
present in a real-time media communications system.

4.2.3 Delay-Constrained Transmission

Consider, as an example of delay-constrained transmission, a real-time video
transmission system where all operations have to be completed within a prede-
termined time interval. The end-to-end delay from a video source to a destination
contains the following five components, as illustrated in Figure 4.1:

• Encoding delay 
Te: the delay required to capture and encode a video
frame.

• Encoder buffer delay 
Teb: the time the encoded media data corresponding
to a given frame spends in the transmission buffer. Note that this delay
could be zero if the channel bandwidth is higher than the bit rate produced
by the encoder, that is, data transmission would start as soon as video data
is placed in the buffer.
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FIGURE 4.1: Delay components of a communication system.

• Transmission channel delay 
Tc: the delay for encoded data being trans-
mitted through the network, caused by transmission, congestion, and pos-
sible retransmission over a lossy channel.

• Decoder buffer delay 
Tdb: the time for encoded data to wait in the de-
coder buffer for decoding. This delay allows smoothing out the variations
in transmission delay and in rates across frames.

• Decoding delay 
Td : the delay for decoding process and final display.

Both encoding and decoding delays are usually fixed, so that we focus primarily
on the remaining delay terms. Note that when considering pre-encoded media,
the encoding delay is not considered as the video is already encoded off-line and
ready for transmission. In this case we can consider that the encoding buffer is of
infinite size and contains the complete encoded sequence.

In summary, the main constraint in the system is the status of the decoder buffer,
that is, as long as the decoder buffer contains data, decoding can proceed. Thus
bandwidth adaptation mechanisms should be designed with the objective of en-
suring that the decoder buffer is not “starved” of data. In some cases, accurate
and timely information about the decoder buffer state is available, which can then
be used to make bandwidth adjustments (this would be the case, for example, if
the client makes bandwidth adaptation decisions). In other cases, exact informa-
tion may not be available, but the state of the buffer could be estimated using, for
example, estimates of available bandwidth.

Different applications may have different delay requirements. For example, for
live interactive video, a round-trip delay between 150 and 400 ms is usually re-
quired, while an initial play-out delay up to a few seconds is acceptable for nonin-
teractive video streaming. Once selected, end-to-end delay requirements impose
a constraint on the encoding rate for each frame.

4.3 OVERVIEW OF BANDWIDTH ADAPTATION ARCHITECTURES

We are now ready to define more precisely what we consider as bandwidth adap-
tation mechanisms: These are techniques that enable the rate of a media stream to
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be modified during a playback session (i.e., while a user is connected and receiv-
ing content for playback) in order to accommodate changes in the network (e.g.,
changes in available bandwidth, congestion, and packet losses).

In order to provide a rough classification of bandwidth adaptation architectures,
note that defining a specific mechanism requires choosing:

• Adaptation points, that is, the locations in the network where the bit stream
is adapted to match specific bandwidth requirements. For example, adapta-
tion could take place at the sender, at a proxy, or even at the client applica-
tion.

• Decision agents, that is, the component within the system where decisions
about transmission rate changes are made. This decision could be made at
the sender, a proxy, or the client, based on whatever information is available
at that point in the network.

• Coding techniques, that is, the source coding techniques designed to facili-
tate bandwidth adaptation. Note that not every technique is appropriate for
a certain combination of adaptation point and decision agent. These tech-
niques are discussed in Section 4.4.

It is important to note that, in general, bandwidth adaptation decisions need not
be made at the same point in the network where the adaptation itself takes place.
A concrete example of this situation is client-driven techniques where each client
evaluates the status and parameters of its own transmission link and requests to
the sender changes to the streaming parameters; in this case bandwidth adaptation
decisions are made by clients and put in place by the sender.

In general, the choice of adaptation point and decision agent for a particular
system depends on what information is available to each component of the system
(client, sender, or proxy if there is any), on available computational resources, and
on the characteristics of the bit stream.

4.3.1 Trade-Offs

Before discussing specific architectures in detail it is useful to understand how
operating at client, server, or proxy leads to different trade-offs.

First, note that adaptation decisions should be based on available information
about (i) the state of the network (e.g., bandwidth availability) and (ii) the relative
importance of information encoded in the media stream (e.g., how much degrada-
tion will result from dropping one of the layers in a scalable representation, or in
general the rate–distortion characteristics of different parts of the stream).

Figure 4.2 illustrates that source-related information is likely to be known more
accurately at the sender (which can analyze media as it encodes or extracts rel-
evant information from an existing stream) than at the client (which must rely
on information provided to it by the server). Similarly, more efficient adaptation
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FIGURE 4.2: Trade-off between the accuracy of source information
and channel information available at various network locations.

decisions are possible when information about the state of the network is timely
and accurate. Ideally, information should be available about the channel behavior
observed by the client. Thus the client has access to more accurate information in
a more timely way, as it observes packet arrival events. Figure 4.2 also illustrates
that since the most accurate information is not available in a single place, some
algorithms will entail information exchange between client and sender. Exam-
ples include where the client sends packet status feedback to the sender or where
the sender provides the client with information about the source, such as an “RD
preamble” [40].

Second, two major factors affect the performance of a bandwidth adaptation
algorithm for a single client, namely (i) the granularity with which bandwidth
can be adapted and (ii) the speed with which changes can be made to react to
variations in network behavior.

Figure 4.3 illustrates that when actual adaptation (i.e., change in the rate at
which data is sent to the client) is performed at the server, finer granularity can be
achieved. Conversely, when adaptation takes place at the server the reaction time
may be longer because packets resulting from adaptation will take longer to arrive
at the client.

Third, it is often important to consider system-level trade-offs. Not only how
a particular client’s quality is affected by bandwidth adaptation, but rather how
adaptation affects overall network performance. Figure 4.4 illustrates how system
scalability and overall network utilization are affected by choices made in the
bandwidth adaptation mechanism. If decisions on how to change the bandwidth,
and even adaptation itself, are performed close to the client, the system will be
easier to scale, since more of the computation cost will be borne by the clients.
However, if bandwidth adaptation is performed close to the clients this will be to
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FIGURE 4.3: Comparison on bandwidth adaptation flexibility and re-
action time to serve a single client.
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FIGURE 4.4: Comparison on service scalability and overall network
utilization when serving multiple clients.

the detriment of overall network utilization, since data rate reductions will only
reduce utilization close to the client.

4.3.2 Where Should the Adaptation Points Be?

As introduced earlier, an adaptation point is the system component where the
bandwidth of the stream is physically changed. Each possible choice of location
for the adaptation points has different advantages in terms of various performance
metrics of interest.
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4.3.2.1 Sender

The sender has the most flexibility in terms of compression format, since it can
adjust the coding parameters in real time (in case live encoding to single users
is performed), and can switch between several simultaneously produced streams
(simulcast), etc. Moreover, the sender is typically least constrained in terms of
storage and processing. Generally, then, adaptation at the sender provides the most
flexibility from a source coding perspective. In practice, this means that when
the sender performs bandwidth adaptation, this makes it possible to achieve finer
grain bandwidth adaptation will be possible, as shown in Figure 4.3, with least
penalty in terms of quality at the receiver.

There are several drawbacks in server-driven bandwidth adaptation. The sender
is furthest away from the client; thus when congestion occurs in the network there
may be a delay before the bandwidth adaptation can take effect (see Figure 4.3).
Moreover, depending on where network information is being captured, this infor-
mation may be unreliable. If bandwidth changes are requested by the client (see
Section 4.3.3), and are thus based on more reliable information about the state
of the network, letting the adaptation happen at the server means that the delay
in reacting can be significant, which can reduce the effectiveness of bandwidth
adaptation. If the sender itself is estimating the network state, it will be able to
adapt faster, but may not have sufficiently accurate information about the network
to be effective.

Adaptation at the server also presents problems in terms of scalability in cases
where data is being broadcast to multiple clients. First, each server may be limited
in the number of clients it can provide content to simultaneously, in particular if
compression or bandwidth adaptation is computationally expensive. Second, the
server may have to create separate versions of the same content for clients with
different Internet access bandwidths, for example, one for 56K modem connec-
tions, and another for DSL, etc. This will in turn create a heavy traffic load in the
local network around the server, which may also have a negative impact on other
content being served.

Physical adaptation is closely related to the coding techniques applied in a par-
ticular application. Since the sender can access the source more flexibly, a number
of adaptation techniques have been proposed. Such techniques include source rate
control (i.e., adjusting coding parameters during the encoding process [29,76]),
rate–distortion optimized packet scheduling [16,48], and switching between dif-
ferent bit streams or layers [19,67].

4.3.2.2 Client

Bandwidth adaptation at the client essentially means that the client does not de-
code all the content it receives. This would be beneficial only in terms of low-
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ering the complexity of decoding or avoiding decoding of lower priority data
that is likely to be corrupted. This type of adaptation in general requires a cod-
ing format that supports complexity scalability. The reconstructed quality is re-
lated to the complexity of the decoder used. For example, van der Schaar and
de With [70] proposed to reduce the memory costs of an MPEG-2 decoder by
re-compressing the I- and P-reference pictures prior to motion-compensated re-
construction. Transform coding and motion estimation algorithms with complex-
ity scalability have also been studied [35,36,55]. In addition to the complexity-
scalable modifications of existing decoders, recent research has also attempted to
model the complexity based on the compressed source characteristics and the de-
coding platform capabilities [69]. Clearly, such a system would have no impact on
the traffic being carried by the network, and thus would not contribute to reduced
congestion.

4.3.2.3 Proxy

Proxies are a good compromise between server and client adaptation. A proxy is
responsible for a smaller number of clients than a server, which improves scala-
bility and traffic balancing, and is also closer to the clients so it can respond faster
to changes that affect the client. Most often, the source information at the proxy is
stored as a pre-encoded stream received from the original media server, and thus
transcoding is widely employed for adaptation at this point. For example, Shen
et al. [59] have proposed a transcoding-enabled proxy caching system to provide
different appropriate video quality to different network environments.

4.3.3 Sender-, Client-, and Proxy-Driven Adaptation

Note that there are many situations where the changes in source coding rate are
implemented at one point in the network, based on decisions made somewhere
else. A particular case of interest is that where the client makes decisions about
data to be transmitted and submits these to the server.

4.3.3.1 Client-Driven Decisions

Information about the status of decoded data is best when bandwidth adaptation
decisions are made by the client, in particular when these decisions are based on
accurate and fine grain information, for example, arrival or not arrival of indi-
vidual packets. The client-driven approach can also help reduce the processing
complexity at the server side, thus allowing the server to support more clients
simultaneously.

Examples of this method include the Adaptive Stream Management (ASM)
process of the SureStream technology used in RealSystem 8 [19]. Two major
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components involved in this process are a compressed media file, which con-
tains multiple independently encoded streams of a given source, and an ASM rule
book, which describes various forms of channel adaptation that involve selecting
combinations of encoded streams as a function of the channel status (including
bandwidth, packet loss, and loss effect on the reconstructed signal). The ASM
rule book is sent to the client at the beginning of a session. During transmission,
the client monitors the rate and loss statistics of arriving packets, and then in-
structs the server to subscribe to a rule, or combination of rules, to match the
current channel behavior. Another example is that of receiver-driven adaptation
in the context of multicast delivery [15,46].

A drawback is that, while the client makes the decisions, these need to be im-
plemented in either a server or a proxy, as in the example given earlier. This is
because bandwidth adaptation at the client can only help in reducing the com-
plexity of decoding. Thus there will be some latency before the changes in band-
width can be implemented. Another potential drawback is that some clients, such
as low-power hand-held devices, may not have sufficient computation power to
implement a complex decision process.

4.3.3.2 Proxy-Driven Decisions

In this type of system, proxies can estimate the state of the network (or get this
information from the client) and then decide on appropriate changes to the band-
width to be used by the media stream. For example, a proxy can select certain
packets to be forwarded to the client, change transcoding parameters, or send in-
structions to the server so that the server can modify the information it transmits.
Chakareski et al. [10] have proposed a rate–distortion optimized framework in
the scenario of proxy-driven streaming. At any given time, the proxy determines
which packets should be requested from the media server and which should be
retransmitted directly from the proxy to the client in order to meet rate constraints
on the last hop while minimizing the average end-to-end distortion. Approaches
that have investigated the role of proxies in terms of both streaming and caching
also include [50]. The proxy, usually located at the edge of a backbone network,
coordinates the communication between the source server and the client, and can
potentially achieve better bandwidth usage than a client- or server-driven system.

4.3.3.3 Server-Driven Decisions

Finally, in this scenario estimates of network state are provided to the server,
which decides on data to be sent to each client. Feedback is often required for this
approach. The server-based approach has the most information about the source
(e.g., about possible rate–distortion operating points) and thus can work with a
more flexible and efficient adaptation algorithm in terms of source coding. In
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addition, the server can regulate connections with different clients as a whole to
improve overall bandwidth utilization. The main disadvantage of this approach is
that the server may not have reliable or timely information about the state of the
network near the client.

As an example, the work of Hsu et al. [29] performs source rate control by
assigning quantizers to each of the video blocks under the rate constraints at the
encoder, where the available channel rate is estimated by incorporating the chan-
nel information provided by the feedback channel and a priori channel model.
Related work [30] shows that source rate control algorithms can also be applied
for various types of network-related rate constraints. Intelligent transport mecha-
nisms, such as optimal packet scheduling for a scalable multimedia representation
[16,48], can also be performed at the server.

4.3.4 Criteria and Constraints

This section provides an overview of different criteria that can be applied to se-
lect a bandwidth adaptation mechanism for a given application. We emphasize
that this is, by necessity, a qualitative discussion. Many of the techniques that are
mentioned in this chapter have only been proposed in a research context and have
not been fully tested in a more realistic network environment. Moreover, a quan-
titative comparison of the various methods is likely to be very complex, as should
be clear given the number of criteria to be considered in general.

4.3.4.1 Media Quality

Clearly, the ultimate criterion to evaluate the performance of a bandwidth adap-
tation mechanism should be the resulting subjective media quality at the receiver
in the presence of typical bandwidth variations. Some progress has been made in
devising objective metrics that can capture the perceptual quality of media under
various compression strategies [34,37,68]. These objective metrics are most ad-
vanced for the analysis of audio sources, somewhat less so for video applications.
Approaches that can compare meaningfully different methods in the presence of
variations in the network behavior (e.g., bandwidth fluctuations, packet losses)
are not that readily available.

Service interruptions, such as those that might occur if no bandwidth adaptation
is used, are obviously undesirable, and so one could, for example, compare differ-
ent techniques in terms of their outage probability (the probability that perceptual
quality over a given period of time drops below acceptable levels). A comparison
would still be challenging: for example, an end user may deem two configurations
with different, but nonnegligible, outage probability to be equally unacceptable.

Quality evaluation is also more complicated once a bandwidth adaptation
mechanism is put into place because these mechanisms are dynamic in nature.
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Thus, they operate only when the bandwidth falls below certain levels and lead
to changes in the media quality (e.g., in the context of video, variations in frame
rate, frame resolution, frame quality). In this situation, it is unclear whether users
will base their quality assessment on the perceived “average” quality, the worst
case quality level, the duration of the worst quality, etc.

Many currently deployed practical media streaming systems generally select
one of multiple streams, that is, the one whose bandwidth best matches the band-
width available to the end user; in many cases no adaptation is possible within
a stream. Thus system designers only have a limited amount of real-life experi-
ence with bandwidth adaptation mechanisms. It also follows from this that the
impact of various such mechanisms on perceptual media quality is not as well
understood.

In summary, while progress has been made toward understanding subjective
quality metrics for various types of media, challenges remain in addressing situ-
ations where quality adaptations (not to mention information losses) take place.
For this reason, and also to facilitate bandwidth adaptation mechanisms, objective
quality metrics, such as peak signal-to-noise ratio (PSNR), are often used. For
example, authors have proposed optimizing average PSNR (e.g., [29]) or min-
imizing the loss in PSNR introduced by bandwidth adaptation, with respect to
the PSNR achieved when the media stream transmitted at a given target bit rate
(e.g., [16]).

4.3.4.2 End-to-End Delay, Reaction Time, and Latency

As discussed earlier, a longer end-to-end delay facilitates preserving a consistent
quality level in the face of bandwidth fluctuations. Roughly speaking, a longer
end-to-end delay leads to more multimedia units (e.g., video frames) being stored
in the decoder buffer so that the application can absorb short-term variations in
bandwidth.

When the end-to-end delay is not long, the reaction time of the adaptation sys-
tem to changes in bandwidth becomes important. The system has to detect rel-
evant variations in network behavior and then trigger the necessary changes in
the media stream so as to best match bandwidth availability. Ideally, this should
happen sufficiently fast so that the end user does not suffer from negative conse-
quences of mismatch between network availability and stream requirements.

Note that this leads to interesting design trade-offs in the context of the adapta-
tion architectures discussed earlier. For example, a faster reaction may be possible
if the sender makes adaptation decisions, but these may suffer from a somewhat
worse knowledge of network status at the client.

Long end-to-end delay is a practical solution only for one-way transmission
applications. For two-way communications, a long delay will limit the interac-
tivity. Even in the case of one-way communications, excessive end-to-end delays
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lead to higher initial latencies, which would be undesirable if the user switches
multimedia streams frequently.

4.3.4.3 Complexity

An interesting challenge in architecting a bandwidth adaptation mechanism is that
several components (client, proxy, and sender) can play a role. Thus, taking into
account complexity requires identifying first which of these components is least
constrained in terms of complexity.

While it may appear at first obvious that the server will be richer in computation
resources, this may not be true in general. In particular, for applications such that
each sender is responsible for multiple clients, overall computation power at the
sender may be significant, but computation power for each client served may have
to be limited in order to ensure scalability.

4.3.4.4 Storage

Storage constraints are unlikely to be of much importance, except for mobile ap-
plications. It is also worth mentioning the complexity implications of shared stor-
age. While massive storage is often available at a very low cost, there may be
significant computation costs involved in managing a large number of streams be-
ing produced out of a shared storage device. In this context, bandwidth adaptation
tasks (e.g., switching between two pre-encoded versions of a media stream) may
add to the complexity of the system.

4.3.4.5 Information Overhead

Consider existing digital video delivery systems (e.g., a digital cable system) and
compare them with systems such as those we have discussed. In a digital cable
system bandwidth is expected to be reliable and there is minimal interaction be-
tween receiver and sender.

Instead, proposed bandwidth adaptation architectures often require auxiliary
information to be exchanged between client and sender. Examples of this extra
information include estimates of channel state, acknowledgments of reception of
information, and rate distortion “preambles.”

4.3.5 Examples

Depending on the type of application, network characteristics, and optimization
criteria, it is possible that different bandwidth adaptation architectures may be
preferable. This section sketches some examples that allow us to discuss how
particular choices of architecture can be made. Note that we are not proposing
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a concrete methodology for architecture selection. Moreover, there may be sev-
eral architectures that are suitable for a given scenario. Thus, these examples are
meant to illustrate possible approaches in the design process, rather than to claim
optimality for any of the different approaches.

In the case of one-to-one interactive two-way communication, such as video
conferencing, a relatively short end-to-end delay, usually between 150 and
400 ms, is required. Thus it may be preferable for the decision agent and the adap-
tation point to be located close to each other so as to avoid excessive delay before
adaptation takes place. One possible solution is presented in Table 4.1. When a
server receives feedback indicating a channel status change, it estimates the new
available channel bandwidth [29] and then makes the corresponding adaptation
decision. The adaptation can be as simple as skipping transmission of some of
the packets to prevent video freezing or losing connections. More advanced tech-
niques can also be applied, such as, for example, adjusting the video codec para-
meters to increase or decrease the encoding rate. However, the limited bandwidth
and stringent delay requirement in this case may limit the potential performance
gains achievable through adaptation.

In the case of one-to-one one-way streaming, a longer initial play-out delay, of
up to a few seconds, is likely to be acceptable. A more appropriate solution for
this case would then be client-driven streaming, such as the SureStream technol-
ogy used in RealSystem [19]. During the streaming session, a client monitors the
bandwidth and loss characteristics of its connection and makes decisions based
on more accurate and fine grain channel information. Then it instructs the server
to take certain actions, for example, switching to different streams, or selectively
transmitting only the number of layers in a layered codec that the given link can
support, such that the end-to-end distortion can be minimized over the current
channel condition.

In the case of Internet broadcast or multicast, the traditional single-server-
based delivery system faces several major problems, including service scalabil-
ity and traffic load unbalance, as discussed in Section 4.3.2. To address these
problems, today’s content delivery networks employ multiple geographically dis-

Table 4.1: Examples of bandwidth adaptation architectures for different video
communication applications

Application Bandwidth esti-
mator

Decision agent Adaptation
point

One-to-one interactive two-
way communication

Server Server Server

One-to-one one-way
streaming

Client Client Server

Internet broadcast Client Proxy Proxy
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tributed edge servers to either forward the incoming live content or deliver the
on-demand content from their local cached storages to their local clients. It is pos-
sible to directly extend the client-driven server-adaptation technique to multicast
delivery. However, it may be better if proxy servers can take a more active role
in the bandwidth adaptation process, as the bandwidth limitations often occur in
the access network, such as a DSL connection. This proxy-based architecture, as
shown in Table 4.1, can reduce the reaction time, avoid congestion in the Internet,
and provide appropriate qualities for clients with different connections.

4.4 CODING TECHNIQUES FOR BANDWIDTH ADAPTATION

Previous sections have discussed general bandwidth adaptation architectures un-
der the assumption that a mechanism would be available to adjust the number of
bits transmitted to represent multimedia sources. In this section we provide an
overview of coding techniques that can be used in practice to adjust the coding
rate of transmitted multimedia sources.

Many criteria can be used to compare different coding techniques. Since their
primary goal is to enable representation of the sources at different rate levels, one
primary concern is what reproduction quality is achievable at each of those rate
levels. Thus, as for all coding techniques, it will be important to know the rate
distortion (RD) characteristic of each possible operating point.

In addition, there are other criteria that are specific to bandwidth adaptation
scenarios.

First, it will be useful to provide as many rate operating points as possible (i.e.,
so that fine grain adaptation is possible). Generally speaking, finer grain in the
adaptation will come at the cost of increases in achievable distortion for a given
rate.

Second, some coding techniques will only allow adaptation to take place at the
encoder, while others will enable adaptation anywhere in the network. The latter
model will typically also lead to some RD inefficiency.

Finally, adaptation granularity can be evaluated not only in terms of achievable
rate points, but also in terms of temporal constraints. In some applications it may
be desirable to adjust the rate of individual temporal components (e.g., frames in
a video sequence), which again may come at the cost of reduced RD performance.

4.4.1 Rate Control

Rate control techniques are used during the encoding process. They rely on ad-
justing multiple coding parameters to meet a target encoding rate. We focus here
on rate control techniques for video, as in both audio and speech coding variable
bit rate encoding techniques (which tend to lead to more challenging rate control)
are not as popular.
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In the case of video, when the same coding parameters (e.g., quantization step
size, prediction mode) are used throughout a video session, the number of bits per
frame will change depending on the video content so that the output bit rate will
vary from frame to frame. Thus, when video content is “easy” to encode (e.g., low
motion and low complexity scenes) and a given quantization selection is chosen,
the rate will tend to be lower than if the same combination of quantizers was used
for a more complex scene. Even though the encoder and decoder buffers can help
smooth the (short term) variations in the rate per frame, a rate-control algorithm
is usually needed in order to allocate bits among all coding units (e.g., frame,
macroblock, or others) to maximize the end quality subject to the rate constraint.

All major video coding standards provide mechanisms for flexible coding para-
meter selection, with the chosen parameters being communicated to the decoder
as overhead. To illustrate the key concepts, here we concentrate on a hybrid video
coding structure, which is an essential component of all major standards, and in
particular on one based on block-based motion-compensated prediction and Dis-
crete Cosine Transform (DCT) coding. In such a framework, a frame is divided
into a number of macroblocks (MB), each containing a luminance block (of size
16× 16) and two chrominance blocks (e.g., 8× 8 Cb and 8× 8 Cr).

A series of coding decisions have to be made in compressing each frame:

1. Type of frame (e.g., I-, P-, or B-frame) to be chosen or whether the frame
is to be skipped, that is, not encoded at all.

2. Mode to be used for each MB, for example, Intra, Inter, Skip, etc.
3. If an MB is coded in INTRA mode,

(a) What quantization step size (QP) should be used to code the DCT
coefficients of each block?

(b) If intra prediction is allowed, for example, in H.264, how to perform
intra prediction; that is, how to generate the reference block from the
neighboring blocks in the same frame.

4. If an MB is coded in INTER mode,
(a) What motion compensation should be used, for example, with or

without overlapping, reference frame selection, search range, and
block size?

(b) How to code the residual frame, for example, which QP should be
chosen?

The options just listed are by no means exhaustive; they are intended to serve
as an illustration of the range of coding mode choices available in modern video
coders. Note that as the number of possible modes increases so does the com-
plexity of the encoding process and the importance of selecting efficient rate con-
trol algorithms. In fact, one can attribute much of the substantial coding gains
achieved by recent standards, such as H.264/MPEG-4 part 10 AVC [2], to the ad-
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dition of several new coding modes combined with efficient mode decision tools
based on RD criteria.

A very common approach to rate control is to modify the QP [29,65]. A large
QP can reduce the number of encoded bits at the expense of an increased quanti-
zation error, and vice versa. However, changing QP only while keeping the other
coding modes constant may not achieve the optimal performance. For example,
coding in INTER mode is effective in most cases when changes in video con-
tent are due to the motion of objects in the scene. Instead, INTRA mode may
be more appropriate in situations when there is a significant difference between
coded and reference images, such as uncovered regions (part of the scene is un-
covered by a moving object) or lighting changes. However, the optimal selection
of INTER/INTRA coding for a given block may in fact be different at different
QPs. More general rate-control algorithms should optimize different coding pa-
rameters as well, such as frame rate, coding modes for each frame and MB, and
motion estimation methods [13,24,76].

Each combination of these coding parameters results in a different trade-off
between rate and distortion. Thus efficient parameter settings will be those that
are chosen based on rate–distortion optimized techniques. The typical problem
formulation seeks to select the coding parameters that minimize the distortion
under constraints on the rate (usually the average bit rate over a short interval).
Many solutions have been proposed, with some based on heuristic approaches
and others following well-known techniques such as Lagrangian optimization or
dynamic programming. More details on this topic can be found in [53,65] and
references therein.

The computation involved in the optimization approach mainly includes two
parts: (1) collection of rate–distortion data, which may require to actually code
the source with all different parameter settings, and (2) the optimization algorithm
itself. Both parts can be computationally intensive but often the data collection it-
self represents the bulk of the complexity, which has led to the development of
numerous approaches to model the R–D characteristics of multimedia data [20,
27,28,43]. Two main types of modeling approaches have been reviewed in [28].
One class of techniques [27] involves defining models for both the coding system
and the source so that R–D functions can be estimated before actually compress-
ing the source. The modeling accuracy depends on the robustness of the R–D
model to handle different source characteristics. The second class of techniques
requires actually coding the source several times and then processing the observed
R–D data to obtain a complete R–D curve. Examples include the estimation algo-
rithms proposed in [20,43]. These approaches are usually more computationally
intensive, as well as more accurate, since they estimate the parameters from the
actual coding results of the corresponding source.

In summary, the choice of an appropriate rate-control algorithm depends on
the multimedia application, especially on whether it is delay constrained. For in-
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stance, a complicated approach can be used for off-line coding. However, heuristic
approaches may be more practical for online live multimedia communications.

4.4.2 Transcoding

The term “media transcoding” is normally used to describe techniques where a
compressed media bit stream format is converted into format. It is often used at
either the server or the proxy when the source is only available as a pre-encoded
stream so as to match limitations in transmission, storage, processing, or display
capabilities of specific network, terminals, or display devices. Transcoding is one
of the key technologies for end-to-end compatibility of two or more different net-
works or systems operating with different characteristics and constraints.

Because the transcoder takes as an input a compressed media stream, the de-
coded quality of the transcoder output is limited by the input stream, which has
certain information loss compared to the original source. However, the transcoder
has access to all the coding parameters and statistics, which can be easily ex-
tracted from the input stream. This information can be used not only to reduce the
transcoding complexity, but also to improve the quality of the transcoded stream
using a rate–distortion optimization algorithm.

A typical application of transcoding is to adapt the bit rate of a precompressed
video stream to a reduced channel bandwidth. Clearly, we can first reconstruct
video back to the pixel domain by decoding the input compressed bit stream and
then re-encode the decoded video to meet the target bit rate. The rate control
techniques described earlier can then be used at the encoding stage. However, the
whole process (decoding and encoding) is very computationally expensive, and
more efficient techniques have been developed that reuse information contained
in the original input bit stream.

The main drawback of these more efficient transcoding techniques is the drift
problem (which will also arise in some of the other coding techniques intro-
duced in this chapter). Drift is created if the reference frame used for motion
compensation at the encoder is different from that used at the decoder. This hap-
pens, for example, when the transcoder simply requantizes the residual DCT
coefficients with a larger QP to reduce the output bit rate. When a decoder re-
ceives the transcoded bit stream, it reconstructs the frame at a reduced quality
and stores it into the frame buffer. If this frame is used as prediction for fu-
ture frames, the mismatch error is added to the residual of the predicted frame,
leading to a degraded quality for all the following frames until the next I frame.
Based on the trade-off between complexity and coding quality, we briefly de-
scribe two basic transcoding architectures, namely, open-loop and closed-loop
transcoders.

Figure 4.5a shows an open-loop architecture based on a requantization ap-
proach [51]. The bit stream is dequantized and requantized to match the bit rate
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FIGURE 4.5: Transcoding architectures for bit-rate reduction [72]:
(a) Open loop. (b) Closed loop.

target. Another open-loop approach is to discard the high-frequency DCT coef-
ficients [22,66] to reduce the rate. All these operations work on the DCT coeffi-
cients directly, and thus the computation load is light but this architecture leads to
drift.

A closed-loop architecture introduces an extra drift-compensation module, as
shown in Figure 4.5b [7], to eliminate the mismatch between the reference frames
at the encoder and decoder. The frame memory in the configuration holds a dif-
ference signal and is added to the residual component to compensate for the
prediction mismatch. The additional DCT/IDCT can be removed by using DCT-
domain MC [12,47,62]; several simplified DCT-domain transcoders are described
in [8,42]. Compared to the straightforward approach with cascaded decoder and
encoder, this approach usually requires less computation to achieve almost equiv-
alent quality with the exception of slight inaccuracy due to nonlinearity introduced
by clipping and rounding operations or floating point inaccuracies [79]. Even for
the cascaded pixel-domain transcoder, the encoder can be simplified by reusing
the motion vectors and other information.

Regardless of the transcoding architecture, a rate-control algorithm is applied
to yield the desired bit rate. As discussed in [56], a two-pass rate-control ap-
proach typically performs better than a single-pass approach, since information
obtained from the results of the first pass (e.g., selected RD operating points of
all frames) can be used in the second pass of the algorithm to improve the qual-



Section 4.4: CODING TECHNIQUES FOR BANDWIDTH ADAPTATION 103

ity. A transcoder can be regarded as a special two-pass approach [78], where the
first pass creates the input compressed bit stream and the second pass creates the
output compressed stream based on the results of the first pass. For example, bit
allocation to each frame ideally depends on the frame complexity, which is not
easy to estimate for real-time video encoding but can be obtained more accu-
rately from the number of bits each frame spent in the input bit stream. Similarly,
optimal requantization for transcoding [26,63,75] requires the knowledge of the
original DCT coefficients statistics, which can be estimated from the input com-
pressed bit stream as well.

In addition to being used for bit rate adaptation, video transcoding is also
widely employed for spatial resolution and frame rate adaptation. More details
on different transcoding techniques are well discussed elsewhere [72,78].

4.4.3 Scalable Coding

The coding methods discussed so far in this chapter aim to optimize the media
quality for a fixed bit rate. This poses a problem when multiple users are trying to
access the same media source through different network links and with different
computing powers. Even in the case of a single user accessing one media source
over a link with varying channel capacity, relying on an often complex rate-control
algorithm to make rate adjustments in real time may not be practical (e.g., if the
changes in rate have to occur in a very short time frame). Scalable coding is thus
designed to facilitate bandwidth adaptation over a given bit rate range, as well as
to provide error resilience for potential transmission errors.

Scalable coding, or layered coding [1,3,21,38,61], specifies a multilayer format
in which a video sequence is coded into a base layer and one or more enhancement
layers. The base layer provides a minimum acceptable level of quality, and each
additional enhancement layer incrementally improves the quality. Thus, graceful
degradation in the face of bandwidth drops or transmission errors can be achieved
by decoding only the base layer, while discarding one or more of the enhance-
ment layers. The enhancement layers are dependent on the base layer and cannot
be decoded if the base layer is not received. A scalable compressed bit stream
typically contains multiple embedded subsets, each of which represents the orig-
inal video content in a particular amplitude resolution (called SNR scalability),
spatial resolution (spatial scalability), temporal resolution (temporal scalability),
or frequency resolution (frequency scalability or, in some cases, data partition).
Scalable coders can have either coarse granularity or fine granularity. In MPEG-4
fine granularity scalability (FGS) [38], the enhancement-layer bit stream can be
truncated at any point, where the reconstructed video quality increases with the
number of bits received.

Unfortunately, all current scalable video coding standards suffer to some degree
from a combination of lower coding performance and higher coding complexity,



104 Chapter 4: BANDWIDTH ADAPTATION MECHANISMS

as compared to nonscalable coding. A key issue is how to exploit temporal cor-
relation efficiently in scalable coding. It is well known that motion prediction
increases the difficulty of achieving efficient scalable coding because scalability
leads to multiple possible reconstructions of each frame [58]. In this situation
either (i) the same predictor is used for all layers, which leads to either drift or
coding inefficiency, or (ii) a different predictor is obtained for each reconstructed
version and used for the corresponding layer of the current frame, which leads to
added complexity. MPEG-2 SNR scalability with a single motion-compensated
prediction (MCP) loop and MPEG-4 FGS exemplify the first approach. MPEG-
2 SNR scalability uses the enhancement-layer information in the MCP loop for
both base and enhancement layers, which leads to drift if the enhancement layer
is not received. MPEG-4 FGS provides flexibility in bandwidth adaptation and
error recovery because the enhancement layers are coded in “intra” mode, which
results in low coding efficiency, especially for sequences that exhibit high tempo-
ral correlation. Some advanced approaches with multiple MCPs are described
elsewhere [5,31,58,71,77]. In summary, the design goal in scalable coding is
to minimize the reduction in coding efficiency while realizing the scalability to
match the network requirements. More details on scalable video coding can be
found in Chapter 5, and details on scalable audio coding can be found in Chap-
ter 6.

An alternative to bandwidth adaptation and reliable communication is Multi-
ple Description Coding (MDC) [25,74]. With this coding scheme, a video se-
quence is coded into a number of separate bit streams (referred to as descriptions)
so that each description alone provides acceptable quality and incremental im-
provement can be achieved with additional descriptions. Each description is in-
dividually packetized and transmitted through separate channels or through one
physical channel that is divided into several virtual channels by using appropriate
time-interleaving techniques. Each description can be decoded independently to
provide an acceptable level of quality. For this to be true, all the descriptions must
have some basic information about the source, and therefore they are likely to be
correlated. Some hybrid approaches have also been proposed recently to combine
the advantages of layered coding and MDC [18,73].

Scalable coding techniques allow media servers to adapt to varying network
conditions in real time. To do this, an intelligent transport mechanism is required
to select the right packets (layers or descriptions) to send at a given transmis-
sion time to maximize the playback quality at the decoder. Some recent work
has been focused on rate–distortion optimized scheduling algorithms for scalable
video streaming [16,48]. In this case, each packet is not equally important due
to different distortion contributions, playback deadlines, and packet dependencies
caused by temporal prediction and layering. Runtime feedback information is em-
ployed to make the transport decisions based on the current network condition and
decoder receiving status. See also Section 4.4.5.
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4.4.4 Bit Stream Switching

Although scalable coding can potentially provide flexible bandwidth adaptation
over unpredictable best-effort networks, current coding techniques still suffer
from relatively low coding efficiency, especially when the bit rate range is large.
As a result, bit stream switching techniques are widely used in many commercial
video streaming systems [6,19] to create multiple versions of the same content at
different bit rates and dynamically switch among them to accommodate the band-
width variations. In this section, we introduce three major switching techniques,
namely multiple bit rate coding, SP/SI pictures, and stream morphing.

4.4.4.1 Multiple Bit Rate (Simulcast) Coding

In this approach each media source is simply compressed into multiple indepen-
dent nonscalable bit streams at different bit rates and qualities. During the trans-
mission, the server switches to a particular bit stream whose transmission yields
the minimum reconstructed distortion based on the estimation of actual channel
bandwidth and loss characteristics. Ideally, once a change in network bandwidth
is detected, the server will immediately switch to a more appropriate stream to re-
flect the change promptly. However, because of motion prediction, switching be-
tween bit streams at arbitrary locations, such as a P-frame, may introduce severe
drift effects since the reference frames are different at the encoder and decoder.

The simplest way to achieve a drift-free switching is to insert I-frames peri-
odically in each stream and let the switching from stream to stream occur only
at those I-frames. Obviously, because adaptation requests only take effect when
an I-frame is reached, this increases the latency of bandwidth adaptation. To pro-
vide more flexible adaptation, the frequency of I-frames has to be increased at
a cost of significantly increased bit rates to achieve the same quality. Thus, al-
lowing more effective stream switching comes at the cost of a decrease in video
quality for a given target bit rate. In addition, the flexibility of bandwidth adap-
tation also depends on the number of different bit streams available, each coded
at a different bit rate. The more bit streams are available, the more accurate and
finer level bandwidth adjustments can be supported. The inefficiency of coding
I-frames results in a much larger storage requirement on the media server when
the number of supported bit streams is large. The trade-off between coding effi-
ciency and switching flexibility thus becomes a main consideration on the design
of a drift-free switching approach.

More efficient approaches for drift-free switching aim at removing the over-
head associated with I-frames, which exists even for normal transmission without
switching between bit streams. In order to facilitate switching at inter frames (i.e.,
P-/B-frames), an extra bit stream is created at each predefined switching point at
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an increased rate cost when switching happens, while keeping the coding effi-
ciency for normal transmission at the same or close to the one without support-
ing the switching functionality. One way is to encode the difference of reference
frames at the switching points and transmit this as an additional bit stream, which
can be used for drift compensation at the decoder. The mismatch can be removed
if lossless compression is applied. Another way is to introduce a specially en-
coded P-frame, called an S-frame [23], to achieve switching at the location of
inter frames. As illustrated in Figure 4.6a, to initiate switching from bit stream 1
to bit stream 2 at time t , an S-frame (frame S12,t ) is encoded as a P-frame with
the previously reconstructed frame at time t − 1 in bit stream 1 (frame P1,t−1) as
the reference frame and the reconstructed frame at time t in bit stream 2 (frame

P2,t-1 P2,t P2,t+1

P1,t-1 P1,t P1,t+1

S12,t

Bit Stream 2

Bit Stream 1

(a) S-frame 

P2,t-1 SP2,t P2,t+1

P1,t-1 SP1,t P1,t+1

SP12,t

Bit Stream 2

Bit Stream 1

(b) SP-frame

FIGURE 4.6: Switching from bit stream 1 to bit stream 2 through spe-
cially encoded frames: (a) S-frame and (b) SP-frame.
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P2,t ) as the target frame. This approach cannot completely eliminate the drift.
However, by reducing the QP of the S-frame, the drift amount can be controlled
and made relatively small. Another disadvantage of this approach is that the rate
required for S-frames can be very large due to the small QP that is required. The
SP-/SI-frames to be introduced in the next section provide an improved drift-free
switching approach to the S-frames. In addition to switching between nonscalable
bit streams, bit stream switching can also be performed for several independently
coded scalable streams [67].

4.4.4.2 SP/SI Pictures

The extended profile of H.264/MPEG-4 part 10 AVC [2] introduces two new
frame types referred to as SP-frames and SI-frames [33]. SP- and SI-frames facili-
tate switching between multiple independently coded bit streams and also provide
“VCR-like” functionalities, such as random access, fast forward, fast backward,
and so on.

Within each encoded bit stream, SP-frames are created at the switching points
in two different types, namely primary SP-frame and secondary SP-frame (see
Figure 4.6b). The primary SP-frame (frames SP1,t and SP2,t in Figure 4.6b) is cre-
ated by motion-compensated prediction from the previously reconstructed frames
in the same bit stream, while the corresponding secondary SP-frame (frame SP12,t

as an example) is generated, with identical reconstructed values as the primary SP-
frame (frame SP2,t ), by using the previously reconstructed values from another bit
stream. A primary SP-frame is encoded with almost the same coding efficiency
as the corresponding P-frame. The difference between SP- and P-/S-frames lies in
that, due to the special encoding of the secondary SP-frame, the pair of SP-frames
can be identically reconstructed even if they are predicted using different frames.
Compared to I-frames, SP-frames can achieve same switching functionality with
significantly fewer bits by exploiting motion-compensated predictive coding. An
alternative to a secondary SP-frame is an SI-frame, using only intra prediction to
produce identical reconstructed values as the corresponding primary SP-frame. It
is mainly used when motion prediction is not efficient, such as switching between
bit streams representing completely different video sequences, or for random ac-
cess in which decoding of the current frame does not depend on any previous
frames.

4.4.4.3 Stream Morphing

Stream morphing [44] has been introduced as an interesting alternative to scal-
able video coding and is related to techniques that have been proposed for effi-
cient scalable DPCM coding [58,60,64]. Scalable coding schemes operate in the
signal domain to separate an input into different layers. For example, in a closed
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loop system, the video sequence obtained from reconstructing the base layer is
subtracted from the original video sequence, which is in turn compressed. Al-
ternatively, an open loop system (e.g., one based on wavelet transforms) would
directly separate the input sequence into “components” (e.g., subbands), com-
press these separately, and form the layers by grouping various of these compo-
nents.

Stream morphing is based on the following observation. Consider a video se-
quence encoded with a nonscalable codec (say MPEG-2) at two different target
rates. Clearly there will be some redundancy between the two bit streams since
they represent the same sequence, albeit at different rates. For example, most
blocks will have the same motion vectors at both rates, large DCT coefficients in
the residual signal will tend to be in the same locations, etc. A stream morphing
technique would use the low rate stream as the base layer. Then the enhance-
ment layer will contain a bit stream with a special syntax that allows the decoder
to reconstruct the high rate bit stream from the low rate bit stream. For exam-
ple, this enhancement layer could include differential information with respect to
the motion vectors included in the base layer. Note that this is a transformation
between bit streams. Thus one of the principal differences between stream mor-
phing and standard scalability tools is that decoding the base layer is not needed
to reproduce the signal at the highest quality. Instead, the base layer bit stream
is “morphed” into the high-resolution bit stream, on which a standard decoder is
used (e.g., the MPEG-2 decoder in our example). Note also that the quality levels
at the decoder are exactly determined by the two (or more) originally encoded
versions.

4.4.5 Overview of Optimization Techniques for Bandwidth Adaptation

Recall that bandwidth adaptation requires (i) observing the state of the network,
(ii) estimating or observing the state of the decoder, and then (iii) based on band-
width availability and decoder state, deciding what information should be sent
next to the decoder. In this section we discuss briefly this decision process. Our
focus here is in highlighting the challenges involved and how these have to be
addressed by proposed techniques.

Ideally the goal in deciding what information is sent to the decoder should be
to maximize the expected quality at the decoder. Note that we consider expected
quality because there is uncertainty about the actual quality available at the de-
coder; changes in bandwidth, packet losses, and so forth will affect the resulting
quality.

To facilitate the discussion, in what follows we assume that information avail-
able for transmission has already been packetized. The role of the decision mecha-
nisms under consideration is essentially to prioritize the transmission so that most
“important” information is sent first.
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Optimization of expected quality at the decoder is complex because of multiple
factors:

• The expected distortion is hard to estimate.
• The candidate packets may depend on each other.
• At any given time there are many candidate packets.

Estimating the expected distortion at the transmitter requires first determining
both the current “state” of the transmission channel and its expected behavior in
the near future. Various types of channel models are considered in Chapters 7
and 11. The type of channel models available, for example, with memory [29] or
without it [16,48], depends on the systems being considered. Observations may
include packet receipt feedback, received power measurements, etc. While the ac-
curacy of the models may be questionable, it is also likely that even an inaccurate
model will provide enough information to improve on a system that makes no
assumptions about the transmission channel.

In addition, estimations of expected distortion are based on the reconstruction
quality achievable when different sets of packets are received. In cases where
pre-encoded data is being transmitted it is possible, in theory, to quantify ex-
actly achievable distortion in each scenario. In practice, however, techniques that
require less computation and provide estimates of expected distortion may be
preferable. For example, some methods may attach some importance to each
packet, where the importance is based on some simplifications about the decoding
process (e.g., frames that depend on frames received in error are not decoded, no
error concealment is applied); see, for example, [16,48]. Then optimization tech-
niques would seek to maximize the expected “importance” of packets received.

Most widely used video coding techniques make use of prediction across
frames. This complicates distortion estimation, since a packet loss may affect
multiple future frames. A very powerful technique used to capture the dependen-
cies is that formalized by Chou and Miao [16], which leads to the creation of
a directed acyclic graph to represent all the packets being transmitted. With this
type of technique it is possible to attach more importance to packets from which
multiple other packets depend. As we had indicated earlier for the channel model,
even a rough model of these dependencies (which may not provide exact dis-
tortion values) is likely to provide better results than techniques that completely
ignore the existence of these dependencies.

Optimization complexity should definitely be of concern. As has been demon-
strated by various authors (see [9–11,14,16,17,32,48,49,73,80,81]) efficient tech-
niques can be developed once knowledge of the structure of the media stream
(including dependencies) and an estimate of the channel state are available. This
can be done by estimating the expected distortions if several different candidate
packets (not necessarily all available ones) were transmitted. This distortion can
be estimated for one decision (the next packet to be transmitted) or more than one.
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After this evaluation, the packet leading to a lower expected distortion is chosen,
and this decision process is repeated for the next packet.

4.5 SUMMARY AND FURTHER READING

The heterogeneous and time-variant nature of today’s networks imposes a num-
ber of challenges for real-time video communication. In this chapter, we have
discussed alternative techniques for bandwidth adaptation and their relative mer-
its. The main points made in this chapter are summarized as follows.

• We classify bandwidth adaptation architectures based on three basic de-
sign decisions, namely selection of adaptation points, decision agents, and
source coding techniques. Bandwidth adaptation is made based on available
source and channel information. The source-related information is known
more accurately at the sender, while channel information is more accurate
at the client. A proxy, located in the middle of the network, can achieve a
good compromise between server and client adaptation.

• When the sender acts as the adaptation point, the highest degree of flex-
ibility is possible in terms of source coding, which facilitates achieving
finer granularity rate adaptation, reducing the quality penalty at the receiver.
However, this may lead to a longer reaction time if network state informa-
tion is provided by the receiver. Adaptation decisions may be inefficient if,
instead, the sender itself has to estimate the state of the network without
waiting for receiver feedback. Adaptation at the sender makes scaling to
a large number of receivers more difficult, as it increases the computation
load at the sender. Adaptation at the client can reduce decoding complexity,
but will have no impact on the network traffic.

• If the sender is the decision agent, it will have access to more accurate
source information, but may not have reliable or timely information about
the network state near the receiver. This approach helps improve overall
bandwidth utilization when multiple receivers are served by the sender. In
contrast, if the client acts as the decision agent, there is potential for better
adaptation decisions given the higher accuracy network and packet arrival
information. However, when decisions made by the receiver have to be put
in place by the sender, the latency involved can lead to lower adaptation
efficiency.

• Rate control techniques are used during the encoding process to adjust cod-
ing parameters to meet a target encoding rate. Transcoding techniques, of-
ten used at either the server or the proxy, take a compressed media stream
as an input and convert it to another compressed stream. Scalable coding
provides flexible bandwidth adaptation over a given bit rate range rather
than at a fixed bit rate. Different from the aforementioned techniques, bit
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stream switching techniques encode the same media content into multiple
versions at different bit rates and dynamically switch among them to ac-
commodate the bandwidth variations. In this chapter we have discussed
several switching techniques: multiple bit rate coding, SP/SI pictures, and
stream morphing. The trade-off between coding efficiency (to reduce over-
head) and switching flexibility is a main consideration on the design of
various switching techniques.

Further details on many of the bandwidth adaptation techniques described in
this chapter can be found in other literature, as well as in other chapters in this
book. For example, Ortega and Ramchandran [53] and Sullivan and Wiegand [65]
discuss rate–distortion optimization for image and video compression; Vetro et
al. [72] and Xin et al. [78] provide overviews of transcoding; and Goyal [25]
and Wang et al. [74] review state-of-the-art multiple description coding. For more
details on rate–distortion-optimized streaming, the article by Chou and Miao [16]
can serve as a starting point. Although this chapter focused on the fundamentals
of bandwidth adaptation on a simple client–server system, there is considerable
interest in more complex systems with multiple paths used for media transport,
such as content delivery networks and P2P networks. The interested reader is
referred to the work of Apostolopoulos et al. [4], Padmanabhan et al. [54], and
Rejaie and Ortega [57].
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5
Scalable Video Coding for
Adaptive Streaming
Applications

Béatrice Pesquet-Popescu, Shipeng Li, and Mihaela van der Schaar

5.1 INTRODUCTION

The transmission of multimedia content over IP networks such as the Internet
and wireless networks has been growing steadily over the past few years. More-
over, multimedia streaming and the set of applications that rely on streaming are
expected to continue growing. Meanwhile, the current quality of streaming mul-
timedia, in general, and video, in particular, can still be greatly improved. To
achieve a higher level of quality and further proliferation of IP video, many tech-
nical challenges have to be addressed in the two areas of video coding and net-
working (streaming). A framework that addresses both the video coding and the
networking challenges associated with IP-based video streaming is scalability.
From a video coding point of view, scalability plays a crucial role in delivering
the best possible video quality over unpredictable, “best-effort” networks. Band-
width variation is one of the primary characteristics of “best-effort” networks,
and current IP networks are a prime example of such networks. Video scalability
enables an application to adapt the streamed video quality to changing network
conditions (and specifically to bandwidth variation) and device complexities [40].
From a networking point of view, scalability is needed to enable a large number
of users to view any desired video stream, at anytime, and from anywhere.

Scalable techniques try to avoid simulcast solutions, in which several encoders
run in parallel. Simulcast solutions usually require knowledge of the network and
decoder capabilities in advance in order to select the best encodings. To avoid net-
work overload, the number of bit streams that can be simultaneously multiplexed
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is limited. Even though point-to-multipoint connections are enabled by the simul-
cast solution, there is a clear loss in efficiency.

Consequently, any scalable video coding solution has to enable a very simple
and flexible streaming framework, and hence, it must meet the following require-
ments.

1. The solution must enable a streaming server to perform only minimal real-
time processing and rate control while outputting a very large number of
simultaneous unicast (on-demand) streams.

2. The scalable video coding approach over IP networks has to be highly
adaptable to unpredictable bandwidth variations due to heterogeneous ac-
cess technologies of the receivers (e.g., analog modem, cable mode, xDSL,
wireless mobile, and wireless LANs) or due to dynamic changes in net-
work conditions (e.g., congestion events).

3. The video coding solution must enable low-complexity decoding and low-
memory requirements to provide common receivers (e.g., set top boxes and
digital televisions), in addition to powerful computers, the opportunity to
stream and decode any desired Internet video content.

4. The streaming framework and related scalable video coding approach
should be able to support both multicast and unicast applications. This,
in general, eliminates the need for coding content in different formats to
serve different types of applications.

5. The scalable bit stream must be resilient to packet loss events, which are
quite common over IP networks.

These requirements are the primary drivers behind the design of the existing and
emerging scalable video coding schemes.

5.2 SCALABILITY MODES IN CURRENT VIDEO CODING
STANDARDS

5.2.1 Spatial, Temporal, and SNR Coding Structures

There are three basic types of scalability in scalable video coding: spatial, tempo-
ral, and quality (or SNR) scalabilities. In a spatial scalable scheme, full decoding
leads to high spatial resolution, while partial decoding leads to reduced spatial
resolutions (reduction of the format). In a temporal scalable scheme, partial de-
coding provides lower decoded frame rates (temporal resolutions). In an SNR
scalable scheme, temporal and spatial resolutions are kept the same, but the video
quality (SNR) varies depending on how much of the bit stream is decoded.

Current standards, such as H.263, H.264, MPEG-2, and MPEG-4 (both part 2
and part 10), are based on a predictive video coding scheme (see Figure 5.1).
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Although they were not initially designed to address these issues, current stan-
dards tried to upgrade their video coding schemes in order to include scalability
functionalities. However, this integration generally came at the expense of coding
efficiency (performance).

In a standard environment, scalability is achieved through a layered structure,
where the encoded video information is divided into two or more separated bit
streams corresponding to the different layers (see Figure 5.2).

• The base layer (BL) is generally highly and efficiently compressed by a
nonscalable standard solution.

• The enhancement layer(s) (EL) encode(s) the residual signal to produce
the expected scalability (it delivers, when combined with the base layer
decoding, a progressive quality improvement in case of SNR scalability, a
higher spatial resolution for spatial scalability, and a higher frame rate for
temporal scalability).

To achieve spatial scalability in the hybrid scheme presented in Figure 5.3,
the input video sequence is first spatially decimated to yield the lowest resolution
layer, which is encoded by a standard encoder. A similar coding scheme is em-
ployed for the enhancement layer. To transmit a higher resolution version of the
current frame, two predictions are formed: one is obtained by spatially interpolat-
ing the decoded lower resolution image of the current frame (spatial prediction)
and the other by temporally compensating the higher resolution image of the pre-
dicted frame with motion information (temporal prediction). The two predictions
are then adaptively combined for a better prediction and the residue after predic-
tion is coded and transmitted. In Figure 5.3, a scheme with two resolution levels
is depicted, but the same principle can be used to produce several spatial resolu-
tion enhancement levels. This solution corresponds to a Laplacian pyramid and is
noncritically sampled, or redundant (the number of output samples is higher than
the number of input samples).

The drawback of this approach is that the different encoding loops with their
own motion estimation steps are used in parallel, at the encoder side, and sev-
eral motion compensation loops are necessary at the decoder side, thus in-
creasing the computational complexity both at the encoder and at the decoder.
A possible advantage of this scheme is the flexibility in choosing the downsam-
pling/upsampling filters, in particular for reducing aliasing at lower resolutions.

Related to the spatial scalability, there is the issue of motion vector scalability.
Indeed, the different resolution levels will need motion vector fields with different
resolutions and, possibly, accuracies. For the aforementioned Laplacian pyramid
coding, the simplest approach is to estimate and encode the motion vectors, start-
ing from the lowest resolution and going to the highest. From one layer to the
other, the motion vector size needs to be doubled. Additionally, a refinement of
the motion vector can be performed at higher resolutions. At this point, the pre-
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FIGURE 5.2: Global structure of a layered scalable video-coding scheme.
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cision and the accuracy of the motion can also be increased at higher levels. By
precision we understand here the size of the block considered for motion estima-
tion and compensation. When doubling the resolution, the dimensions of the block
also double, and the motion representation loses in precision. Therefore, it may be
convenient to split the block in smaller subblocks (two rectangular or four square
ones) and look for refinement vectors in the subblocks. The decision to split or
keep the lower resolution precision may be taken based on a rate–distortion cri-
terion. Once the lowest resolution motion vector field is encoded, the next levels
can be either encoded independently, with a possible loss in efficiency, or only the
refinement vector(s) can be encoded in the refinement layer. The interested reader
is referred to [22] for a more detailed discussion on motion vector scalability and
its impact on the prediction complexity.

Temporal scalability involves partitioning of the group of pictures (GOP) into
layers having the same spatial resolution. A simple way to achieve temporal scal-
ability is to put some of the B frames from an IBBP . . . stream into one or several
enhancement layers. This solution comes at no cost in terms of coding efficiency.
In a more general setting, the base layer may contain I, P, and B frames at the low
frame rate, while the enhancement layers can only use frames from the immedi-
ately lower temporal layer and previous frames from the same enhancement layer
for temporal prediction. Generally, temporal prediction from future frames in the
same enhancement layer is prohibited in order to avoid reordering in the enhance-
ment layers. An example with one enhancement layer is presented in Figure 5.4.

The layered solution can be seen as an upgrade of standard solutions in order
to provide scalability. The main shortcoming of these schemes comes from the
fact that the information redundancy between the different layers cannot be fully
exploited. This functionality is thus achieved at the expense of implementation
complexity and coding efficiency.

FIGURE 5.4: General framework for layered temporal scalability.
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A general problem with introducing scalability in a predictive video coding
scheme is the so-called drift effect. It occurs when the reference frame used for
motion compensation in the encoding loop is not available or not completely
available at the decoder side. Therefore both the encoder and the decoder have
to maintain their synchronization on the same bit rate in the case of SNR scalabil-
ity, resolution level for spatial scalability, and frame rate in the case of temporal
scalability.

For SNR scalability, a layered encoder exploits correlations across subflows
to achieve better overall compression: the input sequence is compressed into a
number of discrete layers arranged in a hierarchy that provides progressive refine-
ment. A strategy often used in the scalable extensions of current standards (i.e.,
in MPEG-2 and H263) is to encode the base layer using a large quantization step,
whereas the enhancement layers have a refinement goal and use finer quantizers
to encode the base layer coding error. This solution is illustrated in Figure 5.5 and
is discussed in more detail later.

5.2.2 Successive Approximation Quantization and Bit Planes

To realize the SNR scalability concept discussed earlier, an important category of
embedded scalar quantizers is the family of embedded dead zone scalar quantiz-
ers. For this family, each transform coefficient x is quantized to an integer

ib =Qb(x)=
⎧
⎨

⎩
sign(x) ·

⌊ |x|
2b

+ ξ

2b

⌋
, if

|x|
2b

+ ξ

2b
> 0,

0, otherwise,

where 
a� denotes the integer part of a; ξ < 1 determines the width of the dead
zone; 
 > 0 is the basic quantization step size (basic partition cell size) of the
quantizer family; and b ∈ Z+ indicates the quantizer level (granularity), with
higher values of b indicating coarser quantizers. In general, b is upper bounded
by a value Bmax, selected to cover the dynamic range of the input signal. The
reconstructed value is given by the inverse operation,

y
p
i =Q−1

b (ib)=
⎧
⎨

⎩

0, ib = 0,

sign(ib) ·
(
|ib| − ξ

2b
+ δ

)
2b
, ib 
= 0,

where 0 ≤ δ < 1 specifies the placement of the reconstructed value yb
i within

the corresponding uncertainty interval (partition cell), defined as Cb
ib

, and i is the
partition cell index, which is bounded by a predefined value for each quantizer
level (i.e., 0≤ i ≤Mb−1, for each b). Based on the aforementioned formulation,
it is rather straightforward to show that the quantizer Q0 has embedded within it
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FIGURE 5.5: Layered SNR scalability.
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all the uniform dead zone quantizers with step sizes 2b
, b ∈ Z+. Moreover, it
can be shown that, under the appropriate settings, the quantizer index obtained by
dropping the b least-significant bits (LSBs) of i0 is the same as that which would
be obtained if the quantization was performed using a step size of 2b
, b ∈ Z+
rather than 
. This means that if the b LSBs of i0 are not available, one can still
dequantize at a lower level of quality using the inverse quantization formula.

The most common option for embedded scalar quantization is successive ap-
proximation quantization (SAQ). SAQ is a particular instance of the general-
ized family of embedded dead zone scalar quantizers defined earlier. For SAQ,
MBmax = MBmax−1 = · · · = M0 = 2 and ξ = 0, which determines a dead zone
width twice as wide as the other partition cells, and δ = 1/2, which implies that
the output levels yb

i are in the middle of the corresponding uncertainty inter-
vals Cb

ip
. SAQ can be implemented via thresholding by applying a monotonically

decreasing set of thresholds of the form

Tb−1 = Tb

2
,

with Bmax ≥ b ≥ 1. The starting threshold TBmax is of the form TBmax = αxmax,
where xmax is the highest coefficient magnitude in the input transform decompo-
sition, and α is a constant that is taken as α ≥ 1/2.

Let us consider the case of using a spatial transform for the compression of the
frames. By using SAQ, the significance of the transform coefficients with respect
to any given threshold Tb is indicated in a corresponding binary map, denoted by
Wb , called the significance map. Denote by w(k) the transform coefficient with
coordinates k= (κ1, κ2) in the two-dimensional transform domain of a given in-
put. The significance operator sb(·) maps any value x(k) in the transform domain
to a corresponding binary value wb(k) in Wb , according to the rule

wb(k)= sb(x(k))=
{

0, if |x(k)|< Tb,

1, if |x(k)| ≥ Tb.

In general, embedded coding of the input coefficients translates into coding the
significance maps Wb, for every b with Bmax ≥ b ≥ 0.

In most state-of-the-art embedded coders, for every b this is effectively per-
formed based on several encoding passes, which can be summarized in the fol-
lowing:

Nonsignificance pass: encodes sb(x(k)) in the list of nonsignificant coefficients
(LNC). If significant, the coefficient coordinates k are transferred into the re-
finement list (RL).

Block Significance pass: For a block of coefficients with coordinates kblock, this
pass encodes sb(x(kblock)) and sign(x(kblock)) if they have descendant blocks
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(under a quad tree decomposition structure) that were not significant compared
to the previous bit plane.

Coefficient Significance pass: If the coordinates of the coefficients of a signifi-
cant block are not in the LNC, this pass encodes the significance of coefficients
in blocks containing at least one significant coefficient. Also, the coordinates
of new significant coefficients are placed into the RL. This pass also moves the
coordinates of nonsignificant coefficients found in the block into the LNC for
the next bit plane level(s).

Refinement pass: For each coefficient in the RL (except those newly put into the
RL during the last block pass), encode the next refinement of the significance
map.

5.2.3 Other Types of Scalability

In addition to the aforementioned scalabilities, other types of scalability have been
proposed.

• Complexity scalability: the encoding/decoding algorithm has less complex-
ity (CPU/memory requirements or memory access) with decreasing tempo-
ral/spatial resolution or decreasing quality [40].

• Content (or object) scalability: a hierarchy of relevant objects is defined in
the video scene and a progressive bit stream is created following this impor-
tance order. Such methods of content selection may be related to arbitrary-
shaped objects or even to rectangular blocks in block-based coders. The
main problem of such techniques is how to automatically select and track
visually important regions in video.

• Frequency scalability: this technique, popular in the context of transform
coding, consists of allocating coefficients to different layers according to
their frequency. Data partitioning techniques may be used to implement
this functionality. The interested reader is referred to Chapter 2 of this book
for more information on data partitioning.

Among existing standards, the first ones (MPEG-1 and H.261) did not provide
any kind of scalability. H.263+ and H.264 provide temporal scalability through
B-frames skipping.

5.3 MPEG-4 FINE GRAIN SCALABLE (FGS) CODING AND ITS
NONSTANDARDIZED VARIANTS

5.3.1 SNR FGS Structure in MPEG-4

The previously discussed conventional scalable coding schemes are not able to
efficiently address the problem of easy, adaptive, and efficient adaptation to time-
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varying network conditions or device characteristics. The reason for this is that
they provide only coarse granularity rate adaptation and their coding efficiency
often decreases due to the overhead associated with an increased number of layers.

To address this problem, FGS coding has been standardized in the MPEG-4
standard, as it is able to provide fine-grain scalability to easily adapt to various
time-varying network and device resource (e.g., power) constraints [6,44]. More-
over, FGS can enable a streaming server to perform minimal real-time processing
and rate control when outputting a very large number of simultaneous unicast
(on-demand) streams, as the resulting bit stream can be easily truncated to ful-
fill various (network) rate requirements. Also, FGS is easily adaptable to unpre-
dictable bandwidth variations due to heterogeneous access technologies (Internet,
wireless cellular or wireless LANs) or to dynamic changes in network conditions
(e.g., congestion events). Moreover, FGS enables low-complexity decoding and
low-memory requirements that provide common receivers (e.g., set top boxes and
digital televisions), in addition to powerful computers, the opportunity to stream
and decode any desired streamed video content. Hence, receiver-driven stream-
ing solutions can only select the portions of the FGS bit stream that fulfill these
constraints [40,45].

In MPEG-4 FGS, a video sequence is represented by two layers of bit streams
with identical spatial resolution, which are referred to as the base layer bit stream
and the fine granular enhancement layer bit stream, as illustrated in Figure 5.6.

FIGURE 5.6: MPEG-4 FGS encoder.
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FIGURE 5.7: The structure of bit planes of Y, U, and V components.

The base layer bit stream is coded with nonscalable coding techniques, whereas
the enhancement layer bit stream is generated by coding the difference between
the original DCT coefficients and the reconstructed base layer coefficients using
a bit-plane coding technique [1,6,7]. The residual signal is represented with bit
planes in the DCT domain, where the number of bit planes is not fixed, but is
based on the number of bit planes needed to represent the residual magnitude in
binary format. Before a DCT residual picture is coded at the enhancement layer,
the maximum number of bit planes of each color component (Y, U, and V) is
first found. In general, three color components may have different numbers of bit
planes. Figure 5.7 gives an example of 5 bit planes in Y component and 4 bit
planes in U and V components. These three values are coded in the picture header
of the enhancement layer stream and transmitted to the decoder.

All components have aligned themselves with the least significant bit (LSB)
plane. The FGS encoder and decoder process bit planes from the most significant
bit (MSB) plane to the LSB plane. Because of the possible different maximum
numbers of bit planes on Y, U, and V components, the first MSB planes may
contain only one or two components. In the example given by Figure 5.7, there is
only Y component existing in the MSB plane. In this case, bits for the coded block
pattern (CBP) of each macroblock can be reduced significantly. Every macroblock
in a bit plane is coded with row scan order.

Since the enhancement layer bit stream can be truncated arbitrarily in any frame
(see Figure 5.8), MPEG-4 FGS provides the capability of easily adapting to chan-
nel bandwidth variations.

5.3.2 MPEG-4 Hybrid Temporal–SNR Scalability with an All-FGS Structure

As mentioned earlier, temporal scalability is an important tool for enhancing the
motion smoothness of compressed video. Typically, a base layer stream coded
with a frame rate fBL is enhanced by another layer consisting of video frames
that do not coincide (temporally) with the base layer frames. Therefore, if the
enhancement layer has a frame rate of fEL, then the total frame of both base and
enhancement layer streams is fBL + fEL.
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FIGURE 5.8: An MPEG-4 FGS two-layer bit stream.

In the SNR FGS scalability structure described in the previous section, the
frame rate of the transmitted video is locked to the frame rate of the base layer re-
gardless of the available bandwidth and corresponding transmission bit rate. Since
one of the design objectives of FGS is to cover a relatively wide range of band-
width variation over IP networks (e.g., 100 kbps to 1 Mbps), it is quite desirable
that the SNR enhancement tool of FGS be complemented with a temporal scala-
bility tool. It is also desirable to develop a framework that provides the flexibility
of choosing between temporal scalability (better motion smoothness) and SNR
scalability (higher quality) at transmission time. This, for example, can be used
in response to user preferences and/or real-time bandwidth variations at transmis-
sion time [44]. For typical streaming applications, both of these elements are not
known at the time of encoding the content.

Consequently, the MPEG-4 framework for supporting hybrid temporal–SNR
scalabilities building on the SNR FGS structure is described in detail in [44]. This
framework provides a new level of abstraction between encoding and transmission
processes by supporting both SNR and temporal scalabilities through a single en-
hancement layer. Figure 5.9 shows the hybrid scalability structure. In addition to
the standard SNR FGS frames, this hybrid structure includes motion-compensated
residual frames at the enhancement layer. These motion-compensated frames are
referred to as FGS Temporal (FGST) pictures [44].

As shown in Figure 5.9, each FGST picture is predicted from base layer frames
that do not coincide temporally with that FGST picture, and therefore, this leads
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FIGURE 5.9: FGS hybrid temporal–SNR scalability structure with (a) bidirectional and (b) forward prediction
FGST pictures and (c) examples of SNR-only (top), temporal-only (middle), or both temporal and SNR (bottom)
scalability.
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FIGURE 5.10: Multilayer FGS–temporal scalability structure.

to the desired temporal scalability feature. Moreover, the FGST residual signal is
coded using the same fine granular video coding method employed for compress-
ing the standard SNR FGS frames.

Each FGST picture includes two types of information: (a) motion vec-
tors (MVs) that are computed in reference to temporally adjacent base layer
frames and (b) coded data representing the bit planes DCT signal of the
motion-compensated FGST residual. The MVs can be computed using standard
macroblock-based matching motion-estimation methods. Therefore, the motion-
estimation and compensation functional blocks of the base layer can be used by
the enhancement layer codec.

The FGST picture data is coded and transmitted using a data-partitioning strat-
egy to provide added error resilience. Under this strategy, after the FGST frame
header, all motion vectors are clustered and transmitted before the residual sig-
nal bit planes. The MV data can be transmitted in designated packets with greater
protection. More details on hybrid SNR–temporal FGS can be obtained from [44].
Finally, these scalabilities can be further combined in a multilayer manner, and an
example of this is shown in Figure 5.10.

5.3.3 Nonstandard FGS Variants

To improve the coding efficiency of FGS, various temporal prediction structures
have been proposed. For example, in [8], an additional motion compensation loop
is introduced into the enhancement layer using the reconstructed high-quality ref-
erence. Furthermore, an improved method is proposed in [9] where an estimation-
theoretic framework is presented to obtain the prediction optimally considering
both the reconstructed high-quality reference and the base layer information.
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This optimization translates into consistent performance gains in compression ef-
ficiency at the enhancement layer. Nonetheless, the main disadvantage of such
schemes is the high complexity due to the multiple motion estimation loops for
the enhancement layer coding.

However, the FGS scheme can also benefit from temporal dependency at the
FGS enhancement layer based on one prediction loop. Motion-Compensated FGS
(MC-FGS) was first proposed to address this problem in [10]. A high-quality ref-
erence, generated from the enhancement layer, can be utilized in the motion com-
pensation loop to get better prediction. However, in case there is a close-loop
structure at the enhancement layer, it could induce drift errors when the enhance-
ment layer cannot be guaranteed at the decoder side due to network bandwidth
fluctuations. Several methods used to reduce the drift in the MC-FGS structure
are discussed in [10].

To introduce temporal prediction into the FGS enhancement layer coding with-
out severe drift errors, several alternative techniques have been proposed. Progres-
sive FGS (PFGS) proposed in [12,13] explores a separate motion compensation
loop for the FGS enhancement layer to improve the compression performance and
provides means to eliminate the drift error as well. There are two key points in
the PFGS coding. One is to use as many predictions from the enhancement ref-
erence layers as possible (for coding efficiency) instead of always using the base
layer as in MPEG-4 FGS. The other point is to keep a prediction path from the
base layer to the highest quality layer across several frames, for error recovery
and channel adaptation. Such a prediction path enables lost or erroneous higher
quality enhancement layers to be automatically reconstructed from lower layers
gradually over a few frames. Thus, PFGS trades off coding efficiency for drift
error reduction.

In [14], a robust FGS (RFGS) technique was presented by incorporating the
ideas of leaky [10,15] and partial predictions to deal with the drift error. In RFGS,
the high-quality reference used in the enhancement layer compensation loop is
constructed by combining the reconstructed base layer image and part of the en-
hancement layer. A frame-based fading mechanism is introduced to cope with the
mismatch error. Specifically, at each frame, a uniformly leaky factor between 0
and 1 is applied to the enhancement layer before adding to the base layer image
to alleviate the error propagation. Moreover, an adaptive leaky prediction based
on the RFGS is proposed in [16] where the leaky factor is determined for each bit
plane of enhancement layer according to its significance and location to further
improve the coding performance.

Furthermore, several techniques are proposed to achieve more flexible trade-
off between drift errors and coding efficiency at the macroblock level rather than
at the frame level. The macroblock-based PFGS (MPFGS) is one such scheme
[17,18]. In MPFGS, three INTER modes, HPHR, LPLR, and HPLR, are pro-
posed for the enhancement layer macroblock encoding (see Figure 5.11). In fact,
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FIGURE 5.11: INTER modes for the enhancement macroblocks in
MPFGS.

the HPHR mode is used to get high coding efficiency by using higher quality
reference, while the HPLR mode is imposed to attenuate the drifting error by in-
troducing the mismatch error into the encoding process. Assuming that the base
layer is always available at the decoder, LPLR and HPLR modes help reset the
drift errors potentially caused by the HPHR mode. A decision-making mecha-
nism is presented in MPFGS to choose the optimal prediction mode for each
enhancement layer macroblock by considering the error propagation effects and
taking advantage of the HPLR mode to achieve a flexible trade-off between high
coding efficiency and low drifting error. Another macroblock-based approach is
presented in [19,20], called enhanced mode-adaptive FGS (EMFGS). Three pre-
dictors, the reconstructed base layer macroblock, the reconstructed enhancement
layer macroblock, and the average of the previous two, are proposed in EMFGS.
A uniformly fading factor, 0.5, is used to form the third predictor. Also, a mode-
selection algorithm is provided to decide the encoding mode of the enhancement
layer macroblock.

Another network-aware solution was presented in [45] to alleviate the FGS
coding inefficiencies based on the available network conditions—video transcal-
ing (TS), which can be viewed as a generalization of (nonscalable) transcoding.
With TS, a scalable video stream that covers a given bandwidth range is mapped
into one or more scalable video streams covering different bandwidth ranges. The
TS framework exploits the fact that the level of heterogeneity changes at different
points of the video distribution tree over wireless and mobile Internet networks.
This provides the opportunity to improve the video quality by performing the
appropriate TS process. An Internet/wireless network gateway represents a good
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candidate for performing TS, thus improving the performance of FGS-based com-
pression schemes.

5.4 MOTION-COMPENSATED WAVELET VIDEO CODECS

As wavelets inherently provide a hierarchical representation of the analyzed con-
tent and also have proved very attractive for spatial and quality scalability in still
image coding, an intense effort has been deployed since the late-1980s to extend
these decompositions in the temporal direction. This can be done by considering
the video sequence as a volume of pixels and applying the temporal transform
on samples along the temporal dimension. Temporal subbands are then spatially
transformed also using a wavelet transform.

5.4.1 Motion-Compensated Temporal Filtering (MCTF)

The idea of temporal extensions of subband decompositions appeared in the late
1980s, with the works of Karlsson and Vetterli [1] and Kronander [2]. In these
works the classical temporal closed-loop prediction scheme was replaced by a
temporal subband decomposition, which didn’t take into account any motion com-
pensation. Later it was shown that motion prediction was also important in these
schemes [3] in order to reduce the detail energy subbands, thus leading to much
better compression performance and visual quality, and ideally the temporal trans-
form should be applied along the motion trajectories.

The simplest temporal wavelet transform is the Haar transform, performing
sums and differences of pairs of frames to obtain respectively approximation and
detail subbands. It is illustrated in Figure 5.12 on a group of frames (GOF) of
eight frames, which allows performing a maximum of three levels of dyadic de-
composition. A review of various MCTF structures for scalable video coding can
be found in [42].

Due to the two-tap low-pass and high-pass filters and downsampling by a factor
of 2, no boundary problems appear when decomposing a GOF of size 2L into a
number of up to L resolution levels.

Moreover, if motion estimation and compensation is performed between pairs
of successive frames, without overlapping, the number of operations and the num-
ber of motion vector fields are the same as for coding the same number of frames
in a predictive scheme (and equal to 2L − 1). However, as pairs of pixels have
to be processed in successive frames in order to obtain the coefficients of the ap-
proximation and detail frames, the motion invertibility becomes a very important
problem.

For example, in a block-based motion-compensated prediction, which is the
most usual technique for temporal prediction, the same area in the reference frame
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FIGURE 5.12: Temporal Haar wavelet decomposition of a GOF.

can be used to predict several areas in the current frame, while parts of the refer-
ence frame are not used at all for prediction. This gives rise to multiple connected
and unconnected pixels (see Figure 5.13) [3,4]. In order to avoid such problems,
other motion models, such as meshes, can be employed [30].

Moreover, in order to take advantage of in-place calculations and guaranteed
reversibility of the scheme even for nonlinear operations (such as the operations
involving motion compensation), a lifting implementation of the wavelet filter
bank was proposed [5,21]. This way, after splitting the input samples in odd and
even indexed ones, theoretically any biorthogonal filter bank with finite impulse
responses can be represented with a finite number of predict-update (see Fig-
ure 5.14) steps, possibly followed by multiplication with a constant.

In the case of temporal decomposition of the video, motion estimation is first
performed between input frames, and the motion vector fields (denoted by v in
Figure 5.15) are used for motion-compensated operations in both the predict and
the update steps.

An important remark is that the predict operator can use all the even indexed
input frames (denoted by x2tt ) to perform the motion-compensated prediction of
the odd indexed frames (denoted by {x2t+1}), while the update operator can use
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FIGURE 5.13: Temporal MC Haar filtering: connected, unconnected, and multiple connected pixels.
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FIGURE 5.14: Basic steps of a lifting scheme.

FIGURE 5.15: Spatiotemporal motion-compensated lifting scheme.

all the detail frames ({Htt }) thus computed to obtain the approximation subband
frames ({Ltt }).The predict and update operators then also involve the motion vec-
tors used to match corresponding positions. Therefore, in the t + 2D framework
they actually become spatiotemporal operators:

Ht(n)= x2t+1(n)− P
({

x2(t−k), v
2(t−k)
2t+1

}
k∈T p

k

)
, ∀n ∈ S,

Lt (p)= x2t (p)+U
({

Ht−k, v
2(t−k)+1
2t

}
k∈T u

k

)
, ∀p ∈ S,

where v
j
i is the motion vector field used to predict the current frame i from the

reference frame j , T
p
k (respectively T u

k ) is the support of the temporal predict
(respectively update) operator, and the spatial position is denoted by n or p.

In the simplest case of the Haar multiresolution analysis, the previous relations
become

Ht(n)= x2t+1(n)− x2t

(
n− v2t

2t+1

)
, ∀n ∈ S,

Lt (p)= x2t (p)+Ht

(
p+ v2t+1

2t

)
, ∀p ∈ S.

However, from the temporal prediction viewpoint, it is better to make use of
longer filters. The biorthogonal 5/3 filter bank has been most studied. In this
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case, both forward and backward motion vectors need to be used for a bidirec-
tional prediction. The analysis equations have the form

Ht(n)= x2t+1(n)− 1

2

[
x2t

(
n− v2t

2t+1

)+ x2t+2
(
n− v2t+2

2t+1

)]
, ∀n ∈ S,

Lt (p)= x2t (p)+ 1

4

[
Ht−1

(
p+ v2t+1

2t

)+Ht

(
p+ v2t+2

2t+1

)]
, ∀p ∈ S.

Due to the fact that a bidirectional prediction is used in this structure, the num-
ber of motion vector fields is double compared with the Haar decomposition, and
therefore the coding of this information may represent an important part of the bit
stream at low bit rates. Efficient algorithms are needed to further exploit redun-
dancies between motion vector fields at the same temporal decomposition level
or at different levels [23].

To effectively deal with the problem of motion-compensated temporal wavelet
filtering associated with fractional precision motion vectors, many-to-one map-
ping for the covered areas and nonreferred pixels for the uncovered areas [31],
proposes a new and general lifting structure (see Figure 5.16) that unifies all the

FIGURE 5.16: The Barbell lifting scheme.
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previous works to solve this problem and enables any traditional motion compen-
sation techniques in block-based motion prediction coding to be easily adopted in
the MCTF framework. The core of this work is a so-called Barbell lifting scheme,
in which instead of a single pixel value, a function of a set of pixel values is used
as the input to the lifting step. The Barbell lifting scheme essentially moves any
existing effective motion prediction schemes in traditional video coding to the
MCTF frames.

A new update scheme, energy distributed update (EDU), is proposed in [32]
to avoid a second set of motion vectors or complex and inaccurate inversion of
the motion information used in the traditional update step. The idea is to update
where predict is made by distributing high-pass signals to the low-pass frame.
Meanwhile, it provides further coding efficiency gain.

5.4.2 Three-Dimensional (3D) Wavelet Coefficients Coding

After 3D (temporal and spatial) wavelet analysis, a video sequence will be de-
composed into a certain number of 3D subbands. For example, in Figure 5.17,
a three-level wavelet (motion compensated) decomposition is performed in the
temporal direction, followed by a three-level 2D spatial dyadic decomposition
within each of the resulting temporal bands.

The next step in 3D wavelet video coding is to encode the transformed 3D
wavelet coefficients in each subband efficiently. Since the subband structure in 3D
wavelet decomposition for video sequence is very similar to the subband structure

FIGURE 5.17: Separable 3D wavelet transform. Three-level dyadic
temporal (motion compensated) wavelet decomposition, followed by
three-level 2D spatial dyadic decomposition.
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in 2D wavelet decomposition for image, it is natural to extend many existing 2D
wavelet-based image coding techniques, such as SPIHT [33], EBCOT [34], and
EZBC [35], to the 3D case. As a matter of fact, almost all the existing 3D wavelet
coefficients coding schemes use one form of these 3D extensions, such as 3D
SPIHT [38], 3D ESCOT [36,37], and 3D EZBC [38,39].

Generally speaking, after 3D (motion compensated) wavelet decomposition,
there is not only spatial similarity inside each frame across the different scale, but
also temporal similarity between two frames at the same temporal scale. Further-
more, temporal linkages of coefficients between frames typically show more cor-
relation along the motion trajectory. An efficient 3D wavelet coefficient coding
scheme should exploit these properties as much as possible. Several algorithms
for texture coding in 3D wavelet schemes have been developed.

5.4.2.1 3D SPIHT

3D SPIHT is an extension of the concept of SPIHT still image coding to 3D video
coding. As we know, the SPIHT algorithm takes advantages of the nature of en-
ergy clustering of subband/wavelet coefficients in frequency and space and ex-
ploits the similarity between subbands. It utilizes three basic concepts: (1) search-
ing for sets in spatial-orientation trees in a wavelet transform; (2) partitioning
the wavelet transform coefficients in these trees into sets defined by the level of
the highest significant bit in a bit plane representation of their magnitudes; and
(3) coding and transmitting bits associated with the highest remaining bit planes
first.

There is no constraint to dimensionality in the SPIHT algorithm itself, as pixels
are sorted regardless of dimensionality. The 3D SPIHT scheme can be easily ex-
tended from 2D SPIHT, with the following three similar characteristics: (1) par-
tial ordering by magnitude of the 3D wavelet transformed video with a 3D set
partitioning algorithm; (2) ordered bit plane transmission of refinement bits; and
(3) exploitation of self-similarity across spatiotemporal orientation trees.

For the 3D wavelet coefficients, a new 3D spatiotemporal orientation tree and
its parent–offspring relationships are defined. For pure dyadic wavelet decompo-
sition with an alternate separable wavelet transform in each dimension, a straight-
forward extension from the 2D case is to form a node in 3D SPIHT as a block with
eight adjacent pixels, two in each dimension, hence forming a node of 2× 2× 2
pixels. The root nodes (at the highest level of the pyramid) have one pixel with no
descendants and the other seven pointing to eight offspring in a 2× 2× 2 cube
at corresponding locations at the same level. For nonroot and nonleaf nodes, a
pixel has eight offspring in a 2× 2× 2 cube one level below in the pyramid. For
nondyadic decomposition similar to the 2D wavelet packet decomposition case,
the 2 × 2 × 2 offspring nodes are split into pixels in these smaller subbands at
the corresponding orientation in the nodes at the original level. For the common
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FIGURE 5.18: Parent–offspring relationship in a spatiotemporal de-
composition.

t + 2D type of wavelet decomposition the parent–offspring relationship is shown
in Figure 5.18. With such defined 3D spatiotemporal trees, the coefficients can be
compressed into a bit stream by feeding the 3D data structure to the 3D SPIHT
coding kernel. The 3D SPIHT kernel will sort the data according to the magnitude
along the spatiotemporal orientation trees (sorting pass) and refine the bit plane
by adding necessary bits (refinement pass).

5.4.2.2 3D ESCOT

The 3D SPIHT coding scheme provides natural scalability in rate (quality). How-
ever, it is difficult to provide temporal or spatial scalabilities due to the inherent
spatiotemporal tree structure. Even with extra effort, it can only provide partial
temporal or spatial scalabilities by modifying the decoder or encoder [35]. How-
ever, 3D ESCOT [36,37] can provide full rate, temporal and spatial scalabilities by
constraining the encoding of wavelet coefficients independently within each sub-
band. Meanwhile, the R–D optimized bit stream truncation process after encoding
guarantees a bit stream with the best video quality given a bit rate constraint.

The 3D ESCOT scheme is in principle very similar to EBCOT [34] in the JPEG-
2000 standard, which offers high compression efficiency and other functionalities
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(e.g., error resilience and random access) for image coding. In extending the 2D
EBCOT algorithm to 3D ESCOT, a different coding structure is used to form a
new set of 3D contexts for arithmetic coding that makes the algorithm very suit-
able for scalable video compression. Specifically, each of the subbands is coded
independently in the extended coding structure. The advantage of doing so is that
each subband can be decoded independently to achieve flexible spatial/temporal
scalability. The user can mix an arbitrary number of spatiotemporal subbands in
any order to obtain the desired spatial or temporal resolution.

Unlike the EBCOT encoder [34] in JPEG2000, the ESCOT encoder takes a
subband as a whole entity. There are two reasons for this. (1) Normally a video
frame has lower resolution than a still image. Not splitting a subband further into
many small 3D blocks brings better coding efficiency of the context-based adap-
tive arithmetic coder. (2) Taking a subband as a whole entity is also convenient
for incorporating the possible motion model in the coding process, since within
the same 3D subband, the motion vector may point from any coefficients on a
temporal plane to any other coefficients on other temporal planes.

As in the 2D EBCOT case, the contexts for 3D ESCOT are also formed with
immediate neighbors in the same subband. The difference is that the immediate
neighbors are now in three directions instead of two: horizontal, vertical, and tem-
poral (Figure 5.19). In addition, the temporal neighbors not only may be spatially
collocated in different frames, but also may be neighbors pointed to by motion
vectors across frames with a certain motion model [36,37].

The encoding of the 3D wavelet coefficients in the 3D ESCOT scheme is done
bit plane by bit plane. For each bit plane, the coding procedure consists of three
distinct passes: Significance Propagation, Magnitude Refinement, and Normal-
ization, which are applied in turn. Each pass processes a “fractional bit plane.” In
each pass, the scanning order is along the horizontal direction first, the vertical di-
rection second, and finally the temporal direction. In the Significance Propagation
pass, samples that are not yet significant but have a “preferred neighborhood” are

FIGURE 5.19: Immediate neighbors of a sample in 3D ESCOT coding.
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processed. A sample has a “preferred neighborhood” if and only if the sample has
at least a significant immediate diagonal neighbor for a HHH (high frequency in
three directions) subband or a significant immediate horizontal, vertical, or tem-
poral neighbor for the other types of subbands. In the Magnitude Refinement pass,
the samples that have been significant in the previous bit planes are encoded. In
the Normalization pass, those samples that have not yet been coded in the previous
two passes are coded.

In the previous stage, each subband is coded separately up to a specific pre-
cision and each forms an independent bit stream. The objective of optimal bit
stream truncation is to construct a final bit stream that satisfies the bit rate con-
straint and minimizes the overall distortion. As in the EBCOT algorithm [34], the
end of each pass at each “fractional” bit plane is a candidate truncation point with
a precalculated R–D value pair for that subband. A straightforward way to achieve
R–D optimized truncation is to find the convex hull of the R–D pairs at the end of
each fractional bit plane and truncate only at the candidate truncation points that
are on the convex hull.

To achieve quality scalability, a multilayer bit stream may be formed, where
each layer represents a quality level. Depending on the available bandwidth and
the computational capability, the decoder can choose to decode up to the layer it
can handle. The fractional bit plane coding ensures that the bit stream is finely
embedded. Since each subband is independently coded, the bit stream of each
subband is separable. The encoder can choose to construct a bit stream favoring
spatial scalability or temporal scalability. Also, the decoder can easily extract only
a few subbands and decode only these subbands. Therefore, the implementation
of resolution scalability and temporal scalability is natural and easy.

5.4.2.3 3D EZBC

3D EZBC is an extension of the EZBC image coder [35] to allow coding of three-
dimensional wavelet coefficients. The concept of EZBC is inspired by the success
of two popular embedded image coding techniques: zero-tree/-block coding, such
as SPIHT [33], and context modeling of the subband/wavelet coefficients, such as
EBCOT [34]. As discussed, zero-tree/-block coding takes advantage of the natural
energy clustering of subband/wavelet coefficients in frequency and in space and
exploits the similarity between subbands. Moreover, instead of all pixels, only
a small number of elements in the lists [33] need to be processed in individual
bit plane coding passes. Thus, processing speed for this class of coders is very
fast. However, in the context model based coders [34], individual samples of the
wavelet coefficients are coded bit plane by bit plane using context-based arith-
metic coding to effectively exploit the strong correlation of subband/wavelet coef-
ficients within and across subbands. Nevertheless, unlike zero-tree/-block coders,
these algorithms need to scan all subband/wavelet coefficients at least once to
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FIGURE 5.20: Quad tree decomposition in 3D EZBC.

finish coding of a full bit plane, with an implied higher computation cost. The
EZBC algorithm combines the advantages of these two coding techniques, that is,
low computation complexity and effective exploitation of correlation of subband
coefficients, using both ZeroBlocks of subband/wavelet coefficients and context
modeling.

Similar to EZBC for image coding, 3D EZBC is based on quad tree represen-
tation of the individual subbands and frames. The bottom quad tree level, or pixel
level, consists of the magnitude of each subband coefficient. Each quad tree node
of the next higher level is then set to the maximum value of its four corresponding
nodes at the current level; see Figure 5.20. In the end, the top quad tree node corre-
sponds to the maximum magnitude of all the coefficients from the same subband.
As in EZBC, 3D EZBC uses this quad tree-based zero-block coding approach for
hierarchical set-partition of subband coefficients to exploit the strong statistical
dependency in the quad tree representation of the decomposed subbands. Further-
more, to code the significance of the quad tree nodes, context-based arithmetic
coding is used. The context includes eight first-order neighboring nodes of the
same quad tree level and the node of the parent subband at the next lower quad
tree level. Experiments have shown that including a node in the parent subband in
the interband context model is very helpful in predicting the current node, espe-
cially at higher levels of a quad tree.

Like SPIHT and other hierarchical bit plane coders, lists are used for tracking
the set-partitioning information. However, the lists in 3D-EZBC are separately
maintained for nodes from different subbands and quad tree levels. Therefore,
separate context models are allowed to be built up for the nodes from different
subbands and quad tree levels. In this way, statistical characteristics of quad tree
nodes from different orientations, subsampling factors, and amplitude distribu-
tions are not mixed up. This ensures a resolution scalable bit stream while main-
taining the desirable low complexity feature of this class of coders.

5.4.3 Variants and Extensions: UMCTF, 3-bands

The concept of “unconstrained MCTF” (UMCTF) [10,43] allows very useful ex-
tensions of the MCTF. By selecting the temporal filter coefficients appropriately,
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multiple reference frames and bidirectional prediction can be introduced, such
as in H.264, in the MC-wavelet framework. No update step is used, however,
which makes this scheme comparable with an open-loop multiresolution predic-
tive structure. We can adaptively change the number of reference frames, the rel-
ative importance attached to each reference frame, the extent of bidirectional fil-
tering, and so on. Therefore, with this filter choice, the efficient compensation
strategies of conventional predictive coding can be obtained by UMCTF, while
preserving the advantages of conventional MCTF.

Other extensions of the temporal transform are aimed at providing nondyadic
scalability factors. This can be achieved by M-band filter banks, for which a gen-
eral framework was proposed in [25]. In particular, a three-band filter bank in
lifting form was proposed in [24] and is illustrated in Figure 5.21. For simplicity,
Figure 5.21 shows only predict and update blocks; however, as in the dyadic case,
they involve motion estimation/compensation.

Following the notation in Figure 5.21, the analysis equations, which lead to one
approximation and two detail subbands, are

⎧
⎪⎪⎨

⎪⎪⎩

H+t (n)= x3t+1(n)− P+
({x3t }t∈N

)
,

H−t (n)= x3t−1(n)− P−
({x3t }t∈N

)
,

Lt (p)= x3t (p)+U+
({

H+t
}
t∈N

)+U−
({

H−t
}
t∈N

)
.

Note that in this scheme all the frames indexed by multiples of three are used
by the two prediction operators. For example, by choosing frames x3t and x3t+3
for the prediction of frame x3t+1 and likewise choosing frames x3t−3 and x3t for
predicting frame x3t−1, a structure similar to the classical IBBP . . . structure can
be obtained.

FIGURE 5.21: Three-band lifting scheme.
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FIGURE 5.22: A three-band lifting-like scheme.

However, the simplest choice, corresponding to a Haar-like transform, is to
have identity predict operators and linear update operators. In this case, the analy-
sis equations become

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H+t (n)= x3t+1(n)− x3t

(
n− v3t

3t+1

)
,

H−t (n)= x3t−1(n)− x3t

(
n− v3t

3t−1

)
,

Lt (p)= x3t (p)+ 1

4

(
H+t

(
p+ v3t

3t+1

)+H−t
(
p+ v3t

3t−1

))
.

More complex lifting-like schemes (as in Figure 5.22) have been proposed in [26],
as well as other possible M-band motion-compensated temporal structures.

These structures allow a frame rate adaptation from 30 to 10 fps, for example,
or from 60 to 20 fps. Flexible frame rate changes can be achieved by cascading
dyadic and M-band filter banks.

Another direction for the extension of spatiotemporal transforms is to replace
the 2D wavelet decomposition by other spatial representations, such as wavelet
packets [27] or general filter banks [29], which also allow for more flexible spatial
scalability factors [28].

5.4.4 Switching Spatial and Temporal Transforms

The interframe wavelet video coding schemes presented in the previous sections
employ MCTF before the spatial wavelet decomposition is performed. Through-
out the chapter we refer to this class of interframe wavelet video coding schemes
as t +2D MCTF. Despite their good coding efficiency performance and low com-
plexity, these types of MCTF structures have also several drawbacks.
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1. Limited motion-estimation efficiency. t + 2D MCTF are inherently limited
by the quality of the matches provided by the employed motion estimation
algorithm. For instance, discontinuities in the motion boundaries are rep-
resented as high frequencies in the wavelet subbands, and the “Intra/Inter”
mode switch for motion estimation is not very efficient in t + 2D MCTF
schemes, as the spatial wavelet transform is applied globally and cannot
encode the resulting discontinuities efficiently. Moreover, the motion esti-
mation accuracy, motion model, and adopted motion estimation block size
are fixed for all spatial resolutions, thereby leading to suboptimum imple-
mentations compared with nonscalable coding that can adapt the motion
estimation accuracy based on the encoded resolution. Also, because the
motion vectors are not naturally spatially scalable in t + 2D MCTF, it is
necessary to decode a large set of vectors even at lower resolutions.

2. Limited efficiency spatial scalability. If the motion reference during t+2D
MCTF is, for example, at HD resolution and decoding is performed at a
low resolution (e.g., QCIF), this leads to “subsampling phase drift” for the
low resolution video.

3. Limited spatiotemporal decomposition structures. In t + 2D MCTF, the
same temporal decomposition scheme is applied for all spatial subbands.
Hence, the same levels of temporal scalability are provided independent of
the spatial resolution.

A possible solution for the aforementioned drawbacks is to employ “in-band
temporal filtering” schemes, where the order of motion estimation and compensa-
tion and that of the spatial wavelet transform (2D-DWT) are interchanged, which
we denote as 2D+ t MCTF schemes. The spatial wavelet transform for each frame
is entirely performed first and multiple separate motion compensation loops are
used for the various spatial wavelet bands in order to exploit the temporal correla-
tion present in the video sequence (see Figure 5.23). In contrast to the method of
Figure 5.15, where spatial decomposition steps were interleaved with the temporal
tree, MCTF can now also be applied to spatial high-pass (wavelet) bands. Subse-
quently, coding of the wavelet bands after temporal decorrelation can be done us-
ing spatial-domain coding techniques such as bit plane coding followed by arith-
metic coding or transform-domain coding techniques based on DCT, wavelets,
and so on.

5.4.5 Motion Estimation and Compensation in the Overcomplete Wavelet Domain

Due to the decimation procedure in the spatial wavelet transform, the wavelet co-
efficients are not shift invariant with reference to the original signal resolution.
Hence, translation motion in the spatial domain cannot be accurately estimated
and compensated from the wavelet coefficients, thereby leading to a significant
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FIGURE 5.23: Multiresolution motion compensation coder using “in-band prediction.”
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FIGURE 5.24: Shift variance of the Haar wavelet transform. Right sig-
nal shifted by one sample to the right, low-pass and high-pass coefficients
in Haar DWT and Haar ODWT.

coding efficiency loss (see Haar 1D-DWT case in Figure 5.24). To avoid this in-
efficiency, motion estimation and compensation should be performed in the over-
complete wavelet domain rather than in the critically sampled domain (see Haar
1D-ODWT case in Figure 5.24). Overcomplete discrete wavelet data (ODWT) can
be obtained through a similar process as the critically sampled discrete wavelet
signals by omitting the subsampling step. Consequently, the ODWT generates
more samples than DWT, but enables accurate wavelet domain motion compen-
sation for the high-frequency components, and the signal does not bear frequency-
inversion alias components.

Despite the fact that ODWT generates more samples, an ODWT-based encoder
still needs to only encode the critically sampled coefficients. This is because the
overcomplete transform coefficients can be generated locally within the decoder.
Moreover, when the motion shift is known before analysis and synthesis filtering
are performed, it is only necessary to compute those samples of the overcomplete
representation that correspond with the actual motion shift.

The t + 2D MCTF schemes (Figure 5.25a) can be easily modified into 2D+ t

MCTF (Figure 5.25b).
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FIGURE 5.25: (a) The encoding structure that performs open-loop en-
coding in the spatial domain – t + 2D MCTF. (b) The encoding struc-
ture that performs open-loop encoding in the wavelet domain (in-band) –
2D+ t MCTF.

More specifically, in 2D+ t MCTF, the video frames are spatially decomposed
into multiple subbands using wavelet filtering, and the temporal correlation within
each subband is removed using MCTF (see [19,20]). The residual signal after the
MCTF is coded subband by subband using any desired texture coding technique
(DCT based, wavelet based, matching pursuit, etc.). Also, all the recent advances
in MCTF can be employed for the benefit of 2D+ t schemes, which have been
first introduced in [46–48].
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5.5 MPEG-4 AVC/H.264 SCALABLE EXTENSION

As scalable modes in other standards, MPEG-4 AVC/H.264 scalable extension
enables scalabilities while maintaining the compatibility of the base layer to the
MPEG-4 AVC/H.264 standard. MPEG-4 AVC/H.264 scalable extension provides
temporal, spatial, and quality scalabilities. Those scalabilities can be applied si-
multaneously. In MPEG-4 AVC/H.264, any frame can be marked as a reference
frame that can be used for motion prediction for the following frames. Such
flexibility enables various motion-compensated prediction structures (see Fig-
ure 5.26).

The common prediction structure used in the MPEG-4 AVC/H.264 scalable
extension is the hierarchical-B structure, as shown in Figure 5.26. Frames are
categorized into different levels. B-frames at level i use neighboring frames at
level i − 1 as references. Except for the update step, MCTF and hierarchical-B
have the same prediction structure. Actually, at the decoder, the decoding process
of hierarchical-B and that of MCTF without the update step is the same. Such
a hierarchical prediction structure exploits both short-term and long-term tem-
poral correlations as in MCTF. The other advantage is that such a structure can
inherently provide multiple levels of temporal scalability. Other temporal scala-
bility schemes compliant with MPEG-4 AVC/H.264 have been presented in [25]
and are shown to provide increased efficiency and robustness on error-prone net-
works.

To achieve SNR scalability, enhancement layers, which have the same motion-
compensated prediction structure as the base layer, are generated with finer quan-
tization step sizes. At each enhancement layer, the differential signals to the pre-
vious layer are coded. Basically it follows the scheme shown in Figure 5.26.

To achieve spatial scalability, the lower resolution signals and the higher reso-
lution signals are coded into different layers. Also, coding of the higher resolution
signals uses bits for the lower resolution as prediction. In contrast to previous cod-
ing schemes, the MPEG-4 AVC/H.264 scalable extension can set a constraint on

            

FIGURE 5.26: Four-level hierarchical-B prediction structure.
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the interlayer prediction among different resolutions in which only intra-coded
macroblocks are reconstructed to predict the higher resolution, whereas for inter-
coded macroblocks, only the motion-compensated residue signals are allowed to
predict the corresponding residue signals at the higher resolution. The advantage
of such a constraint is that it reduces the decoding complexity because the decoder
does not need to do motion compensation for the lower layer. The drawback is that
such constraint may have a coding performance penalty.

5.6 SPATIOTEMPORAL–SNR TRADE-OFFS FOR IMPROVED VISUAL
PERFORMANCE

In [41], it was shown that performing trade-offs among spatial, temporal, and
SNR resolutions as a function of content characteristics often results in a consid-
erably improved user experience for multimedia applications. Nevertheless, this
multidimensional flexibility also brings two major challenges. First, no objective
measure exists that can quantify the impact on the video quality after multidi-
mensional adaptation (MDA) operations in a synergistic manner, as each compo-
nent of MDA affects the video quality in a very distinct way. Second, even with
an acceptable quality measurement, effective methods for modeling the relation-
ship between video quality and various adaptation operations are important for
deciding the right MDA given a resource constraint. To solve this challenge, a
general classification-based prediction framework was used successfully in [41]
for selecting the preferred MDA operations based on subjective quality evalua-
tion. For this purpose, domain-specific knowledge or general unsupervised clus-
tering was first deployed to construct distinct categories within which the videos
share similar preferred MDA operations. Thereafter, a machine learning-based
method was applied where the low-level content features extracted from the com-
pressed video streams are employed to train a framework for the problem of joint
spatiotemporal–SNR adaptation selection.

5.7 SUMMARY AND FURTHER READING

New perspectives in video compression are reinforced by recent advances in scal-
able video coding. MCTF-based coders provide high flexibility in bit stream scal-
ability across different temporal, spatial, and quality resolutions. In addition, they
provide better error resilience than conventional (prediction based) coders. In fact,
MCTF-based coders are better able to separate relevant from irrelevant informa-
tion. The temporal low-pass bands highlight information that is consistent over
a large number of frames, establishing a powerful means for exploiting multiple
frame redundancies not achievable by conventional frame-to-frame or multiframe
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prediction methods. Moreover, noise and quickly changing information that can-
not be handled by motion compensation appear in the temporal, high-pass bands,
which can supplement the low-pass bands for more accurate signal reproduction
whenever desirable, provided that a sufficient data rate is available. Hence, the de-
noising process that is often applied as a preprocessing step before conventional
video compression is an integral part of scalable MCTF-based coders.

Due to the nonrecursive structure, higher degrees of freedom are possible for
both encoder and decoder optimization. In principle, a decoder could integrate
additional signal synthesis elements whenever the received information is incom-
plete, such as frame-rate up-conversion, film grain noise overlay, or other ele-
ments of texture and motion synthesis, which could easily be integrated as a part
of the MCTF synthesis process without losing any synchronization between en-
coder and decoder. From this point of view, even though many elements of MCTF
in the lifting interpretation can be regarded as extensions of proven techniques
from MC prediction-based coders, this framework exhibits and enables a number
of radically new options in video encoding. However, when a wavelet transform
is applied for encoding of the low-pass and high-pass frames resulting from the
MCTF process, the commonalities with 2D wavelet coding methods are obvi-
ous. If the sequence of spatial and temporal filtering is exchanged (2D + t in-
stead of t + 2D wavelet transform), MCTF can be interpreted as a framework for
further interframe compression of (intra frame restricted) 2D wavelet representa-
tions such as JPEG 2000. From this point of view, a link between the previously
separate worlds of 2D wavelet coding with their excellent scalability properties
and compression-efficient motion-compensated video coding schemes is estab-
lished by MCTF. This shows the high potential for future developments in the
area of motion picture compression, even allowing seamless transition between
intra frame and inter frame coding methods, depending on the application re-
quirements for flexible random access, scalability, high compression, and error
resilience. Furthermore, scalable protection of content, allowing access manage-
ment for different resolution qualities of video signals, is a natural companion of
scalable compression methods.

Nevertheless, a number of topics can be identified that still require further re-
search, but may also lead to even higher compression performance of this new
class of video coding algorithms. These include

• Strategies for motion estimation and motion vector encoding, including
consideration of prediction and update steps, bidirectional prediction, and
update filtering, as well as combined estimation over different levels of the
temporal wavelet tree.

• Application and optimization of nonblock-based motion compensation,
which is more natural used in combination with spatial wavelet decom-
position.

• Scalability of motion information.
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• Optimum adaptation of the spatial/temporal decomposition trees, including
consideration of integrated solutions of spatial/temporal filtering.

• Optimization of spatial/temporal encoding, including psychovisual proper-
ties.

• Rate–distortion optimum truncation of scalable streams, including the
trade-offs at various rates.

• Creation of complexity-scalable video coding bit streams.
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6
Scalable Audio Coding

Jin Li

6.1 INTRODUCTION

High-performance audio codecs bring digital music into practical reality. The
most popular audio compression technology today is MP3 [8], which stands for
layer III of the MPEG-1 audio compression standard. Developed in the early
1990s, MP3 does not perform very well in terms of compression efficiency. More
advanced audio compression technologies have been proposed later, such as the
MPEG-4 Advanced Audio Codec [1,10], Real Audio, and Windows Media Audio
(WMA). The latter two are commercial audio coders developed by RealNetworks
and Microsoft, respectively. Most existing audio codecs optimize only on a sin-
gle target compression ratio, striving to deliver the best perceptual audio quality
given the length of the bit stream or to deliver the shortest length of the bit stream
given a constraint on playback quality. However, such a goal is far from enough,
especially considering the unique characteristics of audio (as well as other media
file) compression. Unlike data compression, where all content must be exactly
preserved during the compression, audio compression is elastic and tolerates dis-
tortion. It is always possible to compress the audio a little more or a little less,
with slightly more or less distortion. In fact, in many applications, it is difficult to
foresee the exact compression ratio required at the time the audio is compressed.
The ability to quickly change the compression ratio afterward has important ap-
plications and led to better user experience in audio storage and transmission.
For example, if the compression ratio is adjustable, the compressed audio can be
stretched to meet the exact requirements of the customer. We can build a stretch-
able audio recording device, which at first uses the highest possible compression
quality (lowest possible compression ratio) to store the compressed audio. Later,
when the length of the compressed audio at the highest quality exceeds the mem-
ory of the device, the compressed bit stream of the existing audio file can be
truncated to leave memory for newly recorded audio content. A device with scal-
able audio compression technology can perform this stretch step again and again,

159
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continuously increasing the compression ratio of the existing media, and freeing
up storage space to squeeze in new content. As discussed in Chapter 4, the ability
to quickly adjust the compression ratio is also very useful in the media commu-
nication/streaming scenario, where the server and the client may adjust the size
of the compressed audio to match the instantaneous bandwidth and condition of
the network, and thus reliably deliver the best possible media quality over the
network. Moreover, multiple description coding [9] may also be obtained from a
scalable coded audio bit stream. The idea is to apply more protection (using an
erasure code with more parity packets) toward the head of the bit stream and to
apply less protection toward the tail of the bit stream. Thus, with any number of
packet losses, a prefix of the compressed bit stream is always preserved. As a re-
sult, the quality of the delivered audio may degrade gracefully with an increase in
packet loss probability.

The straightforward way of adjusting the compression ratio of a compressed
audio file is to first decode the compressed media file and then re-encode it. The
computational complexity involved in the decoding and re-encoding operation can
be quite costly. Moreover, there is usually a performance penalty involved, as the
re-encoded audio is usually lower quality compared with directly encoding the au-
dio file at the target compression ratio. Transcoding technologies have been devel-
oped to adjust the compression ratio of traditionally compressed bit streams, such
as MP3 bit streams. Compared with decoding and then re-encoding, transcoding
achieves modest computation savings by skipping some of the compression oper-
ations, mainly the inverse and forward transform and (for video transcoding) mo-
tion estimation. Almost all existing transcoding techniques still need to perform
the entropy decoding and re-encoding; therefore, the speed of the transcoding is
not very fast, usually at least 25% of that of media encoding.

In comparison, scalable/embedded coders allow the compressed bit stream to
be directly manipulated. Popularized by Shapiro in his embedded zerotree wavelet
(EZW) [12] image coder, embedded coder has the attractive property that the high
compression ratio bit stream is embedded in the low compression ratio bit stream.
Increasing the compression ratio can thus be done very quickly by extracting from
a master bit stream the subset of the bit stream that corresponds to the applica-
tion bit stream. In the case of embedded image compression, this operation can
be further simplified to truncating the existing bit stream. In the domain of im-
age compression, it has been shown [4,11,13] that embedded coding cannot only
achieve flexible bit stream adjustment, but also obtain state-of-the-art compres-
sion performance and reasonable computational complexity. In fact, the most re-
cent image compression standard, JPEG-2000 [14], defines an embedded image
coder.

It is a misconception that you have to pay for the scalable functionality with
compression performance. Just as embedded image coding did not take off un-
til highly efficient bit plane entropy coding was developed, highly efficient em-
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bedded audio coding needs unique technologies that suit its need for embed-
ded coding. In this chapter, we develop an embedded audio coder (EAC) with
performance that exceeds or matches that of the best available audio coders.
The key technology that empowers EAC with such high performance is the
use of implicit auditory masking and a high-performance subbit plane entropy
coder.

6.2 SCALABLE AUDIO CODING FRAMEWORK

The embedded audio coder is a fully scalable audio waveform coder. There are
three components of the EAC: an encoder, a decoder, and a parser. The encoder
turns the input audio waveform into a compressed bit stream with the highest
desirable bit rate, audio sampling rate, and number of audio channels. We call
the compressed bit stream formed by the encoder the master bit stream, since
all scaled bit streams (which we call application bit streams) will be formed by
extracting subsets of bits from the master bit stream. The decoder turns the com-
pressed bit stream, whether the master bit stream or the application bit stream,
back into an audio waveform. The parser extracts a subset of the master bit stream
to form an application bit stream with a reduced rate, reduced sampling rate, or
reduced number of audio channels.

The framework of the EAC encoder is shown in Figure 6.1. The input audio
waveform first goes through a channel mixer (MIX). Each channel of mixed au-
dio is then separately transformed and quantized. After that, the transformed and
quantized audio coefficients are split into sections, with each section of audio

FIGURE 6.1: Embedded audio coding framework.
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coefficients corresponding to one mixed channel of a particular time span and
frequency range. Next, an embedded entropy coder is applied to each section to
encode the coefficients into an embedded bit stream. Each section bit stream can
be truncated after compression to trade distortion versus coding rate. Finally, a bit
stream assembler puts together the embedded bit streams of the sections to form
the master bit stream of the compressed audio.

Because the master bit stream is formed by concatenating together separately
coded section bit streams, the master bit stream may be reshaped in a number of
ways. In fact, the EAC parser takes the master bit stream as input and outputs an
application bit stream with a possibly reduced bit rate, reduced number of audio
channels, reduced sampling rate, or a combination of all. To scale by number of
audio channels or audio sampling rate, the EAC parser simply drops the sections
that are not needed any more. To scale by bit rate, the EAC parser further truncates
the embedded bit stream of each section. The reshaped bit streams of needed
sections are then put together to form the application bit stream.

The EAC decoder simply reverses the operation of the EAC encoder. It first de-
multiplexes the master bit stream or the application bit stream into a compressed
bit stream for each section. Then, the compressed bit stream for each section is
fed into a separate entropy decoder. The decoded coefficients are combined, in-
verse quantized, and transformed. Finally, a channel remixer recovers the playable
audio waveform.

In the following, we will describe in detail the components of the EAC en-
coder: the channel mixer, the audio transform, the quantizer, the section splitter,
the embedded entropy coder, and the bit stream assembler.

6.3 CHANNEL MIXER: SCALE BY NUMBER OF AUDIO CHANNELS

The channel mixer combines the input audio into a number of mixed channels. If
the input audio is mono, the MIX simply passes through the audio. If the input
audio is stereo, we may combine and mix the left (L) and right (R) audio channels
into ch1 and ch2, as follows:

[
ch1
ch2

]
=M1

[
L

R

]
, (6.1)

where the mixing matrix M1 takes the form

M1 =
⎡

⎣

√
2

2

√
2

2√
2

2 −
√

2
2

⎤

⎦ . (6.2)

If the input audio has more than two channels, a multichannel mixer will be used
to mix the multichannel audio. For example, the operation to mix six input audio
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channels can be described as

⎡
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where the six input channels, Left Front (L), Right Front (R), Center Front (C),
Low Frequency Enhancement (LFE), Left Surround (LS), and Right Surround
(RS), are mixed into six output channels chi , in which i denotes the ith mixed
channel. The matrix M1 is the stereo mixing matrix in (6.2), and M2 is the multi-
channel to stereo fold-down matrix,

M2 =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

1 α β χ

1 α β χ

1
1

1
1

⎤

⎥⎥
⎥⎥⎥⎥
⎦

,

where α, β and χ are constant fold-down parameters. Both mixing matrices M1

and M2 have the desirable properties that a small set of mixed audio channels
may represent a scaled-down representation of the original multichannel audio.
For example, ch1 represents the audio component L + R and may serve as a
good mono representation of the stereo audio, should the playback device only
support mono playback. ch1 and ch2 form a scaled-down stereo representation of
the six-channel input audio. The MIX operation thus ensures that the compressed
bit stream can be scaled by audio channels.

6.4 AUDIO TRANSFORM

After channel mixing, the waveform of each mixed audio channel is transformed
by a modified discrete cosine transform (MDCT) or a modulated lapped transform
(MLT) [5]. We switch the MDCT window between a long and a short window. The
long window is used for homogeneous audio segments, while the short window is
used for audio segments with large energy fluctuations to reduce the effect of pre-
echoing. Assuming the input audio is sampled at 44.1 kHz, the size of the long
MDCT window (Wl) is 2048 samples, while the size of the short MDCT window
(Ws ) is 256 samples.
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The MDCT is defined

X(m)=
√

2

N

2N−1∑

k=0

w(k)x(k) cos
(2k+ 1+N)(2m+ 1)π

4N
, m= 0, . . . ,N − 1,

(6.4)

where N is the length of the MDCT window (Wl or Ws ), X(m) is the value of the
MDCT coefficient, x(k) is the input audio samples, and w(k) is the window func-
tion. The MDCT can be decomposed into two operations: windowing and time
domain aliasing (TDA) and the discrete cosine transform of type IV (DCT-IV).

The windowing/TDA operation takes the form

(
x(k)

x(N − 1− k)

)
�→

(
w(N − 1− k) w(k)

−w(k) w(N − 1− k)

)(
x(k)

x(N − 1− k)

)
,

for k = 0, . . . ,N/2− 1, (6.5)

where w(k) is a window function that fulfills the time domain aliasing cancella-
tion (TDAC) condition

w(k)2 +w(N − 1− k)2 = 1 , k = 0, . . . ,N/2− 1. (6.6)

One of the most widely used window functions in audio compression is the Sine
window,

w(k)= sin

[
π

N

(
k+ 1

2

)]
. (6.7)

Another popular window is the Kaiser–Bessel Derived (KBD) window, which
does not have an analytic expression.

After the windowing/TDA operation, the DCT-IV is applied:

X(m)=
√

2

N

N−1∑

k=0

x(k) cos
(2k + 1)(2m+ 1)π

4N
, m= 0, . . . ,N − 1. (6.8)

The DCT-IV can be implemented by a prerotation, an FFT, and a postrotation.
The operation of the MDCT with switching window is depicted in Figure 6.2.

Each channel of mixed audio is separated into frames of length Wl (the size of the
long window). Each frame can be occupied by a single long window or can be split
into Wl/Ws (in the default configuration, 8) short windows. If two consecutive
frames are both long windows, a long window TDA operation is applied between
the frames. Between two short windows, or between a long and a short window,
a short window TDA operation is applied. After the TDA operation, a DCT-IV
operation is applied to the signal.



Section 6.5: QUANTIZATION AND SECTION SPLIT 165

FIGURE 6.2: MDCT with a switching window.

The MDCT operation can be easily inverted, as both the TDA and the DCT-IV
operation can be inverted. The inverse TDA operation is

(
x(k)

x(N − 1− k)

)
�→

(
w(N − 1− k) −w(k)

w(k) w(N − 1− k)

)(
x(k)

x(N − 1− k)

)
,

for k = 0, . . . ,N/2− 1, (6.9)

and the inverse DCT-IV operation is

x(k)=
√

2

N

N−1∑

m=0

X(m) cos
(2k+ 1)(2m+ 1)π

4N
, k = 0, . . . ,N − 1. (6.10)

6.5 QUANTIZATION AND SECTION SPLIT

After the MDCT transform, all MDCT coefficients are uniformly quantized ac-
cording to the rule

q(m)= sign
(
X(m)

)
⌊ |X(m)|

δ

⌋
, (6.11)

where X(m) is an MDCT coefficient, q(m) is the quantization result, δ is the
quantization step size, sign(x) returns the sign of the coefficient x, and 
x� de-
notes the largest integer that is less or equal than x. The quantization process is
conventional: uniform with a central dead zone twice the size of the quantization
step size δ. However, the quantizer does not determine the ultimate quality of the
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encoded audio. Because the quantized coefficients will be encoded by a subbit
plane-embedded entropy coder with a truncatable bit stream, additional distortion
can be introduced by the entropy coding module and the bit stream assembler
module. Thus, the main functionality of the quantization module is to map the co-
efficients from a floating point representation to an integer representation so that
they can be more efficiently processed by the entropy coding module. The default
quantization step size in EAC is rather fine, for example, δ = 1/128.

To improve the efficiency of the entropy coder, we group the quantized coef-
ficients of a certain number of consecutive frames into a time slot. In the default
configuration, a time slot consists of 16 frames, that is, 16 long MDCT windows
or 128 short windows. A time slot therefore consists of 32,768 samples, which is
about 0.74 second if the input audio is sampled at 44.1 kHz.

For sampling rate scalability, we may further split the coefficients in the time
slot into a number of sections, each section covering the coefficients of a par-
ticular frequency range. For example, for a possible 2× and 4× sampling rate
reduction, we split the coefficients into three sections of 0–0.25π , 0.25π–0.50π ,
and 0.50π–1.00π . By throwing away the coefficients corresponding to 0.50π–
1.00π , and inversely transforming by a MDCT with a half window size for both
long and short MDCT windows, we can decode the bit stream into audio with a
2× sampling rate reduction. Similarly, by throwing away the coefficients corre-
sponding to 0.25π–0.50π and 0.50π–1.00π , and inversely transforming by an
MDCT with a quarter window size, we can decode the audio with a 4× sam-
pling rate reduction. Such an audio sampling rate reduction can be considered as
passing the audio waveform through a low-pass filter that first transforms the au-
dio by MDCT, throws away half (or three-quarters) of the coefficients, and then
inversely transforms the coefficients with an MDCT at half (or quarter) window
size. It provides an effective means of sampling rate reduction of the compressed
audio, which is very useful if the decoding device does not have a good high
frequency response or it wants to save computational power.

6.6 EMBEDDED SUBBIT PLANE ENTROPY CODING

The section of the quantized coefficients in a time slot is encoded by an embedded
subbit plane entropy coder, which is one of the most complicated components in
EAC. We will explain in detail the working of the subbit plane entropy coder
in the following. First, we review the human auditory system in Section 6.6.1.
Then we explain the implicit auditory masking approach in Section 6.6.2. We
discuss the embedded coding unit (ECU) and the subbit plane entropy coder in
Sections 6.6.3 and 6.6.4, respectively. We describe the arithmetic entropy coding
unit in Section 6.6.5.
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6.6.1 Human Auditory Masking

A detailed description of the human auditory system is beyond the scope of this
chapter. The interested reader may refer to [7]. However, it is worth noticing that
the characteristic of the human auditory system that most affects audio compres-
sion is auditory masking.

The human auditory system can be roughly divided into 26 critical bands, each
of which is a bandpass filter bank with bandwidth on the order of 50 to 100 Hz
for bands below 500 Hz and up to 5000 Hz for bands at high frequencies. Within
each critical band, there is an auditory masking threshold, also referred to as the
psychoacoustic masking threshold or the threshold of the just noticeable distor-
tion (JND) [2]. Audio waveforms with an energy level below the JND threshold
will not be audible. The auditory JND threshold is highly correlated to the spec-
tral envelope of the signal. This is in contrast to the JND threshold in the human
visual system, where the masking of a weak visual signal by a nearby strong sig-
nal occurs only over a very short range, and the dominant visual sensitivity is
the same for a certain frequency regardless of the input signal. Let the auditory
JND threshold of a critical band k at time i be THi,k . The JND threshold can
be calculated as the maximum of a quiet threshold and a masking threshold. The
quiet threshold TH_STk dictates the sensitivity of the auditory system for criti-
cal band k without the presence of any strong audio signal. It can be calculated
through an equal loudness curve, such as the Fletcher–Munson curve [7] shown
as the solid line in Figure 6.3. According to the quiet threshold, the sensitivity

FIGURE 6.3: Auditory masking threshold: simultaneous masking.
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of the ear is nearly constant for a large range (1–8 kHz) and drops dramatically
before 500 Hz and after 10 kHz. Nevertheless, in audio compression, the auditory
JND threshold is largely shaped by masking, which is an effect by which a low-
level signal (the maskee) can be made inaudible by a simultaneously occurring
strong signal (the masker) as long as the masker and the maskee are close enough
to each other in time and frequency. The auditory masking threshold consists of
three components: the simultaneous intra-band mask, the simultaneous inter-band
mask, and the temporal mask. The most basic form of auditory masking is simul-
taneous intra-band masking, where the maskee and the masker are at the same
time instant and within the same critical band. The intra-band masking threshold
TH_INTRAi,k is directly proportional to the average spectral energy AVEi,k of the
masker in critical band k at the same time instant i, and can be expressed in dB as

TH_INTRAi,k(dB)= AVEi,k(dB)−Rfac, (6.12)

where Rfac is a constant offset value determined through the psychoacoustic ex-
perimentation. The second form of masking is simultaneous inter-band masking,
where the maskee and the masker are at the same time instant, but at neighbor-
ing critical bands. The level of such inter-band masking TH_INTERi,k can be
formulated as

TH_INTERi,k =max(THi,k−1 −Rhigh,THi,k+1 −Rlow), (6.13)

where Rhigh and Rlow are the attenuation factors toward the high- and low-
frequency critical bands, respectively. The higher frequency coefficients are more
easily masked; thus the attenuation Rhigh is smaller than Rlow. Combining quiet,
intra- and inter-band auditory masking, the auditory masking threshold created by
a strong audio signal identified as the “masker” is illustrated in Figure 6.3, where
the auditory JND threshold is shown as the dashed line. Any signal below the JND
threshold, for example, compression distortion, will not be audible by human ears.

The third form of masking is temporal masking, which dictates that a strong
signal can also mask a weak signal in the same critical band, but in the immedi-
ate preceding or following time interval. The duration within which premasking
applies is less than one-tenth that of the postmasking, which is in the order of 50
to 200 ms. The temporal masking threshold TH_TIMEi,k can be expressed as

TH_TIMEi,k =max(THi−1,k −Rpost,THi+1,k −Rpre), (6.14)

where Rpre and Rpost are the attenuation factors for the preceding and following
time intervals, respectively. A sample temporal masking generated by a masker is
shown in Figure 6.4.

The combined auditory JND threshold is the maximum of the quiet threshold,
the simultaneous intra- and inter-band masking, and the temporal masking thresh-
old,
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FIGURE 6.4: Auditory masking threshold: temporal masking.

THi,k =max(TH_STk,TH_INTRAi,k,TH_INTERi,k,TH_TIMEi,k). (6.15)

Calculation of the JND threshold requires the iteration of (6.13)–(6.15). Thus, if
the input audio consists of several strong maskers, the combined JND threshold
will be the maximum of the masking threshold generated by the individual masks.

6.6.2 Implicit Auditory Masking

Using the auditory masking effect, an audio coder can devote fewer bits to the
coefficients that are less sensitive to the human ear and more bits to the auditorily
sensitive coefficients, thus improving the quality of the coded audio. In EAC, the
auditory masking module is integrated with the embedded entropy coding module.
It is done in a unique way with two distinctive features. First, the auditory JND
threshold is derived from the partially coded coefficients and does not need to be
transmitted. Second, the auditory JND threshold is used to determine the order
that the bits of the coefficients are encoded, rather than to change the coefficients
(by adopting a different quantizing step size for different critical bands). We call
the approach implicit auditory masking because the auditory JND threshold is
implicitly derived during the coding process.

To illustrate this distinctiveness, we show the process of encoding using tradi-
tional auditory masking in Figure 6.5 and that of the implicit auditory masking
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FIGURE 6.5: Encoding using traditional auditory masking.

FIGURE 6.6: Encoding using implicit auditory masking.

in Figure 6.6. In traditional auditory masking, the encoder calculates the JND
threshold based on the spectral envelope of the input audio waveform. The JND
threshold is then encoded as a part of the compressed bit stream and is transmit-
ted to the decoder. The encoder also quantizes the transform coefficients with a
step size proportional to the JND threshold, that is, the coefficients are quantized
coarsely in the critical bands with a larger JND threshold and are quantized finely
in those with a smaller JND threshold. The approach is simple and suits a nonscal-
able coder. In scalable audio coding, it is not efficient. First, sending the auditory
JND threshold consumes a nontrivial number of bits, which can be as much as
10% of the total number of coded bits. Since the auditory masking module is ap-
plied before the entropy coding module, the JND threshold must be transmitted
with the same precision regardless of the compression ratio. The JND threshold
overhead thus eats significantly into the bit budget, especially if the compressed
bit stream is later scaled to a low bit rate. Second, as shown in Section 6.6.1,
the JND threshold is shaped by the energy distribution of the input audio, while
the same energy distribution is revealed through the bit plane coding process of
the embedded entropy coder. As a result, the information is coded twice, which
wastes precious coding bits.

The framework of implicit auditory masking is shown in Figure 6.6. Compared
to Figure 6.5, the auditory masking operation is now integrated into the loop of
the entropy coding module and is performed as follows. We first set the initial
auditory JND threshold to the quiet threshold. A portion of the transform coeffi-
cients, for example, the top bit planes, is then encoded. Afterward, an updated au-
ditory JND threshold is calculated based on the spectral envelope of the partially
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coded transform coefficients. Since the decoder may derive the same auditory
JND threshold from the same coded coefficients, the values of the auditory JND
threshold need not be sent to the decoder. Using this implicitly calculated JND
threshold, both the encoder and the decoder figure out which portion of the trans-
form coefficients is to be encoded next. After the next portion of the coefficients
has been encoded, the auditory JND threshold is updated again, which is then
used to guide the coding order of the remaining portion of the coefficients. The
process iterates among the operation of sending a portion of the quantized MDCT
coefficients, updating the JND threshold, and using the updated JND threshold
to determine the portions to be sent next. It only stops when a certain end crite-
rion has been met, for example, the quantized coefficients have been encoded to
the least significant bit plane (LSB), a desired coding bit rate has been reached,
or a desired coding quality has been reached. By deriving the auditory masking
threshold implicitly from the partially coded coefficients, bits normally required
for the auditory JND threshold are saved. The saving can be especially significant
at a low bit rate or when the coding bit stream is later truncated to a lower bit rate.
Implicit auditory masking may thus significantly improve compression efficiency.
Moreover, in all existing audio coders, the auditory JND threshold is carried as a
header in the bit stream. In contrast, implicit auditory masking does not have an
error-sensitive header. The EAC-compressed bit stream is thus less susceptible to
transmission errors and therefore offers better error protection in a noisy channel,
such as in a wireless environment. A third advantage of implicit auditory masking
results from the fact that instead of coding the auditorily insensitive coefficients
coarsely, the EAC encodes them at a later stage. By using auditory masking to
govern the coding order, rather than to quantize the coefficients, the quality of the
compressed audio becomes less sensitive to the accuracy of the JND threshold,
as slight deviations in the threshold simply cause certain audio coefficients to be
coded later.

6.6.3 Embedded Coding Unit

The section of quantized coefficients in a time slot is ultimately encoded by a
subbit plane entropy coder. It encodes the audio coefficient bit by bit, and in a
rate-distortion optimized order.

The subbit plane entropy coder of EAC is a general version of the simple bit
plane coder, which works as follows. Let i index the time interval, j index the
frequency component, and k index the critical band. Let xi,j be a coefficient at
time interval i, frequency j , and si,k be a critical band k at time interval i. Let
each audio coefficient be represented in binary sign and magnitude form as

[±bL−1bL−2 · · ·b0], (6.16)

where bL−1 is the most significant bit (MSB), b0 is the least significant bit (LSB),
and ± is the sign of the coefficient. A group of bits of the same significance
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from different coefficients forms a bit plane. For example, bits bL−1 of all coef-
ficients form the most significant L − 1 bit plane. The bit plane coder encodes
the coefficients bit plane by bit plane: first the most significant bit plane, then the
second most significant bit plane, and so on. This way, if the output-compressed
bit stream is truncated, at least part of each coefficient can be decoded.

The subbit plane coder in EAC goes one step further in recognizing that bits in
the same bit plane can be different in their rate and distortion contributions. First,
the coefficients represented by the bits may have different JND thresholds that
lead to vastly different subjective distortions even if the objective distortions are
the same. Second, the bits can be statistically different considering their neighbor
coefficients and coding histories. An illustration of subbit plane is shown in Fig-
ure 6.7. Since the coefficients in EAC are actually arranged in a 2D array indexed
by the time interval i and frequency j , the actual bit array is 3D. However, it is
difficult to draw a 3D bit array; therefore, we show a slice of the bit array in 2D in
Figure 6.7. Note that the sign of the coefficient is also part of the bit array, as the
‘plus’ and ‘minus’ signs can be represented by 0 and 1, respectively. Let bM be
a bit in a coefficient x, which is to be encoded. If all more significant bits in the
same coefficient x are 0s, the coefficient x is said to be insignificant (because if
the bit stream is terminated right before bit bM has been coded, coefficient x will
be reconstructed as zero), and the current bit bM is to be encoded in the mode of
significance identification. Otherwise, the coefficient is said to be significant, and
the bit bM is to be encoded in the mode of refinement. We distinguish between
significance identification and refinement because a significance identification bit

FIGURE 6.7: Subbit plane-embedded entropy coding.
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has a very high probability of being 0, while a refinement bit is usually equally
distributed between 0 and 1. The sign of the coefficient only needs to be encoded
immediately after the coefficient turns significant, that is, a first nonzero bit in
the coefficient is encoded. For the bit array in Figure 6.7, the significance iden-
tification and the refinement bits are separated by a solid bar. For a critical band
si,k , we call the band insignificant if all the coefficients in the critical band are
insignificant. It becomes significant when at least one coefficient is significant.
EAC defines three subbit planes in a bit plane: the predicted significance (PS),
the refinement (REF), and the predicted insignificance (PN). The PS subbit plane
consists of bits of coefficients that are insignificant but has at least one neigh-
bor known to be significant. The REF subbit plane consists of bits of coefficients
that are already significant, that is, in the refinement mode. The PN subbit plane
consists of bits of coefficients that are insignificant with no neighbors known to
be significant. The subbit plane design is motivated by previous work on image
coding [4] and the JPEG 2000 standard [14], which show that bits in different
subbit planes contribute different decreases in average distortion per coding bit
spent. For the sample bit array in Figure 6.7, we show the subbit plane types with
different shades for the first three bit planes of the bit array.

We call a subbit plane of a critical band as an embedded coding unit (ECU).
ECU is the smallest unit in the EAC reordering operation. The coding orders of
ECUs are determined by the instantaneous JND threshold of the critical band.
First, the initial auditory JND thresholds are calculated by using the quiet thresh-
old. Using the initial threshold, the coding order of the ECUs is determined, and
a set of high-priority ECUs is encoded. After a number of ECUs have been en-
coded or after a certain update interval, the auditory JND threshold is recalculated
by both the encoder and decoder based on the partially coded coefficients at the
moment. The updated JND threshold is then used to determine the formation and
the coding order of the remaining ECUs. The process iterates until a certain end
condition is met.

Note that we deliberately chose to update the JND threshold infrequently rather
than updating after the encoding of one ECU or even after encoding one bit. This
is in order to reduce the computational cost required of updating the JND thresh-
old. Because in EAC, a slightly outdated JND threshold only leads to a slightly
nonoptimal coding order of the ECUs, its impact on compression performance is
minimal.

We mark the identity of each ECU by the critical band the ECU resides in and
an ID that identifies the subbit plane. The ID is a rational number whose integer
part is just the bit plane index and whose fractional part is assigned according to
the subbit plane class. Currently, the PS, REF, and PN subbit planes are assigned
with fractional values 0.875, 0.125, and 0.0, respectively. As an example, the ID
of the PS subbit plane of bit plane 7 is 7.875. The fractional value is designed
with the consideration of the average rate-distortion contribution of each subbit
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plane class. Within each critical band, EAC encodes the ECUs according to the
descending order of their IDs. For a critical band with a total of L bit planes, the
first ECU to be encoded is the PN subbit plane of bit plane L− 1 (ID: L− 1.0)
because all coefficients are insignificant at bit plane L− 1. The next three subbit
planes to be encoded are the PS (ID: L− 1.125), REF (ID: L− 1.875), and PN
(ID: L − 2.0) subbit planes of bit plane L − 2. Subsequently, the subbit planes
of bit plane L− 3 are encoded. With the order of ECUs within a critical band al-
ready determined, the implicit auditory masking process only needs to determine
the order of the ECUs among different critical bands. Conveniently, this can be
done by determining the critical bands whose ECUs are next in line to be coded.
We assign two important properties to each critical band: an instantaneous JND
threshold and a progress indicator. The instantaneous JND thresholds are based
on the partially reconstructed coefficient values of already coded coefficients, and
the progress indicator records the ID of the next ECU to be encoded. It is the gap
between the progress indicator and the instantaneous JND threshold that deter-
mines the coding order of ECUs. The coding process of the subbit plane entropy
coder with implicit auditory masking can thus be described as follows.

1. Initialization.
The maximum bit plane L of all coefficients is calculated. The progress
indicators of all critical bands are set to the PN subbit plane of bit plane
L− 1 (with ID: L− 1). The initial instantaneous JND threshold of each
critical band is set according to the quiet threshold. We also mark all critical
bands as insignificant.

2. Finding the current gap.
For each critical band, we calculate a gap between its progress indicator
and the instantaneous JND threshold. The gap is closely related to the
level of the coding noise over the auditory JND threshold, the noise-to-
mask ratio (NMR). The largest gap among all critical bands is defined as
the current gap. The value of the current gap can be negative, which sim-
ply means that the coefficients with signal energy level below the auditory
JND threshold are encoded. It can be easily proven that the instantaneous
JND threshold is monotonically increasing and the progress indicator is
monotonically decreasing. Therefore, the current gap shrinks in every iter-
ation.

3. Encoding all critical bands with gap equal to the current gap.
We encode all critical bands with gap value the same as the current gap in
this iteration. Such a process leads to the encoding of the ECUs with the
largest reduction of NMR per coding bit spent. This encoding step may
further consist of the following substeps.
(a) Critical band skipping.

If a chosen critical band is insignificant (not a single coefficient is
significant), a status bit is encoded to indicate whether the critical
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band turns significant after the coding of the current bit plane. This is
an optional step. However, it speeds up the coding/decoding operation
significantly, as large areas of zero bits can be skipped with this step.

(b) Encoding the ECU of the critical band.
We locate the ECU, that is, the subbit plane that is next in line to
be coded for each critical band. For each bit in the subbit plane, its
context is calculated and the string of bit and context pairs are then
compressed by a modern context adaptive entropy coder. The process
of context calculation and subbit plane entropy coding is detailed in
Section 6.6.4.

(c) Moving the progress indicator.
After the subbit plane is encoded, the progress indicator moves for-
ward to the ID of the next subbit plane to be encoded.

4. Recording rate-priority points.
After all critical bands of the current gap have been encoded, we record the
current coding rate Ri and the current gap Si . These will be used in the bit
stream assembler stage for rate-distortion optimization.

5. Updating the instantaneous JND threshold.
The instantaneous JND thresholds of all critical bands are updated based
upon the already coded ECUs. There are tricks so that the encoder and de-
coder can recalculate the JND thresholds very efficiently, using on average
less than one arithmetic operation per coefficient. For details, please refer
to [3].

6. Repeating steps 1–5.
The steps 1–5 are repeated until a certain end criterion is reached, for ex-
ample, the desired coding bit rate/quality has been reached, or all bits in all
coefficients have been encoded.

6.6.4 Subbit Plane Context Adaptive Entropy Coder

The significance identification bits, refinement bits, and sign bits are not statis-
tically equivalent even within their own categories. Statistical analysis demon-
strates that if an MDCT coefficient xi,j has a large magnitude, its neighboring
coefficients in time and frequency may have a higher probability of having large
magnitudes as well. Moreover, its frequency harmonics (at double and/or triple
frequency) may have large magnitudes too. To account for such statistical differ-
ences, we entropy encode the significance identification bits, refinement bits, and
sign bits with context, each of which is a number derived from the already coded
coefficients in the neighborhood of the current coefficient. The bits within the
same context are assumed to be independent identically distributed (i.i.d.). The
subsequent entropy coding can then automatically gather statistics for bits within
each context, that is, the probability of being one, and use the statistics for effi-



176 Chapter 6: SCALABLE AUDIO CODING

cient entropy coding. Such technique is called context adaptive entropy coding
and is frequently used in modern image/audio/video coding systems.

We first describe the contexts for the refinement bits and sign bits because they
are simpler. The context for the refinement bits depends on the significance sta-
tus of the four immediate neighbor coefficients, which for coefficient xi,j are the
coefficients with the same frequency but for the preceding (xi−1,j ) and follow-
ing (xi+1,j ) time intervals, and coefficients for the same time interval but at lower
(xi,j−1) and higher (xi,j+1) frequencies. The refinement context is formed accord-
ing to Table 6.1. Depending on the number of bit planes after significance iden-
tification, we assign the refinement bit to one of three refinement coding context
categories: 10, 11, and 12. If one of the four neighbor coefficients is unreachable
as it falls out of the current time slot or the current section or belongs to a frame
with different window size, it is considered insignificant.

To determine the context for sign coding, we calculate a horizontal sign count h

and a vertical sign count v. We separate the four neighbor coefficients into two
pairs, a horizontal pair (xi,j−1 and xi,j+1) and a vertical pair (xi−1,j and xi+1,j ).
For each pair, the sign count is calculated according to Table 6.2. The expected
sign and the context of sign coding can thus be further calculated according to
Table 6.3. Depending on the sign and significance status of the neighbors, the
sign bit is assigned with one of five context categories: 13, 14, 15, 16, and 17.
The context for the refinement and sign coding is designed with reference to the
context used in the JPEG 2000 standard [14]. However, the significance identifi-
cation context is specially tailored for audio coding. To calculate the context of the
significance identification bit, we not only use the significance status of the four
neighbor coefficients, but use the significance status of the half-harmonics xi,j/2

and the MDCT window size. The use of the half-harmonic frequency is due to the
fact that most sound-producing instruments produce harmonics of the base tone.
Therefore, there is a strong correlation among the coefficient and its harmonics.
The context used for the significance identification can be found in Table 6.4. De-

Table 6.1: Context for the refinement bit.

Context Description
10 Current refinement bit is the first bit after significance identification

and there is at least one significant coefficient among the immediate
four neighbors.

11 Current refinement bit is the first bit after significance identification
and there is no significant coefficient in the immediate four
neighbors.

12 Current refinement bit is at least two bits away from significance
identification.
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Table 6.2: Calculation of sign count.

Sign count Description
−1 Both coefficients are negative significant or one

is negative significant and the other is insignificant.

0 Both coefficients are insignificant or one
is positive significant and the other is negative significant.

1 Both coefficients are positive significant or one
is positive significant and the other is insignificant.

Table 6.3: Expected sign and context for sign coding.

Sign count h −1 −1 −1 0 0 0 1 1 1
v −1 0 1 −1 0 1 −1 0 1

Expected sign − − + − + + − + +
Context 13 14 15 16 17 16 15 14 13

Table 6.4: Context for significance identification (S: significant, N: nonsignifi-
cant, *: arbitrary).

Context MDCT window size Significance status of coefficient
xi,j−1 xi−1,j xi+1,j xi,j/2

0 2048 N N N N
1 2048 * S * *
2 2048 S N * *
3 2048 N N S *
4 2048 N N N S
5 256 N N N N
6 256 * S * *
7 256 S N * *
8 256 N N S *
9 256 N N N S

pending on the significance status of the four neighbors and the half-harmonics,
we classify the significance identification bit into one of 10 contexts: 0–9.

As a summary, a total of 18 contexts are used for embedded audio coefficient
coding. Of these, there are 10 contexts for significance identification, 3 for refine-
ment coding, and 5 for sign coding.

6.6.5 Context Adaptive Entropy Coder

Through the aforementioned process, the section of quantized audio coefficients
is turned into a sequence of bits, each of which is attached with a context. All bits
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associated with the same context are assumed to be independently and identically
distributed (i.i.d.). Let the number of contexts be N , and let there be ni bits in
context i, within which the probability of the bits to take value 1 is pi . Using
classic Shannon information theory, the entropy of such a bit-context sequence
can be calculated as

H =
N−1∑

i=0

ni

[−pi log2 pi − (1− pi) log2(1− pi)
]
. (6.17)

The task of the context entropy coder is thus to convert the sequence of bit-context
pairs into a compact bit stream representation with length as close to the Shannon
limit as possible. Several coders are available for such task. The coders used in
EAC include the adaptive Golomb coder [6] and the QM coder. It is observed that
the adaptive Golomb coder has about the same compression efficiency as the QM
coder, with roughly the same complexity.

In the following, we describe the implementation of the QM coder with fo-
cus on three key aspects: general arithmetic coding theory, fixed point arithmetic
implementation, and probability estimation.

The Elias Coder

The basic theory of the MQ coder can be traced to the Elias Coder, or recursive
probability interval subdivision. The process can be graphically illustrated in Fig-
ure 6.8. Let S0S1S2 · · ·Sn be a series of bits that is sent to the arithmetic coder.

FIGURE 6.8: Elias coder: Probability interval subdivision.
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Let Pi be the probability that the bit Si is 1. We may form a binary representation
(the coded bit stream) of the original bit sequence by the following process:

1. Initialization.
Let the initial probability interval be (0.0,1.0). We denote the current prob-
ability interval as (C,C +A), where C is the bottom of the probability in-
terval and A is the size of the interval. After initialization, we have C = 0.0
and A= 1.0.

2. Probability interval subdivision.
The binary symbols S0S1S2 · · ·Sn are encoded sequentially. For each sym-
bol Si , the probability interval (C,C + A) is subdivided into two subin-
tervals (C,C + A(1 − Pi)) and (C + A(1 − Pi),C + A). Depending on
whether the symbol Si is 1, one of the two subintervals is selected. That is,

C = C, A=A(1− Pi) for Si = 0, and
C = C +A · (1− Pi), A=A · P for Si = 1.

(6.18)

3. Bit stream output.
Let the final coding bit stream be referred to as k1k2 · · ·km, where m is the
compressed bit stream length. The final bit stream creates an uncertainty
interval where the lower bound B and upper bound D can be expressed as

D = 0.k1k2 · · ·km111 · · · ,
B = 0.k1k2 · · ·km000 · · · . (6.19)

As long as the uncertainty interval (B,D) is contained in the probability
interval (C,C+A), the coding bit stream uniquely identifies the final prob-
ability interval, and thus uniquely identifies each subdivision in the Elias
coding process. The entire binary symbol string S0S1S2 · · ·Sn can thus be
recovered from the compressed representation. It can be shown that it is
possible to find a final coding bit stream with length

m≤ �− log2 A� + 2 (6.20)

to represent the final probability interval (C,C+A), where �x� returns the
smallest integer that is larger than or equal to x. Notice A is the probability
of the occurrence of the binary strings S0S1S2 · · ·Sn, and the entropy of the
symbol stream can be calculated as

H =
∑

S0S1···Sn

−A log2 A. (6.21)

The arithmetic coder thus encodes the binary string within 2 bits of its en-
tropy limit, no matter how long the symbol string is. This is very efficient.
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The Arithmetic Coder: Finite Precision Arithmetic Operation

Exact implementation of Elias coding requires infinite precision arithmetic, an
unrealistic assumption in real applications. Using finite precision, Elias coding
becomes arithmetic coding. Observing the fact that the coding interval A becomes
very small after a few operations, we may normalize the coding interval parame-
ters C and A as

C = 1.5 · [0.k1k2 · · · kL] + 2−L · 1.5 ·Cx,

A = 2−L · 1.5 ·Ax,
(6.22)

where L is a normalization factor determining the magnitude of the interval A.
The fixed-point integers Ax and Cx are fixed-point integers representing values
between (0.75,1.5) and (0.0,1.5), respectively. Bits k1k2 · · ·kL are the output bits
that have already been determined (in reality, certain carryover operations have to
be handled to derive the true output bit stream). By representing the probability
interval with the normalization L and fixed-point integers Ax and Cx , it is possi-
ble to use fixed-point arithmetic and normalization operations for the probability
interval subdivision operation. Moreover, since the value of Ax is close to 1.0, we
may approximate Ax · Pi with Pi . The interval subdivision operation (6.18) may
thus be calculated

Cx = Cx, Ax =Ax − Pi for Si = 0, and

C = C +Ax − Pi, Ax = Pi for Si = 1,
(6.23)

which can be done quickly without any multiplication. The compression perfor-
mance suffers a little, as the coding interval now has to be approximated with a
fixed-point integer, and Ax · Pi is approximated with Pi . However, experiments
show that the degradation in compression performance is less than 3%, which is
well worth the saving in implementation complexity.

Probability Estimation

In the arithmetic coder it is necessary to estimate the probability Pi of being 1
for each binary symbol Si . This is where context comes into play. Within each
context, the symbols are coded as if they are independently distributed. We es-
timate the probability of the symbol within each context through observation of
the past behaviors of symbols in the same context. For example, if we observe ni

symbols in context i, with oi symbols being 1, we may estimate the probability
that a symbol takes on the value 1 in context i through Bayesian estimation as

pi = oi + 1

ni + 2
. (6.24)
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In the QM coder, probability estimation is implemented through a state-transition
machine. It may estimate the probability of the context more efficiently and may
take into consideration the nonstationary characteristic of the symbol string. Nev-
ertheless, the principle is still to estimate the probability based on past behavior
of the symbols in the same context.

6.7 BIT STREAM ASSEMBLER

Finally, a bit stream assembler module allocates the available coding bits among
the time slots, channels, and sections, and produces the final compressed bit
stream.

Recall from Section 6.6.3 that each section of quantized MDCT coefficients
is compressed separately into an embedded bit stream. We record a rate and a
priority value each time the current gap shrinks. Let Rt,c,s,i and St,c,s,i be the rate
and priority value for time slot t , channel c, section s, and truncation point i. The
main functionality of the bit stream assembler module is thus to find the proper
truncation point for each section of bit stream and to generate a combined bit
stream.

The bit stream assembly module may operate in a number of modes. It may
operate in distortion controlled mode. In this case, the user may define a desired
NMR Sdesired for the compressed bit stream. The bit stream assembler module
then truncates all segments with distortion smaller than the desired NMR away,
and leaves only those segments with distortion greater than threshold. The trun-
cation point i for time slot t , channel c, and section s can be expressed as

i = arg max
k

(St,c,s,i > Sdesired). (6.25)

The bit stream assembler may operate in rate controlled mode. The user defines
a total bit rate Rtotal for the entire compressed audio file (for variable bit rate
coding) or a bit rate Rs for each time slot (for constant bit rate coding). The bit
stream assembler then searches for the right priority value S, which truncates the
embedded section bit streams according to (6.25) and allows the total length of
the truncated bit streams to stay just below the bit rate limit.

After the truncation points for each section are determined, the bit stream as-
sembler combines the section bit streams into an EAC master bit stream. The bit
stream syntax of the master bit stream is as follows. (It is also the syntax of the
application bit stream that is derived from the master bit stream.) The EAC bit
stream starts with a global header, which identifies the EAC bit stream and stores
global codec information such as the parameters of the transform module and
entropy coding module. The global header is then followed by the compressed
bit streams of individual time slot. The time slot is again led by a header, which
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FIGURE 6.9: EAC bit stream syntax (master and application bit
stream).

records the lengths of the compressed bit streams in the time slot, and the lengths
of the compressed bit streams of the individual sections. The time slot header is
then followed by the truncated embedded bit stream of each section of each audio
channel of that time slot. The syntax of the EAC master bit stream is shown in
Figure 6.9.

Finally, the bit stream assembler generates a companion file that holds the struc-
tural information of the EAC bit stream. In EAC, the companion file stores the rate
Rt,c,s,i and priority St,c,s,i value pairs of all sections up to the truncation points.
The companion file is not necessary for decoding an EAC bit stream or scaling
the EAC bit stream by the number of audio channels or audio sampling rate. If
the compressed audio is scaled by channels, the compressed bit streams of the
unused channels are removed from the bit stream. If the compressed audio is
switched into a lower sampling rate, the compressed bit streams of the sections
corresponding to higher sampling rate are dropped. When the EAC bit stream is
scaled by bit rate, the companion file is used. In this case, the EAC parser reads
both the EAC master bit stream and the associated companion file. Then, the
bit stream assembler is called upon to redetermine the truncation points of the
bit streams of each section based on the new desired bit rate. An application bit
stream of a different coding bit rate can thus be generated.

6.8 SUMMARY AND FURTHER READING

The main objective of this chapter is to get the reader familiar with scalable au-
dio coding technology. We looked at the concepts, framework, and fundamental
building blocks of scalable audio compression. Using EAC, an embedded audio
coder, as an example, we provided a framework for fine grain scalable audio cod-
ing. We studied the individual building blocks of EAC, including the channel
mixer, the audio transform, the quantization and section split unit, the auditory
masking module, the embedded subbit plane entropy coder, and the bit stream
assembler. Throughout the chapter, we explained how scalable audio coding dif-
fers from nonscalable audio coding in terms of technology used. This knowledge
should aid the reader in building and using scalable audio coding technologies in
his or her own work.
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Scalable audio coding is a very attractive feature for audio storage and trans-
mission. We gave a brief description on how scalable coded audio can be used
in storage applications in Section 6.1. Scalable coding is one of the fundamental
aspects of advanced media transmission technologies. Examples of using scalable
coding to improve quality of service in media delivery can be found extensively
in Chapters 2, 4, 9, 10, and 14 of this book.
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Channel Protection
Fundamentals

Raouf Hamzaoui, Vladimir Stanković, Zixiang Xiong,
Kannan Ramchandran, Rohit Puri, Abhik Majumdar, and
Jim Chou

7.1 INTRODUCTION

In many ways, the Internet (or a wireless network for that matter) can be regarded
simply as a communication channel in a classical communication system. This
chapter discusses the fundamentals of channel protection that lie beneath the error
control techniques used to communicate multimedia over the Internet and wireless
networks.

The goal of a classical communication system is to transfer the data generated
by an information source efficiently and reliably over a noisy channel. The basic
components of a digital communication system are shown in Figure 7.1: a source
encoder, channel encoder, modulator, demodulator, channel decoder, and source
decoder.

The source encoder removes the redundancy in the digital data produced by
the information source and outputs an information sequence. If the information
source is analog, its output must be digitized before it is processed by the source
encoder. The channel encoder adds redundancy to the information sequence so
that channel errors can be detected or corrected. The output of the channel encoder
is a finite sequence of symbols called a channel codeword. The set of possible
channel codewords is called a channel code. The modulator maps the channel
codeword to a signal that is suitable for transmission over a physical channel. The
demodulator converts the received signal into a discrete sequence of real numbers
of the same length as the channel codeword. In hard decision decoding, each
real number in the sequence is mapped to a channel code symbol before being
processed by the channel decoder. When the real numbers are left unquantized
or quantized to a number of levels that is greater than the size of the channel
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Source Encoder Channel Encoder
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FIGURE 7.1: Basic components of a digital communication system.

code alphabet, one speaks of soft decision decoding. The channel decoder tries
to recover the input to the channel encoder from the output of the demodulator.
Finally, the source decoder produces an estimate of the information sequence.

In this chapter, we look in detail at the basic constituents of a communication
system. In Section 7.2, we briefly explain the notions of entropy of an information
source, mutual information, rate–distortion function, and capacity of a channel.
These notions are needed to introduce four fundamental theorems due to Claude
Shannon: the noiseless coding theorem [45], the source coding theorem [46], the
channel coding theorem [45], and the source-channel coding theorem [46]. Our
exposition mainly follows that of McEliece [17], where proofs of the theorems can
be found. For simplicity, we focus on discrete memoryless sources and channels.
References are provided for extensions and generalizations. Shannon’s coding
theorems give an insight on what can be achieved by a communication system.
Unfortunately, the theorems are not constructive. Optimal codes were shown to
exist, but it was not explained how to construct them. The remainder of the chap-
ter is dedicated to practical system design. Section 7.3 contains an overview of
the most important channel codes. Section 7.4 reviews state-of-the-art modula-
tion techniques, focusing on a promising method called hierarchical modulation.
Section 7.5 considers communication systems where feedback information can be
sent from the receiver to the transmitter. In this situation, error control based on
error detection and retransmission (automatic repeat request [ARQ]) can be more
efficient than error correction alone (forward error correction [FEC]). We review
the most important ARQ techniques and discuss hybrid methods that combine
ARQ and FEC.

7.2 SHANNON’S SOURCE AND CHANNEL THEOREMS

An information source is given by a sequence of random variables Xn, each of
which takes values in an alphabet A. We say that the source is discrete if the al-
phabet A is finite or countable. We say that the source is memoryless if the random



Section 7.2: SHANNON’S SOURCE AND CHANNEL THEOREMS 189

variables Xn are independent and identically distributed. For simplicity, a discrete
memoryless source Xn will be denoted by a random variable X whose probability
distribution p(x) is the probability distribution common to all the random vari-
ables Xn.

Definition 7.1 (Entropy of a discrete memoryless source). Let X be a discrete
memoryless source with alphabet A. The entropy of X is

H(X)=−
∑

x

p(x) logp(x),

where the sum is taken over all x ∈A for which p(x) > 0.

Any base of the logarithm can be used in the expression for the entropy. When
this base is two, the entropy is measured in bits.

The entropy of a discrete memoryless source X measures the amount of un-
certainty in the source. Since the entropy is completely defined by the probability
distribution of X, we speak also of the entropy of the random variable X.

Given the discrete random variables X,Y1, . . . , Yn, the conditional entropy
H(X | Y1, . . . , Yn) is the average uncertainty remaining in X after observing
Y1, . . . , Yn. Formally, with H(X | y1, . . . , yn)=−∑x p(x | y1, . . . , yn) logp(x |
y1, . . . , yn), we set

H(X | Y1, . . . , Yn)=
∑

y1,...,yn

p(y1, . . . , yn)H(X | y1, . . . , yn).

The difference I (X;Y)=H(X)−H(X|Y) is known as the mutual information
of the two random variables X and Y . It expresses the amount of information
provided by Y on X.

7.2.1 Source Coding

A code C of size M over an alphabet B is a set of M words, possibly varying in
length, made up of symbols from B . The words in C are called codewords. The
length of a codeword c (i.e., the number of symbols in c) is denoted |c|. When
all the codewords in C have the same length k, we say that C is a block code of
length k.

7.2.1.1 Lossless Source Coding

To compress a discrete source Xn over alphabet A without information loss, one
can use a lossless encoding scheme (C, f ), which consists of a code C (known as
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a source code) and an injective map f :A→ C (known as an encoder). A source
code C is uniquely decodable if for all positive integers k and all codewords
ci ,di , i = 1, . . . , k, the equality c1 ∗ · · · ∗ ck = d1 ∗ · · · ∗ dk implies that ci = di

for all i = 1, . . . , k. Here ∗ denotes concatenation.
The average codeword length of an encoding scheme (C, f ) with respect to a

discrete memoryless source X can be expressed L=∑
x p(x)|f (x)|.

Shannon’s noiseless coding theorem [45] says that the entropy of a discrete
memoryless source X over alphabet A gives the smallest average number of code
symbols (from the alphabet B) needed to losslessly represent one source symbol
(from the alphabet A), when the base of the logarithm is |B|. Before stating the
theorem more precisely, we must define the extension of a discrete source. The
kth extension of a source Xn is the source Xk

n = (X(n−1)k+1, . . . ,Xnk) obtained
by blocking Xn into blocks of length k. Thus if Xn is a discrete memoryless
source taking values in A, then Xk

n is a discrete memoryless source taking values
in Ak , where Ak is the set of all words of length k over A.

Theorem 7.1 (Shannon’s noiseless coding theorem). Let X be a discrete mem-
oryless source. Let Xk be its kth extension. Let Lk be the minimum average code-
word length over all encoding schemes for Xk whose codes are uniquely decod-
able. Then

H(X)≤ Lk

k
≤H(X)+ 1

k
.

7.2.1.2 Lossy Source Coding

Suppose now that the symbols generated by a discrete memoryless source X over
alphabet A are to be reproduced by symbols from a finite alphabet Â called the re-
producing alphabet. A single-letter distortion measure d :A× Â→R

+ measures
the distortion d(x, y) when symbol x ∈ A is reproduced as y ∈ Â. The distor-
tion between a word x = (x1, . . . , xk) ∈ Ak and a word y = (y1, . . . , yk) ∈ Âk is
defined as d(x,y)=∑k

i=1 d(xi, yi).
A lossy compression scheme (C, k,M,f ) for the memoryless source X is given

by a block code C of length k and size M over the reproducing alphabet Â, and
a mapping f from Ak to C. This compression scheme allows us to represent any
sequence of k source symbols with �log2 M� bits. Thus the rate of a block code
of length k and size M is defined to be (log2 M)/k bits per symbol.

Example 1. Let A = {0,1}, Â = {0,1}, and C = {00,11}. Then the mapping
f : A2→ C given by f (00) = 00, f (01) = 00, f (10) = 11, f (11) = 11 defines
a lossy compression scheme (C,2,2, f ) for the source X. By using the binary
representation 00 �→ 0 and 11 �→ 1, any sequence of two source symbols can be
represented by one bit.
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The average distortion of the lossy compression scheme (C, k,M,f ) with re-
spect to the source X and the single-letter distortion measure d is

D(C, k,M,f )= 1

k

∑

x∈Ak

p(x)d
(
x, f (x)

)
,

where for x= (x1, . . . , xk), p(x)=∏k
i=1 p(xi).

Example 2. In Example 1, suppose that the distortion measure d is given by
d(x, y)= 0 if x = y and d(x, y)= 1, otherwise. Suppose also that Pr{X = 0} =
p(0)= p, where 0 < p < 1/2. Then the average distortion of the lossy compres-
sion scheme (C,2,2, f ) is p(1− p).

Let Y be a random variable that is jointly distributed with X according to the
joint probability distribution p(x, y) = p(x)p(y|x) for some conditional proba-
bility distribution p(y|x)= pY |X(y|x). As a function of the conditional probabil-
ity distribution pY |X , the average distortion when X is reproduced as Y is thus

D(pY |X)=
∑

x∈A,y∈Â
p(x)p(y|x)d(x, y).

Note that the smallest value that can be taken by D(pY |X) is

Dmin =
∑

x∈A
p(x)min

y∈Â
d(x, y).

Definition 7.2 (Rate–distortion function). Let X be a discrete memoryless
source over alphabet A, and let Â be a reproducing alphabet. The rate–distortion
function of the source X with respect to a single-letter distortion measure d :
A× Â→R

+ is the function

R(D)= min
pY |X :D(pY |X)≤D

I (X;Y),

for all D ≥Dmin, where the minimum is taken over all conditional distributions
p(y|x) subject to the constraint D(pY |X)≤D.

Henceforth we assume that the base of the logarithm in the mutual information
is 2, so that R(D) is measured in bits.

We can now state Shannon’s source coding theorem [46].
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Theorem 7.2 (Shannon’s source coding theorem). Let X be a discrete memo-
ryless source over alphabet A, and let Â be a reproducing alphabet. Let R(D)

be the rate–distortion function of the source X with respect to a single-letter
distortion measure d : A × Â→ R

+. Then for any D′ > D and R′ > R(D),
there exists a lossy compression scheme (C, k,M,f ) such that M ≤ 2
kR′� and
D(C, k,M,f ) < D′.

The theorem roughly says that one can reproduce the source symbols with an
average distortion that is smaller than D by spending no more than R(D) bits per
source symbol.

7.2.2 Channel Coding

A discrete channel takes at every time unit n a symbol from a finite input alphabet
AX and outputs symbols from a finite output alphabet AY .

Let Xn be the random variable that gives the nth input symbol of the channel
and let Yn be the random variable that gives the nth output symbol of the chan-
nel. We say that the channel is memoryless if Pr{Yn = y | Xn = x} = p(y|x) is
independent of n for all y ∈ AY and x ∈ AX , the transition probabilities p(y|x)

satisfy p(y|x) ≥ 0 and
∑

y∈AY
p(y|x)= 1, and Pr{Y1 = y1, . . . , Yn = yn | X1 =

x1, . . . ,Xn = xn} =∏n
i=1 p(yi |xi) for all n.

Definition 7.3 (Channel capacity). The capacity of a discrete memoryless chan-
nel with input alphabet AX , output alphabet AY , and transition probabilities
p(y|x), y ∈AY ,x ∈AX is

C =max
pX

I (X;Y),

where X is a random variable that gives the input symbol to the channel and Y

is a random variable that gives the corresponding output symbol according to the
joint probability distribution p(x, y)= p(x)p(y|x), for some source distribution
p(x)= pX(x).

Since we assume that the base of the logarithm in the mutual information is 2,
C is measured in bits.

Example 3. The binary symmetric channel (BSC) is a discrete memoryless chan-
nel with AX = AY = {0,1} and transition probabilities p(0|1)= p(1|0)= p and
p(0|0)= p(1|1)= 1− p. When a bit is sent over the BSC, it is either corrupted
with probability p or correctly received with probability 1−p. It is easy to prove
that the capacity of the BSC is 1+ p logp+ (1− p) log(1− p) [15].
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Example 4. The binary erasure channel (BEC) is a discrete memoryless channel
with AX = {0,1}, AY = {0,1, ?} and transition probabilities p(?|0)= p(?|1)= p

and p(0|0)= p(1|1)= 1− p. When a bit is sent over the BEC, it is either erased
with probability p or correctly received with probability 1− p. The capacity of
the BEC is 1− p [15]. More details on the BEC are provided in Chapter 8.

We now consider the situation when the symbols generated by a discrete source
U with source alphabet A are to be sent over a discrete channel with input alphabet
AX and output alphabet AY . To protect the source symbols against transmission
errors, redundancy is added. For this, we use a channel code, which is a block
code C of length n over AX . We also use a channel encoding scheme, which is
an injective function from Ak to C. Using the channel encoding scheme, blocks
(u1, . . . , uk) of source symbols of length k are mapped to channel codewords
of length n. The channel codewords are then sent over the channel where errors
may occur. Next, a function g from An

Y to C called a channel decoding scheme
is used to map a received word y= (y1, . . . , yn) to a channel codeword. Finally,
this channel codeword is mapped to the corresponding source word (û1, . . . , ûk)

(since the encoding scheme is injective, this source word is unique when it exists).
The rate of transmission of this system (or code rate of the code C) is k

n
. It char-

acterizes the speed with which source information is transmitted over the channel
or equivalently the redundancy introduced by the channel code.

An ideal channel decoding scheme for this system minimizes the probability of
a word decoding error

Pe =
∑

c∈C

∑

y∈An
Y :g(y) 
=c

Pr{Y= y |X= c}Pr{X= c},

where Y = (Y1, . . . , Yn) and X = (X1, . . . ,Xn). This is realized with maximum
a posteriori decoding, where the received word y = (y1, . . . , yn) is mapped to
a channel codeword c = (c1, . . . , cn) that maximizes the probability Pr{X = c |
Y = y}. In practice, however, one uses maximum-likelihood decoding, where y
is mapped to a channel codeword c that maximizes the probability Pr{Y = y |
X= c}. It is easy to see that maximum-likelihood decoding is equivalent to max-
imum a posteriori decoding when all channel codewords are generated with the
same probability. Another important decoding scheme is known as minimum dis-
tance decoding where the received word y= (y1, . . . , yn) is mapped to a channel
codeword c = (c1, . . . , cn) that has smallest Hamming distance to y. Here the
Hamming distance is defined as follows.

Definition 7.4 (Hamming distance). Let x= (x1, . . . , xn) and y = (y1, . . . , yn)

be two words of the same length. The Hamming distance dH (x,y) between x and
y is equal to the number of indices k ∈ {1,2, . . . , n} such that xk 
= yk .
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Given a BSC with bit error probability p, we have

Pr{Y= y |X= c} = pdH (c,y)(1− p)n−dH (c,y). (7.1)

If 0 < p < 1/2, the probability in (7.1) is largest when dH (c,y) is smallest. There-
fore minimum distance decoding and maximum-likelihood decoding are equiva-
lent for this channel.

An alternative to minimizing the probability of a word decoding error is to min-
imize the information symbol error rate pe defined as pe = 1

k

∑k
i=1 p

(i)
e , where

p
(i)
e = Pr{ûi 
= ui}. When the symbols are bits, the information symbol error rate

is called the information bit error rate (BER). Note that 1
k
Pe ≤ pe ≤ Pe . To min-

imize the information symbol error rate, the decoder uses the symbol maximum
a posteriori (MAP) rule, where for i = 1, . . . , k, the reconstructed information
symbol ûi is computed as a symbol u ∈A that maximizes the a posteriori proba-
bility Pr{Ui = u | Y= y}. Here Ui is the random vector that corresponds to the
information symbol ui, i = 1, . . . , k.

The channel coding theorem [45] states that the source information can be
transmitted reliably over a noisy channel, provided the rate of transmission is
below the capacity of the channel. In other words, any rate below the channel
capacity is achievable.

Theorem 7.3 (Shannon’s channel coding theorem). Consider a discrete mem-
oryless channel with input alphabet AX and capacity C. For any positive number
R < C and ε > 0, there exists a channel code C = {c1, . . . , cM} of length n over
AX and a channel decoding scheme g such that

1) M ≥ 2�Rn�.
2) If codeword ci is sent over the channel and word y is received, then

Pr{g(y) 
= ci}< ε for all i = 1, . . . ,M .

7.2.3 Source-Channel Coding

Suppose now that the output of the channel decoding scheme is mapped to a word
of length k over a reproduction alphabet Â. The average distortion of the resulting
transmission system is 1

k
E[d(U,V)], where the random vector U describes a word

of k successive source symbols, the random vector V describes the corresponding
word of k reconstructed symbols, and E denotes the expectation operator.

The source-channel coding theorem [46] says what a system can achieve in
terms of average distortion and rate of transmission.

Theorem 7.4 (Shannon’s source-channel coding theorem). Given a discrete
memoryless source characterized by rate–distortion function R(D), a discrete
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memoryless channel characterized by capacity C > 0, any D > Dmin, and any
r < C/R(D), there exist for sufficiently large k and n an encoding scheme that
maps source words of length k into channel words of length n and a decoder
that maps channel output words of length n into reproduced words of length k

such that the expected distortion is at most D and the transmission rate k/n is at
least r .

The encoding scheme promised by the theorem is a concatenation of a lossy
compression scheme and a channel encoding scheme. The theorem is also known
as the separation theorem because the lossy compression scheme and the channel
encoding scheme can be designed independently.

7.2.4 Extensions

Shannon’s theorems can be extended to more general information sources. For
example, we say that a discrete source Xn is stationary if the random process
Xn is stationary. The nth marginal entropy of a stationary source is Hn =H(Xn |
Xn−1, . . . ,X1). One can show that when the source is stationary, the sequence Hn

is decreasing and bounded below by zero. This allows us to define the entropy of
a stationary source as follows.

Definition 7.5 (Entropy of a stationary source). Let Xn be a stationary source.
The entropy of the source (also often called the entropy rate of the source) is
defined H̄ = limn→∞Hn.

With this definition, Shannon’s noiseless coding theorem can be extended
to stationary sources that satisfy the asymptotic equipartition property [3]. The
source coding theorem can also be extended to sources with abstract alphabets,
including the set of real numbers in particular [22].

Shannon’s channel coding theorem can be extended to other channels, the most
famous one being the additive white Gaussian noise (AWGN) channel. In the
time-discrete AWGN channel, both the channel input alphabet AX and the chan-
nel output alphabet AY are the set of real numbers R. The relationship between
the random variable Xn that gives the nth input to the channel and the random
variable Yn that gives the nth output of the channel is given by Yn = Xn + Zn,
where {Zn} is a sequence of independent, identically distributed, Gaussian ran-
dom variables with mean 0 and variance N0/2. One can show [15] that for this
channel reliable transmission is possible as long as the rate of transmission is
smaller than the capacity

C = 1

2
log2

(
1+ 2P

N0

)
bits per transmission,
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where P is a constraint on the expected value of the random variable X2
n. If

we denote by R the rate of transmission, by Es = P the symbol energy, and by

Eb = Es/R the energy per bit, then the condition R < C gives Eb/N0 > 22R−1
2R

for reliable transmission. Here Eb/N0 is called the bit energy to noise spectral

density ratio and 22R−1
2R

is the Shannon bound. Since R > 0, we must also have
Eb/N0 > loge 2 or 10 log10 Eb/N0 > −1.6 dB, which is called the theoretical
Shannon limit.

In the time-continuous AWGN channel, the relationship between the transmit-
ted signal s(t) (the output of the modulator) and the received signal r(t) (the input
of the demodulator) is r(t) = s(t)+ n(t), where n(t) is a white Gaussian noise.
The capacity of a band-limited AWGN channel is [15]

C =W log2

(
1+ P

N0W

)
bits per second,

where W is the channel bandwidth in Hz, N0/2 is the power spectral density of
the noise, and P is a constraint on the average power. When P is much smaller
than N0W , the channel is called a wideband AWGN channel. One can prove [11]
that if binary modulation is used and the demodulated signal is sampled at a rate
of 2W , then Eb/N0 must be larger than the practical Shannon limit of 0.2 dB to
achieve a BER of 10−5 for a rate of transmission R = 1/2.

7.3 CHANNEL CODING AND ERROR CONTROL FOR BIT ERRORS
AND PACKET LOSSES

Channel codes can be divided into two classes: linear and nonlinear. Linear codes
are easier to implement and, as a result, have received a greater amount of at-
tention historically. We will also confine our attention to linear codes in this
section. We first describe linear block codes, including cyclic redundancy check
(CRC) codes for error detection, Reed–Solomon codes, low-density parity-check
(LDPC) codes, irregular repeat-accumulate (IRA) codes, tornado codes, digital
fountain codes, and lattice codes. We then describe convolutional codes, rate-
compatible punctured convolutional (RCPC) codes, and turbo codes. We discuss
the properties of these codes and mention efficient algorithms for encoding and
decoding, emphasizing their computational complexity. We also explain how the
problem of burst errors (explained further in Chapter 8) can be alleviated with
interleaving.

7.3.1 Linear Block Codes

In a linear block code, the codeword symbols are taken from a field. A formal
definition of a field is beyond the scope of this text and may be found in a math-
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ematics book on abstract algebra (see [12]). Informally, a field consists of a set
of elements, together with two operations called addition and multiplication that
must fulfill a given number of properties. Some examples of well-known fields are
the set of real numbers and the set of rational numbers. These fields are known as
infinite fields because they contain an infinite number of elements. Linear block
codes, however, typically consist of elements from a finite field. In particular, con-
sider the finite field GF(2)= {0,1}. The addition operation for GF(2) is modulo-2
addition and the multiplication operation is defined similarly to the multiplication
operation for two binary numbers:

0+ 0= 0 0+ 1= 1 1+ 1= 0

0 ∗ 0= 0 0 ∗ 1= 0 1 ∗ 1= 1.

Finite fields are also called Galois fields. The size of a Galois field must be a
power of a prime. Conversely, for any prime power q , one can construct a Galois
field of size q . Let GF(q) be a finite field of size q and let n be a positive integer.
Then it is easy to check that [GF(q)]n is a linear space over GF(q). An (n, k)

linear block code C over GF(q) is a k-dimensional linear subspace of the linear
space [GF(q)]n. In particular, for any two codewords c1, c2 ∈ C, the sum of the
codewords is also a codeword, c1 + c2 ∈ C. Since C is a k-dimensional linear
space, we can find a set of k basis vectors so that every codeword can be expressed
as a linear combination of the basis vectors. In vector-matrix notation, we can
express every codeword c of C as

c= uG, (7.2)

where u is a 1×k vector of field elements and G is a k×n matrix whose k rows are
k basis vectors. The matrix G is known as a generator matrix and elementary row
operations can be performed on G to form another matrix G′ that will generate
an equivalent code. If G is manipulated to be of the form G= [Ik|P] where Ik is
the k × k identity matrix and P is a k × (n− k) matrix, then G is said to be in
systematic form and the first k symbols of the codeword c will be identical to the
k symbols of u. The final n− k symbols of c are referred to as parity symbols.

The performance of a block code is often measured by the number of errors
that it can correct or the amount of noise that it can remove. The performance is
usually dependent on two things: (1) the decoder that is used to decode a received
word to a codeword and (2) the distance between each pair of codewords in the
block code. Let us first consider the distance between a pair of codewords. For
block codes, the Hamming metric or the Euclidean metric is usually used to mea-
sure the distance between pairs of codewords. The Hamming distance is useful
for measuring the distance between two codewords whose symbols belong to a
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finite field. Sometimes in communications applications, however, each field ele-
ment of the codeword is mapped to a real number. In such scenarios, it is useful
to use a Euclidean metric to determine the distance between codewords. For ex-
ample, if each codeword, ci = (ci,1, ci,2, . . . , ci,n), is mapped to a vector of real
numbers, ri = (ri,1, ri,2, . . . , ri,n), then the Euclidean distance between two code-
words ci , cj may be defined as

dE(ci , cj )=
√

(ri,1 − rj,1)2 + (ri,2 − rj,2)2 + · · · + (ri,n − rj,n)2. (7.3)

Now, if we let dmin represent the minimum distance between any pair of code-
words, and if an arbitrary codeword is transmitted over a noisy channel, then the
codeword may be successfully recovered if the decoder decodes the received word
to the closest codeword and the amount of noise is less than dmin/2. Note that if
the block code is linear, then the minimum distance dmin is simply the smallest
weight of a nonzero codeword. Here the weight of a codeword is the number of
its nonzero symbols.

For the Hamming distance, successful decoding translates into there being less
than dmin/2 changes to the symbols of the original codeword, where dmin rep-
resents the minimum Hamming distance between any pair of codewords. For the
Euclidean distance, successful decoding translates into the magnitude of the noise
being less than dmin/2. For the aforementioned, we may visualize the correct de-
coding region of each codeword to be a sphere with radius dmin/2 (as in Fig-
ure 7.2), and thus if a codeword is corrupted by noise, as long as the noise does
not perturb the codeword to be outside of its correct decoding region, then suc-

dmin
2

= codeword

= correct decoding
region

FIGURE 7.2: Example of a codebook that consists of several code-
words with a minimum distance of dmin. The correct decoding regions are
shown as spheres centered around the codewords with a radius of dmin/2.
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cessful decoding will be guaranteed. It is apparent that for a given n and k, it is
desirable to find a code that maximizes dmin.

Once a code with parameters n, k, and dmin is found, efficient encoding and
decoding algorithms for generating the code are necessary to enable the code to
be practical.

In general, if the minimum distance of a linear code is t , then the receiver
can detect up to t − 1 transmission errors. However, by using minimum distance
decoding, where the received word is decoded to a nearest codeword, a linear
code of minimum distance t allows the correction of up to 
 t−1

2 � errors. It can
be shown that a linear code of minimum distance t can simultaneously correct ec

errors and detect ed errors if ec+ ed ≤ t − 1 with ec ≤ ed . Moreover it can correct
ee erasures and ec errors simultaneously if ee + 2ec ≤ t − 1.

The minimum distance of an (n, k) linear code must be less than or equal to
n− k+ 1. Linear (n, k) codes whose minimum distance is equal to n− k+ 1 are
called maximum-distance separable (MDS) codes.

Linear codes can be simply modified to obtain new linear codes. Puncturing
a linear code consists of removing a number of coordinate positions from each
codeword. If an (n, k) linear MDS code is punctured, then the resulting code
is an (n − 1, k) linear MDS code. Shortening a linear code consists of keeping
only codewords with the same symbol in a given position and then deleting this
position. If an (n, k) linear MDS code is shortened by keeping only codewords
with the zero symbol in a given position, then the resulting code is an (n−1, k−1)

linear MDS code.
The encoding scheme for an (n, k) linear code can be implemented in O(n2)

time. However, there is no efficient way to decode a general linear code with
maximum-likelihood decoding [8]. Usually one uses syndrome decoding. To ex-
plain syndrome decoding, we must introduce the parity check matrix. The parity
check matrix H of an (n, k) linear code with generator matrix G is an (n− k)× n

matrix whose rows are orthogonal to the rows of the generator matrix, that is,

GHT = 0. (7.4)

The parity check matrix may be viewed as a generator matrix for a code that lies
in the null space of G. It is clear that for any codeword c that is generated by G,

cHT = 0. (7.5)

Now, if we add an error vector, e to c, then

(c+ e)HT = 0+ eHT = s, (7.6)

where we call s the syndrome of (c+ e). If we let each syndrome correspond to
an error vector, then the function of a syndrome decoder is to first compute the



200 Chapter 7: CHANNEL PROTECTION FUNDAMENTALS

Table 7.1: Standard array of a binary code. The first row contains all
codewords of the code. Each following row is formed by taking a min-
imum weight vector, adding it to the first row, and then checking if the
resulting addition is already part of the standard array. If the resulting
addition is not part of the standard array, then it is added as a new row
to the standard array. This process is continued until the standard array
is filled.

c1 = 0 c2 . . . c2k

e1 e1 + c2 . . . . . . e1 + c2k

e2 e2 + c2 . . . . . . e2 + c2k

e3 e3 + c2 . . . . . . e3 + c2k

...
...

...
...

e2n−k−1 e2n−k−1 + c2 . . . . . . e2n−k−1 + c2k

syndrome of the received vector and then subtract the corresponding error vector
from the received vector. Another way of viewing syndrome decoding is through
a standard array [36]. A standard array of a binary code is formed by setting aside
a 2n−k × 2k array and populating the first row of the array with all 2k possible
codewords with the all-zero codeword occupying the first column of the first row.
Next, we generate all possible weight 1 error vectors and add each error vector to
the first row to generate another row. This process is continued by increasing the
weight of the error vector and filling the rows until the entire array is populated as
in Table 7.1. If the result of an addition of an error vector with the first row equals
a row that is already in the standard array, then the error vector is skipped and
the next error vector is used to generate further rows. The result will be an array,
where each row corresponds a shift of all of the codewords by an error vector.
The first column will contain the error vectors and each row may be indexed by
the syndrome. Therefore, syndrome decoding may be viewed as indexing a row
of the standard array and then adding the first element of the row to the received
vector.

Example 5. Consider a (3,1) binary repetition code. This block code consists of
two codewords, {000,111}. A generator matrix for the code is

G= [1 1 1]. (7.7)

The corresponding parity check matrix is

H=
[

1 0 1
0 1 1

]
. (7.8)
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And we can tabulate the standard array as follows:

⎧
⎪⎨

⎪⎩

000 111
001 110
010 101
100 011

⎫
⎪⎬

⎪⎭
. (7.9)

Notice that the minimum weight codeword is (1,1,1) and therefore the minimum
distance of the code is 3. This implies that one error may be corrected if a min-
imum distance decoder is used for decoding. Alternatively, up to two errors may
be detected.

Since the decoding of general linear block codes is not efficient, special classes
of linear codes with fast decoding algorithms were developed. The most popular
of these is the class of cyclic codes. An (n, k) linear code is a cyclic code if
for each codeword (c1, . . . , cn−1, cn), the right shift (cn, c1, . . . , cn−1) is also a
codeword.

7.3.1.1 CRC Codes

CRC codes are shortened cyclic binary codes used for error detection. Given a
generator polynomial g(x) =∑r

i=0 gix
i, gi ∈ {0,1} of degree r , the codeword

for a binary information sequence u= (u1, . . . , uk) is the concatenation u∗p of u
and the word p of length r associated to the polynomial p(x)= xru(x)modg(x).
Here we use the unique correspondence between a word w = (u1, . . . , um) of
length m and the polynomial w(x) = w1 + w2x + · · · + wmxm−1 of degree at
most m − 1. Suppose that the codeword u ∗ p is sent over a binary symmetric
channel and let u′ ∗ p′ be the received word. Here u′ and p′ are words having
the same length as u and p, respectively. Then the decoder computes p′′(x) =
xru′(x)modg(x) and declares an error if p′′(x) is not equal to p′(x). Some of
the most popular generator polynomials are the CRC-12 polynomial 1+x+x2+
x3+x11+x12, the CRC-16 polynomial 1+x2+x15+x16, and the CRC-CCITT
polynomial 1+ x5 + x12 + x16. A CRC code with generator polynomial g(x)=∑r

i=0 gix
i, g0 
= 0, gr 
= 0 can detect any burst error of length k ≤ r . Agarwal

and Ivanov [2] provided an O(nm2r+m) algorithm for computing the probability
of undetected error for a CRC code of length n whose generator polynomial has
degree r and m nonzero coefficients. The encoding and decoding of CRC codes
can be efficiently implemented with shift register circuits.

7.3.1.2 Reed–Solomon Codes

Reed–Solomon codes are nonbinary linear block codes over a finite field GF(q).
Let α be an element of order n in GF(q) [i.e., n is the smallest positive inte-
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ger such that αn = 1, where 1 is the identity element for the multiplication in
GF(q)]. Let r ∈ {1, . . . , n}. The set of all vectors (c0, . . . , cn−1) in [GF(q)]n such
that

∑n−1
i=0 ciα

ij = 0, j = 1, . . . , r , is called a Reed–Solomon code of redun-
dancy r over GF(q). This code is an (n,n− r) cyclic code of minimum distance
r + 1. Thus, Reed–Solomon codes are MDS codes. Therefore an (n, k) Reed–
Solomon code can correct e0 symbol erasures and e1 symbol errors simultane-
ously if e0 + 2e1 ≤ n − k. In particular, in a channel where only erasures can
occur, all codeword symbols of an (n, k) Reed–Solomon codeword can be cor-
rectly recovered if at least k symbols are received.

Reed–Solomon codes are suitable for the correction of burst errors. An (n, k)

Reed–Solomon code can be decoded in O(n2) time with Berlekamp’s iterative
algorithm [7]. Guruswami and Sudan [23] developed a polynomial-time algo-
rithm for Reed–Solomon codes that finds a list of all codewords within a distance
�n−√n(k − 1)− 1� from a received word. Thus, the algorithm is guaranteed to
determine the list of all potentially sent codewords if at most �n−√n(k − 1)−1�
errors occurred during transmission. The complexity of the algorithm is O(n15) if
exactly �n−√n(k − 1)− 1� errors occurred and only O(n3) otherwise. The al-
gorithm of Berlekamp [7] is a hard-decision decoding algorithm, which does not
exploit all available information at the receiver when the demodulator allows soft
decisions. Efficient soft-decision decoding algorithms for Reed–Solomon codes
were proposed by Koetter and Vardy [28] and Jiang and Narayanan [26]. For
example, the algorithm of Jiang and Narayanan [26] outperforms hard-decision
decoding by up to 3.1 dB at decoding error probability 10−5 when decoding a
(15,7) Reed–Solomon code over a binary-input AWGN channel.

7.3.1.3 LDPC Codes

LDPC codes were introduced by Gallager [21]. They have attracted increased
interest since MacKay and Neal [34,35] reported their outstanding performance
on a binary-input AWGN channel. An (n, k) LDPC code is a linear code with a
sparse parity-check matrix H = (hij ). It can also be described with a bipartite
graph, called Tanner graph, whose set of nodes consists of variable nodes and
check nodes. Variable nodes correspond to the n codeword symbols, while check
nodes correspond to the (n− k) equations defined by the parity-check constraint.
A variable node is connected to a check node if the codeword symbol correspond-
ing to the variable node is involved in the parity equation defining the check node.
That is, check node i is connected to variable node j if hij = 1. In a regular LDPC
code, each column has the same number dv of ones and each row has the same
number dc of ones. Thus, in the Tanner graph of the code each variable node has
degree dv and each check code has degree dc, as shown in Figure 7.3. In an irreg-
ular LDPC code, the degrees of the variable nodes and check nodes are chosen
according to some nonuniform distribution. Efficient encoding of LDPC codes
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Parity-check matrix of a regular LDPC code

Tanner graph
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FIGURE 7.3: Tanner graph of a regular LDPC code of length 8. The
degree of the variable nodes is dv = 2, and the degree of the check nodes
is dc = 4.

is discussed in [40], where it is shown in particular that some of the best LDPC
codes can be encoded in O(n) time with high probability. Because of the sparse-
ness of their Tanner graph, LDPC codes can be decoded in O(n) time with an
iterative procedure known as probabilistic decoding [21], message passing, sum-
product algorithm [49], or belief propagation [37]. These algorithms alternately
pass information between adjacent variable nodes and check nodes to compute
estimates of the a posteriori probabilities of the codeword symbols. The decoded
codeword is based on the estimates obtained after convergence or if a maximum
number of iterations is reached. Chung et al. [14] were able to design a rate- 1

2 ir-
regular LDPC code of length 107 bits that is only 0.04 dB away from the Shannon
limit for a binary-input AWGN channel and a bit error rate of 10−6.

7.3.1.4 IRA Codes

Irregular repeat-accumulate (IRA) codes were introduced by Jin and colleagues
[27] as a generalization of the repeat-accumulate (RA) codes of [16]. IRA codes
can be encoded in linear time. They are decoded with the sum-product algorithm,
achieving on the binary-input AWGN channel a performance competitive with
that of the best LDPC codes of comparable complexity.

7.3.1.5 Tornado Codes

Tornado codes [31,32] are (n, k) erasure codes that allow encoding and decod-
ing with time complexity linear in the block length n. This speed-up over Reed–
Solomon codes is obtained at the cost that slightly more than k encoding symbols
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are required to reconstruct all k information symbols. More precisely, Luby et
al. [32] prove that for any ε > 0, one can construct a Tornado code that recovers
all k information symbols from only (1+ ε)k encoding symbols with probability
1−O(n−3/4).

7.3.1.6 Digital Fountain Codes

Luby [30] recently introduced a new class of powerful erasure correcting codes
called Luby Transform (LT) codes. LT codes are rateless in the sense that a poten-
tially limitless stream of encoding symbols (or a digital fountain) can be generated
for a given information sequence. Thus, in contrast to classical block codes, one
need not design the code a priori for a fixed n. With LT codes, each encoding
symbol can be generated from k information symbols in O(log k) time on aver-
age, and one can recover all k information symbols from k +O(

√
k log2(k/δ))

encoding symbols with probability 1− δ in O(k log k) time, on average.
By concatenating an LDPC code as an outer code and an LT code as an inner

code, Shokrollahi [47] was able to construct rateless codes called Raptor codes
whose erasure correcting performance is similar to that of LT codes, but can be
encoded and decoded in only O(k) time.

7.3.1.7 Lattice Codes

Codes over finite fields can also be interpreted as codes over real numbers by map-
ping each element of the finite field to a real number. For example, in the binary
(3,1) repetition code, the binary digit 0 can be mapped to the real value −a and
the binary digit 1 can be mapped to the real value +a so that the two codewords
are (−a,−a,−a) and (+a,+a,+a). Minimum distance decoding then means
decoding the received vector to the codeword that is closest in Euclidean dis-
tance. In this section, we will consider a class of codes called lattice codes, which
contain codewords that are amenable to Euclidean distance decoding instead of
Hamming distance decoding.

Informally, a lattice � is an infinite regular array of points that covers an m-
dimensional space uniformly. A lattice is defined by a set of basis vectors so that
any point in the lattice can be represented as a linear combination of the basis vec-
tors. More precisely, if the basis vectors are given as v1 = (v1,1, v1,2, . . . , v1,m),
v2 = (v2,1, v2,2, . . . , v2,m), . . . ,vn = (vn,1, vn,2, . . . , vn,m) where m≥ n, then we
can define a generator matrix, G, to be a matrix that contains the basis vectors as
the rows of the matrix and any lattice point can be written as

λ= ζG,

where ζ is an n-dimensional vector of integers [13]. For example, a genera-
tor matrix for the m-dimensional integer lattice (often written as Z

m) is the m-
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dimensional identity matrix. The lattice points of the m-dimensional integer lat-
tice consist of all the possible m-dimensional vectors of integers.

The conventional method of using a lattice for channel coding is to take a finite
subset of lattice points and define a one-to-one mapping between the lattice points
and binary vectors that represent the information that is to be sent over a channel.
The goal of using lattice codes for channel coding is to maximize the amount of
information that can be conveyed over the channel for a given power constraint.
As an example, consider the problem of sending bits over an AWGN channel. One
method of addressing this problem is to choose a lattice and then map vectors of
bits to a finite subset of the lattice. The lattice points will then represent the real
values that are sent over the channel and corrupted by noise. The decoder will
receive a noisy sequence of points and attempt to recover the bits by decoding
the noisy values to the closest lattice points in Euclidean distance. The decoding
region for each lattice point is often referred to as its Voronoi region and is defined
to be the set of points whose Euclidean distance to the given lattice point is closer
than that to any other lattice point.

To illustrate the above concepts, consider the hexagonal lattice defined by the
generator matrix

G=
[

1 0
1
2

√
3

2

]

.

A pictorial representation of the lattice points that are generated by the afore-
mentioned generator matrix is given in Figure 7.4, where a finite subset of the

...

...

......

00

01

11

10

FIGURE 7.4: Example of a hexagonal lattice. A finite subset of the
lattice points is shown, and the Voronoi region of each lattice point is a
hexagon.
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hexagonal lattice is shown. If we take four of the lattice points as our finite sub-
set, then we can define a mapping of this subset to binary vectors of length two. In
Figure 7.4, we chose four lattice points and arbitrarily assigned two-dimensional
bit vectors to the lattice points. A transmitter may then parse a bit string into vec-
tors of length two and map each vector to a lattice point. Each of the lattice points
represent a two-dimensional real vector that will be corrupted by additive white
Gaussian noise. The Voronoi region of each lattice point is shown as a hexagon.
Therefore, if the additive noise is not large enough to perturb a lattice point out-
side of its Voronoi region, then the decoder will be able to successfully decode
the bits sent by the encoder.

7.3.2 Convolutional Codes

A class of codes that are often used with both Hamming distance decoders and
Euclidean distance decoders are convolutional codes. For simplicity, we restrict
our description to binary convolutional codes. Like an (n, k) linear block code,
an (n, k) convolutional code maps length-k blocks of information symbols into
length-n blocks of output symbols, but each output block depends on the current
and previous information blocks. A convolutional code can in general be defined
by a linear finite state machine (LFSM). For a binary (n, k) convolutional code
of memory ν, the LFSM can be expressed as ν stages of k shift registers that are
connected by n different modulo-2 adders, as in Figure 7.5. At each time instant,
k bits are shifted in to the LFSM and n bits are output from the LFSM. The shift
registers in combination with the modulo-2 adders serve to constrain the possible
output sequences. The goal of designing a convolutional code is to constrain the
possible output sequences to be separated by a large distance. For example, if

+ + ++

...

1 2 ν

... ... ...
1 2 k 1 2 k 1 2 k

...

1 2 3 n

k

FIGURE 7.5: A linear finite state machine representation of a convolu-
tional code. There are k input bits, n output bits, and the memory is ν.
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the convolutional code is to be used with a Hamming distance decoder, then it is
desirable to design the convolutional code so that the possible output bit sequences
are separated by a large Hamming distance. However, if the convolutional code
is to be used with a Euclidean distance decoder, then a mapping between the
output bit sequences and vectors of real values must be defined and it is desirable
to design the convolutional code so that the possible vectors of real values are
separated by a large Euclidean distance. In general, better convolutional codes
can be found as the memory is increased.

As is common with LFSMs, it is often beneficial to express the LFSM as a
state transition diagram. The states represent the contents of the registers in the
LFSM, and the transitions between states are determined by the input bits. As an
example, consider the convolutional code shown in Figure 7.6a. The parameters
of the code are given as ν = 2, k = 1, and n= 2. In the example, bits are shifted
into the registers one at a time and the input bit is represented as the variable u.
The contents of the registers that represent the state of the convolutional code are
given as variables s1 and s2. The output bits of the convolutional code are given
as variables c1 and c2. We can represent the convolutional code as a state diagram
by assigning a circle to each possible state (as in Figure 7.6b) and representing
the transitions between states with arrows. As can be seen from Figure 7.6 the
input bit, in combination with the current state of the convolutional code, will
determine the following state of the convolutional code. For example, if at a given
time instant the state of the registers is given as 01 and the input bit is 1, then 1
will be shifted out of the right-most register and the input bit will be shifted into
the left-most register. As a result, the following state of the convolutional code
will be 10.

+ +

c1 c2

su
1 2s

00
s s

10

11

01

21u=0

u=1u=1

u=1

u=0u=0

u=0u=1

(a) (b)

FIGURE 7.6: (a) Convolutional code example with parameters ν = 2,
k = 1, and n= 2. (b) State diagram representation of convolutional code.
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Any convolutional code can also be expressed as a vector-matrix product

�c(D)= �u(D)G(D), (7.10)

where �c(D) = [c1(D), c2(D), . . . , ci(D), . . . , cn(D)] is a row vector of n poly-
nomials, with the ith polynomial representing the ith output bit sequence. A bit
sequence, {b0, b1, . . . , bm} can be represented as a polynomial b0 + b1D + · · · +
bmDm by weighting the ith bit in time by Di where D is a variable representing
delay. Similarly, �u(D) = [u1(D),u2(D), . . . , uj (D), . . . , uk(D)] is a row vector
of k polynomials, with the j th polynomial representing the j th bit sequence. The
matrix G(D) is a k × n matrix that contains generator polynomials that specify
the relationship between the input polynomials and the output polynomials. For
example, consider the convolutional code shown in Figure 7.6a. The first output
bit is the modulo-2 addition of the current input bit and the previous input bit in
time. We can write a polynomial equation for the first output bit as

c1(D)= u(D)+Du(D),

where the variable D represents delay. The second output bit is equal to the
modulo-2 addition of the current input bit, the bit from the previous time instant,
and the bit from two time instants ago. We can write a polynomial equation for
the second output bit as

c2(D)= u(D)+Du(D)+D2u(D). (7.11)

Now, the two equations just given can be combined into the form of (7.10) where
the generator matrix can be expressed as

G(D)= [
1+D 1+D +D2

]

and �c(D)= [c1(D), c2(D)], �u(D)= [u(D)]. The aforementioned representation
of a convolutional code is often useful for analyzing the performance characteris-
tics of a code.

Another representation of a convolutional code is as a trellis. A pictorial repre-
sentation of a trellis can be formed by aligning all of the possible states in a verti-
cal column for each time instant and then connecting the states in accordance with
the state transition diagram. The trellis representation of a convolutional code is
particularly useful for decoding, as quick decoding algorithms such as the Viterbi
decoding algorithm can be derived from the trellis representation. An example of
a trellis representation of the convolutional code in Figure 7.6a is given in Fig-
ure 7.7, where the states are represented as dots and the transitions are labeled by
the input bit that causes the transition and the resulting output bits.
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FIGURE 7.7: Trellis representation of convolutional code given in Fig-
ure 7.6a.

The goal of the decoder is to find the codeword from the convolutional code
closest to the received sequence in either Hamming distance or Euclidean distance
(if the output bits of the convolutional code are mapped to real values). This can be
done efficiently by using the trellis diagram. If we let y(i) represent the received
block (of length n) at time instant i and let c

(i)
ui ,si→si+1 represent the output block

(of length n) at time instant i corresponding to the transition between states si and
si+1 that results from input block ui (of length k), then mathematically the goal
of the decoder is to find the output sequence ĉ that is closest in distance to the
received sequence,

ĉ= arg min
c∈C

d(c,y).

In the equation just given, C represents the set of valid codewords, c= {c(0)
u0,s0→s1 ,

c
(1)
u1,s1→s2, . . . , c

(m)
um,sm→sm+1} represents a valid sequence of output blocks, and

y= {y(0), y(2), . . . , y(m)} represents a sequence of received blocks. Furthermore,
d(c,y) is the distance metric between the output sequence and the received se-
quence and can be written as a summation of distances between the received
blocks and the output blocks at the various time instants,

d(c,y)=
m∑

i=0

d
(
c(i)
ui ,si→si+1

, y(i)
)
. (7.12)

Assuming that the trellis starts in state zero (i.e., all of the registers of the convo-
lutional code are cleared to zero), a naive approach to finding the codeword se-
quence that is closest to the received sequence would be to calculate the distance
of the received sequence to each path in the trellis that starts in state zero and then
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declare the path that is closest to the received sequence as the decoded codeword.
This method is inefficient because the amount of computation grows exponen-
tially with the length of the sequence. A more efficient decoding algorithm can be
realized by using the Viterbi algorithm. The Viterbi algorithm begins at the first
stage of the trellis by calculating the distance between all branches of the trellis
that emerge from state zero and the corresponding block in the received sequence
(i.e., d(c

(0)
u0,s0→s1 , y

(0))). In general, there will be 2k branches that emerge from
any state, so the Viterbi algorithm starts by calculating 2k distance metrics. For
the next stage in the trellis, we can prune paths that end in the same state s1.
More specifically, for all paths that converge to the same state, we can keep the
path that has the minimum distance up to that state and prune all other paths. This
works because if multiple paths converge to the same state, then any path that may
emerge from this state will have an associated distance that will be added to the
distance associated with the path that ends in that state. Mathematically, we can
break up the total distance metric for any path that goes through a state at time i

as the distance metric from state 0 at time 0 to state si at time i and the distance
metric from state si to state sm+1 at the end of the trellis:

d(c,y) =
i−2∑

j=0

d
(
c
(j)
uj ,sj→sj+1, y

(j)
)+ d

(
cui−1,si−1→si , y

(i−1)
)

+
m∑

j=i

d
(
c
(j)
uj ,sj→sj+1, y

(j)
)
. (7.13)

From (7.13), we see that all paths that merge at state si will have the same possible
distances

∑m
j=i d(c

(j)
uj ,sj→sj+1, y

(j)) added to the existing distance of the path and
therefore a path with a larger distance at state si cannot achieve a smaller overall
distance than a path with a smaller distance at state si . As a result, we can prune
the total number of paths to be no larger than the total number of states. In other
words, at each time instant, at most 2νk paths are kept (one path for each state).
At time instant m, the minimum-distance path can be determined and traced back
to state 0 at time instant 0. The output sequence associated with the minimum
distance path is the decoded codeword.

Because the time complexity of the Viterbi algorithm is exponential in the
memory order, faster but suboptimal sequential decoding algorithms (e.g., the
Fano and Stack algorithms [50]) are used in many time-critical applications.
A generalization of the standard Viterbi algorithm is the list Viterbi algorithm
(LVA) [44,41], which finds the L most likely paths instead of only the most likely
one.

Symbol MAP decoding (see Section 7.2.2) of convolutional codes can be done
with soft-input soft-output algorithms. Two of the most prominent ones are the
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BCJR algorithm of Bahl and colleagues [4] and the soft-output Viterbi algorithm
of Hagenauer and Hoeher [25]. Both algorithms output for each information bit
ui, i = 0, . . . , km, an a posteriori log-likelihood ratio (LLR)

�(ui)= log
Pr{Ui = 1 |Y= y}
Pr{Ui = 0 |Y= y}

whose sign specifies the reconstructed source bit ûi .
A family of convolutional codes can be generated from a single convolutional

code, called a mother code, with rate 1
n

. Some output symbols of the mother
encoder are punctured, which allows the construction of a family of codes with
rates p

np
,

p
np−1 , . . . ,

p
p+1 , where p is the puncturing period. To obtain RCPC codes

[24], all protection symbols of the higher rate-punctured code are used by the
lower rate codes (the higher rate codes are embedded into the lower rate codes).
A nice feature of RCPC codes is that if a higher rate code does not provide enough
protection, one can switch to a lower rate code simply by adding extra redundant
symbols. Another good feature of RCPC codes is that the same Viterbi trellis can
be used for all rates.

As mentioned earlier, a convolutional code may be used as either a Hamming
distance code or a Euclidean distance code. If the convolutional code is used as
a Euclidean distance code, then a mapping between the possible output bits at
any given time instant and a set of real values must be defined. One method of
defining a mapping is to first choose a constellation of real values such as a finite
subset of lattice points and then define a bijective mapping between the lattice
points and the possible output bit vectors. For example, the convolutional code
shown in Figure 7.6a has two output bits, which can assume one of four possi-
ble two-bit combinations, so we can define a mapping between the four possible
two-bit combinations and the four lattice points shown in Figure 7.4. Recall, how-
ever, that the goal of code design is to maximize the minimum distance between
possible output sequences, and the aforementioned procedure may not maximize
the minimum distance for a given convolutional code and a given set of constel-
lation points. A proper Euclidean distance code design should jointly consider
the convolutional code and the set of constellation points in defining the map-
ping between bits and constellation points. This concept was first introduced by
Ungerboeck [48], and the resulting codes are often referred to as trellis-coded
modulation (TCM) codes.

TCM codes are usually formed by letting a convolutional code index a parti-
tion of constellation points [48]. Forney [20] and Conway and Sloane [13] inde-
pendently utilized this heuristic to define a set of codes that are derived from a
convolutional code that indexes a lattice partition. More specifically, both Forney
and Conway and Sloane showed that good trellis codes can be obtained by parti-
tioning a well-known lattice and then searching for a convolutional code to index
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the partition. In this chapter, we will denote a lattice partition as �/�′, where �′
is a sublattice of � and partitions � into cosets of �′. A coset of �′ is formed by
choosing a lattice point, λ ∈�, and adding this element to all of the lattice points
in �′. We denote the coset as �′ + λ. For example, consider the lattice partition
Z/4Z, where Z is the integer lattice formed by the 1× 1 identity matrix and 4Z

is a sublattice of Z that is formed by scaling the integer lattice by 4. Four disjoint
cosets may be formed from 4Z by adding the lattice points {0,1,2,3} to 4Z. No-
tice that the union of the four cosets is equal to Z. One method of arriving at the
four cosets of 4Z is to use a partition tree, Z/2Z/4Z. The first level of the tree is
a partition of Z into two cosets that consist of the even and odd lattice points of
Z (i.e., 2Z and 2Z+ 1). The next level of the partition tree further partitions 2Z

into 4Z and 4Z + 2 and partitions 2Z + 1 into 4Z + 1 and 4Z + 3. A pictorial
representation of the partition tree, Z/2Z/4Z, is given in Figure 7.8. Each of the
branches of the partition tree is labeled as either 0 or 1. This labeling defines a
mapping between two-bit vectors and cosets of 4Z. For example, the coset 4Z+1
corresponds to the bit label 10. Now, if we allow the output of a rate- 1

2 convolu-
tional code to index the labeling of the partition tree for each time instant, then
a trellis code may be formed from Z/4Z by searching all rate- 1

2 convolutional
codes of a given constraint length to find the convolutional code that maximizes
the minimum Euclidean distance between codewords. Note that in the aforemen-
tioned, a finite subset of the lattice points must be used to form the trellis code to
ensure that there is no ambiguity in decoding a sequence of lattice points to a bit
sequence.

The performance of a TCM code is measured by the signal-to-noise ratio (SNR)
that is needed to achieve a given probability of error. For high SNRs, it has been
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FIGURE 7.8: An example of the partition tree Z/2Z/4Z. The branches
of the tree are labeled by either 0 or 1 and represent a mapping from bits
to cosets of 4Z.
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shown that the probability of error for a TCM code can be approximated as

Pe ≈KminQ

(√
d2

min

4σ 2
N

)

, (7.14)

where Q is the Q function, dmin represents the minimum distance of the TCM
code and Kmin represents the number of codewords that have a distance of dmin
from a given codeword. We use σ 2

N to represent the variance of the channel noise.
Though effective, the performance of TCM codes is considerably worse than in-
formation theoretic bounds.

7.3.3 Interleaving

While the codes described earlier are convenient for memoryless channels with
small error rates, most of them are not suited to the protection against errors that
occur in bursts. When errors occur in bursts, as in fading channels, a transmitted
codeword is either free of errors or contains a large number of successive errors.
The problem of burst errors can be alleviated with special codes (e.g., Fire codes
[17]). An alternative is interleaving, which shuffles the symbols from different
codewords before transmission. When a long burst error occurs, the erroneous
symbols are distributed among many codewords where they appear as short burst
errors. In block interleaving (Table 7.2), the channel codewords are placed in the
rows of an array, and the codeword symbols are sent columnwise. In cross (or
convolutional) interleaving, as shown in Figure 7.9, a set of ordered shift registers
with linearly increasing memory size is used to separate the output symbols of the
channel encoder.

7.3.4 Turbo Codes

In 1993, Berrou et al. [9,10] amazed the coding community by introducing a novel
class of error-correcting codes, turbo codes, which, for a binary-input AWGN

Table 7.2: Block interleaver of size 4× 7. To transmit four codewords of length
7, the codeword symbols are sent columnwise, in the order 1,8,15,22, . . . ,7,
14,21,28. A burst error of length four produces no more than a single error in a
transmitted codeword.

1. Codeword 1 2 3 4 5 6 7
2. Codeword 8 9 10 11 12 13 14
3. Codeword 15 16 17 18 19 20 21
4. Codeword 22 23 24 25 26 27 28
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2

3

4

1

FIGURE 7.9: Cross interleaver with four shift registers. The memory
sizes of the shift registers are 0, m, 2m, and 3m, respectively. At time unit
i, a symbol is inserted into shift register i, which outputs its right-most
symbol. Suppose that m= 1 and the input symbols are 0,1,2,3,4,5,6,7,
8, . . . . After interleaving, the symbols are sent in the order 0,4,1,8,5, . . . .

ak

ak-2ak-1

uk

c0k

c1k

FIGURE 7.10: A recursive systematic convolutional code.

channel, achieved a BER of 10−5 with code rate 1/2 and Eb/N0 as close as 0.5 dB
to the practical Shannon limit (see Section 7.2.4).

A turbo code is a parallel concatenation of two or more codes connected by
pseudo-random interleavers. The constituent codes are usually identical, recursive
systematic convolutional (RSC) codes of rate 1/2. An example of an RSC encoder
is shown in Figure 7.10. Its main property is the existence of a feedback in the
shift-register realization.

Figure 7.11 shows a classical turbo encoder with two constituent RSC codes.
In contrast to a serial code concatenation where the output of one encoder forms
the input for the next one, in a parallel concatenation, both encoders operate on
the same input block. In Figure 7.11, an input information block of length k bits,
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RSC Encoder 2
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Interleaver
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u
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u
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FIGURE 7.11: A classical turbo encoder with two RSC codes.

u = (u1, . . . , uk), is encoded by the first RSC encoder; at the same time, it is
passed through a k-bit interleaver and fed into the second RSC encoder. For each
input bit ui , the output consists of that bit ui and the two parity-check bits c1,i

and c2,i from the two RSC encoders. The output corresponding to the input block
u is the codeword c= (u1, . . . , uk, c1,1, . . . , c1,k, c2,1, . . . , c2,k). The code rate of
the turbo code is 1/3. Higher code rates can be obtained by puncturing the output
bits of the two encoders [1]. For example, rate 1/2 can be obtained by alternately
puncturing the parity bits of the two RSC encoders. A turbo code is essentially
a block code, thus encoding can be seen as a multiplication of the information
block by a generator matrix.

One of the many novelties in the turbo code realization is the existence of a
block interleaver between the two RSC coders. The interleaver introduces ran-
domness to the code while leaving enough structure in it so that decoding is phys-
ically feasible. The size of the interleaver (the length of the information block) is
usually very large (in the order of thousands bits) to ensure good performance. If
the size is large enough, any pseudo-random interleaver will perform well. How-
ever, for short interleaver sizes, the performance of the code can be significantly
enhanced by a clever design of the interleaver [5].

A typical turbo decoder consists of two soft-input soft-output decoders (see
Section 7.3.2), two k-bit interleavers identical to the encoder interleaver, and a
deinterleaver, as shown in Figure 7.12. The decoding is based on the symbol MAP
rule (see Section 7.2.2). The a posteriori LLRs for the information bits u1, . . . , uk

are estimated in an iterative way by exchanging information between the two
constituent decoders. Suppose that the systematic part of the codeword, c0 =
(u1, . . . , uk), is received as y0, while the two parity parts, c1 = (c1,1, . . . , c1,k) and
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FIGURE 7.12: Block scheme of a classical turbo decoder.

c2 = (c2,1, . . . , c2,k), are received as y1 and y2, respectively. In the first iteration,
the first decoder generates a reliability information Le

1(i) for each information bit
ui, i = 1, . . . , k, based on its input, (y0,y1). This soft-decision output, called ex-
trinsic information, is interleaved and fed to the second decoder. Using its input
(y2 and the interleaved version of y0), the second decoder computes a reliability
information Le

2(i) for each information bit. Next, the extrinsic information from
the first decoder, the extrinsic information from the second decoder, and a channel
log-likelihood ratio log Pr{Yi=y0,i |Ui=1}

Pr{Yi=y0,i |Ui=0} are summed to provide a first approxima-
tion of the a posteriori LLRs. In the second iteration, the extrinsic information
Le

2(i) is deinterleaved and sent to the first decoder, which exploits this new in-
formation to update its extrinsic information. The procedure repeats until the a
posteriori LLRs converge or a maximum number of iterations is reached.

Turbo coding with iterative decoding is currently one of the best error-
correcting techniques. It significantly outperforms convolutional codes of the
same constraint length. One of the key properties of turbo codes is the sharp
performance improvement with the increase of the input block length. Thus, to
achieve near-capacity performance, large block lengths are needed, which cause
huge latency. Therefore, applications of turbo codes are currently limited to those
that are not delay sensitive. For example, the new CCSDS telemetry channel
coding standard for satellite and deep-space communications uses turbo codes.
SMART-1, launched in September 2003 by the European Space Agency, is the
first probe that exploits turbo codes. Turbo codes have also been adopted by
the leading third-generation (3G) cellular standards, such as CDMA2000 and
UMTS.
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7.4 HIERARCHICAL MODULATION

Hierarchical modulation [19] is a digital modulation technique that enables trans-
mission of two independent information bit streams with unequal priority on a
single channel. As part of the digital terrestrial television standard DVB-T [18],
it offers new possibilities in organizing scarce radio frequency bandwidth. In this
section, we first outline the main concepts underlying hierarchical modulation
and compare it to standard digital nonhierarchical modulation techniques; then,
we give examples of possible applications.

Figure 7.13 shows constellations of four basic linear digital modulation tech-
niques [38,39]. Each possible digital state (constellation point) in the phase di-
agram (represented by a dot in Figure 7.13) uniquely determines one phase of
the carrier signal. Each transmitted bit stream is assigned to one constellation
point. The performance of a digital modulation technique can be measured using
its achieved data rate (or, equivalently, the number of bits assigned to each dig-
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FIGURE 7.13: Constellations of four standard digital modulation tech-
niques: BPSK (top left), 4-QAM (top right), 16-QAM (bottom left), and
64-QAM (bottom right).
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ital state) and minimum tolerated signal-to-noise ratio for reliable demodulation
(which reflects robustness to channel noise). Normally, higher level modulation
techniques achieve larger data rates at the expense of a lower robustness.

Binary Phase Shift Keying (BPSK) allows transmission of one bit per modu-
lation signal. The phase of a carrier signal takes two possible values (separated
by π ) depending on the transmitted bit. 4-Quadrature Amplitude Modulation (4-
QAM), also referred to as Quadrature Phase Shift Keying (QPSK or 4-PSK),
transmits two bits on each carrier. Thus, it achieves twice the data rate of BPSK.
In Figure 7.13, one possible constellation realization is presented, where the car-
rier phases are π/4, 3π/4, 5π/4, and 7π/4. In 16-QAM and 64-QAM, because
there are 4×4 and 8× 8 different constellation points, respectively, four and six
bits, respectively, can be sent per modulation signal. The assignment of the bit
streams to the digital states is usually determined using Gray-code mapping so
that the assignments of the closest constellation points differ in one bit. The data
rate is increased compared to 4-QAM at the expense of a lower noise tolerance
(due to smaller distances between neighboring states in the phase diagram). For
example, compared to 4-QAM with the same code rate, the minimum tolerated
signal-to-noise ratio is approximately 6 dB and 12 dB higher with 16-QAM and
64-QAM, respectively [19].

Note that in all modulation techniques discussed so far, a single information
bit stream (possibly coded) is transmitted per one modulation signal. Hierarchi-
cal modulation, however, enables transmission of two separate information bit
streams in a single modulation signal. One bit stream, called high-priority (HP)
bit stream, is embedded within another, called low-priority (LP) bit stream. The
main idea is to decouple the bit stream assigned to a digital state into two sub-
streams: the first substream is HP, which determines the number of the quadrant
(0, 1, 2, or 3) where the digital state is located; the second substream (LP) carries
the information about the position of the digital state in the specified quadrant.
As a result, hierarchical modulation can be viewed as a combination of 4-QAM
(used for the HP bit stream) and either 4-QAM or 16-QAM (used for the LP bit
stream).

Two hierarchical modulation constellations are shown in Figure 7.14. In the
first constellation (the upper figure), 4-QAM is embedded in 16-QAM (thus, it
is called “4-QAM in 16-QAM”); in the second one, 4-QAM is embedded in 64-
QAM (“4-QAM in 64-QAM”). In both cases, the first two bits constitute the HP
bit stream intended for an HP service/client; the remaining two or four bits are
the LP bit stream intended for an LP service/client. In the example shown in
Figure 7.14 (bottom), 10 is sent to the HP clients and 0101 to the LP clients.

Note that the HP bit stream is always modulated as 4-QAM. Thus, as in classic
nonhierarchical 4-QAM, it carries two bits per modulation signal. However, be-
cause the LP bit stream can be seen at the receiver as an additional noise in the
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FIGURE 7.14: Hierarchical modulation: “4-QAM in 16-QAM” (top)
and “4-QAM in 64-QAM” (bottom).
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quadrant of the received signal, the HP bit stream is less robust than nonhierar-
chical 4-QAM (i.e., a higher minimum tolerated signal-to-noise ratio is needed).

The LP bit stream is essentially either 4-QAM [Figure 7.14 (top)] or 16-QAM
[Figure 7.14 (bottom)] modulated. Thus, it carries two or four bits and has the
same data rate as the corresponding nonhierarchical modulation method. The
noise sensitivity is comparable to that of the whole constellation [16-QAM in
Figure 7.14 (top) or 64-QAM in Figure 7.14 (bottom)]. Note that the total rate
of the HP and LP bit streams is equal to the rate of the whole nonhierarchical
constellation (16-QAM or 64-QAM).

The HP bit stream is obviously more robust to channel noise than the LP bit
stream; indeed, a transition of the carrier phase (due to channel noise) from one
digital state to the other within a quadrant is more likely to occur than a transi-
tion to a state in another quadrant. However, the robustness of the HP and LP bit
streams can be further improved by channel coding (i.e., by adding error protec-
tion) or by changing the constellation’s α factor, as in Figure 7.15. The α = a/b

factor [18] is defined as the ratio between a, the minimum distance separating
two constellation points that carry two different HP bit streams, and b, the mini-
mum distance separating any two constellation points. Constellations with α > 1
are called nonuniform constellations. The increase of α makes the HP bit stream
more robust at the expense of a less robustness of the LP bit stream. (The DVB-T
standard uses α ∈ {1,2,4}.) Thus, hierarchical modulation splits the actual com-
munication channel in two virtual channels whose characteristics depend on the

Q

I

a

b

1000 1010 0010 0000

0001001110111001

0101011111111101

1100 1110 0110 0100

FIGURE 7.15: A nonuniform 16-QAM constellation with α = b/a = 2.
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whole constellation (64-QAM), α factor, and code rates of the HP and LP bit
streams.

Hierarchical modulation was originally proposed to enable two different cov-
erage areas for a given transmitter in digital terrestrial TV. It offers great design
flexibilities and simplifies network planning. Its value has become even more ap-
parent with recent increasing demands for delivery of different services over het-
erogeneous networks, where communication channels between the sender and the
clients are extremely diverse in available bandwidths and channel noise.

For example, suppose that two digital TV programs are to be transmitted simul-
taneously. With nonhierarchical modulation, the two programs must be broadcast
over two separate frequency channels: 4-QAM can be used for the first channel
(achieving a data rate of two bits per modulation signal) and 16-QAM for the
second channel (with a data rate of four bits per modulation signal). With hierar-
chical modulation (“4-QAM in 64-QAM”), only one channel is needed: the first
program can be transmitted as an HP bit stream (at a data rate of two bits per
modulation signal), while the second TV program can be transmitted as an LP bit
stream (at a data rate of four bits per modulation signal). Then, the coverage ra-
dius (which is determined by the noise tolerance) of the second TV program will
be roughly the same as in the nonhierarchical case; the coverage radius of the first
program, however, will be smaller than with nonhierarchical 4-QAM, but can be
enlarged by increasing the α factor (at the expense of a smaller coverage radius of
the second TV program) or by using error protection (at the expense of decreasing
the information rate). Thus, one immediate advantage of hierarchical modulation
over a nonhierarchical one is the savings in transmission channels because two
streams with different data rates and different coverage areas can be transmitted
on a single frequency channel.

Hierarchical modulation efficiently addresses the problem of heterogeneity in
clients’ available bandwidths, receiver resolution capabilities, and channel condi-
tions. For example, a single frequency channel can be used to broadcast a video
bit stream to mobile (or portable) receivers and fixed receivers. The mobile re-
ceivers will decode the HP bit stream, whereas the fixed receivers will be able, in
addition, to decode the LP bit stream (due to their large roof top antenna gains).

Hierarchical modulation can be combined with quality/resolution scalable
video coders. Then, the LP bit stream plays the role of the enhancement layer,
which improves the quality/resolution of the HP (base layer) bit stream. Depend-
ing on transmission conditions, the receiver will be able to decode at the higher
or lower quality/resolution level.

Another application is simulcast of the High Definition TV formats, together
with the Standard Definition formats. (Transmitting the Standard Definition to-
gether with the High Definition formats is necessary because all the receivers do
not have screens that support the latter formats.) Here, the HP bit stream carries
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the Standard Definition TV formats, and thus will be available to all receivers,
whereas the LP bit stream carries the High Definition TV formats only.

Comparisons between hierarchical and nonhierarchical modulation in different
scenarios can be found in [42].

7.5 AUTOMATIC REPEAT REQUEST, HYBRID FEC/ARQ

In this section, we present error protection techniques that use retransmissions.
Here we assume the presence of a feedback channel from the receiver to the trans-
mitter. We first describe pure ARQ techniques, which are based on error detection
and retransmission of the corrupted packets. Then we explain type I hybrid ARQ
protocols that combine error correction coding and ARQ techniques. Finally, we
overview type II hybrid-ARQ protocols where the transmitter answers a retrans-
mission request by sending additional parity symbols.

7.5.1 Pure ARQ Protocols

In a pure ARQ system, an information block of length k is encoded into a channel
codeword of length n with an error-detecting code. The codeword is sent over the
channel and the received word is decoded. If no errors are detected, the transmit-
ted codeword is assumed to be received correctly and need not be retransmitted.
Otherwise, the codeword must be sent again until it is received correctly. To send
feedback information to the transmitter, the receiver can use a positive acknowl-
edgment (ACK) to indicate that the codeword was received correctly or a negative
acknowledgment (NACK) to indicate a transmission error. The efficiency of an
ARQ scheme is measured by its reliability and throughput. The reliability is the
probability that the receiver accepts a word that contains an undetectable error.
The throughput is the ratio of the average number of bits successfully accepted
per unit of time to the total number of bits that could be transmitted per unit of
time [29]. In the following, we overview the most important ARQ schemes. De-
tails can be found in [29] and [50].

7.5.1.1 Stop-and-Wait ARQ

In stop-and-wait ARQ, the transmitter sends a codeword and waits for an ac-
knowledgment for that codeword. If an ACK is received, the next codeword is
sent. If an NACK is received, the same codeword is retransmitted until it is re-
ceived correctly, as in Figure 7.16. Stop-and-wait ARQ has a simple implemen-
tation. In particular, the codewords are not numbered. Its major drawback is the
idle time spent by the transmitter waiting for an ACK.
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FIGURE 7.16: Stop-and-wait ARQ.

7.5.1.2 Go-Back-N ARQ

In go-back-N ARQ, the transmitter sends the codewords continuously without
waiting for an acknowledgment. Suppose that the acknowledgment for codeword
ci arrives after codewords ci, . . . , ci+N−1 have been sent. If this acknowledgment
is of the ACK type, the transmitter sends codeword ci+N . Otherwise, the code-
words ci, . . . , ci+N−1 are sent again, as in Figure 7.17. On the receiver side, when
an error is detected in a received word, this word and the N − 1 subsequently
received ones are ignored. Note that a buffer for N codewords is required at the
transmitter side.

7.5.1.3 Selective-Repeat ARQ

Selective-repeat ARQ is similar to go-back ARQ. The difference is that when an
NACK for codeword ci is received, only ci is retransmitted before the transmis-
sion proceeds where it stopped, as in Figure 7.18. In addition to the N -codeword
buffer at the transmitter, a buffer is needed at the receiver so that the decoded
codewords can be delivered in the correct order. This buffer must be large enough
to avoid overflow. Selective-repeat ARQ with a finite-size buffer is presented in
[29]. An alternative is to combine selective-repeat ARQ with go-back-N ARQ
[29]. Here the transmitter switches from selective-repeat ARQ to go-back-N ARQ
whenever μ retransmissions of a codeword have been done without receiving an
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FIGURE 7.17: Go-back-N ARQ.
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ACK. It switches back to selective-repeat ARQ as soon as an ACK is received. In
this way, the buffer size of the receiver can be limited to μ(N − 1)+ 1.

7.5.2 Hybrid ARQ Protocols

FEC and ARQ can be combined to provide for channels with high error rates
better reliability than FEC alone and larger throughput than ARQ alone.

7.5.2.1 Type-I Hybrid ARQ Protocols

In a type-I hybrid ARQ system, each information block is encoded with a channel
code with error detecting and error correcting capabilities. This can be a single
linear code (see Section 7.3.1) or a concatenation of an error detection code as
an outer code and an error correction code as an inner code. If the received word
can be correctly decoded, then the decoded codeword is accepted. Otherwise, a
retransmission is requested for the codeword.

7.5.2.2 Type-II Hybrid-ARQ Protocols

The basic difference between a type-I hybrid ARQ protocol and a type-II hybrid
ARQ protocol is that in the latter the transmitter sends additional parity bits in-
stead of the whole codeword when it receives a retransmission request for this
codeword. The following example [50] illustrates the method. An (n, k) MDS
code C is used to encode the information block. The resulting codeword is split in
two. The first half can be seen as a codeword c1 from an (n/2, k) code C1 and the
second one as a codeword c2 from an (n/2, k) code C2. Here the two codes C1 and
C2 are obtained by puncturing the code C. The transmitter starts by sending c1. If
the received word y1 cannot be correctly decoded, a retransmission is requested.
The transmitter then sends the codeword c2, which is received as y2. The receiver
concatenates y1 and y2 and uses the stronger code C to decode the resulting word.

7.6 SUMMARY AND FURTHER READING

The first part of this chapter presented the fundamental results of information
theory, which culminate in Shannon’s joint source-channel coding theorem. While
this theorem is useful in understanding the theoretical performance bounds for
the communication of data over an unreliable channel, it does not explain how
a practical communication system should be designed. Practical system design
should consider source coding, channel control, and modulation. Practical source
coding for media data is described in other chapters of this book (Chapter 5 for
video coding and Chapter 6 for audio coding). State-of-the-art channel coding
techniques are overviewed in the second part of the chapter. The main message is



226 Chapter 7: CHANNEL PROTECTION FUNDAMENTALS

that channel coding techniques, in particular Turbo codes and LDPC codes, have
reached a level of maturity that allows them to achieve performance close to the
theoretical bounds announced by Shannon. Another important achievement in the
area of channel coding is development of the class of digital fountain codes for
protection against packet loss. The third part of the chapter discussed hierarchical
modulation, an emerging modulation technique for digital video broadcasting.
The last part of the chapter gave a brief survey of error control techniques that
rely on data retransmission. These techniques, which require a two-way channel,
can be used with error detection only or combined with error correcting codes.

We conclude this chapter with suggestions for further reading. A rigorous treat-
ment of source coding can be found in [6] and [17]. Excellent descriptions of
modern channel codes are given in [43] and [33]. The best reference for the latest
advances in source and channel coding is the IEEE Transactions on Information
Theory.
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8
Channel Modeling and
Analysis for the Internet

Hayder Radha and Dmitri Loguinov

8.1 INTRODUCTION

Performance modeling and analysis of channels and networks play a crucial role
in the design and development of multimedia applications. In particular, having
an insight into the expected number of packet losses, which could occur when
sending video or audio content over the Internet, provides multimedia application
designers an important premise for developing resilience techniques to protect
that content. Furthermore, real-time multimedia applications are sensitive to end-
to-end delay parameters, including delay jitter. These parameters influence the
particular techniques used for recovering lost packets. For example, depending
on the application and its level of tolerance for end-to-end delay, the application
designer may choose to adopt a strategy for recovering lost packets that is based
on retransmission, Forward Error Correction (FEC), or both.

This chapter covers fundamental analysis tools that are used to characterize
the loss performance of channels and networks that carry multimedia packets.
We focus on models and analysis tools for Internet multimedia applications. In
addition to performance analysis and modeling tools, experimental performance
studies are crucial for designing multimedia applications and services. Hence, this
chapter consists of two major parts. The first part emphasizes core and relatively
simple analysis tools that lead to key results and widely used formulas. Although
some of these results and formulas are basic, rather abstract, and generic in nature
(i.e., applicable to a variety of applications), their use for performance analysis of
multimedia applications is invaluable. The second part of this chapter describes a
comprehensive Internet video study conducted for gaining insight into a variety of
end-to-end performance parameters that are crucial for real-time multimedia ap-
plications. The study reveals many interesting and practical issues, and it provides
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significant insight that is difficult (if not impossible) to gain based on pure analy-
sis or modeling. The later (second) part also analyzes the performance parameters
collected from the aforementioned Internet video study.

The analytical tools needed for characterizing channels and networks lie within
basic concepts from probability theory, random processes, and information the-
ory. Here, it is assumed that the reader has the appropriate background in prob-
ability theory and random processes. We later focus on some of the key, basic
and relevant concepts and definitions from information theory that can be used
for characterizing Internet links and routes. For popular Internet multimedia ap-
plications, packet losses represent the most crucial performance parameter. The
information theory concepts covered in this chapter identify performance bounds
for given loss measures.

8.2 BASIC INFORMATION THEORY CONCEPTS OF CHANNEL
MODELS

Information theory [1–3] provides core channel models that are used to represent
a wide range of communication and networking scenarios. We begin by highlight-
ing the information-theoretic definition of a discrete memoryless channel (DMC)
and then focus on simple DMC channel models applicable to basic links and
routes over the Internet (Figure 8.1).

A DMC is characterized by the relationship between its input X and its out-
put Y , where X and Y are two (hopefully) dependent random variables. There-
fore, a DMC is usually represented by the conditional probability p(y|x) of the
channel output Y given the channel input X. Furthermore, and since X and Y are
dependent on each other, their mutual information I (X;Y) has a nonzero (i.e.,
strictly positive) value,

I (X;Y)=
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
> 0.

An important measure is the maximum amount of information that Y can pro-
vide about X for a given channel p(y|x). This measure can be evaluated by maxi-
mizing the mutual information I (X;Y) over all possible sources characterized by
the marginal probability mass function p(x) of the channel input X. This maxi-
mum measure of the mutual information is known as the “information” channel
capacity C:

C =max
p(x)

I (X;Y).

Based on this definition, the channel capacity C is a function of the parameters
that characterize the conditional probability p(y|x) between the channel input X

and the channel output Y . The following section focuses on a particular channel.
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FIGURE 8.1: A representation of a DMC channel.

FIGURE 8.2: A representation of the Binary Erasure Channel.

8.2.1 The Binary Erasure Channel (BEC) Channel

The simplest DMC channel model that could be used for representing an Internet
link or route is the Binary Erasure Channel (Figure 8.2). The BEC is characterized
by the following.

• The input X is a binary (Bernoulli) random variable that can be either a
zero or a one.

• A loss parameter δ, which represents the probability that the input is lost
(“erased” or “deleted”) when transmitted over the BEC channel.

• The output Y is a ternary random variable that could take on one of three
possible values: zero, one, or “erasure.” The latter output occurs when the
channel loses the transmitted input X.

More specifically, a BEC is characterized by the conditional probability mea-
sures

Pr
[
Y = “erasure” |X = 0

]= δ and Pr
[
Y = “erasure” |X = 1

]= δ,

Pr
[
Y = 0 |X = 0

]= 1− δ and Pr
[
Y = 1 |X = 1

]= 1− δ,

Pr
[
Y = 1 |X = 0

]= 0 and Pr
[
Y = 0 |X = 1

]= 0.

Therefore, no errors occur over a BEC, as Pr[Y = 0 | X = 1] = Pr[Y = 1 | X =
0] = 0.
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Due to the loss symmetry of the BEC (i.e., the conditional probability of losing
a bit is independent of the bit value), it can be easily shown that the overall loss
probability is also the parameter δ. In other words,

Pr[Y = “erasure”] = δ.

By using the definition of information channel capacity C =maxp(x) I (X;Y),
it can be shown [1,2] that the channel capacity of the BEC is a rather intuitive
expression,

C = 1− δ.

This capacity, which is measured in “bits” per “channel use,” can be achieved
when the channel input X is a uniform random variable with Pr[X = 0] = Pr[X =
1] = 1/2.

Despite its simplicity, the BEC provides a rough, yet very useful estimate of the
maximum throughput one can achieve over an Internet link, or an end-to-end route
between a server and a client. For example, if one measures the average packet
loss probability over a link or route to be δ, then the throughput of the route is
1− δ, which is the same as the capacity of a BEC with parameter δ. The next sec-
tions expand on the basic BEC channel in three aspects that provide more realistic
modeling of practical links and routes: (1) cascaded channels, (2) channels with
input vectors of bits (i.e., packets) rather than binary bits, and (3) channels with
feedback from the receiver to the transmitter.

8.2.2 Cascaded BEC Channels

Packets that carry multimedia content usually traverse multiple links over a path
between the source and the receiver. Hence, these links can be modeled as cas-
caded channels, and here we begin with cascaded BEC channels. First, let’s as-
sume that we have two BEC channels that are in cascade with each other. This,
for example, could represent two Internet links over which multimedia packets
are routed. The two BEC channels could have different loss probabilities,

Pr
[
Y1 = “erasure” |X1

]= δ1 and Pr
[
Y2 = “erasure” |X2

]= δ2,

where (X1, Y1) and (X2, Y2) are the input–output pairs for the first and second
links, respectively. In this case, we know that the maximum throughput (as mea-
sured by the channel capacity) that can be received at the output Y1 of the first
channel is C1 = 1 − δ1. Hence, the second link can be used only (1− δ1) frac-
tion of the time. We also know that the maximum throughput of the second link
is C2 = 1 − δ2. Therefore, the overall throughput of the cascaded channel is
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C = (1 − δ1)(1 − δ2). This channel capacity assumes that the two channels are
independent of each other and that both are DMC channels.

This result can be generalized to L cascaded links of BEC-independent chan-
nels. In this case, each link could have a different loss probability,

Pr
[
Yi = “erasure” |Xi

]= δi, i = 1,2, . . . ,L.

The overall channel capacity of the L cascaded BEC links is

C =
L∏

i=1

(1− δi).

This end-to-end path of L BEC channels is equivalent to a BEC channel with an
effective end-to-end loss probability

δ = 1−
L∏

i=1

(1− δi).

Note that C = 1 − δ = 1 − (1 −∏L
i=1(1 − δi)). As in the single channel case,

the capacity in this cascaded case is measured in bits per channel use. Moreover,
the overall capacity C of the end-to-end route is bounded by the capacity Cmin
of the link with the smallest capacity among all cascaded channels in the route.
In other words, C ≤ Cmin = mini (Ci). Hence, knowledge of the minimum ca-
pacity link provides an easy way for identifying the performance bound of the
end-to-end route. As mentioned earlier, it is important to note that this bound
is measured in terms of “per channel use.” Therefore, Cmin should not be con-
fused by the “bottleneck” bandwidth Bmin that is commonly referred to by the
networking community. In this case, the bottleneck bandwidth usually represents
the maximum transmission rate (e.g., 1.544 Megabits per second for a T1 line)
that a particular link within the end-to-end path could support, and where this link
has the minimum transmission rate: Bmin =mini (Bi). Here, Bi can be thought of
as the number of channel uses per second for link i. In general, a multimedia ap-
plication must use a total rate Rtotal taking into consideration both the bottleneck
bandwidth and the minimum end-to-end capacity. For example, let’s assume that
the transmission rates and link bandwidths are measured in bits per second. We
also know that a BEC link is based on a “per channel use” where “channel use” is
measured in bits (i.e., every time we use the BEC channel, we are transmitting a
bit). Hence, the effective (maximum) throughput of a BEC link i in terms of bits
per second can be expressed as Ri = BiCi . Hence, the total rate Rtotal used by an
application should be bounded by the following effective performance through-
put: Rtotal ≤mini (Ri)=mini (BiCi) in bits per second.
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8.2.3 The “Packet” Erasure Channel (PEC)

A simple generalization of the BEC is needed to capture the fact that multimedia
content is usually packetized and transmitted over Internet links as “integrated
vectors” of bits rather than individual bits. In other words, when a multimedia
packet is lost, that packet is lost in its totality. Hence, for bits that belong to the
same packet, these bits are 100% dependent on each other: either all the bits are
transmitted successfully (usually without errors) or all the bits are erased (e.g.,
lost due to congestion).

We refer to this simple generalization as the Packet Erasure Channel. (In some
literature, this type of channel may be referred to as an M-ary Erasure Channel
as a generalization of the Binary Erasure Channel.) In this case, the input is a
vector of random variables: X = (X1,X2, . . . ,Xn), where each element Xi is a
binary random variable. The output of the channel includes the possible “erasure”
outcome and all possible input vectors. In other words, we have the following
conditional probability measures for the PEC:

Pr
[
Y = “erasure” |X ]= δ and Pr

[
Y =X |X ]= 1− δ.

Note that these conditional probability measures are independent of the par-
ticular input vector X (i.e., packet). Consequently, it is not difficult to show that
the PEC has the same basic measures, such as channel capacity, as the BEC.
Therefore, C = 1 − δ. The capacity in this case is measured in “packets” per
“channel use.” Similarly, a cascade of L links of PEC channels has an effec-
tive loss probability δ = 1−∏L

i=1(1− δi) and end-to-end capacity C = 1− δ =
1− (1−∏L

i=1(1− δi))=∏L
i=1(1− δi) in packets per channel use.

8.2.4 The BEC Channel with Feedback

It is quite common for many Internet applications, including multimedia ones,
to support some form of feedback from the receiver to the transmitter. This
could include feedback regarding requests for retransmissions of lost packets, a
process that is commonly used in transport layer protocols such as TCP and in
multimedia-specific variations of such protocols. For example, retransmissions of
UDP/RTP packets carrying video or audio content are quite common over unicast
Internet streaming sessions and are usually based on timely feedback from the
receiver to the transmitter.

In this case, a crucial question is: what happens to the overall performance
bounds of such channels with feedback? In particular, can we improve the maxi-
mum throughput or channel capacity CFB by supporting feedback assuming that
the feedback messages do not consume any of the capacity used in the forward
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direction (i.e., between the transmitter and the receiver)? Information theory pro-
vides an interesting and arguably a surprising answer [1,2]. For any discrete mem-
oryless channel (DMC), including BEC and PEC channels, feedback does not
improve (or worsen for that matter) the throughput/capacity performance of the
channel: C = CFB.

Therefore, the results listed earlier for the basic (without feedback) BEC and
PEC channels are also applicable for these channels with feedback. For the sce-
nario of cascaded BEC/PEC channels, this is true if the feedback is implemented
on an end-to-end basis. Here, end-to-end feedback means that only the transmit-
ter and the receiver are involved in the feedback (i.e., the final receiver node in
the chain is providing feedback to the very first transmitter node without the in-
volvement of any of the intermediate nodes in the feedback process). Hence, for
cascaded BEC/PEC channels with feedback on an end-to-end basis, we have

CFB = C = 1− δ = 1−
(

1−
L∏

i=1

(1− δi)

)

=
L∏

i=1

(1− δi).

However, if the feedback is done on a link-by-link basis, then the overall channel
capacity of a cascaded set of links is bounded by the capacity of the “bottleneck”
link. In other words, the capacity in this case is

CFB = Cmin =min
i

(Ci)=min
i

(1− δi).

It is important to note that the relationship C = CFB (in the case of end-to-end
feedback) does not imply that a multimedia application should not use feedback
on an end-to-end basis. On the contrary, feedback is crucial for the following
reason. End-to-end feedback helps an application achieve (or at least get close
to) the end-to-end capacity CFB =∏L

i=1(1 − δi), which may not be achievable
“in practice” without feedback. It is well known, for example, that multimedia
streaming applications could benefit from employing feedback to recover lost
packets through retransmission. In particular, consider a case when a multime-
dia application is streaming a multimedia content that is coded with a (source)
rate R packets per second. Let’s assume that R < BC, where B is the available
bandwidth (in packets per second) and C is the effective (end-to-end) capacity (in
packets per use on an end-to-end basis). Hence, the probability of a packet loss
is δ = 1− C. Therefore, without any feedback and retransmission, the effective
throughput that the application can achieve is R − δR = (1 − δ)R packets per
second. Naturally, R > (1− δ)R. However, if the application employs feedback
with retransmission, then the application can recover the lost packets (assuming
delay is not an issue), and consequently it can achieve a throughput of R packets
per second (i.e., streaming the multimedia source reliably). In other words, feed-
back with retransmission can help the application use access bandwidth that is
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not being fully utilized by the application to achieve better reliability. Note that,
in practice, even when the application (basic) source rate R is lower than the ef-
fective capacity, R < BC, packets will be lost, and therefore, retransmission can
be very useful.

The aforementioned results for channel capacity with feedback are applicable
to memoryless channels. Meanwhile, it has been well established that channels
with memory could increase their capacity by employing feedback. The perfor-
mance aspects of channels with memory are addressed next.

8.3 PACKET LOSSES OVER CHANNELS WITH MEMORY

Packet losses over Internet links and routes exhibit a high level of correlation
and tend to occur in bursts. This observation, which has been well established
by several Internet packet-loss studies, indicates that Internet links and routes ex-
hibit memory. Consequently, although the DMC channel models discussed earlier
could be useful for providing rough estimates of the loss behavior over the Inter-
net, improved models are needed for more accurate estimates of the actual loss
patterns. The most popular analysis and modeling tool used to capture memory
is based on Markov chains. Channels that are modeled using Markov chains are
sometimes referred to as Markov channels.

Bounds for the performance of channels with memory, including Markov chan-
nels, are significantly more difficult to derive and express as compared to DMC
channels. In particular, performance bounds, such as capacity of channels with
memory, do not have simple closed-form expressions as the case for DMC mod-
els. Recursive formulas for evaluating the channel capacity of general Markov
channels have been developed though [4,5]. A special case of Markov channels
is the Gilbert–Elliott channel, which consists of a two-state Markov chain. Recur-
sive formulas for evaluating the channel capacity of the Gilbert–Elliott channel [4]
and for (more general) finite-state Markov channels [5] have been developed.

This chapter focuses on the most basic (and probably most popular) Markov-
based erasure channel model, which is the two-state Markov-state channel. This
two-state Markov chain model of an erasure channel with memory is also known
as the Gilbert model.

The Gilbert model of the two-state Markov chain is shown in Figure 8.3. Here,
G and B represent the Good state and the Bad state, respectively. If the process
(channel) is in the Good state, the transmitted packet is received without any
errors; if the process is in the Bad state, the transmitted packets are lost (i.e.,
“erased”). At time zero, the system can start from the Good or the Bad state; this
is known as the initial state. The system could also end in the Good or the Bad
state.

This Gilbert channel is characterized by two parameters. A common parameter
pair that is used for representing a Gilbert channel is the pair of transitional prob-
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FIGURE 8.3: State diagram of the Gilbert model.

abilities: pGB and pBG. These probabilities are conditional probabilities with the
following interpretations. pGB is the probability that the channel transits to the bad
state given that the channel is in the good state. Similarly, pBG is the probability
that the channel transits to the good state given that the channel is in the bad state.
From these two conditional probabilities, one can measure the other transitional
probabilities of staying in the same state: pGG = 1− pGB and pBB = 1− pBG.

From the transitional probabilities pGB and pBG, one can express the overall
(“average”) probability π(G) of being in the good state and the overall probability
π(B) of being in the bad state:

π(G)= pBG

pGB + pBG
and π(B)= pGB

pGB + pBG
.

Note that the probability π(B) of being in a bad state provides the average
loss probability of the two-state Markov channel. In other words, π(B) plays
the same role as the loss probability δ of the BEC channel. However, while the
BEC channel could be completely characterized by a single parameter (i.e., δ), the
Gilbert model needs two parameters as highlighted earlier. Also note that π(G)+
π(B)= 1.

An important performance measure for multimedia applications is the number
of packets received given that the transmitter sends n packets over routes with
memory. This measure, for example, could help application developers identify
the level of resilience needed when transmitting a block of n video packets; this
block of n packets may correspond to the number of packets in a Group of Pictures
(GoP) of an MPEG stream. Another example could arise when the n packets may
represent a Forward-Error-Correction (FEC) block with both k media data (e.g.,
video) packets and (n − k) parity packets that are used to recover lost packets
within the n-packet FEC block. Although there is no closed-form solution for the
channel capacity of Markov channels, it is possible to derive closed-form expres-
sions for certain probability measures of losses over these channels. We present a
closed-form expression for the probability of receiving an arbitrary number i of
packets when the transmitter sends n packets over a two-state Markov channel.
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Let φ(n, i) be the probability that the sender transmits n packets over a Gilbert
channel and the receiver correctly receives i packets. It can be shown [6,7] that
this probability can be expressed as

φ(n, i)= π(G)
(
φG0Gi

(n)+ φG0Bi
(n)

)+ π(B)
(
φB0Gi

(n)+ φB0Bi
(n)

)
,

where

φG0Gi
(n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i∑

m=1

(
i

m

)(
n− i − 1
m− 1

)
pm

GBpm
BGpi−m

GG pn−i−m
BB 0 < i < n,

0 i = 0,

pn
GG i = n,

φG0Bi
(n) =

⎧
⎪⎪⎨

⎪⎪⎩

i∑

m=0

(
i

m

)(
n− i − 1

m

)
pm+1

GB pm
BGpi−m

GG pn−i−m−1
BB 0≤ i < n,

0 i = n,

φB0Gi
(n) =
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Here, φG0Gi
(n) is the probability that the sender transmits n packets and the

receiver receives i packets given that the channel starts in a good state and ends
in a good state. Similarly, interpretations can be inferred for φG0Bi

(n), φB0Gi
(n),

and φB0Bi
(n). For example, φG0Bi

(n) is the probability that the sender transmits n

packets and the receiver receives i packets given that the channel starts in a good
state and ends in a bad state.

8.3.1 Packet Correlation over Channels with Memory

It is worth noting that the desired probability measure φ(n, i) can be com-
pletely evaluated using any two parameters that characterize the underlying
Gilbert erasure channel. Traditionally, the transitional probabilities pGB and pBG
(or pGG = 1 − pGB and pBB = 1 − pBG) are used for such characterization.
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A more useful insight and analysis can be gained by considering other parame-
ter pairs. In particular, the average loss rate p and the packet correlation ρ can
be used to represent the state transition probabilities, where pGB = p(1− ρ) and
pBG = (1− p)(1− ρ).

The steady-state probabilities are directly related to the average loss ratep:
π(G)= 1− p and π(B)= p. The packet erasure correlation ρ provides an aver-
age measure of how the states of two consecutive packets are correlated to each
other. In particular, when ρ = 0, the loss process is memoryless and the afore-
mentioned probability measures reduce to the special case of a memoryless BEC.
However, as the value of ρ increases, then the states of two consecutive packets
become more and more correlated. Hence, we find that the parameters p and ρ

provide an intuitive, insightful, and broad characterization for the impact of chan-
nel coding on networks with losses.

Figure 8.4 plots the probability that a receiver correctly receives i packets when
the source send n packets over the Gilbert channel. Here, n is set to 30, the average
loss rate p is set to 1%, and the packet correlation ρ is changed from 0 to 0.9. As
compared with the Binomial model (where ρ = 0), we can see that as ρ increases,
the probability of receiving a smaller number of packets increases. For a given
ρ, as i increases, φ(n, i) increases exponentially; this increase slows down as ρ

increases. When ρ = 0.9, we can see that φ(n, i) has a small spike at i = 0 and a
big spike at i = 30. This observation is consistent with the analytical intuition; as
the correlation is strong, once the process initially starts in a bad or a good state,
it has the inertia to stay at that state. For p = 0.01 and ρ = 0.9, the transition
probabilities are pGG = 0.999, pGB = 0.001, pBG = 0.099, and pBB = 0.901,
respectively.

FIGURE 8.4: Probability of receiving i packets given that the transmit-
ter sends n= 30 packets, for loss probability p = 0.1.
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FIGURE 8.5: A detailed view of the probability of receiving i packets
given that the transmitter sends n packets.

Figure 8.5 is a detailed view when the received packets i changes from 25
to 30. Figure 8.5 shows that as the packet correlation increases, the probability of
receiving a higher number of packets decreases.

8.3.2 Packet Losses over Cascaded Channels with Memory

As highlighted earlier, Internet routes and paths consist of multiple links that can
be modeled as cascaded channels. Further, each of these links/channels usually
exhibits memory. Hence, the case of cascaded channels with memory represents
an important scenario for modeling the performance of Internet end-to-end paths.
In this section, we extend the results of the aforementioned section while making
the simplifying assumption that the cascaded links are independent of each other.

Let φj (nj , ij ) be the probability of receiving ij packets while transmitting nj

packets over a channel j with memory (e.g., a Markov channel). First, let’s as-
sume that we have only two channels that are cascaded with each other, and hence
j = 1, 2. We are interested in measuring the probability φ(n, i) of receiving i

packets at the output of these cascaded channels (i.e., the output of the second
channel with index j = 2) when the transmitter sends n packets into the input of
the first channel (i.e., the input of the first channel with index j = 1). Based on
the notation adopted earlier, we have n= n1, i1 = n2, and i2 = i. Note that receiv-
ing i2 = i packets at the output of the second channel (which is the output of the
overall two-cascaded channels) implies that the number of packets n2 = i1 trans-
mitted into the input to the second channel, j = 2, must be at least i2 = i; in other
words, n2 = i1 ≥ i2 = i. Further, since n ≥ i1, (n = n1) ≥ (n2 = i1) ≥ (i2 = i)

(Figure 8.6).
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FIGURE 8.6: A representation of the reception of i packets when trans-
mitting n packets over two-cascaded channels with memory.

Hence, the desired probability φ(n, i) of receiving i packets at the output of
these two cascaded channels when the transmitter sends n packets into the input
of the first channel can be expressed as

φ(n1, i2)=
n∑

i1(=n2)=i

φ1(n1, i1)φ2(n2, i2).

In other words,

φ(n, i)=
n∑

i1=i

φ1(n, i1)φ2(i1, i).

Hence, if the cascaded channels with memory are both Gilbert channels, then
the desired probability of receiving i packets at the output of the second chan-
nel given that n packets are transmitted at the input of the first channel can be
expressed as

φ(n, i) =
n∑

i1=i

(
π(G1)

(
φ1,G0Gi1

(n)+ φ1,G0Bi1
(n)

)

+ π(B1)
(
φ1,B0Gi1

(n)+ φ1,B0Bi1
(n)

))

× (
π(G2)

(
φ2,G0Gi

(i1)+ φ2,G0Bi
(i1)

)

+ π(B2)
(
φ2,B0Gi

(i1)+ φ2,B0Bi
(i1)

))
.

Here, φj,G0Gi
(n) (φj,B0Bi

(n)) is the probability that the transmitter sends n

packets and the receiver receives i packets over the j th channel given that the
channel begins and ends in a good (bad) state. Also, π(Gj ) (π(Bj )) is the proba-
bility that the j th channel is in a good (bad) state.
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The aforementioned expressions for φ(n, i) over two-cascaded channels can be
generalized to N channels with memory. In particular, one can infer the follow-
ing probability of receiving i packets at the output of N cascaded channels with
memory given that the transmitter sends n packets:

φ(n, i) =
n∑

i1=i

n∑

i2=i1

· · ·
n∑

iN−1=iN−2

φ1(n, i1)φ2(i1, i2) · · ·φN−1(iN−2, iN−1)

× φN(iN−1, i).

A more compact representation of this probability is

φ(n, i)=
n∑

i1=i

n∑

i2=i1

· · ·
n∑

iN−1=iN−2

φ1(n, i1)

(
N−1∏

j=2

φj (ij−1, ij )

)

φN(iN−1, i).

8.4 WIDE-SCALE INTERNET STREAMING STUDY

8.4.1 Overview

The Internet is a complex interconnection of computer networks whose behav-
ior and structure are usually challenging to measure. Numerous studies have at-
tempted to shed light on the performance of the Internet; however, they tradition-
ally examined backbone and campus-network characteristics and paid little atten-
tion to the conditions experienced by average home users during their daily activi-
ties. Among several traditional approaches, the Internet has been studied from the
perspective of TCP connections by Paxson [27], Bolliger et al. [10], Caceres et al.
[16], Mogul [25], and several others (e.g., [9]). Paxson’s study included 35 geo-
graphically distributed sites in nine countries; Bolliger and colleagues employed
11 sites in seven countries and compared the throughput performance of various
implementations of TCP during a 6-month experiment; whereas the majority of
other researchers monitored transit TCP traffic at a single backbone router [8,
25] or inside several campus networks [16] for the duration ranging from sev-
eral hours to several days. The methodology used in both large-scale TCP ex-
periments [10,27] was similar and involved a topology where each participating
site was paired with every other participating site for an FTP-like transfer. Al-
though this setup approximates well the current use of TCP in the Internet, future
entertainment-oriented streaming services, however, are more likely to involve a
small number of backbone video servers and a large number of home users.

We should further mention that the Internet has been studied extensively by var-
ious researchers using ICMP ping and traceroute packets [8,17–19,26,27],
UDP echo packets [11,14,15], and multicast backbone (MBone) audio packets
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[35,36]. With the exception of the last one, similar observations apply to these
studies—neither the setup nor the type of probe traffic represented realistic real-
time streaming scenarios. Among the studies that specifically sent audio/video
traffic over the Internet [12,13,20,21,32–34], the majority of experiments involved
only a few Internet paths, lasted for a short period of time, and focused on an-
alyzing the features of the proposed scheme rather than the impact of Internet
conditions on real-time streaming.

In this work, we argue that studying network conditions observed by regular
users is an important research topic and take a fundamentally different measure-
ment approach that looks at Internet dynamics from the angle of Internet users
rather than network operators. In our experiments, video streaming clients con-
nect to the Internet through several dial-up ISPs in the United States and emulate
the behavior of an average end user in the late 1990s and early 2000s.1 In ad-
dition to choosing a different topological setup for the experiment, our work is
different from the previous studies in the following three aspects. First, recall that
the sending rate of a TCP connection is driven by its congestion control, which
can sometimes cause increased packet loss and higher end-to-end delays in the
path along which it operates (e.g., during slow start or after timeouts). In our ex-
periment, we aimed to measure the true end-to-end path dynamics without the
bias of congestion control applied to slow modem links. Our decision not to use
congestion control was additionally influenced by the evidence that the majority
of streaming traffic in the current Internet employs constant bit rate (CBR) video
streams [30], where users explicitly select the desired streaming rate from content
providers’ Web pages. Second, TCP uses a positive ACK retransmission scheme,
whereas current real-time applications (such as [30]) employ NACK-based re-
transmission to reduce the amount of traffic from users to streaming servers. As
a consequence, end-to-end path dynamics perceived by a NACK-based protocol
could differ from those sampled by TCP along the same path: real-time applica-
tions acquire samples of the round-trip delay (RTT) at rare intervals, send signifi-
cantly less data along the path from the receiver to the sender, and bypass certain
aspects of TCP’s retransmission scheme (such as exponential timer backoff). Fi-
nally, TCP relies on window-based flow control, whereas real-time applications
usually utilize rate-based flow control. In many video coding schemes, a real-time
streaming server must maintain a certain target streaming rate for the decoder to
avoid underflow events, which are caused by packets arriving after their decoding
deadlines. As a result, a real-time sender may operate at different levels of packet

1Market research reports (e.g., [22,23,28]) show that in Q2 of 2001 approximately 89% of Internet-
enabled U.S. households used dial-up access to connect to the Internet. As of March 2006, 34% of
polled Americans used dial-up, many of whom had no plans or desire to switch to broadband [37].
Furthermore, countries with less developed network infrastructure are expected to experience dial-up-
like (including high-latency satellite and cellular) Internet access for the foreseeable future.
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burstiness and instantaneous sending rate than a TCP sender, as the sending rate
of a TCP connection is governed by the arrival of positive ACKs from the receiver
rather than by the application.

In what follows in the rest of this chapter, we present the methodology and ana-
lyze the results of a 7-month, large-scale, real-time streaming experiment that in-
volved three nationwide dial-up ISPs, each with several million active subscribers
in the United States. The topology of the experiment consisted of a backbone
video server streaming MPEG-4 video sequences to unicast home users located
in more than 600 major U.S. cities. The streaming was performed in real time (i.e.,
with a real-time decoder), utilized UDP for the transport of all messages, and re-
lied on simple NACK-based retransmission to attempt recovery of lost packets
before their decoding deadlines.

8.4.2 Methodology

8.4.2.1 Setup for the Experiment

We started our work by attaching a Unix video server to the UUNET backbone
via a T1 link as shown in Figure 8.7. To support the clients’ connectivity to the In-
ternet, we selected three major nationwide dial-up ISPs: AT&T WorldNet, Earth-
link, and IBM Global Network (which we call ISPa , ISPb, and ISPc, respectively),
each with at least 500 V.90 (i.e., 56 kb/s) dial-up numbers in the United States.
Our experiment emulated the activity of hypothetical Internet users who dialed
local access numbers to reach the Internet and streamed video sequences from a
backbone server. Although the clients were physically located in our laboratory in
the state of New York, they dialed long-distance phone numbers and connected to
the Internet through ISPs’ access points in each of the 50 states. Our database of
phone numbers included 1813 different V.90 access numbers in 1188 major U.S.
cities.

FIGURE 8.7: Setup of the experiment.
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After the phone database was in place, we designed and implemented special
software, which we call the dialer, that dialed phone numbers from the database,
connected to the ISPs using the point-to-point protocol (PPP), issued a parallel
traceroute to the server, and, upon success, started the video client with the in-
structions to stream a 10-min video sequence from the server. Our implementation
of traceroute (built into the dialer) used ICMP instead of the more traditional UDP,
sent all probes in parallel instead of sequentially (hence the name “parallel”), and
recorded the IP time-to-live (TTL) field of each returned “TTL-expired” message.
The use of ICMP packets and parallel traceroute facilitated much quicker discov-
ery of routers, and the analysis of the TTL field in the returned packets allowed
the dialer to compute the number of hops in the reverse path from each intermedi-
ate router to the client machine using a simple fact that each router reset the TTL
field of each generated “TTL-expired” packet to some default value. The majority
of routers used the default TTL equal to 255, while some initialized the field to
30, 64, or 128. Subtracting the received TTL from the default TTL produced the
number of hops along the reverse path. Using the information about the number of
forward and reverse hops for each router, the dialer was able to detect asymmetric
end-to-end paths, which is studied in Section 8.4.8.

In our analysis of data, we attempted to isolate clearly modem-related patholo-
gies (such as packet loss caused by a poor connection over the modem link
and large RTTs due to data-link retransmission) from those caused by congested
routers of the Internet. Thus, connections that were unable to complete a trace-
route to the server, those with high bit-error rates (BER), and those during which
the modem could not sustain our streaming rates were all considered useless for
our study and were excluded from the analysis in this section. In particular, we
utilized the following methodology. We defined a streaming attempt through a
given access number to be successful if the access point of the ISP was able to
sustain the transmission of our video stream for its entire length at the stream’s
target IP bit rate r . Success was declared if the video client finished streaming
while the aggregate (i.e., counting from the very beginning of a session) packet
loss at all times t was below a certain threshold βp and the aggregate incoming
bit rate was above another threshold βr . The experiments reported in this section
used βp equal to 15% and βr equal to 0.9r , whose combination was experimen-
tally found to quite effectively filter out modem-related failures. The packet-loss
threshold was activated after 1 min of streaming and the bit rate threshold after
2 min to make sure that slight fluctuations in packet loss and incoming bit rate at
the beginning of a session were not mistaken for poor connection quality. After
a session was over, the success or failure of the session was communicated from
the video client to the dialer, the latter of which kept track of the time of day and
the phone number that either passed or failed the streaming test.

In order to make the experiment reasonably short, we considered all phone
numbers from the same state to be equivalent; consequently, we assumed that
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a successful streaming attempt through any phone number of a state indicated
a successful coverage of the state regardless of which phone number was used.
Furthermore, we divided each 7-day week into 56 three-hour timeslots (i.e., 8
time slots per day) and designed the dialer to select phone numbers from the
database such that each state would be successfully covered within each of the
56 time slots at least once. In other words, each ISP needed to sustain exactly
50× 56= 2800 successful sessions before the experiment was allowed to end.

8.4.2.2 Real-Time Streaming

For the purpose of the experiment, we used an MPEG-4 encoder to create two
10-min QCIF (176× 144) video streams coded at five frames per second (fps).
The first stream, which we call S1, was coded at the video bit rate of 14 kb/s, and
the second steam, which we call S2, was coded at 25 kb/s. The experiment with
stream S1 lasted during November–December 1999 and the one with stream S2
was an immediate follow-up during January–May 2000.

During the transmission of each video stream, the server split it into 576-byte
IP packets. Video frames always started on a packet boundary; consequently, the
last packet in each frame was allowed to be smaller than others (in fact, many P
[prediction-coded] frames were smaller than the maximum payload size and were
carried in a single UDP packet). As a consequence of packetization overhead, the
IP bit rates (i.e., including IP, UDP, and our special 8-byte headers) for streams
S1 and S2 were 16.0 and 27.4 kb/s, respectively. The statistics of each stream are
summarized in Table 8.1.

In our streaming experiment, the term real time refers to the fact that the video
decoder was running in real time. Recall that each compressed video frame has a
specific decoding deadline, which is usually based on the time of the frame’s en-
coding. If a compressed video frame is not fully received by the decoder buffer at
the time of its deadline, the video frame is discarded and an underflow event is reg-
istered. Moreover, to simplify the analysis of the results, we implemented a strict
real-time decoder model, in which the playback of the arriving frames continued
at the encoder-specified deadlines regardless of the number of underflow events
(i.e., the decoding deadlines were not adjusted based on network conditions). Note
that in practice, better results can be achieved by allowing the decoder to freeze
the display and rebuffer a certain number of frames when underflow events be-
come frequent (e.g., as done in [30]).

Table 8.1: Summary of streams statistics.

Stream Size, MB Packets Video bit rate, Average frame size,
kb/s bytes

S1 1.05 4188 14.0 350
S2 1.87 5016 25.0 623
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In addition, many CBR video coding schemes include the notion of ideal start-
up delay [29,30] (the delay is called “ideal” because it assumes a network with
no packet loss and a constant end-to-end delay). This ideal delay must always be
applied to the decoder buffer before the decoding process may begin. The ideal
start-up delay is independent of the network conditions and solely depends on the
decisions made by the encoder during the encoding process.2 On top of this ideal
start-up delay, the client in a streaming session must usually apply an additional
start-up delay in order to compensate for delay jitter (i.e., variation in the one-way
delay) and permit the recovery of lost packets via retransmission. This additional
start-up delay is called the delay budget (Dbudget) and reflects the values of the
expected delay jitter and round-trip delay during the length of the session. Note
that in the context of Internet streaming, it is common to call Dbudget simply “start-
up delay” and to completely ignore the ideal start-up delay (e.g., [21]). From this
point on, we will use the same convention. In all our experiments, we used Dbudget
equal to 2700 ms, which was manually selected based on preliminary testing.
Consequently, the total start-up delay (observed by an end user) at the beginning
of each session was approximately 4 s.

8.4.2.3 Client–Server Architecture

For the purpose of our experiment, we implemented a client–server architecture
for MPEG-4 streaming over the Internet. The server was fully multithreaded to
ensure that the transmission of packetized video was performed at the target IP
bit rate of each streaming session and to provide a quick response to clients’
NACK requests. The streaming was implemented in bursts of packets (with the
burst duration Db varying between 340 and 500 ms depending on the bit rate) for
the purposes of making the server as low overhead as possible (e.g., RealAudio
servers have been reported to use Db = 1800 ms [24]).

The second and the more involved part of our architecture, the client, was de-
signed to recover lost packets through NACK-based retransmission and to collect
extensive statistics about each received packet and each decoded frame. Further-
more, as it is often done in NACK-based protocols, the client was in charge of
collecting round-trip delay samples. The measurement of RTTs involved the fol-
lowing two methods. In the first method, each successfully recovered packet pro-
vided a sample of the RTT, which was the duration between sending a NACK and
receiving the corresponding retransmission. In our experiment, in order to avoid
the ambiguity of which retransmission of the same packet actually returned to the
client, the header of each NACK request and each retransmitted packet contained
an extra field specifying the retransmission sequence number of the packet.

2We will not elaborate further on the ideal start-up delay, except to mention that it was approximately
1300 ms for each stream.
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The second method of measuring the RTT was used by the client to obtain ad-
ditional samples of the round-trip delay in cases where network packet loss was
too low. The method involved periodically sending simulated retransmission re-
quests to the server if packet loss was below a certain threshold. In response to
these simulated NACKs, the server included the usual overhead of fetching the
needed packets from the storage and sending them to the client.3 In our experi-
ment, the client activated simulated NACKs, spaced 30 seconds apart, if packet
loss was below 1%.

We tested the software and the concept of a wide-scale experiment of this sort
for 9 months before we felt comfortable with the setup, the reliability of the soft-
ware, and the exhaustiveness of the collected statistics. In addition to extensive
testing of the prototype, we monitored various statistics reported by the clients in
real time (i.e., on the screen) during the experiments for sanity and consistency
with previous tests. Overall, the work reported in this section took us 16 months
to complete.

Our traces consist of six datasets, each collected by a different machine.
Throughout this section, we use notation Dx

n to refer to the dataset collected
by the client assigned to ISPx (x = a, b, c) during the experiment with stream
Sn (n = 1,2). Furthermore, we use notation Dn to refer to the combined set
{Da

n ∪Db
n ∪Dc

n}.

8.4.3 Overview of Experimental Results

In dataset D1, the three clients performed 16,783 long-distance connections to the
ISPs’ remote modems and successfully completed 8429 streaming sessions. Typ-
ical reasons for failing a session were PPP-layer connection problems, inability
to reach the server (i.e., failed traceroute), high bit-error rates, and low (14.4–
19.2 kb/s) modem connection rates. In D2, the clients performed 17,465 connec-
tions and sustained 8423 successful sessions. In dataset D1, the clients traced the
arrival of 37.7 million packets, and in D2, the arrival of an additional 47.3 mil-
lion (for a total of 85 million). In terms of bytes, the first experiment transported
9.4 GB of video data and the second one transported another 17.7 GB (for a total
of 27.1 GB).

Recall that each experiment lasted as long as it was needed to cover the entire
United States. Depending on the success rate within each state, the access points
used in the experiment comprised a subset of our database. In D1, the experiment
covered 962 dial-up points in 637 U.S. cities, and in D2, it covered 880 dial-up
points in 575 U.S. cities. Figure 8.8 shows the per-state distribution of the number

3Server overhead was below 10 ms for all retransmitted packets and did not have a major impact on
our characterization of the RTT process later in this section.
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FIGURE 8.8: The number of unique cities per state that participated in
both experiments (i.e., in {D1 ∪D2}).

of distinct cities in each state covered by both experiments, which represents 1003
access points in 653 cities.

Analysis of the success rates observed during the experiment suggests that in
order to receive real-time streaming material at 16 to 27.4 kb/s, an average U.S.
end user equipped with a V.90 modem needs to make approximately two dialing
attempts to his/her local ISPs. The success rate of streaming sessions during the
different times of the day is illustrated in Figure 8.9 (top). Note the dip by a factor
of two between the best (i.e., 12–3 a.m.) and the worst (i.e., 9 p.m.–12 a.m.) times
of the day.

During this measurement study, each session was preceded by a parallel trace-
route that recorded the IP addresses of all discovered routers (DNS and WHOIS
lookups were done off-line after the experiments were over). The average time
needed to trace an end-to-end path was 1731 ms, with 90% of the paths traced un-
der 2.5 s and 98% under 5 s. Dataset D1 recorded 3822 distinct Internet routers,
D2 recorded 4449 distinct routers, and both experiments combined produced
the IP addresses of 5266 unique router interfaces. The majority of the discov-
ered routers belonged to the ISPs’ networks (51%) and UUNET (45%), which
confirmed our intuition that all three ISPs had direct peering connections with
UUNET. Interestingly, the traces showed approximately 200 routers that belonged
to five additional Autonomous Systems (AS), indicating that certain end-to-end
paths were routed across additional ISPs.
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FIGURE 8.9: Success of streaming attempts during the day (top). Dis-
tribution of the number of end-to-end hops (bottom).

The average end-to-end hop count was 11.3 in D1 (6 minimum and 17 maxi-
mum) and 11.9 in D2 (6 minimum and 22 maximum). Figure 8.9 (bottom) shows
the distribution of the number of hops in the encountered end-to-end paths in each
of D1 and D2. As Figure 8.9 shows, the majority of paths (75% in D1 and 65%
in D2) contained between 10 and 13 hops.

Throughout the rest of the section, we restrict ourselves to studying only suc-
cessful (as defined earlier) sessions in both D1 and D2. We call these new purged
datasets with only successful sessions D1p and D2p , respectively (purged datasets
Dx

np are defined similarly for n= 1, 2 and x = a, b, c). Recall that {D1p ∪D2p}
contains 16,852 successful sessions, which are responsible for 90% of the bytes
and packets, 73% of the routers, and 74% of the U.S. cities recorded in {D1∪D2}.
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8.4.4 Packet Loss

8.4.4.1 Overview

Numerous studies have focused on Internet packet loss; however, due to the enor-
mous diversity of the Internet, only a few of them agree on the average packet
loss rate or the average loss-burst length (i.e., the number of packets lost in a
row). Among prior conclusions, the average Internet packet loss was reported to
vary between 11 and 23% by Bolot [11] depending on the inter-packet transmis-
sion spacing, between 0.36 and 3.54% by Borella et al. [14,15] depending on the
studied path, between 1.38 and 11% by Yajnik et al. [36] depending on the loca-
tion of the MBone receiver, and between 2.7 and 5.2% by Paxson [27] depending
on the year of the experiment. In addition, 0.49% average packet loss rate was
reported by Balakrishnan et al. [9], who analyzed the dynamics of a large number
of TCP Web sessions at a busy Internet server.

In dataset D1p , the average recorded packet loss rate was 0.53% and in D2p ,
it was 0.58%. Even though these rates are much lower than those traditionally
reported by Internet researchers during the last decade due to the much lower
transmission rates used in our study, they are still much higher than those adver-
tised by backbone ISPs (i.e., 0.01–0.1%). We thus speculate that the majority of
loss occurred at the “edges” of the Internet rather than at its core. Approximately
38% of the sessions in {D1p ∪ D2p} did not experience any packet loss, 75%
experienced loss rates below 0.3%, and 91% experienced loss rates below 2%.
However, 2% of the sessions suffered packet loss rates 6% or higher.

As expected, average packet loss rates exhibited a wide variation during the day.
Figure 8.10 (top) shows the evolution of loss rates as a function of the time slot
(i.e., the time of day), where each point represents the average of approximately
1000 sessions. As Figure 8.10 shows, the variation in loss rates between the best
(3–6 a.m.) and the worst (3–6 p.m.) times of the day was by a factor of two in D1p

and by a factor of three in D2p . The apparent discontinuity between time slots 7
(21:00–0:00) and 0 (0:00–3:00) is due to a coarse timescale in Figure 8.10 (top).
On finer timescales (e.g., minutes), loss rates converge to a common value near
midnight. A similar discontinuity in packet loss rates was reported by Paxson [27]
for North American sites, where packet loss during time slot 7 was approximately
twice as high as that during time slot 0.

The average per-state packet loss shown in Figure 8.10 (bottom) varied quite
substantially from 0.2% in Idaho to 1.4% in Oklahoma, but virtually did not de-
pend on the state’s average number of end-to-end hops to the server (correlation
coefficient ρ was −0.04) or the state’s average RTT (correlation −0.16). How-
ever, as discussed later, the average per-state RTT and the number of end-to-end
hops were, in fact, positively correlated.
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FIGURE 8.10: Average packet loss rates during the day (top). Average
per-state packet loss rates (bottom).

8.4.4.2 Loss Burst Lengths

We next attempt to answer the question of how bursty Internet packet loss was dur-
ing the experiment. Figure 8.11 (top) shows the distribution (both the histogram
and the CDF) of loss-burst lengths in {D1p ∪D2p}. Note that Figure 8.11 stops
at burst length 20, which covers more than 99% of the bursts. Even though the
upper tail of the distribution had very few samples, it was fairly long and reached
burst lengths of over 100 packets.

Figure 8.11 (top) is based on 207,384 loss bursts and 431,501 lost packets. The
prevalence of single-packet losses, given the fact that the traffic in our experi-
ment was injected into the Internet in bursts at the T1 speed, leads to one pos-
sibility that router queues sampled in our experiment predominantly overflowed
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FIGURE 8.11: Histogram (PDF) and CDF functions of loss-burst
lengths in {D1p ∪ D2p} (top). The CDF function of loss-burst durations
in {D1p ∪D2p} (bottom).

on timescales smaller than the time needed to transmit a single IP packet over a
T1 link (i.e., 3 ms for the largest packets and 1.3 ms for the average-size pack-
ets). However, interference of cross-traffic between video packets at prebottleneck
routers (i.e., which causes expansion of interpacket dispersion) or usage of RED
makes it much more difficult to accurately assess the duration of loss events in-
side routers. To investigate the presence of RED in the Internet, we contacted
several backbone and dial-up ISPs whose routers were recorded in our trace and
asked them to comment on the deployment of RED in their backbones. Among
the ISPs that responded to our request, the majority had purposely disabled RED
and the others were running RED only for select customers at border routers, but
not on the public backbone. Ruling out RED, another difficulty of computing the
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duration of congestion-related loss at routers is the fact that single-packet losses
were underrepresented in our traces, as packets that were lost in bursts longer
than one packet could have been dropped by different routers along the path from
the server to the client. Therefore, using end-to-end measurements, an application
cannot distinguish between n (n ≥ 2) single-packet losses at n different routers
from an n-packet bursty loss at a single router. Both types of loss events appear
identical to an end-to-end application even though the underlying cause is quite
different. Consequently, we conclude that even though the analysis of our datasets
points toward transient (i.e., 1–3 ms) buffer overflows in the Internet routers sam-
pled by our experiment, a more detailed study is needed to verify this finding and
sample packet-loss durations at individual routers.

As previously pointed out by many researchers, the upper tail of loss-burst
lengths usually contains a substantial percentage of all lost packets. In each of D1p

and D2p , single-packet bursts contained only 36% of all lost packets, bursts 2
packets or shorter contained 49%, bursts 10 packets or shorter contained 68%,
and bursts 30 packets or shorter contained 82%. At the same time, 13% of all lost
packets were dropped in bursts at least 50 packets long.

Traditionally, the burstiness of packet loss is measured by the average loss-
burst length. In dataset D1p , the average burst length was 2.04 packets. In dataset
D2p , the average burst length was slightly higher (2.10), but not high enough to
conclude that the higher bit rate of stream S2 was clearly responsible for burstier
packet loss. Furthermore, the conditional probability of packet loss, given that the
previous packet was also lost, was 51% in D1p and 53% in D2p . These numbers
are consistent with those previously reported in the literature. Bolot [11] observed
the conditional probability of packet loss to range from 18 to 60% depending on
interpacket spacing during transmission, Borella et al. [15] from 10 to 35% de-
pending on the time of day, and Paxson [27] reported 50% conditional probability
for loaded (i.e., queued behind the previous) TCP packets and 25% for unloaded
packets. Using Paxson’s terminology, the majority of our packets were loaded
since the server sent packets in bursts at a rate higher than the bottleneck link’s
capacity.

8.4.4.3 Loss Burst Durations

To a large degree, the average loss-burst length depends on how closely the pack-
ets are spaced during transmission. Assuming that bursty packet loss comes from
buffer overflows in drop-tail queues rather than from consecutive hits by RED
or from bit-level corruption, it is clear that all packets of a flow passing through
an overflown router queue will be dropped for the duration of the instantaneous
congestion. Hence, the closer together the flow’s packets arrive to the router, the
more packets will be dropped during each queue overflow. This fact was clearly
demonstrated in Bolot’s [11] experiments, where UDP packets spaced 8 ms apart
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suffered larger loss-burst lengths (mean 2.5 packets) than packets spaced 500 ms
apart (mean 1.1 packets). Yajnik et al. [36] reported a similar correlation be-
tween loss-burst lengths and the distance between packets. Consequently, instead
of analyzing burst lengths, one might consider measuring burst durations in time
units since the latter does not depend on interpacket spacing during transmis-
sion.

Using our traces, we can only infer an approximate duration of each loss burst
because we do not know the exact time when the lost packets were supposed to
arrive to the client. Hence, for each loss event, we define the loss-burst duration
as the time elapsed between the receipt of the packet immediately preceding the
loss burst and the packet immediately following it. Figure 8.11 (bottom) shows
the distribution (CDF) of loss-burst durations in seconds. Although the distrib-
ution tail is quite long (up to 36 s), the majority (more than 98%) of loss-burst
durations in both datasets D1p and D2p fall under 1 s. We speculate that some of
this effect was caused by data-link retransmission on the modem link, which may
also be responsible for large delays in modern wireless and satellite networks.
Paxson’s [27] study similarly observed large loss-burst durations (up to 50 s);
however, only 60% of loss bursts studied by Paxson were contained below 1 s. In
addition, our traces showed that the average distance between lost packets in the
experiment was 172–188 good packets, or 21–27 s, depending on the streaming
rate.

8.4.4.4 Heavy Tails

In conclusion of this section, it is important to note that packet losses sometimes
cannot be modeled as independent events due to buffer overflows that last long
enough to affect multiple adjacent packets. Consequently, future real-time proto-
cols should expect to deal with bursty packet losses (Figure 8.11) and possibly
heavy-tailed distributions of loss-burst lengths (see later). Several researchers re-
ported a heavy-tailed nature of loss-burst lengths with shape parameter α of the
Pareto distribution fitted to the length (or duration) of loss bursts ranging from
1.06 [8] to 2.75 [15]. However, Yajnik et al. [36] partitioned the collected data
into empirically chosen stationary segments and reported that loss-burst lengths
could be modeled as exponential (i.e., not heavy-tailed) within each stationary
segment.

Using intuition, it is clear that packet loss and RTT random processes in both
D1p and D2p are expected to be nonstationary. For example, the nonstationarity
can be attributed to the time of day or the location of the client. In either case, we
see three approaches to modeling such nonstationary data. In the first approach,
one would analyze 16,852 CDF functions (one for each session) for stationarity
and heavy tails. Unfortunately, an average session contained only 24 loss bursts,
which was insufficient to build a good distribution function for statistical analysis.



256 Chapter 8: CHANNEL MODELING AND ANALYSIS FOR THE INTERNET

The second approach would be to combine all sessions into groups that are intu-
itively perceived to be stationary (e.g., according to the access point or the time
slot) and then perform similar tests for stationarity and heavy tails within each
group. We might consider this direction for future work. The third approach is
to assume that all data samples belong to some stationary process and are drawn
from a single distribution, which is commonly performed by researchers for sim-
plicity of analysis. Using the last approach, Figure 8.12 (top) shows a log–log plot
of the complementary CDF function from Figure 8.11 (top) with a least-squares

   

 
  

  
   
   

FIGURE 8.12: The complementary CDF of loss-burst lengths in
{D1p ∪ D2p} on a log–log scale fitted with hyperbolic (straight line)
and exponential (dotted curve) distributions (top). CDF functions of the
amount of time by which retransmitted and data packets were late for de-
coding (bottom).
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fit of a straight line representing a heavy-tailed distribution (the dotted curve is
the exponential distribution fitted to data). The fit of a straight line is quite good
(with correlation ρ = 0.99) and provides a strong indication that the distribution
of loss-burst lengths in the combined dataset {D1p ∪D2p} is heavy tailed. How-
ever, the exponential distribution in Figure 8.12 (top) decays too quickly to even
remotely fit the data.

Finally, consider a Pareto distribution with CDF F(x)= 1− (β/x)α and PDF
f (x)= αβαx−α−1, where α is the shape parameter and β is the location parame-
ter. Using Figure 8.12 (top), we establish that a Pareto distribution with α = 1.34
(finite mean, but infinite variance) and β = 0.65 fits our data very well.

8.4.5 Underflow Events

The impact of packet losses on real-time applications is understood fairly well.
Each lost packet that is not recovered before its deadline causes an underflow
event. In addition to packet loss, real-time applications suffer from large end-to-
end delays. However, not all types of delay are equally important to real-time
applications. As shown later, one-way delay jitter was responsible for 90 times
more underflow events in our experiment than packet loss combined with large
RTTs.

Delays are important for two reasons. First, large round-trip delays make re-
transmissions late for their decoding deadlines. However, the RTT is important
only to the extent of recovering lost packets and, in the worst case, can cause
only lost packets to be late for decoding. However, delay jitter (i.e., one-way
delay variation) can potentially cause each data (i.e., nonretransmitted) packet
to be late for decoding. In {D1p ∪ D2p}, packet loss affected 431,501 packets,
out of which 159,713 (37%) were discovered to be missing after their decoding
deadlines had passed. As a result, NACKs were not sent for these packets. Out
of 271,788 remaining lost packets, 257,065 (94.6%) were recovered before their
deadlines, 9013 (3.3%) arrived late, and 5710 (2.1%) were never recovered. The
fact that more than 94% of “recoverable” lost packets were actually received be-
fore their deadlines indicates that retransmission is a very effective method of
overcoming packet loss in real-time applications. Clearly, the success rate will
be even higher in networks with smaller RTTs or applications with larger start-up
delays. In fact, these results can be used to properly select Dbudget for applications
operating in similar network conditions to ensure the desired level of lost-packet
recovery.

Before studying underflow events caused by delay jitter, we introduce two types
of late retransmissions. The first type consists of packets that arrived after the
decoding deadline of the last frame of the corresponding GoP. These packets were
completely useless and were discarded. The second type of late packets, which
we call partially late, consists of those packets that missed their own decoding
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deadline, but arrived before the deadline of the last frame of the same GOP. Since
the video decoder in our experiment could decompress frames at a substantially
higher rate than the target fps, the client was able to use partially late packets for
motion-compensated reconstruction of the remaining frames from the same GOP
before their corresponding decoding deadlines. Out of 9013 late retransmissions,
4042 (49%) were partially late. Using each partially late packet, the client was
able to save on average 4.98 frames from the same 10-frame GOP in D1p and
4.89 frames in D2p by employing the catch-up technique described earlier (for
more discussion, see [31]).

In contrast to 174,436 underflows caused by packet loss, one-way delay jitter
was responsible for 1,167,979 underflows in data (i.e., nonretransmitted) pack-
ets. Hence, the total number of packets missing at the time of decoding was
174,436+ 1,167,979= 1,342,415 (1.7% of the number of sent packets), which
means that 87% of underflow packets were produced by large one-way delay jit-
ter rather than by packet loss. Even if the clients had not attempted to recover
any of the 431,501 lost packets, 73% of the missing packets at the time of de-
coding would have been caused by large delay jitter. In terms of user-perceived
metrics, 1.3 million underflow packets caused a freeze-frame effect on average
for 10.5 s per 10-min session in D1p and 8.6 s in D2p , which can be con-
sidered excellent given the small amount of delay budget used in the experi-
ments.

To further understand the phenomenon of late packets, Figure 8.12 (bottom)
plots the CDFs of the amount of time by which late packets missed their deadlines
(i.e., the amount of time that was needed to add to delay budget Dbudget = 2700 ms
in order to avoid a certain percentage of underflow events). As Figure 8.12 shows,
25% of late retransmissions missed their deadlines by more than 2.6 s, 10% by
more than 5 s, and 1% by more than 10 s (the tail of the CDF extends up to
98 s). At the same time, one-way delay jitter had a more adverse impact on
data packets: 25% of late data packets missed their deadlines by more than 7 s,
10% by more than 13 s, and 1% by more than 27 s (the CDF tail extends up to
56 s).

One common way of reducing the number of late packets caused by large RTTs
and delay jitter is to apply a higher start-up delay Dbudget at the beginning of a
session. An additional approach is to freeze the display and effectively increase
the start-up delay during the session as need arises. The final approach works for
streaming prerecorded content and allows the receiver to request that the server
transmit video traffic at a faster-than-ideal bit rate at certain times to compensate
for delayed packets and to increase the amount of buffered frames at the decoder
(available bandwidth permitting). Using a strict no-freeze model of this work,
only the first approach was viable, which would require a 13-s total delay budget
to save 99% of late retransmissions and 84% of late data packets under similar
streaming conditions.
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8.4.6 Round-Trip Delay

8.4.6.1 Overview

We should mention that circuit-switched long-distance links through PSTN be-
tween our clients and remote access points did not significantly influence the
measured end-to-end delays because the additional delay on each long-distance
link was essentially the propagation delay between New York and the location
of the access point. Since the propagation delay is determined by the speed of
light and geographic distance, most links experienced bias of no more than ap-
proximately 32 ms, which is the round-trip delay of a 3000-mile link. Clearly,
this delay is negligible compared to the queuing and transmission delays experi-
enced by our packets along the entire end-to-end path. Figure 8.13 (top) shows

 
 

 

FIGURE 8.13: Histograms (PDF) of RTT samples in each of D1p and
D2p (top). Log–log plot of the upper tails of the RTT histogram. The
straight line is fitted to D2p (bottom).
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the histogram of round-trip delays in each of D1p and D2p (660,439 RTT sam-
ples in both datasets). Although the tail of the combined distribution reached the
enormous values of 126 s for simulated and 102 s for real retransmissions, the
majority (75%) of the samples were below 600 ms, 90% below 1 s, and 99.5%
below 10 s. The average RTT was 698 ms in D1p and 839 ms in D2p . The mini-
mum RTT was 119 and 172 ms, respectively. Although very rare, extremely high
RTTs were found in all six datasets Da

1p −Dc
2p . Out of more than 660,000 RTT

samples in {D1p ∪D2p}, 437 were at least 30 s, 32 at least 50 s, and 20 at least
75 s.

Although pathologically high RTTs may seem puzzling at first, there is a sim-
ple explanation. Modem error correction protocols (i.e., the commonly used V.42)
implement retransmission for corrupted blocks of data at the physical or data-link
layer.4 Error correction is often necessary if modems negotiated data compres-
sion (i.e., V.42bis) over the link and is desirable if the PPP Compression Control
Protocol is enabled on the data-link layer. In all our experiments, both types of
compression were enabled, imitating the typical setup of a home user. Therefore,
if a client established a connection to a remote modem at a low bit rate (which was
sometimes accompanied by a significant amount of noise in the phone line), each
retransmission at the physical layer took a long time to complete before data were
delivered to the upper layers. In addition, large IP-level buffers on either side of
the modem link further delayed packets arriving to or originating from the client
host.

Note that the purpose of classifying sessions into failed and successful in Sec-
tion 8.4.2.1 was to avoid reporting pathological conditions caused by modem
links. Since less than 0.5% of RTTs in {D1p ∪D2p} were seriously affected by
modem-level retransmission and bit errors (i.e., had RTTs higher than 10 s), we
conclude that our heuristic was successful in filtering out the majority of patholog-
ical connections and that future application-layer protocols running over a modem
link should be prepared to experience RTTs on the order of several seconds.

8.4.6.2 Heavy Tails

Mukherjee [26] reported that RTTs along certain Internet paths could be modeled
by a shifted gamma distribution. Even though the shape of the PDF in Figure 8.13
(top) resembles that of a gamma function, the distribution tails in Figure 8.13 de-
cay much slower than those of an exponential distribution (see later). Using our
approach from Section 8.4.4.4 (i.e., assuming that each studied Internet random

4Since the telephone network beyond the local loop in the United States is mostly digital, we believe
that dialing long-distance numbers had no significant effect on the number of bit errors during the
experiment.
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process is stationary), we extracted the upper tails of the PDF functions in Fig-
ure 8.13 (top) and plotted the results on a log–log scale in Figure 8.13 (bottom).
Figure 8.13 shows that a straight line (without loss of generality fitted to the PDF
of D2p in the figure) provides a good fit to data (correlation 0.96) and allows us
to model the upper tails of both PDF functions as a Pareto distribution with PDF
f (x)= αβαx−α−1, where shape parameter α equals 1.16 in dataset D1p and 1.58
in D2p (as before, the distribution has a finite mean, but an infinite variance).

8.4.6.3 Variation of the RTT

We conclude the discussion of the RTT by showing that it exhibited a variation
during the day similar to that of packet loss shown previously in Figure 8.10
(top) and that the average RTT was correlated positively with the length of the
corresponding end-to-end path. Figure 8.14 (top) shows the average round-trip

   

FIGURE 8.14: Average RTT as a function of the time of day (top). Av-
erage RTT and average hop count in each of the states in {D1p ∪ D2p}
(bottom).
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delay during each of the eight time slots of the day (as before, each point in
Figure 8.14 represents the average of approximately 1000 sessions). Figure 8.14
confirms that the worst time for sending traffic over the Internet is between 9 a.m.
and 6 p.m. EDT and shows that the increase in the delay during peak hours is
relatively small (i.e., by 30–40%).

Figure 8.14 (bottom) shows the average RTT sampled by the clients in each of
the 50 U.S. states. The average round-trip delay was consistently high (i.e., above
1 s) for three states: Alaska, New Mexico, and Hawaii. However, the RTT was
consistently low (below 600 ms) also for three states: Maine, New Hampshire,
and Minnesota. These results, except Minnesota, can be directly correlated with
the distance from New York; however, in general, we found that the geographical
distance of the access point from the East Coast had little effect on the average
RTT. For example, certain states in the Midwest had small (600–800 ms) average
round-trip delays and certain states on the East Coast had large (800–1000 ms)
average RTTs. A more substantial link can be established between the number of
end-to-end hops and the average RTT, as shown in Figure 8.14 (bottom). Even
though the average RTT of many states did not exhibit a clear dependency on the
average length of the path, the correlation between the RTT and the number of
hops in Figure 8.14 (bottom) was reasonably high with ρ = 0.52. This result was
intuitively expected, as the RTT is essentially the sum of queuing and transmission
delays at intermediate routers.

8.4.7 Delay Jitter

As discussed earlier, in certain streaming situations round-trip delays are much
less important to real-time applications than one-way delay jitter because the lat-
ter can potentially cause significantly more underflow events. In addition, due to
asymmetric path conditions (i.e., uneven congestion in the upstream and down-
stream directions), large RTTs are not necessarily an indication of bad network
conditions for a NACK-based application. In many sessions with high RTTs dur-
ing the experiment, the outage was caused by the upstream path, while the down-
stream path did not suffer from extreme one-way delay variation and data packets
were arriving to the client throughout the entire duration of the outage. Hence, we
conclude that the RTT is not necessarily a good indicator of a session’s quality
during streaming and that one-way delay jitter should be used instead.

Assuming that delay jitter is defined as the difference between one-way delays
of each two consecutively sent packets, an application can sample both positive
and negative values of delay jitter. Negative values are produced by two types of
packets—those that suffered a packet compression event (i.e., the packets’ arrival
spacing was smaller than their transmission spacing) and those that became re-
ordered. The former case is of great interest in packet-pair bandwidth estimation
studies and otherwise remains relatively unimportant. The latter case is studied



Section 8.4: WIDE-SCALE INTERNET STREAMING STUDY 263

in Section 8.4.8 under packet reordering. However, positive values of delay jitter
represent packet expansion events, which are responsible for late packets. Con-
sequently, we analyzed the distribution of only positive delay jitter samples and
found that although the highest sample was 45 s, 97.5% of the samples were less
than 140 ms and 99.9% under 1 s. As the aforementioned results show, large val-
ues of delay jitter were not frequent, but once a packet was significantly delayed
by the network, a substantial number of the following packets were delayed as
well, creating a “snowball” of underflows. This fact explains the large number
of underflow events reported in previous sections, even though the overall delay
jitter was relatively low.

8.4.8 Packet Reordering

8.4.8.1 Overview

Real-time protocols often rely on the assumption that packet reordering in the
Internet is a rare and insignificant event for all practical purposes (e.g., [21]).
Although this assumption simplifies the design of a protocol, it also makes the
protocol poorly suited for use over the Internet. Certainly, there are Internet paths
along which reordering is either nonexistent or extremely rare. At the same time,
there are paths that are dominated by multipath routing effects and often experi-
ence reordering (e.g., Paxson [27] reported a session with 36% of packets arriving
out of order).

Unfortunately, there is not much data documenting reordering rates experi-
enced by IP traffic over modem links. Using intuition, we expected reordering
in our experiments to be extremely rare given the low bit rates of streams S1
and S2. However, we were surprised to find out that certain paths experienced
consistent reordering with a relatively large number of packets arriving out of or-
der, although the average reordering rates in our experiments were substantially
lower than those reported by Paxson [27].

For example, in dataset Da
1p , we observed that out of every three missing5

packets one was reordered. Hence, if users of ISPa employed a streaming protocol
that used a gap-based detection of lost packets [21] (i.e., the first out-of-order
packet triggered an NACK), 33% of NACKs would be redundant and a large
number of retransmissions would be unnecessary, causing a noticeable fraction of
ISP’s bandwidth to be wasted.

Since each missing packet is potentially reordered, the true frequency of re-
ordering can be captured by computing the percentage of reordered packets rel-
ative to the total number of missing packets. The average reordering rate in our
experiment was 6.5% of the number of missing packets, or 0.04% of the number

5Missing packets are defined as gaps in sequence numbers.
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of sent packets. These numbers show that our reordering rates were at least by
a factor of 10 lower than those reported by Paxson [27], whose average reorder-
ing rates varied between 0.3 and 2% of sent packets depending on the dataset.
This difference can be explained by the fact that our experiment was conducted
at substantially lower end-to-end bit rates, as well as by the fact that Paxson’s
experiment involved several paths with extremely high reordering rates.

Out of 16,852 sessions in {D1p ∪D2p}, 1599 (9.5%) experienced at least one
reordering. Interestingly, the average session reordering rates in our datasets were
very close to those in Paxson’s 1995 data [27] (12% sessions with at least one
reordering), despite the fundamental differences in sending rates. The highest re-
ordering rate per ISP in our experiment occurred in Da

1p , where 35% of missing
packets (0.2% of sent packets) turned out to be reordered. In the same Da

1p , almost
half of the sessions (47%) experienced at least one reordering event. Furthermore,
the maximum number of reordered packets in a single session occurred in Db

1p

and was 315 packets (7.5% of sent packets).
Interestingly, the reordering probability did not show any dependence on the

time of day (i.e., the time slot) and was virtually the same for all states.

8.4.8.2 Reordering Delay

To further study packet reordering, we define two metrics that allow us to measure
the extent of packet reordering. First, let packet reordering delay Dr be the delay
from the time when a reordered packet was declared as missing to the time when
the reordered packet arrived to the client. Second, let packet reordering distance
dr be the number of packets (including the very first out-of-sequence packet, but
not the reordered packet itself) received by the client during reordering delay Dr .
These definitions are illustrated in Figure 8.15, where reordering distance dr is
two packets and reordering delay Dr is the delay between receiving packets 3
and 2.

Figure 8.16 (top) shows the histogram of Dr in {D1p ∪D2p}. The largest re-
ordering distance dr in the combined dataset was 10 packets, and the largest re-
ordering delay Dr was 20 s (however, in the latter case, dr was only 1 packet).
Although quite large, the maximum value of Dr is consistent with previously re-
ported numbers (e.g., 12 s in Paxson’s data [27]). The majority (90%) of samples

FIGURE 8.15: The meaning of reordering delay Dr .
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FIGURE 8.16: Histogram of reordering delay Dr in {D1p ∪D2p} (top).
Histogram of reordering distance dr in {D1p ∪D2p} (bottom).

in Figure 8.16 (top) were below 150 ms, 97% below 300 ms, and 99% below
500 ms.

8.4.8.3 Reordering Distance

We next analyze the suitability of TCP’s triple-ACK scheme in helping NACK-
based protocols detect reordering. TCP’s fast retransmit relies on three consec-
utive duplicate ACKs (hence the name “triple-ACK”) from the receiver to de-
tect packet loss and avoid unnecessary retransmissions. Therefore, if reordering
distance dr is either 1 or 2, the triple-ACK scheme successfully avoids dupli-
cate packets; if dr is greater than or equal to 3, it generates a duplicate packet.
Figure 8.16 (bottom) shows the PDF of reordering distance dr in both datasets.
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Using Figure 8.16, we can infer that TCP’s triple-ACK would be successful for
91.1% of the reordering events in our experiment, double-ACK for 84.6%, and
quadruple-ACK for 95.7%. Note that Paxson’s TCP-based data [27] show simi-
lar, but slightly better, detection rates, specifically 95.5% for triple-ACK, 86.5%
for double-ACK, and 98.2% for quadruple-ACK.

8.4.9 Asymmetric Paths

Recall that during the initial executions of the traceroute, our dialer recorded the
TTL field of each received “TTL-expired” packet. These fields allowed the di-
aler to compute the number of hops between the router that generated a particular
“TTL-expired” message and the client. Suppose some router i was found at hop
fi in the upstream (i.e., forward) direction and at hop ri in the downstream (i.e.,
reverse) direction. Hence, we can conclusively establish that an n-hop end-to-
end path is asymmetric if a router exists for which the number of downstream
hops is different from the number of upstream hops (i.e., ∃i, 1≤ i ≤ n: fi 
= ri ).
However, the opposite is not always true—if each router has the same number of
downstream and upstream hops, we cannot conclude that the path is symmetric
(i.e., it could be asymmetric as well). Hence, we call such paths possibly symmet-
ric.

In {D1p ∪D2p}, 72% of the sessions sent their packets over definitely asym-
metric paths. In that regard, two questions prompt for an answer. First, does path
asymmetry depend on the number of end-to-end hops? To answer this question,
we extracted path information from {D1p ∪ D2p} and counted each end-to-end
path through a particular access point exactly once. Figure 8.17 shows the per-
centage of asymmetric paths as a function of the number of end-to-end hops in
the path. As Figure 8.17 shows, almost all paths with 14 hops or more were asym-
metric, as well as that even the shortest paths (with only 6 hops) were prone to
asymmetry. This result can be explained by the fact that longer paths are more
likely to cross over AS boundaries or intra-AS administrative domains. In both
cases, “hot-potato” routing policies may cause path asymmetry.

The second question we attempt to answer is whether path asymmetry has any-
thing to do with reordering. In {D1p ∪D2p}, 95% of all sessions with at least one
reordered packet were running over an asymmetric path. Consequently, we can
conclude that if a session in our datasets experiences a reordering event along a
path, then the path is most likely asymmetric. However, a new question that arises
is whether the opposite is true as well: if a path is asymmetric, will a session
be more likely to experience a reordering? To answer the last question, we have
the following numbers. Out of 12,057 sessions running over a definitely asym-
metric path, 1522 experienced a reordering event, which translates into 12.6%
reordering rate. However, out of 4795 sessions running over a possibly symmet-
ric path, only 77 (1.6%) experienced a reordering event. Hence, an asymmetric
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FIGURE 8.17: Percentage of asymmetric routes in {D1p ∪ D2p} as a
function of the number of end-to-end hops.

path is eight times more likely to experience a reordering event than a possibly
symmetric path.

Even though there is a clear link between reordering and asymmetry in our
datasets, we speculate that the two could be related through the length of each end-
to-end path. In other words, longer paths are more likely to experience reordering
as well as be asymmetric. Hence, rather than saying that reordering causes asym-
metry or vice versa, we can explain the result by noting that longer paths are
more likely to cross AS-level routing boundaries during which both “hot-potato”
routing (which causes asymmetry) and IP-level load balancing (which causes re-
ordering) are apparently quite frequent.

Clearly, the findings in this section depend on the particular ISP employed by
the end user and the autonomous systems that user traffic traverses. Large ISPs
(such as the ones studied in this work) often employ numerous peering points
(hundreds in our case), and path asymmetry rates found in this section may not
hold for smaller ISPs. Nevertheless, our data allow us to conclude that home users
in the United States experience asymmetric end-to-end paths with a much higher
frequency than symmetric ones.

8.5 SUMMARY AND FURTHER READING

In this chapter, introductory information theory concepts that are related to char-
acterizing packet losses over the Internet were presented. The most basic channel
model that can be used to capture packet losses over network routes is the Bi-
nary Erasure Channel or its simple extension the Packet Erasure Channel. For a
given probability δ of symbol loss (bit loss for a BEC and a packet loss for a
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PEC), these channels have a capacity of C = 1− δ in symbols (bits or packets)
per channel use. Extensions of this basic and fundamental result to cascaded links
and to routes with feedback were outlined. For excellent treatment of information
theory concepts, the reader is referred to [1–3].

All of the results related to the BEC/PEC channels and their extensions are
based on the assumption that the losses are memoryless. Meanwhile, deriving
the capacity of channels with memory is beyond the scope of this introductory
material. Methods for measuring information theory parameters, such as mutual
information and capacity, for channels with memory can be found in [5]. An im-
portant measure for Internet multimedia applications that employ some form of
channel coding is the probability of recovering a desired number of message (or
data) packets when transmitting an FEC block of n packets [that include both k

message and (n− k) parity packets]. We outlined a set of closed form solutions
of such measure for a basic channel with memory, namely the two-state Markov
channel (i.e., the Gilbert channel). Some details for deriving these closed form
solutions can be found elsewhere [6,7].

The second part of this chapter described a comprehensive Internet video study
conducted for gaining insight into a variety of end-to-end performance parame-
ters crucial for real-time multimedia applications. These performance parameters
included packet loss, loss-burst lengths and durations, roundtrip delay, delay jit-
ter, packet reordering and related delays due to reordering, and video underflow
events. A great deal of work and research efforts has collected very valuable data
regarding Internet performance. Some of these efforts focused on real-time and
multimedia applications, including studies that specifically sent audio/video traf-
fic over the Internet, such as the ones reported in [12,13,20,21,32–34]. The major-
ity of these studies, however, involved only a few Internet paths, lasted for a short
period of time, and focused on analyzing the features of the proposed scheme
rather than the impact of Internet conditions on real-time streaming. However, the
Internet video study reported in this chapter is quite comprehensive and covered a
broad range of performance parameters that are important for Internet multimedia
applications.
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9
Forward Error Control
for Packet Loss
and Corruption

Raouf Hamzaoui, Vladimir Stanković, and Zixiang Xiong

9.1 INTRODUCTION

Many techniques have been proposed to protect media data against channel errors.
One possible approach is error-resilient source coding, which includes packetiza-
tion of the information bit stream into independently decodable packets, exploita-
tion of synchronization markers to control error propagation, reversible variable-
length coding, and multiple description coding. Another approach is based on er-
ror concealment, where the lost or corrupted data is estimated at the receiver side
with, for example, interpolation. Error control for media data may also exploit
error detection and retransmission (ARQ, see Chapter 7). One further approach
is forward error correction (FEC) with error correcting codes. Finally, one may
combine any of the aforementioned methods. The choice of an appropriate er-
ror control method is not easy because it requires a deep understanding of both
the source and the channel. In this respect, many important questions have to be
answered: What is the type of the data? Is the data compressed? If yes, what is
the compression scheme used? Is the data being transmitted over a wireline or a
wireless network? Is there a feedback channel? What are the channel conditions?
Moreover, the user requirements must also be taken into consideration. What is
more important: reconstruction fidelity or transmission speed?

In this chapter, we present error control systems that rely on forward error
correction only. While ARQ techniques have traditionally been the error control
method of choice, there are many situations in which they are not suitable. For
example, ARQ is not possible when there is no feedback channel. Also, in some
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applications, such as video multicasting or broadcasting, ARQ can overwhelm the
sender with retransmission requests.

This chapter focuses on error control systems that were designed for embed-
ded (or scalable) video bit streams (e.g., bit streams produced by MPEG-4 FGS,
H.264/AVC MCTF, or some of the three-dimensional wavelet-based video coders
described in Chapter 5). An overview of error control techniques for nonscalable
video coders can be found in [33], in [32], and in Chapter 2. We describe sev-
eral error protection systems and discuss their rate–distortion performance. When
possible, we also provide efficient algorithms for optimizing this performance by
adequately allocating the total transmission bit budget between the source coder
and the channel coder.

This chapter is organized as follows. In Section 9.2, we present a class of trans-
mission systems that are particularly well suited to the packet erasure channel,
which as explained in Chapter 8, is a good model for the Internet. In Section 9.3,
we describe a transmission system that was successfully used for bit error pro-
tection over a memoryless channel. Finally, Section 9.4 handles the more difficult
case of channels with memory. Details about the channel codes mentioned in this
chapter can be found in Chapter 7.1

9.2 PRIORITY ENCODING TRANSMISSION: CROSS-PACKET
ERASURE CODING

In a packet network, the transmitted packets can be dropped, delayed, or corrupted
(see Chapter 8). By ignoring delayed packets and discarding corrupted ones, one
can model the channel as a packet erasure channel, which assumes that a trans-
mitted packet is either correctly received or lost. In this section, we present trans-
mission systems for this channel model. They share the feature that systematic
maximum-distance separable (MDS) codes are applied across blocks of packets.
Such codes could be Reed–Solomon (RS) codes, punctured RS codes, or short-
ened RS codes. For simplicity, we call them RS codes in this chapter. RS codes
are used for two main reasons. First, as MDS codes, they are optimal in the sense
that the smallest possible number of received symbols is used for full recovery
of all information symbols. Second, both the encoding and the decoding are very
fast when the length of the channel code word is not too large [18].

In Priority Encoding Transmission [1], the information bit stream is partitioned
into segments with different priorities. Each segment is protected with a sys-
tematic RS code (Table 9.1). Since the packet number is indicated in the packet
header, the receiver knows the location of the erased symbols in each codeword.
Thus, if the RS code used for a given segment is known, the receiver is able to

1Parts of this work were previously published in [12].
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Table 9.1: Priority encoding transmission with eight transmit-
ted packets. The information bit stream is partioned into three
segments with different priorities. Numbers denote information
symbols and x denotes a redundant symbol. The first segment
consists of the first 6 symbols of the message and is protected
with an (8,2) systematic RS code. The second segment consists
of the next 6 symbols of the message and is protected with an
(8,3) systematic RS code. The third segment consists of the next
10 symbols of the message and is protected with an (8,5) sys-
tematic RS code.

Packet 1 1 2 3 7 8 13 14
Packet 2 4 5 6 9 10 15 16
Packet 3 x x x 11 12 17 18
Packet 4 x x x x x 19 20
Packet 5 x x x x x 21 22
Packet 6 x x x x x x x
Packet 7 x x x x x x x
Packet 8 x x x x x x x

reconstruct the segment when the number of packets lost does not exceed the num-
ber of parity symbols for this code. For example, if for the system of Table 9.1 two
packets are lost, then the receiver can recover all information symbols. Given the
length of the packet payload, the length of the information bit stream, the number
of priority levels, the length of the bit stream in each priority level, and the RS
code rate for each segment, the authors [1] provide an algorithm that computes the
number of packets sent and the number of information packets in each segment.

In [15], priority encoding transmission was used for embedded information bit
streams and extended by allowing the number of segments to be equal to the
number of symbols in the packet payload. This is done as follows. Suppose that
the encoded bit stream is to be sent as N packets of payload size L symbols each.
Then the system builds L segments S1, . . . , SL, each of which consists of mi ∈
{1, . . . ,N} information symbols and protects each segment Si with an (N,mi)

systematic RS code (Table 9.2).
For each i ∈ {1, . . . ,L}, let fi =N −mi denote the number of parity symbols

that protect segment Si . If n packets of N are lost during transmission, then the RS
codes ensure that all segments that contain at most N − n source symbols can be
recovered. Thus, by adding the monotonicity constraint f1 ≥ f2 ≥ · · · ≥ fL, if at
most fi packets are lost, then the receiver can recover at least the first i segments.
This monotonicity constraint is justified by the fact that if a segment cannot be
recovered, then all the next segments are useless. In the example of Table 9.2,
suppose that any three packets are lost. Then the receiver can reconstruct the first
four segments and thus decode the first eight information symbols.
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Table 9.2: Block of packets. There are N = 6
packets of L= 5 symbols each. Numbers denote
information symbols of an embedded bit stream
and x denotes a parity symbol.

Packet 1 1 2 3 6 9
Packet 2 x x 4 7 10
Packet 3 x x 5 8 11
Packet 4 x x x x 12
Packet 5 x x x x 13
Packet 6 x x x x 14

Denote by FL the set of L-tuples (f1, . . . , fL) such that fi ∈ {0, . . . ,N − 1}
for i = 1, . . . ,L and f1 ≥ f2 ≥ · · · ≥ fL. Let φ be the operational distortion–
rate function of the source coder and X be the random variable whose value is the
number of packets lost when N packets are sent. For a given L-segment protection
F = (f1, . . . , fL) ∈FL, the expected distortion is

E[d](F )=
L∑

i=0

Pi(F )φ
(
Vi(F )

)
, (9.1)

where V0(F )= 0, and for i = 1, . . . ,L, Vi(F ) is the number of information sym-
bols in the first i segments, that is, Vi(F )=∑i

k=1 mk = iN −∑i
k=1 fk , and

Pi(F )=
⎧
⎨

⎩

Prob(X > f1) for i = 0;

Prob(fi+1 < X ≤ fi) for i = 1, . . . ,L− 1;

Prob(X ≤ fL) for i = L.

Let pN(n) denote the probability that exactly n packets of N are lost. Then for
i = 1, . . . ,L− 1, we have

Pi(F )=
{

0 if fi = fi+1;
∑fi

n=fi+1+1 pN(n) otherwise.

An L-segment protection that minimizes (9.1) over FL is called distortion opti-
mal. We point out that the expected distortion (9.1) can also be expressed [9] in
the equivalent form

cN(N)φ
(
V0(F )

)+
L∑

i=1

cN(fi)
(
φ
(
Vi(F )

)− φ
(
Vi−1(F )

))
,
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where cN(k) =∑k
n=0 pN(n), k = 0, . . . ,N . Thus, cN(fi) is the probability that

the receiver correctly recovers segment Si .
Another way to look at the expected distortion was given in [17]. For any

L-segment protection F = (f1, . . . , fL) ∈ FL, there exists a unique N -tuple
R = (R1, . . . ,RN) with R1 ≤ · · · ≤ RN such that for i = 1, . . . ,N , Ri denotes
the number of successfully decoded information symbols if exactly i packets
of N are received. For example, in Table 9.2, we have R1 = 2,R2 = 2,R3 =
8,R4 = 8,R5 = 8, and R6 = 14. The expected distortion for R = (R1, . . . ,RN)

is E[d](R) =∑N
j=0 qN(j)φ(Rj ), where R0 = 0 and qN(i) = 1 − pN(i) is the

probability that exactly i of N packets are received. It is easy to show that the
total transmission rate (in symbols) is Rt(R)=∑N

j=1 αjRj , where αj = N
j(j+1)

,
j = 1, . . . ,N − 1, and αN = 1.

9.2.1 Optimization

We now discuss algorithms for minimizing the expected distortion (9.1). Since the
number of possible candidates F ∈FL is

(
L+N−1

L

)
, finding an optimal solution by

brute force is infeasible in practice.
Puri and Ramchandran [17] noted that an optimal solution can be determined

by finding R= (R1, . . . ,RN) that minimizes E[d](R) subject to (1) Rt(R)≤NL,
(2) R1 ≤ R2 ≤ · · · ≤ RN , and (3) Ri − Ri−1 = kii, ki ∈ N, i = 2, . . . ,N . Instead
of this constrained discrete optimization problem, they first consider the relaxed
problem of minimizing E[d](R) for real variables R1, . . . ,RN subject only to
the first constraint Rt(R)≤NL. Assuming convexity and differentiability of the
operational distortion–rate function, this is done by minimizing the Lagrangian

J (R, λ)=
N∑

j=0

qN(j)φ(Rj )+ λ

(
N∑

j=1

αjRj −NL

)

(9.2)

giving the slopes of the distortion–rate function at the extremal points

dφ(Ri)

dRi

=−λ
αi

qN(i)
, i = 1, . . . ,N. (9.3)

After the Lagrange multiplier λ is eliminated via a bisectional search, further steps
are carried out to handle constraints 2 and 3 [17]. The algorithm finds near-optimal
solutions in practice and optimal ones subject to the convexity of φ and fractional
bit allocation assignments. Its time complexity is O(kN), where k is the number
of iterations needed to determine the Lagrange multiplier that corresponds to the
given transmission bit budget. Moreover, a preprocessing step that computes the
vertices of the lower convex hull of LN distortion–rate points of the source coder
is needed.
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Mohr et al. [14] also determined a solution that is optimal if the operational
distortion–rate function is convex and fractional bit allocation assignments are
acceptable. The algorithm first computes the h vertices of the lower convex hull
of LN distortion–rate points of the source coder and then finds a solution in
O(hN logN) time.

Stockhammer and Buchner [29] presented an O(N2L2) dynamic program-
ming algorithm that is almost exact in the general case and exact if the opera-
tional distortion–rate function is convex and the packet loss probability pN(n) is
a monotonically decreasing function of the number of lost packets n. Dumitrescu
et al. [9] independently found the same algorithm. However, they showed that its
complexity can be reduced to O(NL2). Moreover, they gave an O(N2L2) algo-
rithm that finds an optimal solution in the general case.

A fast local search algorithm that computes a near-optimal solution in prac-
tice was presented in [27]. The idea is to start from a rate-optimal solution and
then iteratively improve it by searching for a better solution in its neighborhood
(Figure 9.1). Here a rate-optimal solution is defined as an L-segment protection
that maximizes over FL, the expected number of correctly reconstructed source
symbols given by

E[r](F )=
L∑

i=0

Pi(F )Vi(F ). (9.4)

A rate-optimal L-segment protection is shown [27] to be the equal loss protec-
tion strategy (fr , . . . , fr ), with

fr = arg max
i=0,...,N−1

(N − i)

i∑

n=0

pN(n).

Thus its computation is straightforward and can always be done in O(N) steps.
The local search (or iterative improvement) part needs at most L(N−1)+1 com-
putations and L(N − 1) comparisons of cost function (9.1), bringing the overall
worst-case time complexity to O(NL).

9.2.2 Multiple Blocks of Packets (BOPs)

When the transmission rate budget RT (in symbols) is large and the packet pay-
load size L is small, the channel codeword length N has to be very large to guar-
antee that LN = RT , making channel encoding and decoding very complex in
software. A solution is to keep N small and use more than one block of packets
(Table 9.3).

This problem is considered in [31], where a heuristic algorithm for efficiently
determining the packet erasure protection in each block of packets is given. The
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FIGURE 9.1: Illustration of the local search algorithm for N = 5 and
L = 4. The neighbors of a solution (f1, f2, f3, f4) are (f1 + 1, f2,

f3, f4), (f1 + 1, f2 + 1, f3, f4), (f1 + 1, f2 + 1, f3 + 1, f4), and
(f1 + 1, f2 + 1, f3 + 1, f4 + 1). Either the current solution is updated
with the best neighbor or the algorithm stops. Dark areas correspond to
information symbols and light areas to parity symbols.

algorithm is iterative and converges to a local minimum. Dumitrescu and Wu [8]
proposed a dynamic programming algorithm that finds an optimal solution to the
problem. The time complexity of the algorithm is O(K2L2N2), where K is the
number of transmitted BOPs.

9.2.3 Ensuring Quality of Service

One limitation of basing the protection strategy on minimizing the expected dis-
tortion (or maximizing the expected PSNR) is that no quality of service (QoS) is

Table 9.3: Multiple BOPs. The transmission rate budget is RT = 30, the packet
payload size is L = 5, the codeword length of the channel codes is N = 3, and
K = 2 BOPs are sent.

Packet 1 1 2 4 6 9 Packet 4 12 13 14 16 19
Packet 2 x 3 5 7 10 Packet 5 x x 15 17 20
Packet 3 x x x 8 11 Packet 6 x x x 18 21



278 Chapter 9: FORWARD ERROR CONTROL

Table 9.4: Packet loss protection with QoS.
Here k′ = 2 and L1 = 3. The first six symbols
provide a distortion smaller than dmin.

Packet 1 1 3 5 7 10
Packet 2 2 4 6 8 11
Packet 3 x x x 9 12
Packet 4 x x x x 13
Packet 5 x x x x 14

guaranteed. Indeed, since the distortion is minimized on average, there may be
transmissions where the distortion is too high for meaningful applications. One
way to alleviate the problem is to add a constraint on the probability of such oc-
currences [10]. More precisely, for F ∈FL, define p(F) as the probability that the
distortion is above a quality threshold dmin. Then one looks for a protection F that
minimizes the expected distortion (9.1) subject to the constraint p(F) < pmax,
where pmax is a probability threshold.

To reduce the complexity of the problem, a suboptimal algorithm is proposed
in [10]. First one determines the largest integer k′ such that the probability of re-
ceiving fewer than k′ packets is smaller than pmax, that is, k′ is the largest integer
such that

∑k′−1
n=0 qN(n) < pmax. Second, one determines the smallest integer L1

such that φ(k′L1) < dmin. Then the first L1 columns are protected with an (N, k′)
systematic RS code. The choice of k′ ensures that the probability that the dis-
tortion is larger than dmin will be smaller than pmax. Finally, an optimal unequal
error protection for the remaining L−L1 columns is computed in the usual way
(Table 9.4).

9.2.4 Layered Multiple Description Coding

In multicast applications, clients usually have differing transmission bandwidths.
Instead of sending a separate block of packets to each client, Chou and col-
leagues [6] proposed to design a single block of packets consisting of a base
layer and additional refinement layers. For example, when two clients are present,
the low-bandwidth client receives only the base layer, while the high-bandwidth
client additionally receives an enhancement layer (Table 9.5).

Unfortunately, this construction cannot offer to both clients the same quality
performance as two separate, optimal, nonlayered multiple description schemes.
A naive method to solve the problem by optimizing the protection for only one
client usually leads to very high distortions for the nonoptimized client [6]. A bet-
ter approach is to optimize the protection for the low-bandwidth client and reallo-
cate a number of parity packets from the enhancement layer of the high-bandwidth
client to the base layer to strengthen its protection [6]. However, the solution was
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Table 9.5: The first three packets (base layer)
are sent to both low-bandwidth and high-
bandwidth clients. The remaining four packets are
sent to the high-bandwidth client only. Numbers
denote information symbols, x denotes a parity
symbol. Packets 4 and 5 provide supplementary
protection to the base layer.

Packet 1 1 2 4 6
Packet 2 x 3 5 7
Packet 3 x x x 8
Packet 4 x x x x
Packet 5 x x x x
Packet 6 9 10 11 12
Packet 7 x x x 13

optimized only for the low-bandwidth client, and the high-bandwidth client po-
tentially suffered a significant performance loss. For example, for the Foreman
video sequence encoded with MPEG-4 FGS, the expected distortion for the high-
bandwidth client was 1.4 dB worse than the smallest possible distortion for this
client [6].

A better trade-off between the distortions seen by the clients can be obtained by
minimizing the largest performance loss experienced by any client [28]. Such a
code tends to average the quality loss among the clients, ensuring that none of the
clients suffers a significantly higher quality degradation than the others. Two fast
heuristic algorithms for the setup with two clients were proposed in [28]. Exper-
imental results show that the algorithms provide significant improvements in the
quality trade-off over the results of [6]. Finding an optimal solution in polynomial
time for the two-client case is still an open problem. Another open problem is to
compute a fast optimal or near-optimal solution when there are more than two
clients.

9.3 CRC+RCPC: WITHIN-PACKET ERROR DETECTION AND
CORRECTION CODING

In this section, we present a transmission system based on a concatenation of an
error detection code as an outer code and an error correction code as an inner code.
Although this system was already known in the communications literature [20],
it was Sherwood and Zeger [22] who first combined it with an embedded source
coder for progressively transmitting images. The motivation for using the con-
catenated code is that it allows the receiver to stop the decoding as soon as the
first noncorrectable error is detected. In this way, error propagation, which can
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FIGURE 9.2: Schematic representation of the system of Sherwood and
Zeger [22]. The dark areas correspond to information bits and the light
areas to parity bits.

be catastrophic for variable-length source codes, is avoided. For illustration pur-
poses, we will assume that the source coder is an embedded image coder; how-
ever, the reader should keep in mind that any embedded or scalable source coder
can be used as well.

Figure 9.2 shows a schematic representation of the transmission system pro-
posed in [22]. After an embedded coder is used to compress the source, the com-
pressed bit stream is divided into consecutive information blocks. To each infor-
mation block, CRC parity bits are appended, and the resulting block is encoded
with an RCPC coder. The receiver uses a List Viterbi algorithm (LVA) to find a
best maximum-likelihood decoding solution for a received packet. If an error is
detected by the CRC decoder, the LVA is used again to find a next best solution,
which is also checked for errors. This process is repeated until the CRC test is
passed or a maximum number of solutions is reached. In the first case, the next
received packet is considered, whereas in the second case, decoding is stopped
and the image is reconstructed using only the correctly decoded packets.

In the following, we explain how to optimally allocate a transmission bit budget
between the source coder and the channel coder for the system. Three different
performance criteria are considered: the expected distortion, the expected PSNR

(defined in decibels as 10 log10
2552

MSE ), and the expected number of correctly de-
coded information bits. In Section 9.3.1, we assume as in [22] that the lengths of
all information blocks are fixed. In Section 9.3.2, we treat the case where the size
of the channel codewords is fixed [2,25] (Figure 9.3).

9.3.1 Fixed-Length Information Blocks

Let Np be the number of pixels in the image and L be the length of the informa-
tion blocks. Suppose that the channel coder is given by a family C = {c1, . . . , cm}
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(a) (b)

FIGURE 9.3: (a) Fixed-length information blocks and variable-length
channel codewords. (b) Fixed-length channel codewords with vari-
able-length information blocks. The dark areas correspond to information
bits and the light areas to parity bits.

of error correction-detection codes. For i = 1, . . . ,m, let r(ci) and p(ci) denote
the code rate and the probability of incomplete decoding for channel code ci ,
respectively. It is assumed that all decoding errors can be detected. The pro-
tection of the information blocks is given by an error protection strategy (EPS)
π = (π1, . . . , πN(π)), where N(π) is the number of transmitted information
blocks, and for i = 1, . . . ,N(π), πi ∈ C is the channel code used to protect the ith
information block (Figure 9.3a).

For k = 1, . . . ,N(π) and i = k− 1, . . . ,N(π), let Pi|k−1(π) denote the condi-
tional probability that exactly the first i packets are decoded correctly given that
the first k− 1 packets are decoded correctly. Since the channel is memoryless, we
have

Pi|k−1(π)=

⎧
⎪⎨

⎪⎩

p(πk) for i = k− 1;

p(πi+1)
∏i

j=k

(
1− p(πj )

)
for i = k, . . . ,N(π)− 1;

∏N(π)
j=k

(
1− p(πj )

)
for i =N(π).

In particular, when k = 1, we have P0|0(π) = p(π1) is the probability that
the first packet is not correctly decoded, for i = 1, . . . ,N(π) − 1, Pi|0(π) =
p(πi+1)

∏i
j=1(1− p(πj )) is the probability that the first i packets are correctly

decoded while the next one is not, and PN(π)|0(π) =∏N(π)
j=1 (1 − p(πj )) is the

probability that all N(π) packets are correctly decoded.
Let φ(r) be the operational distortion–rate function of the source coder with

the rate r given in bpp. Then the expected distortion for an EPS π is

E[d](π)=
N(π)∑

i=0

Pi|0(π)φ(iL/Np). (9.5)



282 Chapter 9: FORWARD ERROR CONTROL

The expected PSNR for the EPS π is

E[PSNR](π)=
N(π)∑

i=0

Pi|0(π)PSNR(iL/Np). (9.6)

Finally, the expected reconstructed source coding rate is

E[r](π)=
N(π)∑

i=0

Pi|0(π)(iL/Np). (9.7)

Ideally, one would like to minimize (9.5) or maximize (9.6). However, maxi-
mizing (9.7) is also reasonable for an efficient embedded coder because the ex-
pected distortion will generally decrease when the expected number of correctly
decoded source bits increases. Note, however, that the optimization of (9.5), (9.6),
and (9.7) does not necessarily yield the same solution, with one exception being
the trivial case where φ is a linear function. One nice feature of maximizing (9.7)
is that the solution is not dependent on the source contents or the source coder and
thus can be computed off-line. Moreover, this solution can also be determined by
the receiver and need not be transmitted over the channel.

For k = 1, . . . ,N(π) let 
(k,π)=∑N(π)
i=k (

∑i
j=k δj )Pi|k−1(π), where

δi =

⎧
⎪⎨

⎪⎩

φ
(
(i − 1)L/Np

)− φ(iL/Np) for the distortion;

PSNR(iL/Np)− PSNR
(
(i − 1)L/Np

)
for the PSNR;

1, for the expected source rate.

Then one can show [3] that an EPS that optimizes the performance of the sys-
tem for a given total transmission bit rate rT is a strategy π∗ = (π∗1 , . . . , π∗N(π))

that maximizes 
(1,π) subject to
∑N(π)

i=1
L

Npr(πi )
≤ rT . This can be done with

dynamic programming with complexity O(r2
T ) if either the distortion or the

PSNR is optimized, or O(rT ) if the expected reconstructed source rate is max-
imized [3]. One can also show that for an EPS π∗ = (π∗1 , . . . , π∗N(π)) that max-
imizes the expected reconstructed source rate, we have r(π∗k ) ≤ r(π∗k+1) for
k = 1, . . . ,N(π)− 1 [3]. That is, the information blocks should be protected with
increasingly weaker channel codes. However, this property does not necessarily
hold if either the distortion or the PSNR is optimized. However, the property is
satisfied if one assumes that the logarithm of the block decoding error probability
is an affine function of the channel packet length [16].

Experimental results show that the solutions to maximizing the expected PSNR
and maximizing the expected source rate yield a similar performance for the
SPIHT coder and a CRC/RCPC channel coder (the difference in PSNR is less
than 0.2 dB for the 512× 512 gray-scale Lenna image [3]). This can be analyt-
ically confirmed under some theoretical assumptions, including an independent,
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identically distributed Gaussian source and a perfect progressive source coder that
achieves the distortion–rate function [13].

A further nice feature of rate-based optimization is that if π∗ = (π∗1 , . . . , π∗N)

is rate optimal for target transmission rate rT , then the EPSs (π∗j , . . . , π∗N),
j = 2, . . . ,N are also rate optimal for target transmission rates rj = rT −

1
Np

∑j−1
i=1

L
r(π∗i )

[3]. This result has an important application if rate-compatible

channel codes are used. Indeed, in this case, the transmission of the sequence of
bits can be organized such that rate-based optimality is guaranteed at the interme-
diate rates rj , j = 2, . . . ,N [3].

9.3.2 Fixed-Length Channel Codewords

We now consider the slightly different system of Figure 9.3b [2,25], where the size
of the channel codewords is fixed, but the blocks of information bits have variable
lengths. Compared to the system using information blocks of fixed length, the
obvious advantage of having channel codewords of fixed length is that cross-layer
design will be easier because other layers (e.g., the physical layer) do not have
to deal with the issue of different channel codeword lengths. Denote the set of
channel codes by C = {c1, . . . , cm} and the length of the channel codewords by L.
Given a transmission rate budget B (in symbols), the system transforms N =

B/L� successive blocks of the source coder output bit stream into a sequence
of N channel codewords of fixed length L. Here we use an N -packet EPS π =
(π1, . . . , πN), which encodes the kth information block with channel code πk ∈ C.
Like the system in Figure 9.3a with fixed-length information blocks, if the decoder
detects an error, then the decoding is stopped, and the message is reconstructed
from the correctly decoded packets.

For i = 1, . . . ,m, let p(ci) denote the probability of a decoding error of channel
code ci . We may assume without loss of generality that p(c1) < · · ·< p(cm) < 1.
For the N -packet strategy π , the expected number of correctly decoded source
bits is

EN [r](π)=
N∑

i=0

Pi|0(π)Vi(π), (9.8)

where V0(π) = 0 and for i ≥ 1, Vi(π) =∑i
j=1 v(πj ) with v(πj ) = 
Lr(πj )�

being the number of source bits in the j th packet. The expected distortion is

EN [d](π)=
N∑

i=0

Pi|0(π)φ
(
Vi(π)

)
, (9.9)

where φ(R) is the distortion associated to rate R (in bits).
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As in Section 9.2.1, an EPS πr that maximizes (9.8) is called rate optimal.
A rate-optimal EPS can be computed in O(mN) time [25]. This is essentially due
to the property that if the N -packet EPS (π1, . . . , πN) is rate optimal, then for
1 ≤ i ≤ N − 1 the (N − i)-packet EPS (πi+1, . . . , πN) must also be rate opti-
mal [25]. An EPS πd that minimizes (9.9) is called distortion optimal. However,
in contrast to the fixed-information block setting, there is no known polynomial-
time algorithm to compute a distortion-optimal EPS πd . Assuming that the op-
erational distortion–rate function φ(R) of the source coder is nonincreasing and
convex, one can give a tight lower bound of EN [d](πd) as φ(EN [r](πr)) [11],
which is computable with complexity O(mN). Then if πr is used as an approxi-
mation of πd , a tight upper bound on the quality loss EN [d](πr)−EN [d](πd) is
EN [d](πr)− φ(EN [r](πr)). In addition, it is conjectured in [11] that under the
same assumptions for φ(R), the total number of information bits for πd is smaller
than or equal to that for πr .

In [2], an approximation for πd based on the Viterbi algorithm was proposed.
It has a quadratic time complexity in the number of transmitted channel code
words N . However, this result is guaranteed only for channel code rates that are
a subset of {p

q
,

p+1
q

, . . . ,
q−1
q
}, where p and q are positive integers with p <

q . For channel codes that do not fulfill this condition, including rate-compatible
punctured codes, the worst-case time complexity is exponential in N .

A fast local search algorithm was proposed in [11] to compute an approxima-
tion of πd . The algorithm works by iterative improvement and has an O(mN)

worst-case complexity [11]. It starts from a rate-optimal solution πr and then
considers the first neighbor of πr . If the expected distortion of this neighbor is
smaller than that of the current solution, it updates the current solution and re-
peats the procedure; otherwise it considers the next neighbor and repeats the pro-
cedure. If there is no neighbor that is better than the current solution, the algorithm
returns the current solution. Here a neighbor of an N -packet EPS π with nonde-
creasing rates is any N -packet EPS with nondecreasing rates, fewer information
symbols than π , and differs in code rates from π on only one packet. For example,
suppose C = {c1, c2, c3, c4}, if π = (c1, c2, c4, c4), then π has three neighbors,
(c1, c2, c3, c4) being the first one, (c1, c2, c2, c4) the second, and (c1, c1, c4, c4)

the third. Note how in observance of the conjecture in [11], all solutions tested by
the local search algorithm have fewer information bits than πr .

9.4 ERROR PROTECTION FOR WIRELESS NETWORKS

In fading channels, the transmitted packets experience different bit error rates:
packets transmitted when the channel is in the bad state are exposed to much
higher bit error rates than those transferred during the good state of the channel.
Thus, to avoid decoding failures with the CRC/RCPC system of [22], the RCPC
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codes should be designed for the bit error rate in the channel’s bad state. This
causes overprotection during the good state of the channel (which usually lasts
much longer) and bounds the achievable performance from the theoretical limits.
In this section, we present three successful extensions of the CRC/RCPC system
of [22] for fading channels. The first system [30] introduces interleaving. The two
other systems [19,23] are based on product channel codes.

9.4.1 Using Interleaving

Interleaving tends to spread deep fade and to transform a memory channel into
a memoryless one. It improves the performance during transmission over fading
channels at the expense of increased complexity and time delay. A system that
exploits block interleaving to alleviate the problems of channel burst errors dur-
ing a deep fade is that of Stockhammer and Weiss [30]. As in the system of [22],
an embedded bit stream is encoded with a punctured convolutional coder, and
the decoding of the received bit stream is stopped when the first decoding er-
ror is detected. The convolutional coder has a strong systematic mother code of
memory 96 and code rate 1/7. Channel decoding is done with the Fano algo-
rithm. A distortion-optimal unequal error protection solution is determined using
dynamic programming as in [3].

9.4.2 Product Code System

Sherwood and Zeger [23] proposed a transmission system based on a product
channel code to protect the embedded information bit stream. The product code
uses the concatenated CRC/RCPC code of [22] as the row code and a system-
atic RS code as the column code (Table 9.6). The main idea is to strengthen the
protection of the CRC/RCPC code by using channel coding across the packets.

Table 9.6: EEP with the product code of Sherwood and Zeger [23]. There are
N = 6 RCPC codewords, each of which has a payload of 11 symbols. Cells la-
beled by numbers contain successive information symbols of an embedded bit
stream, x denotes a parity symbol of a (3,2) RS code, + a CRC parity symbol,
and o an RCPC parity symbol. Each column contains two different RS codewords.
The RCPC code need not be systematic.

Packet 1 1 2 3 4 5 + + o o o o
Packet 2 6 7 8 9 10 + + o o o o
Packet 3 x x x x x + + o o o o
Packet 4 11 12 13 14 15 + + o o o o
Packet 5 16 17 18 19 20 + + o o o o
Packet 6 x x x x x + + o o o o
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Table 9.7: Unequal error protection with the product code system of Sherwood
and Zeger [23]. The information symbols of the two blocks are protected with
a (3,2) RS code. Additionally, the information symbols of the first block are
protected with a (4,2) RS code, whose parity symbols are denoted by y.

Packet 1 1 2 3 4 5 + + o o o o
Packet 2 6 7 8 9 10 + + o o o o
Packet 3 x x x x x + + o o o o
Packet 4 11 12 13 14 15 + + o o o o
Packet 5 16 17 18 19 20 + + o o o o
Packet 6 x x x x x + + o o o o
Packet 7 y y y y y + + o o o o
Packet 8 y y y y y + + o o o o

The information bit stream is first partitioned into packets of equal length L,
which are then grouped into K blocks of k packets each. All k information packets
within a block are protected columnwise by an (n, k) systematic RS code. In
this way, (n − k) parity packets are associated to each block, resulting in N =
K×n packets. Finally, each packet (information or parity) is fed to a CRC/RCPC
encoder. The transmitter first sends k ×K information packets (more precisely,
RCPC codewords obtained by protecting information packets). Then, the parity
packets, which may be arbitrarily interleaved to improve performance during a
deep fade, are transmitted. Interleaving of the parity packets provides the desired
trade-off between performance quality and delay. In the example of Table 9.6,
N = 6, L= 5, K = 2, k = 2, and n= 3.

Finding an optimal RCPC code rate, an optimal RS code rate, and an opti-
mal interleaver for the system is a very difficult problem. Moreover, no efficient
method that computes a near-optimal solution is known. Sherwood and Zeger [23]
suggest selecting RCPC code so that it can efficiently protect the transmitted data
while the channel is in the good state.

In addition to equal error protection, several ways of implementing unequal er-
ror protection were proposed in [23]. The most successful one protects the earliest
symbols of the embedded bit stream by additional RS codes (Table 9.7).

9.4.3 Another Product Code System

The system proposed by Sachs et al. [19] is also based on a product channel code
where each row code is a concatenated CRC/RCPC code and each column code
is a systematic RS code (Table 9.8).

The embedded information bit stream is first protected with RS codes of
length N as in the system of [15] (Table 9.2). Then the CRC parity symbols are
added to each row. Finally, each row is encoded with the same RCPC code of
length L. The resulting product code is sent as N packets of L symbols each.
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Table 9.8: Product code of Sachs et al. [19]. There are N = 6 packets of L= 11
symbols each. Cells labeled by numbers contain successive information symbols
of an embedded bit stream, x denotes an RS parity symbol, + a CRC parity sym-
bol, and o an RCPC parity symbol. The RCPC code need not be systematic.

Packet 1 1 3 6 10 15 + + o o o o
Packet 2 2 4 7 11 16 + + o o o o
Packet 3 x 5 8 12 17 + + o o o o
Packet 4 x x 9 13 18 + + o o o o
Packet 5 x x x 14 19 + + o o o o
Packet 6 x x x x 20 + + o o o o

Let C = {c1, . . . , cm} be the set of available RCPC codes. For c ∈ C, we de-
note by L(c) the sum of the number of information symbols and RS parity sym-
bols used in a packet protected with c. Thus, we have L(c) information segments
S1, . . . , SL(c), where segment Sj , 1 ≤ j ≤ L(c), consists of mj ∈ {1, . . . ,N} in-
formation symbols that are protected by fj =N −mj RS symbols.

Packets are sent over the channel in the order in which they are generated.
Since all packets are of equal importance, packet interleaving cannot improve the
performance. Each received packet is decoded with the RCPC decoder. If the CRC
code detects an error, then the packet is considered to be lost (we suppose that all
errors can be detected). Suppose now that n packets of N are erased (i.e., either
lost during transmission or discarded due to RCPC decoding failure), then the RS
codes ensure that all segments that contain at most N − n information symbols
can be recovered. By adding the constraint f1 ≥ · · · ≥ fL(c), one guarantees that
the receiver can decode at least the first j segments whenever at most fj packets
are erased.

In contrast to the system of [23], which puts the earliest symbols in the first
rows, the product code system of [19] puts these symbols in the first columns.
Consequently, the first system has a better progressive ability and a shorter de-
coding delay. However, experimental results [19] for a flat-fading Rayleigh chan-
nel and BPSK modulation indicate that the performance of the system of [19] is
better than that of [23]. Finally, the performance of the first system depends on
which packets are received, whereas in the second system, all packets are of equal
importance. For example, suppose that the first two packets in Tables 9.6 and 9.8
are erased. Then, the first system cannot recover any information symbol, while
the second system can successfully recover the first nine information symbols.
However, if the second and fourth transmission packets are erased, the system in
Table 9.6 reconstructs all 20 information symbols, while the system of Table 9.8
will be able to reconstruct only the first 10 symbols.

We now consider strategies for minimizing the expected distortion of the prod-
uct code system of [19]. As in Section 9.1, we denote by FL(c), c ∈ C, the set
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of L(c)-tuples (f1, . . . , fL(c)) such that f1 ≥ · · · ≥ fL(c) and fj ∈ {0, . . . ,N − 1}
for j = 1, . . . ,L(c). Then a protection (c,F ) for the product code is given by an
RCPC code c ∈ C and an L(c)-segment RS protection F ∈FL(c).

A distortion-optimal product code solution (c∗,F ∗) is given by an RCPC code
c∗ ∈ C and an L(c∗)-segment RS protection F ∗ ∈FL(c∗) that solve the minimiza-
tion problem

min
c∈C,F∈FL(c)

L(c)∑

k=0

Pk(F )φ
(
Vk(F )

)
, (9.10)

where Pk,φ, and Vk(F ) are defined as in Section 9.1. Solving (9.10) by brute
force is impractical because the number of possible product codes is

∑

c∈C

(
L(c)+N − 1

L(c)

)
.

In [19], the authors use the Lagrange-based optimization algorithm of [17] to
determine a near-optimal L(c) segment RS protection for each c ∈ C. Then the
protection that yields the smallest expected distortion is selected. Even though
the Lagrange-based optimization algorithm is fast, the overall optimization can
be too expensive when the number of candidate RCPC codes is large.

A fast heuristic method for solving problem (9.10) was proposed in [27]. In
contrast to [19], the method of [27] does not try to minimize (9.1) for each RCPC
code. Instead, it starts from a rate-optimal product code solution, that is, one that
solves the maximization problem

max
c∈C,F∈FL(c)

L(c)∑

k=0

Pk(F )Vk(F ), (9.11)

and then tries to improve this solution by progressively increasing the total num-
ber of parity symbols. This is done by alternately applying the local search al-
gorithm of Section 9.2.1 and decreasing the RCPC code rate. The procedure is
illustrated in Table 9.9, which is obtained by decreasing the RCPC code rate in
Table 9.8. Note how the total number of parity symbols increases.

The method of [27] also exploits the fact that if F is the current RS protection,
then one can exclude all RCPC code rates for which the expected distortion is
greater than E[d](F ). This is because a distortion-optimal RS protection corre-
sponding to one such code rate cannot be better than F . In the worst case, the
algorithm computes (N − 1)L(c)+ 1 times the cost function (9.1) for each c ∈ C.
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Table 9.9: Product code obtained from Table 9.8 by decreasing the RCPC code
rate. The new RS protection is (4,3,2,1) whereas the old one is (4,3,2,1,0).

Packet 1 1 3 6 10 + + o o o o o
Packet 2 2 4 7 11 + + o o o o o
Packet 3 x 5 8 12 + + o o o o o
Packet 4 x x 9 13 + + o o o o o
Packet 5 x x x 14 + + o o o o o
Packet 6 x x x x + + o o o o o

9.5 SUMMARY AND FURTHER READING

We presented FEC-based transmission systems for embedded media bit streams.
We emphasized two optimization approaches for these systems. The first one
maximizes the expected number of correctly decoded information bits. This ap-
proach has two desirable features: the optimization is independent of the source
and it can be done very quickly. The second approach minimizes the expected dis-
tortion. While its optimization is more complex than that of the first approach, it
can provide a significantly better rate–distortion performance in many situations.

We conclude this chapter with suggestions for further reading. FEC can be
combined with other error-resilient techniques for robust media transmission. For
example, Cosman et al. [7] combined FEC with error-resilient source coding. This
was done by packetizing the compressed media bit stream into independently
decodable packets before applying the CRC/RCPC system of Section 9.3. The
system of [7] was later improved in [26]. Chande et al. [4] proposed a media
transmission system for the binary symmetric channel that combines FEC with
ARQ. The media data is first compressed with an embedded coder and encoded
with the CRC/RCPC coder of Section 9.3. The receiver decodes the RCPC code
and uses the CRC code to check for errors. If no errors are detected, the receiver
sends an acknowledgment bit to the sender, which then proceeds with the next
packet. If errors are detected, a no acknowledgment bit is sent to the sender, which
then transmits additional parity bits of a stronger RCPC code. The procedure is
repeated until the decoding of the packet is successful or no stronger RCPC code
is available. In the latter case, packet decoding is stopped, and the media data
is reconstructed from the correctly decoded packets only. The system of [4] was
extended in [5] to the Gilbert–Elliot channel.
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10
Network-Adaptive
Media Transport

Mark Kalman and Bernd Girod

10.1 INTRODUCTION

Internet packet delivery is characterized by variations in throughput, delay, and
loss, which can severely affect the quality of real-time media. The challenge is
to maximize the quality of audio or video at the receiver, while simultaneously
meeting bit-rate limitations and satisfying latency constraints. For the best end-
to-end performance, Internet media transmission must adapt to changing network
characteristics; it must be network adaptive. It should also be media aware, so
that adaptation to changing network conditions can be performed intelligently.

A typical streaming media system comprises four major components that
should be designed and optimized in concert:

1. The encoder application compresses video and audio signals and uploads
them to the media server.

2. The media server stores the compressed media streams and transmits them
on demand, often serving hundreds of clients simultaneously.

3. The transport mechanism delivers media packets from the server to the
client for the best possible user experience, while sharing network re-
sources fairly with other users.

4. The client application decompresses and renders the video and audio pack-
ets and implements the interactive user controls.

The streaming media client typically employs error detection and concealment
to mitigate the effects of lost packets. These techniques have been discussed in
Chapter 2 for video and Chapter 3 for audio. To adapt to network conditions,
the server receives feedback from the client, for example, as positive or negative

293
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acknowledgments. More sophisticated client feedback might inform about packet
delay and jitter, link speeds, or congestion.

Unless firewalls force them to, streaming media systems do not rely on TCP
but implement their own, application-layer transport mechanisms. This allows for
protocols that are both network adaptive and media aware. A transport protocol
may determine, for example, when to retransmit packets for error control and
when to drop packets to avoid network congestion. If the protocol takes into con-
sideration the relative importance of packets and their mutual dependencies, audio
or video quality can be greatly improved.

The media server can implement intelligent transport by sending the right pack-
ets at the right time, but the computational resources available for each media
stream are often limited because a large number of streams must be served simul-
taneously. Much of the burden of an efficient and robust system is therefore on the
encoder application, which, however, cannot adapt to the varying channel condi-
tions and must rely on the media server for this task. Rate scalable representations
are therefore desirable to facilitate adaptation to varying network throughput with-
out requiring computation at the media server. Switching among bit streams en-
coded at different rates is an easy way to achieve this task, and this method is
widely used in commercial systems. Embedded scalable representations, as dis-
cussed in Chapter 5 for video and Chapter 6 for audio, are more elegant and are
preferable, if the rate–distortion penalty often associated with scalable coding can
be kept small.

This chapter begins in Section 10.2 with a review of the framework for rate–
distortion optimized media streaming initially proposed by Chou and Miao [6].
In the sections that follow, we discuss extensions to the framework. Section 10.3
shows how rich acknowledgments can be incorporated. In Section 10.4, we dis-
cuss the importance of multiple deadlines for video packets. Section 10.5 dis-
cusses how the framework can be extended to include a more accurate statistical
model for characterizing packet loss and delay. In Section 10.6, finally, we dis-
cuss an alternative to rate–distortion optimized streaming that directly minimizes
congestion instead of rate.

10.2 RATE–DISTORTION OPTIMIZED STREAMING

We start by reviewing the seminal work by Chou and Miao on rate–distortion
optimized (RaDiO) streaming [6]. They considered streaming as a stochastic con-
trol problem, with the goal of determining which packets to send and when to
minimize reconstruction distortion at the client for a given average transmission
rate. Our discussion serves as the starting point for the extensions and variations
described in the later sections.
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10.2.1 Basic RaDiO Framework

Let us assume that a media server has stored a compressed audio or video stream
that has been packetized into data units. Each data unit l has a size in bytes Bl and
a deadline by which it must arrive at the client in order to be useful for decoding.
The importance of each data unit is captured by its distortion reduction 
Dl , a
value representing the decrease in distortion that results if the data unit is decoded.
Often, distortion is expressed as mean-squared error, but other distortion measures
might be used as well.

Whether a data unit can be decoded often depends on which other data units
are available. In the RaDiO framework, these interdependencies are expressed in a
directed acyclic graph. An example dependency graph is shown for SNR-scalable
video encoding with Intra (I), Predicted (P), and Bidirectionally predicted (B)
frames (Figure 10.1). Each square represents a data unit and the arrows indicate
the order in which data units can be decoded.

The RaDiO framework can be used to choose an optimal set of data units to
transmit at successive transmission opportunities. These transmission opportu-
nities are assumed to occur at regular time intervals. Because of decoding de-
pendencies among data units, the importance of transmitting a packet at a given
transmission opportunity often depends on which packets will be transmitted in
the near future. The scheduler therefore makes transmission decisions based on
an entire optimized plan that includes anticipated later transmissions. Of course,
to keep the system practical, only a finite time horizon can be considered.

The plan governing packet transmissions that will occur within a time horizon
is called a transmission policy, π . Assuming a time horizon of N transmission
opportunities, π is a set of length-N binary vectors πl , with one such vector for
each data unit l under consideration for transmission. In this representation, the
N binary elements of πl indicate whether, under the policy, the data unit l will

FIGURE 10.1: A directed acyclic graph captures the decoding depen-
dencies for an SNR-scalable encoding of video with I-frames, P-frames,
and B-frames. Squares represent data units and arrows indicate decoding
order.



296 Chapter 10: NETWORK-ADAPTIVE MEDIA TRANSPORT

be transmitted at each of the next N transmission opportunities. The policy is
understood to be contingent upon future acknowledgments that might arrive from
the client to indicate that the packet has been received. No further transmissions
of an acknowledged data unit l are attempted, even if πl specifies a transmission
for a future time slot.

Each transmission policy leads to its own error probability, ε(πl), defined as
the probability that data unit l arrives at the client late, or not at all. Each policy
is also associated with an expected number of times that the packet is transmitted
under the policy, ρ(πl). The goal of the packet scheduler is to find a transmission
policy π with the best trade-off between expected transmission rate and expected
reconstruction distortion. At any transmission opportunity the optimal π mini-
mizes the Lagrangian cost function

J (π)=D(π)+ λR(π), (10.1)

where the expected transmission rate

R(π)=
∑

l

ρ(πl)Bl, (10.2)

and the expected reconstruction distortion

D(π)=D0 −
∑

l


Dl

∏

l′�l

(
1− ε(πl′)

)
. (10.3)

The Lagrange multiplier λ controls the trade-off between rate and distortion.
In (10.3) D0 is the distortion if no data units arrive, 
Dl is the distortion re-
duction if data unit l arrives on time and can be decoded, and the product
term

∏
l′�l

(
1− ε(π ′l )

)
is the probability for this to occur. The notation l′ � l is

shorthand for the set of data units that must be present to decode data unit l.
In the aforementioned formulation, delays and losses experienced by packets

transmitted over the network are assumed to be statistically independent. Packet
loss is typically modeled as Bernoulli with some probability, and the delay of
arriving packets is often assumed to be a shifted-� distribution. Expressions for
ε(πl) and ρ(πl) can be derived in terms of the Bernoulli loss probabilities, the
cumulative distribution functions for the �-distributed delays, the transmission
policies and transmission histories, and the data units’ arrival deadlines. These
derivations are straightforward, but because the resulting expressions are cumber-
some, they are omitted here.

The scheduler reoptimizes the entire policy π at each transmission opportunity
to take into account new information since the previous transmission opportunity
and then executes the optimal π for the current time. An exhaustive search to
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find the optimal π is generally not tractable; the search space grows exponen-
tially with the number of considered data units, M , and the length of the policy
vector, N [14]. Even though rates and distortion reductions are assumed to be ad-
ditive, the graph of packet dependencies leads to interactions, and an exhaustive
search would have to consider all 2MN possible policies. Chou and Miao’s RaDiO
framework [6] overcomes this problem by using conjugate direction search. Their
Iterative Sensitivity Adjustment (ISA) algorithm minimizes (10.1) with respect to
the policy πl of one data unit while the transmission policies of other data units
are held fixed. Data units’ policies are optimized in round-robin order until the
Lagrangian cost converges to a (local) minimum.

Rewritten in terms of the transmission policy of one data unit, (10.1), (10.2)
and (10.3) become

Jl(πl)= ε(πl)+ λ′ρ(πl), (10.4)

where λ′ = λBl

Sl
incorporates the rate–distortion trade-off multiplier λ from (10.1),

the data unit size Bl , and Sl , a term that expresses the sensitivity of the overall ex-
pected distortion to the error probability ε(πl) of data unit l. The sensitivity term
represents the relative importance of a particular data unit and incorporates the
error probabilities of the other data units that l depends on. The sensitivity Sl

changes with each iteration of the ISA algorithm to take into account the opti-
mized policy for the other data units.

Figure 10.2 demonstrates improved video streaming performance achieved
with RaDiO. Luminance PSNR versus transmitted bit rate is plotted for stream-
ing simulations using an H.263+ two-layer SNR scalable encoding of the Foreman
sequence. The frame rate is 10 fps; a Group of Pictures (GOP) consists of one I-
frame followed by nine P-frames. The encoded source rate is 32 kbps for the base
layer alone and 69 kbps when the enhancement layer is added. The results are for
a simulated channel in which packet losses occur independently with a loss rate
of 20%, and packet delays are drawn as independent, shifted-� random variables
with a mean delay of 50 ms and a standard deviation of 25 ms. Figure 10.2 plots
PSNR versus transmitted bit rate for a heuristic, prioritized ARQ system and for
R–D optimized system. In the ARQ system, the client requests retransmissions for
packets that do not arrive by a time interval after they are expected, and the server
transmits these requested packets with priority as long as the requested packet
may still reach the client in time for playout. When the capacity of the channel
falls below the source rate for the enhanced stream, the ARQ system sends only
the base layer packets. Both the ARQ and the R–D optimized system use an ini-
tial preroll delay of 400 ms. By continuously optimizing its packet transmission
choices, the optimized system makes use of the SNR and temporal scalability of
the source encoding to finely tune the source rate to the available channel capacity,
yielding substantial gains.
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FIGURE 10.2: PSNR vs. transmitted bit rate for a video streaming sys-
tem that uses heuristic deadline-constrained prioritized ARQ and for a
system that uses RaDiO transmission scheduling. The results are for an
H.263+ SNR scalable encoding [9] of the Foreman sequence.

Several techniques have been proposed to further reduce the complexity of the
basic RaDiO algorithm. Chou and Sehgal [7] have presented simplified meth-
ods to compute approximately optimized policies. The framework appears to be
robust against simplifications of the algorithm and approximations to 
Dl , the
information characterizing the value of individual packets with respect to recon-
struction distortion. An attractive alternative to ISA is a randomized algorithm
recently developed by Setton in which heuristically and randomly generated can-
didate policies are compared at each transmission opportunity [15,17]. The best
policy from the previous transmission opportunity is one of the candidates and
thus past computations are efficiently reused. With a performance similar to ISA,
the randomized algorithm usually requires much less computation.

10.2.2 Receiver-Driven Streaming

When transmitting many audio and video streams simultaneously, a media server
might become computation limited rather than bandwidth limited. It is therefore
desirable to shift the computation required for network adaptive media transport
from the server to the client to the extent possible. Fortunately, rate–distortion
optimized streaming can be performed with the algorithm running at the client so
that very little computation is required at the server [7].
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For receiver-driven streaming, the client is provided information about the
sizes, distortion reduction values, and interdependencies of the data units avail-
able at the server ahead of time. The size of this hint track or rate–distortion
preamble is small relative to the media stream. The receiver uses this information
to compute a sequence of requests that specify the data units that the server should
transmit. It is straightforward to adapt the algorithm discussed in Section 10.2.1
to compute a sequence of requests that yield an optimal trade-off between the
expected transmission rate of the media packets that the server will send and the
expected reconstruction distortion that will result [7]. Figure 10.3 illustrates the
differences between sender-driven and receiver-driven streaming.

By combining sender-driven and receiver-driven techniques, the RaDiO frame-
work can be applied to diverse network topologies. For example, RaDiO might be
implemented in a proxy server placed between the backbone network and a last
hop link (Figure 10.4) [3]. The proxy coordinates the communication between the
media server and the client using a hybrid of receiver- and sender-driven stream-

 

 

 

FIGURE 10.3: In sender-driven streaming (a), the server computes an
optimal sequence of media packet transmissions and the client acknowl-
edges packets upon receipt. In receiver-driven streaming (b), the complex-
ity is shifted to the client. The client computes an R–D optimized sequence
of requests to send to the server and the server only needs to respond to
the client’s requests.
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FIGURE 10.4: Proxy-driven RaDiO streaming. A proxy server located
between the backbone network and a last hop link uses a hybrid of re-
ceiver- and sender-driven RaDiO streaming to jointly optimize requests to
send to the server and media packets to forward to the client.

ing. End-to-end performance is improved compared to a sender- or receiver-driven
RaDiO system because traffic created by retransmissions of media packets lost in
the last hop to the client does not need to traverse and congest the backbone link.

10.3 RICH ACKNOWLEDGMENTS

In one extension to the RaDiO framework, streaming performance is improved
through the use of rich acknowledgments [4]. In sender-driven RaDiO streaming
using conventional acknowledgments, when a client receives a media packet, the
client sends an acknowledgment packet (ACK) to the server. If the ACK packet is
lost, the server may decide to unnecessarily retransmit the packet at the expense
of other packets.

With rich acknowledgments, the client does not acknowledge each data unit
separately. Instead, it periodically transmits a packet that positively acknowledges
all packets that have arrived so far and negatively acknowledges (NACK) pack-
ets that have not yet arrived. A rich acknowledgment packet hence provides a
snapshot of the state of the receiver buffer.

Rich acknowledgments require some changes to the basic RaDiO framework
described in Section 10.2. As shown in [6], a transmission policy πl for a data
unit can be understood in terms of a Markov decision process. At discrete times ti
the server makes an observation oi and then takes a transmission action ai spec-
ifying send or don’t send. Sequences of observation and action pairs (oi, ai) in
time can be enumerated in a Markov decision tree. Each node qi in the tree speci-
fies a particular history of observations and actions (a0, o0), (a1, o1), . . . , (ai, oi).
A transmission policy specifies what transmission action will be taken as a func-
tion of what state qi is reached in the tree.

A Markov decision tree is shown in Figure 10.5. The tree enumerates the possi-
ble sequences of observation–action pairs for the transmission of a data unit using
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FIGURE 10.5: State space for the Markov decision process when rich acknowledgments are used.
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the rich acknowledgment scheme. In the tree, possible actions a are send or don’t
send. Possible observations o are (∅), no relevant feedback has arrived, ACK, a
feedback packet has acknowledged the reception of the data unit, or NACK, a
feedback packet has indicated that the packet has not been received by the feed-
back packet’s send time. NACKs with different time stamps are distinct obser-
vations. In contrast, in the conventional feedback scheme in which each packet is
acknowledged individually upon receipt, there are only two possible observations,
ACK and ∅. Regardless of the scheme, the optimization algorithm calculates the
probabilities of each path through the tree given a policy and then chooses the
policy that yields the best trade-off between expected number of transmissions
ρ(πl) and loss probability ε(πl).

Figure 10.6 compares average PSNR versus transmitted bit rate for the 13-s
Foreman sequence streamed using the rich feedback scheme and using the con-
ventional acknowledgment scheme. Two-layer SNR-scalable H.263+ is used for
the encoding [9]. The bit rate of the base layer alone is 32 kbps with an average
PSNR of 27 dB. When the enhancement layer is added, the encoded rate be-
comes 69 kbps with an average PSNR of 30.5 dB. The results are for simulation
experiments with a 10% loss rate for both media packets and feedback packets.
Delays for packets not lost were distributed according to independent shifted-
� distributions with shift κ = 50 ms, mean μ = 25 ms, and standard deviation
σ = 35 ms.

FIGURE 10.6: Rich vs. conventional acknowledgments for rate–distor-
tion optimized streaming of QCIF Foreman.
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In Figure 10.6, the rich acknowledgment scheme outperforms the RaDiO
scheme with conventional ACKs for all transmission rates. The maximum PSNR
improvement is 1.3 dB at a transmitted bit rate of 70 kbps. The improved perfor-
mance of the rich acknowledgment scheme is due to the robust transmission of
the feedback information. With rich acknowledgments, the effect of a lost feed-
back packet is mitigated because subsequent feedback packets contain the same
(updated) information. In addition, because rich acknowledgment packets also
provide NACKs, there is less ambiguity for the server to resolve. In the case of
conventional feedback, a nonacknowledged transmission may be due to a lost
media packet or to a lost acknowledgment packet.

10.4 MULTIPLE DEADLINES

In the RaDiO framework described in Section 10.2, 
Dl is the expected distortion
reduction if data unit l is decodable by its deadline. It was assumed that a data unit
l must arrive by its specific deadline in order for its distortion reduction 
Dl to
be realized and in order for data units dependent on l to be decoded. Late data
units are discarded. Often, however, a data unit arriving after its deadline is still
useful for decoding.

As an example, consider the case of bidirectional prediction with a sequence of
frames I-B-B-B-P. In the RaDiO framework, the deadline for the P-frame would
be determined by the decoding time of the first B-frame. If the P-frame arrives
later, however, it should not be discarded. It may still be useful for decoding sub-
sequent B-frames or at least for decoding and displaying the P-frame itself. Thus
there are several deadlines associated with the P-frame, each with its own associ-
ated distortion reduction [18].

Another example where a data unit may be associated with multiple deadlines
is the case of decoders that allow Accelerated Retroactive Decoding (ARD). This
idea was initially proposed in the context of MPEG-2 transmission over ATM
[8]. ARD makes use of the ability of many streaming clients to decode video
faster than real time. With ARD, when late-arriving data units finally do arrive,
the decoder goes back to the frames corresponding to the late-arriving packets and
quickly again decodes the dependency chain up to the current playout time, but
now without error. In this way the remaining pictures in the GOP can be decoded
and displayed without degradation.

As shown in [12], the introduction of multiple deadlines results in changes
to expressions used to calculate expected distortion D(π) for R–D optimized
streaming. For each data unit, there is no longer a single error probability, but
a set of them, one for each of the frame deadlines associated with that data unit.
This results in changes to (10.4) that express the Lagrangian cost (10.1) as a func-
tion of only the transmission policy of one data unit πl while other policies are
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held fixed. With multiple deadlines, the expression in (10.4) becomes

Jl(πl)= ρ(πl)+
∑

i∈Wl

νti ε(πl, ti), (10.5)

where Wl is the set of frames that require data unit l for decoding, i is the frame
index, and ti is the decoding deadline for frame i. The quantity ε(πl, ti) is the
probability that data unit l does not arrive by deadline ti . As before, ρ(πl) is the
expected number of times data unit l is transmitted under policy πl .

In (10.5) the quantity νti , given by νti = Sl,ti

λBl
, is analogous to the reciprocal of

λ′ in (10.4). Note that the sensitivity term Sl,ti is also indexed by the deadline. It
is the sensitivity of the overall distortion to the arrival of data unit l by deadline ti .

Figure 10.7 shows performance gains due to the multiple deadline formula-
tion in the case when ARD is implemented in a streaming video client. PSNR-
versus-rate results are shown for the Foreman sequence streamed in a low-latency
application in which the preroll delay is 100 ms. In the simulation experiments,
frames of video were due for decoding 100 ms after they became available for

FIGURE 10.7: Rate–distortion performance of schedulers for the
Foreman sequence streamed over a simulated channel with iid
shifted-�-distributed packet delays and 20% Bernoulli loss. End-to-end
latency d = 100 ms. A PSNR improvement of up to 3.15 dB is observed
for the optimizing scheduler that considers multiple deadlines compared
to the one that considers a single deadline.
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transmission at the server. The packet loss rate was 20% in both directions, and
delays for packets not lost were independent, identically distributed (iid) shifted-
� with shift κ = 10 ms, mean μ = 40 ms, and standard deviation σ = 23 ms.
The sequence was encoded using a two-layer SNR-scalable H.263+ [9], at 10 fps
with prediction structure I-P-P-P . . . and GOP length of 20 frames. The base and
enhancement layer bit rates and PSNRs were similar to those of the sequence in
Section 10.3.

In Figure 10.7, PSNR-versus-rate curves compare the multiple-deadline
schemes and the single-deadline scheme, as well as a heuristic scheme. The
heuristic scheme uses prioritized, deadline-limited ARQ in which base layer re-
transmissions had highest priority, followed by base layer transmissions, enhance-
ment layer transmission, and enhancement layer retransmissions. Retransmissions
were triggered when packets were not acknowledged within the 0.90 point of the
cumulative distribution function of the round-trip time. Figure 10.7 shows that
the multiple-deadline formulation yields up to a 3-dB improvement over a single
deadline. The single-deadline scheme does not recognize the utility of late packets
and often misses opportunities to schedule valuable data units close to, or after,
their original deadlines. The R–D optimizing schemes outperform the heuristic
schemes regardless of whether the heuristic schemes are used with ARD-enabled
clients.

10.5 DEPENDENT PACKET DELAYS

In the R–D optimized streaming algorithms discussed in Sections 10.2, 10.3, and
10.4, the delays of successive packets have been modeled as iid shifted-� ran-
dom variables with loss also occurring independently as described in [6]. The iid
model simplifies calculations for ε(πl), the error probability due to a transmission
policy, and for ρ(πl), the expected number of transmissions that will result from
a transmission policy. It fails to capture the dependence among delays, however.
In the Internet, successive packets usually travel along the same path, might ex-
perience a similar backlog while waiting in the same queues, and rarely arrive out
of order. This results in strongly dependent delays of successive packets.

In streaming simulations that employ measured Internet delay traces, we have
observed that the iid model can lead to suboptimal scheduling performance. For
example, Figure 10.8 shows simulation results when packets were delayed accord-
ing to a delay trace measured over a 14-hop Internet path with a cable modem last
hop, as described in [10]. At transmission rates above 80 kbps, the multidead-
line R–D optimizing formulation described in Section 10.4 is outperformed by
the simple heuristic ARQ scheme (also described in Section 10.4). The subop-
timal performance at high rates is due to the iid delay model assumed by the
R–D optimization algorithm. With the iid model, policies that specify repeated
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FIGURE 10.8: Rate–distortion performance of schedulers for the Fore-
man sequence streamed over a measured Internet delay trace. End-to-end
latency d = 150 ms. The RaDiO scheduler that models delays as iid is
suboptimal at high rates where it is outperformed by a heuristic-prioritized
ARQ scheduler. The scheduler that models delays as a first-order Markov
random process yields PSNR improvement of up to 1.1 dB over the iid
scheduler.

transmission of a data unit at successive opportunities yield lower calculated er-
ror probabilities for errors due to late loss. The algorithm mistakenly believes that
if the data unit is delayed the first time it is transmitted, subsequent transmissions
may arrive earlier and on time. Thus at higher rates, the algorithm sends packets
multiple times even though in our measured trace the loss probability is very low
(0.014%) and packets always arrive in the order they are transmitted.

Rate–distortion performance can be improved by modeling packet delays at
successive transmission time slots as a first-order Markov random process [10].
In [11] we have presented an R–D optimization scheme that uses this model. In the
scheme, feedback packets inform the server about the delay over the channel in the
recent past. Using this feedback and a family of conditional delay distributions,
the scheme can more accurately calculate the expected distortion D(π) and the
expected transmission rate R(π) resulting from a transmission policy π .

Figure 10.8 shows that the RaDiO scheme using the Markov channel model
outperforms the RaDiO scheduler that uses iid delay modeling by up to 1.1 dB
and is not outperformed by the heuristic scheduler at low rates. We note that the
mean PSNR for all experiments is limited because the delays in the 14-hop cable
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modem trace are often greater than the 150-ms preroll. Because the client uses
the ARD scheme discussed in Section 10.4 and because the packet loss rate is
nearly zero, the heuristic scheme, which uses time-out triggered retransmissions
with the time-out set to 2 · (estimated RTT), performs nearly optimally at high
transmission bit rates.

10.6 CONGESTION–DISTORTION OPTIMIZED SCHEDULING

RaDiO streaming and its various extensions described do not consider the effect
that transmitted media packets may have on the delay of subsequently transmitted
packets. Delay is modeled as a random variable with a parameterized distribu-
tion; parameters are adapted slowly according to feedback information. In the
case when the media stream is transmitted at a rate that is negligible compared to
the minimum link speed on the path from server to client, this may be an accept-
able model. In the case where there is a bottleneck link on the path from server to
client, however, packet delays can be strongly affected by self-congestion result-
ing from previous transmissions.

In [16] a congestion–distortion optimized (CoDiO) algorithm is proposed,
which takes into account the effect of transmitted packets on delay. The scheme is
intended to achieve an R–D performance similar to RaDiO streaming but specif-
ically schedules packet transmissions in a way that yields an optimal trade-off
between reconstruction distortion and congestion, measured as average delay, on
the bottleneck link. As with RaDiO, transmission actions are chosen at discrete
transmission opportunities by finding an optimal policy over a time horizon. How-
ever, in CoDiO, the optimal policy minimizes the Lagrangian cost D+λ
, where
D is the expected distortion due to the policy and 
 is the expected end-to-end
delay, which measures congestion.

CoDiO’s channel model assumes a succession of high-bandwidth links shared
by many users, followed by a bottleneck last hop used only by the media stream
under consideration. CoDiO needs to know the capacity of the bottleneck, which
can be estimated, for example, by transmitting back-to-back packets [13]. The
overall delay experienced by packets is captured by a gamma pdf that is dynam-
ically shifted by an extra delay that models the self-inflicted backlog at the bot-
tleneck. Since the bottleneck is not shared and its capacity is known, the backlog
can be accurately estimated. This channel model is used to calculate the expected
distortion D due to packet loss and the expected end-to-end delay 
.

The performance of the CoDiO scheme is illustrated using ns-2 simulation ex-
periments [1,16]. The first hop is a high-bandwidth 45-Mbps link with 22-Mbps
exponential cross-traffic. The second hop is a 50-kbps link that carries only the
video traffic to be scheduled. The video encoding used is the same as that de-
scribed in Section 10.4. The preroll delay for the experiments is 600 ms. Fig-
ure 10.9 plots luminance PSNR versus average end-to-end delay for the CoDiO
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FIGURE 10.9: Performance comparison of RaDiO and CoDiO for
video streaming over a bottleneck link. The horizontal axis shows the ex-
pected end-to-end delay due to the congestion caused by the video traffic.
CoDiO causes much less congestion than RaDiO at the same PSNR. From
[16].

and the RaDiO schemes. The various points on the curves were generated by
varying λ, which trades-off congestion–distortion in the case of CoDiO and rate
distortion in the case of RaDiO. The graphs show that the CoDiO scheme re-
sulted in end-to-end delays that were approximately half of those measured for
the RaDiO scheme at the same PSNR. Transmission rates versus PSNR for both
schemes are almost identical (Figure 10.10).

CoDiO outperforms RaDiO because it distributes transmissions in time and
attempts to send packets as late as safely possible. This reduces the backlog in
the bottleneck queue and hence the average end-to-end delay. Other applications
sharing the network experience less congestion. RaDiO, however, is less network-
friendly. As the scheduler only considers average rate, its traffic tends to be more
burst, relying more on the buffering in the network itself.

10.7 SUMMARY AND FURTHER READING

In this chapter we have discussed network adaptive media transport through the
RaDiO framework for rate distortion optimized media streaming. After review-
ing the basic framework as initially presented by Chou and Miao, we considered
extensions and enhancements that have been proposed. The framework can be im-
plemented in a media server or, alternatively, at the client. Rich acknowledgments
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FIGURE 10.10: Rate–distortion performance of RaDiO and CoDiO for
video streaming over a bottleneck link. From [16].

are an easy way to improve resilience against losses in the feedback channel. For
video streaming, it is useful to incorporate multiple deadlines for packets. Con-
siderable gains are possible by accelerated retroactive decoding of packets, par-
ticularly if a multiple-deadline scheduler knows about this client capability and
schedules accordingly. RaDiO typically assumes independent packet delays, but,
in fact, Internet packet delays are highly dependent. In Section 10.5, an extension
of RaDiO streaming that utilizes a Markov model of successive packet delays
has been shown to rectify the poor performance that arises due to its simple iid
channel model. Finally, we have considered self-congestion that might arise with
streaming over a bottleneck link. Congestion–distortion optimized streaming, Co-
DiO, yields the same PSNR performance as RaDiO, but reduces the congestion,
measured in terms of end-to-end delay.

Readers with further interest should first study Chou and Miao’s seminal paper
[6] in depth. The paper is based on a longer technical report [5], so readers might
want to consult this document as well. Interestingly, numerous papers appeared
during the review period of [6], inspired by this work, many of which are now
referenced in [6] itself. Various extensions and the most comprehensive experi-
ments applying RaDiO to streaming of H.264/AVC encoded video can be found in
Chakareski’s dissertation [2]. The best reference for CoDiO and low-complexity
randomized scheduling algorithms so far is Setton’s dissertation [15]. There are
numerous research groups active in the area, and their publications might be of
interest to those following the evolving state-of-the-art in network adaptive media
transport.
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11
Performance Modeling
and Analysis over
Medium Access
Control Layer Wireless
Channels

Syed Ali Khayam and Hayder Radha

11.1 INTRODUCTION

Wireless networks suffer from frequent bit errors due to their vulnerability to in-
terference and transmission medium degradation. Errors not corrected by a wire-
less physical layer propagate to the medium access control (MAC) layer. Cor-
rupted packets with bit errors are generally detected and dropped using a MAC
layer checksum at a wireless receiver. Because users have little or no control over
the hardware-based wireless physical layer, MAC layer bit errors constitute the
higher layers’ view of the wireless channel. Moreover, wireless standards gen-
erally adapt the physical layer to cater for new requirements, but the MAC and
higher layers remain unchanged [1,2]. There has been significant research inter-
est in analysis of wireless MAC layer packet losses and bit errors [3–9].

An accurate model of the MAC layer channel can render important insights into
the underlying characteristics of an impairment (e.g., bit errors, packet losses) ran-
dom process. This insight is essential for the design, performance evaluation, and
parameter tuning of a wide range of wireless communication protocols, applica-
tions, and services. For instance:

• Wireless congestion control protocols, instead of relying on MAC layer re-
transmissions, can use accurate MAC layer error models to differentiate
between losses due to congestion, medium degradation, or mobility. The

313
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inability of wired congestion control algorithms to differentiate between
different types of losses (and the consequent bandwidth underutilization)
has been repeatedly highlighted by wireless studies. Knowledge of losses
due to channel errors is assumed in many wireless congestion control so-
lutions and such knowledge can only be rendered by real-time MAC layer
channel models. Understanding of error frequency and burstiness is also
instrumental in parameter tuning of wireless congestion control protocols.

• Cross-layer protocols can use a real-time channel model to choose whether
to use MAC layer retransmissions or to ignore data payload errors accord-
ing to different application requirements.

• Reliable routing protocols for mobile networks can use MAC layer chan-
nel models to differentiate (and ultimately choose) reliable versus shortest
routes to different destinations, provided that the model is able to provide
real-time error characterization at different hops of the network.

• MAC protocols can decide when to increase/decrease the physical trans-
mission data rate based on real-time channel estimation. An accurate chan-
nel model can predict future error characteristics, thereby saving the MAC
layer protocol the overhead of switching to an inaccurate lower/higher data
rate based on short-term observations.

• Real-time channel estimation provided by an accurate model can be em-
ployed by rate-adaptive applications to perform channel- and/or source-
coding rate adaptation for efficient utilization of scarce wireless bandwidth.

• Design of effective error-control schemes for different wireless applications
requires a thorough understanding of errors above the physical layer.

• Design of error-resilience features of contemporary multimedia codecs can
benefit greatly from knowledge of MAC layer error characteristics.

Most benefits of a wireless MAC layer channel model can be realized when the
model is able to provide real-time and online channel characterization and pre-
diction. In complexity- and power-constrained wireless and mobile environments
such channel characterization is only possible with a low-complexity model.

11.2 MARKOV CHAINS FOR WIRELESS CHANNEL MODELING

Markov chains have shown remarkable promise in modeling of many wireless er-
ror and loss processes [3–9]. Therefore, throughout the text we focus on analyzing
and modeling wireless errors using Markov chains.

11.2.1 Discrete-Time Markov Chains

Let us consider a discrete-time stochastic process, Xn, that transits between states
denoted as integers from a finite set H = {0,1, . . . ,N − 1}. If Xn = i, then the
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process is said to be in state i at discrete time instance n. Whenever the process is
in state i, there is a fixed probability that the next state of the process will be j . If
that probability can be expressed

Pr{Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X0 = i0} = Pr{Xn+1 = j |Xn = i},
(11.1)

for all states j, i, in−1, . . . , i0 ∈ H and for all n ≥ 0, then such a stochas-
tic process is known as a discrete-time Markov chain and (11.1) is called the
Markov property. Thus, for a Markov chain the conditional distribution of any
future state Xn+1, given the past state sequence X0,X1, . . . ,Xn−1 and the present
state Xn, is independent of the past states and depends only on the present state
Xn. Let us define pi,j = Pr{Xn+1 = j | Xn = i} as the probability of transit-
ing to state i from j . Since pi,j represents a probability measure, it exhibits
the following properties: (a) pi,j ≥ 0 for all i, j and (b)

∑N−1
j=0 pi,j = 1 for

i = 0,1, . . . ,N − 1. The probability of transiting to the next state can be repre-
sented in a matrix form. This matrix is referred to as the one-step state transition
probability matrix.

The steady-state or stationary probabilities of a Markov chain represent the
long-run proportion of the time spent in each state. Once the transitional proba-
bilities of a Markov chain are known, the steady-state probabilities of being in a
particular state are the unique nonnegative solutions of the following linear system
of equations:

πj =
N−1∑

i=0

πipi,j , j = 0,1, . . . ,N − 1

N−1∑

j=0

πj = 1.

A detailed treatment of the theory of Markov chains may be found in [10]
and [11].

11.2.2 Memory Length of a Random Process

Consider a random process Xn that assumes values from a binary alphabet. Let
us generically refer to the outputs of the process as bits belonging to {0,1}. Ob-
serving the outputs of the random process will result in a binary time series. In
the present channel modeling context, Xn represents the bit error data comprising
good and bad bits. Correlation of the binary time series can reveal the amount of
temporal dependence in the series. Specifically, one can obtain a general sense of
the number of previous bits on which a particular bit of the time series depends.
The value of the temporal dependence is referred to as the memory length or order
of the random process.
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It has been observed by previous studies that wireless impairment processes
generally have a memory length greater than one. One the other hand, if we con-
sider each bit to be an output of the random process, then the Markov property
in (11.1) implies that a process correlated with more than one bit in the past cannot
be characterized as a Markov chain. An obvious question here is: If a binary wire-
less impairment process has a memory length greater than one, then how does one
use a Markov chain to model that process? The answer to this question is rather
straightforward. We define a high-order Markov chain where each output of the
process contains as many bits as the memory length. The output at each step is
then a fixed number of bits referred to as the memory window. Since the size of
the memory window is constant, at each step a new bit is added to the memory
window and the oldest bit is dropped from the memory window. If the process
adds new bits in the least significant bit position of the memory window, then at
each step the process updates a shift register by (i) shifting the register one bit to
the left to eliminate the most significant or the oldest bit and (ii) adding a new bit
to the least significant bit position.

11.2.3 High-Order Markov Chains for Wireless Bit Errors

For a Markov chain with memory length k, one can represent the states of the
process by 2k possible combinations of k consecutive bits. Transition probabilities
of a kth order Markov chain (k-MC) for wireless modeling are generally estimated
by sliding a k bit memory window (bit by bit) over the wireless traces and by
observing the frequency of a bit pattern x→ = [x1x2 · · ·xk] followed by a bit pattern

y
→ = [y1y2 · · ·yk] for all patterns x→ and y

→ .

11.3 PRACTICAL ISSUES

This section discusses some practical issues that arise when developing a high-
order Markov chain model of a wireless channel.

11.3.1 Determining the Memory Length of a Markov Chain

Determining the memory length of a Markov chain has been explored in prior
texts [13,14]. Autocorrelation of a process is a simple indication of the maximum
memory length of a Markov chain to model the process. Let X(n1) and X(n2) be
two random variables derived from a random process Xn. The sample correlation
of these random variables is defined as [12]

γ (n1, n2)= E
{
X(n1)X(n2)

}
, (11.2)
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where E{X} represents the sample mean of the random variable X. Since
both X(n1) and X(n2) are derived from realizations of the same random process,
the correlation is often referred to as autocorrelation. Let n1 and n2 be separated
in time by a lag η such that n1 = 0 and n2 = n1+ η= η. In this case, the autocor-
relation becomes a function of the lag η and a sample autocorrelation coefficient
can be derived from (11.2) as

ρ(η)= E{X(0)X(η)} − E{X(0)}E{X(η)}
σX(0)σX(η)

, (11.3)

where σX represents the sample standard deviation of the random variable X. The
sample autocorrelation function, when computed for different values of the lag, is
a direct metric for the level of temporal dependence in the random process. Since
there is a one-to-one correlation between the random variables at lag zero, the
autocorrelation has its maximum value of one at this point. For a large range of
statistical data, autocorrelation between two random variables decreases rapidly
with an increase in the lag between them. Lag beyond which the autocorrela-
tion coefficient drops to an insignificant value represents the memory length of
the process. In slightly relaxed jargon, memory length represents the lag beyond
which the random variables of a random process are uncorrelated.

11.3.2 Determining the Accuracy of a Wireless Channel Model

The accuracy of a wireless channel is generally quantified by synthesizing impair-
ment traces from the model. The model-based traces are compared with traces
collected over the channel to ascertain how closely the model is approximating
the actual source. Such accuracy evaluation necessitates an appropriate statistical
measure. We describe two such measures here.

11.3.2.1 Standard Error Between Cumulative Distributions

Let p(X) and q(X) be two probability mass functions (PMFs) of a random vari-
able X defined over an alphabet set � . Let P(X) and Q(X) denote the cumula-
tive distribution functions (CDFs) of p(X) and q(X). The standard error between
P(X) and Q(X) is then defined

Serr
(
P(X),Q(X)

)

=
√

1

n(n− 2)

(

n
∑

�

(
P(X)

)2 −
(∑

�

P (X)

)2

−
(
n
∑

� P (X)Q(X)− (∑
� P (X)

)(∑
� Q(X)

))2

n
∑

�(Q(X))2 − (∑
� Q(X)

)2

)

,

(11.4)
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where n is the length of the CDF. The random variable X should capture a key
statistic of the random process. Assume that P(X) is a CDF provided by the
actual random source (e.g., the MAC layer bit error process) and Q(X) is a CDF
provided by a model that approximates the random source. Then the standard
error provides a measure of the error incurred by the model in approximating the
actual source. Small values of Serr imply that a model is a good approximate of
the actual source.

11.3.2.2 Entropy Normalized Kullback–Leibler Divergence

From a source coding perspective, entropy provides a measure of the average
number of bits required to represent a source completely. For the random variable
X defined earlier, entropy provides a weighted average of the minimum infor-
mation of X, where information corresponds to the number of bits required to
uniquely represent all possible outcomes of a random variable. Entropy is ex-
pressed as

H
(
p(X)

)=−
∑

X∈�
p(X) log

(
p(X)

)
. (11.5)

The Kullback–Leibler divergence [15] renders a measure of the statistical diver-
gence between p(X) and q(X) as

D
(
p(X)‖q(X)

)=
∑

X∈�
p(X) log

(
p(X)/q(X)

)
. (11.6)

The Kullback–Leibler divergence provides a nonnegative statistical divergence
measure, which is zero if and only if p = q [15]. When a base-2 logarithmic
measure is used, the Kullback–Leibler divergence gives the number of overhead
bits incurred because a model (represented by q(X)) is used instead of the actual
source (represented by p(X)).

In order to accurately judge the performance of a model, the Kullback–Leibler
measure should be weighted with respect to the entropy. For example, let us as-
sume that the entropy of the source is 20 bits whereas the overhead incurred by
the model is 0.75 bits. The overhead is relatively insignificant since the source in-
herently requires a large number of bits to be represented. However, for the same
overhead (of 0.75 bits), if the entropy of the source is low, say 1 bit, then an over-
head of 0.75 bits is extremely high. Hence, for accurate performance evaluation of
a model, both the entropy of the process (represented by some random variable X)
and the Kullback–Leibler divergence should be taken into consideration.

In view of the aforementioned considerations, a new statistical divergence mea-
sure, the entropy normalized Kullback–Leibler (ENK) divergence, was proposed
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in [8]. The ENK divergence renders a measure of the source-coding-like over-
head incurred by employing a model instead of the actual random source. The
ENK divergence is defined as

ENK
(
p(X)‖q(X)

)= D(p(X)‖q(X))

H(p(X))
, (11.7)

where D(p‖q) and H(p) are defined in (11.6) and (11.5), respectively. A closer
examination reveals that the ENK measure inherits basic properties of the
Kullback–Leibler divergence: (i) nonnegativity, ENK(p‖q) ≥ 0, (ii) nonsymme-
try, ENK(p‖q) 
= ENK(q‖p), and (iii) ENK(p‖q)= 0⇔ p = q .

Small values of ENK divergence indicate that the model renders a good approx-
imate of the actual random source. Conversely, large values of the ENK imply that
the source-coding-like overhead of the model is large, that is, the model is not a
good approximate of the actual source. Note that we would expect the ENK be-
tween two realizations of a random source to be a small value. For instance, the
ENK between two traces collected over a wireless medium under similar condi-
tions should be quite small. This ENK value can be used as an evaluation ref-
erence for the ENK between the actual observations (i.e., traces collected over
the wireless network) and the model-based observations (i.e., traces artificially
synthesized by the model).

11.3.2.3 Random Variables for Performance Comparison

The performance evaluation measures described in preceding discussions are de-
pendent on the choice of an appropriate random variable X to represent the sto-
chastic process. Hence, X should capture a key statistic of the bit error random
process. Wireless channel modeling studies generally employ two random vari-
ables to evaluate the performance of a model: (i) burst length of correctly received
bits, referred to as good bursts; and (ii) burst length of bit errors, referred to as
bad bursts. Both these random variables assume nonzero positive integer values.
The burstiness of the bit error process is adequately characterized using these two
random variables.

11.4 MODELING 802.11B BIT ERROR PROCESSES USING MARKOV
CHAINS

Let us now model the bit errors at 2- and 5.5-Mbps data rates of an 802.11b
local area network (LAN) [1,2] using kth order Markov chains (k-MCs). The
traces used for results in this section were collected by positioning the wireless
sender (server) and receivers (clients) in separate rooms to simulate a realistic
business/classroom/home-network wireless setup.
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FIGURE 11.1: Autocorrelation of bit error traces.

11.4.1 Autocorrelation of the Bit Error Traces

The sample autocorrelation coefficients of six traces collected at 2, 5.5, and
11 Mbps are illustrated in Figure 11.1. The autocorrelations at 2 and 5.5 Mbps ex-
hibit a rapidly decaying trend as the level of temporal dependence decreases with
time. From the examples provided in Figure 11.1, we assume that the memory
length is determined by the lag beyond which the correlation is less than 0.15, an
empirically determined threshold. Based on the threshold of 0.15, the maximum
memory lengths of the 5.5-Mbps traces of Figure 11.1 are 12 and 14, respectively.
The correlation of both 2-Mbps traces drops below 0.15 at the lag of 16. Thus, for
the 5.5- and 2-Mbps bit error processes, maximum memory lengths of 14 and 16
are identified, respectively. (We observe later on that a bit-error process might be
adequately characterized by a memory length that is slightly less than the maxi-
mum memory length identified here.)

Note that the correlation at 11 Mbps is really high even at large lags. Thus,
the 11-Mbps bit error process has substantial memory. A k-MC model for such
a highly correlated process will be unreasonably complex. Some models (e.g.,
the ones proposed in [16]) can be used to model the highly correlated 11-Mbps
process. These models are out of the scope of this text.

11.4.2 Markov Chains for the 2-Mbps Bit Error Process

For both ENK and standard error performance evaluations, varying order Markov
chains were trained using actual 2-Mbps bit error traces. The trained models
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were then used to synthesize artificial traces. The good- and bad-burst PMFs
and CDFs were derived from both synthesized and actual traces. The ENK di-
vergence between two actual traces is used as reference to quantify the perfor-
mances of varying order Markov chains. Specifically, first the ENK divergence
is computed by deriving p(X) and q(X) of (11.7) from two actual traces, say
trace 1 and trace 2. This ENK value is used as a performance evaluation ref-
erence for Markov chains. To evaluate a Markov chain’s accuracy, ENK diver-
gence is computed by deriving p(X) from trace 1 and q(X) from a synthesized
trace generated by the Markov chain. Similarly, for standard error-based perfor-
mance evaluation, first P(X) and Q(X) of (11.4) are derived from trace 1 and
trace 2, respectively. This value of standard error is used as a performance eval-
uation reference for Markov chains. To evaluate the accuracy of a Markov chain,
standard error is computed by deriving P(X) from trace 1 and Q(X) from the
synthesized trace generated by the Markov chain. Good- and bad-burst random
variables are used for both ENK- and standard error-based performance evalua-
tions.

The ENK-based performances of varying order Markov chains in modeling of
the 2-Mbps bit error process are depicted in Figure 11.2. It is clear from Fig-
ure 11.2 that low-order Markov chains incur significant ENK overhead. Hence,
low-order Markov chains cannot capture the 2-Mbps bit error behavior effectively.
Nevertheless, as the order of the Markov chain increases, the ENK overhead de-
creases substantially and drops to a reasonable level. The accuracy of the order-10
Markov chain is comparable to the ENK divergence between two actual bit error
traces. Figure 11.2 only provides analysis up to order 10, as the performance
improvement saturates after the order-10 (1024 state) Markov chain. It can be
observed that the 1024-state Markov chain renders a good approximate of the
2-Mbps MAC layer bit error process.

The standard errors of the good- and bad-burst CDFs rendered by the 1024-state
Markov chain of the 2-Mbps process are given in Table 11.1. For comparison,
standard errors of good- and bad-burst CDFs derived from two actual 2-Mbps
traces are also given in Table 11.1. For both good- and bad-burst random variables,
standard errors of the 1024-state Markov chain are very close to the standard
errors of two actual traces. Thus, it can be concluded that a 1024-state Markov
chain can adequately capture the bit error statistics of the 2-Mbps process.

11.4.3 Markov Chains for the 5.5-Mbps Bit Error Process

Performance of Markov chain models in modeling of the 5.5-Mbps bit error
process is provided in Figure 11.3. High-order Markov chains perform remark-
ably well for the bad-burst random variable. Note that for the bad-burst ran-
dom variable even smaller order chains perform quite adequately with low ENK
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FIGURE 11.2: ENK-based modeling accuracy of varying order Markov
chains for the 2-Mbps MAC layer bit error process: (top) good bursts and
(bottom) bad bursts.

Table 11.1: Standard error of Markov chain-based cumulative densities at 2 and
5.5 Mbps.

2 Mbps 5.5 Mbps
Serr

between
two actual

traces

Serr between an actual
trace and a trace
synthesized by

a 1024-state Markov
chain

Serr
between

two actual
traces

Serr between an actual
trace and a trace
synthesized by

a 512-state Markov
chain

Good bursts 0.003 0.014 0.004 0.006
Bad bursts 0.002 0.008 0.004 0.004
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FIGURE 11.3: ENK-based modeling accuracy of varying order Markov
chains for the 5.5-Mbps MAC layer bit error process: (top) good bursts and
(bottom) bad bursts.

overhead for all cases. However, the good-burst random variable incurs signif-
icant overhead for low-order chains. For high-order chains, the overhead de-
creases and drops to a reasonable level, beginning at the order 9 (512 state)
model.

The standard errors of good- and bad-burst CDFs at 5.5 Mbps are tabulated
in Table 11.1. Clearly, the 512-state Markov chain provides standard errors that
are comparable to the standard errors between actual 5.5-Mbps traces. Thus, a
512-state Markov chain can model the 5.5-Mbps process accurately.
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11.5 REDUCING THE COMPLEXITY OF MARKOV CHAINS

The number of states in a k-MC is an exponential function of the memory
length—2k states for a process with memory-length k. This phenomenon, re-
ferred to as state explosion, constrains the applicability of a k-MC. For instance, a
process with a memory-length 10 will result in 210 = 1024 states. Due to their
high complexity, k-MCs cannot provide real-time channel characterization in
resource-constrained wireless environments. Thus, despite their accuracy, the ex-
ponential complexity of Markov chains hampers their deployment in complexity-
constrained wireless environments.

A natural alternative to reduce Markov chain complexity is to employ hidden
Markov models (HMMs) [22]. However, in problem areas where HMMs are suc-
cessful, well-defined characteristics of input data are available for preprocessing
and training, for example, cepstral and linear-prediction features in speech. For
wireless channel modeling, the corrupted trace regions exhibit highly random be-
havior, and it has been shown that simple features (e.g., energy) are not adequate
to characterize error patterns in these corrupted regions [8]. Moreover, HMMs as-
sume that the probability of staying in a state is distributed exponentially, which
may not be an accurate assumption on practical wireless channels. An HMM
trained using the exponential distribution assumption results in inaccurate para-
meterization, consequently leading to a model that is unable to approximate the
bit error process [8].

Some studies have tried alternative approaches to approximate wireless bit er-
ror behavior [4–20]. This section outlines one such approach to reducing the com-
plexity of Markov chains.

11.5.1 Observations About Markov Chains

Let us first state some important observations about k-MCs. These observations
are employed in subsequent sections to derive properties of k-MCs. The first ob-
servation is a direct consequence of the binary nature of wireless impairment
processes.

Observation 1. For a binary process, if a bit-by-bit sliding window is used to
compute the transition probabilities of a 2k state Markov chain, then from a cur-
rent state, Xn = i, in one transition the Markov chain can transit to only two
possible states given by

Xn+1 =
{
(2i) mod 2k,

(2i + 1) mod 2k,
(11.8)

where k is the memory length of the Markov chain and i ∈ {0,1, . . . ,2k − 1} is an
arbitrary state from the Markov state space.
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An example given in Figure 11.4 clearly demonstrates this observation.
A memory-length k = 4 is used in this example. The set of all possible Markov
states is {0,1,2, . . . ,24 − 1 = 15}. The current state is Xn = (0110)2 = (6)10
and, as the window slides by one bit, the 0 in the most significant bit position
will be dropped and a bit will be added to the least significant bit position. Be-
cause the data are binary, the chain can transit to either (1100)2 = (12)10 or
(1101)2 = (13)10. Thus, in essence, Observation 1 implies that at each slide
of the memory window the process’ current state i is subjected to three opera-
tions: left shift by one bit, which yields 2i, followed by an addition of a zero
(2i + 0 = 2i) or an addition of a one (2i + 1) at the least significant bit po-
sition (LSB), followed by a modulus operation that ensures that if the current
state of the process is Xn = 2k−1, then the next state wraps around to state 0 (for
Xn+1 = 2i) or state 1 (for Xn+1 = 2i+ 1). For instance, in the preceding example
with k = 4, if Xn = (1000)2 = (8)10 = 2k−1, then the next state will be either
Xn+1 = (2 × 8) mod 24 = (0)10 = (0000)2 or Xn+1 = (2 × 8 + 1) mod 24 =
(1)10 = (0001)2. Since each Markov state has two transition possibilities, each
row of the Markov transition probability matrix will have at most two nonzero
entries, given by pi,(2i) mod 2k and pi,(2i+1) mod 2k = 1− pi,(2i) mod 2k .

Intuitively, one can argue that the number of error-free bits received over any
reasonable wireless channel should be much more than the number of corrupted
bits. The second observation stated next formulates this claim in terms of Markov
chain parameters.

FIGURE 11.4: Transition possibilities for a fourth-order Markov chain.
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Table 11.2: Empirical evidence in support of Observation 2.

2-Mbps bit error traces 5.5-Mbps bit error traces
π0 0.997 0.974

Observation 2. The steady-state probability of state 0 of a kth order Markov
chain for wireless channels is much greater than the steady-state probabilities of
all other states,

π0�
2k−1∑

j=1

πj , (11.9)

where k represents the memory length and πi represents the steady-state proba-
bility of being in state i of the Markov chain.

This observation implies that the mean time spent in state 0 of the Markov
chain (i.e., the state with no errors) is much greater than the mean time spent in
all other states. As explained earlier, it can be intuitively argued that this observa-
tion holds for real-life wireless/mobile channels. Table 11.2 gives the steady-state
probabilities of the 802.11b 2-Mbps bit error Markov chain of order 10 and the
5.5-Mbps bit error Markov chain of order 8. Since the steady-state probability of
staying in the good (all-zero) state is very close to one for the two cases shown
in Table 11.2, we can safely claim that Observation 11.2 holds for the wireless
channels currently under consideration.

11.5.2 Markov Chain Good-Burst and Bad-Burst Distributions

The objective of the present analysis is to ascertain partitions of Markov state
space. States in a particular partition will then be grouped together to form an
aggregate state in the low-complexity approximating process. We want to define
the Markov state space partitions such that the resulting aggregate process, while
being less complex, closely matches the Markov chain characteristics.

Since bursts of good and bad bits on the channel are two fundamental (and
arguably the most critical) characteristics that should be captured by an accurate
model [7–9], the main Markov chain attribute that we focus on is how it captures
bursts of good and bad bits. To that end, in this section we derive generalized
probability distributions of good and bad bursts for a kth order Markov chain,
where k is an arbitrary positive integer. The probability distributions are derived
in terms of Markov chain transition and steady-state probabilities. These distri-
butions render useful insights into important Markov characteristics, which are
employed to develop guidelines for defining Markov state space partitions in the
following sections.
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Before proceeding further, we employ Observation 1 to prove a necessary con-
dition for defining partitions of a Markov chain’s state space. Let H and S denote
the state spaces of a Markov chain and an aggregate (approximate) process, re-
spectively. Let i ∈ H and Si ∈ S denote two arbitrary states of the Markov and
the approximate process, respectively. Then the following lemma imposes a nec-
essary condition for defining aggregate states.

Lemma 1. The next state in an aggregate process can be determined accurately
only if Markov states (2i) mod 2k and (2i+ 1) mod 2k do not belong to the same
aggregate state,

(2i) mod 2k ∈ Sj ⇒ (2i + 1) mod 2k /∈ Sj , (11.10)

where k is the memory length, i ∈H , and Sj ∈ S.

PROOF. Lemma 1 is easily proven by contradiction. In essence, this lemma im-
plies that both transition possibilities of a Markov state cannot be aggregated in a
single state. As mentioned in Observation 1, (2i) mod 2k and (2i+1) mod 2k are
the only possible transitions for state i. Let there exist an aggregate state Sj that
contains both states (2i) mod 2k and (2i + 1) mod 2k . Also, let Sq represent an
aggregate state that contains state i. Then, pSq,Sj

does not give any information
about whether a good or a bad bit should be added to the memory window.

To simplify notation, from this point forward we drop the mod 2k operation
(where k is the memory length) on Markov states. Thus, state i mod 2k is simply
written as state i. Let I and B denote the good- and bad-burst random variables.
We want to derive closed-form expressions of I and B in terms of Markov chain
parameters. The expressions for good- and bad-burst random variables render in-
sights into how a Markov chain captures these random variables. The following
theorem states the Markov probability distribution of good bursts.

Theorem 1. The probability distribution of a good burst of length exactly l,
Pr{I = l}, for a kth order Markov chain is

Pr{I = l} =
2k−1−1∑

i=0

π2i+1 ×μi ×
min{k−2,l−2}∏

j=0

p(2i+1)2j ,(2i+1)2j+1,

∀k, l > 0, where μi =
{

p(2i+1)2l−1,(2i+1)2l × p(2i+1)2l ,(2i+1)2l+1+1, l < k,

p2k−1,0(p0,0)
l−kp0,1, l ≥ k.

(11.11)
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PROOF. Before proceeding with the proof, we recall that the subscripts of all tran-
sition and steady-state probabilities are modulo 2k . Let us focus on the proof of
the l ≥ k case, as the proof of the other case is much simpler and follows a similar
procedure. Given any current state, a good burst (i.e., burst of 0’s) will start if the
current state has a 1 in the LSB position of the memory window, that is, the current
state represents an odd-numbered Markov state Xn = 2i + 1, 0≤ i ≤ 2k−1 − 1.

Without loss of generality, consider the state path given in Figure 11.5. For a
good burst of length l starting in the current odd-numbered state, the next k − 1
transitions will be (2i + 1), (2i + 1)2, (2i + 1)22, . . . , (2i + 1)2k−1. Note that
(2i + 1) mod 2k−1 = 2k−1 and, based on the discussion in Observation 1, the
process wraps around to state 0 at this point, that is, at point Xn+k−1 = 2k−1, the
good burst continues and the process wraps around, Xn+k = 0. This transition
sequence is followed by l − k zero bits, that is, the next l − k transitions are from
state 0 to state 0, giving Xn+k = Xn+k+1 = Xn+k+2 = · · · = Xn+l = 0. The good
burst ends when a 1 bit is encountered at the (l + 1)st transition and the Markov
process moves to Xn+l+1 = (00 . . .01)2 = (1)10. When expressed in the form of
probabilities, this state transition path will have to be summed over all possible
odd-valued Markov states,

Pr{I = l} = π1

[
p1,(1)2 × p(1)2,(1)22 × · · · × p(1)2k−2,(1)2k−1

×p(1)2k−1,0 × (p0,0)
l−k × p0,1

]

+ π3

[
p3,(3)2 × p(3)2,(3)22 × · · · × p(3)2k−2,(3)2k−1

×p(3)2k−1,0 × (p0,0)
l−k × p0,1

]

+ · · ·

FIGURE 11.5: State transitions of a kth order Markov chain with a good
burst of length l ≥ k.
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+ π2k−1

⎡

⎢
⎣

p2k−1,(2k−1)2 × p(2k−1)2,(2k−1)22

×· · · × p(2k−1)2k−2,(2k−1)2k−1

×p(2k−1)2k−1,0 × (p0,0)
l−k × p0,1

⎤

⎥
⎦ .

Taking out common terms yields

Pr{I = l} = p2k−1,0(p0,0)
l−kp0,1

[
2k−1−1∑

i=0

π2i+1

k−2∏

j=0

p(2i+1)2j ,(2i+1)2j+1

]

,

which is the same as the expression in Theorem 1 for all l ≥ k.
Similarly to Theorem 1, the probability distribution of a bad burst of length l is

given in the following theorem.

Theorem 2. The probability distribution of a bad burst of length exactly l,
Pr{B = l}, for a kth order Markov chain is

Pr{B = l} =
2k−1−1∑

i=0

π2i ×μi ×
min{k−2,l−2}∏

j=0

p(2i+1)2j−1,(2i+1)2j+1−1,

∀k, l > 0, where μi =
{

p(2i+1)2l−1−1,(2i+1)2l−1 × p(2i+1)2l−1,(2i+1)2l+1−2, l < k,

p2k−1−1,2k−1 × (p2k−1,2k−1)
l−k × p2k−1,2k−2, l ≥ k.

(11.12)

Proof of this theorem is similar to the proof of Theorem 1.
The expressions for good- and bad-burst probability distributions given in

Equations (11.11) and (11.12) are rather convoluted. Hence in their present forms,
these expressions neither offer any obvious insight into the random process’ be-
havior nor are they amenable to further analysis. In the following section, we em-
ploy Observation 2 to simplify the probability distribution expressions of Equa-
tions (11.11) and (11.12). The simplification in turn leads us to the design guide-
lines that should be followed by a low complexity model.

11.5.3 Simplification of Good-Burst Distribution

Due to Observation 2 the steady-state probability of state 0 is very high and,
consequently, the steady-state probabilities of odd states in the good-burst expres-
sion of (11.11) are negligible. Thus, the terms involving a transition to or from
state 0 of the will dominate the good-burst probability distribution of (11.11).
Moreover, since the channel usually stays in the good state for practical wireless
networks, the good-burst length should in general be significantly greater than the
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memory length. Hence, an effective good-burst probability distribution Pr{I = l}
should accurately capture the l ≥ k behavior. The good-burst probability distribu-
tion of (11.11) for l ≥ k can be rewritten

Pr{I = l} ≈ p2k−1,0(p0,0)
l−kp0,1, ∀l ≥ k > 0. (11.13)

Although the aforementioned expression is an approximation of the Markov
chain’s good-burst probability distribution, it is clearly more tractable for analysis.
A close look at (11.13) reveals that the parameter characterizing the (approximate)
probability distribution is the probability of a good bit transmission followed by
another good bit transmission (p0,0) since this is the only parameter in (11.13)
that involves the good-burst length (l). Hence, one important consideration while
grouping states should be that the all-zero (i.e., no-error) state is not grouped with
a large number of other states. This is also a natural consequence of Observa-
tion 2, which implies that the mean time spent in the all-zero (i.e., no-error) state
is significantly higher than all other states.

Similarly, in addition to the state 0, two other important states are state 2k−1

and state 1 since p2k−1,0 and p0,1 are the only parameters, other than p0,0, that
appear in the approximate probability distribution given in (11.13). Hence, due
to their relative importance in describing real-life wireless and mobile channels,
a good model, in addition to state 0, should not group states 1 and 2k−1 with too
many other states. This guideline will be employed to define a constant complex-
ity model later.

11.5.4 Simplification of Bad-Burst Distribution

For the bad-burst probability distribution of (11.12), we again invoke Observa-
tion 2 and neglect the terms in (11.12) that are not multiplied with π0. Using this
approximation, the bad-burst distribution (11.12) can be written

Pr{B = l} ≈ π0μ0

min{k−2,l−2}∏

j=0

p2j−1,2j+1−1,

where μ0 =
{
p2l−1−1,2l−1p2l−1,2l+1−2, l < k,

p2k−1−1,2k−1(p2k−1,2k−1)
l−kp2k−1,2k−2, l ≥ k.

(11.14)

The only terms appearing in (11.14) after the approximation involve states 0,
2k − 2, and 2j − 1, for any 1 ≤ j ≤ k. From Observation 1 and the good-bursts
approximation, we have already established that state 0 should not be aggregated
with many other states. This deduction is reasserted here. Moreover, it is prefer-
able not to aggregate state 2k − 2 with many other states. Also, if possible, all
Markov states 2j − 1, where 1 ≤ j ≤ k, should not be grouped with too many
other states.
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11.5.5 Guidelines for Approximating a kth Order Markov Chain

The analyses of preceding sections can be summarized in the following guide-
lines:

Guideline 1: Any state aggregation should satisfy the condition given in
Lemma 1.

Guideline 2: State 0 should not be aggregated with other states.
Guideline 3: States 2k−1 and 1 should be aggregated with a minimal number

of other states.
Guideline 4: States 2k−2 and 2j −1, for all 1≤ j ≤ k, should be aggregated

with a minimal number of other states.

Note that Guidelines 1 and 2 are more assertive than Guideline 3 and Guide-
line 4. This is due to the analysis provided in the previous section, which outlined
that (i) Guideline 1 is necessary for an accurate model and (ii) Guideline 2, which
is a consequence of Observation 2, is asserted by the approximate distributions of
both good and bad bursts.

It can be observed that Guideline 1, Guideline 2, and Guideline 3 can be easily
satisfied in a low-complexity model. However, Guideline 4 is somewhat prob-
lematic because putting each 2j − 1 state, for all 1≤ j ≤ k, in a separate partition
(i.e., separate aggregate state) makes the total number of states of the approximate
model an increasing function of the memory-length k. Thus, satisfying Guide-
line 3 implies that the resultant complexity (i.e., number of states) of the aggregate
model will at least be a linear function of the memory length. We, however, want
to keep the number of states in the model independent of the underlying process’
memory length. Nevertheless, if linear complexity is acceptable, then Guideline 4
should be incorporated into the design of future wireless channel models.

11.5.6 Constant Complexity Model

Based on the analysis of the last section, a constant complexity model (CCM) ad-
hering to Guideline 1, Guideline 2, and Guideline 3 can be developed. The CCM
keeps Markov states 0, 1, and 2k−1 each in a separate partition, while grouping
all the remaining Markov states into two partitions. The resulting model always
has five states irrespective of the memory length. The structure and transition
possibilities of the CCM are illustrated in Figure 11.6. It is clearly outlined by
Figure 11.6 that the CCM assigns separate (isolated) states to Markov states 0, 1,
and 2k−1, thereby adhering to Guideline 2 and Guideline 3. All remaining even
Markov states are grouped in a single aggregate CCM state, while all remain-
ing odd Markov states are grouped in another aggregate state. Note that none of
the CCM states contain both an odd and an even state, that is, an aggregate state
contains either even states or odd states. Thus, Guideline 1, which requires that
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FIGURE 11.6: State aggregation and transitions for the CCM.

Markov states 2i and 2i + 1 are never aggregated together, is also satisfied by the
CCM. Clearly, irrespective of the underlying process’ memory length, the CCM
always comprises five states. Based on our analysis, this five-state CCM should
follow the behavior of the underlying 2k state Markov process quite closely. This
CCM efficacy is highlighted adequately in the next section where we compare its
performance with Markov chains.

The Markov state space partitioning used by the CCM is only one of the many
possible state assignments. Low-complexity channel models can also define other
state partitions that should perform adequately as long as the aforementioned
guidelines are followed.

11.5.7 Comparison of CCM with Markov Chains

11.5.7.1 Modeling Accuracy for the 2-Mbps Bit Error Process

Figure 11.7 provides ENK-based performance comparison of CCMs with vary-
ing memory lengths. Although the CCMs of Figure 11.7 have different memory
lengths, the total number of states is five for all the CCMs. ENK overhead of
the 1024-state Markov chain model formulates a criterion for performance eval-
uation of the CCMs. It is clear from Figure 11.7 (top) that for the good-burst
random variable, CCMs with memory lengths of five and above perform as well
as the 1024-state Markov model. Figure 11.7 (bottom) shows that the CCM ENK
overhead for the bad-burst random variable is relatively higher than the Markov
model. Nevertheless, in absolute terms the CCM ENK overhead is quite small.
While keeping both good and bad bursts under consideration, the CCM model
with a memory length of eight provides the best performance. The performance
saturates after a memory length of eight, and therefore higher memory lengths
are not shown in Figure 11.7. In conclusion, ENK divergence highlights that the
CCM provides an accurate and low-complexity bit error model for 802.11b LANs
operating at 2 Mbps. This performance substantiates the earlier analysis suggest-
ing that a 5-state CCM can render a performance comparable to the respective
2k-state Markov chain.
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FIGURE 11.7: ENK-based modeling accuracy of the CCM for the
2-Mbps bit error process: (top) good bursts and (bottom) bad bursts.

Table 11.3: Standard errors of CCM and Markov chains.

2 Mbps 5.5 Mbps
1024-state 5-state 512-state 5-state

Markov chain CCM Markov chain CCM
Good bursts 0.018 0.018 0.011 0.018
Bad bursts 0.007 0.007 0.009 0.01

Table 11.3 lists the standard error of good- and bad-burst CDFs generated by
a 1024-state Markov model and a 5-state CCM with a memory length of eight. It
can be clearly seen from Table 11.3 that the 5-state CCM perfectly matches the
performance of the 1024-state Markov model for both good and bad bursts. Thus
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it can be concluded that the 5-state CCM, while providing orders of magnitude
reduction in complexity, renders a performance that is quite comparable to the
1024-state Markov model.

11.5.7.2 Modeling Accuracy for the 5.5-Mbps Bit Error Process

ENK-based performances of CCMs with varying memory lengths at 5.5 Mbps
are outlined in Figure 11.8. For the good-burst random variable, performances
of CCMs with memory lengths six and higher are comparable to the 512-state
Markov chain. Thus, the CCM captures the good-burst behavior of the 5.5-Mbps

FIGURE 11.8: ENK-based modeling accuracy of the CCM for the
5.5-Mbps bit error process: (top) good bursts and (bottom) bad bursts.
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channel very accurately. Similarly, Figure 11.8 (bottom) shows that the bad-burst
ENK overhead of CCM is also very small for all memory lengths.

Table 11.3 compares the standard error-based performances of the 512-state
Markov model and the 5-state CCM with a memory length of six. Table 11.3
reemphasizes that the CCM performance in modeling good and bad bursts is
quite close to the Markov chain. Thus, it can be concluded that even for the 5.5-
Mbps channel, the performance of the CCM is comparable to the exponential-
complexity Markov model.

11.6 SUMMARY AND FURTHER READING

The objective of this chapter was to introduce the readers to the somewhat recent
notion of analyzing and modeling bit errors at wireless MAC layers. This chapter
discussed the theoretical aspects and practical issues involved in developing the
widely used kth order Markov chain model for wireless MAC layer channels. It
was highlighted that kth order Markov models, although very accurate, are too
complex to be used in practical wireless systems. Consequently, we described a
constant-complexity model that approximated the good- and bad-burst behavior
of kth order Markov chains.

The kth order Markov chain models described in this chapter have been used to
model many error and loss phenomena. Readers interested in packet-loss Markov
models for reliable wireless protocols should refer to [6]. Similarly, read [7] to
learn about Markov models of frame losses over cellular GSM networks. Refer
to [9] to get insight into the impact of physical layer parameters (e.g., modulation
type, antenna diversity) on MAC layer bit errors and channel models. Also note
that mitigation of the exponential Markov chain complexity has been investigated
by many studies, and the complexity reduction technique presented in this chap-
ter is only one of the proposed methods. Another common complexity reduction
technique is Markov chain lumpability [10]. Refer to [17] and [18] to understand
how Markov chain lumpability can be employed to reduce modeling complexity
over wireless channels. Other techniques that use data-driven heuristics to reduce
Markov chain complexity have been proposed [4,19,20]. All of these approxi-
mate models (including the constant-complexity model derived earlier) invoke
certain wireless channel assumptions to reduce Markov chain complexity. Thus
to select the best-fit low-complexity model, one should evaluate the strengths and
weaknesses of all relevant approximate channel models while taking the particular
desired application(s) into consideration.
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12
Cross-Layer Wireless
Multimedia

Mihaela van der Schaar

12.1 INTRODUCTION

Wireless networks are poised to enable a variety of existing and emerging ap-
plications due to their low cost and flexible infrastructure. Figure 12.1 shows
the evolution of different wireless technologies with the X axis representing the
throughput and the Y axis representing the mobility. The depicted classes of
technologies are Wide Area Networks (WANs), Local Area Networks (LANs),
and Personal Area Networks (PANs). Cellular networks belong to the class of
WANs, Bluetooth and Ultra Wide Bands (UWBs) belong to PANs, and Wire-
less LANs (WLANs) and HiperLANs belong to LANs. WANs offer greater mo-
bility, but lower data rates, while LANs offer higher bandwidths, but a lim-
ited coverage. PAN technologies are often deployed for cable replacement,
whereas WLANs are envisioned as the wireless replacement of wired LANs.
However, these wireless networks exhibit a large variation in channel condi-
tions not only because of the different access technologies, but also due to
multipath fading, cochannel interference, noise, mobility, handoff, and so on,
as well as competing traffic from other wireless users. Thus, as the use of
these wireless networks spreads beyond simple data transfer to bandwidth-
intense, delay-sensitive, and loss tolerant multimedia applications (such as video-
conferencing, emergency services, surveillance, telemedicine, remote teaching
and training, augmented reality, and entertainment), addressing Quality of Ser-
vice (QoS) issues becomes essential. Currently, a multitude of protection and
adaptation strategies exists in the different layers of the Open Systems In-
terconnection (OSI) stack. Hence, an in-depth understanding and comparative
evaluation of these strategies are necessary to effectively assess and enable
the possible trade-offs in multimedia quality, power consumption, implementa-
tion complexity, and spectrum utilization that are provided by the various OSI
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FIGURE 12.1: Current wireless solutions space [72].

layers. This further opens the question of cross-layer optimization and its ef-
fectiveness in providing an improved solution with respect to the trade-offs just
listed.

This chapter formalizes the cross-layer problem, discusses its challenges and
relevant standards, presents several existing solutions, and highlights the key prin-
ciples for cross-layer design. We discuss a cross-layer framework for jointly ana-
lyzing, selecting, and adapting the different strategies available at the various OSI
layers in terms of multimedia quality, consumed power, and spectrum utilization.
Developing such an integrated cross-layer framework is of fundamental impor-
tance, since it not only leads to improved multimedia performance over existing
wireless networks, but it also provides valuable insights into the design of next-
generation algorithms and protocols for wireless multimedia systems. Moreover,
such a cross-layer approach does not necessarily require a redesign of existing
protocols [4] and can be directly applied across existing application and lower
layer standards and de facto solutions.

12.1.1 Challenges and Requirements for Wireless Transmission of Multimedia

Wireless networks are heterogeneous in bandwidth, reliability, and receiver de-
vice characteristics. In wireless channels, packets can be delayed (due to queuing,
propagation, transmission, and processing delays), lost, or even discarded due to
complexity/power limitations or display capabilities of the receiver. Hence, the
experienced packet losses can be up to 10% or more, and the time allocated to the
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various users and the resulting goodput1 for multimedia bit stream transmission
can also vary significantly in time.

This variability of wireless resources has considerable consequences for mul-
timedia applications and often leads to unsatisfactory user experience due to the
following characteristics.

• High bandwidths—many consumer applications, for example, High-
Definition TV, require transmission bit rates of several Mbps.

• Very stringent delay constraints—delays of less than 200 ms are required
for interactive applications, such as videoconferencing and surveillance,
while for multimedia streaming applications, delays of 1–5 s are tolerable.
Packets that arrive after their display time are discarded at the receiver side
or, at best, can be used for concealing subsequently received multimedia
packets.

Fortunately, multimedia applications can cope with a certain amount of packet
losses depending on the used sequence characteristics, compression schemes, and
error concealment strategies available at the receiver (e.g., packet losses up to
5% or more can be tolerated at times). Consequently, unlike file transfers, real-
time multimedia applications do not require a complete insulation from packet
losses, but rather require the application layer to cooperate with the lower layers
to select the optimal wireless transmission strategy that maximizes the multimedia
performance.

Thus, to achieve a high level of acceptability and proliferation of wireless mul-
timedia, in particular wireless video, several key requirements need to be satis-
fied by multimedia streaming solutions over such channels: (i) easy adaptability
to wireless bandwidth fluctuations due to cochannel interference, multipath fad-
ing, mobility, handoff, competing traffic, and so on; (ii) robustness to partial data
losses caused by the packetization of video frames and high packet error rates;
and (iii) support for heterogeneous wireless clients with regard to their access
bandwidths, computing capabilities, buffer availabilities, display resolutions, and
power limitations.

12.1.2 Need for Cross-Layer Optimization

In recent years, to address the aforementioned requirements, the research focus
has been to adapt existing algorithms and protocols for multimedia compres-
sion and transmission to the rapidly varying and often scarce resources of wire-
less networks [5]. For instance, network adaptive multimedia compression, band-
width, and channel condition bit stream adaptation, prioritization and layering

1This is the correctly received bit-rate/bandwidth and represents the effective bandwidth that can be
used by the application layer for video bitstream transmission.
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mechanisms, error concealment strategies, rate–distortion modeling, joint source-
channel coding, streaming strategies, multiuser resource management and alloca-
tion protocols and algorithms, distortion and channel aware scheduling, link layer
adaptation, and power and system optimization strategies have been developed.

However, these solutions often do not provide adequate support for multime-
dia applications in crowded wireless networks, when the interference is high,
or when the stations are mobile. This is because the resource management,
adaptation, and protection strategies available in the lower layers of the OSI
stack—Physical (PHY) layer, Medium Access Control (MAC) layer, and Net-
work/Transport layers—are optimized without explicitly considering the specific
characteristics of the multimedia applications, and conversely, multimedia com-
pression and streaming algorithms do not consider the mechanisms provided by
the lower layers for error protection, scheduling, resource management, and so
on [5]. A set of relevant references discussing cross-layer optimization across
lower layers of the protocol stack, without considering the multimedia commu-
nications requirements, can be found elsewhere [61–71]. This application-layer
agnostic (or simplified) optimization leads to a simpler implementation, but can
result in very poor performance (objective and perceptual quality) for real-time
multimedia transmission when the available wireless resources are limited. As
shown later in this chapter, improvements of up to 5 dB can be achieved in such
cases through (often low-complexity) cross-layer optimizations that consider the
unique features of multimedia applications.

12.1.3 Chapter Outline

To summarize the aim of this chapter is not to provide a complete single solution
to the very complex problem of wireless multimedia transmission. Instead, the
chapter is aimed at presenting a possible unified and formal approach to the diffi-
cult problem of real-time multimedia transmission over wireless networks by fa-
miliarizing the reader to several key principles for identifying optimized solutions
for cross-layer transmission, efficient designs, and possible practical solutions.

Section 12.2 starts by presenting a short summary of the 802.11 WLAN stan-
dard’s key features at the MAC and PHY layers and discusses their impact on
wireless multimedia. In this chapter, we will mainly focus on WLAN networks
to illustrate the design principles, fundamentals, and solutions for optimized mul-
timedia transmission. However, these can be easily applied to other existing and
emerging wireless networks, for example, 3G, 4G, and PAN wireless networks.
Section 12.3 motivates the need for cross-layer optimization through a simple
wireless video streaming example, where the ad hoc choices of lower layers pa-
rameters can have a significant impact on video quality. Section 12.4 formalizes
the cross-layer design problem and discusses the challenges associated with solv-
ing this problem. Moreover, a categorization of the various cross-layer solutions is
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also presented. Next, to solve the cross-layer optimization problem, several differ-
ent methods are proposed: Section 12.5 discusses a joint MAC–application-layer
optimization for adaptive retransmission using queuing theory, while Section 12.6
presents a similar MAC–application-layer optimization for adaptive retransmis-
sion and packet size adaptation using Lagrangian optimization. Section 12.7 dis-
cusses the problem of efficient wireless resource allocation (i.e., allocation of
transmission opportunities) using 802.11e. To enable the complex cross-layer op-
timization to be performed in real time, a low-cost solution relying on classifi-
cation is outlined in Section 12.8. Section 12.9 discusses fairness strategies for
dynamic multiuser wireless interaction. Section 12.10 presents a brief summary
of the chapter and provides a list of relevant further reading.

It should be noted that the notation slightly varies across the various sections
of the chapter and, for simplicity of notation, that the consistency of notation
was only observed within an individual section. For instance, notations for re-
transmission limits, modulation strategies, packet sizes, and so on are adapted per
section.

12.2 SHORT SUMMARY OF 802.11 WIRELESS LAN STANDARD AND
IMPACT ON WIRELESS MULTIMEDIA

Before discussing the cross-layer design principles and solutions, we present sev-
eral basic features of the IEEE 802.11 Wireless LANs [1–3], as this standard is
used in the remainder of this chapter to illustrate the cross-layer design. How-
ever, note that the methodology for cross-layer design described in this chapter
can similarly be applied to other WLAN, PAN, or WAN standards discussed in
Figure 12.1. IEEE 802.11 is a wireless version of Ethernet that supports only best-
effort services and that has enabled ubiquitous and low-cost broadband wireless
access in home, enterprise, and public places such as airports, group meetings,
and coffee shops. IEEE 802.11 has several working groups devoted to expanding
the application domain of WLAN to include QoS provisioning, increased mobil-
ity support, security, and increased data rates. Figure 12.2 lists the various IEEE
802.11 focus areas. The IEEE 802.11a/b/g/n PHY layer provides data rates start-
ing at 6 Mbps up to 54 Mbps, whereas IEEE 802.11b provide rates from 1 Mbps
up to 11 Mbps. Alternatively, the emerging IEEE 802.11n standard uses Multiple
Input Multiple Output (MIMO) antenna technology to increase data rates beyond
108 Mbps. IEEE 802.11 c/d/f define the bridging functions, international roaming,
and interaccess point protocol, respectively, which are able to facilitate bridging
function, fast roaming, and means to communicate between different WLAN ac-
cess points. The IEEE 802.11e adapts the conventional 802.11a/b/g MAC protocol
to accommodate QoS and is described in more detail later in this chapter. IEEE
802.11h/i/k define the dynamic frequency selection and transmit power control,
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FIGURE 12.2: Overview of IEEE 802.11 WLAN standards.

security, and radio resource measurement to increase the capabilities of WLAN
when there is interference and to prevent others from entering into the network
unnecessarily.

Next, we discuss some of the basic functionalities provided by 802.11 networks
at the various layers that can significantly impact multimedia transmission.

• PHY layer. In the 802.11 WLAN standard, several modulation and coding
schemes are available to a wireless station. Modulation schemes that have
symbols closer to each other in the constellation diagram can result in erro-
neous decoding. Varying code rates can be employed within each modula-
tion scheme to adapt to changing channel conditions by allowing more bits
for channel coding (lower code rates) as conditions deteriorate. As the chan-
nel code rate decreases, the effective transmission rate reduces, and hence
the achievable throughput for transmission reduces. The 802.11a PHY [1] is
based on Orthogonal Frequency Division Multiplexing and provides eight
different PHY modes with different modulation schemes and code rates,
offering transmission data rates ranging from 6 to 54 Mbps (6, 9, 12, 18,
24, 36, 48, and 54 Mbps, respectively). Figure 12.3 depicts the bit error rate
(BER) as a function of the channel condition represented here by the Signal-
to-Noise Ratio (SNR) for the various modulation schemes in 802.11a. More
details about the channel model can be found in [1,2,10,26].

Similarly, 802.11b also has various PHY modes that can be selected, but unlike
802.11a, the maximum throughput is only 15 Mbps and only four different PHY
modes exist. It should also be noted that the aforementioned transmission data
rates are at the PHY layer and do not include packetization and transmission over-
heads incurred at the PHY and MAC layers. Hence, the resulting application-layer
rate for multimedia transmission is often significantly lower than the maximum
PHY rate.
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FIGURE 12.3: BER vs. SNR for 802.11a WLAN networks [72].

• MAC layer. For a wireless device transmitting delay-sensitive multimedia
content, periodic access to the shared wireless medium is paramount. In
wireless networks, this access is controlled by the MAC layers. Hence, we
briefly discuss the impact of the various existing WLAN MAC layer proto-
cols on multimedia. We start by briefly presenting the 802.11a/b/g WLAN
standard, which allows two different MAC mechanisms, namely the dis-
tributed coordination function (DCF) and the point coordination function
(PCF). Subsequently, we discuss the 802.11e WLAN standard, which pro-
vides additional features to the conventional MAC to better enable multi-
media streaming.

12.2.1 Distributed Coordination Function

DCF is the basic MAC mechanism, which is based on carrier sense multiple ac-
cess with collision avoidance. In [54], a very good analytical model of the DCF
protocol performance is presented.

In the DCF mode of operation, each station in the WLAN contends for the
medium and relinquishes control after transmitting a single packet (MAC frame).
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Hence, the DCF MAC strategy provides distributed, fair access to the wireless
medium for competing wireless stations. With the DCF mechanism, over a long
period of time all users will get equal access to the wireless network. This works
well for traditional data applications such as ftp transfers, web browsing, and
other delay-insensitive multimedia applications. However, this type of fairness is
not appropriate when dealing with real-time multimedia applications that exhibit
different delay deadlines and bandwidth requirements. For example, if a video
streaming application does not gain timely access to the wireless medium while
trying to transmit a very important portion of a compressed bit stream (e.g., the
base layer or an “I” video frame) because it is being preempted by competing
users, this will lead to unacceptable incurred delays and thus a significantly de-
graded video quality and a negative user experience. Due to these key disadvan-
tages, this access mechanism is not very suitable for video streaming applications
and is not discussed in much detail in this chapter.

12.2.2 Point Coordination Function

PCF is an optional channel access function in the 802.11 standard that is designed
to support delay-sensitive applications such as multimedia streaming. Contention-
free access to the wireless medium is controlled by a point coordinator (PC) col-
located with the access point. PCF is based on a poll-and-response protocol to
control access to the shared wireless medium and to eliminate contention among
wireless stations. The PC is the central controller, which grants access to the
medium. The PC gains control of the medium periodically. Once the PC gains
control of the medium, it begins a contention-free period (CFP) during which ac-
cess to the medium is completely controlled by the PC; after a CFP is finished,
a contention period (CP) during which the mandatory DCF is used starts. Dur-
ing the CFP, the PC can deliver downlink traffic to the individual stations without
any contention. The PC can also send a contention-free poll (CF-Poll) that allows
the stations to send uplink traffic to the PC. If the station that is being polled has
uplink traffic to send, it can transmit one packet (MAC frame) for each CF-Poll
received. If the station does not have any pending packet, it responds with a data
packet without any content, that is, a Null data packet. During the CFP, a wireless
station can only transmit after being polled by the PC.

Since there is no contention, a certain QoS level is provided for multimedia
applications (even though there is no actual guarantee provided about the actual
goodput allocated to an application, which depends on the experienced packet-
loss rate incurred due to interference, etc.). Hence, PCF is often used for wireless
multimedia streaming, as it provides real-time applications a guaranteed trans-
mission time (opportunity), that is, all stations are polled for a certain amount of
time during a service interval.
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12.2.3 Enhanced Distributed Channel Access (EDCA)

EDCA is a superset of the 802.11 DCF protocol adopted by the 802.11e standard.
In DCF, all wireless stations compete for the wireless medium with the same pri-
ority. In EDCA, however, this mechanism is extended to four levels of priorities
or access categories (AC). With a shorter maximum back-off time, the higher
priority AC wins access to the medium more frequently than the lower priority
AC. Therefore, statistically, packets with the highest AC are given access to the
medium more frequently than those packets with a lower AC. However, EDCA
can be viewed as a differentiated service (DiffServ) QoS that can assist multime-
dia applications by enabling them to map the various priority packets of the bit
streams into various AC classes. Nevertheless, due to the nondeterministic nature
of EDCA, it is not possible, except in very lightly loaded networks, to guarantee
parameters such as bandwidth, jitter, and latency. The inefficiency arises due to
contention and back-off mechanisms as in the DCF case and hence they are not
suitable for multimedia streaming.

12.2.4 Hybrid Coordination Function (HCF) Controlled Channel Access (HCCA)

Similar to PCF, HCCA provides real-time applications a guaranteed transmission
time (opportunity), that is, all stations are polled for a certain amount of time
during a service interval. However, while HCCA provides multimedia streaming
applications a certain level of QoS, there are no tight guarantees for parameters
such as bandwidth, jitter, and latency, as is shown in Section 12.7

In conclusion, in this chapter we will assume a polling-based MAC for mul-
timedia transmission such as PCF and HCCA. Hence, each service interval (SI)
tSI is divided among the various users based on a certain initial admission control
policy. For instance, if there are M users in the network, the resource allocation is
represented by the transmission opportunity time vector [t1, . . . , tM ] ∈R

M+ , where
ti (0 ≤ ti ≤ tSI) represents the transmission time allocated by the MAC to a user
i every SI. Such time allocation for the various users is assumed in subsequent
sections for discussion of the cross-layer optimized transmission. A detailed de-
scription of how the transmission opportunities are allocated to the users and how
the stations are polled by the resource coordinator is given in Section 12.7.

However, it should be noted that none of the aforementioned MAC standards
provides strict QoS guarantees for multimedia applications; also, the system-wide
resource management is not always fair or efficient for such applications. This is
due to the time-varying nature of the wireless channel and multimedia character-
istics and to the lack of cross-layer awareness of the application and MAC layers
about each other.
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12.3 EXAMPLE OF CROSS-LAYER IMPACT ON THROUGHPUT
EFFICIENCY AND DELAY FOR VIDEO STREAMING

To understand the possible impact of the cross-layer design, let us analyze the
impact of the various layers of the protocol stack on the throughput efficiency and
resulting delay performance. For illustration, let us assume that the polling-based
mode of the 802.11a MAC standard (PCF) is used for video transmission. To
protect video data, the adaptive deployment of retransmission at the MAC layer
and that of Reed–Solomon (RS) codes at the application layer is considered in
addition to the PHY layer modulation and coding strategies provided by 802.11a.

To analyze the overhead impact, the following simplified assumptions are
made: (a) the video packets are of length La bytes and these packets are not
fragmented in any of the lower layers and (b) the overhead of the higher layer
protocols, such as RTP, UDP, and IP, is considered to be O bytes. The overhead
of the MAC and PHY is not included in this. The average packet transmission
duration computed in the following section accounts for the MAC and PHY over-
head. The MAC-layer retransmission limit is denoted in this section as R.

12.3.1 Average Packet Transmission Duration

This section analyzes the average transmission duration of a MAC frame under
different conditions. This is used later in the computation of application-layer
throughput efficiency. Assuming that a packet with L-byte payload is transmitted
using PHY mode m, the probability of a successful transmission is given by

P m
good_cycle(L)= (

1− P m
e,ack

)(
1− P m

e,data(L)
)
, (12.1)

where Pe,ack is the CF-ACK packet error probability and Pe,data is the data packet
error probability. These can be calculated from the corresponding packet sizes
(including the headers and the payload) and the BER. (See Figure 12.3 and [1]
for more details on the various PHY modes and the resulting BER.) The average
transmission duration for a good cycle, T m

good , where neither the data packet nor
the CF-ACK packet is in error, can be obtained from the timing intervals given
in Figure 12.4. Similarly, the average transmission duration for a bad cycle, T m

bad ,
in a cycle where either the data packet or the CF-ACK packet is in error can be
computed from the timing intervals given in Figure 12.5. The average transmis-
sion duration for a packet with an L-byte payload, given that the transmission is
successful with the retransmission limit of R, can be obtained as

Dm
av,succ(L,R)=

R∑

i=0

P m
succ(i|L)

P m
succ(L,R)

[
iT m

bad(L)+ T m
good(L)

]
, (12.2)
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FIGURE 12.4: Successful downlink packet (MAC frame) transmission
and associated timing (SIFS, Short Interframe Space; ACK, Acknowledg-
ment).

FIGURE 12.5: Retransmission due to packet or CF-ACK transmission
error (SIFS, Short Interframe Space; PIFS, PCF Interframe Space).

where the probability that the packet with L-byte data payload is transmitted suc-
cessfully after the ith retransmission using PHY mode m, is given by

P m
succ(i|L)= [

1− P m
good_cycle(L)

]i
P m

good_cycle(L), (12.3)

and the probability that the packet with an L-byte data payload is transmitted
successfully within the R retransmission limit under PHY mode m is given by

P m
succ(L,R)= 1− [

1− P m
good_cycle(L)

]R+1
. (12.4)

The average transmission duration for a packet with L-byte payload, given that
the transmission is not successful with the retransmission limit R, is

Dm
av,unsucc(L,R)= (R + 1)T m

bad(L). (12.5)

Now, the average transmission duration for a packet with L-byte payload and with
a retransmission limit of R is

Dm
av(L,R) = Dm

av,succ(L,R)P m
succ(L,R)

+Dm
av,unsucc(L,R)

(
1− P m

succ(L,R)
)
. (12.6)
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12.3.2 Throughput Efficiency and Delay Analysis with Application-Layer RS
Code

The throughput efficiency of 802.11a with the use of the (N,K) RS erasure code
at the application layer can be computed based on the average packet transmission
duration obtained earlier. Note that here the choice of N and K was determined
empirically. However, a model-based joint source-channel coding approach can
also be deployed to optimally determine these parameters. For more details, the
interested reader is referred to [7–9,17] and the related error protection chapter in
this book.

The RS decoder can correct up to N − K packet erasures. If there are more
than N −K packet erasures, then this results in a decoding failure. Therefore, the
probability of error after RS decoding is

P m
RS = 1−

N−K∑

i=0

(
N

i

)
(
P m

r

)i(
1− P m

r

)N−i
, (12.7)

where the resulting residual error probability P m
r of the data packet after R re-

transmissions is

P m
r = 1− Psucc(L,R). (12.8)

When a decoding failure happens, there are N − i (< K) correctly received pack-
ets, including both video and parity packets. These video packets can be utilized
for video decoding and, on average, (K/N)(N − i) packets out of N − i cor-
rectly received packets are video packets. Therefore, the throughput efficiency,
taking into the account the application-layer RS coding and the header overheads
of the higher layer protocols, is

Em
RS(La,R,N,K)

= 8La(K(1− P m
RS)+

∑N
i=N−K+1(N − i)K

N

(
N
i

)
(P m

r )i(1− P m
r )N−i )

NDm
av(La +O,R)DR(m)

,

(12.9)

where DR represents the maximum PHY data rates 6, 9, 12, 18, 24, 36, 48, and
54 Mbps for the various modes m. The numerator here corresponds to the average
number of actually received video data bits, and the denominator corresponds
to the total average number of bits that could have been transmitted in the time
required to send those useful data bits successfully.

However, the impact of the various layers’ overheads on the video quality is not
only dependent on the throughput efficiency, but also on the overall delay incurred
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by the various packets, which need to be dropped if their deadline is exceeded. In
this section, the total delay considered comprises different components: the delay
due to buffering for RS coding at the transmitter, the RS encoding delay, the de-
lay incurred in the transmission and the retransmission of packets, the buffering
delay at the receiver for RS decoding, and the RS decoding delay. At the trans-
mitter, there is no delay due to buffering and as each video packet is stored in the
interleaver, it can be transmitted simultaneously, since the RS coding is applied
across the video packets and the data transmission is along (not across) the video
packets. (See the error protection chapter in this book for more details.) We as-
sume that the process delay due to RS encoding or decoding is small and can be
neglected compared to the transmission delay. In certain applications, such as the
transmission of a video stored in a residential media server, it may be even pos-
sible to perform the (scalable) RS encoding before transmission. The maximum
transmission delay depends on the length of a packet, the maximum number of re-
transmissions, and the specific 802.11a PHY mode m that is used. The worst-case
delay2 for R retransmissions is

Dmax(m,L)= (R + 1)
(
T m

data(L)+ T m
ack + 2aSIFSTime

)
. (12.10)

If there are no packet erasures, then there is no buffering delay at the decoder. Each
video packet can be delivered to the video decoder as soon it is received. In the
presence of erasures out of the first k packets, the receiver needs to buffer up to n

packets that belong to the current RS block before performing the erasure decod-
ing. Therefore, the maximum buffering delay at the decoder is N ×Dmax(m,L).
Assuming a packet size of 2000 bytes, R = 8, and PHY mode 5, the value of Dmax
is 6.876 ms. Therefore, the total transmission delay for an RS code with N = 63
is 433.19 ms. To determine the acceptability of this delay for a particular video
streaming application, the video encoding and decoding delay need to be further
added on top of the transmission delay.

12.3.3 Impact of Cross-Layer Optimization on Video Quality

This section discusses the interaction between the various transmission strategies
deployed by the different OSI layers and their impact on the resulting video qual-
ity, thereby highlighting the need for cross-layer optimization.

First, we will determine the optimal packet size that should be selected at the
application layer to maximize the video quality Q for a given RS code and re-
transmission limit. Based on the previously computed [see (12.10)] throughput
efficiency Em

RS that takes into the account the application-layer RS coding and

2Note that the worst-case delay happens when all of the first R transmissions fail due to CF-ACK
transmission failures, not data frame transmissions failures.
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the header overheads of the higher layer protocols, the associated video quality
QEm

RS
can be computed using, for example, analytical rate–distortion models [17,

18]. The optimal packet size L∗a can be then computed

L∗a = arg max
La

QEm
RS

. (12.11)

Equation (12.11) can be solved by evaluating the Em
RS function in (12.10) and

determining the resulting QEm
RS

for all possible values of La . In a practical imple-
mentation, we can use a look-up table by precomputing the values.

Figure 12.6 shows optimal packet sizes for a fixed APP-layer RS code (63,49)
with three different numbers of maximum retransmissions, R = 0, 1, and 2. It can
be seen that for low SNRs, the optimal packet size is the largest for the case cor-
responding to R = 2. For low SNRs, using the maximum allowed number of link
layer retransmissions makes the link more reliable, and hence allows the use of
larger packet sizes. As the SNR improves, the optimal packet size corresponding
to the case of R = 0 increases rapidly. This is due to the fact that as the underlying
link becomes more reliable at higher SNRs, the resultant packet erasures can be
handled by the application-layer FEC even in the absence of any retransmissions.

FIGURE 12.6: Comparison of optimal packet sizes for different retrans-
mission limits.
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Importantly, note that for an SNR of 26 dB, the difference in quality (PSNR) for
the Coastguard video sequence is significant for various retransmission choices,
varying from a very poor quality of PSNR= 28 dB for R = 0, and an acceptable
quality of PSNR= 32 dB for R = 2, to a very good quality of PSNR= 35 dB for
R = 1.

12.4 CROSS-LAYER DESIGN

12.4.1 Problem Definition

We formulate the cross-layer design problem as an optimization with the objec-
tive to select a joint strategy across multiple OSI layers. Initially, for simplicity,
we limit our discussion to PHY, MAC, and Application (APP) layers. Hence, we
mainly consider only one-hop wireless networks, where the network and transport
layers play a less important role. Nevertheless, the proposed framework can easily
be extended to include other layers. (For example, for an extension of the cross-
layer design to multihop wireless networks, see [21,60].) For multimedia trans-
mission over multihop wireless networks, the reader is referred to Section 12.10
for a list of related literature.

Let us consider M autonomous wireless stations (WSTAs) that are streaming
video content in real time over a shared one-hop WLAN infrastructure. These
WSTAs are competing for the available wireless resources R (R ∈ R+). To use
the resources effectively, the wireless stations adapt their cross-layer strategies.

We assume that the channel condition experienced by WSTA i can be character-
ized by the measured SNR, SNRi , which varies over time.3 The current state infor-
mation for WSTA i is encapsulated in vector xi , which includes the channel con-
dition SNRi and the video source characteristics [19] ξi , that is, xi = (SNRi , ξi).
We will refer to this vector as “private information” of the WSTA. Based on
the private information, each WSTA jointly optimizes the various transmission
strategies available at the different layers of the OSI stack. The PHY strategies
may represent the various modulation and channel coding schemes existing for a
particular wireless standard. The MAC strategies correspond to different packeti-
zation, retransmission, scheduling, admission control, and FEC mechanisms. At
the APP layer, strategies may include adaptation of video compression parame-
ters (including enabling spatio-temporal–SNR trade-offs), packetization, traffic
shaping, traffic prioritization, scheduling, retransmission, and FEC mechanisms.

As mentioned in Section 12.2, in a typical resource allocation scenario, the
resource allocation is represented by the transmission opportunity time vector

3Other metrics could also be incorporated in addition to SNR to characterize the channel condition
(see, e.g., Chapter 13).
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T(R) = [t1, . . . , tM ] ∈ R
M+ , where ti (0 ≤ ti ≤ tSI) represents the time alloca-

tion by the resource coordinator to a specific WSTA i. (The length of the SI,
tSI , is determined based on the channel conditions, source characteristics, and
application-layer delay constraints [23], and is defined in more detail in the next
sections.) This vector denotes the allocated time to WSTA i (with

∑M
i=1 ti ≤ tSI)

by either the polling-based MAC resource allocation (see Section 12.3 for details
on various MAC strategies) or is obtained on average by a WSTA, through the
contention process [54]. As highlighted in Section 12.3, the polling-based MAC
is mostly used in practice for video transmission applications and forms the basis
of the cross-layer design in this chapter.

Given a static time allocation, and the specific constraints of the WSTA (e.g.,
application-layer delay constraints), the cross-layer design problem can be formu-
lated as an optimization with a certain objective (e.g., maximize goodput, mini-
mize consumed power) based on which optimal joint strategy across the multiple
OSI layers is selected. Let si represent a cross-layer strategy available to WSTA i,
which lies in the set of feasible PHY, MAC, and APP layers strategies Si for
that station. The cross-layer strategy si is adopted in real time by the WSTA i.
Then, given the private information xi and the predetermined time allocation ti , a
cross-layer strategy si results in the utility ui(ti , si ,xi ), which for video streaming
applications represents the expected received video quality in terms of perceived
quality or PSNR. Hence, the optimal cross-layer strategy can be found

s
opt
i = arg max

si∈Si

ui(ti , si ,xi ),

s.t. Delay(ti , si ,xi )≤Delaymax
i .

(12.12)

In the formulation just given, Delaymax
i represents the delay constraint for the

particular video transmitted by WSTA i and Delay(ti , si ,xi ) represents the delay
incurred by the cross-layer strategy si for the specific private information xi and
resource allocation ti . Importantly, note that, unlike multimedia communications
over wired networks, which need to fulfill traditional optimizations in terms of
rate and distortion [17], in the wireless multimedia transmission case, the con-
straint becomes meeting the strict deadlines of the video transmission Delaymax

i

given the allocated transmission time ti (i.e., transmission opportunities allocated
or gained by a wireless user). Whenever these delay constraints are not met, the
packets are not received in time by the decoder, thereby impacting the resulting
utility ui .

Figure 12.7 depicts a conceptual scheme of the aforementioned cross-layer op-
timization framework.

Finding the optimal solution to the aforementioned cross-layer optimization
problem is difficult because:
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FIGURE 12.7: Conceptual framework of cross-layer optimization.

• Deriving analytical expressions for ui(ti , si ,xi ) and Delay(ti , si ,xi ) as
functions of channel conditions is very challenging, as these functions are
nondeterministic (only worst case or average values can be determined),
nonlinear, and there are dependencies between some of the strategies si
[10,11].

• The algorithms and protocols at the various layers have often different ob-
jectives and have been traditionally optimized separately. Moreover, vari-
ous layers operate on different units of the multimedia traffic and take as
input different types of information. For instance, the PHY is concerned
with symbols and depends heavily on the channel characteristics, whereas
the application layer is concerned with the semantics and dependencies be-
tween flows and depends heavily on the multimedia content.

• The wireless channel conditions and multimedia content characteristics
may change continuously, requiring constant updating of the parameters.

• Formal procedures are required to establish optimal initialization, grouping
of strategies at different stages (i.e., which strategies should be optimized
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jointly), and ordering (i.e., which strategies should be optimized first) for
performing the cross-layer adaptation and optimization.

• For the joint optimization of the strategies, one can use derivative and
nonderivative methods (such as linear and nonlinear programming). Be-
cause this is a complex multivariate optimization with inherent dependen-
cies (across layers and among strategies), an important aspect of this opti-
mization is determining the best procedure for obtaining the optimal strat-
egy s

opt
i . This involves determining the initialization, grouping of strategies

at different stages, a suitable order in which the strategies should be op-
timized, and even which parameters, strategies, and layers should be con-
sidered based on their impact on multimedia quality, delay, or power. The
selected procedure determines the rate of convergence and the values at
convergence. The rate of convergence is extremely important, as the dy-
namic nature of the wireless channels requires rapidly converging solutions.
Depending on the multimedia application, wireless infrastructure, and flex-
ibility of the adopted WLAN standards, different approaches can lead to
optimal performance. A categorization of the possible solutions is given in
the next section.

• Finally, different practical considerations (e.g., buffer sizes, ability to
change retry limits or modulation strategies at the packet level [11]) for
the deployed wireless standard must be taken into account to perform the
cross-layer optimization.

12.4.2 Categorization of Cross-Layer Solutions

To gain further insights into the principles that guide cross-layer design and to
compare the various solutions, we propose the following classification of the pos-
sible solutions based on the order in which the cross-layer optimization is per-
formed.

• Top-down approach—The higher layer protocols optimize their parame-
ters and the strategies at the next lower layer. This cross-layer solution has
been deployed in most existing systems, wherein the APP dictates the MAC
parameters and strategies, while the MAC selects the optimal PHY layer
modulation scheme. Section 12.6 presents such a cross-layer optimization
approach.

• Bottom-up approach—The lower layers try to insulate the higher layers
from losses and bandwidth variations. This cross-layer solution is not op-
timal for multimedia transmission due to incurred delays and unnecessary
throughput reductions. The beginning of Section 12.6 presents such a cross-
layer optimization approach.

• Application-centric approach—The APP layer optimizes the lower layer
parameters one at a time in a bottom-up (starting from the PHY) or top-
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down manner, based on its requirements. However, this approach is not
always efficient, as the APP operates at slower timescales and coarser data
granularities (multimedia flows or group of packets) than lower layers (that
operate on bits or packets), and hence it is not able to instantaneously adapt
their performance to achieve an optimal performance. Section 12.6 presents
such a cross-layer optimization approach.

• MAC-centric approach—In this approach, the APP layer passes its traf-
fic information and requirements to the MAC, which decides which APP
layer packets/flows should be transmitted and with which delay or packet-
loss requirement. The MAC also selects the PHY layer parameters based
on the available channel information and higher layer requirements. The
disadvantage of this approach resides in the inability of the MAC layer to
perform adaptive source-channel coding trade-offs given the time-varying
channel conditions and multimedia requirements. Section 12.5 presents
such a cross-layer optimization approach.

• Integrated approach—In this approach, strategies are determined jointly
across the various protocol layers. Unfortunately, exhaustively trying all
the possible strategies and their parameters in order to choose the compos-
ite strategy leading to the best quality performance is impractical due to
the associated complexity and incurred delay. A possible solution to solve
this complex cross-layer optimization problem in an integrated manner is
to use learning and classification techniques that use off-line training data
to categorize the various channel conditions and application requirements
and identify what are the optimal choices of cross-layer interactions for the
various identified categories and, subsequently, use this information to drive
the online cross-layer optimization. Section 12.8 presents such a cross-layer
optimization approach.

The aforementioned cross-layer approaches exhibit different advantages and
drawbacks for wireless multimedia transmission, and the best solution depends on
the application requirements, used protocols, and algorithms at the various layers,
complexity, and power limitations. Next, we will give several illustrative examples
on how to perform the cross-layer optimization and highlight the improvements
in multimedia quality and power consumption.

12.5 CROSS-LAYER MAC–APPLICATION-LAYER OPTIMIZATION
FOR ADAPTIVE RETRANSMISSION USING QUEUING THEORY

This section illustrates how queuing theory can be used to model the transmis-
sion of video packets over an 802.11 WLAN network and how the joint MAC–
application-layer interaction can be optimized based on the queuing models, while
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fulfilling complexity constraints (such as the MAC buffer limitation). We first de-
sign an optimal MAC retransmission limit adaptation strategy to maximize the
achieved video quality and subsequently show that by jointly optimizing the MAC
retransmission limit along with the application-layer rate adaptation and priori-
tized scheduling strategies, the decoded video quality can be improved signifi-
cantly.

12.5.1 MAC-Layer Retransmission Limit Adaptation

First, we consider the optimization of the MAC-layer retransmission in isolation
by aiming to maximize the resulting goodput. We assume that the MAC layer is
aware of the packet-loss probability of the channel (after the PHY layer channel
coding and modulation strategy was deployed), as well as the fixed multimedia
traffic rate. This is a realistic assumption for existing 802.11-based wireless video
solutions. (See Chapter 13.) Thus, we assume a very simple form of cross-layer
parameter communication. However, because of this simplified cross-layer op-
timization, since the MAC is not aware of the video characteristics, the relative
importance and dependencies between packets, the impact of losing specific pack-
ets on the quality, and so on, the problem of maximizing the video quality reduces
to minimizing the MAC packet loss rate.

At the MAC, packet losses occur due to two reasons: link erasures and buffer
overflows. While the loss due to link erasures decreases with an increasing re-
transmission limit R, the loss due to the buffer overflow increases with an increas-
ing R. Thus, we need to have a strategy to optimally select the R that minimizes
the overall MAC packet loss due to buffer overflow and link errors. We first show
how an analytical solution for the optimal R can be obtained using a fluid model
for the buffer queue under static channel error conditions and then illustrate the
resulting improvements in multimedia quality using real-time retransmission limit
adaptation [11].

A simplified analysis based on a fluid model for the queuing system is pre-
sented next. For this, a constant arrival rate λ of the multimedia packets with
uniform (packet) size is assumed. Let P be the packet loss probability (controlled
by the PHY layer) of the link without retransmission, pB be the buffer overflow
rate, and pL = P R+1 be the link packet erasure rate (i.e., the packet drop rate
after R unsuccessful retransmissions). If C is the service rate of the link, the ef-
fective utilization factor of the link ρ may be defined as ρ(P )= λ/C(1−P). The
overall loss rate pT (R,P ), which is defined as the sum of pB and pL,4 may be
derived [11]

4We assume both pB and pL are relatively small such that they can be added together to approxi-
mate the total loss rate.
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pT (R,P )= pB(R,P )+ pL(R,P )= 1− 1

ρ(P )

1

1− P R+1
+ P R+1. (12.13)

When P is fixed, pB(R) monotonically increases with R, while pL(R) decreases
at the same time (see Figure 12.8). To minimize pT (R), we temporarily relax the
discrete constraint on R, assuming it is a continuous variable. R can then be found
by solving the equation dpT (R)

dR
= 0, which leads to

R = logP

(
1− 1√

ρ

)
− 1. (12.14)

FIGURE 12.8: (Top) MAC PLR under fixed- and RTRO-based retrans-
mission strategies; (bottom) trace of retransmission limit adaptation.
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Interestingly, it can be found that at this point pB(R) = pL(R), implying
that the optimal R is located at the intersection point of the two functions—
pB(R) and pL(R). This can also be observed from Figure 12.8 (top). The op-
timized retransmission limit can then be obtained by rounding R to the clos-
est integer. Therefore, we conjecture that we can determine the optimal R as
arg minR |pL(R) − pB(R)|. In other words, the optimal R is chosen as the one
that can strike a balance between overflow loss and link loss. In [11], this conjec-
ture was also proven using an M/G/1 queuing model for the video traffic, as well
as using real video sequences and transmitting them using an NS-2 simulator-
based implementation of the 802.11a/b/g MAC standard. The dependencies of
the optimal R on the multimedia packet arrival rate, the experienced link packet
loss rate (PLR), and multimedia traffic characteristics (CBR versus VBR) can also
be found in [11].

This analysis resulted in the following simple iterative algorithm for real-time
retransmission limit optimization (RTRO):

1. The network queue and the MAC layer monitor the overflow rate pB(R)

and the packet error rate pL(R).
2. If pB < pL, then R is increased; if pB > pL, then R should be decreased.

In Figure 12.8 (top), one typical simulation result is presented based on [11] to
show the effectiveness of the aforementioned RTRO strategy. From Figure 12.8,
we can observe that an optimal static setting for R exists, depending on the chan-
nel conditions and traffic characteristics, which can minimize pT . However, as
illustrated in Figure 12.8, the optimal retransmission setting changes with chan-
nel conditions and traffic characteristics, and thus the MAC needs to continu-
ously adapt (optimize) the retransmission limit. Fortunately, even a simple adap-
tive cross-layer strategy, such as the RTRO strategy, is able to quickly track the
optimal retransmission limits, as shown in Figure 12.8 (bottom). See [11] for more
details and results.

12.5.2 Joint Application–MAC Cross-Layer Optimization

The MAC-layer RTRO adaptation can also be jointly optimized with the
application-layer rate adaptation and prioritized scheduling strategies by asso-
ciating different retransmission limits to different priority packets. A synopsis of
the discussed Application–MAC cross-layer transmission algorithm is given for
illustration purposes. See [11] for more details.

The application layer can classify various packets/frames/layers of the com-
pressed video bit stream into different priority classes having different delay re-
quirements, dependencies, relative importance, and impact on the received video
quality (see also next section). Let vector PV = [PV 1 PV 2 · · · PV N ] specify
the tolerable MAC packet loss rates of all the video layers (determined by the
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QoS requirement of the scalable video). To maximize the video quality Q, un-
equal error protection (UEP) needs to be provided: higher priority packets need
to be transmitted first and with a lower PLR, as they have the highest impact on
multimedia quality, while the lower priority packets can be discarded or trans-
mitted with a higher PLR when the channel conditions worsen. To provide UEP,
multiple priority queues are maintained at the interface between MAC and appli-
cation layer [11] and different retransmission limits are used for each of the video
layers. All the queues are managed by a common absolute Priority-Queuing (PQ)
discipline. To achieve application-layer rate adaptation and prioritized schedul-
ing, several new features can be added to conventional PQ. If ci is the incom-
ing rate of packets into priority queue i and C is the total available link ca-
pacity, then the perceived link capacity of queue j in the worst case5 can be
approximately expressed as Cj = max{0,C −∑j

i=1 ci}, where queue priorities
decrease with increasing i. As long as cj < Cj , queue j will have few over-
flow losses. However, all queues will still be exposed to the same packet erasure
rate.

The aforementioned analysis for the fluid model and M/G/1 model can be fur-
ther extended to include a multiqueue system and, based on this, a systematic
retry-limit configuration method for the MAC can be determined to optimize
the video quality (see [11] for more details). Let R = [R1 R2 · · · RN ] be
the set of the retransmission limits for the different priority layers/packets and
s = [s1(R1,P ) s2(R2,P ) · · · sN(RN,P )] be the set of average number of
link retransmissions given R and P . Given the departure rates from the queues
to the link �= [�1 �2 · · · �N ], determined by the application-layer prior-
itized scheduling strategy, the overall average number of packet retransmissions
can be calculated as

s̄(R,P )= � · sT (R,P )

� · 1 , (12.15)

where 1= [1 1 · · · 1]T .
We introduce a shadow retry limit (SRL) for the MAC, with a correspond-

ing retransmission limit vector Rsrl (all its elements are equal to SRL). This
Rsrl is maintained by the MAC but is not enforced on any of the queues. The
optimal Rsrl of a multiqueue system can be computed by lumping all the over-
flows and link erasures observed from different queues into a single overflow rate
and link erasure rate and running the MAC-driven RTRO algorithm developed
for a single-queue system. Meanwhile, by assuming the same average number
of packet retransmissions as that of Rsrl, the MAC can compute the actual re-
transmission limit vector Rre (with unequal elements) that will be applied to the

5Worst case means that every arrival of queue j has to wait for the end of the service of a packet
from a higher priority queue.
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queues. The mapping from Rsrl to Rre is performed using the following proce-
dure.

1. Calculate vector RV = [�logP PV 1 − 1� �logP PV 2 − 1� · · ·
�logP PV N − 1�], which specifies the minimum retransmission limit for
the queues that can satisfy Pv.

2. Set i = 1.
3. Construct Rre = [RV 1 · · · RV i0 · · · 0].
4. If s̄(Rre,P ) < s̄(Rsrl,P ), go to step 5. Otherwise, continuously reduce the

ith components retransmission limit Rre
i by 1 until s̄(Rre,P )≤ s̄(Rsrl,P )

again, and stop.
5. If i =N , stop; otherwise, i = i + 1 and go to step 3.

More details about the deployed algorithm and its theoretical foundation can be
found in [11].

To highlight the impact of this cross-layer optimization on the achieved multi-
media quality we compare the following adaptation schemes:

• No optimized strategies are deployed at the MAC or application layers, that
is, no RTRO.

• MAC-layer optimization (RTRO), but with no application-layer awareness.
• Application-layer optimization (rate adaptation and prioritized scheduling),

but no MAC-layer optimization.
• Joint application–MAC cross-layer optimization.

The impact of these cross-layer strategies on the perceived video quality was
evaluated by performing a visual experiment [11]. Since the experiments are con-
ducted at relatively low bit rates and in the presence of packet losses, impairments
are expected, and thus, the selected five scales are very annoying (1), annoying (2),
slightly annoying (3), perceptible but not annoying (4), and imperceptible (5).
The statistical scores summarized in Table 12.1 clearly illustrate the advantages
of cross-layer optimization.

Table 12.1: Subjective video quality experiment.

Deployed strategies Visual score
No optimization at MAC and 1.4

application
MAC-layer optimization (RTRO) 1.9
Application-layer optimization 3.8
Joint application–MAC cross-layer 4.6

optimization
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12.6 CROSS-LAYER MAC–APPLICATION LAYER FOR ADAPTIVE
RETRANSMISSION AND PACKETIZATION USING
LAGRANGIAN OPTIMIZATION

This section illustrates a different optimization and modeling methodology (as
opposed to the queuing-driven method discussed in the previous section) for the
problem of cross-layer design for optimized wireless multimedia transmission,
based on Lagrange multipliers.6 We consider a similar cross-layer problem as
before, namely the joint application-layer adaptive packetization and prioritized
scheduling and MAC-layer retransmission strategy. The cross-layer problem is
posed as a distortion minimization given delay constraints, and analytical solu-
tions are derived based on the well-known Lagrangian optimization framework.
In this process, we highlight an important aspect of wireless multimedia transmis-
sion: the need to convert conventional rate-constraint problems as conventionally
considered by Lagrangian-based video optimizations into time-constrained prob-
lems based on the amount of time allocated by the resource moderator of the
WLAN (i.e., access point) to a specific station. Moreover, we also discuss the
difference between off-line optimizations as opposed to online solutions that can
explicitly consider real-time available information about previously transmitted
packets.

12.6.1 Motivation for Cross-Layer Optimization: A Simple Packetization Example

First, we highlight the need for joint application-MAC layer optimization by eval-
uating existing adaptive packetization algorithms currently deployed at the MAC
layer, which do not explicitly consider the video applications delay constraints
and distortions. Section 12.4 mentioned the overhead associated with the packeti-
zation and transmission protocols at the various layers of the OSI stack. We refer
to this overhead (in terms of bits) discussed in the previous section as LHeader .
(As before, LHeader reflects the packet header as well as the protocol overhead
necessary to send a packet in a practical implementation.) Since the MAC is ag-
nostic to the bit stream distortions or the video application delay constraints, the
optimization at this layer is simply aimed at maximizing the throughput. Given
the channel SNR and the PHY modes, the optimal packet size L∗ that maximizes
the goodput is computed analytically in [6,26] as

L∗ = LHeader

2
+ 1

2

√
(
LHeader

)2 − 4b(LHeader)2

ln(1− Ps)
, (12.16)

6Note that Lagrangian optimization was already used successfully in other video system applica-
tions, such as rate-control optimization or joint source-channel coding.
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Table 12.2: Decoded PSNR for packet size optimized at the MAC layer.

pe Fixed packet size Fixed packet size Optimized scheme
L= 500 bytes L= 1000 bytes L∗ determined by MAC

Decoded PSNR (dB) Decoded PSNR (dB) Decoded PSNR (dB)
6× 10−6 32.16 30.25 30.08 (L∗ = 2249 bytes)
1× 10−5 30.45 28.32 27.90 (L∗ = 1738 bytes)
3× 10−5 28.76 25.56 25.86 (L∗ = 997 bytes)
5× 10−5 25.01 24.09 24.12 (L∗ = 768 bytes)

where b is the number of bits per symbol and Ps is the probability of symbol error,
which will depend on the modulation type and link SNR. However, this packet-
size optimization mechanism does not consider either the distortion impact of the
various packets or the video delay constraints. Illustrative results, comparing the
decoded PSNR obtained with this optimal packet size versus alternative ad hoc
schemes with fixed packet sizes, are summarized in Table 12.2 for the Coast-
guard sequence (at CIF resolution 30 frames per second) that was compressed
using a scalable codec [13,14] and for an application-layer delay constraint of
400 ms. Furthermore, the header overhead LHeader was 30 bytes (240 bits). In all
scenarios, the retransmission limits have been set to 0.

From Table 12.2, it can be clearly concluded that the optimal packet size de-
termined at the MAC layer results in a suboptimal performance in terms of the
decoded video quality. This motivates the need for cross-layer optimization in-
volving both channel conditions, but also explicitly considering the content char-
acteristics and video encoder features, as well as the delay constraints, when de-
termining the packet sizes and the associated retransmissions.

12.6.2 Formalizing the Joint Cross-Layer Optimization Problem Based on Delay
Constraints

We consider a video bit stream that is first organized into separate layers based
on the delay deadlines of the various video frames (e.g., I-, P-, and B-frames in
conventional MPEG and H.26x predictive structures and L- and H-frames in the
temporal pyramids of state-of-the-art wavelet scalable coders). In this way, data
from different deadline layers are never jointly packetized, as this can lead to
suboptimal scheduling strategies due to inefficient exploitation of the remaining
transmission time. To facilitate real-time adaptive packetization, scheduling and
cross-layer optimization with the lower layers based on instantaneous channel
conditions and decoding deadlines (without actually requiring the reorganization
of the bit stream) an abstraction layer “multitrack hinting” [45] can be adopted,
which is an extension of the MP4 file format hinting mechanism [39]. Multitrack
hinting can be used to structure the bit stream into multiple sub-layers with dif-
ferent distortion impacts and delay constraints, as illustrated in Figure 12.9. The
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FIGURE 12.9: Deployed multitrack rate–distortion hinting file format.

concept of multitrack hinting was developed in [45] and discussed in more detail
in [15].

The multitrack concept is useful for wireless multimedia transmission because
it enables (i) real-time adaptation of the packet sizes at transmission time, after
the encoding has been performed, (ii) real-time prioritization of different packets
based on distortion impacts and changing delay constraints, and (iii) real-time op-
timized scheduling of video packets based on their deadline and the transmission
of the previous packets.

The goal of the cross-layer optimization discussed in this section is to deter-
mine the optimal packet size Lj and maximum number of times each packet j

can be transmitted, mmax
j , such that the expected video distortion is minimized

under a given delay constraint. Based on whether packet j is received or lost, the
decoded video experiences distortion D

quant
j or Dloss

j . Hence, when a packet is

received successfully, the decoded distortion decreases by an amount Dred
j , where

Dred
j =Dloss

j −D
quant
j . This represents the utility (benefit) of receiving the packet

and can be determined using encoding by empirical or analytical rate–distortion
models [18]. The goal of the optimization strategy is to maximize the expected
utility for a Group of Pictures (GOP),

DGOP =
Np∑

j=1

Dred
j P succ

j , (12.17)

with Np being the number of packets within a GOP and P succ
j being the probabil-

ity of successfully receiving packet j , given the bit error probability Pe , subject
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to a delay constraint,

j∑

k=1

Timek ≤Deadlinej , 1≤ j ≤Np, (12.18)

where Timej is the actual time it takes to transmit packet j and Deadlinej is the
time deadline for the packet to be received at the application layer of the client in
order to be decoded and displayed.7 The deadlines are determined based on the
coding dependencies between the video frames (and thus, the encoding structure
and parameters) and also include the maximum delay tolerated at the application
layer Delaymax.

In the wireless video transmission scenario considered in this section, there are
two reasons for discarding packets: packet loss from the BER in the wireless link
and exceeded packet transmission deadlines. The impact of the buffer overflow
or underflow was not considered. We define P succ

j as the probability of success-
fully receiving the packet given bit errors in the network. With packet size Lj

(bits) and bit error probability Pe (controlled by the physical layer, based on the
channel SNR, channel coding and modulation strategy used, etc.), the packet loss
probability is PLj

= 1 − (1 − Pe)
Lj . Furthermore, if we assume that the wire-

less link is a memoryless packet erasure channel [26], such that the packets are
dropped independently, the probability of success for packet j with an upper limit
on the number of transmissions mmax

j (i.e., a retransmission limit mmax
j − 1) can

be calculated

P succ
j =

mmax
j∑

k=1

(PLj
)k−1(1− PLj

)= 1− (PLj
)
mmax

j . (12.19)

The goal of the packetization and retransmission assignment policy is then
to solve the delay-constrained optimization problem defined by Eqs. (12.18)
and (12.19).

Importantly, two important differences exist between a conventional joint
source-channel coding (JSCC) optimization [7–9] and the cross-layer optimiza-
tion discussed here. First, in JSCC, the optimal channel codes are determined
given channel rate constraints, while we are focusing on the delay-constrained
transmission scenario for adaptive MAC retransmission and packetization. Sec-
ond, as discussed in the previous sections, due to the MAC-layer feedback imple-
mented within the 802.11 wireless protocol, we have access to timely informa-

7Note that we do not transmit any packets of the GOP beyond the deadline of the last packet within
the GOP to avoid any impact on future GOPs, as GOPs are treated as independent entities in the SIV
codec.



Section 12.6: CROSS-LAYER MAC–APPLICATION LAYER 365

tion about the lost packets and the actual time that was needed for transmitting
a packet Timeact. Hence, the cross-layer optimization can be performed success-
fully using online algorithms that combine real-time information with expected
packet loss information, unlike in the conventional JSCC schemes that are de-
ployed at the application layer. Furthermore, we rely on the implemented MAC
retransmission strategies to consider the actual transmissions for cross-layer opti-
mization rather than considering the current transmission and hypothetical future
retransmission to optimize the expectation of a Lagrangian cost function. Hence,
rather than modeling the effect of different transmission policies on the properties
of a Markov decision process (as in [46,47]) and finding the strategy that max-
imizes the expectation of the video quality over all possible paths, the features
of state-of-the-art wireless LAN protocols can consider determining an optimized
cross-layer solution where

i. the feedback is considered to be immediate, such that coding dependencies
are guaranteed to be satisfied, thereby avoiding the polynomial optimiza-
tion objective encountered in [46,47]

ii. the approach is greedy in the sense that all resources can be consumed in
transmitting data that has one deadline, before considering the transmis-
sion of data with a later deadline.

12.6.3 Packetizing and Retransmitting Data with Common Deadlines

Let us first consider the problem of solving the aforementioned cross-layer op-
timization for video layers with one common deadline. First, it can be shown
that the problem of delay-constrained transmission can be mapped into a rate-
constrained transmission. Assume that there are Q deadline layers with a common
decoding deadline, which we label Deadline. Each deadline layer is partitioned
into packets (one or more), and the optimal retransmission strategy is determined
for this set of packets. Let one such partitioning lead to a total of N̂ packets
(for this set of deadline layers). Furthermore, consider that packet j , with packet
size Lj ,8 is transmitted mj times. Then, given the physical layer transmission
rate RatePHY , the time to transmit this packet may be computed

Timej =mj

(
Lj

RatePHY
+ TimeO

)
, (12.20)

where TimeO is the timing overhead for the 802.11 MAC protocol (necessary to
send a packet in a practical implementation), which can be approximated based

8Given that all bits within a deadline layer have roughly the same importance, we partition each
deadline layer into equal parts for packetization. Hence packet sizes Lj are the same for all packets
within one deadline layer. Furthermore, we assign the same retry limit to packets from the same
deadline layer.
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on [1,2,10] and includes the time of waiting for acknowledgments, duration of
empty slots, expected back-off delays for transmitting a frame, and so on. Given
that all packets have the same deadline, the delay constraint on the packet trans-
mission can be rewritten

N̂∑

j=1

mj

(
Lj

RatePHY
+ TimeO

)
≤Deadline, (12.21)

or, equivalently,

N̂∑

j=1

mj

(
L̂j

RatePHY

)
≤Deadline, (12.22)

where the time overhead discussed in previous sections can be included as an
equivalent packet length overhead. We can further rewrite this as

N̂∑

j=1

mjL̂j ≤ RatePHY ×Deadline= Lmax. (12.23)

Hence, the delay constrained optimization becomes

max

[
N̂∑

j=1

Dred
j P succ

j

]

subject to
N̂∑

j=1

mjL̂j ≤ Lmax. (12.24)

Note that mj corresponds to the redundancy rate associated with packet k.
However, since the actual value of mj cannot be determined analytically with-
out actually transmitting the packet (it is a particular instance of an underlying
random process), the expected redundancy rate, in terms of the expected number
of transmissions of the packet, is considered. For packet j with a transmission
limit mmax

j the expected number of times the packet is transmitted is

mj =
mmax

j∑

i=1

i(1− PLj
)(PLj

)i−1 +mmax
j (PLj

)
mmax

j = 1− (PLj
)
mmax

j

1− PLj

= P succ
j

1− PLj

.

(12.25)
Using a similar Lagrangian formulation, the optimization functional can be rewrit-
ten as

F =
N̂∑

j=1

(
Dred

j P succ
j − λL̂jmj

)
, (12.26)
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where λ (≥ 0) is the Lagrange multiplier. The goal of the optimization is thus to
maximize F . This problem may be further decomposed into a set of N̂ indepen-
dent optimizations for the packets, where the goal is to optimize the individual
cost functional

Fj =
(
P succ

j − λjmj

)
, with λj = λ

L̂j

Dred
j

. (12.27)

The optimal solution may be obtained based on the convex hull of the proba-
bility of success P succ

j versus the expected redundancy rate mj curve. Note that
the actual packet length Lj parameterizes this curve. In particular, the optimal
solution (m

max,opt
j ,L

opt
j ) is obtained on the curve at the point with the maximum

redundancy, where the slope of the curve is larger (or equal) than the parame-
ter λj . More details on determining the optimal λ using, for example, a bisection
search, and the corresponding optimal retransmission limit and packet size can be
obtained in [22].

Comparing the derived expressions for P succ
j and mj for the considered cross-

layer optimization, we can clearly see that they have a linear relationship (with a
slope 1− PLj

). Hence, for such a linear curve, the optimal limit on the number

of transmissions m
max,opt
j for packet j will be ∞, when 1 − PLj

≥ λj and 0
otherwise, that is, either transmit a packet until it is received or do not transmit
the packet at all. This is an important result, which indicates that the optimum
retransmission policy is to retransmit as often as needed (mmax,opt

j =∞) the most
important packets corresponding to high distortion impacts and to not transmit the
less important packets at all.

Using the aforementioned analysis, a real-time algorithm can be developed to
tune the retransmission limit based on the actual number of packet transmissions
(instead of the expected redundancy rate). After analytically determining the op-
timal packet size9 and the maximum number of packet transmissions (as∞ or 0),
we sort the set of packets in decreasing order of the fraction (1− P

L
opt
j

)/λj . The

packets are then transmitted in this order, where no packet is transmitted before
all preceding packet transmissions are either completed or terminated. This en-
sures that coding dependencies between the layers are maintained and that the
additive distortion model is not violated. Since in the delay-constrained wireless
video transmission the maximum number of times a packet j can be transmitted
cannot actually be ∞ and is bounded by the delay deadline Deadline (assumed
here to be the same for all packets), the limit for each packet is tuned based on the

9Note that the packet size is upper bounded by the size of the deadline layers.
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actual number of observed transmissions that occurred before it,

m
max,opt
j =

⌊
Deadline−∑j−1

k=1 mk(L
opt
k /RatePHY + Timeo)

L
opt
j /RatePHY + Timeo

⌋
, (12.28)

where 
·� is the floor operation. One additional advantage of computing this limit
in real time is that we can recompute the retransmission limits (and also packet
sizes if necessary) when the channel condition Pe or used PHY modulation strat-
egy (that determines RatePHY ) changes. Hence, for data belonging to different
deadline layers with a common deadline, we can determine the optimal packet
size as well as the retransmission limit using the aforementioned analysis. The
next section shows how this approach can be extended to the case when we have
deadline layers with different decoding deadlines for the real-time transmission
scenario.

12.6.4 Real-Time Cross-Layer Algorithm for Wireless Video Streaming

This section extends the previous analysis to include sets of packets with differ-
ent deadlines, as is the case in typical video streaming scenarios. One approach
used to solve this cross-layer optimization is to formulate it as a joint optimiza-
tion problem (optimization across different deadlines, quality layers, etc.) as per-
formed in [47]. However, the complexity of such an algorithm increases rapidly
with the number of different deadlines that need to be considered, especially as
each transmission impacts all future transmissions and it is thus not practical.
Additionally, such a joint optimization would require that assumptions are made
about future channel conditions, modulation strategies employed, and so on.

Instead, a real-time greedy approach can be used, which is based on the analy-
sis in the previous section, but which has the benefits of simplicity, as well as
of enabling real time, instantaneous adaptation to varying channel conditions or
PHY modulation strategies. In this greedy approach, the optimization problem
(to determine the optimal packet size and the retransmission limit) can be solved
independently for each set of deadline layers with a common deadline. Note that
this approach does not consider the benefits of transmitting packets (deadline lay-
ers) with a late deadline before packets with an earlier deadline (which might be
advantageous in some cases). However, a major advantage of three-dimensional
wavelet video coders, as discussed in Chapter 5, is that packets with the largest
distortion impact are mostly transmitted with an early decoding deadline due to
the hierarchical temporal structure deployed, and hence the greedy algorithm is
likely to perform close to the optimal solution. The real-time greedy algorithm is
outlined in more detail in Table 12.3. In Table 12.3, the superscript k corresponds
to a group of packets having the same deadline Deadlinek .
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Table 12.3: Illustrative real-time greedy algorithm for adaptive packetization
and MAC retransmission.

Set Timecur = 0.
Compute the decoding deadlines for each subband, and hence each code block, based
on the encoding parameters, and tolerable application delay. Let there be K separate
deadlines (with values Deadlinek).
Reorganize (hint) the scalable bit stream into deadline layers.
Sort the deadlines in ascending order.
For k = 1 :K

Gather all deadline layers with deadline (Deadlinek).

Determine instantaneous channel conditions Pe and PHY modulation strat-
egy RatePHY .

Solve the equivalent rate-constrained optimization using the probability of suc-
cess versus expected redundancy rate curve to determine optimal λ and deter-
mine optimal packet sizes and initial retransmission limits (as∞ or 0).

Packetize data using these obtained packet sizes L
opt,k
j

.

Sort the packets in descending order of
(

1− Pk

L
opt,k
j

)
/λk

j
.

For j = 1: N̂k

Tune the actual retransmit limit m
max,opt,k
j

=
⌊

Deadline−Timecur

(L
opt,k
j /RatePHY+Timeo)

⌋
.

Transmit the packet to determine the actual number of transmissions mk
j

(mk
j
≤

m
max,opt,k
j

).

Set Timecur← Timecur +mk
j

(
L

opt,k
j

/RatePHY + Timeo

)
.

If Timecur +
(
L

opt,k
j+1 /RatePHY + Timeo

)
> Deadlinek , break.

In summary, the main conclusions of the aforementioned cross-layer optimiza-
tion case study are threefold. First, an analytical solution can be determined based
on existing joint source channel coding research, for a special case of the consid-
ered cross-layer optimization problem, that is, when all packets have the same
decoding deadline. Under such a scenario, the optimal cross-layer strategy results
in retransmitting the most important packets (subbands) as often as needed and
discarding the lesser important packets. Second, this analysis can be used to de-
velop a real-time greedy algorithm to perform cross-layer optimization for the
case when different sets of data have different decoding deadlines. This discussed
greedy algorithm can successfully take advantage of the available feedback at the
MAC about the actual number of times previous packets have been transmitted to
correctly determine the number of times the current packet can be retransmitted.
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Moreover, this algorithm can also successfully adapt on the fly to the changing
channel conditions or physical layer modulation strategies. In [22], it was shown
that the discussed algorithms can achieve significant improvements of 2 dB or
more for a variety of video sequences, transmission bit rates, and delay constraints
as opposed to simple algorithms based on only the packets’ importance.

12.7 EFFICIENT RESOURCE RESERVATION MECHANISMS FOR
WIRELESS MULTIMEDIA TRANSMISSION USING 802.11E

As mentioned in Section 12.1, in the 802.11e standard [3], a new wireless
medium access method called Hybrid Coordination Function (HCF) is intro-
duced, which combines the EDCA contention-based channel access mecha-
nism with the polling-based channel access mechanism HCCA. Both EDCA
and HCCA operate simultaneously and continuously. HCF enables differentiated
treatment of traffic streams and can be tuned to meet QoS requirements of low
latency and jitter. As such, its use for wireless multimedia streaming designs is an
important cross-layer design issue. However, in order to achieve optimal transport
of video over 802.11e HCCA, we need to accommodate application-layer con-
straints such as bandwidth variations due to variable bit rate (VBR) coding, delay
constraints, and selective packet retransmission, as discussed in previous sections.

12.7.1 Background for Video Transmission over HCCA in IEEE 802.11e

The feasibility of the EDCA and HCCA mechanisms of HCF for multimedia
transmission was addressed in [48–51]. In an attempt to optimize scheduling for
VBR video traffic, in [49] an approach was presented for efficient scheduling by
the resource manager (Hybrid Coordinator [HC]) based on the measured queue
sizes of each traffic stream. HCCA was used, as it provides significant benefits
over EDCF for applications requiring strict QoS. However, it is important to men-
tion that all these approaches perform optimization at either the application layer
or the MAC layer, thereby not benefiting from the advantages provided by the
joint application-layer and MAC-layer optimization that can improve the overall
system performance significantly.

HCCA-Based Admission Control for Video

HCCA is used to provide a parameterized QoS service. With HCCA, there is a
negotiation of QoS requirements between the QoS enhanced wireless station and
the HC. Once a stream for a WSTA is established, the HC allocates transmission
opportunities (TXOPs) via polling to the WSTA in order to guarantee its QoS
requirements. The HC enjoys free access to the medium during the contention-
free period and uses the highest EDCA priority during the contention period in
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order to (1) send polls to allocate TXOPs and (2) send downlink parameterized
traffic. It makes use of the priority interframe space to seize and maintain control
of the medium. Once the HC has control of the medium, it starts to deliver para-
meterized downlink traffic to stations and issues QoS contention-free polls (QoS
CF-Polls) to those stations that have requested parameterized services. QoS CF-
Polls include the TXOP duration granted to the WSTA. If the station being polled
has traffic to send, it may transmit several packets for each QoS CF-poll received
respecting the TXOP limit specified in the poll. In order to utilize the medium
more efficiently, it is possible to piggyback both the acknowledgment (CF-Ack)
and the CF-Poll onto data packets. In contrast to the point coordination function
of the IEEE 802.11-99 standard, HCCA operates during both the contention-free
period and the contention period (see Figure 12.10).

The admission control and scheduling units enable HCCA to guarantee that
the QoS requirements are met once a stream has been admitted in the network.
Alternatively, EDCA only provides a QoS priority differentiation via a randomly
distributed access mechanism.

To ensure user satisfaction, it is essential that, once admitted, a video stream is
guaranteed QoS for its lifetime. Thus, there is a need to control how many streams
are admitted to the system and what wireless resources should be allocated to each
stream in order to obtain the optimal trade-off between a larger number of admit-
ted stations and an acceptable video quality level for the admitted stations. In other
words, a scalable admission control and adaptive protection strategy is necessary.
Among the parameters defined in the traffic specification (TSPEC) element of
IEEE 802.11e, we discuss the subset of parameters that influence the design of
an efficient admission control algorithm for video applications. For each video
flow i, these parameters are the peak data rate (Pi), the mean data rate (ρi), the
maximum burst size (σi), the maximum permissible delay (di), the nominal MAC
service data unit (packet) size (Li), and the minimum physical-layer transmission
rate (Ri).

In conventional video streaming mechanisms, Pi , ρi , and σi are part of a twin
leaky bucket mechanism [52] and are supplied to the MAC by the application
layer. Based on the twin leaky bucket analysis, the effective bandwidth for each
video flow i can be computed10

gi = Pi

1+ di(Pi − ρi)σ
−1
i

. (12.29)

10For the first part of the analysis presented in this section, we assume that channel or link state
analysis is used in order to determine the additional percentage that needs to be reserved for the
bandwidth to cover the losses that may occur in the wireless medium. Initially, we assume an ideal
channel condition where no errors occur during the HCCA duration. Modifications imposed in the
admission control in order to incorporate the effects of video packet retransmission due to channel
errors are presented later.
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FIGURE 12.10: Operation of the IEEE 802.11e HCF [3].
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The previous bandwidth computation is “ideal” in the sense that it does not
include overheads. As mentioned in previous sections, for the transmission of
each packet there is an overhead in time based on the acknowledgment policy,
the PIFS time, MAC-layer and physical-layer headers, and polling overhead. As
a result, the scheduling policy has to determine and take into account these over-
heads, as different scheduling policies determine how many times one has to poll
a WSTA in the duration of a service interval (SI), denoted as tSI. Assuming that
tSI is known, the number of packets per SI is

Ni =
⌈

gi · tSI

Li

⌉
(12.30)

and the modified guaranteed bandwidth including overheads is

g′i =
Ni(Li +Oi)

tSI
, (12.31)

where Oi represents the additional bits due to overheads for the transmission of a
packet corresponding to video flow i. As a result, having already i − 1 admitted
flows in the network, the admission control for the ith video flow can be expressed

g′i +
i−1∑

j=1

g′j + gother ≤ C, (12.32)

where gother represents additional bandwidth allocated to nonvideo traffic (e.g.,
audio or other QoS-requiring media) and C is the total guaranteed bandwidth
of the wireless medium. It is important to mention that a necessary condition for
nonviolation of the initially negotiated QoS requirements is that Ri ≥ g′i . Based on
the readjusted guaranteed bandwidth, the number of packets per SI is recalculated
as in (12.30) with gi replaced by g′i , and for each video flow i we denote the
modified value by N ′i . The admission control unit can now calculate the TXOP
duration required to service all these packets within tSI,

tTXOP,i =N ′i
(

Li

Ri

+ Toverhead,i

)
, (12.33)

with Toverhead,i the required overheads, as explained earlier. Similar to (12.32), we
can express the admission control in terms of the TXOP duration for each video
flow i:

tTXOP,i

tSI
+

i−1∑

j=1

tTXOP,j

tSI
+ tTXOP,other ≤ T − TCP

T
, (12.34)
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where tTXOP,other indicates the TXOP allocated to nonvideo traffic, T is the bea-
con interval illustrated in Figure 12.10, and TCP is the time reserved for the con-
tention period, that is, for EDCA traffic. Importantly, it should be noted that the
Toverhead,i and tTXOP,other have a significant impact on the number of admitted
stations, as will be shown by the presented results.

The admission control expressed by (12.34) can be used for the construction of
a round-robin, standard-compliant scheduler. In particular, the normative behavior
set by the IEEE 802.11e standard [3] requires that the HC grants every flow i

the negotiated time tTXOP,i . Hence, for every video flow, the admission control
described by (12.33) and (12.34) can be used. The remaining unknown parameter
is tSI, which is typically calculated [23,48] as

tSI = 0.5 min{d1, . . . , dn} (12.35)

for a total of n flows to be scheduled. Note that out of the n flows, several can
be video flows, audio flows, or other delay-stringent applications. In addition,
factor 0.5 is used to accommodate the jitter constraints demanded by the particular
applications.

In order to better understand the challenges and limitations associated with de-
ploying the previously described HCCA admission control for video, we consider
the transmission of an MCTF scalable video coder,11 whose particular architec-
ture is outlined in Chapter 5. In typical MCTF-based video compression, the rate
allocation for scalable bit stream extraction is performed with a maximum gran-
ularity of one GOP. This creates VBR characteristics for the compressed video
content across the frames of each GOP. In addition, each decoded frame of every
GOP has its own playback deadline determined by the frame rate. Note that, based
on the MCTF structure, the decoding frame rate itself can be reduced dyadically
by skipping the frames of the finer temporal levels [13]. Frame rate scalability
will be useful in the cross-layer adaptation strategy that maximizes the number of
admitted stations in the wireless network (see Chapter 5 for more details on how
to perform spatio-temporal–SNR trade-offs).

12.7.2 A Scalable Video Admission Control Mechanism over IEEE 802.11e:
The Sub-Flow Concept [16]

Implementation of the simple scheduler explained in Section 12.7.1 is easy, but
it can be quite inefficient for real-time video streaming applications. This is be-

11However, it is important to emphasize that the cross-layer algorithms highlighted can be deployed
with any video coding scheme. The essential part of the enhanced admission control mechanism is
determination of the frame dependencies of the deployed video coder (and hence the frame/packet
delays and traffic characteristics), which can be established based on the encoding parameters and
modeled by direct acyclic graphs [47].
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cause video traffic varies over time and consists of frames/packets with consid-
erably varying sizes and different delay constraints. Conventionally, the video is
considered as a single stream and the TSPEC parameters are set so that the MAC
of IEEE 802.11e HCCA would do the admission control and scheduling as out-
lined previously. To improve the overall system utilization (number of admission
stations), as well as the performance of the admitted stations, we introduce the
sub-flow concept in which a video flow (bit stream) is divided into several sub-
flows based on their delay constraints as well as on the relative priority in terms
of the overall distortion of the decoded video. The application layer enables each
sub-flow of the video to interface with the MAC as a separate flow. Each sub-flow
has a different priority (determined by its distortion impact) and delay constraint.
A sub-flow has its own TSPEC parameters and is admitted independently by the
resource coordinator.

The goal is to use the sub-flow mechanism to provide a joint application–MAC
optimization that maximizes the number of admitted wireless stations while opti-
mizing the video quality for each admitted station. Given the channel conditions,
the resource manager (coordinator) and the cooperating wireless stations have to
determine for each application the number of sub-flows the application layer can
transmit, as well as their protection strategies (e.g., MAC retry limits per sub-
flow), while maximizing the number of wireless stations in the network. This sec-
tion shows how the global flow traffic can be partitioned into sub-flows that are
then shaped by multiple token leaky buckets to determine their individual QoS
token rates.

For illustration, let us consider one GOP of 16 frames that is encoded using
MCTF (see Figure 12.11). Frames with the same playback deadline are grouped

FIGURE 12.11: Example of sub-flow formation.
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into the same sub-flow. The number of sub-flows depends on the temporal decom-
position levels and the number of reference frames used for motion estimation. If
we denote the number of sub-flows of one GOP as Ns we have

Ns = 2D−1, (12.36)

where D is the total number of temporal decomposition levels. Each sub-flow is
regarded as an independent traffic flow passing through a twin leaky bucket to get
its own QoS guaranteed bandwidth gi as expressed by (12.29), with i indicating
the sub-flow number, 1 ≤ i ≤ Ns , and Pi , ρi , σi , and di the corresponding peak
data rate, mean data rate, maximum burst size, and delay constraint of sub-flow i,
respectively. As a result, each sub-flow has its own TSPEC parameters and thus
there are multiple sets of TSPEC parameters corresponding to one global video
flow. A WSTA uses these multiple sets of TSPEC parameters to negotiate with
the resource coordinator.

The system performance gain that can be achieved by the discussed sub-flow
concept can be quantified theoretically if we introduce the average transmission
opportunity duration, tTXOP:

tTXOP = 1

Ns

Ns∑

i=1

tTXOP,i . (12.37)

For a global video flow i, tTXOP is equal to the definition given in (12.33). Follow-
ing the admission control expressed in (12.34), if we assume only NQSTA video
flows for the HCCA transmission intervals, that is, tTXOP,other = 0, by replacing
the average transmission opportunity duration for each station by (12.37), we get
the maximum number of admitted WSTA carrying video data as

NQSTA =
⌊

tSI(1− TCP · T −1)

tTXOP

⌋
. (12.38)

In the following section, we determine the optimal allocated tTXOP,i for each sub-
flow i (under predetermined delay constraints) such that the number of admitted
stations (NQSTA) is maximized.

12.7.3 Optimization of the Number of Admitted Stations

We discuss a mechanism that maximizes the number of simultaneously admitted
wireless stations by optimizing the allocated transmission opportunity duration
for each sub-flow. The solution can be obtained using linear programming. Given
the allotted TXOP per sub-flow, as shown next, the maximum number of packet
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retransmissions can be determined in order to optimize the video quality under the
presence of network errors. Subsequently, an algorithm is discussed for dynamic
adaptation of packet retransmissions based on this derivation. Finally, we explain
how link adaptation can be incorporated in the discussed framework to improve
the overall performance for different channel conditions.

12.7.3.1 Optimized Multimedia Admission Control Under Delay Constraints

Although the use of sub-flows may increase the number of admitted stations in the
HCCA traffic, if additional delay is permitted in the transmission of each sub-flow
traffic, an optimal scheduling algorithm can yield further improvements. A visual
example of such a case for one GOP of video data can be seen in Figure 12.12,
where each increase in the transmission duration of each sub-flow i, ds,i , pro-
vides the opportunity for traffic smoothing. In order to accommodate delay re-
quirements, we have max{ds,1, . . . , ds,2D−1} ≤ dmax with dmax set by the chosen
streaming scenario.

Each increase in the transmission duration of sub-flow i is reflected by a change
in tTXOP,i . The optimization goal of maximizing NQSTA given by (12.38) can be
equivalently stated as minimizing tTXOP since the other parameters in (12.38)
are unaffected by changes in the transmission duration. As a result, if we limit

FIGURE 12.12: Sub-flows with different transmission durations due to
additional delay permitted. Each ds,i , 1 ≤ i ≤ 2D−1 corresponds to ad-
ditional transmission time for sub-flow i. For cases, we assume that an
upper bound for the additional delay is set, denoted by dmax, and we have
max{ds,1, . . . , ds,2D−1} ≤ dmax.
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optimization to the duration of one GOP (since the video flow traffic is periodic
for each GOP) by combining Eqs. (12.30)–(12.33), the minimization problem
now becomes

Primary problem: {t∗s,1, . . . , t∗s,2D−1} = arg min
2D−1∑

i=1

gs,i , (12.39)

such that ∀i : 1≤ i ≤ 2D−1 we have

i∑

j=1

t∗s,j ≤
i∑

j=1

(ts,j + dmax). (12.40)

In Eqs. (12.39) and (12.40), {t∗s,1, . . . , t∗s,2D−1} are the optimal transmission du-

rations corresponding to sub-flows 1 ≤ i ≤ 2D−1, gs,i is the effective bandwidth
defined by gs,i = bs,i/ts,i , with bs,i the size (in bits) of sub-flow i, and ts,i is the
original transmission duration of sub-flow i. Note that this definition of gs,i cor-
responds to the generic definition of (12.29) if we assume that Pi = ρi , that is,
under the assumption of CBR transmission for the transmission duration of sub-
flow i. In order to facilitate the optimization process, the optimization problem
stated in (12.39) and (12.40) can be expressed in a dual form [16] as

Dual problem: {b∗s,1, . . . , b∗s,2D−1} = arg min
2D−1∑

i=1

bs,i

tmax
s,i

, (12.41)

such that ∀i : 1≤ i ≤ 2D−1 we have

i∑

j=1

b∗s,j ≥
i∑

j=1

bs,j . (12.42)

In Eqs. (12.41) and (12.42), {b∗s,1, . . . , b∗s,2D−1} are the optimal sub-flow sizes,

and tmax
s,1 = ts,1 + dmax, tmax

s,i = ts,i for 2≤ i ≤ 2D−1 represent the maximum per-
missible transmission durations for each sub-flow.

Under CBR transmission for each sub-flow, the Primary and Dual problems
stated earlier provide the same solution. For example, by deriving the optimal
sub-flow sizes we can establish the optimal transmission duration corresponding
to the size of each sub-flow as

t∗s,i = tmax
s,i

bs,i

b∗s,i
. (12.43)
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Nevertheless, one difference of practical significance is that the Dual problem fa-
cilitates the application of linear programming techniques, namely the simplex
minimization, for establishment of the optimal solution. This ensures optimality
with low complexity, as the algorithm converges in a number of steps proportional
to the total number of sub-flows, Ns . The simplex optimization scans through all
the vertices of the Ns -dimensional simplex in order to establish the point corre-
sponding to the minimum of (12.41) (see [16] for more details). It is important to
mention that, in order to formulate a bounded problem for this purpose, we need
to impose an upper bound to the maximum number of bits transmitted in the time
interval corresponding to one GOP. Hence, we introduced an additional constraint
to the problem,

2D−1−1∑

j=1

b∗s,j ≤
2D−1−1∑

j=1

Rj · tmax
s,j , (12.44)

which corresponds to the physical constraint that the maximum number of bits
transmitted during the duration of one GOP, together with the packetization over-
head introduced at the various layers, cannot exceed the mean amount of bits
transmitted by the physical layer during this time.

Finally, although the optimization problem is defined and solved for the du-
ration of one GOP, if access to additional sub-flows from consecutive GOPs is
possible (e.g., in the case of off-line encoding), they can be included in the op-
timization problem of (12.41) and (12.42) following the same rationale. Experi-
mental results with real video data utilizing the discussed optimization approach
are presented in [16].

12.7.3.2 Packet Scheduling and Retransmissions Under the 802.11e HCCA
Admission Control

For the admitted sub-flows of a WSTA, the application and MAC layers can coop-
erate to improve multimedia quality by adapting the retry limit. The discussions of
retry limit adaptation in the previous section are not HCCA enabled and also they
do not explicitly consider the delay bound set by the application for the various
packets/flows. Here, the goal of packet scheduling and prioritized MAC retrans-
missions is to minimize the playback distortion for a video streaming session over
an 802.11a/e HCCA WLAN, under delay constraints.

Due to limits imposed by link adaptation to different physical layer rates, as
well as delay constraints, the retransmission bound for the earlier transmitted
packets can be higher than the maximum retransmissions allowed for the remain-
der set of packets. Hence, under a scheme allowing for unequal video packet
retransmissions, a higher probability for correct reception can be provided to the
first subsets of video packets. This motivates packet prioritization at the appli-
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cation layer depending on the video data significance (incurred distortion due to
losing the packet).

The optimal transmission duration for each sub-flow was already established in
the previous section by linear programming. In this section, given the set of video
packets for each sub-flow i, as well as the transmission duration t∗s,i , we establish
which subset should be transmitted, as well as the maximum permissible number
of video packet retransmissions in case of errors.

Modeling approaches have been proposed for the establishment of substream
significance in MCTF-based video compression [17,18]. Most of these models use
dynamic computation of the expected distortion using signal statistics or precom-
puted distortion metadata in conjunction with models for the error propagation
across the MCTF decoding structure. Although such solutions result in a model-
optimized scheduling with the potential for high accuracy, they can also incur a
high computational burden for online processing of many streams. In addition, if
we define the number of retransmissions based only on the video packet signifi-
cance, we will not be able to take advantage of the fact that the MAC layer can
provide real-time feedback concerning the correct reception of each individual
packet.

Once the ordering is complete, the video packets are placed in packets, which
are passed to the MAC layer in the specified order. Although these rules are sim-
ply based on the compression architecture and the discussed sub-flow scheduling,
the layering principle of fully scalable MCTF-based video coding ensures the op-
timality of such a scheduling approach. In addition, theoretical studies [18] have
shown that the expected distortion–reduction obtained by decoding each video
packet is proportional to the temporal and spatial level that the packet belongs to,
according to the ordering expressed in the aforementioned rules. We remark that,
similar to the previous section, the scheduling algorithm operates independently
for each GOP, although extensions to multiple GOPs can be envisaged following
similar principles.

Here, the transmission channel is assumed to be an independent, identically
distributed error channel. Thus, the channel causes errors independently in each
packet and the error probability is the same for all packets with the same length at
all times. Let pb(m) be the bit error probability in physical-layer mode m. Then,
the error probability of a packet of size Li (belonging to sub-flow i) in physical-
layer mode m is a function of bit error probability pb(m) and is defined

pe(m,Li)= 1− [
1− pb(m)

]Li . (12.45)

Let Nmax
retry(j) be the maximum number of retries of packet j belonging to sub-

flow i. Note that the value of Nmax
retry(j) depends on the position of the packet in

the transmission queue (derived based on the criteria outlined earlier), as well as
on the available transmission duration for the current sub-flow. The probability of



Section 12.7: EFFICIENT RESOURCE RESERVATION MECHANISMS 381

unsuccessful transmission after Nmax
retry(j) retransmissions is

Pe

(
m,Li,N

max
retry(j)

)= [
pe(m,Li)

]Nmax
retry(j)+1

. (12.46)

In addition, based on Nmax
retry(j), the average number of transmissions for the j th

packet until the packet is transmitted successfully or the retransmission limit is
reached can be found as discussed in the previous sections as

Naverage(j)= 1− [pe(m,L)]Nmax
retry(j)+1

1− pe(m,L)
. (12.47)

The corresponding average time to transmit the packet using the guaranteed chan-
nel rate g′i for sub-flow i is

Taverage =Naverage(j)

(
Li

g′i
+ TACK

)
, (12.48)

where TACK is the overhead for the transmission of the acknowledgment frame.
Assuming that the maximum time before the packet expires is Tmax, we have

Taverage ≤ Tmax. (12.49)

Due to CBR transmission for the duration of each sub-flow, the packets are dis-
tributed evenly with an interval αi (i.e., packet arrival interval for sub-flow i).
Assuming that the transmission duration for sub-flow i is t∗s,i (estimated by the
optimization of Section 12.7.3.1), for the j th packet of that sub-flow we have

Tmax = t∗s,i − αi

j−1∑

k=1

Nactual
retry (k), (12.50)

where Nactual
retry (k), 0 ≤ Nactual

retry (k) ≤ Nmax
retry(k), is the actual number of retries for

each packet k that precedes packet j until an acknowledgment has been received,
or the maximum number of retries has been performed. Note that Nactual

retry (k) can be
determined dynamically based on feedback from the MAC layer. The last equa-
tion can be used in conjunction with Eqs. (12.46) and (12.49) to establish the
bound for the maximum-allowable number of retries for the current packet j :

Nmax
retry(j) ≤ logpe(m,Li)

[(
1− pe(m,Li)

)(Li

g′i
+ TACK

)−1

×
(

t∗s,i − αi

j−1∑

k=1

Nactual
retry (k)

)]
− 1. (12.51)
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Note that the estimated maximum number of retries determined by (12.51) can
be negative, depending on whether we exceeded the available bandwidth for sub-
flow i or not. In such a case, the remaining packets of the current sub-flow are
simply discarded.

12.7.3.3 Scalable Sub-Flow Transmission with Dynamic Adaptation

We outline the steps performed during the actual streaming process for each sub-
flow i in Table 12.4. Some of the last packets of each sub-flow will not be trans-
mitted whenever the channel condition deteriorates, as the transmission duration
(deadline) determined by the simplex optimization of the previous section does
not take into account the retransmissions that will occur based on the algorithm of
Table 12.4. This is checked in Step 2 of the algorithm of Table 12.4. Nevertheless,
use of a scalable video coding and the prioritization rules for the transmission
of the video packets specified before ensure that near-optimal adaptation of the
video quality will occur based on the instantaneous channel capacity, as packets
with the most important video data will be transmitted first.

An alternative design can be formulated by a priori calculating the maximum
number of retransmissions for each packet j based on pb(m) and using (12.45)
and (12.50) with the setting of Nactual

retry (k) = Nmax
retry(k) for every 1 ≤ k < j . Then

the sub-flow sizes can be readjusted to include the estimated number of retrans-
missions. This allows for the optimization algorithm of Section 12.7.3.1 to derive
optimal transmission durations that include the (worst-case) expected number of
retransmissions for packets of the sub-flow. Overall, the latter case is expected to

Table 12.4: Transmission of packets of each sub-flow i.

• Initialization: Establish pb(m) based on the utilized physical-layer mode. Calcu-
late pe(m,Li) from (12.45).

• For each packet j :

1. Establish Tmax based on (12.50). Calculate Nmax
retry(j) based on (12.47)–

(12.49). Set current_retries= 0.
2. If Nmax

retry(j)≥ 0
• Set current_ACK= FALSE; go to Step 3.
else
• Discard the current packet as well as the remaining sub-flow packets

with the same deadline.
3. While current_ACK= FALSE AND current_retries≤Nmax

retry,
• Transmit the current packet. Set: current_retries← current_retries+1.
• Set current_ACK to TRUE or FALSE depending on MAC-layer feed-

back.
4. Set Nactual

retry (j)= current_retries.
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overprovision bandwidth for each sub-flow, whereas the previous case can lead
to some of the least-significant video packets being dropped, depending on the
channel condition.

12.7.3.4 QoS Token Rate Adaptation for Link Adaptation

As mentioned earlier, IEEE 802.11a supports eight physical-layer rates from 6 to
54 Mbit/s. Link adaptation selects one appropriate physical-layer mode based on
link conditions in order to improve the system goodput and throughput. WSTAs
may adapt their physical-layer modulation and coding strategies depending on the
link conditions. In particular, the physical-layer rate will be lowered dynamically
when the link condition of one WSTA gets worse, that is, when the signal-to-
interference noise ratio drops. The TXOP durations calculated by (12.33) will not
take into account the new rate when the WSTA switches its default physical-layer
rate mode and, as a result, the resource coordinator may deny the traffic stream
of the WSTA whose physical rate turns out to be lower than the prenegotiated
minimum rate.

In order to keep the number of admitted stations fixed and have graceful quality
degradation, we can utilize the packet scheduling algorithm of Section 12.7.3.2 in
order to drop packets containing less important video data such that the precalcu-
lated TXOP duration can still guarantee the QoS when the physical-layer mode is
changed. For this purpose, we need to determine the new effective bandwidth for
each sub-flow i, g′′i , under a change in the physical-layer transmission rate. If we
assume that the modified rate for the duration of the sub-flow transmission is R′i ,
from (12.33) we have

N ′i =
tTXOP,i

Li · (R′)−1 + Toverhead,i

. (12.52)

Then, from (12.30) we get

g′i =
Ni ·Li

tSI
, (12.53)

and because CBR transmission occurs for the duration of the sub-flow trans-
mission, t∗s,i , we can calculate the modified sub-flow size, b′s,i , using (12.52)
and (12.53) as

ρ′i =
b′s,i
t∗s,i
= g′i⇒ b′s,i =

t∗s,i · tTXOP,i ·Li

[Li · (R′)−1 + Toverhead,i] · tSI
. (12.54)

Note that in the cases where the link adaptation may change the physical layer rate
more than once during the sub-flow transmission interval t∗s,i , R′i can be calculated
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based on the weighted sum of the different rates,

R′ = 1

t∗s,i

w∑

k=1

[
Rphy(k) · tphy(k)

]
, (12.55)

where Rphy(k) and tphy(k) represent the rate and duration, respectively, corre-
sponding to the kth link adaptation during time interval t∗s,i (out of w total adap-
tations).

The modified sub-flow size estimated by (12.54) may be used to restrict the
number of video packets of each sub-flow; depending on the adaptive retransmis-
sion scheme of Table 12.4, once the amount of video packets sent reaches b′s,i ,
the remaining packets in the prioritized transmission queue are discarded. Hence,
similar to the case of Section 12.7.3.2, the prioritization mechanism ensures that
the most significant packets receive the highest priority under link adaptation at
the physical layer. An interesting extension of the link adaptation algorithm would
be to optimize the chosen packet length depending on the chosen physical layer
rate. This should be done having the application-layer packetization restrictions
in mind in order not to affect the decoding dependencies.

12.7.4 Examples of Sub-Flow Transmission

In this section, several simple illustrative examples for video transmission over
802.11e are presented based on [16]. First, we highlight the importance of the
(nonoptimized) sub-flow concept versus the conventional global flow scheduling.
The experiment of Table 12.5 used a typical CIF video sequence—“Foreman,” en-
coded at 30 frames per second (fps), although similar results have been obtained

Table 12.5: Sub-flow QoS token rates and tTXOP,i with dmax = 200 ms for the
CIF-resolution sequence “Foreman” (2048 kbps, 30 fps).

Traffic name Components QoS token tTXOP (ms)a

rate ρi (kbps)

Sub-flow 1 H 1,0,H 2,0,H 3,0,H 4,0,L4,0 10,032 13.89
Sub-flow 2 H 1,1,H 2,1,H 3,1 2840 3.96
Sub-flow 3 H 1,2 184 0.26
Sub-flow 4 H 1,3,H 2,2 1064 1.46
Sub-flow 5 H 1,4 264 0.37
Sub-flow 6 H 1,5,H 2,3 728 1.00
Sub-flow 7 H 1,6 392 0.54
Sub-flow 8 H 1,7 440 0.61

a tTXOP = 2.76 msec, NQSTA = 7.
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with a variety of video content. The results of this section have been generated
with the settings T = 100 ms, TCP = 60 ms, and tSI = 50 ms. The token rates
reported in Table 12.5 were calculated based on a simulation with a twin leaky
bucket traffic smoothing system [16], and the delay deadline was extended equally
for all sub-flows, such that dmax = 200 ms. For the case of sub-flow scheduling we
have tTXOP = 2.76 msec and, from (12.38), NQSTA = 7. Similarly, for the global
flow case we get tTXOP = 13.89 msec and NQSTA = 1. The number of admitted
stations can be increased if the optimization framework of Section 12.7.3.1 is
used. This is shown by the results of Table 12.6, where the number of stations
in the sub-flow case is increased to NQSTA = 10. In addition, based on the pri-
orities shown in Table 12.6, we can increase the number of admitted stations if
the least-significant sub-flows are discarded. This is illustrated in Figure 12.13,
where the number of admitted stations is plotted against the number of utilized
sub-flows. Figure 12.13 demonstrates that under a progressive decrease in frame
rate, resulting from the removal (drop) of the least-significant sub-flows (with
the significance indicated in Table 12.6), the number of admitted stations can
be increased further. In a collaborative framework, multiple stations may opt to
decrease the video frame rate in order to allow for additional stations (or addi-
tional video flows) to utilize the wireless medium under HCCA. Also, the desired
number of admitted sub-flows, as well as how these sub-flows are prioritized at
the application layer, can be determined based on the channel resources, specific
video application, and user preferences. For instance, different spatio-temporal
resolutions (and corresponding sub-flows) should be selected for the best percep-

Table 12.6: Sub-flow QoS token rates and tTXOP,i with dmax = 200 ms for the
CIF-resolution sequence “Foreman” (2048 kbps, 30 fps) with the optimization
framework of Section 12.7.3.1. The “priority” indicates the importance (4, high-
est; 1, lowest) of each sub-flow in terms of incurred distortion at the receiver.

Traffic name Components QoS token Priority tTXOP (ms)a

rate ρi (kbps)

Sub-flow 1 H 1,0,H 2,0,H 3,0,H 4,0,L4,0 4664 4 6.46
Sub-flow 2 H 1,1,H 2,1,H 3,1 2768 3 3.82
Sub-flow 3 H 1,2 216 1 0.31
Sub-flow 4 H 1,3,H 2,2 1376 2 1.90
Sub-flow 5 H 1,4 344 1 0.46
Sub-flow 6 H 1,5,H 2,3 880 2 1.24
Sub-flow 7 H 1,6 392 1 0.54
Sub-flow 8 H 1,7 440 1 0.61

a tTXOP = 1.92 msec, NQSTA = 10.
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FIGURE 12.13: A reduction of the number of admitted sub-flows re-
sults in a dyadically reduced frame rate. However, the number of ad-
mitted stations increases. The utilized video sequences were encoded at
2048 kbps.

tual video quality for different channel conditions. This flexibility can be easily
provided using the sub-flow concept.

In summary, we observe that a higher number of stations can be admitted given
the same channel condition if the sub-flow case is used, as compared to the global
flow case. Note that the same video bit streams are transmitted in both cases and
that no losses are incurred due to the use of sub-flows.

For more details on optimized resource management for video transmission
over 802.11e, the interested reader is referred to [3,16,23].

12.8 SIMPLIFYING THE REAL-TIME CROSS-LAYER
OPTIMIZATION PROBLEM USING CLASSIFICATION

In previous sections, several joint optimizations across the various layers of the
protocol stack have been discussed for improving the performance of real-time
video transmission over wireless networks. However, the complexity associated
with performing the cross-layer optimization in real time is very high. Thus, low
complexity systems are required for determining the optimal cross-layer strategies
in real time whenever a packet needs to be transmitted. Next, we discuss such a
possible approach based on classification and machine learning techniques [19].

For illustration purposes, this section focuses on determining the optimal MAC
retry limit for each video packet given the maximum available bit rate (Rmax),
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the maximum tolerable delay Delaymax, and the experienced bit error rate (Pe),
similar to the problem investigated in Sections 12.5 and 12.6. However, classi-
fication techniques could also be used successfully to simplify other cross-layer
optimizations.

12.8.1 Classification System for Cross-Layer Optimization

The classification-based wireless video transmission system is depicted in Fig-
ure 12.14. It consists of an off-line training module followed by online processing.
The former includes modules for class definition and classifier learning, whereas
the latter mainly involves classification and real-time cross-layer strategy predic-
tion for video packets. The major steps in the approach are as follow.

Step 1: Generate ground truth (off-line) First, a set of packets from a variety of
video sequences is collected under different representative channel conditions and
the entire set of cross-layer strategies available at the wireless station is identi-
fied. For each packet in this training set and collection of encoding parameters,
the compressed-domain content features (CF) and packet types (PT) determined
based on the specific encoder configuration/parameter set are extracted [32]. Used
feature sets should also include the wireless channel conditions (WCC): Rmax

12

and Pe . Subsequently, the optimal strategy sopt resulting in the best quality for the

FIGURE 12.14: Classification-based cross-layer system for wireless
video.

12Rmax can be determined based on the video encoding rate, delay constraint, and the PHY rate used
for transmission (determined based on the modulation strategy, etc.) [26].
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different training sequences, packet types, and channel conditions is determined
using dynamic programming (see Section 12.6).

Step 2: Train classifier (off-line) The key is to determine, for each packet j , a map-
ping from the composite feature vector f(j) to class label lj , corresponding to a
specific optimal strategy sopt . During training, supervised clustering methods are
used to map the composite features to the corresponding class label. Two different
classification strategies aimed at minimizing the probability of misclassification
and minimizing the cost of misclassification (in terms of video distortion), respec-
tively, are discussed, for illustration purposes.

Step 3: Real-time strategy selection based on classification The optimal strategy sopt

for a sequence of incoming video packets given the instantaneous wireless chan-
nel conditions/characteristics can be then determined, by the trained classifier,
on a packet-by-packet basis using the composite feature vectors. The selected
strategy is used to determine the optimized parameters and configurations of the
wireless multimedia system.

The various steps just outlined are described in more detail in subsequent sec-
tions.

12.8.2 Feature Selection

For video packet j , a suitable feature vector f(j) needs to be identified that can
predict the optimal decision with low complexity (i.e., with features that can be
computed/extracted easily at run time). The WCC features Pe (equivalently PL)
and Rmax can be determined in real time based on information that can be ex-
tracted easily from the wireless card driver. For example, the transmitter can use
the received signal strength indicator (RSSI) of previously received MAC ac-
knowledgment frames, as well as MAC acknowledgment reports to determine
these features [22]. A more detailed description of the various features that can
be extracted in real time from the lower layers of the transmission system can be
found in Chapter 13.

Among CF, the packet energy can be selected, which may be used to distinguish
among sequences with different levels of spatio-temporal detail. The energy for
packet j is calculated by summing up the squared wavelet coefficients coeff be-
longing to the packet,

Ej =
∑

i∈Wj

(
coeff (i)

)2
, (12.56)

where Wj is the set of decoded coefficients (collected from all the decoding units
within the packet) belonging to packet j . At encoding time, the energy of each
decoding unit is computed for the various quality layers. During transmission,
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the packet energy can simply be computed by aggregating the relevant energies
corresponding to the target bit rate.

The codec-specific (PT) features include the spatial and temporal level of the
data in the packet. This is because packets belonging to distinct spatiotemporal
bands have a different impact on the overall distortion and require different pro-
tection: the retry limit of the packet decreases with an increasing spatiotemporal
level. Most ad hoc cross-layer strategies are based on this simple classification cri-
terion for selecting the retry limit, that is, the spatiotemporal level (or frame type
for conventional video coders). However, these schemes do not use either the con-
tent characteristics or the channel conditions, which directly impact the optimal
retry limit. In order to test the suitability of the CF and PT features,13 the corre-
lation coefficient is computed between them and the optimal decision sequence
(i.e., the choice of optimal retry limit per packet). If feature i from packet j is
called fi (j) and the optimal retry limit (decision) for this packet is T opt(j), then
the correlation coefficient between the feature sequence and the decision sequence
may be defined

ρi =
∑Np

j=1 fi (j)T opt(j)
√∑Np

j=1(fi (j))2
∑Np

j=1(T
opt(j))2

, (12.57)

where NP is the number of packets in the GOP.
Table 12.7 shows the correlation coefficients for these different features with

the optimal retry limit for the Mobile sequence. Similar results were obtained
for other video sequences. The large values (close to 1) of the coefficients ρi in
Table 12.7 show that for given channel conditions, the selected features are well
correlated with the optimal decision sequence.

Table 12.7: Mobile: Correlation coefficients ρi .

Feature Rmax = 512 kps
PL = 1% PL = 3% PL = 5% PL = 10%

Packet energy 0.79 0.82 0.82 0.83
Temporal level 0.76 0.86 0.90 0.93
Spatial level 0.62 0.73 0.75 0.80

Feature Rmax = 1024 kps
PL = 1% PL = 3% PL = 5% PL = 10%

Packet energy 0.75 0.80 0.81 0.81
Temporal level 0.72 0.82 0.85 0.89
Spatial level 0.60 0.67 0.73 0.76

13We exclude the WCC features as they are common to all the packets.
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Table 12.8: Pair-wise MI for the chosen feature set.

Packet energy Temporal level Spatial level Rmax PL

Packet energy 3.4 1.37 1.34 1.3 1.19
Temporal level 1.37 1.90 0.07 0.03 0
Spatial level 1.34 0.07 2.12 0.01 0
Rmax 1.30 0.03 0.01 1.57 0
PL 1.19 0 0 0 2

Table 12.9: Accuracy of the classifier based on a single feature.

Packet energy Temporal level Spatial level PL Rmax
Percentage of accuracy 52% 58% 48% 52% 48%

In order to examine the redundancy in the feature set, metrics such as the mutual
information14 (MI) between pairs of features can be computed. An illustrative
example is presented in Table 12.8. We can see from Table 12.8 that while there
is some redundancy among the features, especially between packet energy and
the rest of the features, each feature contains nonredundant information (for a
majority of cases, the MI is significantly lower than the feature entropy). Allied
with this is the fact that none of these features are computationally complex to
determine, and hence we use the complete set of features in the system.

Finally, in order to validate these features for the actual classification task, we
can also examine the classifier performance with each of these individual features.
Table 12.9 shows the classifier accuracy results with each individual feature.

The temporal level feature leads to the best classification performance, whereas
the video rate and the spatial level have the worst classification performance. This
knowledge can be used to design an ad hoc strategy (similar to that used in [11,
33,34] but for different video coders) to determine the packet retransmission lim-
its. Finally, since these features are used jointly, the classifier accuracy increases
to ∼83%. While additional features can be used (e.g., the motion vectors, avail-
able bits per frame, and number of bit planes per frame at various bit rates), these
will increase the complexity of the real-time system with only limited possible
improvement in the classification performance. See [19] for an extensive study.

In summarizing, the feature extraction step needs to be kept at a low complexity
because it is also performed online. Consequently, content and encoder-specific
features can be selected that are already computed during the encoding process
(i.e., no additional complexity is needed for feature extraction). These features
can be prestored in metadata files together with the video bit streams. Hence, at

14The MI between two random variables X and Y with distributions p(x) and p(y) and joint distri-

bution p(x, y) is defined as MI(X,Y )=∑
x

∑
y p(x, y) log p(x,y)

p(x)p(y)
.
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transmission time, only the channel features need to be determined based on the
RSSI and MAC acknowledgment frames. These values can be accessed readily
from device drivers of existing wireless cards (e.g., Intel PRO/Wireless 2915ABG
Network Connection and Intel PRO/Wireless 2200BG Network Connection mini
PCI adapters). A more detailed discussion on determining and monitoring the
channel quality can be found in Chapter 13.

12.8.3 Classifier Design

The cross-layer optimization problem involves assigning a retry limit to each
packet such that the expected overall decoded distortion is jointly minimized.
Let us assume that there are M available retry limits {X1, . . . ,XM} (i.e., an M-
class classification problem) and Nt packets in the training set. From data within
each packet j , we extract an F -dimensional feature vector f(j) ∈R

F (in this case
F = 5). The classifier is then provided with feature vectors f(j), 1 ≤ j ≤ Nt ,
and the associated optimal retry limit T opt(j) ∈ {X1, . . . ,XM} for each packet.
The classifier then partitions the feature space R

F into M-nonoverlapping regions
G1, . . . ,GM , with region Gi associated with a unique optimal retry limit Xi , such
that the error in classification (i.e., probability of misclassification) on training
data is minimized. This may be written

{G1, . . . ,GM}opt = arg min
G1,...,GM

Nt∑

j=1

[
1−B

(
f(j) ∈Gi | T opt(j)=Xi

)]
, (12.58)

where B(f(j) ∈Gi | T opt(j)=Xi) is a binary-valued function that takes value 1
when vector f(j) is classified correctly, that is, if f(j), with optimal retry
T opt(j)(=Xi) is inside region Gi , and zero otherwise.

While minimizing the previously defined classification error, the classifier
views all feature vectors in the training set equivalently. However, in reality, the
feature vectors do have different importance because misclassifying different fea-
ture vectors can lead to different penalties in the total distortion. Hence, since
minimizing the decoded distortion is the final goal of the optimization, the clas-
sifier needs to be modified to take the distortion impact into account. Let the
importance of packet j with feature vector f(j) be determined by the cost of mis-
classifying it C(j)(≥ 0). We will discuss this cost in more detail later. Then, the
classifier design problem may be written

{G1, . . . ,GM}opt = arg min
G1,...,GM

Nt∑

j=1

C(j)
[
1−B

(
f(j) ∈Gi | T opt(j)=Xi

)]

(12.59)
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or, alternatively,

{G1, . . . ,GM}opt = arg min
G1,...,GM

Nt∑

j=1

C(j)∑

k=1

[
1−B

(
f(j) ∈Gi | T opt(j)=Xi

)]
.

(12.60)
This optimization has the same form as the one before, where instead of provid-
ing the classifier with vector f(j), we provide it vector f(j) repeated C(j) times.15

Hence, by modifying the training set in such a manner, the minimized classifica-
tion error classifier can be used to minimize the cost of misclassification.

The cost of misclassification C(j) in the cross-layer problem needs to be de-
fined in terms of the increase in distortion when packet j is assigned the wrong
retry limit. Hence, when instead of this optimal retry limit, a different, suboptimal,
retry limit Xk is assigned, the corresponding increase in the incurred distortion is
(D̄(Xk, j)− D̄(T opt(j), j))≥ 0. Hence, the total cost C(j) of misclassifying the
packet, in terms of distortion, may be computed

C(j)=
M∑

k=1
Xk 
=T opt(j)

(
D̄(Xk, j)− D̄

(
T opt(j), j

))
. (12.61)

For the classification, a supervised nonparametric classification technique, such
as support vector machines, can be adopted.

12.8.4 Validation Experiments

In [19], the efficiency of the discussed classification-based system was validated
using a real wireless streaming test bed. The performance of the classification-
based cross-layer strategy is compared against the optimal exhaustive strategy
for these real wireless channel traces in Table 12.10. Results demonstrate that
under varying SNR, the cross-layer mechanism leads to a decrease in PSNR of
∼0.7 dB as compared with the optimal strategy. The obtained classification-based
results outperformed by 3–5 dB current ad hoc retransmission strategies available
in the wireless card. A thorough validation study can be found in [19]. Also, a
thorough description of how such real-time middleware systems can be designed
and implemented can be found in Chapter 13.

15In general it is not necessary that all the costs C(j) are integers; however, without loss of generality
we can scale them appropriately to make them integers.
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Table 12.10: Decoded PSNR for real wireless packet loss traces.

Measured channel SNR Foreman PSNR (dB) Mobile PSNR (dB)

Classification Exhaustive Classification Exhaustive
Poor channel conditions 33.81 34.29 26.31 26.50

(12–15 dB)
Average channel conditions 35.90 36.06 28.48 29.26

(15–20 dB)
Very good channel conditions 38.64 38.66 31.82 32.01

(20–25 dB)

12.9 DYNAMIC AND FAIR MULTIUSER WIRELESS TRANSMISSION

In the previous sections, the time allocation among the various WSTAs was stati-
cally performed, that is, once for the entire duration of the flows (cf. Section 12.7,
where the TSPEC negotiation was only performed initially). This static resource
(transmission opportunities) management is inefficient because it does not scale
with the number of users, channel conditions, video characteristics, and so on.
Alternatively, a dynamic resource allocation enables the time allocation to be per-
formed repeatedly, every SI or group of SIs depending on the channel condition,
cross-layer strategy, and used fairness policy. Moreover, as a result of the sta-
tic TXOP allocation, until now, we only considered the problem of cross-layer
optimization in isolation, at each WSTA. However, in wireless multimedia trans-
mission systems, the cross-layer strategies adopted by the various WSTAs impact
other competing stations. If a WSTA is adapting its transmission strategy, the de-
lay and throughput of the competing stations are affected and, as a consequence,
they may need to adjust their own strategies. (See [12] for several such examples.)
Hence, the cross-layer strategies adopted by a station should not be optimized in
isolation, but should also consider the system-wide availability of resources and
“fairness” issues.

12.9.1 Why Are Current Fairness Strategies Not Suitable for
Cross-Layer-Optimized Multimedia Transmission?

The objective of fair scheduling is to provide multimedia applications with dif-
ferent amounts of “work” (resources) proportional to their requirements in terms
of bandwidth, delay, and packet-loss rates. Usually, “work” is measured by the
amount of data transmitted (either in number of bytes or in packets/frames) dur-
ing a certain period of time. Let Wi(t1, t2) be the amount of video flow i’s traffic
served in a time interval (t1, t2) and φi be its corresponding weight based on its
requirements. Then, an ideal fair scheduler (i.e., the Generalized Processor Sched-
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uler [27]) for N WSTAs (and their flows) can be defined

Wi(t1, t2)

Wj (t1, t2)
≥ φi

φj

, j = 1,2, . . . ,N (12.62)

for any multimedia flow i that is continuously backlogged during (t1, t2). [Back-
logged means that flow i has frames in its buffer during the specified time inter-
val (t1, t2).] If all multimedia flows are transmitted at a fixed rate, we can obtain
from (12.62),

Wi(t1, t2)

t2 − t1
≥ φi∑

j φj

r, (12.63)

where r is the physical transmission rate or the total channel capacity. Thus, each
multimedia flow i is guaranteed to have the throughput given by (12.63) regard-
less of the states of the queues and frame arrivals of the other flows. However,
the advantages of using GPS, such as the guaranteed throughput and independent
service, cannot be preserved if the flows are deploying different cross-layer opti-
mization, resulting in different transmission rates. Depending on the channel con-
dition, or their distance from the access point, WSTAs may choose, as discussed
in prior sections, different cross-layer transmission strategies (PHY modes, retry
limits, packet sizes, etc.) to ensure optimized multimedia quality. Determining
a “fair share of resource” among WSTAs in such a transmission scenario is a very
challenging problem because serving an equal amount of traffic from individual
stations deploying different strategies requires allocation of various amounts of
airtime and results in different impacts on the multimedia quality.

12.9.2 Time Fairness

To obtain a better allocation of resources that explicitly considers the various de-
ployed cross-layer strategies, time fairness was proposed in [12,28]. For this, the
total throughput degradation due to WSTAs deploying different cross-layer strate-
gies (e.g., different PHY rates) in the WLAN network can be computed. Given n

WSTAs (with all stations having the same frame size), with ni(
∑8

i=1 ni = n) op-
erating at, for example, PHY mode i (= 1, . . . ,8), the throughput degradation can
be determined

Throughput= 1

(1/n)
(∑8

j=1 nj/Rj

) . (12.64)

WSTAs having different transmission rates Rj due to the different PHY modes or
other deployed cross-layer optimization strategies cause this unwanted degrada-
tion. Time fairness tries to alleviate this problem by allocating each WSTA a fair
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share of time (i.e., a percentage of the SI), which is proportional to the require-
ments mentioned in their TSPEC (see Section 12.7), rather than guaranteeing a
specific bandwidth (rate requirement). This proportional time allocation (e.g., al-
located to a stream at admission time) removes part of the unfairness resulting
from the deployment of different cross-layer strategies by the various WSTAs.
Equation (12.62) can be thus rewritten to provide time fairness

Ti(t1, t2)

Tj (t1, t2)
≥ φi

φj

, j = 1,2, . . . ,N, (12.65)

where Ti , and Tj represent the time allocated to the streams i and j , respectively.
The advantages of this airtime fair scheduler (AFS) as opposed to the conven-

tional weighted fair queuing for multimedia transmission are analyzed in detail
in [12]. AFS isolates the channel and differential transmission rates of the various
WSTAs, thus guaranteeing a better multimedia performance across all participat-
ing stations.

12.9.3 Multimedia Quality Fairness

While time fairness is efficient for a variety of applications, multimedia users do
require a different type of fairness, which quantifies the resulting resource allo-
cation in terms of the utility impact rather than the consumed time resources.
For instance, a resource manager (access point) can decide to implement a policy
where the users derive either the same video quality or the same quality penalty,
independent of the experienced channel conditions or deployed cross-layer strate-
gies.

For this, bargaining solutions from game theory were deployed successfully
in [25,57] to allocate utilities to selfish WSTAs fairly and optimally by directly
considering the relationships in terms of utility resulting from various resource
allocations according to different fairness policies. The Kalai–Smorodinsky bar-
gaining solution, Egalitarian bargaining solution, and Nash bargaining solution
were used in [25,57] in order to enforce different fairness policies among users.

Unlike traditional fairness approaches, such as the proportional fairness intro-
duced by Kelly [58] and Kelly et al. [59] and the time fairness and GPS fairness
solutions discussed earlier where the resulting relationships between the users’
utilities cannot be guaranteed, utility-based bargaining solutions do ensure that
certain relationships in terms of utilities are satisfied. For instance, as was shown
in [25,57], the Kalai–Smorodinsky bargaining solution ensures that the participat-
ing WSTA incur the same drop in multimedia quality (PSNR drop) as compared
to a maximum desirable video quality (see Figure 12.15 for a simple illustration
of the feasible utility set of two WSTA and the resulting Kalai–Smorodinsky bar-
gaining solution), whereas the Egalitarian bargaining solution guarantees that the
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FIGURE 12.15: Utility-based fairness based on the Kalai–Smorodinsky
bargaining solution.

users will have the same video quality independent of their cross-layer strategies
or channel conditions. After a socially fair allocation in terms of utilities is derived
using the bargaining solution, the corresponding resources (i.e., time opportuni-
ties) are determined and the user can start the actual transmission. The resource
manager can also assign different bargaining powers to the various WSTAs.

Moreover, unlike conventional optimization solutions, the various bargaining
solutions can be differentiated based on the axioms (properties) that they fulfill.
These axioms are essential for a fair resource allocation among multimedia users.
For instance, as shown in [25,57], the unique axiom of individual monotonicity of
the Kalai–Smorodinsky bargaining solution guarantees that increasing the max-
imum achievable utility in a direction favorable to a WSTA (e.g., by deploying
a more sophisticated cross-layer strategy) always benefits that WSTA. This prop-
erty implicitly means that the Kalai–Smorodinsky bargaining solution encourages
each WSTA to maximize its achievable utility and then allocates the resources
based on its maximum achievable utility. This is especially useful for modeling
the selfish user behavior of the WSTAs transmitting delay-sensitive multimedia.

12.9.4 Game-Theoretic Dynamic Resource Management

The static resource allocation discussed in Sections 12.4 and 12.7 represents the
current, conventional approach for resource allocation. However, since the chan-
nel conditions, video characteristics, number of participating WSTAs, or even the
user desired utility varies over time, the conventional resource allocation (e.g.,
802.11e) does not exploit the network resources efficiently and does not provide
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adequate QoS support for multimedia transmission, especially when the network
is congested. Also, importantly, the WSTA can untruthfully declare (exaggerate)
its resource requirements during the initialization stage in order to obtain a longer
transmission time ti . Thus, in existing wireless networks, there is no mechanism
available to prevent the WSTA from lying about the required ti .

To eliminate the aforementioned limitations for multiuser wireless multimedia
transmission, in [55,56] WSTAs were enabled to dynamically acquire wireless
resources depending on the desired utility, their available cross-layer strategies,
and private information. Specifically, in [55,56], the multiuser wireless commu-
nication is modeled as a noncollaborative resource management game regulated
by the access point, referred to here as the Central Spectrum Moderator (CSM),
where the WSTAs are allowed to dynamically compete for the available TXOPs
by jointly adapting their cross-layer strategies and their willingness-to-pay and
risk attitude. In this noncollaborative game, WSTAs are considered selfish (au-
tonomous) users that solely aim at maximizing their own utilities by gathering as
many resources as possible.

To prevent WSTAs from misusing the available resources, the CSM adopts a
tool from mechanism design, referred to as transfer, to penalize WSTAs from
exaggerating their resource requirements. Specifically, in [55,56], the Vickrey–
Clarke–Groves (VCG) mechanism was used to implement and enforce the “rules”
of the resource allocation game. In the VCG mechanism, the resource allocation
is based on a “social decision,” which maximizes the aggregated multiuser wire-
less system utility. To encourage the WSTAs to work in this social optimal way,
the CSM charges WSTA a transfer corresponding to the inconvenience it causes
to other WSTAs. In the noncollaborative wireless network of [55,56], the incon-
venience caused by a WSTA is quantified as the utility penalty (drop) that the
competing WSTAs incur due to the participation (resource usage) of that WSTA
in the resource management game. In the formulation, the performance of each
WSTA will depend on the private information, the adopted cross-layer strategy,
and the WSTA willingness to pay for resources. The willingness to pay, denoted
as wi , will affect the ability of a WSTA i to transmit more or less video data
during the current SI by accepting to pay a larger/lower transfer. Details of how
the willingness-to-pay wi affects the strategy with which the WSTA plays the re-
source game and its derived utility and incurred transfer can be found in [55,56],
as well as the details of the VCG mechanism deployed at the CSM side.

Implementation of the resource allocation game is depicted pictorially in Fig-
ure 12.16. In the resource game, a joint strategy is defined for WSTA i that con-
sists of selecting an expected cross-layer strategy s̄i ∈Si and a revealing strategy
μi ∈ Vi , where Vi is the set of revealing strategies available to WSTA i. We
denote the joint strategy as κi = (s̄i ,μi), κi ∈ Si × Vi . The purpose of the ex-
pected cross-layer strategy and the revealing strategy is outlined in subsequent
paragraphs.
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FIGURE 12.16: Mechanism design framework for the multiuser wireless video resource allocation game.
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The expected cross-layer strategy s̄i is computed by the WSTA i prior to the
transmission time in order to determine the expected benefit in terms of utility that
it can derive by acquiring available resource during the upcoming SI. Note that the
expected cross-layer strategy s̄i is proactively decided at the beginning of every
SI and will not be exactly the same as the actual real-time strategy si adopted at
transmission time. The reason for this is that the strategy for playing the game
also depends on the WSTA’s private information xi . Unlike the real-time cross-
layer strategy, which has precise information about xi , the expected cross-layer
strategy will need to determine the modulation mode at the PHY layer, the num-
ber of retransmissions per packet at the MAC layer, the packet prioritization and
scheduling at APP layer, and so on based on the expected private information x̄i .

To play the resource management game, each WSTA i needs to announce its
“type,” denoted as θi(s̄i , x̄i ,wi ), which represents the utility that can be derived
from the potentially allocated resources (TXOPs). Based on the announced types,
the CSM will determine the resources allocation and transfers for the participat-
ing WSTAs. We refer to the set of possible types available to WSTA i as �i . The
type is defined as a nominal vector that encapsulates the expected private informa-
tion x̄i , the expected cross-layer strategy s̄i , and the willingness-to-pay wi for re-
sources (transfers). The type profile for all WSTAs is defined as θ = (θ1, . . . , θM),
with θ ∈�,�=�1 × · · · ×�M . For more details on this, the reader is referred
to [55,56].

A revealing strategy μi is adopted by the WSTA i to determine which type
should be declared to the CSM based on the derived real type θi . The type
of WSTA i revealed to the CSM (referred to as announced type) can be com-
puted as θ̂i = μi(θi). The announced type profile for all WSTAs is denoted as
θ̂ = (θ̂1, . . . , θ̂M). In other words, the joint strategy κi adopted by WSTA i deter-
mines the announced type θ̂i , that is, θ̂i = κi(x̄i ,wi )= μi(θi(s̄i , x̄i ,wi )).

For the dynamic resource allocation game, the outcome is denoted as T(θ̂ ,R),
where T : � × R+ → R

M+ is a function of both the announced type profile θ̂

and the available resource R. Thus, T(θ̂ ,R) = [t1, . . . , tM ], where ti denotes
the allocated time to WSTA i within the current SI and

∑M
i=1 ti ≤ tSI . Based on

the dynamic resource allocation ti and its derived type θi , WSTA i can derive
utility ui(ti , θi). However, the utility computed at the CSM side for WSTA i is
ui(ti , θ̂i ), as this is determined based on the announced type θ̂i . Note that ti is
decided by the CSM, which is a function of the announced type profile θ̂ and the
available resource R. Hence, note that the “real” utility derived by a WSTA and
the utility that a CSM believes that the WSTA is obtaining can differ, as the CSM
solely relies on the information announced by the WSTA. In the resource manage-
ment game, the utility is computed not only based on the expected received video
quality such as in the conventional cross-layer design, but also on the willingness
to pay for resources of a WSTA, wi . The transfer computed by the CSM is repre-
sented by τ (θ̂ ,R), where τ :�×R+ →R

M− is a function of both the announced
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type profile θ̂ and the available resource R, and τ (θ̂ ,R)= [τ 1, . . . ,τM ], where
τ i denotes the transfer that WSTA i needs to pay during the current SI. By partici-
pating in the resource allocation game, WSTA i gains the “payoff” υi(θ̂ , θi,R)=
ui(ti , θi)+ τi , which is always nonnegative in the VCG mechanism.

In summary, the following dynamic, game-theoretic resource allocation at the
CSM side can be implemented during each SI.

1. Social decision: After receiving the announced type profile θ̂ = (θ̂1, . . . ,

θ̂M) from the WSTAs, the CSM decides the resource allocation T(θ̂ ,R)

such that the multiuser wireless system utility (i.e., the sum of utilities of
all WSTAs) is maximized.

2. Transfer computation: Next, it computes the transfers τ (θ̂ ,R) associated
with this resource allocation to enforce the WSTA to reveal their real type
truthfully.

3. Polling WSTAs: The CSM polls the WSTAs for packet transmission ac-
cording to the allocated time.

At the WSTAs side, the subsequent steps are performed by WSTA i in order to
play the resource management game.

1. Private information estimation: Each WSTA i estimates the expected
private information x̄i , which includes the expected video source charac-
teristics ξ̄i and channel conditions in terms of SNRi .

2. Selection of optimal joint strategy and corresponding “type”: Based on
the private information, WSTA i determines the optimal joint strategy to
play the resource allocation game, that is,

κ
opt
i =

(
s̄

opt
i ,μ

opt
i

) = arg max
κi=(s̄i ,μi)∈Si×Vi

υi

(
θ̂ , θi ,R

)

= arg max
κi=(s̄i ,μi)∈Si×Vi

{
ui(ti , θi)+ τi

}

s.t. Delay(ti , θi)≤Delaymax
i .

(12.66)

Note that the WSTA i cannot explicitly solve the optimization problem just given
because both the resource allocation ti and the transfer τi depend on the an-
nounced types of the other WSTAs, which are not known by this station. How-
ever, in [56] it was proven that whenever the VCG mechanism is used, the op-
timal joint strategy can be simply determined by first proactively selecting the
optimal expected cross-layer strategy s̄

opt
i that maximizes the expected received

video quality without considering the impact of the other WSTAs. Then, based
on this, the optimal revealing strategy μ

opt
i through which the real (truthful) type

(including willingness-to-pay attitude) is revealed, that is, θ̂i = μ
opt
i (θi)= θi . De-

tails of the expected cross-layer strategy, revealing strategy and type computation,
are presented in [56].
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1. Reveal the type to CSM: The determined type θ̂i is declared by each
WSTA to the CSM.

2. Transmit video packets: When polled by the CSM, each WSTA i de-
termines and deploys the optimal real-time cross-layer strategy s

opt
i for

video transmission that maximizes the expected received video quality.
This cross-layer strategy is determined as discussed earlier.

Note that while the transfers are computed for each WSTA during every SI, the
CSM can communicate and charge the WSTA the incurred (cumulative) transfer
every couple of SIs. Various charging mechanisms and protocols can be used for
this purpose.

In summarizing, to play the dynamic resource management game, WSTAs de-
ploy three different types of strategies at different stages of the transmission:
the optimal expected cross-layer strategies and the revealing strategies (prior to
the actual transmission, in order to determine the announced type) and the opti-
mal real-time cross-layer strategy (in real time, during the actual transmission).
Hence, the cross-layer-optimized transmission strategies become the “smartness”
with which WSTAs play the competitive, dynamic, resource management game.

12.10 SUMMARY AND FURTHER READING

Most existing wireless transmission algorithms and standards have been designed
in an application agnostic fashion [1–3], as this guarantees their durability, adapt-
ability, and generality. Research in cross-layer optimization has shown that the
performance of existing wireless protocols can be improved by jointly optimizing
the various layers; importantly, it was also shown that cross-layer optimization
could catalyze the development of new protocols, with enhanced support for mul-
timedia applications, while preserving these properties (e.g., 802.11e [3]).

This chapter showed that establishing communication mechanisms between
OSI layers to convey application-layer information to lower layers (e.g., packet
sizes, relative importance, different interrelationships, arrival rates, and delay con-
straints) and channel condition information to the application layer, as well as to
enable resource and information exchanges among stations, can lead to an impor-
tant improvement in the system efficiency and individual quality of the partici-
pating stations. We focused on multimedia applications that can operate at mul-
tiple quality levels and have different delay requirements, thereby enabling the
study of different communication trade-offs. The cross-layer optimization prob-
lem was formulated, and several solutions based on queuing theory, Lagrange op-
timization, and classification were discussed. Moreover, the benefits in terms of
multimedia quality of employing a cross-layer-optimized framework for differ-
ent multimedia applications with different delay sensitivities and loss tolerances
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were quantified. However, the described cross-layer-optimized wireless multime-
dia paradigm is only recently emerging, and a variety of research topics need still
to be addressed. A summary of such topics is presented together with a list of
possible future reading.

Realistic integrated models for the delay, multimedia quality, and consumed
power of various transmission strategies/protocols need to be developed. An ex-
ample of such work can be found in [54].

An important extension of the cross-layer design principles, discussed in this
chapter for the case of single-hop wireless transmission, is the extension to mul-
tiple hops. Video transmission over multihop wireless networks became recently
of increasing interest, as such networks provide a flexible, low-cost infrastructure
for the deployment of multimedia applications [20,21,24,38,43].

Another important topic of consideration when performing cross-layer opti-
mization and considering its trade-offs is the resulting power. The interested
reader is referred to [23,35–37] for several relevant works on this topic. Impor-
tantly, the design of the various cross-layer algorithms discussed in this chapter
needs to be implemented into flexible, integrated middleware architectures. For
more details on the principles, requirements, and solutions that guide such de-
signs, the interested reader is referred to Chapter 13, which presents various de-
signs for middle architectures.

We have also identified a new fairness paradigm for wireless multimedia trans-
mission based on game-theoretic bargaining solutions, which can result in an
improved utilization of wireless resources, as well as an enhanced multime-
dia performance by the participating stations. The interaction between various
wireless stations and their cross-layer optimization strategies can be further ana-
lyzed based on economics principles such as bargaining and mechanism design.
This is achieved by remodeling existing passive resource allocation problems as
economics-driven interactions among selfish users competing for a common net-
work resource “market” [25,55]. The outcome of various interactions among self-
ish users can be analyzed in terms of both dynamics and steady-state equilib-
rium(s), and mechanisms can be synthesized that achieve new measures of op-
timality, rationality, and fairness for multiuser communication systems [25,55].
Game-theoretic principles and tools (mechanism design, bargaining theory, equi-
librium analysis, competitive analysis, and other microeconomic methods) can be
used to model, analyze, and modify such interactions. However, this work is only
at its inception and significant research still remains ahead.
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13
Quality of Service
Support in Multimedia
Wireless Environments

Klara Nahrstedt, Wanghong Yuan, Samarth Shah,
Yuan Xue, and Kai Chen

13.1 INTRODUCTION

Over recent years, there has been a strong proliferation in the use of multimedia
wireless technology all over the world, creating new research and business op-
portunities for producers and consumers of these technologies. There are several
reasons for this fast proliferation. First, wireless networking technologies such as
cellular networks, wireless local area networking (WLAN), and Bluetooth are be-
coming an integral part of our communication environment. Second, new wireless
devices such as cellular phones, PDAs, and laptops are emerging to assist people
in their lives. Third, multimedia applications became popular, first in the Inter-
net environment and now in wireless environments, due to (a) standardization of
digital multimedia formats such as MPEG-2, MPEG-4, H.263, and others and
(b) understanding of multimedia applications and user behaviors under different
networking conditions. This allows service providers to build large-scale mul-
timedia services such as video conferencing and video-on-demand and to offer
them to the population at large. Fourth, new hardware opportunities are appearing
such as multifrequency energy-efficient processors, allowing for more efficient
use of energy in mobile devices.

However, these new opportunities bring with them also various challenges. We
will concentrate on addressing two major challenges. First, mobile devices run-
ning distributed multimedia applications and communicating over wireless net-
works must deal with scarce and variable resources such as battery power, proces-
sor speed, memory, and wireless bandwidth. Hence the resource management
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problem for support of Quality of Service (QoS) must be solved. Second, mul-
timedia applications running over wireless networks must achieve some level of
performance QoS guarantees. Hence modeling of application QoS, QoS manage-
ment and its connectivity to underlying resource management must be addressed.

In this chapter, we aim to answer these application QoS and resource man-
agement challenges and to describe some of the solutions that may contribute
to solving these challenges. Since these two challenges are still very broad, we
narrow their scope to address the following problems:

• The topic of multimedia applications and QoS is very broad and there is
an extensive pool of solutions in the literature. We concentrate on model-
ing of conversational applications with strict delay requirements such as
Voice over IP and retrieval applications with sensitive throughput require-
ments such as multimedia on demand using mobile multimedia devices. We
consider three QoS metrics for multimedia distributed services: throughput,
end-to-end delay, and application lifetime.

• The topic of resource management in wireless networks is also very broad
and there are multiple techniques that optimize different resource usage.
Furthermore, resource management is required for all types of wireless net-
works such as cellular networks, wireless LANs, mobile ad hoc networks,
and sensor networks. In this chapter we concentrate on resource manage-
ment schemes meant only for networks based on, or compatible with, the
widely used network standard IEEE 802.11. Also, we consider four ma-
jor resources to deliver application QoS: wireless network bandwidth, CPU
bandwidth, memory, and energy. We provide algorithms, services, and pro-
tocols at the operating system and middleware layer with cross-layered
access to selected information in lower level network solutions. We con-
sider resource management in single mobile devices, in mobile devices con-
nected via single hop ad hoc networks, and in mobile devices connected via
access-point-based networks.

To design solutions that address the end-to-end QoS issues and corresponding
resource management in 802.11 wireless single hop environments, we take the
top-down approach in this chapter. First, we decide on multimedia applications
and their models that will run in these environments. Section 13.2 discusses the
modeling of these applications and their QoS requirements, especially the appli-
cation task, connection and QoS (quality) models, and the cross-layer application-
OS-network models that drive correct resource allocations in mobile nodes. Sec-
ond, once it is clear what applications are primarily running in the 802.11 wire-
less environments, resource management techniques need to be chosen that ex-
ecute according to QoS requirements. These resource management techniques
must span within individual mobile nodes via their operating systems and across
mobile nodes via the distributed network management. Therefore, the rest of the
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chapter addresses (a) operating-system-internal resource management techniques
that help delivering application QoS requirements inside an individual mobile
node and (b) network-specific resource management techniques to deliver QoS in
end-to-end fashion from the sender(s) to the receiver(s).

The operating-system-internal techniques can be found in Section 13.3 and
the network-specific techniques can be found in Section 13.4 as follows. Sec-
tion 13.3 concentrates on the energy-efficient operating system (EOS) at mo-
bile end points. The Linux-based EOS includes an integrated and cross-layer-
optimized CPU/energy resource management to guarantee node delay and appli-
cation lifetime QoS requirements. This end-point resource management must be
addressed to achieve true end-to-end quality guarantees for any multimedia ap-
plication [42]. Section 13.4 addresses the cross-layer-optimized network resource
management to guarantee end-to-end delay and bandwidth QoS requirements in
single hop wireless networks. The reason for concentrating on single hop wire-
less networks is that in commercial applications such as music on demand or
phone conversations we believe there will be only a few hops before the multime-
dia stream reaches the wired infrastructure through which the information will be
transported. Hence, what we need to ensure in wireless networks for these types of
applications is that the multimedia data be transmitted over the first/last wireless
mile in a quality-aware manner.

We have built multiple cross-layer QoS-aware systems that utilize techniques
in Sections 13.3 and 13.4. The design principles and overall lessons learned from
their design and development are summarized in Section 13.5. The chapter con-
cludes with possible future directions with respect to wireless multimedia and the
corresponding QoS support in Section 13.6.

13.2 APPLICATION MODELING

Wireless multimedia applications on various mobile devices are becoming an in-
tegral part of our life. Examples are music on demand using the Apple iPOD
devices, short video clips on demand using cell phones, DVD players on laptops,
and voice over IP using laptops and PDAs. We will first specify the common
model of these applications so that we can then address them more easily in the
resource management and design solutions that will serve these applications. We
consider computational and communication requirements of multimedia applica-
tions to have comprehensive and expressive models for OS and network resource
management and their support for QoS guarantees.

During their lifetimes, distributed multimedia applications use computational
and communication resources on their mobile nodes. Hence when modeling mul-
timedia applications, we need to consider requirements that these applications
have on both resources and to include them into the overall application model.
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Furthermore, we need to consider the overall quality goal of the end-to-end appli-
cation. Therefore, the application model will consist of two parts: (a) application
task, connection, and quality models and (b) cross-layer application model.

13.2.1 Application Task, Connection, and Quality Models

We consider multimedia distributed applications (video, voice, or music) as peri-
odic tasks, running distributed application functions over single or multiple net-
work connections between sender(s) and receiver(s). Each task consumes CPU
time, energy, and network bandwidth resources and provides an output quality.
Multimedia applications are adaptive tasks, which means that from the compu-
tational point of view they are soft real-time tasks that can operate at multiple
application QoS (quality) levels. For example, a QoS level may correspond to a
video frame rate in a video task. Each task i supports a discrete set of QoS lev-
els, qi1, . . . , qim [7,43]. Each task can provide different quality levels, trading off
quality with resource consumption or trading off consumption between different
resources [37]. We aggregate all best effort (nonmultimedia) applications into one
logical adaptive task. This logical task delivers either average (in lightly loaded
environment) or no (in a heavily loaded environment) quality guarantees to indi-
vidual best effort tasks.

Each connection connects multiple tasks to form a transmission medium be-
tween sender(s) and receiver(s) to exchange multimedia data and control infor-
mation among mobile nodes. Also, each connection consumes through its distrib-
uted tasks CPU time, energy, and bandwidth resources, and based on the shared
resource availability, especially the wireless channel, it provides an output quality.
It is important to stress that from the 802.11 wireless networking point of view,
multimedia distributed applications must be adaptive. This means that the end-
to-end connections can yield only soft end-to-end guarantees and, in many cases,
only statistical or best effort guarantees.

13.2.2 Cross-Layer Application-OS-Network Model

Each wireless multimedia application must have a strong relation to the underly-
ing computing and communication layers that allocate resources to provide QoS
guarantees q and utility u(q). We will consider two layers where multimedia ap-
plications will interface to: (1) process management (representing the operating
system and its access to processor hardware) with its soft real-time task schedul-
ing and (2) middleware layer (representing entrance to the network protocol stack)
with its connections/packets scheduling and bandwidth management.

Each application QoS level q has a utility u(q), which measures the percep-
tual quality at a QoS level from the user’s point of view and consumes C(q)

cycles and B(q) network bytes per period P(q). Furthermore, we assume that for
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each QoS level, the task has probability distribution of its cycle demand; that is,
F(x) = Pr(X ≤ x) is the probability that the task demands no more than x cy-
cles for each job. This distribution can be obtained with our previously developed
kernel-based profiler [49,50]. Specifically, the operating system uses a profiling
window to keep track of the number of CPU cycles each task has consumed for
its recent jobs. The operating system then builds a histogram based on the result
in the profiling window. The histogram estimates the probability distribution of
the cycle demand of the task for each job. With respect to network connections,
we assume two network models: the integrated service (“IntServ”) model and
the differentiated service (“DiffServ”) model that determine the network band-
width allocation in 802.11 wireless networks and will be discussed in detail in
Section 13.4.1.

In the hardware layer, a multimedia application uses two adaptive resources:
CPU and wireless network interface card (WNIC). The CPU can operate at mul-
tiple speeds (frequencies/voltages), {f1, . . . , fmax}, trading off performance for
energy. The power consumption of the CPU is p(f ) at speed f . The lower the
speed is, the lower the power is. We assume that the overhead for adapting CPU
speed is negligible.

The WNIC supports three operation modes: active, idle, and sleep, where the
sleep mode has much less power. Power consumptions at the aforementioned
states are pact, pidl, and pslp, respectively. The overhead for switching the WNIC
into sleep and from sleep is tslp, which is not negligible (e.g., around 40 ms for
the Lucent WaveLan card).

13.3 QOS SUPPORT IN MOBILE OPERATING SYSTEMS

In mobile wireless environments, QoS-aware operating system support for
battery-powered mobile nodes is crucial in order to run multimedia applications.
Such multimedia-enabled mobile systems need to save energy while supporting
multimedia QoS requirements. There is a conflict in the design goals for QoS pro-
visioning and energy saving. For QoS provisioning, system resources often need
to provide high performance, typically resulting in high energy consumption. For
energy saving, system resources should consume low energy. As a result, the
operating system of mobile devices needs to manage resources in a QoS- and
energy-aware manner and provides the flexibility to trade off QoS and energy
based on the user’s preferences.

Recently, a number of soft real-time operating systems has been proposed
to support QoS for multimedia applications. These operating systems typically
integrate predictable CPU allocation (such as proportional sharing [8,31] and
reservation [18,36]) and real-time scheduling algorithms, such as earliest dead-
line first (EDF) and rate monotonic [21]. Energy management is also an im-



414 Chapter 13: QOS SUPPORT IN WIRELESS ENVIRONMENTS

portant part of the operating system. For example, ECOSystem [52] and Neme-
sis [29] manage energy as a first-class OS resource. Vertigo [16] saves energy
by monitoring application CPU usage and adapting the CPU speed correspond-
ingly. More recently, there is some work on QoS and energy-aware cross-layer
adaptation [27,33,34,50,51]. Pereira et al. [33] proposed a power-aware applica-
tion programming interface that exchanges the information on energy and per-
formance among the hardware, OS, and applications. Mohapatra et al. [27] pro-
posed an approach that uses a middleware to coordinate the adaptation of hard-
ware and applications at coarse time granularity (e.g., at the time of admission
control). EQoS [34] is an energy-aware QoS adaptation framework, which for-
mulates energy-aware QoS adaptation as a constrained optimization problem.
GRACE [49–51] coordinates the adaptation of the CPU speed in the hardware
layer, CPU scheduling in the OS layer, and multimedia quality in the application
layer in response to system changes at both fine and coarse time granularity.

We next introduce the design of our operating system, which is a part of the
GRACE project [50,51].

13.3.1 Design and Algorithm

The goal of the operating system is to maximize multimedia quality q of all con-
current tasks in the mobile device under the constraints of CPU, network band-
width, and battery energy. Figure 13.1 shows the architecture of the operating sys-
tem, which includes four major components: a coordinator, a soft real-time CPU
scheduler, a CPU adapter, and a WNIC adapter. The coordinator coordinates tasks
and the CPU and WNIC resources to determine the quality level and CPU allo-
cation for each task and the average power consumption for the CPU and WNIC.
The CPU scheduler enforces the coordinated allocation to support the coordinated
QoS levels of individual tasks. Finally, the CPU and WNIC adapters dynamically
adapt the CPU and network card to minimize their power consumption. We next
describe each component in turn.

13.3.1.1 Coordination

The goal of the coordination is to maximize the aggregate utility of all concurrent
tasks in the device subject to the constraints of CPU, network, and energy in the
device. More formally, let’s assume that (1) there are n tasks concurrently running
in the device. Each task has multiple QoS levels, {qi1, . . . , qim}. Each QoS level
has a utility u(qij ), consumes C(qij ) cycles and B(qij ) network bytes per period
P(qij ); (2) the remaining battery energy in the device is E; (3) the estimated
operating time of the device is T ; and (4) the available network bandwidth is BW .
The coordination needs to determine a QoS level for each task, the CPU speed f

and power p(f ), and the network power pnet. Intuitively, when tasks operate at a
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FIGURE 13.1: The architecture of the OS.

higher QoS level, they demand more CPU and network resources; consequently,
the CPU and WNIC perform at higher performance and hence consume more
energy.

The coordination problem can be formulated as follows:

maximize
n∑

i=1

u(qij ) (total utility) (13.1)

subject to
n∑

i=1

C(qij )/f

P (qij )
≤ 1 (CPU constraint), (13.2)

n∑

i=1

B(qij )

P (qij )
≤ BW (network constraint), (13.3)

(
p(f )+ pnet

) ∗ T ≤E (energy constraint), (13.4)

qij ∈ {qi1, . . . , qimi
} i = 1, . . . , n (QoS levels), (13.5)

f ∈ {f1, . . . , fmax} (CPU speeds). (13.6)
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The CPU power p(f ) is directly determined by the speed f . We determine the
network power as follows: If the transmission speed for the WNIC is S, the WNIC
needs to be in the active state for B/S and in idle state for 1 − B/S for every
second, where B is the aggregate bandwidth requirement of all tasks, that is,∑n

i=1(B(qij )/P (qij )). Then the network power is

pnet = pact ∗ B

S
+ pslp ∗

(
1− B

S

)
. (13.7)

Note that in (13.7), we switch the WNIC into sleep when it is idle.
The aforementioned constraint optimization happens at coarse time granularity,

for example, when a task joins or leaves the system. The coordination problem is
NP hard, since we can prove that the NP-hard Knapsack problem is an instance
of the aforementioned constraint optimization problem. We therefore use the dy-
namically programming algorithm [28] that provides a heuristic solution. As a
result of this solution, we determine the QoS level and CPU allocation for each
task as well as the average CPU power and network power.

13.3.1.2 Soft Real-Time CPU Scheduling

Soft real-time scheduling is a common mechanism to support timing requirements
of multimedia applications [8,11,30]. Here, we focus on the CPU scheduling. Pre-
vious soft real-time scheduling algorithms, however, often assume that the CPU
runs at a constant speed. This assumption does not hold for our target mobile
devices with a variable-speed CPU. As a result, we cannot directly use existing
scheduling algorithms in our system. We therefore extend traditional real-time
scheduling algorithms by adding another dimension—speed. That is, the sched-
uler also sets the CPU speed when executing a task and hence enforces the CPU
allocation on a variable-speed CPU [48].

The operating system uses an energy-aware EDF scheduling algorithm, which
enforces the globally coordinated CPU allocation on a variable-speed CPU [48].
Specifically, in this scheduling algorithm, each task has a deadline and a cycle
budget:

• The deadline of the task equals the end of its current period. That is, when
a task begins a new period, its deadline is postponed by the period.

• The budget of a task is recharged periodically. In particular, when a task
begins a new period, its budget is recharged to the coordinated number of
cycles.

The scheduler schedules all tasks based on their deadline and budget. In par-
ticular, the scheduler always dispatches the task that has the earliest deadline and
a positive budget. As the task is executed, its budget is decreased by the number
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of cycles it consumes. When the budget of a task is decreased to 0, the task is
preempted to run in best-effort mode until its budget is replenished again at the
next period.

This preemption provides temporal and hence performance isolation among
tasks; that is, a task’s performance is not affected by the behavior of other
tasks [11,18,30].

13.3.1.3 CPU Energy Saving

As the coordination problem just given shows, the coordinated CPU power con-
sumption is p(f ), where f =∑n

i=1(C(qij )/P (qij )). In other words, we expect
the CPU to execute at a uniform speed for all concurrent tasks. If each task uses
exactly C(qij ) cycles per period P(qij ), this uniform speed technique would con-
sume minimum energy due to the convex nature of the CPU speed–power func-
tion [17]. However, the instantaneous cycle demand of multimedia tasks often
varies greatly. In particular, a task may, and often does, complete a job before us-
ing up its allocated cycles. Such early completion often results in CPU idle time,
thereby wasting energy. To avoid this energy waste, we dynamically adapt the
CPU speed during each task’s execution.

However, we cannot lower the speed too much, as the task may miss its dead-
line or cause other tasks to miss their deadlines. To do this, we allocate the
task a time as follows: If there are n concurrent tasks and each task is allo-
cated Ci cycles per period Pi , then the scheduler allocates the ith task CPU time
Ti = Ci/

∑n
i=1(Ci/Pi) every period Pi . The reason for time allocation (in ad-

dition to cycle allocation) is to guarantee that each task executes for up to its
allocated cycles within its allocated time, regardless of speed changes.

Without loss of generality, we focus on the speed adaptation for an individual
task, which is allocated C cycles and T time per period and has a probability
distribution of its cycle demand F(x) = Pr(X ≤ x),1 ≤ X ≤ C. Our goal is to
minimize the expected energy consumption of each job of the task. To do this, we
find a speed for each of the allocated cycles of this task, such that the total energy
consumption of these allocated cycles is minimized while their total execution
time is no more than the allocated time. More formally, if a cycle x executes at
speed fx , its execution time is 1/fx and its expected energy consumption is (1−
F(x))× 1/fx × p(fx) [9]. We can then formulate the speed adaptation schedule
problem as follows:

min :
C∑

x=1

(
1− F(x)

) 1

fx

p(fx)

︸ ︷︷ ︸
busy energy

+
(

T −
C∑

x=1

(
1− F(x)

) 1

fx

)

pidle

︸ ︷︷ ︸
idle energy

(13.8)
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subject to:

C∑

x=1

1

fx

≤ T , (13.9)

fx ∈ {f1, . . . , fmax}, (13.10)

where pidle is the CPU idle power at the lowest speed. Note that the energy con-
sists of two parts: The first part is the energy consumed when executing all al-
located cycles. The second part is the energy consumed during the residual time
(i.e., the time budget minus the expected execution time of all allocated cycles).
During this residual time, the CPU is often idle since the process needs to wait
until the next job is available. During this idle time, we set the CPU to the lowest
speed during the idle slack.

We refer to the aforementioned optimization as a statistical Dynamic Voltage
Scaling (DVS) approach. This optimization happens at fine time granularity, for
example, within a multimedia frame execution. The optimization problem is NP
hard. To provide an approximate solution, we develop a dynamic programming
algorithm, based on the algorithm proposed by Pisinger [35]. Specifically, we
first divide the allocated cycles into groups and find a speed for each group, rather
than for each cycle. We then consider the combinations of all speed options for all
cycle groups and sort them in the nondecreasing order of a slope that is defined
as the ration of the increased energy to the decreased time by increasing a group’s
speed to the next higher speed. We initially set all cycle groups to the lowest
speed and then visit the sorted slope list. For the currently visited slope, we try
to increase the speed of its associated cycle group to the next higher speed. We
finish the visit when the total execution time of all cycle groups is no more than
its allocated time.

Each task has its own speed schedule and its speed schedule applies to all its
jobs. In other words, the OS changes the CPU speed in three cases (Figure 13.2):

• Context switch. After a context switch, the OS sets the CPU speed based
on the speed schedule of the switched-in task. This provides isolation of
speed scaling among different tasks.

• New job. When the current task releases a new job, its execution speed is
reset to the speed of its first cycle group.

• Job progress. The OS also monitors the progress of each job execution and
changes the CPU speed when the job reaches its next cycle group.

13.3.1.4 Network Energy Saving

Dynamic power management (DPM) is a common technique used to save net-
work energy by switching the WNIC into sleep when it is idle. DPM, however,
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FIGURE 13.2: The OS changes the CPU speed during job execution
and at context switch.

cannot be directly applied in our target multimedia systems for the following rea-
son. Multimedia applications are periodic and need to transmit or receive data in
each period. Consequently, the idle interval of the WNIC is often shorter than the
period. Since the period is often shorter than the DPM overhead, the WNIC can-
not enter the lower-power sleep mode. To save network energy, we use a buffering
approach. In this approach, each task still performs computation every period in a
timely fashion, but delays the transmission by buffering frames and sending them
in bursts at longer intervals (Figure 13.3).

Specifically, let’s assume that the buffer size is k frames and each frame needs
to transmit for tact time. In each period P , the task processes a frame and stores it
in the buffer. When the buffer has k frames (i.e., every k periods), the OS sends
all buffered frames in batch. The buffering approach combines short WNIC idle
intervals with length (P − tact) into longer ones with length k(P − tact). Such
aggregate idle intervals are larger than the DPM overhead so the WNIC can enter
sleep. The buffering approach saves more energy. That is, the network power in
the k period is

pnet = pact × ktact + pslp × k(P − tact)

kP

= pact × tact

P
+ pslp ×

(
1− tact

P

)
, (13.11)

which is equivalent to (13.7). That is, we enable the WNIC to consume the coor-
dinated power.
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FIGURE 13.3: The buffering approach.

13.3.2 Experimental Results

We have implemented a prototype of the OS. The hardware platform for our
implementation is the HP Pavilion N5470 laptop with a single AMD Athlon 4
processor, which supports six different frequencies, 300, 500, 600, 700, 800, and
1000 MHz. The laptop has a Cisco Aironet 350 wireless card. The coordinator,
scheduler, and CPU adapter are implemented as a set of patches and modules that
hook into the Linux kernel 2.6.5. The WNIC adapter is implemented as a user-
level process that switches the WNIC into the power-saving mode (PSM) when it
is idle and into the continuous access mode (CAM) when it is active.

We next evaluate the OS prototype. Since the coordination requires the utility
function for each task, which is application specific, we focus on our evaluation on
energy saving. To measure energy, we remove the battery from the laptop and let it
use the power from the AC adapter. The power consumption is the product of the
input voltage and input current from the AC adapter. We use the Agilent 54621A
oscilloscope to record the measurement. The sampling rate of the oscilloscope is
5 kHz, that is, making a sample every 200 μs. Figure 13.4 shows the setup for
power measurement.

First, we analyze the impact of the CPU adaptation and WNIC adaptation to-
gether. To do this, we use an H263 encoder that encodes local raw images into
frames in real time and sends the encoded frames to a receiver through a wireless
network. The input pictures are paris.cif. The H263 encoder can process two
or three frames per second in real time. We measure average energy consumption
characteristics for three different system scenarios:

• no adapt: the CPU always runs at the highest speed and the WNIC always
runs at the CAM mode.

• CPU only: the CPU runs at a uniform speed that meets the total average
demand of applications.

• CPU+NW: The CPU and WNIC both adapt.
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FIGURE 13.4: Setup for power measurement.

FIGURE 13.5: Benefits of CPU adaptation and WNIC adaptation.

This gives us an idea of the energy saving resulting from CPU speed adaptation
and wireless card mode changing.

Figure 13.5 shows the energy consumption of the laptop. We note that the CPU
speed adaptation reduces base energy consumption of the laptop by about 34%
at 3 fps, and the network card mode-changing reduces the energy consumption
of the network interface by about 42% at the same frame rate. However we find
that the total energy saving in the CPU+NW case over the CPU-only case is only
2–3% with the HP Pavilion laptop. The reason is that the WNIC consumes much
less energy than the CPU in the HP laptop.

Second, we evaluate the benefits of our proposed CPU energy-saving tech-
nique. To do this, we disable the wireless connection and let the H263 encode
three frames per second in real time and store the encoded frames in a local file.
We run the stand-alone H263 encoder under the following DVS techniques:

• No DVS. This is the baseline technique that always runs the CPU at the
highest speed.

• Uniform DVS. It sets the CPU speed based on the average CPU demand of
the H263 encoder.
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FIGURE 13.6: Benefits of statistical DVS compared to other DVS tech-
niques.

• Reclamation DVS. It first sets a uniform speed and sets to the lowest speed
when the H263 encoder completes a job early.

• Statistical DVS. It adjusts the execution speed for each task job based on its
demand distribution.

Figure 13.6 shows the energy results. Compared to the baseline algorithm with-
out DVS, all DVS techniques save energy significantly. In particular, the statistical
DVS reduces energy by 26.4% compared to the no-DVS approach. The reason is
that the CPU does not need to always run at the highest speed. This clearly shows
the benefits of energy saving by dynamically adapting the CPU speed. Compared
to other DVS techniques, the statistical DVS further reduces the total energy by 2
to 10%. This clearly shows the benefits of adapting the CPU speed based on de-
mand distribution of tasks.

13.4 QOS SUPPORT IN MOBILE WIRELESS NETWORKS

To achieve end-to-end QoS guarantees in multimedia wireless networks, a strong
QoS-aware cross-layer networking system support for wireless multimedia ap-
plications must be present. We will present a complete cross-layer networking
system support for a single-hop ad hoc network based on the IEEE 802.11 MAC
layer. In this network, all the nodes are within one-hop transmission range of each
other. They are able to talk to each other in a peer-to-peer fashion. They all share
the same wireless medium and hence need to cooperate with each other in satis-
fying their QoS needs.
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The nodes in our network use the IEEE 802.11 MAC protocol’s Distributed
Coordination Function (DCF) mode for communication. The IEEE 802.11 stan-
dard specifies two operating modes: Point Coordination Function (PCF) and DCF.
The former requires a single coordinator to arbitrate access to the shared wireless
channel. The latter mode allows peers to arbitrate channel access without any cen-
tralized coordinator using a CSMA/CA protocol. Wireless nodes using the DCF
mode carrier sense the medium. If the channel is busy, transmissions are deferred.
When the channel is clear, nodes back off for collision avoidance. A node that cap-
tures the channel for transmission uses a RTS-CTS-DATA-ACK cycle to transmit
a MAC frame. The RTS/CTS handshake is used mainly to deal with the hidden
terminal effect.

Multimedia applications running over this 802.11 DCF network need to pay at-
tention to the following conditions: (1) interference of wireless communications
between different flows within the network and (2) dynamics of the network envi-
ronment where resource usage patterns and wireless signals may vary with time.
As a result, multimedia applications need to adapt to these conditions with proper
system support.

To date, most of the existing work has been proposed within the context of an
individual layer, such as the routing and MAC layer. Much less progress has been
made in addressing the overall system support for running multimedia applica-
tions over wireless networks. One solution for overall system support for wire-
less multimedia applications is to adopt a cross-layer system architecture among
MAC, transport, middleware and application layers. All these layers communicate
and coordinate with each other to support QoS for multimedia applications.

13.4.1 QoS Models

Before discussing details of our cross-layer networking system architecture, we
first revisit the QoS models proposed in the Internet and review their applicability
in the wireless environment. There are two different QoS models: (1) the inte-
grated service (“IntServ”) model and (2) the differentiated service (“DiffServ”)
model.

The IntServ QoS model defines two types of services: guaranteed and best ef-
fort. In guaranteed service, each flow can request a certain level of QoS from the
network, such as minimum bandwidth and maximum delay. Over the Internet,
IntServ is usually implemented by per-flow resource reservation in the routers.
To apply the IntServ model to a wireless network, admission control must be de-
signed to work with imprecise and time-varying resources information. Further-
more, the reserved resources of a flow may have to change in response to wireless
resource fluctuations. As a result, in wireless networks, multimedia applications
often specify their QoS requirements over a range, for example, minimum and
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maximum bandwidths, and the granted resource can be a QoS level within that
range.

In the DiffServ model, flows are aggregated into multiple traffic classes.
A router needs to provide certain per-hop forwarding behavior for each class of
packets. In particular, we are interested in the relative DiffServ model [12], which
assures the relative quality ordering between different classes. No guarantee is
provided for any of those classes. This QoS model is appealing, especially in
wireless networks because it does not need to provide any bandwidth guarantees
for any class of packets. Instead, it relies on the end-host’s adaptation behavior to
dynamically select an appropriate service class for each of its applications.

These two QoS models address different needs of multimedia applications.
IntServ is more stringent in resource provisioning. An application has a better
level of QoS guarantee but at the same time there is a higher probability that the
QoS request may be rejected in admission or terminated due to resource fluctu-
ations. The relative DiffServ model has less guarantee for each application, but
each application is always allowed to send out packets, although with different
levels of QoS.

In the following subsections, we discuss in detail our design of two cross-layer
architectures that realize the QoS models mentioned earlier. There have been sev-
eral other cross-layer architectures for dynamic bandwidth management and adap-
tation, such as INSIGNIA [20], SWAN [2], TIMELY [6], dRSVP [26], and, most
recently, MPARC [47] and PBRA [46]. These cross-layer architectures assume
different QoS models and network topologies, but the underlying mechanisms
(subtasks) implemented in order to manage bandwidth are, with some exceptions,
similar: available bandwidth monitoring at the MAC, soft state reservation, ap-
plication adaptation to network variations, and fair bandwidth allocation. QoS
research for wireless networks has also addressed fair scheduling at the MAC
layer [4,15,19,22–24,44] and new transport mechanisms [3,25,40,46] to improve
application performance.

13.4.2 IntServ: Bandwidth Management

13.4.2.1 Bandwidth Management Architecture

Bandwidth Management architecture [38] arbitrates the bandwidth requests of all
the flows in a single-hop wireless network. In this architecture, every host in the
network monitors its MAC layer transmissions to observe wireless channel fading
and interference effects. These observations are fed into a central network arbiter,
which takes the bandwidth requirements and channel effects pertaining to each
multimedia stream in the network into account to decide how much channel time
each stream gets to access the network to ensure that its requirements are met.

An overview of the architecture is shown in Figure 13.7. It consists of a mid-
dleware agent for each host, which obtains channel quality updates from the MAC
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FIGURE 13.7: Bandwidth management architecture: overview.

layer monitor and application throughput requirements from each application,
including the media application. It translates the throughput requirements into
channel time requirements, using channel quality. The channel time requirement
represents the fraction of unit time that the media stream must have access to the
wireless channel of the observed quality in order to satisfy its throughput require-
ment. The channel time required thus depends on the throughput required as well
as the channel quality observed. The middleware agent feeds these channel time
fractions required by a particular stream to a central network arbiter, called the
Bandwidth Manager (BM), which resides on one of the hosts in the network. The
BM allocates the unit channel time resource among the various media streams in
the network. It can be configured with any logical policy to distribute the resource
among the streams, taking into account their requirements, for example, by using
a fair, utility-based or price-based policy.

The BM returns to the middleware agent at each wireless host the channel
fraction allocated to each application running on the host. When there is some
change in application throughput requirement or channel quality observed, the
BM must reallocate resources. This may involve revoking partially the resources
previously allocated to an application and reallocating them based on the new
network conditions.

Each host also has a rate-control system (i.e., traffic shaper) comprising leaky-
bucket queues. It is configured to ensure that each application injects no more
traffic than can occupy the channel for the fraction of time the application was
allotted. The sequence of events within each wireless host is shown in Figure 13.8.

The centralized architecture shown in Figure 13.7 is flexible enough to work
with any single-hop wireless topology. It can be used for single-hop peer-to-peer
ad hoc networks and for access-point (AP)-based networks. Furthermore, it can
be extended to a network consisting of multiple APs that cover a large area with
overlapping frequency bands. In such networks, the BM must also keep track
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FIGURE 13.8: Bandwidth management architecture: host.

of spatial reuse of the channel resource, apart from tracking the channel time
requirements [39]. The channel quality monitor that we describe later is powerful
enough to help a host using one AP to detect the presence of interference from a
host using a different one.

13.4.2.2 Channel Quality Monitoring

In the BM architecture, a key component is the monitoring of the channel quality.
We monitor the channel quality at the MAC layer, that is, we observe how fading
and interference phenomena affect MAC frame transmissions. We observe the
delay in MAC frame transmission and observe the loss rate of MAC frames. We
explain in this section how fading and interference phenomena are manifested in
the MAC frame delay and loss rate. We do not change the IEEE 802.11 protocol
in any way in constructing the channel quality monitor. We merely observe the
MAC layer transmissions of data packets in drawing our inferences.

Interference on the network can be estimated by the amount of time a trans-
mitting host senses the channel busy, and must hence back-off and wait before
being able to transmit its RTS or DATA frame. Thus the delay tr − ts in Fig-
ure 13.9 (top) reflects the interference levels in the network. Signal fading effects
cause bit errors in individual frame transmissions, thus requiring the frame to be
retransmitted. If ultimately the RTS-CTS-DATA-ACK cycle is successfully com-
pleted, then the interval tr − ts also measures signal fading effects, since delays
due to retransmissions are also accounted for in the interval. In case the RTS or
DATA retransmission limit is exceeded, then the frame is dropped at the MAC
layer, despite a time Tw wasted in trying to send it. Thus measuring this time
wasted Tw in Figure 13.9 (bottom) and the frame loss rate is also crucial in esti-
mating signal fading effects.
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FIGURE 13.9: Successful and unsuccessful transmissions in 802.11.

Our channel quality monitoring scheme also accounts for hidden-terminal ef-
fects that might occur in networks spread out over a larger area. Hidden terminal
effects cause the CTS frame to be suppressed. This is because the transmitter
of the RTS does not know about the transmissions in the receiver’s neighbor-
hood. But these transmissions prevent the intended receiver from responding with
a CTS. This may result in multiple RTS retransmissions, as would be the case if
there were bit errors in the individual frames, and even result in the RTS retrans-
mission limit being exceeded. Both of these scenarios are accounted for when we
measure the delay in Figure 13.9 (top) and the time wasted and frame loss rate in
Figure 13.9 (bottom).

The channel quality monitoring mechanism measures, over a time interval T ,
the number of frames successfully transmitted, the delay tr − ts incurred in trans-
mitting them, the number of frames lost, and the time wasted in attempting to
transmit them Tw . These four measures comprise our channel quality metric. They
give us an indication of how many higher layer packets can be transmitted in unit
time and how many will be lost in the process. The channel fraction required for
a media stream to obtain its required throughput depends on this information.

Note that we have described earlier only the principle behind our channel qual-
ity monitoring mechanism. We have omitted the details pertaining to how differ-
ent higher layer packet sizes affect the monitor and also considerations pertaining
to packet-header overhead consuming some channel fraction. Details on dealing
with these issues can be found in [38].

13.4.2.3 Illustrative Example

We now demonstrate using the network simulator ns-2 the performance of our
channel quality monitoring and rate-control schemes that together constitute
our bandwidth management solution. We assume a network topology shown in
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Figure 13.10 with two APs, node mobility, handoff, and hidden node effects. The
transmission range of a wireless node is 250 m and the carrier-sense range is
550 m.

Note that there is no spatial reuse of the channel, that is, two transmissions are
not simultaneously possible on the wireless channel. In order to create the hidden
node effect, and illustrate how our scheme deals with it, we assume both APs
use the same wireless frequency, although in practice adjacent 802.11 APs tend
to use noninterfering frequencies in the 2.4-GHz band. The BM is located in the
backbone distribution system and is not shown in Figure 13.11.

Figure 13.11 shows the observed throughput in the absence of any band-
width management. Figure 13.12 shows the observed throughput when using our
bandwidth management architecture. Our scheme provides weighted fairness in
throughput to each flow accessing the shared channel. Note that we are able to

FIGURE 13.10: Illustrative example: no spatial reuse.

FIGURE 13.11: Observed weighted throughput without bandwidth
management.
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FIGURE 13.12: Observed weighted throughput with bandwidth man-
agement.

FIGURE 13.13: Perceived channel capacity for each flow.

provide weighted fairness in an extended LAN with multiple APs without chang-
ing the MAC protocol in any way. Figure 13.13 shows the channel capacity per-
ceived (which takes into account time wasted) by each flow in the network. Fig-
ure 13.14 shows the fraction of unit time each flow is permitted to be active on
the wireless channel. Flows with lower perceived channel capacity (i.e., worse
channel quality) are allowed to spend more time on the channel, and vice versa.
The accuracy of our channel quality estimation, even in the presence of hidden
node effects, is illustrated by the fact that the allotted channel fractions exactly
compensate channel quality variations and the result is a high degree of fairness
in throughput among flows.
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FIGURE 13.14: Channel fraction allotted to each flow.

Of course, throughput fairness is only one notion of fairness. Another notion of
fairness is channel-time fairness, wherein all flows get equal access to the chan-
nel, and flows with better channel quality end up transmitting more packets suc-
cessfully. Since we provide flows with worse channel quality more access to the
channel, we use the channel less efficiently as a result. (In the ideal case, for max-
imum efficiency, only one flow should transmit on a completely clear channel, but
obviously this starves all other flows and is hence not a practical solution.) In our
scenario given earlier, we observe up to 15% drop in overall channel efficiency as
compared to the baseline case without bandwidth management.

In cases with spatial reuse of the channel, the BM must arbiter multiple re-
sources. It must identify the flows in a particular region that shares the wireless
channel in that region of the network, and arbiter the channel among them. In
another area of the network, a different set of nodes shares the wireless channel,
and channel arbitration must be performed separately for that set of nodes. De-
tails on identifying the flow sets that shares the channel, and on the bandwidth
management in a scenario with spatial reuse, can be found in [39].

13.4.3 DiffServ: Proportional Delay Differentiation

13.4.3.1 Delay Management Architecture

Our second cross-layer design is a DiffServ QoS architecture that provides differ-
ent delays for packets in different service classes [45]. The cross-layer architec-
ture in Figure 13.15 operates from the MAC layer up to the application layer. At
the network level, packets from different service classes are processed differently
via per-hop forwarding mechanisms (e.g., packet scheduling and queue manage-
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FIGURE 13.15: Delay management QoS architecture: overview.

ment). At the middleware level, a monitor component monitors the performances
of applications. Based on the monitored results, it performs appropriate service
class adaptation so that different applications are able to meet their required QoS
specifications.

A detailed diagram of our delay management QoS architecture, which shows
the key components of this architecture, is illustrated in Figure 13.16. In order to
provide QoS support in the wireless networking environment, these components
interact in the following way.

1. At application level in the end hosts:

• The application notifies the Adapter in the middleware that it wishes
to set up a flow between two end hosts. It also provides its QoS
specification and adaptation policy to the Adapter in the middleware
layer.

2. At middleware level in the end hosts:

• Based on the previous performance of the service classes and
the QoS specifications of the applications, the Adapter decides
the appropriate service class for each application and notifies the
Classifier. Adaptation is an application-specific process. Based on
application-specific adaptation policy, actions are taken to adapt the
application’s service class.

• The packets from applications are delivered through the middleware
layer, where the Classifier marks the packets with their correspond-
ing service class.

• The Monitor monitors the performance of each service class and
notifies the Adapter of the observed changes and QoS violations.
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FIGURE 13.16: Delay management QoS architecture: details.

3. At network level in routing nodes:

• The Queue Management component allocates buffer spaces and
marks or drops packets. It deals with packet loss rate differentia-
tion.

• The Differentiated Scheduler selects a packet to transmit. It per-
forms packet-level QoS enforcement, allocates bandwidth for dif-
ferent flows, and provides delay differentiation.

This architecture balances very well between architectural flexibility and scala-
bility. At the network level, the service differentiation mechanisms work to bring
scalability with per-class packet scheduling and queue management. At the mid-
dleware level, the individual QoS requirement of each application is met via the
application-specific adaptation process.

In the following, we discuss details of the cross-layer proportional delay differ-
entiation scheduler and the adaptation service at the middleware layer.
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13.4.3.2 Cross-Layer Proportional Delay Differentiation Scheduler

The model of the proportional service differentiation was first introduced as a per-
hop-behavior (PHB) for DiffServ in wireline networks [12]. It states that certain
class performance metrics should be proportional to the differentiation parame-
ters. In particular, if we consider the case of delay differentiation in a network
with C service classes, the proportional delay differentiation model imposes the
following constraints for all pairs of classes:

d̄i (t, t + τ)

d̄j (t, t + τ)
= δj

δi

, for all i 
= j and i, j ∈ {1,2, . . . ,C}, (13.12)

where δi is the service differentiation parameter for class i and d̄i (t, t + τ) is the
average delay for class i, (i = 1,2, . . . ,C) in the time interval (t, t + τ), where τ

is the monitoring timescale.
The basic idea of proportional differentiation is that even though the actual

quality level of each class may vary with traffic loads, the quality ratio between
classes should remain constant in various timescales. In addition, such a quality
ratio can be controlled by setting the service differentiation parameters, which
provide flexible class provisioning and management. Under certain conditions
(i.e., the network is well provisioned), applications with absolute delay require-
ments can select appropriate service classes to meet their requirements [13], even
though the network offers only relative differentiation.

One of the packet scheduling algorithms that can realize the proportional de-
lay differentiation model in a short timescale is the waiting time priority (WTP)
scheduler [14]. In this algorithm, a packet is assigned with a weight, which in-
creases proportionally to the packet’s waiting time. Service classes with higher
differentiation parameters have larger weight-increase factors. The packet with
the largest weight is served first in nonpreemptive order. Formally, if wtpkt (t) is
the waiting time of a packet pkt of class i at time t , define its normalized waiting
time ŵtpkt (t, i) at time t to be

ŵtpkt (t, i)=wtpkt (t) · δi . (13.13)

The normalized waiting time is then used as the weight for scheduling. The packet
with the largest weight is then selected by the WTP scheduler for transmission.
Formally, at time t it will transmit the packet pkt that satisfies

pkt = arg max
pkt∈P

ŵtpkt (t, i), (13.14)
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where P is the set of backlogged packets. It is shown that the WTP scheduler
is able to approximate the proportional delay differentiation model in wireline
networks under heavy traffic condition [14].

Here we introduce the proportional service differentiation model into the do-
main of wireless LANs. In contrast to wireline networks, in which flows through
a router contend with each other on the outgoing link, in wireless LANs, not only
do flows originating from a node contend with each other, but they also contend
with flows originating from other nodes. To extend the concept of proportional
service differentiation to wireless LANs, flows originating from different nodes
must be considered. To address this, our proportional delay differentiation model
for wireless LANs states that the relation (13.12) holds for all flows within the
wireless LAN no matter whether they originate from the same node or not.

As a result of the distributed medium sharing, packet scheduling needs co-
operation among all the nodes. This is in contrast to wireline networks where
packets that need to be scheduled originate from the same router, and hence the
packet scheduling decision can be made by the router itself only considering its
own packets. We argue that delay differentiation in wireless LANs can only be
achieved through a joint packet scheduling at the network layer and distributed
coordination at the MAC layer. Therefore, we present a cross-layer waiting time
priority scheduling (CWTP) algorithm that is able to achieve proportional delay
differentiation in wireless LANs.

The CWTP algorithm divides the scheduling task into two parts, which are
performed at two layers in the network stack. At the network layer, intra-node
scheduling at node n selects a packet pkt∗n with the longest normalized waiting
time, that is, a packet pkt∗n that satisfies

pkt∗n = arg max
pkt∈Pn

ŵtpkt (t, i), (13.15)

where Pn is the set of all backlogged packets at node n. At the MAC layer, inter-
node scheduling selects a packet pkt∗ among the packets pkt∗n, which satisfies

pkt∗ = arg max
pkt∗n n∈N

ŵtpkt∗n(t, i), (13.16)

where N is the set of wireless nodes.
Such an intra- and inter-node scheduling algorithm can fit well the environment

of wireless LANs. In particular, the intra-node scheduling can be implemented
via network layer packet scheduling at each individual node and the inter-node
scheduling can be implemented via medium access control that coordinates packet
transmissions among nodes. Figure 13.17 illustrates such a cross-layer schedul-
ing architecture. In this architecture, the packet scheduler at the network layer
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FIGURE 13.17: Cross-layer architecture.

and the distributed coordination function at the MAC layer are coordinated using
normalized packet waiting time ŵt as a cross-layer signal.

At the MAC layer, in order to transmit the packet with the largest normalized
waiting time before ones with smaller normalized waiting times, we map the nor-
malized waiting time ŵt to the backoff time b via function b =�(ŵt). In [45],
we present two mapping schemes, namely linear mapping and piecewise linear
mapping to implement the function �(ŵt).

In the linear mapping scheme, the normalized waiting time of a packet is
mapped to its MAC layer backoff time via a linear function. Formally, let us con-
sider a linear function φ(x) :R+ →R,

φ(x)= β − α · x, (13.17)

where α, β > 0 are parameters of this linear function. To ensure it is a nonnegative
integer, the backoff time b (in numbers of time slots) of a packet with normalized
waiting time ŵt is chosen as

b=�(ŵt)= ⌈[
φ(ŵt)

]+⌉
, (13.18)

where [x]+ = max(0, x) and �·� is the ceiling operation. These two operations
round up the value of φ(ŵt) to a nonnegative integer. It is obvious that α and β

determine the effectiveness of the mapping function, and thus the performance
of the cross-layer scheduling algorithm. We present a dynamic tuning algorithm
for α and β . Let cw be the expected value of the contention window under
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IEEE 802.11 DCF without differentiation. The backoff time b is uniformly cho-
sen from [0, cw). Let ŵtmax and ŵtmin be the maximum and minimum normal-
ized waiting times, respectively. Preferably, the maximum normalized waiting
time ŵtmax can be mapped to the smallest backoff time (0) for efficient chan-
nel utilization, and ŵtmin can be mapped to cw for similar contention behavior as
IEEE 802.11 without differentiation.

The linear mapping scheme neglects the fact that the distribution of the nor-
malized waiting time can be nonuniform. If there is a higher density over a cer-
tain interval of time, then it will increase the possibility of packets with different
normalized waiting times being mapped into the same backoff time. It can also
increase the possibility of packet collision at the MAC layer. To address these
problems, we present a piecewise linear mapping scheme that considers the ef-
fect of the normalized waiting time distribution. In the piecewise linear mapping
scheme, the normalized waiting times ŵt are divided into L intervals of equal
lengths defined by points ŵtmin = ŵt0, ŵt1, ŵt2, . . . , ŵtL = ŵtmax. During each
interval, a function �i(ŵt) = �[βi − αi · ŵt]+� will be used for the mapping.
Figure 13.18 compares these two mapping algorithms.

We simulate the CWTP algorithm under both linear mapping and piecewise
linear mapping schemes on a variety of network settings in ns-2 [41]. In the sim-
ulation, the number of nodes (N ) is a parameter to show how CWTP scales to
the network size. Each node in the wireless LAN sets up a connection. The trans-
mission rate of each flow is configured to give the network an aggregated load of
about 1500 Kbps.

We first show the impact of network size on the CWTP algorithm. In this ex-
periment, two service classes with δ2/δ1 = 2 are supported in the network. Fig-
ure 13.19 shows the differentiation index I with different numbers of nodes in the
network. The differentiation index (I ) is defined as the ratio of the average delay
of the two service classes. That is,

I = d̄1

d̄2
, (13.19)

where d̄i is the expected packet delay of service class i. This metric shows the
effectiveness of the service differentiation—how close the differentiation result
matches the differentiation goal. Ideally, in these experiments I = 2. We observe
that both linear mapping and piecewise linear mapping schemes can lead the
CWTP scheduling algorithm to achieve a delay differentiation index very close
to the target value, when the network size is relatively small (the number of nodes
N < 20). When the network size is large (e.g., N = 50), the piecewise linear
mapping scheme performs much better than the linear mapping scheme.

In Figure 13.20, we show the instantaneous delay behaviors under these two
schemes when N = 10. From these results, we observe that the piecewise linear
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(a) Linear mapping

(b) Piecewise linear mapping

FIGURE 13.18: Linear mapping and piecewise linear mapping: a com-
parison.
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FIGURE 13.19: Differentiation index.

(a) Linear mapping

(b) Piecewise linear mapping

FIGURE 13.20: Instantaneous delay behavior.
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mapping scheme gives much more consistent and smooth delay behavior than the
linear mapping scheme. This is because with the consideration of the normal-
ized waiting time distribution, piecewise linear mapping significantly reduces the
possibility of packet collision at the MAC layer.

13.4.3.3 Middleware-Based Adaptation Services

Now we describe the adaptation services to be provided by the middleware frame-
work. The adaptation services work with the network level service differentiation
mechanism to provide an absolute QoS level for applications. At the network
level, service differentiation provides differentiated quality for packets from dif-
ferent classes. However, applications usually require a QoS level with an absolute
value; hence the middleware is responsible for mapping the required QoS level to
the correct service class. Our middleware achieves this goal by continually moni-
toring the performances of the applications and adaptively adjusting their service
classes to meet their required QoS levels.

The design of our middleware adaptation framework is based on a task con-
trol model as shown in Figure 13.21a. Within the middleware control framework,
the Adaptation Task and the Observation Task are represented in two respective
components: the Adapter and the Monitor. The Target System is the differenti-
ated network, represented by the Classifier in the middleware layer, as shown in
Figure 13.21b. The Control Action is the service class selection, and Task States
are the end-to-end performance of the multimedia application. In particular, the
Adapter takes the end-to-end delay observed by the Monitor as its input, makes
the service class selection decision based on the input values, and sets the service
class at the classifier as its output. It is controlled by a set of conditional statements
in the form of if-then rules. In [32], we presented the detailed design of rules. An
example rule is illustrated as follows, where d is the current observed delay of the
application, d∗ is its delay bound, and δ(t) is its service differentiation parameter

(a) (b)

FIGURE 13.21: Middleware control framework.
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at time t :

If (d > 2.5d∗) (13.20)

then δ(t + 1)= 2δ(t). (13.21)

We show the performance of the adaptation service integrated with the delay
differentiation service over an IEEE 802.11-based wireless ad hoc test bed imple-
mentation. In the experiment, we first start an audio application that has a QoS
requirement in terms of maximum packet delivery delay. Then background UDP
traffic with 15,000 Bytes/s is started. From the results in Figure 13.22, we see that
the average delay increases quickly from 70 to 800 ms without service differenti-
ation and adaptation. Using the service adaptation policy in the example and the
underlying delay differentiation support, we observe that the average delay for the
audio application was successfully bounded to < 150 ms.

13.4.4 Comparison of QoS Architectures

The two QoS architectures described earlier support different QoS models. BM
supports the IntServ model by admission control, bandwidth reservation, traf-
fic shaping, and bandwidth renegotiations. Proportional delay differentiation sup-
ports the DiffServ model by a special per-hop forwarding behavior that relies on
a joint scheduling algorithm at the MAC and network layers.

Each of these QoS architectures has its own strength and weakness. For ex-
ample, it is convenient for BM to provide a per-flow “soft” bandwidth guarantee,
but a flow may be rejected in admission or terminated during transmission. In
the delay differentiation architecture, every flow can always send out packets, but
the quality protection between different classes of packets is only “relative.” Each
application takes the risk and burden of choosing an appropriate service class to
meet its own needs. Therefore, BM is more suitable for a small number of con-
current flows with stringent QoS requirements, whereas delay differentiation is
better for a large number of flows where a few of them are QoS sensitive while
the rest are not.

Despite differences in their QoS models, there is a common trait in these two ar-
chitectures, which is the cross-layer design principle. In both architectures, there
is a close interaction among application, middleware, network, and MAC lay-
ers. Together they provide an agile adaptation framework for QoS applications in
wireless networks.

13.4.5 Beyond Single-Hop Wireless Networks

The two QoS architectures discussed earlier assume a single-hop ad hoc network
(or wireless LAN) where each node can talk to each other directly. In this section
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(a) Without service adaptation and differentiation

(b) With service adaptation and differentiation

FIGURE 13.22: Performance comparison.

we discuss how to support multimedia applications in a multi-hop ad hoc network
(or “MANET”).

Running multimedia applications over a MANET has even more challenges:
(1) the network topology is dynamic, which often results in route breakage and
rerouting and (2) wireless resource usage is very dynamic and complex due
to location-dependent wireless contention and spatial reuse. Examples of QoS
support architectures in this network include INSIGNIA [20] and SWAN [2].
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INSIGNIA supports the IntServ model by reserving bandwidth over a multi-hop
path and continually renegotiating the reservations via signaling. SWAN supports
the DiffServ model by differentiating two classes of traffic: real time and best ef-
fort. Real-time traffic needs to go through a distributed admission control process
at a flow’s start-up and needs to monitor the available bandwidth of the path con-
tinuously.

Due to the dynamic nature of the multi-hop ad hoc network, robust QoS support
is very difficult. Hence we ask another interesting question: how can we better
support multimedia flows as part of the best-effort traffic in MANET? We are not
concerned about any QoS model, but we are interested in how flow control at the
transport layer can facilitate the transmission of multimedia traffic. Traditional
flow control such as TCP relies on “probing” the network until packet lost is
observed. This is certainly not an appealing method to carry multimedia traffic
because frequent and large rate fluctuations are inevitable, especially in a wireless
environment.

To this end, we study a special explicit flow control scheme called “EX-
ACT” [10] where the transport layer gives explicit rate signals to the application
layer. Its design rationale is as follows:

• Router-Assisted Flow Control: In our framework, the router explicitly gives
rate signals to the flows that are currently passing it, since routers are in a
better position to react to network bandwidth variations and route changes
in MANET.

• Rate-Based Transmission: In our framework, the sender follows the rate
information set by the routers, and hence the packet transmission is rate
based.

• Feasibility in MANET: Our framework incurs additional complexity and
overhead at the routers. It is not targeted for the large-scale Internet (where
core routers have to process huge numbers of concurrent flows), but rather
as a solution for the smaller scale MANET environment.

13.4.5.1 Overview

An overview of the EXACT framework is shown in Figure 13.23a. Each data
packet carries a special IP header, called a flow control header, which is modi-
fied by the intermediate routers to signal the flow’s allowed sending rate. When
the packet reaches the destination, the explicit rate information is returned to the
sender in a feedback packet. As a result, any bandwidth variation along the path
will be returned to the sender within one RTT.

In the event of rerouting (Figure 13.23b), the first data packet traveling through
the new path (R1, R2, R′3) collects the new allowed rate of the flow. As a result, the
sender learns the exact sending rate after only one RTT of delay after rerouting,
without having to go through the additive probing phase of TCP.
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(a) Normal operation

(b) Re-route

FIGURE 13.23: Overview of the EXACT flow control scheme.

A packet’s flow control header includes two fields: Explicit Rate (ER) and Cur-
rent Rate (CR). ER is the allowed sending rate of a flow. It is initially set at the
sender as its maximum requested rate and is subsequently reduced by the interme-
diate routers to signal its allowed data rate. CR is initially set at the sender as its
current sending rate and is modified by the intermediate routers to signal possible
rate reduction along the path. Each router remembers the CR of the current flows
in its flow table in order to compute each flow’s fair share of bandwidth.

13.4.5.2 Router’s Behavior

A router plays the central role in EXACT. A router has four major tasks: (1) keep
track of current flows and their sending rates; (2) measure the current bandwidth
of the outgoing wireless links; (3) compute rates for the current flows; and (4) up-
date the header of each passing data packet.

The core part of each router is its rate computation algorithm to allocate send-
ing rates for the competing flows. The rate computation, performed locally, is
based on the current measured bandwidths of the outgoing links, as well as the
current rates of the flows going through the router. Efficiency is achieved by mak-
ing sure that the flows can fully occupy the outgoing wireless links. Fairness can
be achieved by allocating the bandwidth “fairly” to each flow. A common fairness
criterion is max–min fairness [5]. In max–min fairness, flows with minimum re-
quests are granted their requests first; the remaining bandwidth resource is then
divided evenly among the higher demanding flows.

Here we propose to maintain fairness among competing flows according to
their channel time demands to access the wireless channel. The wireless link’s
bandwidth at the MAC layer is measured using the monitor as described earlier.
To represent a flow’s resource request, we normalize a flow’s requested rate to
its next-hop link’s bandwidth as T Fi = ri/bi , where ri is the flow’s data rate and
bi is the current bandwidth of the link. The max–min allocation is then performed
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on top of the requests of the flows: T Fi , i = 1 to N . Since each flow obtains a
throughput proportional to its next-hop link’s bandwidth, we call it bandwidth-
proportional max–min fair. For details of rate computation, interested readers are
referred to [10].

13.4.5.3 Multimedia Streaming Using EXACT

EXACT provides explicit rate signals for the flows, but these rate signals may
be fluctuating. In order to support multimedia streaming on top of EXACT, our
framework supports split-level adaptations. At the transport layer, EXACT pro-
vides explicit rate signals to the upper applications. It serves as the upper bound
of the application’s sending rate. Within this upper bound, each application may
adjust its own sending rate based on its adaptation policies, for example, to main-
tain smooth rate changes for multimedia flows.

Such informed adaptation is possible only with EXACT’s explicit rate sig-
nals. Although all the flows are treated as best effort at the transport layer, using
EXACT as the flow control scheme facilitates running multimedia applications
over MANET.

13.4.5.4 Evaluations

Here we show the efficiency of EXACT compared to traditional TCP flow control.
Using the ns-2 simulator, we create a MANET with 30 nodes moving in a 1500-m
by 300-m space with a maximum speed of 20 m/s and different pause times (0, 5,
10, 15, and 20 s) to create different levels of network dynamics. Under these mo-
bility patterns, we compare EXACT with TCP-Reno and TCP-SACK. For each
scenario, we average the total number of reliably transmitted packets over 10
runs for each scheme. The results in Figure 13.24 show that under all mobility

FIGURE 13.24: Comparison of EXACT with TCP under different mo-
bility patterns.
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scenarios, EXACT overall outperforms TCP-Reno and TCP-SACK by 42 and
36% more packets, respectively. This demonstrates the effectiveness of the EX-
ACT flow control scheme in a dynamic MANET environment.

13.5 DESIGN PRINCIPLES LEARNED

In this section we summarize various design principles we have learned in our
study.

13.5.1 Cross-Layer Strategies

Cross-layer resource management strategies in wireless networks have attracted
increasing attention in recent years.1 The need for cross-layer design is based on
two characteristics of wireless networks. First, the wireless medium is a shared
medium. Sending a packet from one node to another creates interference to other
nodes in the same neighborhood. Therefore, in designing network packet schedul-
ing algorithms, we have to consider the interaction between the network layer and
the MAC layer due to wireless interference. At the network layer, only packets
within the same host are scheduled; interhost packet transmissions can only be
enabled at the MAC layer.

Second, resources are generally scarce and variable in wireless environments,
and hence they must be managed carefully. For example, we translate multime-
dia application requirements into bandwidth and CPU resource requirements and
use controllers at the lower level to monitor the load on the resource. The feed-
backs from the controllers are then used to tune the network and CPU schedulers
so as to satisfy multimedia application requirements. In this picture, the control
flow of resource management is two way. Variations in the load on the resource
are fed by the lower-level controllers to the application so that the application
can adapt. The chosen operating quality level of the multimedia application is
fed to the lower-level controllers so that the schedulers can be tuned accord-
ingly.

13.5.2 Tightly Coupled Resources

In wireless networks, resources are tightly coupled with each other. Therefore,
we need to adopt coordinated resource management strategies because resources
cannot be managed independently of each other.

1Interested readers are referred to [1] for more research results in cross-layer design for wireless
networks.
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For example, if a lot of bandwidth is available, a bandwidth management
scheme may allot a high operating quality level to a media streaming applica-
tion. However, if CPU resources are scarce, a CPU management scheme will allot
the same application a lower operating quality level. Obviously, this is a contra-
dictory scenario, hence the resource management strategy must be coordinated
between resources.

A direct result of the tight coupling of resources means that we need a multi-
level resource management strategy. For example, some resources are global to
the hosts (nodes) in a wireless network, for example, network bandwidth. Other
resources are global within a single host, for example, energy. Thus, a multilevel
resource management strategy is to let the network-wide resource management
constrain the host’s resource availability and let the host-wide resource manage-
ment constrain each application’s resource availability.

13.5.3 Adaptation of Both Software and Hardware

Resource adaptation should not be limited to software only. To achieve greater
flexibility, the middleware layer needs to consider the adaptability of both soft-
ware and hardware. For example, adaptive hardware such as adaptive CPU and
wireless network interface cards can trade off performance for energy consump-
tion; multimedia applications can trade off quality for resource demand.

Software and hardware adaptation and optimization can take place at different
time granularities. At a coarse time granularity, for example, when an applica-
tion starts, we can optimize to achieve high application utility and desired battery
lifetime. At a finer time granularity, for example, when the application renders a
frame, we can optimize to save more energy.

13.5.4 Suitable QoS Model

Selecting a suitable QoS model is the most important step in designing a QoS
support architecture because it has a fundamental impact on the overall architec-
ture. This is especially true in wireless networks due to the scarcity of bandwidth
resources.

While selecting a QoS model, we need to keep in mind the unique charac-
teristics of wireless networks. The QoS models in the Internet, such as IntServ
and DiffServ, should be carefully re-examined. For example, the main challenge
of deploying IntServ over the Internet is the scalability problem in keeping per-
flow state at the Internet routers. In contrast, the challenge of adopting IntServ
in wireless networks is not the scalability problem; instead, it is the time-varying
resource availability problem, which may result in repeated QoS setups. Relative
DiffServ may be a more suitable QoS model here since it does not require the
QoS setup phase and hence avoids the difficulty and overhead in doing repeated
admission control and resource signaling.



REFERENCES 447

13.6 SUMMARY AND FURTHER READING

In this chapter we discussed QoS support in mobile operating systems and mobile
wireless networks for multimedia applications. We have shown that with care-
ful OS design with respect to scheduling and dynamic voltage scaling, we can
achieve deadline guarantees for wireless multimedia applications as well as en-
ergy efficiency of mobile nodes to extend the application lifetime. Furthermore,
we have shown two cross-layer networking architectures that support statistical
bandwidth and delay guarantees in cooperative wireless single-hop environments.
The bandwidth management architecture realizes the IntServ QoS model, while
the proportional delay differentiation architecture realizes the DiffServ model. We
have shown that by leveraging the cross-layer design principle, both of them can
achieve different levels of QoS protection and are suitable in many situations in
wireless networks.

Wireless networks are at the critical junction of being widely accepted into
everyday life by the proliferation of small wireless devices such as smart phones,
as well as the maturation of VoIP software. Now many municipal governments
are planning to roll out city-wide mesh 802.11 networks to the general public.
Such networks are owned by a single entity, for example, the city government,
so that cooperation among the nodes can be assumed. It is likely that the IntServ
QoS model can be implemented by per-user bandwidth provisioning based on
their subscriptions, considering the fact that the number of users and flows should
be manageable for a city-scale network. Higher speed 802.11 standards such as
802.11n using MIMO are also going to alleviate the scarcity of wireless band-
width. Wireless multimedia may become the next killer application, and QoS is
certainly an important enabler in this picture.

Beyond the references cited in this chapter, the reader is recommended to
read Chapter 4 on Bandwidth Adaptation Mechanisms, Chapter 10 on Network-
Adaptive Media Transport, and Chapter 12 on Cross-Layer Wireless Multimedia.
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14
Streaming Media on
Demand and Live
Broadcast

Philip A. Chou

14.1 INTRODUCTION

Media on demand is a user scenario epitomized by playing back audio or video
locally from a CD or DVD, whereas live broadcast is a user scenario epitomized
by tuning in to a radio or television program. In the former scenario, the user has
control over the start time for specific content, and in addition may have various
other interactive controls (fast forward, pause, seek, etc.). In the latter scenario,
the user simply joins an ongoing session and has little control except the ability to
leave. While in the session, the user hears and sees the same content at the same
time as other users in the session.

Today it is common to see both of these scenarios fulfilled by content delivered
over the Internet. A subscriber to any of a number of music services, for exam-
ple, can click on any of millions of songs and hear them on demand. Numerous
Internet radio stations have sprung up, offering broadcast content either free or by
subscription. Video content is also popular, offering news shorts, movie trailers,
and so forth on demand, as well as live news feeds available at various web sites.

How are these scenarios enabled, technically? This chapter pulls together com-
ponents from the previous chapters, while adding fundamental elements such as
buffering, to outline the construction of systems for streaming media on demand
and live broadcast over the Internet and over other IP networks such as wireless
networks within the home.

Section 14.2 provides an overview of architectures, protocols, and format is-
sues. Section 14.3 covers buffering and timing fundamentals. Section 14.4 de-
tails how media data may be communicated in a system for streaming media on
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demand. Section 14.5 details how media data may be communicated in a system
for live broadcast.

14.2 ARCHITECTURES, PROTOCOLS, AND FILE FORMATS

In this section, we review the basic architectures of systems for streaming me-
dia on demand and live streaming, covering the roles of the encoder, media file,
server, network, buffer, and client. We introduce basic elements of the communi-
cation protocols required for streaming media on demand. These elements come
in layers and include (from top to bottom) content discovery; file specification
and interactive control (start, stop, pause, fast forward, seek); stream selection and
coding rate control; congestion control (transmission rate control); and the trans-
port protocol. We mention the continuum between sender-driven and receiver-
driven protocols, and we discuss some of the related standards (RTP, RTSP, etc.).
Finally we cover the basic elements of file formats: header information, streams,
data units, and indexing, and we comment on some of the related standards
(MPEG4, QuickTime, ASF, etc.). We also discuss content format in general terms:
multi bit rate (MBR) coding vs. scalable coding, the details for which we refer to
Chapters 5 and 6.

14.2.1 Architectures

Streaming media on demand and live broadcast require somewhat different ar-
chitectures, as depicted in Figure 14.1. Figure 14.1a pertains to streaming media
on demand, while Figure 14.1b pertains to live broadcast. In streaming media on
demand, a source of media is encoded off line and the encoded source is placed
into a media file. The format of the media file may be specialized to support var-
ious modes of streaming, as discussed in Section 14.2.3. The media file is placed

FIGURE 14.1: (a) Streaming media on demand. (b) Live broadcast.
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in a location on the server from which it can be streamed. Various protocols be-
tween the server and the client, as discussed in Section 14.2.2, are used to stream
the media across the network to the client. During streaming, the client temporar-
ily buffers the encoded media data in a decoder buffer before decoding and then
temporarily buffers the decoded media data in a render buffer before rendering
the media, or presenting the media to the user. The render buffer is usually fairly
short—a frame or two—and is used to buffer the relatively large decoded frames
after a variable amount of decoder computation time. The decoder buffer, how-
ever, is usually relatively long and is used for a variety of purposes: network jitter
compensation, error recovery, bandwidth management, and variable rate coding.
Indeed the decoder buffer is a key element in streaming media on demand and
is usually simply called the client buffer. In some client devices, such as desk-
top computers, the client buffer can be quite large, indeed, large enough to store
the entire media content, such as a movie. In other client devices, such as mobile
phones and consumer electronics, the client buffer may be fairly limited, capable
of storing at most only a few seconds of encoded media content. In all cases, the
user is generally able to control the experience through VCR-like commands such
as play, fast forward, stop, and seek. Communication between the server and the
client can be tailored to the resources of the client and to the network connection
between the server and the client.

In streaming media on demand, because the entire file is available to the server
ahead of time and because the server can individualize streaming to each client,
there is great flexibility in which parts of the media file are transmitted at any
given time. For example, if the client buffer is sufficiently large and the network
bandwidth to the client is sufficiently large, then the server can look arbitrarily far
ahead, streaming the media to the client faster than real time, essentially down-
loading the media file to the client while the client is simultaneously playing back
the content in real time. This is sometimes called progressive downloading in-
stead of streaming, although it is really just an extreme case of streaming with a
large client buffer and a network bandwidth that is larger than the bit rate at which
the content is encoded—the latter henceforth is known as the source coding rate.
If the file format satisfies some basic properties, such as the ability to be decoded
sequentially, then progressive downloading can be accomplished using any of a
number of simple file transfer protocols, such as FTP over TCP/IP or HTTP over
TCP/IP. Thus, progressive downloading can often be done using an ordinary FTP
or web server. Even if the client has a limited media buffer, progressive down-
loading over TCP/IP can be done using simple TCP flow control. Specifically, the
client can accept data from its TCP connection if and only if there is space in its
media buffer. This technique was popularized by SHOUTcast, an early streaming
music service [30].

Progressive downloading is a special case of streaming media on demand,
which works only if the network bandwidth (specifically, the TCP fair share of



456 Chapter 14: MEDIA ON DEMAND AND LIVE BROADCAST

the path between the server and the client) is larger than the source coding rate,
on average. Of course, the network bandwidth may fluctuate widely, as compet-
ing communication processes begin and end or even (if wireless networks are
involved) when there are interfering elements, such as people walking near an an-
tenna, turning on a microwave oven, or picking up a cordless phone. Furthermore,
a user generally wants an average quality commensurate with the highest possible
source coding rate, not a source coding rate less than the worst-case network band-
width. Hence, it is generally desirable or necessary to adapt the source coding rate
to the available transmission rate. Herein lie many of the intricacies of streaming
media on demand, affecting the communication protocol between the client and
the server (covered in Section 14.2.2), file format (covered in Section 14.2.3), and
rate control (covered in Section 14.4).

In contrast, in live broadcast, as depicted in Figure 14.1b, the encoder may be
directly connected to the server through an encoder buffer. To maintain a fixed and
acceptably short end-to-end delay, the encoder buffer must contain only a limited
amount of data. Thus the server can access data only so far ahead of the client’s
playback point, rather than access arbitrary data in a file. This restricts adaptiv-
ity of what the server can transmit to the client. Furthermore, in live broadcast,
the server ordinarily communicates to multiple clients simultaneously through a
multicast or content distribution network of some kind. (See Chapter 19 for more
information on infrastructure-based content distribution systems.) Thus, in live
broadcast, it is generally not possible for the server to give clients VCR-like inter-
active access to the media.1 Furthermore, in live broadcast, it is generally difficult
for the server to adapt its transmission rate to the bandwidths of particular clients.
However, some adaptation is possible, using, for example, receiver-driven layered
multicast (RLM) [28,29]. Finally, in live broadcast, it is generally difficult for the
server to use retransmission-based error control due to the so-called negative ac-
knowledgment (NAK) implosion problem, in which the server would potentially
have to handle retransmissions to a huge number of clients. Hence, error control
becomes an especially acute issue for live broadcast. Section 14.5 is dedicated to
all of these issues. Thus, in the following, up until Section 14.5 we will consider
only streaming media on demand.

There has been a fair amount of work on video “on demand” systems that,
rather than devoting a unique stream to each user, multicast a relatively small
number of time-staggered streams to an unlimited number of users who may start
the video on demand or nearly on demand [4]. Such systems work by, for example,
devoting some of the multicast streams to enabling users to “catch up” to one of
the main multicast streams. VCR-like functionalities such as fast forward are not

1Of course, it is always possible for clients to cache the broadcasts and then enable local playback of
the cached content with VCR-like functionality, as is done with many personal video recorders (e.g.,
TiVo, Replay TV) and set top boxes (e.g., Comcast) today.
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generally available, although of course some of these can be partially recovered
through client-side caching. These systems have been mainly of interest to the
cable/satellite TV industry, who may be able to afford a dozen full-bandwidth
multicast channels flowing simultaneously into a set top box to enable a single
movie on demand. However, this approach is not generally possible when the
bandwidth into a client is at a premium and the client wishes to make full use of
that bandwidth for the highest possible quality. Hence we will not address this
approach further in this chapter, but rather leave the subject to further reading.

14.2.2 Communication Protocols

Streaming media on demand requires a large number of communication protocols
at different levels. At the topmost level are protocols for content discovery and
connection to a specific streaming media server. Typically, content discovery is
done “out of band,” for example, by browsing a web page or receiving a link to
the content in an email message. In either case the link would typically have a
form such as

http://www.microsoft.com/directory/contentname.asx
http://www.realnetworks.com/directory/contentname.ram
http://www.apple.com/directory/contentname.mov

which are, respectively, representative of links to content from Microsoft Win-
dows Media, RealNetworks RealMedia, and Apple QuickTime. These uniform
resource locators (URLs) point, actually, to small auxiliary, metadata, or refer-
ence files typically located on a web server rather than to the media file itself. An
asx file, for example, is actually an XML file describing the URL of the media
server and the specific name of the media file on the server, including the protocol
and potentially other parameters and content presentation instructions [17]. Real-
Media uses a similar format, called ram. Figure 14.2 provides examples of such
auxiliary files.2 QuickTime accomplishes a similar task with a small reference
movie file in the QuickTime mov format.

Once an auxiliary file is retrieved from a web server or other location, its file
name extension and MIME type indicate that the default client software (e.g.,
media player) should be launched, and the auxiliary file is then read by the client
application or embedded object or control (known hereafter simply as the client).

2The auxiliary file can provide minor scripting of the presentation, such as insertion of advertise-
ments and player background color. However, if more complex scripting is needed, an alternative or
additional level of indirection, the SMIL file, can be used. SMIL is a variant of HTML capable of
describing fairly complex multimedia presentations involving, for example, fading from one piece of
content into another at a particular time in the presentation, integrating with images and text, etc. Orig-
inally promulgated by RealNetworks, it was substantially reworked by a number of interested parties
and is now a W3C recommendation [3].
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<ASX Version="3.0">

<ENTRY>

<REF HREF="mms://streamingmedia/studios/0505/24721/MTV_XBOX_preview_160k.wmv" />

</ENTRY>

<ENTRY>

<REF HREF="mms://winmedianw/studios/0505/24721/MTV_XBOX_preview_160k.wmv" />

</ENTRY>

</ASX>

(a)

# First URL that opens a related info pane.

rtsp://helixserver.example.com/video3.rm?rpcontextheight=350

&rpcontextwidth=300&rpcontexturl="http://www.example.com/relatedinfo2.html"

&rpcontexttime=5.5&rpvideofillcolor=rgb(30,60,200)

#

# Second URL that keeps the same related info pane,

# but changes the media playback pane’s background color.

rtsp://helixserver.example.com/video4.rm?rpcontexturl=_keep &rpvideofillcolor=red

(b)

FIGURE 14.2: Auxiliary files describing where to find streaming media
content. (a) An ASX file, from Microsoft. (b) A RAM file, from RealNet-
works.

At the appropriate time, the client contacts the server using the URL for the con-
tent, for example,

rtsp://wms.microsoft.com/directory/contentname.wmv
rtsp://helixserver.example.com/audio1.rm?start=55&end=1:25
rtsp://qtserver.apple.com/directory/contentname.mov

where the prefix indicates the streaming protocol used, and various optional suf-
fixes can pass information to the server, such as seek point and play speed.

The “streaming protocol” is a high-level control protocol enabling the client
to interactively control playback using VCR-like functions, including start, stop,
pause, fast forward, and seek. These commands are typically communicated re-
liably over a TCP connection. Although various roughly equivalent proprietary
protocols are used here, one protocol that is now widely adopted is the Real Time
Streaming Protocol (RTSP), which is codified by the Internet Engineering Task
Force (IETF) Request for Comments (RFC) 2326 [37]. RTSP is an HTTP-like
protocol, including commands to play and stop. Sample commands are shown in
Table 14.1. Although the commands appear very basic, extensions can be defined
using the SET_PARAMETER command, for example, to allow dynamic selec-
tion of particular streams from the media file. As discussed in the next section,
a media file generally offers several streams, not only an audio stream and a video
stream, but potentially several audio and video streams, for example, for different
languages, subtitles, source coding rates, etc. Some of these, such as languages
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Table 14.1: RTSP protocol.

DESCRIBE Retrieves description of presentation, usually in Session
Description Protocol (SDP) format [19], together with
all initialization information.

SETUP Causes server to allocate resources for a stream; specifies
transport protocol; starts an RTSP session.

SET_PARAMETER Specifies stream bit rate, etc.

PLAY Starts data transmission of a stream from a specified time
point at a specified speed.

PAUSE Temporarily halts stream without freeing server re-
sources.

TEARDOWN Frees resources associated with the stream; ends an
RTSP session.

and subtitles, must ultimately be user-selectable, while others, such as source
coding rate, may be automatically selectable by the server and/or client. The
SET_PARAMETER command can be used to pass information from the client
to the server to enable dynamic stream selection.

The “streaming protocol” also enables the client to specify which lower level
data transport protocol to use. The data transport protocol is usually either RTP
over UDP or RTP over TCP (the only two transport protocols that are standard-
ized with RTSP) or HTTP over TCP (which can be specified with nonstandard-
ized streaming protocols). Systems such as Windows Media and Helix implement
multiple transport protocols and use whichever protocol is most appropriate for a
given situation. For example, HTTP over TCP may be used when there are fire-
wall issues to be avoided. RTP over UDP or RTP over TCP is usually preferred
for bandwidth efficiency. However, when RTP over UDP is used, there must be
a proprietary means of transmission rate control (i.e., congestion control) and er-
ror control (i.e., packet loss recovery). To date, there is no standard means of
transmission rate control and error control for RTP (Real Time Transport Pro-
tocol, IETF RFC 3550 [36]). RTP is essentially only a packet format that adds
a timestamp, a sequence number, a contributing source identifier, and a payload
type and format on top of an ordinary UDP packet. As with UDP, the application
is left to perform transmission rate control and error control. RTCP (Real Time
Control Protocol, IETF RFC 3551 [35]) is often paired with RTP, but provides
only a format with which receivers may provide statistical feedback to the sender.
There is no standard protocol by which receivers may provide timely feedback to
the sender. This makes RTP+RTCP over UDP inherently not interoperable, pro-
prietary, and hence (in the author’s opinion) of limited use as a standard. However,
the IETF is currently at work trying to change this.
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The Windows Media system uses a particular form of transmission rate control
and error control for RTP over UDP. Transmission rate control is currently based
on constant bit rate transmission from the server, at the source coding rate of the
content. By monitoring its buffer, the client can determine whether congestion is
occurring and, if so, can signal to the server to change to a stream with a lower
source coding rate. Roughly, if the client buffer duration drops below an adaptive
theshold or if the packet loss rate rises above an adaptive threshold, then con-
gestion is detected and the stream transmission or source coding rate is switched
down. The extended absence of congestion allows the stream transmission/source
coding rate to be switched up.

An alternative method of transmission rate control would be to use, for ex-
ample, either a TCP-friendly rate control (TFRC) algorithm [13,18] or a TCP-
like congestion control algorithm (i.e., window-based additive increase and mul-
tiplicative decrease without retransmission or in-order delivery). Both TFRC and
a TCP-like congestion control are being standardized as two profiles in the um-
brella Datagram Congestion Control Protocol (DCCP) [14,15,25]. However, such
a transmission rate control protocol must be paired with a source coding rate
control protocol, since the source coding rate of the content must also, at least
over the long run, rise and fall with the transmission rate and yet it may not be
possible or desirable to make the source coding rate always equal to the transmis-
sion rate. A potential source coding rate control algorithm that can be paired with
an arbitrary transmission rate protocol is the rate-distortion optimized (RaDiO)
scheduling algorithm described in Chapter 10. Section 14.4 presents an alterna-
tive method based on optimal control theory.

Error control in Windows Media is currently based on selective retransmission.
If the client detects gaps in the packet sequence numbers, it sends a NAK to the
server, which retransmits the missing packet(s). The number of packets requested
for retransmission is limited to a percentage of the overall bandwidth. Audio pack-
ets are given highest priority, while video packets closest to their playout dead-
lines are given lowest priority, on the presumption that if the client is scrambling to
recover packets in a bandwidth-limited situation, then these packets are the most
likely to miss their playback deadlines even if they are retransmitted. A more
precise way of prioritizing retransmissions, of course, is using the rate-distortion
optimized scheduling algorithm, as described in Chapter 10. Rate-distortion opti-
mized scheduling will optimize user quality under deadline pressure. Regardless
of the scheduling and retransmission algorithm, some packets may remain miss-
ing at their playback deadlines. Hence in such cases the client must ultimately
decide whether to stall playback until the packets can be recovered or conceal
the missing packets. The Windows Media player chooses to stall until all audio
packets can be recovered, while skipping lost video packets. Lost video packets
can be dealt with by some form of error concealment, as discussed in Chapter 2.
A rudimentary form of error concealment is to freeze until the next I frame.
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14.2.3 File Formats

The greatest challenge for streaming media on demand is adapting the content of
a fixed media file to various network and client conditions. Unlike so-called real-
time communication (RTC), such as telephony, conferencing, and online gaming
(covered in Chapter 15), in streaming media on demand the encoder must encode
its content off line, possibly years before it is actually streamed. Thus it cannot
have direct knowledge of the communication channel selected (including the ca-
pacity and loss rate of the network path and the capacity of the client buffer) nor
can it have direct knowledge of the instantaneous communication state (including
the level of network congestion or interference and the state of the client buffer).
Instead, the encoder must build a certain degree of flexibility into the media file
and leave it to the server to adapt the media file to the network and client condi-
tions.

As an extreme case, the media file may be simply a raw, uncompressed record-
ing of the content, and the server may spawn an online encoder to adaptively
compress the content for each connected client. However, this is usually infeasi-
ble, both because of the high storage requirements for uncompressed media and
the high computational requirements for real-time encoding for multiple simulta-
neous clients. As a somewhat less extreme case, the media file may be a high bit
rate encoding of the content, and the server may spawn an online transcoder, or
transrater, to adaptively recompress the content for each connected client. At the
opposite end of the spectrum, the media file may contain an immutable encoding
of the content, which the server simply copies onto the network connection (such
as in the progressive download scenario). Usually, however, a better engineering
trade-off involves making the media file format flexible enough for the server to
simply index into the file and extract the content that it wants for specific users.
For this, the format of the file, and possibly the format of its encoded bit streams,
must be thoughtfully designed.

There are a number of streaming file formats available, from international stan-
dards such as the MPEG-4 file format [38] to de facto industry standards such as
Apple’s QuickTime format [10] (on which the MPEG-4 file format is based),
RealNetworks’ RealMedia format [33], and Microsoft’s Advanced Streaming
Format (ASF) [11]. All files in these formats have some common characteris-
tics. First, they are able to contain, or multiplex, not only multiple media, but also
multiple versions of each medium. Each version is recorded in a track (in MPEG-
4/QuickTime parlance) or a stream (in ASF parlance). Each track or stream is de-
composed into a sequence of chunks (in MPEG-4/QuickTime parlance) or packets
(in ASF parlance), which contain actual encoded media data. In this chapter we
will call these data units. In each file, header structures contain static metadata
relating to the overall file as well as to specific tracks or streams. These meta-
data may include, for example, title, author, and date of composition, encryption
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and rights management information, table of contents, track/stream enumera-
tion, and descriptions of their relationships, as well as individual track/stream
properties such as start time, duration, bit rate, buffer size, sampling rate, pic-
ture size, and scalability capabilities. Time-varying metadata are associated with
each track/stream. These metadata may include, for example, network packeti-
zation information, decoding and presentation time stamps, SMPTE time codes,
key frame, switch frame, or other clean point information, and fine grain scala-
bility information, such as a set of cut points and associated distortion or RD-
slope information for each chunk or data unit. How these time-varying metadata
are associated with individual chunks or data units, however, reveals one of the
few philosophical differences between formats. MPEG-4/QuickTime uses sepa-
rate tracks, called hint tracks, to add time-varying metadata to a track, whereas
ASF uses extensible side structures (which may be called hints) associated with
each data unit in a stream. A final type of metadata common to all formats is
an index to allow seeking to particular time locations in each track/stream. One
way to create such an index so that it can be efficiently searched (given, e.g., a
SMPTE time code) is to arrange the index as a sequence of fixed-length records,
each record corresponding to a unit of time (say, a 1-s interval), and each record
containing a pointer into each track or stream. In all these formats, the structures
are, in principle, highly extensible, by assigning new 32-bit (four-character) codes
(“fourCC”s), by assigning new 128-bit globally unique identifiers (GUIDs), or by
defining new structures in areas for opaque data. In practice, however, such exten-
sions are limited in utility by the availability of servers and clients that understand
the extensions.

Some of the metadata in a streaming media file is intended for consumption by
the server only, while other metadata must be transmitted across the network for
consumption by the client. For example, the hint and index information is usually
used only at the server and is not transmitted across the network. If the end user
wishes to seek to a particular time in a presentation, then the client will send a
seek command and time to the server (see the previous section, Section 14.2.2),
which will then use the seek time to look up in the index an appropriate starting
offset within each stream3 (e.g., at the last key frame before the seek time), and
then will begin streaming from that point.

Other metadata, such as the descriptions and relationships of the streams, are
usually transmitted over the network to the client so that the end user (and/or the
client application on the user’s behalf) can choose an appropriate set of streams
for transmission, whether the selection has to do with the content (e.g., language
of the audio track, optional subtitles) or the encoding of the content (e.g., bit
rate, picture size, number of audio channels). As a rule of thumb, static metadata,
whose size is independent of the length of the data, are relatively inexpensive to

3Henceforth for simplicity we will use only the stream terminology.
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transmit over the network, whereas time-varying metadata, whose size grows with
the length of the data, are relatively expensive to transmit over the network.

The encoded media data in the data units, of course, are generally intended to
be transmitted over the network to the client. However, in a given session, usually
only a fraction of all the encoded media data in a file is actually transmitted.
Indeed, perhaps the main purpose of a streaming media file format is to provide a
structure in which metadata can be used to easily select an appropriate subset of
the data for transmission. Selection of an appropriate subset may be either coarse
grained or fine grained. In coarse-grained selection, data units are selected on a
per-stream basis. Thus, at any given time, the server is streaming only a particular
subset of streams to the client. The subset of selected streams may change over
time, but in coarse-grained selection this subset changes only on a timescale that
is long compared to a data unit. In fine-grained selection, not only may a subset of
streams be selected, but also some fraction of data within a stream may be selected
for transmission. This fine-grained selection may be either at the data unit level
(in which some data units in a stream are transmitted, while others are not) or
below the data unit level, in which a portion of each data unit may be selected for
transmission.

Multibit rate (MBR) coding and scalable coding are two means of encoding
media data into a streaming media file that allow computationally simple selec-
tion of data for transmission based on the source coding rate. In MBR coding,
multiple independent encodings of the same media content, each at a different
source coding rate, are stored in different streams in the same file. Adaptation
is based on stream selection. For example, as discussed in Section 14.2.2, if the
client detects congestion based on buffer fullness, it can ask the server to switch
to a stream with a lower source coding rate. In scalable coding, as described in
detail in Chapters 4–6, encoded bit streams at different source coding rates are
embedded, like layers of an onion. In coarse-grained scalability, if the client de-
tects congestion, it can ask the server simply to drop the stream corresponding to
the currently uppermost layer for a medium. In fine-grained scalability (FGS), in
contrast, the client may instead send a parameter (such as a Lagrange multiplier)
related to the desired source coding rate for a medium, with which the server may
adjust the source coding rate for the medium using fine-grained selection of the
data in the medium’s streams. This would typically be done using a simple thresh-
old. For example, if each data unit is tagged with metadata that sets a collection
of breakpoints in the data unit along with a Lagrange multiplier corresponding
to each breakpoint (in a decreasing sequence), then the server could use the La-
grange multiplier given to it by the client to threshold each data unit to determine
where to truncate the data unit. Those segments of the data unit with Lagrange
multipliers higher than the Lagrange multiplier specified by the client are trans-
mitted, while those segments of the data unit with Lagrange multipliers below are
not transmitted.
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The data units (or portions of data units) selected for transmission are packe-
tized into network data units, or packets, for transmission over the network. In the
parlance of ITU H.264/ISO MPEG-4 AVC, the file format is a Network Adapta-
tion Layer (NAL), which is an encapsulation layer below the encoded bit stream
layer at the same level as, say, RTP and other network transport protocols. Thus
packetization can be regarded as re-encapsulations of the encoded media data
from one transport protocol (the file format) into another (e.g., RTP).

It can now be appreciated that media file formats designed for local playback
and storage are not suitable for streaming, in general. Even QuickTime, which
was originally designed for local playback of media but which is highly flexible,
adds metadata in “hint tracks” for the purposes of streaming and restricts its many
levels of indirection and indexing both to allow the file to be used for progres-
sive downloading and to allow the server maximal access efficiency. Furthermore,
even “streaming” formats, such as the MPEG-2 transport stream, which was de-
signed for streaming data over isochronous cable, terrestrial radio, and satellite
channels, is not very suitable as a file format for adaptive streaming over packet
networks, since it is not very easy for a server to adaptively extract selected por-
tions of the stream, nor does it have an indexing mechanism to allow a user to
randomly access (i.e., seek to) arbitrary points in the stream. Thus streaming me-
dia file formats must be carefully designed to fit their purposes.

14.3 FUNDAMENTAL ABSTRACTIONS

In this section, we lay out the fundamental abstractions of streaming media on
demand. In particular, we cover leaky bucket models of the bit streams, constant
bit rate (CBR) vs. variable bit rate (VBR) streams, compound (multiple media)
streams, preroll delay, playback speed, timing, clocks, and decoder and presenta-
tion timestamps. At the end of this section, the reader will know, for example, for
streaming multiple media over an ideal (isochronous) network, when it is safe for
the client to begin playback after streaming begins, at any playback speed.

14.3.1 Buffering and Leaky Bucket Models

We first consider the constant bit rate scenario in which both the encoder and
the decoder communicate over a dedicated isochronous noiseless communication
channel.4 In this scenario, to match the instantaneous coding rate of the source
to the constant transmission rate of the channel, an encoder buffer is required be-
tween the encoder and the channel and a decoder buffer is required between the

4An isochronous channel is one, such as a telephone modem, in which equal amounts of data are
communicated in equal amounts of time (from the Greek iso, “same,” plus chronos, “time”). Informa-
tion flows through an isochronous channel as fluid through a pipe.
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channel and the decoder, as illustrated in Figure 14.3. A schedule is the sequence
of times at which successive bits in the coded bit stream pass a given point in the
communication pipeline. Figure 14.4 illustrates the schedules of bits passing the
points A, B, C, and D in Figure 14.3. Schedule A is the schedule at which captured
frames are instantaneously encoded and put into the encoder buffer. This schedule
is a staircase in which the nth step rises by b(n) bits at time τ(n), where τ(n) is
the time at which frame n is encoded, and b(n) is the number of bits in the re-
sulting encoding. Schedules B and C are the schedules at which bits, respectively,
enter and leave the channel. The slope of these schedules is R bits per second,
where R is the transmission rate of the channel. Schedule D is the schedule at
which frames are removed from the decoder buffer and instantaneously decoded
for presentation. Note that Schedule D is a right shift of Schedule A, assuming
constant end-to-end delay and to zero encoding and decoding delay, including al-
gorithmic delay. (These assumptions will be relaxed in Section 14.4.) Note also
that Schedule B is a lower bound to Schedule A, while Schedule C is an upper
bound to Schedule D. Indeed the gap between Schedules A and B represents, at
any point in time, the fullness in bits of the encoder buffer, while the gap be-
tween Schedules C and D likewise represents the fullness of the decoder buffer.
Thus it is clear that the source coding schedule (either A or D) can be contained
within a buffer tube, as illustrated in Figure 14.5, having slope R bits per second,
some height B bits, and some initial offset Fe bits from the bottom of the tube
or, equivalently, some initial offset Fd = B − Fe bits from the top of the tube.
The buffer tube characterizes with three parameters (R,B,Fe) or, equivalently,
(R,B,Fd)—the variability of the instantaneous rate of the source coding sched-

FIGURE 14.3: Communication pipeline.

FIGURE 14.4: Schedules at which bits in the coded bit stream pass the
points A, B, C, and D in the communication pipeline.
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FIGURE 14.5: Buffer tube containing a coding schedule.

ule around an average rate R. In some sense, the buffer tube paints with a broad
brush stroke the source coding schedule (a possibly infinite sequence of step sizes
and times (b(n), τ (n)), n= 0,1,2, . . .) as a straight line with slope R, thickness
B , and offset Fe .

Traditionally, the buffer tube is used by an online source encoder to ensure that
its output will not cause the decoder buffer to underflow or overflow. It is clear
that at any given frame, the fullness of the encoder buffer and the fullness of the
decoder buffer are complementary, adding up to B bits, after an appropriate delay.
Thus, if the encoder and decoder buffers each have capacity B bits, an overflow
of the encoder buffer is equivalent to an underflow of the decoder buffer, and
vice versa. The online source encoder traditionally uses a “rate control” algorithm
to assign a number of bits b(n) to each frame n to ensure that its B-bit buffer
neither underflows nor overflows, when beginning with initial fullness Fe bits.
(Beginning with initial fullness Fe bits means simply that the first bit inserted into
the buffer by the encoder will be delayed De = Fe/R seconds before it enters
the channel.) Thus any B-bit decoder buffer will not overflow or underflow if
it begins with initial fullness Fd = B − Fe. (Beginning with initial fullness Fd

bits means simply that the first bit entering the buffer from the channel will be
delayed Dd = Fd/R seconds before it is extracted by the decoder.) The decoder
buffer delay Dd = Fd/R is thus complementary to the encoder buffer delay, with
overall buffer delay equal to B/R seconds. The end-to-end delay is thus B/R plus
any transmission delay. The resulting bit stream is called a CBR bit stream with
average rate R even though, unlike the rate at which bits enter the channel, the
rate that the online source encoder produces bits is obviously not constant over
timescales shorter than one frame period.

For off-line source encoding, such as for streaming media on demand, the en-
coder often produces a CBR bit stream in exactly the same way—assuming a
decoder buffer with size B . However, unlike the online case in which it is impor-
tant to keep the overall buffer delay B/R low, in the off-line case it is important
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FIGURE 14.6: Multiple buffer tubes containing a given bit stream.

only to keep the decoder buffer delay Dd = Fd/R low. The encoder buffer delay
portion of the overall buffer delay is not important. The decoder buffer delay, also
loosely known as the preroll delay, is usually the largest component in the start-
up delay, or the time between a user pushing “play” and seeing or hearing the first
frame (during which media players usually display a “Buffering . . .” message).5

The encoder can produce a CBR bit stream minimizing the decoder buffer delay
by starting the encoder buffer in a full state (Fe close to B), although this would
mean that the initial frame would get very few bits. This is a reflection of a funda-
mental trade-off, at any given transmission rate, between preroll delay and initial
quality, which we will explore further in Section 14.4.

It is also possible for off-line source encoders to ignore all buffer constraints.
A typical such scenario is the scenario where the encoder tries to produce a con-
stant distortion bit stream (e.g., with equal quantization stepsizes for all frames).
The resulting bit stream is usually called a variable bit rate stream. Ultimately,
there is no firm distinction between VBR and CBR streams, although they may
be produced in different ways. The distinction, if any, is one of degree. Both CBR
and VBR streams have schedules that can be represented by finite sequences of
step sizes and times, {(b(n), τ (n))}Nn=0. Thus, both can be contained in buffer
tubes with some appropriate slope, width, and offset. However, VBR streams
tend to require wider buffer tubes than CBR streams. This usually means that
VBR streams require a larger start-up delay.

It is clear that any given finite-duration bit stream is containable by an infinite
number of buffer tubes, as illustrated in Figure 14.6. The slope R, the width B ,
and the offset Fe are not unique. This implies, in particular, that the average bit
rate of a stream, whether VBR or CBR, is not well defined by the bit rate of a

5The start-up delay includes, in addition to the decoder buffer delay, usually much smaller delays
such as the round trip delay between client and server, server processing delays, and decoding and
presentation delays, if any.



468 Chapter 14: MEDIA ON DEMAND AND LIVE BROADCAST

constant bit rate channel over which the stream may flow with sufficient buffering.
Of course, there are ways to define the average bit rate of a stream uniquely. One
possible definition is the slope of parallel lines bounding the stream’s schedule
{(b(n), τ (n))}Nn=0, clamped together by a vice as tightly as possible (so to speak),
to make the buffer tube unique. Another possible definition is the total number of
bits in the stream divided by the duration of the stream. These are approximately
equal if the stream is long enough. Furthermore they will be approximately equal
to the slope R of any buffer tube (R,B,Fe) containing the stream as long as the
duration of the stream is long compared to the buffer size B . Thus any reasonable
definition of average bit rate will suffice as long as we are given a corresponding
buffer tube.

We now extend the original online scenario to the case in which the encoder
does not use the channel continuously. In this case, the channel has a peak trans-
mission rate R higher than the average bit rate of the stream. When the encoder
has bits to send, it sends them at rate R. Otherwise it does not use the channel and
the channel may be used to transmit other information during this time. This is a
realistic setting for shared channels such as packet networks. As far as the encoder
is concerned, the channel time shares between transmitting at rate R and trans-
mitting at rate 0, such that the time average of these two instantaneous channel
rates is approximately the average bit rate of the stream.

In this scenario, the encoder buffer is best modeled by a leaky bucket. The
encoder dumps b(n) bits into the leaky bucket at time τ(n), and the bits leak
out of the bucket (into the channel) at rate R. When the leak rate R is higher
than the average bit rate, the bucket will occasionally become empty. Thus the
encoder buffer fullness Fe(n) immediately before frame n is added to the bucket
and the encoder buffer fullness Be(n) immediately after frame n is added to the
bucket evolve from an initial encoder buffer fullness Fe(0)= Fe according to the
dynamical system

Be(n)= Fe(n)+ b(n), (14.1)

Fe(n+ 1)=max
{
0,Be(n)−R

[
τ(n+ 1)− τ(n)

]}
, (14.2)

for n= 0,1,2, . . . . As described earlier, a leaky bucket can be specified by three
parameters: its leak rate R, its capacity B , and its initial fullness Fe. A leaky
bucket (R,B,Fe) is said to contain a bit stream with schedule {(b(n), τ (n))}Nn=0
if the bucket does not overflow, that is, Be(n) ≤ B for all n= 0,1, . . . ,N in the
dynamical system (14.1) and (14.2).

It is of interest to find among all leaky buckets containing a stream the one that
leads to the smallest decoder buffer size and also the one that leads to the smallest
decoder buffer delay. For a given stream, define the minimum bucket capacity
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given leak rate R and initial fullness Fe as

Bmin(R,Fe)=min
n

Be(n), (14.3)

and define the corresponding initial decoder buffer fullness as

F min
d (R,Fe)= Bmin(R,Fe)− Fe. (14.4)

Denote the minimum of each of these over Fe as

Bmin(R) = min
Fe

Bmin(R,Fe), (14.5)

F min
d (R) = min

Fe

F min
d (R,Fe). (14.6)

It is shown in [34, Proposition 2] that remarkably, these are each minimized by
the same value of Fe, which is hence equal to

F min
e (R) � Bmin(R)− F min

d (R). (14.7)

Thus given a bit stream with schedule {(b(n), τ (n))}Nn=0, for each bit rate R there
is a tightest leaky bucket containing the stream that has the minimum buffer ca-
pacity B as well as the minimum decoder buffer delay Dd = Fd/R, provided it
begins with initial fullness Fe = F min

e (R).
These formulae work for any R > 0, even for R less than the average bit rate

of the stream. However, when R is less than the average bit rate of the stream,
the leaky bucket accumulates bits faster than they leak out, causing the required
bucket capacity to grow linearly as R goes to zero, up to the size of the entire
stream. In a like manner, the preroll delay that is required to ensure that the de-
coder buffer does not underflow during playback grows linearly up to the playback
time of the entire stream as R goes to zero. However, when R is above the average
bit rate of the stream, bits leak out of the bucket faster than they are put in, causing
the bucket to become empty on occasion. This provides another possible defini-
tion of average bit rate of a stream: the average bit rate of a stream, henceforth
called the source coding rate Rc of a stream, is the maximum leak rate R such that
a leaky bucket (R,B,Fe) containing the stream does not underflow when starting
with initial fullness Fe = F min

e (R).
It is intuitively clear from the leaky bucket metaphor that the larger the leak rate

R, the smaller the required capacity. It is also true that the decoder buffer delay
can be lower. Indeed, it can be shown using results from Ribas-Corbera et al. [34,
using Lemmas 3, 5, 6, 11, 12] that both Bmin(R) and F min

d (R) are decreasing,
piecewise linear, convex functions of R, as shown in Figure 14.7. Hence if the
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FIGURE 14.7: Plot of Bmin(R) for a VBR video clip compressed by
H.264/AVC with QP=26.

transmission rate R is greater than the source coding rate Rc , the decoder buffer
size B = Bmin(R) can be reduced compared to B = Bmin(Rc) and the decoder
buffer delay Dd = F min

d (R)/R can be reduced compared to Dd = F min
d (Rc)/Rc.

Figure 14.7 shows, for a typical video bit stream with average source coding rate
Rc ≈ 600 Kbps, the minimum buffer size Bmin(R) as a function of the peak chan-
nel transmission rate R. Observe that the function is piecewise constant and can
be characterized by a small number of points.

In the off-line scenario, the client is generally connected to the server across
a channel whose transmission rate is different than the source coding rate Rc of
the bit stream. The client can determine the required buffer size and preroll delay
from the functions Bmin(R) and F min

d (R). These functions can be computed off-
line at a selected set of channel transmission rates R, say R1 < R2 < · · ·< RL and
stored in the bit stream header as a set of leaky bucket parameters (Ri,Bi,Fi),
i = 1,2, . . . ,L, where Bi = Bmin(Ri) and Fi = F min

d (Ri), which can be com-
municated to the client upon initialization. Typically, the first such leaky bucket
can be a buffer tube representing the source coding rate, that is, R1 = Rc, and
the remaining leaky buckets can be located at other significant breakpoints in
the piecewise linear functions Bmin(R) and F min

d (R). Then, given any channel
transmission rate R between Ri and Ri+1, the client can estimate Bmin(R) and
F min

d (R) by the linear interpolations

B̂min(R) � Ri+1 −R

Ri+1 −Ri

Bi + R−Ri

Ri+1 −Ri

Bi+1 ≥ Bmin(R), (14.8)
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F̂ min
d (R) � Ri+1 −R

Ri+1 −Ri

Fi + R −Ri

Ri+1 −Ri

Fi+1 ≥ F min
d (R). (14.9)

The inequalities follow from the convexity of the functions Bmin
e (R) and F min

d (R)

in R, and they guarantee that a buffer size B and a preroll delay Fd/R are suffi-
cient to ensure glitch-free playback when the channel has peak transmission rate
R and the client can use flow control to ensure that the buffer does not overflow.
Extrapolation at the low and high ends is also possible. For R < R1,

B̂min(R) � B1 + (R1 −R)T ≥ Bmin(R), (14.10)

F̂ min
d (R) � F1 + (R1 −R)T ≥ F min

d (R), (14.11)

where T is the duration of the bit stream, while for R > RL,

B̂min(R) � BL ≥ Bmin(R), (14.12)

F̂ min
d (R) � FL ≥ F min

d (R). (14.13)

Thus, a small set of leaky buckets {(Ri,Bi,Fi)}Li=1 stored in the bit stream header
can be used to derive a fairly tight leaky bucket (R,B,F ) for any channel trans-
mission rate R ≥ 0.

14.3.2 Compound Streams

A streaming media file often contains multiple independently encoded media
streams, such as an audio stream, a video stream, and perhaps other streams, in-
tended to be streamed concurrently.

When multiple media streams are selected for concurrent transmission, it is
convenient to consider them as a single compound stream having an aggregate
source coding rate and set of leaky buckets. Happily, a leaky bucket (B,F,R)

for a compound stream can be easily derived as the sum of leaky buckets for
its component streams. For example, if (Ra,Ba,F a) and (Rv,Bv,F v) are leaky
buckets containing the component (say audio and video streams) streams, then
the parameters

R = Ra +Rv, (14.14)

B = Ba +Bv, (14.15)

F = Fa + Fv (14.16)

characterize a leaky bucket containing the compound stream. This is because, as is
intuitively clear from the leaky bucket metaphor, if the separate leaky buckets con-
tain the component streams without overflowing, then the combined leaky bucket
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will contain the combination of the streams without overflowing. (However, the
combined bucket is, in general, not the tightest leaky bucket that is able to contain
the compound stream.) It is simple to show this mathematically, although we will
not do so here.

If the component streams each have multiple leaky buckets, then any combina-
tion of their leaky buckets will suffice to contain the compound stream. For exam-
ple, if {(Ra

i ,Ba
i ,F a

i )}La

i=1 and {(Rv
j ,Bv

j ,F v
j )}Lv

j=1 are, respectively, sets of leaky
buckets containing an audio stream and a video stream, then {(Ri,j ,Bi,j ,Fi,j ) :
(i, j) ∈ [1, . . . ,La] × [1, . . . ,Lv]} is a set of leaky buckets containing the com-
pound audio and video stream, where Ri,j = Ra

i + Rv
j , Bi,j = Ba

i + Bv
j , and

Fi,j = Fa
i + Fv

j . However, it turns out that not all La × Lv leaky buckets in this
set are useful for characterizing the compound stream. In fact, at most La+Lv in-
dex pairs (i, j) have the property that (Ri,j ,Bi,j ) lies on the lower convex hull of
the set {(Ri,j ,Bi,j ) : (i, j) ∈ [1, . . . ,La] × [1, . . . ,Lv]} used to estimate Bmin

e (R)

and F min
d (R). Indices for pairs on the lower convex hull can be found easily by

minimizing a Lagrangian for some positive Lagrange multiplier λ > 0, namely

(iλ, jλ) = arg min
(i,j)
{Bi,j + λRi,j } (14.17)

= arg min
(i,j)

{
Ba

i +Bv
j + λ

[
Ra

i +Rv
j

]}
(14.18)

= (
arg min

i

{
Ba

i + λRa
i

}
, arg min

j

{
Bv

j + λRv
j

})
. (14.19)

Thus, as λ is swept from 0 to∞, a sequence of La audio leaky buckets indexed
by iλ can be chosen by minimizing the Lagrangian Ba

i + λRa
i , and independently

a sequence of Lv video leaky buckets indexed by jλ can be chosen by minimiz-
ing the Lagrangian Bv

j + λRv
j . These can be paired by matching their Lagrange

multipliers λ to find the (at most) La+Lv leaky buckets for the compound stream.
This approach can be easily extended to more media than just audio and video.

For example, suppose there are M concurrent media streams in a streamed video
game and m= 1,2, . . . ,M indexes the media, and suppose that for each medium
m, there is a set of leaky buckets indexed by im = 1, . . . ,Lm. Then following
the aforementioned arguments it is easy to see that for each medium m, one can
select for each λ > 0 a leaky bucket index imλ = arg mini{Bm

i + λRm
i }, where

(Rm
i ,Bm

i ,Fm
i ) is the ith leaky bucket for medium m. These can then be aligned by

λ to choose the component leaky buckets for the (at most)
∑

m Lm leaky buckets
for the compound stream. Even further simplifications accrue when Lm = 2 for all
m, for example, when there are leaky buckets (Rm

1 ,Bm
1 ,Fm

1 ) and (Rm
2 ,Bm

2 ,Fm
2 )

for only average and peak bit rates for each component stream. In that case, as λ

goes from 0 to ∞, for each m there is a simple threshold, namely λm = [Bm
1 −

Bm
2 ]/[Rm

2 − Rm
1 ], such that when λ ≥ λm we have imλ = 1 (choose the LB for
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average bit rate) and when λ < λm we have imλ = 2 (choose the LB for peak bit
rate). Thus a set of M + 1 leaky buckets {(Rk,Bk,Fk)}Mk=0 for the compound
stream can be obtained by sorting the media on λm and successively flipping the
chosen component leaky buckets from average to peak bit rate, namely Rk =∑k

m=1 Rm
1 +

∑M
m=k+1 Rm

2 (and similarly for Bk and Fk).

14.3.3 MBR and Scalable Streams

In MBR and scalable streaming, in addition to the possibility of streaming mul-
tiple concurrent media streams such as audio and video, each concurrent media
stream is generally selected from a list of mutually exclusive media streams, each
encoded at a different source coding rate. Combining all possible mutually exclu-
sive audio streams with all possible mutually exclusive video streams can lead to
a large number of compound streams, each having a different aggregate source
coding rate and set of leaky buckets. In principle, each of the (say) Na mutually
exclusive audio streams can be matched with each of the Nv mutually exclusive
video streams, producing all possible Na ×Nv combinations. However, most of
these combinations are not desirable. In fact, typically there are only on the or-
der of Na + Nv desirable combinations. For example, if audio quality is more
important than video quality, then during network congestion it may be desirable
to reduce video quality through Nv levels before reducing audio quality through
an additional Na level. However, it may instead be desirable to reduce the audio
and video bit rates together. A principled way to decide which of the Na × Nv

combinations are desirable is to take a distortion–rate approach such as the fol-
lowing. Assign a distortion Da

i and a source coding rate Ra
i to each audio stream

i = 0,1, . . . ,Na (which includes the empty stream i = 0) and a corresponding
distortion Dv

j and source coding rate Rv
j to each video stream j = 0,1, . . . ,Nv .

Define for each combined stream (i, j) an overall distortion and an overall source
coding rate,

Di,j = αDa
i +Dv

j (14.20)

Ri,j = Ra
i +Rv

j , (14.21)

allowing the audio distortion to be arbitrarily weighted by a parameter α relative
to the video distortion. Select a “desirable” subset of the audio/video substream
combinations (i, j) such that for each (i, j) in the subset, Di,j ≤ Di′,j ′ for all
(i′, j ′) such that Ri′,j ′ ≤ Ri,j . That is, desirable combinations have the property
that they have the lowest total distortion among all combinations with the same or
lower total bit rate. One such desirable subset consists of the combinations (i, j)

whose rate–distortion pairs (Ri,j ,Di,j ) lie on the lower convex hull of the set
of rate–distortion pairs for all possible combinations. Similar to the methodology
described in the previous subsection, pairs on this lower convex hull can be easily
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found by minimizing a Lagrangian for some positive Lagrange multiplier λ > 0.
That is,

(iλ, jλ) = arg min
(i,j)
{Di,j + λRi,j }, (14.22)

= arg min
(i,j)

{
αDa

i +Dv
j + λ

[
Ra

i +Rv
j

]}
, (14.23)

= (
arg min

i

{
Da

i + (λ/α)Ra
i

}
, arg min

j

{
Dv

j + λRv
j

})
. (14.24)

Thus, as λ is swept from 0 to ∞, a sequence of Na + 1 audio streams iλ (in-
cluding the empty substream i = 0) can be chosen by minimizing the Lagrangian
Da

i +(λ/α)Ra
i , and (independently) a sequence of Nv+1 video streams jλ can be

chosen by minimizing the Lagrangian Dv
j + λRv

j . These can be paired by match-
ing their Lagrange multipliers λ. Note that it is a simple matter to repair them if
the relative audio weight α changes, possibly under user control.

Also similar to the methodology in the previous section, this approach can
be easily extended to more media than just audio and video. For example,
suppose there are M concurrent media streams in a streamed video game and
m = 1,2, . . . ,M indexes the media, and suppose that for each medium m, there
is a set of mutually exclusive streams im = 0,1, . . . ,Nm (including the empty
stream im = 0), one of which can be combined with streams from other media to
form a compound stream. It is easy to see that for each medium m, one can select
for each λ > 0 a substream imλ = arg mini{Dm

i + λRm
i }, where (Rm

i ,Dm
i ) is the

rate–distortion pair for the ith stream of medium m. These can then be aligned by
λ to choose the components of the “desirable” compound streams, a process that
is linear in M instead of exponential in M . Even further simplifications accrue
when Nm = 1 for all m. In that case, as λ goes from 0 to∞, for each m there is a
simple threshold, namely λm = [Dm

0 −Dm
1 ]/Rm

1 , such that when λ≤ λm we have
imλ = 1 (i.e., medium m is included in the compound stream) and when λ > λm we
have imλ = 0 (i.e., medium m is not included in the compound stream). Thus the
set of desirable compound streams can be obtained by sorting the media elements
on λm and including them, in order, into the compound streams.

14.3.4 Temporal Coordinate Systems and Timestamps

Timestamps are generally associated with each encoded frame to instruct the
client when to extract the frame from the decoder buffer and (instantaneously)
decode it. These timestamps are known as decoder timestamps (DTS) in MPEG
terminology and are the primary timestamps that we consider here. They can also
be considered decoding deadlines by which the frame must arrive at the client in
order to be decoded on time. It is fair for the client to decode received frames



Section 14.3: FUNDAMENTAL ABSTRACTIONS 475

ahead of their decoding deadlines, if there is sufficient room in the presentation
buffer between the decoder and the renderer. The presentation buffer holds de-
coded frames. Decoded frames are also associated with timestamps, known as
presentation timestamps (PTS) in MPEG terminology. These timestamps instruct
the renderer when to render the frame and are critical to achieving synchroniza-
tion between separate streams such as audio and video. Presentation timestamps
lie at a layer above decoding timestamps and hence do not need to be visible to
the client system until after decoding. In fact the decoder may generate most pre-
sentation timestamps from the decoding timestamps on the fly, for example, using
a fixed delay. Presentation timestamps need to be explicitly different from decod-
ing timestamps only in situations where frames must be presented out of decoding
order. For example, MPEG frames I0,B1,B2,P3,B4,B5,P6, . . . (in presentation
order) must be decoded in the order I0,P3,B1,B2,P6,B4,B5, . . . . In the sequel
we assume that frames are timestamped at the encoder with both decoder and
presentation timestamps. They are inserted into the bit stream in decoding order.
Henceforth in this chapter we will be concerned only with decoding timestamps.

It will pay to distinguish between the clocks, or temporal coordinate systems,
in which timestamps are expressed. We use media time to refer to the clock run-
ning on the device used to capture and timestamp the original content, while client
time refers to the clock running on the client used to play back the content. We
assume that media time is real time (i.e., one second of media time elapses in one
second of real time) at the time of media capture, while client time is real time
at the time of media playback. We use the symbol τ to express media time and
the symbol t to express client time, with subscripts and additional arguments to
indicate corresponding events. For example, we use τDTS(0), τDTS(1), τDTS(2), . . .

to express the decoding deadlines of frames 0,1,2, . . . in media time, while
we use tDTS(0), tDTS(1), tDTS(2), . . . to express the decoding deadlines of frames
0,1,2, . . . at the client. The subscripts and/or arguments may be dropped or short-
ened if they are understood.

Content may be played back at a rate ν times real time. If ν = 2, for example,
the content is played back at twice real time (i.e., fast forward). The conversion
from media time to client time can be expressed

t = t0 + τ − τ0

ν
, (14.25)

where t0 and τ0 represent the time of a common initial event, such as the decoding
time of frame 0 (or the decoding time of the first frame after a seek or rebuffering
event) in media and client coordinate systems, respectively. Using (14.25), the
leaky bucket update (14.2) becomes

Fe(n+ 1)=max
{
0,Be(n)−R′

[
t (n+ 1)− t (n)

]}
, (14.26)
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where R′ = Rν is the arrival rate of bits into the client in bits per client time.
Hence R = R′/ν is the rate that must be used to compute the required buffer
size Bmin

e (R) and initial decoder buffer fullness F min
d (R). The preroll delay is

thus F min
d (R)/R′ = F min

d (R)/R/ν. The larger the playback speed, the smaller the
preroll delay.

14.4 STREAMING MEDIA OVER PACKET NETWORKS

In this section, we deal with streaming media over packet networks, such as the
Internet. Unlike the idealized channel models of Section 14.3, packet networks are
neither isochronous nor lossless, and they are shared by multiple communication
processes, whose actions cause the network to have time-varying behavior. Hence,
the major technical problem in streaming media on demand over packet networks
is the need to maintain a good user experience in the face of time-varying network
conditions. Users expect that regardless of the network conditions, the start-up
delay will be low, playback will be continuous, and quality will be as high as
possible given the average network bandwidth.

Buffering at the client is the key to meeting these user expectations. Techni-
cally, buffering serves several distinct but simultaneous purposes. First, as we
have seen in Section 14.3, it allows the media to be coded with a variable in-
stantaneous bit rate. Second, it allows the client to compensate for short-term
variations in packet transmission delay (i.e., “jitter”). Third, it allows the client to
continue playing back the media during lapses in network bandwidth. Finally, it
gives the client time to perform packet loss recovery if needed. These last three
purposes require additional buffer space at the client beyond the minimal buffer
size Bmin(R) computed in Section 14.3. However, a single buffer at the client can
be shared among all four purposes. This section is primarily about how to keep
the client buffer sufficiently full, on average, to serve all four purposes, and yet
permit a low start-up delay, in the face of varying network conditions.

14.4.1 Source Coding, Channel Coding, Sending, Transmission, and Arrival Rates

In Section 14.3, we took pains to define the source coding rate Rc of a media
stream as the slope of a tight buffer tube containing its schedule, measured in bits
per second of media time.

Distinct from the source coding rate Rc is the sending rate Rs or the rate at
which the server application injects bits into a reliable transport layer, measured
in bits per second of client time.

Distinct from both the source coding rate Rc and the sending rate Rs is the
transmission rate Rx , which is the rate at which the server injects bits into the
network layer, again measured in bits per second of client time. The transmission
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rate is limited, preferably, by the congestion control mechanism in either standard
TCP or a TCP-friendly rate control (TFRC) mechanism [13] such as DCCP [25]
or a nonstandard transmission rate control mechanism over UDP that adapts the
transmission rate to the degree of network congestion. However, a simple trans-
mission rate control mechanism could also set Rx to be constant, for example,
irrespective of the level of network congestion. This could be appropriate if the
channel is dedicated.

The sending rate Rs is limited, in turn, by the transmission rate Rx . In fact the
difference between Rs and Rx can be attributed to the error control overhead, or
redundancy, needed for reliable communication over the network, as described
in Chapters 7–10. The fraction Rs/Rx is known as the channel coding rate, or
the rate of the error control code in source bits per channel bit, which can be no
greater than the Shannon capacity of the channel. The channel coding rate Rs/Rx

is determined by the retransmission mechanism in TCP or by any other error
control layer, which typically adapts the channel coding rate to the loss rate of the
channel. TFRC and DCCP do not define an error control mechanism and hence
an explicit mechanism must be provided for reliable communication, just as one
must be provided for any nonstandard transmission rate control mechanism used
over raw UDP or RTP/UDP. This is illustrated in Figure 14.8a.

Since all bits injected into a reliable transport layer eventually arrive at the
client application, the sending rate Rs is over the long run equal to the arrival
rate Ra , or the rate at which bits emerge at the client application. Since relatively
little data can be buffered in the network and error control layer compared to the
client buffer, we generally assume that Ra and Rs are essentially equivalent at any

(a) (b)

FIGURE 14.8: (a) Both error control and transmission rate control are
factored out of the streaming application, which then deals only with
source coding rate control. (b) Only transmission rate control-factored out
of the streaming application, which performs joint source-channel coding
such as in RaDiO (Chapter 10).
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given time. In this chapter we will speak primarily in terms of the arrival rate Ra

since it is from the client’s point of view.
Many streaming media practitioners assume that once the user determines the

playback speed ν, then the source coding rate Rc and the arrival rate Ra must
be locked together by the relation Ra = νRc (except during the initial buffer-
ing period, during which ν = 0 and Ra > 0). For example, if ν = 1, a stream
encoded at 100 Kbps must be communicated reliably at 100 Kbps (resulting in a
raw transmission rate higher than 100 Kbps if retransmissions become necessary).
However, this need not be the case, and in fact unlocking Rc and Ra can lead to
important advantages.

The major advantage of decoupling the source coding and sending or arrival
rates is that it makes possible continuous control of the number of seconds of
content in the client buffer, known as the client buffer duration. The client buffer
duration tends to increase or decrease depending on whether the arrival rate Ra

(the average number of bits per second that arrive into the client buffer) is greater
or less than the source coding rate Rc times the playback speed ν (the average
number of bits per second that play out of the client buffer). That is, if Ra > Rcν

then the buffer duration increases; otherwise it decreases. For a given Ra and Rc,
it is possible to adjust the playback speed ν to control the buffer duration. This
approach is explored in detail in Chapter 16. On the one hand, in the long run, ν

cannot remain very much different from the user’s preferred playback speed. On
the other hand, the arrival rate Ra is essentially limited by the network capacity.
Hence, if the network capacity drops dramatically for a sustained period, reduc-
ing the source coding rate Rc is the only appropriate way to maintain the buffer
duration and prevent an underflow leading to a rebuffering event. Adjusting the
source coding rate in the face of time-varying network conditions is the problem
of source coding rate control.

By continuously controlling the client buffer duration using source coding rate
control, it is possible to begin playback after only F min

d (Ra)/Ra seconds—when
there is just enough data in the buffer to guarantee continuous playback under
ideal, predictable conditions—then to continuously grow the client buffer duration
to provide, over time, the necessary robustness to packet loss, jitter, and variations
in network capacity—and finally to maintain, in the long run, a roughly constant
buffer duration to ensure that playback quality is as high as the network capacity
will allow. This helps meet the user expectations of low startup delay, continuous
playback, and quality as high as possible given the average network bandwidth.

Being able to control Rc independently of Rs (or Ra) also makes efficient
streaming possible with arbitrary transports, such as TCP, DCCP, or other pro-
prietary transport protocols. Such protocols typically have their own error control
and transmission rate control mechanisms, whose rates generally fluctuate accord-
ing to network conditions and hence cannot be locked to a fixed source coding
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rate unless they are locked well below the average network capacity, resulting in
obvious inefficiency.

It is well worth mentioning here that if compatibility with TCP is not required,
then it is possible for the source coding rate control and the error control modules
illustrated in Figure 14.8a to be combined into a single module, as illustrated in
Figure 14.8b. The transmission rate control module is not changed and still deter-
mines the frequency of transmission opportunities based on network congestion.
In this way, the source coding and error control mechanisms can jointly determine
whether a source packet or an error control packet (such as a retransmission of a
previously transmitted packet, or a parity packet) should be put onto the wire at
the next transmission opportunity. This is a joint source-channel coding problem
sometimes known as the scheduling problem and is treated in detail in Chapter 10,
using the RaDiO framework.

In this chapter, however, we will adopt the more classical approach of building
a source coding layer on top of a reliable transport.

14.4.2 Source Coding Rate Control

In this section we detail an approach to source coding rate control based on the
classical theory of optimal linear quadratic control [2]. The goal is to control the
client buffer duration to a target, despite variations in the arrival rate Ra . This
will be accomplished by choosing the source coding rate Rc as a function of
Ra and the client buffer duration and its history (i.e., whether it is growing or
shrinking). In order to choose an appropriate source coding rate Rc , we assume
the existence at the server of multiple (or scalable) compound media streams at a
variety of average bit rates R(1),R(2),R(3), . . . , each having a schedule contained
in an appropriately tight buffer tube (R(i),B(i),F

(i)
e ), as illustrated in Figure 14.5.

14.4.2.1 Control Theoretic Model

Assume for the moment that bits arrive at the client at a constant rate Ra . Then
frame n (having size b(n), as illustrated in Figure 14.5) arrives at the client
b(n)/Ra seconds after frame n − 1. Indeed, dividing the vertical scale of the
schedules in Figure 14.5 by Ra , we obtain the schedules in terms of client time,
rather than bits, as shown in Figure 14.9. The coding schedule divided by Ra be-
comes the arrival schedule, which provides for each n the time ta(n) of arrival of
frame n at the client. The buffer tube upper bound (in bits) divided by Ra becomes
the buffer tube upper bound (in time), which provides for each n the time tb(n)

by which frame n is guaranteed to arrive. For continuous playback, it is sufficient
that the buffer tube upper bound tb(n) be ahead of the playback deadline td (n),
which is the time at which frame n is scheduled to be instantaneously decoded
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FIGURE 14.9: Arrival schedule and its upper bound in client time. The
upper bound is controlled to the target schedule, which is increasingly in
advance of the playback deadline to provide greater robustness over time.

and played. Note that the gap between a frame’s arrival time ta(n) and its play-
back deadline td (n) is the client buffer duration at the time of the frame’s arrival.
This must be nonnegative to allow continuous playback.

In reality the arrival rate is not constant. At any moment, the arrival rate may
suddenly drop due to an increase in competing traffic, for example. Then each
frame would take longer to be transmitted, the frame arrival times would become
increasingly delayed, and the whole arrival schedule and its buffer tube would
veer upward, threatening to cross over the playback schedule. To guard against
such an event, if the buffer duration is too low, the buffer duration can be increased
by switching to a lower source coding rate Rc , thereby reducing the slope of the
buffer tube.

To see how, let ta(n− 1) and ta(n) be the arrival times of frames n and n− 1,
respectively, and define

Ra(n)= b(n)

ta(n)− ta(n− 1)
(14.27)

to be the instantaneous arrival rate at frame n. In practice, the average arrival
rate at frame n will be estimated by a moving average R̃a(n) of previous values of
Ra(n), as detailed in the Appendix. Hence using (14.27) the arrival time of frame
n can be expressed in terms of the arrival time of frame n− 1 as

ta(n) = ta(n− 1)+ b(n)

Ra(n)
(14.28)

= ta(n− 1)+ b(n)

R̃a(n)
+ v(n), (14.29)
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where the v(n) term is an error term that captures the effect of using the slowly
moving average R̃a(n) instead of the instantaneous arrival rate Ra(n).

How does the source coding rate Rc fit into all this? From Figure 14.5 it is clear
that the decoder buffer fullness Fd(n)= B − Fe(n) can also be expressed

Fd(n)= b(n)+ g(n)= g(n− 1)+ Rc(n)

f (n)
, (14.30)

where

f (n)= 1

τ(n)− τ(n− 1)
(14.31)

is the instantaneous frame rate and the source coding rate Rc(n) is now indexed
by n, to take into account that different frames may lie in different buffer tubes
with different coding rates as coding rate control is applied and streams are
switched. Now from (14.30), we have

b(n)= Rc(n)

f (n)
+ g(n− 1)− g(n), (14.32)

whence [substituting (14.32) into (14.29)] we have

ta(n)= ta(n− 1)+ Rc(n)

f (n)R̃a(n)
+ g(n− 1)

R̃a(n)
− g(n)

R̃a(n)
+ v(n). (14.33)

Now defining the buffer tube upper bound (in time) of frame n as

tb(n)= ta(n)+ g(n)

R̃a(n)
, (14.34)

so that

tb(n)− tb(n− 1)= ta(n)− ta(n− 1)+ g(n)

R̃a(n)
− g(n− 1)

R̃a(n− 1)
, (14.35)

we obtain the following update equation:

tb(n)= tb(n− 1)+ Rc(n)

f (n)R̃a(n)
+w(n− 1), (14.36)

where

w(n− 1)= g(n− 1)

R̃a(n)
− g(n− 1)

R̃a(n− 1)
+ v(n) (14.37)
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is again an error term that captures variations around a locally constant arrival
rate.

Using (14.34), the client can compute tb(n− 1) from the measured arrival time
ta(n− 1), the estimated arrival rate R̃a(n− 1), and g(n− 1) [which can be trans-
mitted to the client along with the data in frame n− 1 or computed at the client
from g(n− 2) and Rc(n− 1) using (14.30)]. Then using (14.36), the client can
control the coding rate Rc(n) so that tb(n) reaches a desired value, assuming the
frame rate and arrival rate remain roughly constant. From this perspective, (14.36)
can be regarded as the state transition equation of a feedback control system and
it is thus possible to use a control-theoretic approach to regulate the coding rate.

14.4.2.2 Control Objective

With the state transition equation defined in (14.36), uninterrupted playback can
be achieved by regulating the coding rate so that the client buffer does not un-
derflow. To introduce a margin of safety that increases over time, we introduce
a target schedule, illustrated along with the buffer tube in Figure 14.9, whose
distance from the playback deadline grows slowly over time. By regulating the
coding rate, we attempt to control the buffer tube upper bound so that it tracks
the target schedule. If the buffer tube upper bound is close to the target schedule,
then the arrival times of all frames will certainly be earlier than their playback
deadlines and thus uninterrupted playback will be ensured. Note that controlling
the actual arrival times (rather than their upper bounds) to the target would result
in an approximately constant number of bits per frame, which would in turn result
in very poor quality overall. By taking the leaky bucket model into account, we
are able to establish a control that allows the instantaneous coding rate to fluctuate
naturally according to the encoding complexity of the content, within previously
established bounds for a given average coding rate.

Although controlling the upper bound to the target schedule is our primary
goal, we also wish to minimize quality variations due to large or frequent changes
to the coding rate. This can be achieved by introducing into the cost function a
penalty for relative coding rate differences.

Letting tT (n) denote the target schedule for frame n, we use the following cost
function to reflect both of our concerns:

I =
N∑

n=0

((
tb(n)− tT (n)

)2 + σ

(
Rc(n+ 1)−Rc(n)

R̃a(n)

)2)
, (14.38)

where the first term penalizes the deviation of the buffer tube upper bound from
the target schedule and the second term penalizes the relative coding rate differ-
ence between successive frames. N is the control window size and σ is a Lagrange
multiplier or weighting parameter to balance the two terms.
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14.4.2.3 Target Schedule Design

Figure 14.10 shows an illustrative target schedule. The gap between the playback
deadline and the target schedule is the desired minimum client buffer duration.
If the gap is small at the beginning of streaming, then it allows a small start-up
delay, whereas if the gap grows slowly over time, it gradually increases the client’s
ability to counter jitter, delays, and throughput changes.

The slope of the target schedule relates the average source coding rate to the
average arrival rate. Let tT (n) be the target for frame n. As illustrated in Fig-
ure 14.10, the slope of the target schedule at frame n is

s(n)= tT (n+ 1)− tT (n)

τ (n+ 1)− τ(n)
. (14.39)

If the upper bound tb(n) aligns perfectly with the target schedule [i.e., tb(n) =
tT (n)] and the arrival rate Ra is constant [i.e., the w(n− 1) term vanishes], we
get from (14.36)

s(n)= tb(n+ 1)− tb(n)

τ (n+ 1)− τ(n)
= Rc(n+ 1)

Ra

. (14.40)

Thus initially, if the slope is low, that is, s(n) is less than 1/ν, then Ra is greater
than Rcν, causing the client buffer to grow. Over time, as the slope approaches
1/ν, Ra approaches Rcν, and the buffer remains relatively constant, except for
changes due to variations in the instantaneous coding rate.

A reasonable way to choose the target schedule tT is to have the client buffer
duration grow logarithmically over time. Specifically, if td is the playback dead-

FIGURE 14.10: Target schedule design.
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line, then for each td greater than some start time td0,

tT = td − b

a
ln
(
a(td − td0)+ 1

)
. (14.41)

Since td = td0 + (τd − τd0)/ν by (14.25), we have

s = dtT

dτd

= dtT

dtd

dtd

dτd

= 1

ν
− b

a(τd − τd0)+ ν
, (14.42)

and hence the initial slope at frame 0 (when td = td0) is s(0)= (1− b)/ν. Setting
b = 0.5 implies that initially Rc/Ra = 0.5/ν, causing the client buffer to grow
initially at two times real time. Further setting a = 0.15 implies that the client
buffer duration will be 7.68 s after 1 min, 15.04 s after 10 min, and 22.68 s after
100 min, regardless of ν.

14.4.2.4 Controller Design

Recall from (14.36) the fundamental state transition equation, which describes the
evolution of the buffer tube upper bound tb(n) in terms of the source coding rate
Rc(n):

tb(n+ 1)= tb(n)+ Rc(n+ 1)

f R̃a

+w(n). (14.43)

Here we now assume that the frame rate f and the average arrival rate R̃a are
relatively constant. Deviations from this assumption are captured by w(n).

We wish to control the upper bound by adjusting the source coding rate. As
each frame arrives at the client, a feedback loop can send a message to the server
to adjust the source coding rate. Note, however, that by the time frame n arrives
completely at the client, frame n+1 has already started streaming from the server.
Thus the coding rate Rc(n+ 1) for frame n+ 1 must already be determined by
time ta(n). Indeed, at time ta(n), frame n+ 2 is the earliest frame for which the
controller can determine the coding rate. Hence at time ta(n), the controller’s job
must be to choose Rc(n+2). We must explicitly account for this one-frame delay
in our feedback loop.

For simplicity, we linearize the target schedule around the time that frame n

arrives. The linearization is equivalent to using a line tangent to the original target
schedule at a particular point as an approximate target schedule. Thus we have

tT (n+ 1)− 2tT (n)+ tT (n− 1)= 0. (14.44)

Rather than directly control the evolution of the upper bound, which grows
without bound, for the purposes of stability we use an error space formulation.
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By defining the error

e(n)= tb(n)− tT (n), (14.45)

we obtain

e(n+ 1)− e(n) = (
tb(n+ 1)− tT (n+ 1)

)− (
tb(n)− tT (n)

)
(14.46)

= (
tb(n+ 1)− tb(n)

)− (
tT (n+ 1)− tT (n)

)
(14.47)

= Rc(n+ 1)

f R̃a

− (
tT (n+ 1)− tT (n)

)+w(n), (14.48)

from which we obtain in turn

(
e(n+ 1)− e(n)

)− (
e(n)− e(n− 1)

)

= [
Rc(n+ 1)−Rc(n)

]
/f R̃a

− (
tT (n+ 1)− 2tT (n)+ tT (n− 1)

)

+ (
w(n)−w(n− 1)

)
(14.49)

= Rc(n+ 1)−Rc(n)

f R̃a

+ (
w(n)−w(n− 1)

)
. (14.50)

We next define the control input

u(n)= Rc(n+ 2)−Rc(n+ 1)

R̃a

, (14.51)

and we define the disturbance

d(n)=w(n)−w(n− 1). (14.52)

Then (14.50) can be rewritten

e(n+ 1)= 2e(n)− e(n− 1)+ u(n− 1)

f
+ d(n). (14.53)

Therefore, defining the state vector

e(n)=
⎡

⎣
e(n)

e(n− 1)

u(n− 1)

⎤

⎦=
⎡

⎢
⎣

tb(n)

tb(n− 1)

Rc(n+1)

R̃a

⎤

⎥
⎦−

⎡

⎢
⎣

tT (n)

tT (n− 1)

Rc(n)

R̃a

⎤

⎥
⎦ , (14.54)
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the error space representation of the system can be expressed

e(n+ 1)=
⎡

⎣
2 −1 1

f

1 0 0
0 0 0

⎤

⎦ e(n)+
[0

0
1

]

u(n)+
[1

0
0

]

d(n), (14.55)

or e(n+ 1)=�e(n)+ �u(n)+ �dd(n) for appropriate matrices �, �, and �d .
Assuming the disturbance d(n) is a pure white noise, and assuming perfect

state measurement (i.e., we can measure all components of e(n) without using
an estimator), the disturbance d(n) does not affect the controller design. Thus we
can use a linear controller represented by

u(n)=−Ge(n), (14.56)

where G is a vector feedback gain. By the time frame n is completely received,
all elements of e(n) are available at the client and u(n) can thus be computed. The
ideal coding rate for frame n+ 2 can then be computed as

Rc(n+ 2)=Rc(n+ 1)−Ge(n)R̃a. (14.57)

Finding the optimal linear controller amounts to finding the feedback gain G∗
that minimizes the quadratic cost function (14.38). Before continuing with the
design, we first check the system controllability matrix C,

C = [� �� �2� ]=
⎡

⎢
⎣

0 1
f

2
f

0 0 1
f

1 0 0

⎤

⎥
⎦ , (14.58)

which has full rank for any frame rate f . Thus, the system is completely control-
lable [16] and the state e(n) can be regulated to any desirable value. Now recall
that the cost function (14.38) is

I =
N∑

n=0

{(
tb(n)− tT (n)

)2 + σ

(
Rc(n+ 1)−Rc(n)

R̃a

)2}
(14.59)

=
N∑

n=0

{
e(n)T Qe(n)+ u(n− 1)T Ru(n− 1)

}
, (14.60)

where Q= CT C (with C = [1 0 0]) and R = σ . Then, the original control prob-
lem of tracking the target schedule while smoothing the coding rate fluctuations
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(i.e., minimizing the cost function I ) is converted to a standard regulator problem
in the error space. Letting N→∞, the infinite horizon optimal control problem
can be solved by applying the results in [2, Section 3.3] to obtain an optimal reg-
ulator in two steps: (1) solving, to get S, the discrete algebraic Riccati equation

S =�T
{
S − S�

[
�T S� +R

]−1
�T S

}
�+Q, (14.61)

and (2) computing the optimal feedback gain

G∗ = [
�T S� +R

]−1
�T S�. (14.62)

The existence and uniqueness of S (and in turn of G∗) are guaranteed when Q is
nonnegative definite and R is positive definite, which is straightforward to verify
in our case.

14.4.2.5 Effect of Frame Rate

In the derivation given earlier, we assumed that the frame rate is constant. This
assumption is reasonable when streaming a single medium, such as video without
audio. However, usually video and audio are streamed together, and their merged
coding schedule may have no fixed frame rate. Even if there is a fixed frame rate
f , we may wish to operate the controller at a rate lower than f to reduce the
feedback rate, for example.

To address these issues, in practice we use the notion of a virtual frame rate.
We choose a virtual frame rate f , for example, f = 1 frame per second (fps); we
partition media time into intervals of size 1/f ; and we model all of the (audio and
video) frames arriving within each interval as a virtual frame whose decoding and
playback deadline is the end of the interval.

This approach has several advantages. First, it allows us to design off line a uni-
versal feedback gain, which is independent of the actual frame rate of the stream
or streams. Second, it allows us to reduce the rate of feedback from the client
to the server. Finally, since the interval between virtual frames is typically safely
larger than a round trip time (RTT), a one-frame delay in the error space model (as
described in the previous section) is sufficient to model the feedback delay. Oth-
erwise we would have to model the feedback delay with approximately RTT/f

additional state variables to represent the network delay using a shift register of
length RTT/f .

In the sequel we therefore use a virtual frame rate f = 1 fps, and we refer to
this simply as the frame rate. With f = 1 and σ = 50 (chosen empirically for
good damping), we can solve for G∗ = [0.6307,−0.5225,0.5225].
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14.4.2.6 Controller Interpretation

With the aforementioned coefficients for G∗, we are now able to give an intuitive
explanation of the source coding rate control (14.57). Plugging the coefficients of
G∗ into (14.57), we obtain

Rc(n+ 2) = Rc(n+ 1)

− 0.1082e(n)R̃a (14.63)

− 0.5225
[
e(n)− e(n− 1)

]
R̃a (14.64)

− 0.5225
[
Rc(n+ 1)−Rc(n)

]
. (14.65)

Focusing on the first term (14.63), it can be seen that the source coding rate Rc

tends to decrease if the current error e(n)= tb(n)− tT (n) is positive, and it tends
to increase if e(n) is negative, in proportion to e(n) with proportionality constant
0.1082 times the estimated arrival rate R̃a . This has the effect of moving the up-
per bound tb toward the target tT , whether it is above or below the target. At the
same time, from the second term (14.64), it can be seen that the source coding rate
tends to decrease if the current error e(n) is numerically greater than the previous
error e(n− 1), whether e(n) is positive or negative. This has the effect of either
strengthening the compensation or preventing the controller from overcompensat-
ing, since if e(n) is positive then e(n) > e(n− 1) indicates that the magnitude of
the error is still growing, whereas if e(n) is negative then e(n) > e(n−1) indicates
that the magnitude of the error is shrinking too fast to be sustainable. The propor-
tionality constant for this second effect is 0.5225 times R̃a , which is even larger
than that for the first effect. Finally, from the third term (14.65), it can be seen that
the source coding rate tends to decrease if it had previously increased, with pro-
portionality constant 0.5225. This ensures appropriate damping and smoothing of
the source coding rate.

It is important to emphasize that the optimal feedback gain G∗ is completely
determined given σ and f , and that it is independent of the arrival rate and the
source coding rate. Thus, G∗ can be obtained off line, and only a linear calculation
is required to compute the source coding rate Rc(n+ 2) on the fly.

Figure 14.11 shows results of a simulation in which FTP cross traffic reduces
the fair share for streaming from 800 to 200 Kbps and back again over 180 s.
Figure 14.11a shows the fair share bandwidth, as well as the rate of arrival of
reliable information over TCP and the resulting source coding rate. The source
coding rate starts at about half the arrival rate to build up the client buffer duration
and approaches the arrival rate over the first 45 s. Subsequently the source coding
rate tends to track the arrival rate, but with less variation. Figure 14.11b shows the
associated client buffer duration td (n)− ta(n), as well as the target td (n)− tT (n)
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(a)

(b)

FIGURE 14.11: Variable bandwidth over TCP.

and the buffer tube upper bound td (n) − tb(n) relative to the deadline. Despite
sudden large changes in the TCP arrival rate (e.g., at the 50-s mark), the buffer
duration remains safely positive and recovers quickly to the target.

14.5 LIVE BROADCAST

Section 14.2 covered the architectural differences between live broadcast and
streaming media on demand. In live broadcast, the encoder is online, but commu-
nicates through the server to multiple clients simultaneously. Thus even though
the encoder is online, it is still not feasible to know the channel conditions be-
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tween the server and each client separately. In general, the clients experience dif-
ferent channels, such as different rates of packet loss, different patterns of packet
loss, and different limitations on bit rate. Thus a major issue in live broadcast is
dealing with the heterogeneity of channels across clients, in terms of both error
and bit rate characteristics.

Another issue in live broadcast is dealing with the heterogeneity of devices
across clients, in terms of resolution and computational power. Mobile phones
have limited screen real estate, a limited number of audio channels, and lim-
ited computational power for decoding. In contrast, home media centers may
have high-definition projection monitors, multichannel surround sound, multigi-
gahertz, multicore computational engines, and specialized hardware or firmware
decoders. Because of such heterogeneity in both devices and channels, the en-
coder cannot generally produce a single encoding that is satisfactory to all clients.

A time-honored means of broadcasting to heterogeneous clients is simulcast.
Terrestrial television broadcast in North America, for example, is currently simul-
casting (simultaneously broadcasting) standard definition and high-definition pro-
grams. This is analogous to multibit rate files for streaming media on demand.
As a result, it is always possible to address heterogeneous client populations by
simulcasting streams with different bit rates, error protection, source resolutions,
and decoding requirements. Each client can “tune in” to the appropriate “channel”
depending on its needs. In the case of IP multicast, each “channel” is represented
by an IP multicast group address (or simply multicast address) [31]. Once these
addresses and the descriptions of their contents are known (using an out-of-band
mechanism such as the session announcement and description protocols [19,20]),
it is possible for a client to subscribe to the appropriate multicast address to obtain
an appropriate stream.

A means of broadcasting to heterogeneous clients that makes more efficient
use of network resources is based on scalable coding rather than multibit rate
coding. In layered multicast, each layer of a scalable encoding is multicast to a
different address. Each client subscribes to the appropriate set of addresses to ob-
tain the appropriate layers of the encoding. This idea was first operationalized by
McCanne [28], although the idea itself precedes McCanne’s work. In McCanne’s
protocol, called receiver-driven layered multicast, each client continually probes
for bandwidth by subscribing to and unsubscribing from (i.e., adding and drop-
ping) the client’s current topmost enhancement layer. This is an effective way to
adapt the bit rate and to provide congestion control in bandwidth-heterogeneous
IP multicast networks.

McCanne’s work did not address error control. As noted earlier, different clients
generally experience different packet loss rates and packet loss patterns, in addi-
tion to different bit rate limitations. Unfortunately, the standard error control tech-
nique of end-to-end packet retransmission, used so effectively in streaming me-
dia on demand to control packet loss adaptively, cannot be used in the broadcast
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scenario because of limitations on feedback to the server. Timely feedback of ei-
ther positive or negative acknowledgments from the clients to the server would
cause a feedback implosion at the server, and hence would not scale to large num-
bers of clients.

However, statistical feedback, as opposed to timely feedback, is possible. The
common example of statistical feedback is RTCP receiver reports [35], which
can be periodically sent from the client to each server to inform the server of the
average packet loss rate. In multicast situations, the clients can send the receiver
reports at random intervals with a frequency inversely proportional to the number
of clients in the session. In this way, the rate at which receiver reports arrive at the
server remains approximately constant regardless of the number of clients. The
server can use such statistical feedback to understand its client population and to
tailor one or more streams to the population.

Because timely feedback is generally not feasible in multicast settings, error
control is usually based on feedforward rather than feedback mechanisms. For-
ward error correction (FEC) coding [27] or, more precisely, forward erasure cod-
ing is typically used to control packet loss in multicast settings. The Windows
Media Server, for example, uses a systematic Reed–Solomon style erasure code,
as described in Chapter 7, to generate and transmit N − K parity packets after
every block of K source packets when broadcasting over IP multicast. (IP mul-
ticast is widely used on the Microsoft campus to broadcast lectures, meetings,
etc.) Thus every “source block” of K source packets maps to a “code block” of
N source and parity packets. If at least K out of N packets in a code block are
received (i.e., if no more than N −K packets in a code block are lost), then the
corresponding K source packets can still be recovered. The parameters (N,K)

can be optimized to match the packet loss characteristics of the client population,
as can be determined by RTCP receiver reports. Typically, (N−K)/N is set close
to the worst-case error rate.

More efficient than FEC, however, to protect scalable media is priority encoded
transmission (PET) [1], as described in Chapter 9. FEC tends to degrade sharply
if more than N −K packets in a code block are lost—a “cliff” effect. In contrast,
PET degrades gracefully as more packets are lost in a code block. This is because
in PET, the number of layers that can be recovered by the client in the scalable
source encoding is equal to the number of packets that are received, as illustrated
in Figure 14.12. Figure 14.13 shows video quality as a function of the number of
packets received per code block. Like FEC, PET can be optimized as a function
of the packet loss characteristics of the client population. If q0, q1, . . . , qN is the
probability distribution of the number of packets received by a client in any block
of N code packets, then the procedures detailed in Chapter 9 can be used to op-
timize the PET parameters R = (R0,R1, . . . ,RN) to minimize (subject to a rate
constraint) the average distortion D =∑N

n=0 qnD(Rn) over the population. The
resulting bit stream can be packetized as described in [26].
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FIGURE 14.12: PET packetization. An embedded bit stream with dis-
tortion–rate function D(R) is partitioned into N layers and poured into N

packets. Layer K is protected with an (N,K) RS code such that if any K

out of N packets are received, the first K layers are recoverable.

Optimizing the FEC or PET parameters for a heterogeneous client popula-
tion may result in a stream that is far from optimal for any homogeneous sub-
population. In this situation, it may pay to provide multiple streams, each one
targeted to a sub-population. Relatively homogeneous sub-populations can be
identified by clustering, as follows. Suppose qθ,0, qθ,1, . . . , qθ,N is the probabil-
ity distribution of the number of packets received by client θ ∈ � in any block
of N code packets, where � represents the overall population of clients. Let
m(θ) :�→{1, . . . ,M} be the assignment of client θ to one of M sub-populations
�m ⊆� and let R(m)= (Rm,0,Rm,1, . . . ,Rm,N) be the PET parameters for sub-
population �m. Clearly, the optimal assignment for each client θ is the one that
maps θ to the sub-population �m whose PET parameters R(m) result in the low-
est distortion for client θ , that is,

m(θ)= arg min
m

n∑

n=0

qθ,nD(Rm,n). (14.66)
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FIGURE 14.13: PET quality as a function of number of packets re-
ceived. From top to bottom, left to right: zero to eight packets received
(out of eight transmitted).

However, the optimal PET parameters for each sub-population �m minimize the
average distortion for the sub-population, that is,

R(m)= arg min
R

N∑

n=0

qm,nD(Rn), (14.67)

where qm,n is the average of qθ,n over θ ∈ �m. The minimization (14.67) can
be performed with the algorithms in Chapter 9. The minimizations (14.66) and
(14.67) can be repeated until the distortion averaged over the entire population �

converges to a minimum, determining both the clustering and the PET parameters
for each cluster [8].

Using FEC or PET for error control can be combined with either simulcast
or layered multicast. The simulcast case is straightforward. As usual, the client
population is partitioned into sub-populations according to bit rate. Then for each
bit rate, FEC or PET is applied to make a loss-resilient stream at that bit rate.
Multiple loss-resilient streams for a given bit rate are also possible, as described
earlier, if the clients at that bit rate are heterogeneous in terms of loss.
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Combining FEC or PET with layered multicast is trickier because insufficient
protection of a lower (e.g., base) layer will render a higher (e.g., enhancement)
layer irrelevant. Thus in general the lower layers need more error protection than
the higher layers. Furthermore, the optimum amount of protection of any given
layer increases as the overall bit rate increases. Therefore, as enhancement layers
are added, stronger error protection must also be added for each of the preceding
layers. Hence the error protection itself must be layered. In addition, the available
bit rate must be optimally allocated to the various layers.

A natural approach to this problem is given in [7,40]. Suppose that all the
source layers have an equal rate, say one packet per group of frames (GOF). As
illustrated in Figure 14.14, partition the packets in each source layer into blocks
having K packets per block, where the block size K is constant across all source
layers and the block boundaries are synchronized across layers. For each block
of K source packets in a source layer, generate N − K parity packets using a
systematic (N,K) Reed–Solomon style erasure code, where the “code length” N

is determined by the maximum amount of redundancy that will be needed by any
client to protect the source layer. Place each of the parity packets so generated
in its own multicast stream so that each source layer is accompanied by N −K

parity layers, each at 1/K the rate of the source layer. In this way, a client now has
many layers to which it can subscribe. It can subscribe to any collection of source
layers and any collection of parity layers associated with those source layers.

The problem now is to determine the layers to which a client should subscribe
to minimize the expected distortion given a total bit rate constraint and a packet
loss rate. Let Nl be the number of code packets (i.e., source packets plus parity
packets) for source layer l to which the client subscribes, l = 1, . . . ,L. Then Nl

takes the value 0 if the client does not subscribe to source layer l or any of its
associated parity layers; it takes the value K if the client subscribes to source layer

FIGURE 14.14: Generation of parity packets: block each source layer
into K packets per block; produce N −K parity packets per block with a
systematic RS-style code; and send each parity packet to a different mul-
ticast address.
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l but to none of its associated parity layers; and it takes the values K + 1, . . . ,N

if the client subscribes to source layer l and 1, . . . ,N −K of its associated parity
layers, respectively. Let the redundancy πl =Nl/K be the number of packets per
GOF transmitted to the client in layer l. (This is the inverse of the code rate.) The
vector π = (π1, . . . , πL), called the transmission policy, specifies which source
layers to subscribe to and also which parity layers to subscribe to for each source
layer. Any given transmission policy π induces a total bit rate and an expected
distortion. The total bit rate, in terms of transmitted packets per GOF, is

R(π)=
∑

l

πl, (14.68)

whereas the expected distortion per GOF is

D(π)=D0 −
∑

l


Dl

∏

l′�l

(
1− ε(πl′)

)
, (14.69)

as shown in [7]. Here, D0 is the distortion if no packets in a GOF can be de-
coded, 
Dl is the distortion reduction if the packet in layer l can be decoded,
and the product

∏
l′�l (1− ε(πl′)) is the probability for this to occur, as described

in Chapter 10. The notation l′ � l is shorthand for the set of layers l′ on which
layer l depends for decoding, and ε(πl) is the residual probability of packet loss
after channel decoding under the transmission policy. In [7] this is shown to be
1−M(Nl,K)/K , where

M(Nl,K)=
Nl∑

i=0

(
Nl

i

)
εNl−i (1− ε)iM(Nl,K | i) (14.70)

is the expected number of source packets that can be recovered after channel
decoding with a (Nl,K) code. Here M(Nl,K | i) equals K if i ≥K and equals
iK/Nl if i < K , and ε is the packet loss rate for the client in question.

Chande and Farvardin [5] provide a dynamic programming algorithm to find
the transmission policy π that minimizes D(π) subject to R(π)≤Rmax when the
dependencies between layers are sequential. When the dependencies are given
more generally by a directed acyclic graph, then the transmission policy can be
optimized by the Iterative Sensitivity Adjustment algorithm [6,7], as discussed in
Chapter 10.

An alternative approach to combining error control with layered coding is based
on PET, as described in [9,39]. However, this approach gets quite complicated
with any more than two source layers.

In the aforementioned discussion, we assumed a dumb network such as an IP
network, in which the network nodes can only copy and forward data. However, if
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the network nodes are more intelligent, for example, if the network is an overlay
network of servers or peers, then much more can be done. As a simple example,
if the network nodes are computers, then communication between nodes can be
made reliable by using sufficient buffering and retransmission (e.g., using TCP),
thus eliminating the problem of error control altogether (although rate control
remains a problem). For example, today’s CoolStreaming and PPLive applications
[41,42] deliver IP television peer to peer with essentially no glitching as long as
the available bandwidth is high enough.

14.6 SUMMARY AND FURTHER READING

In this chapter, we treated both streaming media on demand and live broadcast.
An attempt was made, more than in any other book we know, to formalize these
systems and to show how they can be optimized.

Much of Section 14.3, on leaky bucket models, is based on [34]. Another pri-
mary source of information on leaky buckets is [21]. Much of Section 14.4, on
rate control, is based on [22–24]. Much of Section 14.5, on multicast, is based on
[7,8]. Please see these primary sources for more detailed information.

For more general information on streaming media, see the excellent books by
Crowcroft et al. [12] and Perkins [32]. Of course an amazing amount of informa-
tion is freely available through the web.
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APPENDIX: RATE ESTIMATION

This section details our exponential averaging algorithm for the arrival rate, the
preferred algorithm in any context in which a bit rate must be estimated from a
sequence of variable-sized packets with variable inter-packet intervals.

Let R̃a(k) and Ra(k) be the average arrival rate and the instantaneous arrival
rate, respectively, when packet k is received. Note that unlike the controlling op-
eration, the rate averaging operation may be performed after the arrival of every
packet rather than after the arrival of every frame. Hence we use the discrete
packet index k rather than the frame index n. Instead of using the widely adopted
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exponentially weighted moving average (EWMA)

R̃a(k)= β(k)R̃a(k − 1)+ (
1− β(k)

)
Ra(k) (14.71)

with constant β(k)= β , we perform the exponential averaging more carefully. In
our algorithm, the factor β(k) is not constant, but varies according to the packets’
interarrival gaps. Our algorithm has several advantages over the EWMA algorithm
with constant β(k). First, the estimate of the average arrival rate R̃a(k) goes to
zero naturally as the gap since the last packet goes to infinity, rather than being
bounded below by βR̃a(k − 1). Second, the estimate of the average arrival rate
R̃a(k) does not go to infinity as the gap since the last packet goes to zero. This
is especially important, as packets often arrive in bursts, causing extremely high
instantaneous arrival rates. Finally, the estimate of the average arrival rate R̃a(k)

does not overweight the initial condition, as if it represented the infinite past. This
is especially important in the early stages of estimation.

As in (14.27), we define the instantaneous arrival rate after packet k as

Ra(k)= b(k)

ta(k)− ta(k − 1)
, (14.72)

where here b(k) denotes the size of packet k and ta(k) denotes the arrival time of
packet k. We extend the discrete time function Ra(k) to the piecewise constant
continuous time function Ra(t) by

Ra(t)=Ra(k) for all t ∈ [ta(k − 1), ta(k)
]
, (14.73)

as illustrated in Figure 14.15. Then we filter the function Ra(t) by the exponential
impulse response αe−αt , t ≥ 0, for some time constant 1/α:

R̃a(k)=
∫ t (k)

t (0)
Ra(t

′)αe−α(t (k)−t ′)dt ′
∫ t (k)

t (0)
αe−α(t (k)−t ′)dt ′

. (14.74)

[Here and in the remainder of the Appendix we suppress the subscript from the ar-
rival time ta(k).] Noting that

∫∞
t

αe−αt ′dt ′ = e−αt , the denominator integral can
be expressed 1− e−α(t (k)−t (0)). Now, we split the range of the numerator integral
into ranges [t (0), t (k − 1)] and [t (k − 1), t (k)] to obtain a recursive expression
for R̃a(k) in terms of R̃a(k − 1) and Ra(k),

R̃a(k) = 1− e−α[t (k−1)−t (0)]

1− e−α[t (k)−t (0)] e−α[t (k)−t (k−1)]R̃a(k − 1)
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FIGURE 14.15: Exponential averaging.

+ 1− e−α[t (k)−t (k−1)]

1− e−α[t (k)−t (0)] Ra(k) (14.75)

= β(k)R̃a(k − 1)+ (1− β(k))Ra(k), (14.76)

where

β(k)= e−α[t (k)−t (k−1)] − e−α[t (k)−t (0)]

1− e−α[t (k)−t (0)] . (14.77)

Note that β(k) is numerically stable as k goes to infinity. However, as the gap
δ = t (k) − t (k − 1) goes to zero, 1 − β(k) goes to zero while Ra(k) goes to
infinity. Their product, however, is well behaved. Indeed,

R̃a(k) = 1− e−α[t (k−1)−t (0)]

1− e−α[δ+t (k−1)−t (0)] e
−αδR̃a(k − 1)

+ 1− e−αδ

1− e−α[t (k)−t (0)]
b(k)

δ
(14.78)

→ R̃a(k − 1)+ αb(k)

1− e−α[t (k)−t (0)] (14.79)

as δ→ 0, using l’Hôpital’s rule. Thus (14.79) is the update rule in the case when
t (k)= t (k − 1).
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Real-Time
Communication:
Internet Protocol Voice
and Video Telephony
and Teleconferencing

Yi Liang, Yen-Chi Lee, and Andy Teng

15.1 INTRODUCTION

Internet Protocol (IP)-based real-time communication, including voice-over IP
(VoIP), video telephony, and teleconferencing, has been gaining popularity in re-
cent years. One example is VoIP, which has been competing with the traditional
public switched telephone network (PSTN) for years and now enjoys increased
market share. This is due to the many advantages of IP-based communication,
including lower cost as well as the capability of providing integrated data, voice,
and video, a larger variety of features, and more value-added services.

Despite rapid expansion and improvement of the underlying infrastructure,
quality-of-service (QoS) is still one of the major challenges of real-time com-
munication over IP networks. The unreliable and stateless nature of today’s In-
ternet protocol results in a best-effort service, that is, packets may be delivered
with an arbitrary delay or may even be lost. Transmitted over the best-effort net-
work and suffering from variable throughput, delay, and loss, data packets have
to be delivered by a deadline to become useful. Excessive delay severely impairs
communication interactivity; packet loss results in glitches in audio and poor pic-
ture quality and frozen frames in video. The heterogeneity of today’s Internet
also poses a major challenge for media delivery to users with various connection
speeds, where scalability is highly desirable.
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The challenges that the industry faces, in conjunction with the commercial
promise of the technology, have attracted considerable effort in research and prod-
uct development. In this chapter, we will first describe an architecture for real-time
communication, followed by topics on how to improve the QoS. In Section 15.2,
we will describe the basic system architecture as well as two categories of the
most important protocols: signaling and transport. In Section 15.3, we will address
QoS issues, especially minimizing latency, combating loss, adapting to available
bandwidth, and audio–video synchronization.

15.2 ARCHITECTURE AND FUNDAMENTALS

15.2.1 Systems

Figure 15.1 shows the setup of a typical VoIP system. An IP phone or a suffi-
ciently equipped PC connects to the Internet to be able to make VoIP calls. For
traditional phones in the PSTN network, a gateway is needed for the interopera-
tion between the PSTN and the Internet. After introducing signaling and transport
protocols later in this section, we will illustrate the process of setting up a call
using corresponding protocols in more detail (Figure 15.8).

Figure 15.2 shows a typical architecture for real-time audio and video commu-
nication over IP networks. Transport protocols, including UDP, TCP, and Real-
Time Transport (RTP)/Real-Time Transport Control Protocols (RTCP) are built
on top of the IP layer. Audio and video codecs are applied on the content en-
capsulated or to be encapsulated in the payload. The upper-layer applications call
audio and video codecs to perform data compression. Signaling protocols, such as
session initiation protocol (SIP), are used for call setup and control. The signaling
and transport protocols are described in more detail in the following sections.

FIGURE 15.1: A typical configuration for a VoIP system with both
IP-based devices and traditional PSTN phones.
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FIGURE 15.2: A typical architecture for an IP-based video and audio
communication system.

15.2.2 Signaling Protocols

The SIP, originally developed by the IETF Multi-Party Multimedia Session Con-
trol Working Group, is the most widely used signaling protocol for real-time con-
versational applications over IP networks. As a signaling protocol, SIP provides
the following functions:

• Call setup and tear down;
• Advanced features, such as call hold, call waiting, call forwarding, and call

transfer;
• Capability exchange;
• Interoperability between different types of networks (e.g., PSTN) and dif-

ferent signaling protocols (e.g., H.323);
• Multicasting.

Moreover, SIP has been designed to be scalable enough to support simultaneous
calls for a substantial number of users and to be extensible enough to include more
features and functions in the future.

SIP may be transported by either TCP or UDP. TCP provides a reliable,
connection-oriented transport, while UDP provides a best-effort, connectionless
transport across the Internet. Port numbers 5060 and 5061 are the default ports
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for SIP, although any number above 49172 may be used. The protocol stack for
SIP-based IP phone service is shown in Figure 15.3.

There are two types of SIP messages: request and response. The request mes-
sage is initiated by a user agent client (UAC) for registering, call setup, tear down,
acknowledgment, etc., while the response message is generated by a user agent
server (UAS) or a SIP server in response to the request.

The request message in SIP, as with the other IETF protocols (e.g., RTSP), is
called a “method.” There are six fundamental SIP methods considered as basic
signaling for call setup and tear down, which are defined in IETF RFC 3261 [1]:
INVITE, ACK, BYE, REGISTER, CANCEL, and OPTIONS. Specifically, the
INVITE method is used to initiate a call. The ACK method is used by the call
originator to acknowledge the final response to the INVITE request. The BYE
method is used to terminate a call. The REGISTER method is used by a user
agent (UA) to register itself to a SIP server with the addressing information (con-
tact URI). The CANCEL method is used to cancel the request sent earlier. The
OPTIONS method is used to query a SIP server/client capability. In addition to
the six methods defined in RFC 3261, other methods were added later as SIP
extensions and specified in different RFCs. Examples include INFO (RFC 2976
[2]), MESSAGE (RFC 3428 [3]), NOTIFY (RFC 3265 [4]), PRACK (RFC 3262
[5]), REFER (RFC 3515 [6]), SUBSCRIBE (RFC 3265 [4]), and UPDATE (RFC
3311 [7]).

The response message is called the “response code” in SIP. The SIP response
codes are inherited from HTTP/1.1, except for the 6xx class, which is defined by
SIP itself (RFC 3261). The six classes of SIP response codes are described briefly
here.

1xx (provisional response): information to indicate current status before a
definitive response. The 1xx response is designed such that an ACK is never
triggered by it and thus the reliability for 1xx transmission is not critical.
180 Ringing is an example of a 1xx response, which is used to inform
the originator that the UA has already received the INVITE request.

FIGURE 15.3: Protocol stack (signaling flow and data flow).
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2xx (successful response): a response used to indicate that the request has
been successfully received. Example: 200 OK.
3xx (redirectional response): information used to indicate the user’s new
location or alternative services.
4xx (request failure): a response used by a UAS or a server to indicate that
the request cannot be processed due to authorization failure, authentication
failure, account issue, requesting itself, or other problems not related to
the server. Example: 400 Bad Request indicates that the server does not
understand the request.
5xx (server failure): a response used by a UAS or a server to indicate
that the request cannot be processed due to the server’s problem. Examples
include 500 Server Internal Error and 501 Not Implemented.
6xx (global failure): a response used to indicate that the response will fail
in all locations and thus the request should not be delivered.

A simple message flow for call setup and tear down is illustrated in Figure 15.4.
The SIP request message is composed as follows: method name (e.g., INVITE),

address, header fields, and message body. Each response message consists of a

FIGURE 15.4: Simple message flow for call setup and tear down.
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code (e.g., 200 OK), header fields, and message body. Note that the header fields
and the message body may not appear in all messages.

15.2.2.1 Address

SIP supports a variety of addressing schemes, including SIP URI (Uniform Re-
source Identifiers), secure SIP URI, telephone URI, and e-mail URL (Uniform Re-
source Locator). SIP URI is usually represented as sip:<userinfo>@<host>:
<port>.

15.2.2.2 Header Fields

A header field is composed as <header>:<field>. There are 44 header fields
defined in RFC 3261: Accept, Accept-Encoding, Accept-Language, Alert-Info,
Allow, Authentication-Info, Authorization, Call-ID, Call-Info, Contact, Content-
Disposition, Content-Encoding, Content-Language, Content-Length, Content-
Type, CSeq, Date, Error-Info, Expires, From, In-Reply-To, Max-Forwards,
Min-Expires, MIME-Version, Organization, Priority, Proxy-Authenticate, Proxy-
Authorization, Proxy-Require, Record-Route, Reply-To, Require, Retry-After,
Route, Server, Subject, Supported, Timestamp, To, Unsupported, User-Agent,
Via, Warning, and WWW-Authenticate. The most common ones are introduced
here:

Call-ID: used to uniquely identify a call. Example: CALL-ID: t315fde3-

68te-33uyr@test.com

Contact: used to carry a URI that identifies the resource requested or the
request originator. Example: Contact: sip:johnsmith@test.com

CSeq: a decimal number used to uniquely identify a request. All responses
corresponding to a request use the same CSeq as the request. The CSeq
number is usually increased by one for a new request.
From: used to specify the originator. Example: From: "John Smith"

<sip:johnsmith@test.com>

Max-Forwards: an integer in the range of 0–255 used to specify the max-
imum number of hops that a message can take. The recommended initial
value is 70. It is decreased by one as the message passes through a proxy
or gateway. The proxy/gateway discards the message when the value is
dropped to zero.
To: used to specify the recipient of the request.
Via: used to record the path the request has been traveled. The response
walks through the same path in the reverse order.

The mandatory headers for the six fundamental requests are shown in
Table 15.1.
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Table 15.1: Mandatory header fields for six fundamental SIP methods, where
M denotes mandatory.

Header/Requests INVITE ACK BYE REGISTER CANCEL OPTIONS
Call-ID M M M M M M
Contact M
CSeq M M M M M M
From M M M M M M

Max-Forwards M M M M M M
To M M M M M M
Via M M M M M M

15.2.2.3 Message Body

Although any format can be used as a message body, the Session Description
Protocol (SDP) [8] is the most popular one. SDP specifies media information
such as media type, codec, author, title, encryption key, bandwidth, start time,
and end time. SDP can be used for capability exchange at the call set-up stage.
An example of SDP message is shown here

m = audio 49170 RTP/AVP 102

a = rtpmap:102 AMR/8000

a = fmtp:102 maxptime=60; octect-align=1; mode-set=4

m = video 49350 RTP/AVP 110

a = rtpmap:110 MP4V-ES/90000

a = fmtp:110 profile-level-id=0; config=000001B. . . . . .

The SDP message just given specifies the following information. Audio is
transported by the RTP/AVP protocol through port 49170, with payload num-
ber 102. The RTP timestamp resolution is 1/8000 s. The audio is coded by AMR
with the maximum bit rate of 7.4 kbps. Three-frame bundling is used, three audio
frames are bundled together to form an RTP packet. Audio packetization should
follow the rules defined in RFC 3267 [9]. Video is transported by the RTP/AVP
protocol through port 49350, with payload number 110. The RTP timestamp res-
olution is 1/90,000 s. The video is coded by MPEG-4 video SVP L0 (simple
visual profile level 0). Video packetization should follow the rules defined in RFC
3016 [10].

SIP is an IP telephony signaling protocol developed by the IETF, which com-
petes with the H.323 protocol developed by the ITU-T for the same application.
The fundamental difference between the two protocols is that SIP is a text-based
protocol and inherits the rich set of the IETF protocols, such as SDP, whereas
H.323 is binary encoded and utilizes many features from other ITU-T proto-
cols, for example, H.245. Comparisons between the two protocols on features,
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Table 15.2: Comparisons between SIP and H.323.

Comparisons SIP H.323
Encoding Text Binary
method

Family IETF ITU-T

Transport TCP or UDP TCP

Packet loss Through SIP itself Through TCP
recovery

Capability SDP (simple but limited) H.245 (rich but complicated)
exchange

Security Through other IETF; Not very good
protocols for encryption,
authentication, etc.

Features Call holding, call transfer, Call holding, call transfer,
call forwarding, call call forwarding, call
waiting, conferencing, waiting, conferencing
instant messaging

packet loss recovery, security mechanism, and capability exchange are listed in
Table 15.2. A more detailed comparison can be found in [11].

15.2.3 Media Transport and Control Protocols

The commonly used media transport and control protocols in IP voice and video
telephony applications are RTP and RTCP, as defined in RFC 3550. RTP and
RTCP are designed to be independent of the underlying transport and network
layers. Applications usually run RTP and RTCP on top of UDP and IP, as shown
in Figure 15.3.

15.2.3.1 Real-Time Transport Protocols

RTP provides end-to-end delivery services for media data that have real-time char-
acteristics. It defines useful information such as timestamp, sequence number, and
marker, to allow receivers to keep the order of the packets, and to play out media
at the proper pace. This is due to the fact that IP networks often introduce jitter in
packets’ arrival time and sometimes packet reordering. RTP itself, however, does
not provide any mechanism to ensure timely delivery or to provide another quality
of service.
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Figure 15.5 shows the format of an RTP packet and its RTP header. Typically,
in one-to-one telephony applications, the size of the RTP header is 12 bytes (no
CSRC). V is a 2-bit field that identifies the version of the RTP. P is 1-bit infor-
mation used to indicate if there are any padding octets at the end that are not part
of the payload. X is a 1-bit field used to tell if there is any header extension in-
formation. CC means CSRC count, which uses 4 bits in the header and contains
the number of CSRC identifiers that follow the header with fixed size. If an RTP
session is one to one, such as in a video telephony application, the CSRC count
should be set to zero. PT indicates payload type in 7 bits. It tells the format of the
payload that an RTP packet carries.

M is a 1-bit marker and its interpretation is defined by a profile or payload
format. For example, RFC 3016 is the payload format used for MPEG-4 audio
and video. It specifies that if an encoded video frame is carried in multiple RTP
packets, the marker bit of the last packet should be set to one to indicate the end
of the frame. This is particularly useful for the RTP receiver to signal the video
decoder to decode a video frame as soon as the last packet arrives.

SN specifies the sequence number of the RTP packet. It increases by one when
one RTP data packet is sent. The initial sequence number of the first RTP packet
for an RTP session should be randomly generated. For different media, the initial
value may be different. For real-time telephony applications, the receiver can use
the sequence numbers to detect any lost packets.

The timestamp TS reflects the sampling time of the first octet in the RTP packet
payload. The sampling time should be calculated from a clock that increases
monotonically and linearly in time to allow synchronization and jitter calcula-
tions. The timestamp may increase at a different pace for different media. For
example, speech data are usually sampled at 8000 Hz and each speech frame can
typically have 160 samples. Each RTP packet for speech will have a timestamp
increment of 160. For video data sampled at 15 frames per second, the timestamp
increment is 6000, based on a 90,000-Hz clock. If an encoded video frame is pack-
etized into several RTP packets, each RTP packet will have the same timestamp
as the data in each RTP packet are sampled at the same time instant.

FIGURE 15.5: RTP header format.
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A timestamp is particularly useful for media playout control at the receiver.
The IP networks usually introduce packet interarrival jitter. In addition, for video
encoding, it is possible that a video frame will be skipped in order to maintain
a predefined fixed encoding bit rate. By looking at the timestamp, the receiver
can properly play out the media at the pace when they were originally sampled.
Timestamp information can also be used to synchronize the playout of different
media, such as audio and video, with the help of RTCP. We will describe audio
and video synchronization in more detail in Section 15.3.4.

SSRC specifies the synchronization source and has 32 bits. RTP packets gen-
erated from the same source, such as a camera or microphone, should have the
same SSRC. SSRC can be used to help the receiver group RTP packets of the
same media for playback. CSRC is also a 32-bit field. It indicates the source of a
stream of RTP packets that have contributed to the combined stream produced by
an RTP mixer. For one-to-one video telephony and VoIP applications, there is no
CSRC present in the RTP header.

15.2.3.2 Real-Time Control Protocols

RTCP is used in conjunction with RTP to allow RTP session participants to mon-
itor the quality of data delivery. It is based on the periodic transmission of control
packets. There are five control packets defined in RFC 3550:

• SR: Send Report. This is sent by an RTP participant that sends and receives
the RTP packets;

• RR: Receiver Report. This is sent by an RTP participant that only receives
the RTP packets;

• SDES: Source DEScription, including CNAME;
• BYE: This is to indicate the end of the RTP participation;
• APP: Application-specific functions.

Both SR and RR control packets contain reception statistics such as interarrival
jitter and packet loss rate. Each SR control packet further includes the sender’s
wallclock time and the corresponding RTP timestamp when it is generated, as
well as transmission statistics, such as how many packets and bytes have been
transmitted since the beginning of the RTP session. SR control packets can also
be used to synchronize the playout of different media data.

SR and RR reports are also often used for flow and congestion control. For
example, by analyzing the interarrival jitter field of the sender report, we can
measure the jitter over a certain interval and indicate congestion. As defined in
RFC 3550, when Packet i is received, the interarrival Jitter J (i) is calculated as

J (i)= J (i − 1)+ |D(i − 1, i)| − J (i − 1)

16
, (15.1)
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where

D(i − 1, i)= (
R(i)−R(i − 1)

)− (
TS(i)− TS(i − 1)

)
, (15.2)

and R(i) and TS(i) are the arrival time and the timestamp of Packet i, respec-
tively. Both are in RTP timestamp units. It is up to the implementation to decide
what action to take when congestion occurs. A typical solution is to reduce the
transmission rate until congestion becomes alleviated.

The round-trip time can also be estimated using last SR timestamp (LSR) and
the delay since last SR (DLSR) information in both RR and SR control packets.
Figure 15.6 demonstrates one example of a round-trip time calculation. Assume
that the RTP sender sends one SR packet at time 10:20:30.250. The RTP receiver
receives this SR and, after 5 s, sends an RR packet. In the RR control packet, LSR
is the timestamp in SR(i) and the DLSR is 5 s. When the RTP sender receives this
RR packet at time 10:20:36.750, it can calculate the round-trip time by subtracting
the sending time of SR(i) and the DLSR from the arrival time of RR(i), which is
1.5 s as shown in Figure 15.6.

The fraction of loss in SR and RR control packets can also be used for the video
encoder to perform error control. The packet loss rate is defined as the number of
packets lost over the total number of received packets since the last SR or RR
packet was sent.

The transmission interval of RTCP packets is often specified in proportion to
the session bandwidth. It is recommended that the fraction of the session band-
width added for RTCP be fixed at 5%. Some applications may specify the minimal
transmission interval to be, for example, 5 s.

FIGURE 15.6: An example of a round-trip time calculation.
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15.2.3.3 Video Payload Format

The purposes of using a video payload format are to specify an efficient way to
encapsulate data to form a standard-compliant bit stream and to enhance the re-
silience against packet losses. The payload here means media data that are packed
in an RTP packet. Forming the media payload can be done in a thin layer between
the media encoder and the RTP transport layer. Currently, payload formats de-
fined in RFC 3016 and RFC 2429 for encapsulating MPEG-4 and H.263 video
data into individual packets are most commonly used.

The RTP payload formats are designed such that (i) a payload format should be
devised so that the stream being transported is still useful even in the presence of
a moderate amount of packet loss and (ii) ideally, each packet should possibly be
decoded and played out irrespective of whether the preceding packets have been
lost or arrived late.

Figure 15.7 shows examples of RTP packets generated for MPEG-4 video
based on RFC 3016. Among these examples, Figure 15.7(b) shows one of the
most commonly used packetization methods that have the best error-resilience
capability. With this packetization method, one RTP packet contains one video
packet. A video packet contains resynchronization marker information at the be-
ginning of the video payload. When the RTP packet containing the VOP header is
lost, the other RTP packets can still be decoded due to the use of the Header Ex-
tension Code information in the video packet header. No extra RTP header field
is necessary.

For H.263 video, similar to MPEG-4 video described in Figure 15.7(b), RFC
2429 specifies that the PSC and slice header have to be at the beginning of each
RTP packet. It also specifies that the picture header information can be repeated in

FIGURE 15.7: Examples of MPEG-4 video packetization based on
RFC 3016 payload format. VS, visual object sequence; VO, visual object;
VOL, visual object layer; VP, video packet; VOP, visual object plane.
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each RTP packet. This can significantly reduce the number of frames that cannot
be decoded due to picture header corruption. H.263 Annex W also provides a
similar header protection mechanism, but this repeated header information can
only be embedded once in the current picture header or the one in the previous
or next frame. Thus, it has lower error resilience and may introduce delay due to
waiting for the next frame.

Another purpose of using payload format is for interoperation between two
video telephony users that use different applications. A certain video payload for-
mat for different codecs has to be supported and implemented to provide a unified
video payload encapsulation.

15.2.3.4 An Example of a Call Setup Process

Before moving to the next section, we provide an example and illustrate the
process of setting up a call using SIP. As illustrated in Figure 15.8, the caller
PC, which is a SIP user agent, initiates a call by sending an INVITE request to
the called party. The message has to go through the SIP server that serves the do-
main of the called party. The SIP server is responsible for locating the addressee
via a location service and routing the message to the called party. Once the called
party receives the INVITE request, it responses with 200 OK, which is sent back
to the caller. Then the caller sends an ACK directly to the called party, so that the
call is set up, and an RTP pipe is established for audio and video transmission.

FIGURE 15.8: A call setup process using SIP.



516 Chapter 15: REAL-TIME COMMUNICATION

SIP, being a signaling protocol, is only responsible for initiating and establishing
the session, but the actual communication is directly between the caller and the
called party.

15.3 QUALITY OF SERVICE

15.3.1 Minimizing Latency

To achieve toll quality for real-time communication, it is typically required that
the round-trip delay be lower than 300 ms. Many factors contribute to the packet
delay in a real-time communication system. The total end-to-end delay, D, can be
divided into the following components:

D = denc + dpack + dnet + dbuf + ddec, (15.3)

where denc is the encoding delay, dpack is the packetization delay, dnet is the delay
introduced by the network, dbuf is the buffering delay, and ddec is the decoding
delay (Figure 15.9). To minimize the end-to-end latency, each delay component
has to be minimized and trade-offs have to be considered in optimizing the overall
system design.

Encoding delay is introduced during the data compression process. For speech
coders, encoding delay usually includes the frame size and look-ahead delay.
Look-ahead delay is the time spent in processing part of the next frame so that a
correlation between successive frames can be exploited. Typically, more advanced
codecs achieve higher compression efficiency at the cost of higher encoding de-
lays. Decoding delay is introduced during the data decompression process. Table
15.3 lists the coding delays for some common speech coders.

Packetization delay is the time spent in collecting sufficient data frames to
form the payload of an IP packet. Since the packet headers have a fixed size,
a larger payload size reduces the header overhead and improves the transmission
efficiency. However, due to the stringent latency requirement, the payload can

FIGURE 15.9: Total end-to-end delay in a typical real-time communi-
cation system.
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Table 15.3: Coding delays for sample speech coders.

Speech coder Encoded bit Frame size Look-ahead Decoding
rate (kbit/s) (ms) delay (ms) delay (ms)

G.711 64 0.125 0 0
G.729A 8 10 5 7.5
G.723.1 5.3/6.4 30 7.5 18.75

usually contain only a limited number of frames in order to reduce the packetiza-
tion delay.

The network delay comprises the propagation delay and the queuing delay
across all links in the transmission path. The propagation delay, which is a con-
stant for a fixed path, depends on the packet size and the speed of links, as well as
the length of the links. The queuing delay occurs when a packet is queued behind
some other packets waiting to be transmitted over the same link. The queuing
delay is a random variable depending on the packet size, traffic load and charac-
teristics of the route, and the scheduling scheme. Advanced resource allocation
and scheduling schemes such as Resource Reservation Protocol and Differenti-
ated Services enable prioritization of audio and video packets and can efficiently
reduce queuing delay for these real-time data streams.

Varying queuing delay, typically caused by congestions of links in the route
and related to the queuing mechanisms, introduces delay jitter, which is usually
unknown and random. Due to delay jitter, IP packets are sent periodically but are
received in irregular patterns. For this reason, a playout buffer, also referred to as
a dejitter buffer, is employed at the receiver to absorb the delay jitter before media
are output. When using a playout buffer, packets are not played out immediately
after being received but are held in a buffer until their scheduled playout time
(playout deadline) arrives. Although this introduces additional delay for packets
arriving early, this mechanism ensures continuous media playback. The buffering
delay is the time a packet is held in the buffer before it is played out.

Note that a trade-off exists between the average buffering delay and the num-
ber of packets that have to be dropped because they arrive too late (late loss).
Scheduling a later deadline increases the possibility of playing out more packets
and results in a lower loss rate, but at the cost of a higher buffering delay. Vice
versa, it is difficult to decrease the buffering delay without significantly increasing
the loss rate. Therefore, packet loss in delay-sensitive, real-time applications is a
result of not only a packet being dropped over the network, but also delay jitter,
which impairs communication quality greatly.

Due to the aforementioned buffering delay—late loss rate trade-off—it is de-
sirable to design smart playout scheduling mechanisms to reduce the buffering
delay. Fixed scheduling poses a limitation for this trade-off. In real-time speech
communication, more advanced mechanisms use a playout buffer to completely



518 Chapter 15: REAL-TIME COMMUNICATION

absorb delay jitter within talkspurts and dynamically adjust the schedule between
talkspurts [12–16]. Adaptive playout scheduling is proposed to allow adaptive
schedules even within talkspurts [17], and this idea has also been extended to
video streaming [18,19]. An adaptive playout schedule is able to reduce the la-
tency and the effective packet loss rate at the same time. Interested readers may
refer to Chapter 16 for more details.

15.3.2 Combating Losses

In real-time communications, losses are a result of not only packets dropping over
the network, but also late arrival for packets. We introduce different loss-resilient
techniques for both audio and video in two categories: client-side techniques and
active techniques, depending on whether they require any encoder involvement.

15.3.2.1 Client-Side Techniques

One category of loss techniques is passive methods that are implemented at the
client side, which do not require any cooperation of the sender or increase the cost
of transmission. Client-side techniques impose low overhead for the communica-
tion system but can be highly efficient in enhancing the quality of the rendered
media.

To combat channel losses, the client typically employs error-detection and loss-
concealment techniques to mitigate the effect of lost data. For speech and audio
coded techniques based on waveform, most client-side schemes take advantage of
the data received adjacent to the lost packet and interpolate the missing informa-
tion by exploiting the redundancy in the signal. In particular, waveform repetition
simply repeats the information contained in the packets prior to the lost one [20,
21]. A more advanced loss-concealment technique using timescale modification
is described in [22] and [23] and can be used in conjunction with adaptive playout
scheduling in a low-latency scenario [17]. Waveform repetition typically does not
introduce any algorithm delay as timescale modification typically does. However,
it does not provide as good a sound quality [24]. Interested readers may further
refer to Chapter 3 for error-resilient techniques for various codecs.

For video communication, postprocessing is typically applied at the client side
for error concealment and loss recovery. Techniques to recover the damaged areas
based on characteristics of image and video signals have been reviewed in [25].
Interested readers may further refer to Chapter 2 for more detailed descriptions
on error-resilient video.

15.3.2.2 Active Techniques

A different category of error-resilience techniques requires the encoder to play
a primary role. They are able to provide even higher robustness for media com-
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munication over best-effort networks. We refer to these techniques as “active” to
differentiate them from those only employed at the client side.

For speech communication, one widely accepted way to reduce the effective
packet loss observed by the receiver is to add redundancy to the data stream at
the sender. This is possible without imposing too much extra network load since
the data rate of the voice traffic is very low when compared with other types of
multimedia and data traffic. A common method to add redundancy is forward
error correction (FEC), which transmits redundant information across packets,
where loss recovery is performed at the cost of higher latency. The efficiency of
FEC schemes is largely limited by the bursty nature of the channel losses. In order
to combat burst losses, redundant information has to be added into temporally
distant packets, which introduce higher delay.

Another sender-based loss recovery technique, interleaving, does not increase
the data rate of transmission but still introduces delay at both encoder and de-
coder sides. The efficiency of loss recovery depends on over how many packets
the source packet is interleaved and spread over. Again, the wider the spread, the
higher the introduced delay. For low-latency speech communication, path diver-
sity techniques, presented in [26] as well as in Chapter 17, have been demon-
strated to be very powerful in combating losses.

Video communication typically requires much higher data transmission rates
than audio. A variety of active schemes has been proposed not only to increase
the robustness of communication, but also to take the data rate efficiency into
consideration [27–29]. Many of the recent algorithms use rate–distortion (R–D)
optimization techniques to improve the compression efficiency [30–32], as well
as to improve the error-resilient performance over lossy networks [33,34]. The
goal of the R–D optimization algorithms is to minimize the expected distortion
due to both compression and channel losses subject to the bit-rate constraint.

One example of this area is Intra/Inter-mode switching [35–38], where Intra-
coded macroblocks are updated according to the network condition to mitigate
temporal error propagation. Another approach is to modify the temporal predic-
tion dependency of motion-compensated video coding in order to mitigate or stop
error propagation. Example implementations include reference picture selection
[27,39–41] and NEWPRED in MPEG-4 [42,43], where channel feedback is used
to efficiently stop error propagation due to any transmission error. Another exam-
ple is video redundancy coding (VRC), where the video sequence is coded into
independent threads (streams) in a round-robin fashion [27,44]. A Sync-frame is
encoded by all threads at regular intervals to start a new thread series and stop
error propagation. If one thread is damaged due to packet loss, the remaining
threads can still be used to predict the Sync-frame. VRC provides improved error
resilience, but at the cost of a much higher data rate. Dynamic control of the pre-
diction dependency can also be used by employing long-term memory prediction
to achieve improved R–D performance [33,45,46].
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Typically a channel coding module in a robust video communication system
may involve FEC and automatic retransmission on request (ARQ). Similar to their
applications in speech communication, when FEC is employed across packets,
missing packets can be recovered at the receiver as long as a sufficient number
of packets is received [47–50]. FEC is widely used as an unequal error pro-
tection scheme to protect prioritized transmissions. In addition to FEC codes,
data randomization and interleaving are also employed for enhanced protection
[51–55].

ARQ techniques incorporate channel feedback and employ the retransmission
of erroneous data [56–60]. Unlike FEC schemes, ARQ intrinsically adapts to the
varying channel conditions and tends to be more efficient in transmission. How-
ever, for real-time communication and low-latency streaming, the latency intro-
duced by ARQ is a major concern. In addition, like all feedback-based error con-
trol schemes, ARQ is not appropriate for multicasting.

15.3.3 Adapting to the Available Bandwidth

Due to the lack of a QoS guarantee over most commercially deployed networks,
it is expected that the condition, as well as the available bandwidth of the net-
work, varies during a real-time communication session. It is beneficial to employ
bandwidth adaptation mechanisms to control the rate at which the media are trans-
mitted. This helps avoid a potential penalty on overuse of bandwidth, which usu-
ally leads to quality degradation and even service interruption. Typical bandwidth
adaptation techniques include rate control, transcoding, scalable coding, and bit
stream switching. Readers may refer to Chapter 4 for details of various bandwidth
adaptation techniques, and further refer to Chapters 5 and 6 for scalable coding
for video and audio, respectively.

15.3.4 Audio–Video Synchronization

RTP timestamps from different media streams may advance at different rates
and usually have independent and random offsets. Therefore, although these
timestamps are sufficient to reconstruct the timing of a single stream, directly
comparing RTP timestamps from different media is not effective for synchro-
nization. Instead, for each medium the RTP timestamp is related to the sampling
instant by pairing it with a timestamp from a reference clock (wallclock) that rep-
resents the time when the medium was sampled. The reference clock is shared by
all media to be synchronized.

Synchronizing audio and video can be achieved by playing out audio and video
according to their original sampled time. By doing so, the receiver can play back
audio and video at a proper pace by mapping their original sampled time to the
receiver’s local time. RTCP SR control packets provide useful information to help
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FIGURE 15.10: An example of audio and video synchronization.

the receiver calculate the sampled time of the audio and the video at the sender.
Figure 15.10 illustrates an example of audio and video synchronization by using
RTCP SR control packets. When an RTCP SR control packet is generated, it will
carry the wallclock time (NTP) and the RTP timestamp using its corresponding
media reference time. In Figure 15.10, the RTCP SR control packet for the audio
RTP session is generated at time 10:20:30.730 and the corresponding timestamp
is 200. When receiving this SR packet, the receiver is able to calculate when all
the audio RTP packets are sampled at the sender. For the example in Figure 15.10,
the audio packet with timestamp 160 is actually generated at time 10:20:30.725,
assuming that a 8000-Hz clock is used for audio timestamping. Similarly, for
video packets, the receiver can also calculate when each video frame is sampled.
In this way, the receiver can easily find out which part of audio data and video
data should be played back at the same time.

15.4 SUMMARY AND FURTHER READING

In this chapter, we have described the system and architecture for real-time com-
munication, including two categories of the most important protocols, signaling
and transport, respectively. We have also addressed the QoS issues, especially
on minimizing latency, combating losses, adapting to available bandwidth, and
audio–video synchronization. Beyond the references cited in this chapter, the
reader is recommended to read Chapter 2, on error-resilient video, and Chap-
ter 3, on error-resilient audio. Interested readers are further recommended to read
Chapter 16, on adaptive media playout, as well as Chapter 17, on path diversity,
for enhanced QoS performance.
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16
Adaptive Media
Playout

Eckehard Steinbach, Yi Liang, Mark Kalman,
and Bernd Girod

16.1 INTRODUCTION

This chapter discusses Adaptive Media Playout (AMP) as a method of reducing
the user-perceived latencies that are inherent in systems that send packetized me-
dia over best-effort packet networks. These systems strive to allow the immediate
display of media data as it is delivered from a remote sender. In practice, however,
the systems must buffer an amount of media at the client to prevent packet losses
and delays from constantly interrupting the playout of the stream. While the like-
lihood of a playout interruption decreases as more data is buffered, the delays that
buffering introduces increase.

Adaptive media playout allows the client to buffer less data and, thus, intro-
duces less delay to achieve a given playout reliability. In this scheme, the client
varies the rate at which it plays out audio and video according to the state of its
playout buffer. Generally, when the buffer occupancy is below a desired level,
the client plays media slowly to reduce its data consumption rate. Faster-than-
normal playout may be used during good channel periods to eliminate any excess
latency accumulated with slowed playout. By manipulating playout speeds AMP
can reduce initial buffering delays in the case of prestored streams and reduce the
user-perceived latency of live streams, all without sacrificing playout reliability.

To control the playout speed of media, the client scales the duration that each
video frame is shown and processes audio to scale it in time without affecting its
pitch. Variations in the media playout rate are subjectively less irritating than play-
out interruptions and long delays. How much the media signal can be stretched or
compressed depends on the application. In this chapter AMP is discussed using
two popular applications. Internet Telephony (VoIP) is used as a representative
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for bidirectional conversational applications with strict end-to-end delay require-
ments. Video streaming is selected as an application with comparatively relaxed
end-to-end delay requirements.

This chapter is organized as follows. We first discuss the receiver buffer in com-
bination with fixed playout as the traditional means of adapting the application
to varying transmission characteristics. We then introduce AMP using Internet
Telephony and Video Streaming as example applications. Next, algorithms for
duration scaling of audio, speech, and video segments are discussed. Toward the
end of the chapter we touch on advanced deployment of AMP in the context of
multipath transmission.

16.2 SENDER AND RECEIVER CURVES

The end-to-end delay encountered when transmitting digital media signals over a
packet switched or circuit switched network is the accumulation of various delay
contributions (see also Chapter 15.3). End-to-end delay is considered to be the
time difference between capturing the media signal at the sender and displaying
the signal at the receiver. Figure 16.1 shows a block diagram of the individual
steps involved. The sender sampling curve ps(t) describes the amount of media
data (e.g., in bytes) captured up to a certain time instant t . Without loss of gen-
erality we can assume that t = Tstart = 0 s is our starting point. The digital media
signal may be fed into an encoder with the purpose of data compression. Typically
multiple samples of the sender signal are compressed jointly, for example, a block
of speech samples or a digital video frame.

FIGURE 16.1: Processing and transmission of digital media signals.
Each step introduces constant or variable delay, which accumulates to the
total end-to-end delay. End-to-end delay is the time difference between
capturing a media data sample at the sender side and displaying it at the
receiver.
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The encoder curve e(t) describes the length of the bitstream output by the en-
coder up to time t . During packetization a certain number of data units is put into
one data packet, which is then injected into the network. Packet size can be fixed
or dynamically adapted. Once the encoder has output enough data units to fill the
next packet we assume that the packet is immediately sent out on the network.
The sender packet curve bs(t) describes the number of data units injected into
the network up to time instant t . Depending on whether the network is circuit
switched or packet switched, the delivery time, that is, the time it takes the packet
to reach the receiver side, is either fixed or variable. The receiver packet curve
br(t) describes the amount of continuous packet payload data that has been re-
ceived up to time instant t . Next, the payload is extracted from the packets and
the depacketization curve r(t) describes the input to the decoder. The output of the
decoder is described by the decoder curve d(t), which corresponds to the amount
of decoded data ready for display. The playout process then decides which data to
play at what time instant. The data played up to time t is described by the receiver
playout curve pr(t).

The meaning of these various curves and their relationship can be best un-
derstood when looking at specific examples. The two examples discussed in the
following are the transmission of a digital speech signal over a circuit-switched
network and the transmission of a digital video signal over a packet-switched net-
work. For additional discussion of buffering and timing fundamentals, see also
Section 14.3.

Example 1: Sender and Receiver Curves for Transmission of a Digital Speech Signal

In this example the transmission of a digital speech signal over a circuit-switched
network is considered. The digital speech signal is obtained by A/D conver-
sion of an analog microphone signal. The sampling frequency is assumed to be
fs = 8 KHz and the signal amplitude resolution in our example is 8 bit/sample.
Figure 16.2 illustrates possible sender and receiver curves. The sender sampling
curve ps(t) is a straight line with slope 64 kbit/s. In this example it is assumed
that the encoder does not perform data compression on the digital speech sig-
nal, which leads to e(t)= ps(t). The signal is partitioned into blocks or packets
of 20 ms, which corresponds to a payload of 160 byte. The sender packet curve
bs(t) hence becomes a step curve with step height 160 byte and step width 20 ms.
The speech signal is transmitted over a circuit-switched network and the con-
stant packet delivery time is assumed to be 100 ms. The receiver packet curve
br(t) in Figure 16.2 therefore becomes simply a shifted version of bs(t). Depack-
etization is assumed to be of negligible duration and decoding does not have to
be performed for uncompressed data, which leads to d(t) = r(t) = br(t). Play-
out is initiated by the receiver 20 ms after the arrival of the first packet. Playout
is therefore started at t = 140 ms. This time instant is called the initial playout
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FIGURE 16.2: Example sender and receiver curves for transmission of
a constant bit-rate signal (a digital speech signal with 64 kbit/s) over a
circuit-switched network.

delay Tinitial. The receiver playout curve pr(t) becomes a shifted version of the
sender playout curve with a constant end-to-end delay of Te2e = 140 ms.

Example 2: Sender and Receiver Curves for Transmission of a Digital Video Signal

For digital video we capture individual frames at a certain frame rate (e.g.,
25 frames/second). After acquisition, the digital video frames are compressed
and the encoder produces an encoder curve e(t) that deviates from a uniform
step curve as the output of the encoder is a variable bit rate stream (VBR stream).
Let us consider a video sequence with a spatial resolution of 176 × 144 pixels,
25 frames/second, and an amplitude resolution of 12 bit/pixel. This leads to a raw
data rate of 176× 144× 25× 12 bit/s or 37.125 Kbyte/frame. The sender sam-
pling curve ps(t) is a step curve with a step width of 40 ms, which corresponds
to the inter-frame spacing. The step height corresponds to the frame size in bytes,
in this example 37.125 Kbyte. After compression, every video frame has a differ-
ent size, which leads to the varying step height of the encoder curve e(t) shown
in Figure 16.3. The video is transmitted over the Internet and for simplicity it is
assumed that one encoded video frame is transmitted as the payload of one IP
packet. This leads to variable size packets. The packetizer waits until the encoder
outputs the encoded bit stream for a new video frame and then injects one packet
into the network. Neglecting the packetization time leads to bs(t) = e(t). The
packets are transmitted over a packet-switched network, which leads to a receiver
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FIGURE 16.3: Example sender and receiver curves for the transmission
of compressed video over a packet-switched network. The sender sam-
pling curve is replaced by the encoder curve e(t) and the receiver playout
curve by the decoding curve d(t) assuming that encoding and decoding
times are negligible.

packet curve that is no longer a shifted version of the sender packet curve bs(t).
Every packet encounters a different delivery time. Depacketization time is again
neglected, which leads to a receiver curve r(t) that is identical to the receiver
packet curve br(t). Once the bit stream portion of a video frame is available, the
decoder can decode and display the frame. Because data compression reduces
the amount of data per frame it is difficult to show the sender sampling and re-
ceiver playout curves in Figure 16.3. If we assume that the encoding time of a
video frame is negligible we can replace the sender sampling curve ps(t) by the
encoder curve e(t). Please note that they are not the same but the steps in both
curves happen at the same time. The step height, however, is different because of
compression. Similarly, we can assume that the decoding of a frame starts when
the frame is to be displayed and decoding time is negligible. Then, the receiver
playout curve can be replaced by the decoder curve d(t). Again, they are not iden-
tical but the steps in both curves happen at the same time instant. They only differ
in step height. Most of the time we are only interested in identifying if enough
data has been received by the client to display a certain media unit. Given the
assumptions made earlier, we can draw the same conclusions about delay and
playout interruptions from e(t) and d(t) that we would obtain when looking at
ps(t) and pr(t).
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In Figure 16.3, the receiver starts playout at time Tinitial = 170 ms. Every 40
ms a new frame has to be displayed. It can be seen from Figure 16.3 that this
selection of the initial playout time Tinitial leads to a successful decoding process
as the decoding curve d(t) is always to the right of the receiver packet curve br(t).
This means that the decoder always has sufficient data to decode the video frames
before their scheduled display time.

16.3 CLIENT BUFFERING

The standard way of dealing with the VBR nature of both the source bit stream
and the network data delivery is by using a receiver buffer. The main purpose of
this buffer is to store media data after the server starts sending the packets. For
low delay applications, the client buffer mainly absorbs packet delay jitter. For
applications with moderate delay requirements, the client buffer additionally pro-
vides time for the retransmission of lost packets. The amount of data prebuffered
before the playout starts influences the initial waiting time and the late loss rate.
Both quantities significantly influence user satisfaction.

16.3.1 Buffer Size versus Initial Delay

After a certain initial waiting time or once the buffer occupancy has reached a
predefined target level, the client initiates the playout process, that is, the first
media unit is played at Tinitial. The size of the buffer determines the initial delay
Tinitial observed by the user. For live media streams the initial delay is the time
difference between the sampling instant of the first media sample at the sender
and display of this sample at the receiver. For pre-encoded media content, for
example, in video streaming scenarios, Tinitial is the time it takes between sending
a request to the streaming server and displaying the first media unit at the client.

If we select the receiver buffer to be large, we are able to smooth significant
delay variations. An extreme case is file download, where the buffer target full-
ness corresponds to the file size and playout only starts once the entire file has
been completely transferred. If our aim is to keep the perceived end-to-end delay
small, prebuffering has to be used carefully. This is particularly true for conver-
sational applications where the end-to-end delay is critical for user satisfaction.
For bidirectional conversational services involving speech and video, the tolerable
end-to-end delay is typically given in the range of 150–250 ms. There is obviously
a trade-off between robustness against network quality variations and initial delay.

16.3.2 Late Loss Rate versus End-to-End Delay

Once the client receives the first packets from the sender, in principle the playout
process can be started. In order to allow a continuous playout at the receiver it
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is, however, wise to wait some additional time to fill up the receiver buffer. The
playout process at the receiver works without interruptions as long as the decoder
curve d(t) always stays to the right and below the receiver packet curve br(t).
If the two curves intersect, the decoder has to decode data that has not yet been
received. In this case some of the packets arrive after their scheduled decoding
time, which results in so-called late loss. Typically, regular packet loss and late
loss can be jointly considered, as a true packet loss is simply a late loss where
the delivery time is infinitely large. The influence of late loss on the reconstruc-
tion quality is application dependent. While speech applications where speech
segments are encoded individually typically tolerate late loss rates of up to about
5%, video applications where the error-free decoding of one frame depends on
the successful decoding of previous frames typically do not tolerate packet loss.
The receiver therefore has the difficult task of deciding the initial playout delay
Tinitial such that the tolerable late loss rate is not exceeded. A large value of Tinitial
reduces late loss but at the same time increases the user perceived latency of the
application.

Figure 16.4 shows sender and receiver curves for the transmission of voice
packets over a packet-switched network and two example selections of Tinitial. In
the top plot of Figure 16.4 the playout process is started at Tinitial = 130 ms, which
leads to late loss of two out of nine packets. In the bottom plot of Figure 16.4
Tinitial is reduced to 120 ms, which leads to late loss of four out of nine packets.
In the lower plot of Figure 16.4 the played signal part is shown as a thick line
on top of the desired decoding curve and it can be observed that three playout
interruptions happen.

The resulting loss rate is determined by counting the packets that are not avail-
able at their decoding deadline and dividing this number nlate by the total number
of packets of the session nsession,

ploss = nlate

nsession
. (16.1)

Depending on the selection of Tinitial the receiver has to prebuffer different
amounts of data. The larger Tinitial, the larger the required buffer capacity at the
receiver side. If the buffer is not large enough to hold all the data, buffer overflow
occurs and media packets are lost despite their successful and timely arrival at the
receiver. In practical applications we can typically assume that the receiver buffer
capacity is large enough to hold all received packets before they are decoded. Our
main concern is buffer underflow caused by late arrival of information.

Example 3: Late Loss Rate versus End-to-End Delay for VoIP

Figure 16.5 and Figure 16.6 show an example of late loss rate versus initial delay
for a VoIP scenario where 20-ms voice packets are transmitted from a host located
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FIGURE 16.4: Sender and receiver curves for the transmission of voice
packets over a packet-switched network. (Top) The initial playout time
is Tinitial = 130 ms, which leads to two late packets. (Bottom) The initial
playout time is reduced to 120 ms, which leads to four out of nine packets
being late for the playout process.

at the West Coast of the United States to a host at the East Coast. Figure 16.5
shows the measured delay values for 250 packets, and Figure 16.6 shows the
resulting late loss rate as a function of the initial playout delay Tinitial. The larger
the end-to-end delay, the smaller the late loss rate. However, the larger the user-
perceived application latency.
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FIGURE 16.5: Measured packet delivery times for VoIP.

FIGURE 16.6: Late loss rate versus user-perceived end-to-end delay.

16.4 ADAPTIVE MEDIA PLAYOUT

Adaptive Media Playout allows the client to buffer less data and thus introduce
less delay to achieve a given playout reliability. When using AMP, the receiver
varies the rate at which it plays out audio and video. The playout speed can, for
instance, be controlled by the state of the receiver buffer. In this case, when the
buffer occupancy is below a desired level, the client plays media slowly to reduce
its data consumption rate. For conversational services or streaming of live content,
slowed playout causes the user-perceived latency to increase. Faster-than-normal
playout is used in this case during good channel periods in order to eliminate or re-
duce excess latency accumulated with slowed playout. Faster-than-normal playout
is unnecessary in the case of streaming of prestored programs however. Prestored
programs that are slowed during bad channel periods will simply last longer at the
client. By manipulating playout speed, AMP can reduce initial buffering delays in
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the case of prestored streams and reduce the viewing latency (end-to-end delay)
of live streams—all without sacrificing playout reliability. Figure 16.7 revisits the
scenario introduced in the top plot of Figure 16.4 where two out of nine voice
packets could not be played because of their late arrival. Adaptive Media Playout
copes with this situation by stretching the playout duration of some voice packets.
In Figure 16.7 the third voice segment is played twice as long as normal, which
delays the playout deadline of all following packets by 20 ms. Hence, the receiver
playout curve changes from pr(t) to pAMP

r (t). It can be seen from Figure 16.7
that now all packets are available at their playout deadlines. The playout curve
pAMP

r (t) is always below and to the right of the receiver curve r(t), which was
not the case before. From a user perspective, playout interruptions are avoided.
The end-to-end latency, however, increases by 20 ms after stretching the third
packet.

To control the playout speed of media, the client scales the duration of one
or more media units. For video signals this corresponds to changing the display
duration of video frames. For audio or speech signals the duration of segments has
to be changed without affecting its pitch [9,24]. Section 16.5 discusses algorithms
for media duration scaling in detail.

It is interesting to note that playout speed modification has a precedent in tra-
ditional media broadcasting. Motion pictures shot at a frame rate of 24 fps are

FIGURE 16.7: Adaptive Media Playout for the speech transmission
scenario introduced in Figure 16.4. The third packet is played at half the
speed at the receiver. This leads to a change of the playout curve and the
deadline of all following packets is shifted to the right. Buffer underflow
and hence playout interruption are avoided.
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shown on European PAL/SECAM broadcast television at 25 fps. Video frames
are displayed 1000/25 ms instead of 1000/24 ms, which corresponds to a media
unit dilation of 4% and it is typically done without audio timescale modification.

16.4.1 Adaptive Media Playout for Low-Delay Conversational Services

In low-delay conversational services (e.g., video conferencing, Internet Tele-
phony) excessive end-to-end delay impairs the interactivity of communication
(see also Chapter 15). The latency experienced when completely absorbing delay
jitter and eliminating late loss by receiver buffering can be very high. With Adap-
tive Media Playout, packet delay variations are compensated by playout speed
variations.

The receiver has to decide when to start the playout of the media data once a
session has been established. One way to decide the start of playout is to wait
for the first speech packet to come in and then wait some additional time (safety
margin) before playing this packet. Once the first packet is played, the playout
deadlines for all following packets are fixed. If the safety margin was too conser-
vative because the first packet was delayed exceptionally, the end-to-end delay is
bigger than necessary. If the first packet arrives exceptionally early, the buffer will
be selected too small and the late loss rate of the following packets might become
too high.

Adaptive Media Playout addresses this issue by adaptively modifying the end-
to-end delay using a playout scheduler that slows down playout if packet delivery
times are increasing and speeds up playout if packet delivery times are decreas-
ing. The basic operation of the playout scheduler is to set the playout time for
each packet. As a result, network jitter is smoothed and mean end-to-end delay
can be minimized. The actual end-to-end delay experienced by the user is contin-
uously changing. As long as this variation stays within certain limits it is not im-
pairing the quality of the communication. Only if the end-to-end delay increases
significantly, bidirectional conversations become unnatural and participants start
interrupting each other.

For low-delay conversational services the amount of media data available in the
receiver buffer and therefore the number of packets available for playout scaling at
any time are typically very limited due to the stringent end-to-end delay require-
ments. This means that the playout scheduler might have to significantly increase
the playout duration of single packets in case of sudden changes in packet delay.
In extreme situations, the scaling of the current media packet has to be decided
without knowing the arrival time of the next packet. In order to keep the current
packet concatenated with the next one at output, the arrival time of the next packet
has to be estimated. If the delay estimation of the next packet is accurate and the
current packet is scaled accordingly, the next packet should arrive and be ready
by the end of playback of the current packet. A reliable estimation of the net-
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FIGURE 16.8: Adaptive Media Playout for VoIP. The playout sched-
ule is adjusted within talkspurts. Gaps in solid lines correspond to silence
periods between talkspurts.

work delay is therefore an important component for adaptive playout scheduling
in low-delay conversational services.

Example 4: Adaptive Media Playout for VoIP

When using Adaptive Media Playout for Voice over IP, the playout schedule may
not only be adjusted during silence periods but also within talkspurts, as illustrated
in Figure 16.8. Each individual packet may have a different playout schedule,
which is set according to the varying network condition. With Adaptive Media
Playout, the interval between playout times or the length of each voice packet
is no longer a constant, although the packetization period is. Continuous output
of audio can be achieved by scaling the voice packets using the signal process-
ing techniques described in Section 16.5. For the same delay trace as shown in
Figure 16.5, the adaptive scheme is able to effectively reduce average delay and
mitigate late loss by adjusting the playout schedule in a more dynamic way. The
trade-off between buffering delay and late loss can hence be improved, as shown
in Figure 16.9.

16.4.2 Adaptive Media Playout for Nonconversational Services with
Moderate-Delay Requirements

Section 16.4.1 described Adaptive Media Playout for low-delay conversational
services where due to stringent end-to-end delay requirements typically only very
few packets are in the receiver buffer at any time. The main challenge for low-
delay applications is to accurately estimate the arrival time of the following pack-
ets in order to be able to decide the playout duration of the current packet. The
limit on the end-to-end delay is strict, which requires that additional delay intro-
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FIGURE 16.9: Trade-off between average end-to-end delay and late
loss rate for constant and adaptive playout. The trade-off curve for con-
stant playout is identical to the one shown in Figure 16.6.

duced by slow playout has to be compensated at a later time by faster-than-normal
playout. In addition, the required changes in playout duration may be substan-
tial if sudden changes in packet delivery time occur. Some packets may have to
be scaled by 100% or more in order to follow network delay variations quickly
enough.

The situation is very different for applications that can prebuffer significant
amounts of data in their receiver buffer as a result of their moderate latency re-
quirements. Internet Video Streaming is a popular application that falls into this
category. This application will be used in the following to describe the use of
Adaptive Media Playout for applications with moderate-delay requirements.

Video streaming over the Internet is an example for VBR traffic over a VBR
channel. In video streaming, a client requests a pre-encoded media stream from a
media server. The pre-encoded video stream is typically encoded at a variable bit
rate so the encoder curve e(t) is similar to the one shown in Figure 16.3. The me-
dia server packetizes the pre-encoded media stream and sends the packet stream
bs(t) over the Internet to the client. Following the argument in Section 16.2 we
use the encoder curve e(t) and decoder curve d(t) instead of the sender sampling
curve ps(t) and receiver playout curve pr(t) as the video frames are compressed.
The decoder curve d(t) tells us at what time a certain media unit (video frame)
has to be decoded and displayed at the decoder. This time is relative to the de-
coding and playout time of the first video frame and for constant playout simply
becomes a shifted version of the encoder curve d(t)= e(t − Tinitial).

Adaptive Media Playout can again be used to reduce the perceived latency
while maintaining a desired playout reliability [19]. From a user perspective there
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FIGURE 16.10: The source rate is fixed at 100 kbit/s. Two examples of
transmission goodput are used in the following. (Left) Constant goodput
that matches the source rate. (Right) Variable goodput in the range from 0
to 133 kbit/s.

are two buffering delays that are noticeable. Start-up delay is the time that it takes
for the client buffer to fill to a desired level so that playout can begin after a user
request. Viewing latency, noticeable in the case of live streams, is the time inter-
val separating a live event and its viewing time at the client. To explain how AMP
can be used to reduce these delays, we distinguish among three separate modes of
operation [8], illustrated in Figures 16.11–16.13. These modes are called AMP-
Initial, AMP-Robust, and AMP-Mean.

For illustrative purposes we will base our discussion in the following on the
two specific transmission scenarios shown in Figure 16.10. On the left-hand side
of Figure 16.10 a constant bit-rate source stream is transmitted over a constant
bit-rate channel. The source and the channel rate match and are both 100 kbit/s.
On the right hand side of Figure 16.10 the constant bit-rate source stream is sent
over a channel with variable goodput. The goodput varies as a function of time.
The maximum goodput g(t) reaches 133 kbit/s.

16.4.2.1 Initial Playout Delay Reduction (AMP-Initial)

AMP-Initial is used to decrease the start-up delay. In this mode, the client initiates
the playout process before the buffer is filled to the usual target level. Despite this
early start of playout the buffer is able to fill to the target level over time by
initially playing the media slower than normal. The buffer fills over time since
the data consumption rate during slowed playout is smaller than the arrival rate of
the media packets, assuming that during normal playout the source rate and the
channel goodput match the data consumption rate at the decoder. Once the target
level is reached, the playout speed returns to normal. This technique allows fast
switching between different programs or channels without sacrificing protection
against adverse channel conditions, after the initial buffer is built up.
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Figure 16.11 illustrates AMP-Initial. The source rate and channel goodput cor-
respond to the left-hand side of Figure 16.10. The consumption rate of the playout
process at normal playout speed is 0.1 Mbit/s and hence matches the source rate.
The second plot in Figure 16.11 shows the client buffer occupancy as a function of
time for the case of nonadaptive playout. The target buffer level is assumed to be
1 Mbit, yielding a preroll time of 10 s in this example. The third plot illustrates the
client buffer occupancy for the AMP-Initial scheme in which playout starts when
the buffer occupancy is only half the target level. This happens after 5 s. The client
slows playout initially to allow the buffer occupancy to increase over time. The

FIGURE 16.11: AMP-Initial: For low start-up delays, playout begins
after a reduced number of frames are buffered at the client. Slowed playout
allows the buffer occupancy to grow to a safer target level over time. In this
example, frame periods are stretched by 20% during slow playout periods.
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media units are stretched by 20% during slowed playout and hence after a total of
30 s the target buffer level is reached. The two lower plots in Figure 16.11 show
the viewing latency with and without AMP-Initial. While the latency remains con-
stant for the nonadaptive case, for the AMP-Initial scheme latency increases from
5 s initially to 10 s when the target buffer level is reached.

16.4.2.2 Improved Robustness Against Network Variations (AMP-Robust)

As illustrated in Figure 16.12, AMP-Robust increases the robustness of the play-
out process with respect to variations of goodput. In this mode the playout speed is

FIGURE 16.12: AMP-Robust: In this scheme, suitable for prestored
programs where viewing latency is not important, slowed playout is used
to keep the buffer occupancy at a desired level.
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simply reduced whenever the buffer occupancy falls below the target level. Now,
the transmission scenario shown on the right-hand side of Figure 16.10 is con-
sidered. As before, the source rate is a constant 0.1 Mbit/s. The channel goodput
varies over time with a reduction to 0.05 Mbit/s at t = 15 s, an improvement to
0.133 Mbit/s at t = 25 s, and a complete channel outage at t = 40 s. The second
plot of Figure 16.12 shows the buffer occupancy as a function of time for non-
adaptive playout. The target buffer level is again 1 Mbit, which leads to a playout
start at t = 10 s. Playout is interrupted, however, after 50 s, when reductions in the
channel goodput lead to a buffer underflow. The third plot in Figure 16.12 shows
the buffer occupancy for the AMP-Robust scheme in which the client stretches
frame periods by 25% whenever the buffer occupancy falls below the target level.
In this example, buffer underflow is averted with AMP. The lower two plots in
Figure 16.12 show the viewing latency as a function of time. For nonadaptive
playout, latency is constant. For the adaptive case, the latency increases whenever
playout is slowed, which is fine for a prestored program. Note that playout starts
at t = 10 s for both cases. AMP-Robust can be combined with AMP-Initial to also
allow reduced start-up time.

16.4.2.3 Live Media Streaming (AMP-Live)

AMP-Live is suitable for the streaming of live programs. In this mode, the client
slows playout during bad channel periods but also plays media faster than nor-
mal during good channel periods to reduce additional viewing latency that has
accumulated during periods of slowed playout. By playing the media faster and
slower than normal, the mean viewing latency can be reduced for a given prob-
ability of buffer underflow. An example of the application of AMP-Live is given
in Figure 16.13 for the transmission scenario introduced in the right-hand side of
Figure 16.10.

Whenever the buffer occupancy falls below the target level, playout is slowed.
When the occupancy is greater than the target level, media is played faster than
normal to eliminate excess latency. In Figure 16.13, during faster playout the
client reduces frame periods by 25%, which corresponds to a 33% increase in
the data consumption rate. Therefore, the buffer remains at the target level in the
third plot of Figure 16.13 during fast playout. Latency, shown in the lower two
plots of Figure 16.13, decreases during faster-than-normal playout.

16.5 SIGNAL PROCESSING FOR ADAPTIVE MEDIA PLAYOUT

16.5.1 Time Compression and Dilation of Speech and Audio Signals

When Adaptive Media Playout is used, the duration of the audio or speech sig-
nal has to be scaled without impairing quality. The scaling of a voice or audio
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FIGURE 16.13: AMP-Live: For live streams, low viewing latency
is desirable. The client slows playout when poor channel conditions
threaten to starve the client buffer. During good channel periods, however,
faster-than-normal playout is used to reduce or even eliminate latency ac-
cumulated during periods with slowed playout.

segment may be realized by timescale modification based on the Waveform Simi-
larity Overlap-Add (WSOLA) algorithm, which is an interpolation-based method
operating in the time domain. This technique was used in [21] to scale long audio
blocks and was modified and improved in [20] and [17] for loss concealment by
expanding a block of several packets. For a detailed discussion on error conceal-
ment for audio communication, refer to Chapter 3.
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The basic idea of WSOLA is to decompose the input into overlapping segments
of equal length, which are then realigned and superimposed to form the output
with equal and fixed overlap. The realignment leads to modified output length.
For those segments to be added in overlap, their relative positions in the input are
found through the search of the maximum correlation between them so that they
have the maximum similarity and the superposition will not cause any disconti-
nuity in the output. Weighting windows are applied to the segments before they
are superimposed to generate smooth transitions in the reconstructed output. For
speech processing, WSOLA has the advantage of maintaining the pitch period,
which results in improved quality compared to resampling.

Since the goal of Adaptive Media Playout is to reduce delay, low processing
delay is desirable. The conventional WSOLA algorithm can be tailored and im-
proved to work on only one packet. In other words, an incoming packet can
be scaled immediately and independently, without introducing any additional
processing delay. To scale a voice packet, a template segment of constant length is
first selected in the input. Then a similar segment that exhibits maximum similar-
ity to the template segment is being searched. The start of the similar segment is
searched in a search region, as shown in Figure 16.14. When working on a single
packet, the search for a similar segment is more constrained, as the realignment
of the similar segments must be made in units of pitch periods and there are fewer
pitch periods available in one short packet. For a 20-ms packet, depending on the
speaker’s gender and voice pitch, there could be fewer than two pitch periods in-
cluded, which makes it difficult to extract the target segments with similarity. To
overcome this problem, the conventional WSOLA algorithm has to be modified to
decrease the segment length for correlation calculation, and the first template seg-
ment is positioned at the beginning of the input packet, as shown in Figure 16.14a.
To expand short packets, the search region for the first similar segment is moved
to the prior packet in order to have a larger range to look for similar waveforms.
In Figure 16.14a, although the input packet starts in Pitch Period 2, the similar
segment is found within Pitch Period 1. Although the prior packet might already
be played out at the time of scaling, similar waveforms can still be extracted from
it to construct new output without delaying the prior packet. Once the similar
segment is found, it is weighted by a rising window and the template segment is
weighted by a symmetric falling window. The similar segment followed by the
rest of the samples in the packet is then shifted and superimposed with the tem-
plate segment to generate the output. The resulting output is longer than the input
due to the relative position of the similar segment found and the shift of the simi-
lar segment, as shown in Figure 16.14a. The amount of expansion depends on the
position and the size of the defined search region.

In Figure 16.14, complete pitch periods in the waveform are separated by ver-
tical dashed lines and marked with sequential numbers. For example, in Fig-
ure 16.14a, it is observed from the output waveform that one extra pitch period
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FIGURE 16.14: Extension (a) and compression (b) of single voice
packets using timescale modification.

is created and added as a result of realignment and superposition of the extracted
segments from the input. However, the extra pitch period is not just a simple
replication of any pitch period from the input, but the interpolation of several
pitch periods instead. For the output in Figure 16.14a, the first three pitch periods
are the weighted superposition of Pitch Periods 1/2, 2/3, and 3/4, respectively.
This explains why the sound quality using timescale modification is better than
that of pitch repetition (described in [4,13]). The same is true for compressing a
packet, where the information carried by a chopped pitch period is preserved and
distributed among the remaining ones. The operations of searching for a similar
segment and extending the packet by multiple pitch periods, as described earlier,
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constitute one iteration in the scheme. If the output speech has not met the target
length after such operations, additional iterations are performed. In a subsequent
iteration, a new template segment of the same length is defined that immediately
follows the template in the last iteration. All the defined template segments and
the remaining samples following the last template in the input should cover the
entire output with the target length. Packet compression is done in a similar way,
as depicted in Figure 16.14b. The only difference is that the search region for the
similar segment should not be defined in the prior packet in order to generate an
output shorter in length.

Since the scaling of packets has to be performed in integer multiples of pitch
periods, it is unlikely to achieve the exact packet length as targeted by the adaptive
scheduler. However, as the resulting output packet length is fed into the scheduler,
this inaccuracy will be absorbed and corrected in potential scaling of the following
packets so that the overall schedule is maintained as targeted.

Comparing the input and output waveforms in Figure 16.14, it becomes obvious
that the operation preserves the pitch frequency of the input speech. Only the
packet length and hence the rate of speech are altered. Subjective listening tests
show that infrequent scaling of the packets does not degrade speech quality, even
if the scaling ratio is occasionally high [12]. Note that the scheme is speech codec
independent. The operations can be applied on the PCM output.

One advantage of working with a short packet is that the input is divided into
fewer template segments so that typically only one or two iterations will yield the
output with the target length. Another important feature of the algorithm observed
in Figure 16.14 is that the beginning and the end of each packet are not altered. As
a result, when concatenating modified packets, no overlap or merging is needed
to obtain smooth transitions. Hence, packets can be modified independently and
sent to the output queue back to back. This type of operation is ideally suited for
a highly adaptive playout scheduler.

16.5.2 Time Compression and Dilation of Video Signals

While changing the display duration of audio and speech signals requires the use
of special timescale modification algorithms as described in the previous sec-
tion, for video the situation is much easier. Time compression or dilation of a
video signal can be achieved by simply changing the display duration of individ-
ual video frames. If the display process supports only fixed duration display of
video frames, repetition or dropping of video frames can be used instead. As an
example let us assume that we want to scale the playout of the video signal by
20% for a video sequence with 25 frames per second and a fixed display duration
of 40 ms per frame. Repetition of every 5th frame makes 30 frames or 1.2 s out of
an original 1-s segment of the video signal. For a fixed display duration of 40 ms
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per frame the playout duration is now 1.2 s, which corresponds to the desired 20%
playout dilation.

16.5.3 Time Compression and Dilation of Silence Periods

As mentioned previously, scaling of up to 100% is tolerable if applied infrequently
to short segments of speech. Continuous scaling of speech or audio signals for
longer segments, as needed for AMP in video streaming scenarios, however, be-
comes noticeable and practical scaling factors are much lower. In these cases typ-
ically scaling of up to 25% can be used. However, if we detect silence within the
packets in our client buffer, then we can overproportionally stretch or compress
the silence periods without significantly impairing the perceived quality.

16.6 PLAYOUT SPEED CONTROL MECHANISMS

Playout speed control is a key issue when using Adaptive Media Playout and, in
general, the playout scheduler has to be designed individually for a particular ap-
plication. While, for example, a simple heuristic that chooses a playout speed from
a small set of discrete values depending on the occupancy of the playout buffer
is suitable for Internet Media Streaming, low-delay conversational services as de-
scribed in Section 16.4.1 require more sophisticated schemes. Advanced playout
speed control mechanisms may, for instance, operate in a way that meets a con-
straint on expected distortion or finds an optimal trade-off among the distortion
due to playout speed variation and the distortion due to expected decoding er-
rors, and latency. In the following we discuss a selection of playout speed control
mechanisms.

16.6.1 Heuristic Playout Speed Control for Video Streaming

A simple adaptive playout strategy for video streaming controls the playout frame
rate by examining the number of frames of media in the playout buffer. Let μ(n)

be the playout frame rate dictated by the scheme, where n is the number of frames
that occupy the playout buffer. In the nonadaptive case this rate is constant and
given by 1/tF , where tF is the frame period. With Adaptive Media Playout, μ(n)

varies with n. For example, a simple playout policy for AMP-Live (introduced in
Section 16.4.2) is

μ(n)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

s · tF n < Nlow,

1

f · tF n > Nhigh,

1

tF
otherwise,

(16.2)
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where s ≥ 1 represents a decrease in playout speed, f ≤ 1 is an increase in playout
speed, n is the number of contiguous frames in the playout queue, and Nhigh and
Nlow are threshold values. When there are fewer than Nlow frames in the playout
queue, each frame plays for s · tF seconds. When the number in the queue exceeds
Nhigh, each frame plays for f · tF seconds.

In general, functions μ(n) can be defined depending on goals with respect to
robustness, mean latency, buffer size, initial preroll delay, and playout speed vari-
ability. For instance, in the case of AMP-Initial and AMP-Robust, the controller
in (16.2) can be used with Nhigh =∞. Alternative heuristic controllers may, for
example, allow playout speed to vary continuously as a function of buffer occu-
pancy.

16.6.2 Distortion-Latency Optimized Playout Speed Control

This section discusses a scheme [7] that controls playout in a way that attempts to
yield an optimal trade-off among distortion of decoded media, distortion due to
playout variation, and latency.

In this scheme, a scaling factor for the playout speed of a frame is determined
by an algorithm that jointly optimizes a vector of scaling factors ν ∈ #M for
the playout speed of a window of M future frames. The scheme finds a ν that
gives an approximately optimal trade-off between the expected distortion D(ν)

and functions Gi(ν) that assess perceptual costs due to playout speed and latency
variation. The optimal trade-off is determined to be the one that minimizes the
Lagrangian cost function

J (ν)=D(ν)+
∑

i

λiGi, (16.3)

where the λi are user-defined weights for the perceptual costs. Cost functions
Gi(ν) that assess the perceptual impact of playout speed and latency variation
can be defined, for example, as

G1(ν) =
M∑

i=1

(νi − 1)2, (16.4)

G2(ν) =
M∑

i=1

(νi − νi−1)
2, (16.5)

G3(ν) =
(

tF

M∑

i=1

(νi − 1)+ taccum

)2

, (16.6)
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where M is the length of vector ν. In these examples, G1 assesses a cost for devi-
ation of the frame-period scaling factors from 1, G2 assesses a cost on variations
in the playout rate from one frame to the next, and G3 assigns a cost to latencies
that do not match the initial buffering delay. G3 is useful in cases such as live or
interactive streams in which latency must be constrained. In (16.6), taccum is the
amount of delay that will have accumulated by the end of the currently playing
frame, less the initial buffering delay.

16.6.3 Adaptive Media Playout and R–D Optimized Media Streaming

The control scheme described in Section 16.6.2 can be integrated with the frame-
work for rate-distortion optimized streaming described in Chapter 10.2.1 [7].

The scheme uses receiver-driven streaming in which the receiver calculates op-
timal requests to transmit to the sender and the sender simply transmits the re-
quested packets.

If we combine Adaptive Media Playout with receiver-driven RD optimized
streaming, transmission requests and playout speeds have both to be computed
at the receiver and can therefore be computed jointly. In this case, the Lagrangian
optimization objective of (16.3) is augmented to be a function not only of the
playout speeds ν, but also of the transmission policy π . The goal in this case is to
minimize the Lagrangian

J (π, ν)=D(π,ν)+ λR(π, ν)+ λ1G1(ν)+ λ2G2(ν)+ λ3G3(ν), (16.7)

where R(π, ν) is the expected transmission rate as a function of the transmis-
sion policy and playout speeds. The iterative descent algorithm used to minimize
the Lagrangian with respect to the transmission policy π remains mostly as de-
scribed in Section 10.2.1 of this book. The Lagrangian is iteratively minimized
one variable at a time while the others are held fixed. The step of minimizing the
Lagrangian with respect to the playout speed vector while the transmission policy
variable is held fixed is added, however.

16.6.4 Playout Speed Control for Low-Delay Applications

As discussed in Section 16.4.1 the success of Adaptive Media Playout for low-
delay conversational services mainly depends on how accurately the receiver can
estimate the arrival time of future packets. A key component of playout speed con-
trol for this kind of application is therefore packet transfer delay estimation. Sev-
eral delay estimation techniques have been proposed, including linear recursive
filtering with stochastic gradient algorithms [16], histogram-based approaches
[14,18], normal approximation [3], and event counting [23]. The playout speed
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control mechanism used for VoIP shown in Figure 16.8 is based on the delay of
the most recent packets [12]. In this scheme, the user specifies a desired rate εl

of errors due to late loss. The algorithm estimates the late loss probability of a
packet as a function of its playout deadline by examining the delays of a window
of recent transmissions. The algorithm scales the playout speed of each frame so
that the next packet’s deadline yields an expected loss probability that meets the
constraint set by the user.

To find the expected loss probability for a packet as a function of its deadline,
the algorithm makes use of order statistics compiled from the delays of a win-
dow of the last w received packets. Let D1,D2, . . . ,Dw denote the delays of the
last w received packets in ascending order such that D1 ≤ D2 ≤ · · · ≤ Dw . Let
the random network delay of a packet be denoted dn. The expected cumulative
distribution function (CDF) for the delay can be written as

E
[
Pr
{
dn ≤Dr

}]= r

w+ 1
, r = 1,2, . . . ,w (16.8)

and represents the expected probability that a packet with the same delay statistics
can be received with delay Dr or less. Interpolation can be used to evaluate the
expected CDF at values between the Dr .

Using this estimate for the delay CDF, the deadline for a packet can be cho-
sen so as to meet the late loss rate constraint εl . The playout speed of a speech
segment is scaled to control the deadline of the packet containing the following
segment.

One important feature of this history-based estimation is that the user can spec-
ify the acceptable loss rate, and the algorithm adjusts the playout schedule ac-
cordingly. Therefore, the trade-off between buffering delay and late loss can be
controlled explicitly.

Over IP networks, it is common to observe sudden high delays (“spikes”) in-
curred by voice packets, as shown by packets 113–115 in Figure 16.8. Delay
spikes usually occur when new traffic enters the network and a shared link be-
comes congested, in which case past statistics are not useful to predict future de-
lays. In this case, the scheduler switches from a normal mode to the rapid adap-
tation mode when the current delay exceeds the previous one by more than a
threshold value. In rapid adaptation mode, the first packet with an unpredictable
high delay has to be discarded. Following that, the delay estimate is set to the
last “spike delay” without considering or further updating the order statistics. The
rapid adaptation mode is switched off when delays drop to the level before the
spike and the scheduler returns to its normal operation, reusing the state of order
statistics before the spike occurred. This rapid adaptation helps to mitigate burst
loss as illustrated in Figure 16.8.
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16.7 ADAPTIVE MEDIA PLAYOUT AND PACKET PATH DIVERSITY

In Chapter 17, path diversity is described for reliable communication over lossy
networks using multiple description coding. It has been observed that for multi-
path transmission the end-to-end application sees a virtual average path, which
exhibits a smaller variability in quality than any of the individual paths. In this
section, packet path diversity is revisited for low-delay applications when Adap-
tive Media Playout is employed.

16.7.1 Packet Path Diversity for Low-Delay Conversational Services

In the context of delay-sensitive applications, such as interactive VoIP, the largely
uncorrelated characteristics of the delay jitter on multiple network paths can be
exploited using Adaptive Media Playout techniques [10]. The multiple streams to
be delivered via different paths are formed by multiple description coding (MDC),
which generates multiple descriptions of the source signal of equal importance.
These descriptions can be decoded independently at the receiver. If all descrip-
tions are received, the source signal can be reconstructed in full quality. If only a
subset of the descriptions is received, the quality of the reconstruction is degraded,
but is still better than the quality resulting from losing all descriptions. Depending
on the MDC scheme selected, the overall data rate of the payload does not nec-
essarily increase as a result of transmitting multiple streams. The data rate only
increases if redundancy is introduced between the multiple streams.

In order to maximize the benefits of multipath transmission, paths that exhibit
largely uncorrelated jitter and loss characteristics are preferred. Sending streams
along different routers from source to destination naturally leads to path diver-
sity, which could include streams traversing different ISPs or even streams being
sent in different directions around the globe. For a detailed discussion on how to
practically realize multipath transmission, refer to Chapter 17.

16.7.2 Adaptive Two-Stream Playout Scheduling

To exploit the characteristics of multipath transmission, the playout scheduler is
again a key component, as in the previous discussion in this chapter. An adaptive
scheduler for two-stream playout is similar to the single stream case described in
Section 16.4.1. Before the arrival of each packet i, the playout deadline for that
packet has to be set according to the most recent delays recorded. The playout
deadline of packet i is denoted by di

play, which is the time from the moment the
packet is delivered to the network until it has to be played out. When determining
the playout deadlines, the trade-off among delay, losing both MDC descriptions
(referred to as packet erasure), and losing only one description has to be con-
sidered. This trade-off can be stated as the following constrained problem: given



Section 16.8: SUMMARY AND FURTHER READING 553

a certain acceptable signal distortion, minimize the average delay E{di
play}. This

constrained problem can be formulated as an unconstrained problem by introduc-
ing a Lagrange cost function for packet i,

Ci = di
play + λ1 ·Pr(both descriptions lost)

+ λ2 ·Pr(only one description lost)

= di
play + λ1ε̂

i
S1

ε̂i
S2
+ λ2

(
ε̂i
S1

(
1− ε̂i

S2

)+ ε̂i
S2

(
1− ε̂i

S1

))
, (16.9)

where ε̂i
S1

and ε̂i
S2

are the estimated loss probabilities of the descriptions in

Streams 1 and 2, respectively, given a certain di
play. The estimate of ε̂i

S1
and ε̂i

S2
can

be based on past delay values recorded for the two streams. The higher di
play is,

the lower the loss probabilities since the likelihood of playing out delayed packets
is higher. The Lagrange multipliers λ1 and λ2 are predefined parameters used to
trade off delay and the two loss probabilities.

The playout deadline can be optimized by searching for the di
play that mini-

mizes the cost function (16.9). Multiplier λ1 is used to trade off total delay and
packet erasure probability. Greater λ1 results in a lower erasure rate at the cost
of higher delay. Multiplier λ2 is introduced to penalize distortion as a result of
playing out only one description. The greater λ2 is, the better the quality of the
reconstructed signal at the cost of higher delay. Note that although packet era-
sure [the second term in (16.9)] and quality degradation due to the loss of one
MDC description [the third term in (16.9)] are different perceptual experiences,
they are not independent measures. From (16.9), increasing λ2 also leads to lower
erasure probability. However, with zero or very small λ2, only packet erasure is
considered. In this case, good reconstruction quality is not a priority, but lower
latency is given more emphasis, with the trade-off between delay and erasure rate
determined mainly by λ1.

When switching between streams during speech playout, the playout schedule
has to be dynamically adjusted and adapted to the delay statistics of each individ-
ual stream. Adaptive Media Playout in combination with packet path diversity has
first been demonstrated in [10] for two-stream VoIP. The experimental results in
[10] demonstrate that this combination has the potential to significantly reduce the
application latency of low-delay conversational services over the Internet while
preserving the user-perceived signal quality.

16.8 SUMMARY AND FURTHER READING

This chapter discussed Adaptive Media Playout as a receiver-based technique to
adapt multimedia communication applications to varying transmission conditions.
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The main idea of AMP is to consider the time axis as a rubber band that can be
locally stretched or compressed. In the context of video streaming delivery, AMP
can successfully be employed to decrease the initial as well as the average la-
tency of the application. For VoIP the flexibility to adjust the playout duration
of individual speech segments allows us to adjust playout deadlines even within
talkspurts and to dynamically optimize the trade-off between latency and late loss
rate. While for video the change of playout duration is straightforward, for au-
dio and speech signals special signal processing techniques have to be employed,
which lead to noticeable quality impairments if the scaling factor becomes too
large. Finally, it should be mentioned that AMP is particularly beneficial in mul-
ticast or broadcast scenarios where every user sees a different channel and can in-
dividually adapt to the current transmission properties without getting the sender
involved.
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17
Path Diversity for
Media Streaming
The Use of Multiple Description
Coding

John Apostolopoulos, Mitchell Trott, and Wai-Tian Tan

17.1 INTRODUCTION

Media streaming over best-effort packet networks such as the Internet is quite
challenging because of the dynamic and unpredictable delay, loss rate, and avail-
able bandwidth. Streaming over multiple paths to provide path diversity, cou-
pled with careful co-design of the media coding and packetization to exploit path
diversity, has emerged as an approach to help overcome these problems. This
chapter provides an overview of path diversity, of complementary media coding
techniques such as multiple description coding, and of their benefits and uses for
improved media streaming.

Path diversity is a transmission technique that sends data through two or more
paths in a packet-based network. A path diversity system may use multiple paths
at the same time or may perform path selection to switch between them. This is
in contrast to the conventional approach where all packets are sent over a single
path between sender and receiver, and this path does not vary with time under the
direct or indirect control of the application. The paths may originate from single
or multiple sources. An example of the single-source case in a video streaming
application is shown in Figure 17.1. A more complex multiple-source scenario is
illustrated in Figure 17.2.

Using multiple paths through the transport network for streaming can help over-
come the loss and delay problems that afflict streaming media and low-latency
communication. In addition, it has long been known that multiple paths can im-
prove fault tolerance and link recovery for data delivery, as well as provide larger
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FIGURE 17.1: Media packets are sent over multiple paths in a packet
network. In this case packets from a single source are directed over differ-
ent paths via relays.

FIGURE 17.2: Path diversity in a content delivery network using multi-
ple sources. A basic question: which two of the three circled servers should
be selected to stream to the client? The two nearby servers that share a link
or a nearby server and the more distant server?

aggregate bandwidth, load balancing, and faster bulk data downloads. The bene-
fits of path diversity are examined in detail in Section 17.3.

Diversity techniques have been studied for many years for wireless communi-
cation, for example, frequency, time, and spatial diversity. However, path diversity
over packet networks has received limited attention until relatively recently. The
early work in this area, for example, [4,5,22], focuses on reliable data delivery
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through error correction coding or retransmission and is generally performed in
the context of multiple virtual circuits on connection-oriented systems such as
ATM.

A number of thorough experimental studies, for example, [29], have demon-
strated the great variability in the end-to-end performance observed over the In-
ternet. This variability is analogous to the variability of wireless links and moti-
vates the application of wireless diversity techniques to wired and wireless Inter-
net communication. Further motivation for the use of multiple paths is that the
default (single) path between two nodes on a network is often not the best path.
For example, the measurement study [35] comparing the paths between two hosts
on the Internet found that “in 30–80% of the cases, there is an alternate path with
significantly superior quality” to the default path, where quality is measured in
terms of metrics such as round-trip time, loss rate, and bandwidth.

This chapter provides a survey of the benefits, architectures, system design is-
sues, and open problems associated with streaming media delivery using path
diversity. Complementary media coding techniques such as multiple description
coding are also reviewed. We begin in Section 17.2 by describing two basic com-
ponents of the path diversity systems we consider: media streaming and media
coding. Section 17.3 surveys the benefits of path diversity in a streaming-media
context. Many of these benefits accrue only for media streaming applications and
have no direct analogy, for example, to benefits associated with classical wire-
less diversity. Section 17.4 provides an overview of multiple description (MD)
coding and its application to different types of media, including speech, audio,
image, and video. Section 17.5 examines the design, analysis, and operation of
media streaming systems that use path diversity and highlights some techniques
for analyzing and modeling path diversity that are beneficial for selecting the
best paths or best servers in a path diversity system. In Section 17.6 we describe
various architectures that support and benefit from path diversity, including over-
lay networks, low-delay applications, peer-to-peer networks, and wireless net-
works. Finally, Section 17.7 provides a summary and pointers for further read-
ing.

17.2 BUILDING BLOCKS FOR MEDIA STREAMING

In this section we introduce the basic components of media streaming, indepen-
dent of any path diversity enhancements. We first describe how media streams
differ from ordinary file transfer. We then describe how source material, such as
audio or video streams, is transformed into a sequence of packets for transmis-
sion over a network. This encoding architecture is used in essentially all nondi-
versity applications and is extended in subsequent sections to support path diver-
sity.
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17.2.1 Media Streaming Characteristics

The problem of streaming media such as voice and video over best-effort packet
networks is complicated by a number of factors. Unlike static content delivery or
file download, streaming involves the simultaneous delivery and playback of me-
dia and is characterized by delay constraints on each transmitted packet. Packets
that arrive after their decoding or display deadline are generally useless. These
inevitable packet losses are not necessarily fatal; most media streams have some
tolerance to packet loss, albeit limited by the use of temporally predictive com-
pression. Delay constraints and tolerance to loss are primary factors that distin-
guish media streaming from ordinary data transport. Conversational or interactive
applications have particularly tight delay constraints, typically 100 ms or less.

Conventional approaches for overcoming packet loss and network congestion
in data delivery, such as reliable transport via TCP, generally are not possible
for streaming because the persistent retransmissions cause too much delay and
the rate adaptation is inappropriate for a constant-rate streaming source. More-
over, many applications (e.g., multicast or broadcast) lack a back channel or other
means for retransmissions. Thus, meeting tight delay constraints in the presence
of packet losses, queuing delays and network outages is quite challenging and
provides motivation for some of the path diversity techniques that follow.

17.2.2 From Media to Packets

A representative packetization scheme is depicted in Figure 17.3. In most applica-
tions, the “media encoder and packetizer” module operates by first compressing
the media frames into blocks of data, where the block boundaries are selected
in some sensible manner to limit catastrophic parsing errors and error propaga-
tion at the decoder if blocks are lost. The media codec is optionally followed by
some combination of forward error correction coding (FEC) and interleaving into
transport packets. As the transport packets traverse the network some are lost or

FIGURE 17.3: Generic media coding and packetization scheme.
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delayed. The client must reconstruct and play out each frame of the source media
by its play out deadline using the packets it has received thus far.

The separation of source and channel coding shown in Figure 17.3 is tremen-
dously convenient for a host of reasons. For example, separate coder and error
correction modules can be implemented in different hardware, can be designed by
different standardization teams, can be upgraded, replaced, or reused separately,
and so on. Even if the modules are implemented separately, however, significant
benefits can accrue from designing them jointly. In particular, the precise manner
in which coded media is distributed across multiple transport packets greatly im-
pacts the quality of the reconstructed media after packet erasures. This point will
be amplified in Section 17.4.

From a theoretical standpoint it’s known that fully separating source and chan-
nel coding can hurt performance in some circumstances. The rather general
scheme in Figure 17.3 has therefore already compromised potential performance
to arrive at a simpler architecture. Nevertheless, essentially all modern packet
streaming systems follow the block diagram shown in Figure 17.3, which is the
structure on which we will concentrate.

17.3 BENEFITS OF PATH DIVERSITY

Streaming over multiple paths can mitigate three basic problem areas in networks:
bandwidth, loss, and delay. In this section we characterize these benefits.

Path diversity to a single receiver can arise when streaming from one source
or when streaming from several sources. Examples of the latter include streaming
from multiple servers in a content delivery network or from multiple peers in a
peer-to-peer system. In addition to path diversity, these applications also provide
something that can be termed “source diversity,” the benefits of which persist even
on an uncongested network. For example, if hosts in a peer-to-peer system enter
and exit then source diversity reduces the probability of service outage. Similarly,
source diversity provides a load balancing benefit that can be important when the
hosts are disk or CPU limited. Therefore, the use of multiple hosts, and associated
multiple paths, leads to both host diversity and path diversity, where the largest
benefit depends on where the bottleneck is: paths or hosts. While the discussion
that follows is framed in terms of path diversity, it’s useful to keep in mind the
complementary benefits that can arise from using multiple hosts.

Leaving aside questions of fairness and resource consumption for the moment,
a straightforward way to realize performance gains with multiple paths is to use all
of them at once. For example, if in a peer-to-peer system the hosts are connected
via cable modems or DSL connections with limited uplink bandwidth, path diver-
sity with multiple sources provides much-needed bandwidth aggregation. This is
shown in Figure 17.4a. Bandwidth aggregation can also be achieved with a single
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FIGURE 17.4: (a) Bandwidth is aggregated across paths using two
streaming sources SA and SB . (b) Bandwidth is aggregated using one
source and a mid-network relay. Paths are labeled with their available
bandwidths.

source node, as in Figure 17.4b. A complementary benefit to bandwidth aggrega-
tion is traffic load balancing, that is, decreased per-path bandwidth by splitting a
stream across multiple paths.

If bandwidth is not a primary concern, delay and loss may be reduced by repli-
cating each packet across the paths. The receiver then sees the minimum of the
path delays (effectively chopping off the long tails in the end-to-end delay distri-
bution) and is immune to packet losses unless they occur on all paths simultane-
ously.

A more challenging problem—and the main focus of this chapter—is to realize
performance gains in the presence of delay and loss without doubling the number
of packets transmitted. How this is done depends on the amount of information
the sender has about prevailing link conditions.

Perhaps the simplest way to realize gains without consuming extra bandwidth
is through path selection. Selection diversity arises when there are multiple paths
available, when the sender knows which path has the most favorable characteris-
tics, and when the sender can respond in a timely manner to direct packets along
the currently most favorable path. A simple example is shown in Figure 17.5a.
The benefits of selection diversity are often quite large, so large that even approx-
imate knowledge of link conditions suffices to realize gains. Thus, when a single-
path system is unreliable, selection diversity should be one of the first techniques
considered.

Often, however, either the sender does not have detailed knowledge about the
current state of the paths or it cannot take advantage of its knowledge. This occurs
in a variety of situations, including:

1. time-invariant paths that lack feedback,
2. time-varying paths where the path measurement system lags the variation,

and
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(a) (b)

FIGURE 17.5: (a) Selection diversity directs packets over the path with
the smallest loss rate. (b) The sender responds to its uncertainty by sending
odd packets on the upper path and even packets on the lower path. The
average loss rate is more predictable than the loss rate in a single-path
system that selects a path at random.

3. broadcast or multicast scenarios in which a single transmission strategy
serves all users at once.

Selection diversity alone is not a viable approach in these cases, and the sender
can take advantage of path diversity only through more sophisticated approaches.

An example of path diversity in which two time-invariant paths have differing
loss rates is shown in Figure 17.5b. If the sender is unsure about which path is best
it can hedge its bets by dispersing media packets across the paths. The receiver
then sees the average (p1 + p2)/2 of the loss rates.

Averaging loss rates illustrates a significant benefit of path diversity: reduced
uncertainty. Reduced uncertainty enables methods for combating losses, such as
forward error correction, to become more effective [25,26]. FEC adds specialized
inter-packet redundancy that enables data recovery up to a loss threshold. Com-
pared to a single-path system that selects from a set of paths at random, averaging
loss rates improves the probability that the overall loss rate lies below the critical
threshold (in most cases of interest).

For time-varying links, for example, links that shift between periods of no loss
and high loss that are common on the Internet, the amount of redundancy can be
adjusted dynamically to compensate for changes in the loss rate. However, adap-
tation is problematic when the network changes quickly: the FEC is inevitably
overdesigned and therefore inefficient or underdesigned and therefore ineffective.
Combining FEC with long interleaving also helps combat loss variability, but the
added delay often makes interleaving unsatisfactory for media streaming. When
used with FEC, path diversity provides benefits similar to time interleaving with
a smaller associated delay.

Path diversity can dramatically decrease the probability of outage, where an
outage is an extreme form of time variation in which all communication along a
network path is lost for a sizable length of time. A single-path system necessarily
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fails during an outage. However, with two-path diversity the average loss rate
becomes 50%, which is tolerable for certain codecs (see Section 17.4). A service
outage then occurs only if both paths fail at once. In heuristic terms, path diversity
improves the probability of outage from p to p2.

Problems of delay and delay jitter may also be addressed using path diversity.
If the sender distributes packets across paths the receiver sees the mixture of the
delay distributions of the paths. This effect is termed queue diversity because net-
work delays are often due to backlogged queues, and to emphasize the benefit
of multiple parallel queues. Queue diversity offers little benefit for loss-intolerant
data because the receiver must wait for all packets from all paths. In contrast, loss-
tolerant delay-intolerant voice or video streams remain useful when only some
packets arrive promptly. Similar to loss-rate averaging, queue diversity is help-
ful for time-invariant paths that have different but unknown delay characteristics.
It’s also helpful when the paths are time varying, for example, when cross traffic
causes episodes of high delay that strike the paths at independent times. A typical
application of queue diversity is to allow end-to-end delay constraints to be tight-
ened while maintaining quality. Examples of such delay reductions may be found
in voice over IP (VoIP) [20], as described in Chapter 16, and video over 802.11
wireless networks [23], as described in 17.6.4.

Path diversity can also reduce the length of burst losses, that is, losses of con-
secutive packets. Distributing packets across multiple paths increases the inter-
packet spacing on each path, and therefore for a network congestion event of a
given duration fewer packets are lost. This is illustrated in Figure 17.6. If all paths

FIGURE 17.6: Path diversity reduces the length of burst losses.
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are subject to burst losses, however, long burst events are in effect replaced with a
larger number of shorter events. Whether this trade-off is advantageous depends
on the media coding. If latency is not critical, then using FEC over a sufficiently
long block will make the decoder largely indifferent to burst vs. isolated losses. In
contrast, we will see in Section 17.4.3 an example of a simple low-latency speech
coding strategy that is resistant to isolated but not burst losses. In addition, for
video codecs it can sometimes be easier to recover from multiple isolated losses
than from an equal number of consecutive losses [1]; for example, a gain of 0.5–
1.0 dB in video quality is achievable in certain situations [23]. Still greater gains
are possible by carefully codesigning the encoder, decoder, and path diversity
system, as we shall see in Section 17.4.6.

17.4 MULTIPLE DESCRIPTION CODING

In this section we introduce multiple description coding, a media coding technique
that is quite appealing when multiple transport paths are available. An excellent
review of MD coding, both history and theory, is given in [13].

Multiple description coding produces two or more sets of compressed data,
referred to as descriptions, as in Figure 17.7. In broad terms, MD coding permits
a usable reproduction of the original signal to be reconstituted when only some
of the descriptions are available, at the decoder. The more descriptions available,
the better the quality of the reproduction. For example, a simple MD video coder
can be achieved by splitting a video stream into even and odd frames and coding
them separately.

One way to apply multiple description coding to packet networks is for each
packet to contain one of the descriptions in the MD code. The resulting system
can be tuned to exhibit a graceful degradation of media quality with the number

FIGURE 17.7: A basic type of MD coder produces two descriptions
of roughly equal importance. If a decoder receives either description it
can reconstruct a good quality signal, whereas if it receives both it can
reconstruct the highest quality signal.
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of packets lost. Used in this manner, MD coding exemplifies a design philosophy
that treats unpredictable variations in packet loss rate as inevitable and aims to
make systems robust to a range of loss conditions. A contrasting approach, which
does not employ MD coding, is to compress media into a loss-sensitive packet
stream and use retransmission or forward error correction to recover from losses.
The MD approach is particularly advantageous when the loss rate is varying or
unknown and when latency constraints hinder the use of retransmissions.

MD coding is also useful for systems that employ path diversity. The source
is coded into two or more data streams and each stream is viewed as a descrip-
tion to be sent along a different path. With this approach, the coding system may
be designed to tolerate losses that differentially impact one stream, for example,
where one stream experiences 20% packet losses while the other is largely loss
free. Examples illustrate MD codes that are effective in this scenario.

Note that in some contexts a “description” implies a single packet, while in
other contexts it refers to an entire stream of packets. Both cases exist in the liter-
ature. In the case of path diversity, the two viewpoints can be unified by treating
each packet as a description while recognizing that the packet loss patterns have
a special structure. In particular, for path diversity, packet losses are concentrated
on the subset of packets transmitted over a failing path, while for systems with a
single path, packet losses are distributed more uniformly.

We continue by providing a high-level comparison of MD coding versus con-
ventional single description (SD) and scalable coding techniques, which were de-
scribed in detail in Chapters 2–6. We then give an overview of the information
theory results that apply to MD coding, all of which take the one-description-
per-packet approach. We next examine the salient features of several practical
examples of MD coding for speech, audio, image, and video. These examples
illustrate how the one-description-per-packet and one-description-per-stream ap-
proaches lead to different coding techniques. We will also see that MD coding
can be implemented through special source codecs, through a joint design of the
source codec with interleaving, or through a joint design of codec, interleaver, and
FEC.

17.4.1 Comparing MD Coding with SD and Scalable Coding

Conventional SD coding algorithms, such as MPEG-1/2/4 and H.261/3/4 video
coding standards, compress media into a single bit stream. In scalable (also called
layered) coding, media is coded into multiple bit streams, beginning with a base
layer that provides low but usable quality, and one or more enhancement layers
that improve quality. The scalable coding bit streams are partially ordered, and
different subsets can, for example, represent video at different spatial, temporal,
or amplitude resolutions and fidelities.



Section 17.4: MULTIPLE DESCRIPTION CODING 569

Applications and networks that support prioritization can exploit scalable cod-
ing by assigning higher delivery priorities to coding layers that are more impor-
tant. However, in best-effort networks, such as the Internet, all packets are equally
likely to be lost or delayed. This fundamental mismatch—prioritized data on a
nonprioritized network—makes scalable coding by itself difficult to exploit using
the Internet. One solution to this problem is to combine scalable coding with chan-
nel coding. For example, erasure-correction coding can be used to make the base
layer more tolerant to packet loss than the enhancement layer(s). This approach
will be described in more detail in Section 17.4.4.

Multiple description coding differs from scalable coding in at least one im-
portant way: scalable coding has a base layer that is critically important and if
lost renders the other bit stream(s) useless. MD coding enables a useful repro-
duction of the signal when any description is received (when following the one-
description-per-stream approach) or when any sufficiently large set of descrip-
tions is received (when following the one-description-per-packet approach).

17.4.2 MD Coding: Information Theory Perspective

The multiple description coding problem has received significant attention in the
information theory literature, beginning in 1980 with [27,44–46]. For recent per-
spectives and comprehensive bibliographies, see, for example, [13,18,30,31].

The basic information theory problem in multiple description coding is that of
compressing a block of independent identically distributed (i.i.d.) random vari-
ables, typically Gaussian or binary, into a set of packets for transmission over
an erasure channel. The simplest case, which turns out to be far from trivial, en-
codes into just two packets. Encoding and decoding are done without regard to
delay, hence the theory is more directly relevant to problems such as still image
compression than to streaming media. The generalization of multiple description
information theory to problems that incorporate delay constraints is an important
(and challenging) area for future research.

A general theme of multiple description information theory research is to char-
acterize the achievable distortion as a function of erasure patterns. In the case of
a source encoded into two packets—or equivalently, into two descriptions—we’d
like the quality of the recovered source to be good when just one of the two pack-
ets survives the network and to improve when both packets survive. One bound
on this problem comes from classical rate-distortion theory: the distortion–rate
function D(R) for the source gives the minimum achievable average distortion D

when the source is described using R bits per source symbol. For example, the
distortion–rate function for a unit variance i.i.d. Gaussian source where distor-
tion is measured by mean-squared error is D(R)= 2−2R . Applied to the multiple
description problem with two packets, assuming each packet contains R bits per
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source symbol, the best that can be achieved when one packet survives is 2−2R .
The best that can be achieved when both packets survive is 2−4R .

But are these naive bounds useful? That is, can a multiple description compres-
sion algorithm simultaneously achieve both single- and dual-description upper
bounds D(R) and D(2R)? The answer is no: these bounds are wildly optimistic
when the rate R is large (i.e., much above 1 bit per symbol). For example, if in the
Gaussian case the single description meets the D(R) bound, the joint description
can be no better than roughly D(R+ 1/2), which is quite a bit worse than D(2R)

at high rates.
A sensible engineering compromise in this situation is to leave some slack in

the system. Rather than trying to meet either the D(R) or the D(2R) bounds ex-
actly, one should instead aim for reasonable but not ideal performance for both
single- and dual-description cases. The exact set of available trade-offs in the
Gaussian case with mean-squared distortion was determined by Ozarow [27];
useful plots of this trade-off and a more detailed discussion may be found in
Goyal [13].

The Gaussian case is noteworthy for being the only nontrivial example where
the multiple description trade-off curve is known exactly. Even for the appar-
ently simple case of binary source with Hamming distortion the exact curve is
unknown. Simple arguments suggest, however, that real-world sources will have
the same characteristic trade-offs as the Gaussian source, hence the Gaussian case
remains a useful benchmark.

Generalizations of multiple description coding from two descriptions to many
descriptions are treated in [30,31,39]. A complete solution to this problem would
allow us to answer the following type of question: suppose a channel has either
30% packet erasures or 60% packet erasures, but the encoder doesn’t know which.
How should the source be coded to prepare for these two contingencies, and what
distortions can be achieved? Broadly speaking, a system designed aggressively to
do as best as possible with 30% erasures will fare quite poorly when confronted
with 60% erasures. Conversely, a conservative design that does as well as pos-
sible with 60% erasures will see only modest performance improvements when
there are only 30% erasures. The achievable trade-offs for this problem have been
bounded but are not precisely known.

The relative lack of theoretical results about the trade-offs inherent in multiple
description coding presents no obstacle to a practical exploration of the space.
There is growing literature on practical schemes for multiple description me-
dia coding for both streaming and nonstreaming applications, as discussed next.
While many of these schemes have good performance or insightful architectures,
one should keep in mind that they represent particular achievable points in the
space of trade-offs; only in special scenarios is the ideal performance known, let
alone approached closely. Thus there remain many interesting opportunities to
find improved solutions.
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17.4.3 MD Speech and MD Audio Coding

The earliest MD coders were applied to speech signals. For example, in [16,17]
speech is partitioned into speech frames of (say) 16 ms duration, and each speech
frame is split into even and odd samples, which are then coded independently and
sent in separate packets. This coding method protects better against certain loss
patterns than others. For example, losing both the even and the odd packet from
one speech frame is likely to sound worse than losing an even and an odd packet
from different frames. The even/odd coding strategy is therefore most effective
when the two packet streams are sent along different paths that suffer independent
outages.

A variety of other simple MD techniques exist. For example, each packet can
contain the current speech frame and a low-quality copy of the previous speech
frame, as in Figure 17.8. In another variation, a packet containing the coded even
(odd) samples may also contain a coarsely coded version of the odd (even) sam-
ples. This is illustrated in Figure 17.9, where the packets containing the even
samples are sent over one path and the packets containing the odd samples are
sent over a second path. In this way, as long as either of the two packets for each
speech frame is received the decoder can reconstruct a good version of half of the
samples and a degraded version of the other half. Further discussion on the use of
MD speech coding is given in Chapter 16 and in [20].

In most speech and audio coders the source frames (as in Figure 17.3) are coded
largely independently of the neighboring speech or audio frames. This is true for
most SD, scalable, and MD speech and audio coders. The loss of one speech or

FIGURE 17.8: Packets for audio frames 4–8 contain low-quality copies
of frames 3–7, respectively. Loss of audio frame 5 will not cause a play-
back gap if frame 6 is received. However, a playback gap will result if both
frames 5 and 6 are lost.

FIGURE 17.9: Burst loss in either path 1 or path 2 alone will not cause
a gap in playback. This is an example in which path diversity does not
reduce loss rate, but provides a more usable set of data for the application.
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audio frame therefore affects a small portion of the reconstructed signal. This
is in contrast to conventional video coding where temporal prediction is applied
between video frames, and a single packet loss can lead to significant error prop-
agation, which affects many frames.

17.4.4 MD Image Coding

MD codes for images can be constructed using methods from source coding or
by combining source coding with FEC. A common source coding approach is
to subsample in the spatial or frequency domains. Straightforward subsampling,
however, provides no control over the trade-off between single- vs. multiple-
description image quality. In MD transform coding (e.g., [41]) a correlating trans-
form introduces controlled redundancy between the subsets of coefficients, which
enables such trade-offs.

MD codes may also be created by coupling a scalable coder with FEC to pro-
vide unequal error protection (UEP) for the scalable layers, in a manner some-
times referred to as MD-FEC [32]. While MD-FEC was first proposed in the
context of MD image coding and is appealing in this context because high-quality
scalable image coders such as JPEG-2000 are available, it’s applicable to any type
of media that’s scalably coded. In this technique, the source coder does not pro-
duce multiple descriptions directly, but the combination of scalable coding and
UEP produces a set of packets that have the MD property. This allows one to turn
a scalable, prioritized bit stream into a nonprioritized one that is better matched
to a best-effort packet network such as the Internet.

An example of MD-FEC is shown in Figure 17.10. In Figure 17.10 a scalable
code with two layers—a base layer and a single enhancement layer—is used to
construct an M-description MD code. Each of the M descriptions is contained
in a separate packet. The base layer is split into m equal-sized blocks, and M −
m parity blocks are computed using, for example, an (M,m) systematic Reed–
Solomon code. In this manner the base layer is expanded into M descriptions,
any m of which allow the receiver to recover the layer perfectly. The enhancement
layer in this example has no FEC, hence all M descriptions are needed to recover
it perfectly. An important feature of MD-FEC is its flexibility: it can be used with
any number of scalable layers, variable amounts of FEC per layer, and an arbitrary
number of descriptions.

17.4.5 MD Video Coding

Multiple description video coding has some attributes of the audio coding and
image coding cases considered earlier. As with audio, coded video consists of
a sequence of packets, and the manner in which burst losses interact with this
sequence has important consequences for encoder and decoder design. As with
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FIGURE 17.10: In MD-FEC a signal is scalably coded into two or more
layers that are spread across M packets, with unequal cross-packet FEC
for each layer. In this example, if any m packets are received, the base
layer can be recovered perfectly; if all M packets are received, both layers
can be recovered perfectly.

images, each packet can be thought of as a description, and one can trade off per-
formance when few descriptions are lost vs. performance when many descriptions
are lost.

Video sequences do, however, have special characteristics not present in image
and audio sources. Consecutive video frames tend to be similar, and the most com-
mon approach to exploit this redundancy for compression is to apply some form
of predictive coding along the temporal direction. For example, the MPEG-1/2/4
and H.261/3/4 video compression standards all employ motion-compensated pre-
diction between frames. Predictive coding is based on the assumption that the
encoder and decoder are able to maintain the same state, that is, that the frames
used for forming the prediction are the same at the encoder and decoder. How-
ever, packet losses can cause a mismatch between the states at the encoder and
decoder. This mismatch can lead to significant error propagation into subsequent
frames, even if the packets corresponding to those frames are correctly received.
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For example, a single lost packet can impair the video quality of tens or hundreds
of subsequent frames, until the prediction is reinitialized with an I frame.

The design of an MD video codec depends on the loss patterns one expects to
encounter. In the case of path diversity, a conservative design goal is to maintain
good quality even when half the data is lost, for example, when a path perma-
nently fails. A more aggressive target that leads to greater compression efficiency
is to provide resilience to burst or isolated losses, provided they do not occur on
all paths at the same time. The latter scenario commonly arises when the paths
have independent losses or when the loss statistics on the paths are different, for
example, when one suffers isolated 1% packet loss while another suffers burst
losses at an overall rate of 10%.

A variety of MD video coding techniques suitable for these and other packet
loss scenarios are based on varying the prediction between frames, for exam-
ple, [1,33,40,43], where these techniques are motivated by the importance of pre-
dictive coding in most video coders today. MD video coding techniques that apply
motion-compensated filtering between frames, as often used for scalable video
coding, have been proposed, and these techniques can provide the advantages
of both MD and scalable coding, for example, [38]. An excellent review of MD
video coding is given in [42]. For simplicity, the following discussion assumes
that we code the video into two packet streams to be transmitted over two paths
in a packet network.

One type of predictive MD coding emphasizes the case where a packet stream
decodes with reasonable quality even when the other stream is completely lost.
This can be accomplished by using independent prediction loops for each stream.
For example, two separate prediction loops may be used so that even frames are
predicted based on past even frames and odd frames are predicted based on past
odd frames. (A standard-compliant way to achieve this is to use multiple reference
frames, as supported in H.263v2, MPEG-4, and H.264.) Independence between
streams can also be achieved by having a single prediction loop, but duplicating
the information required to form the prediction in each stream to ensure that if
packets from either stream are received the receiver can form the required pre-
diction. These approaches allow a good quality reconstruction when one packet
stream is received and one is lost (e.g., the video is reconstructed at half the orig-
inal frame rate); however, they suffer a sizable penalty in compression perfor-
mance since the two streams are coded independently of each other.

On the other extreme are predictive MD coders that try to maximize the coding
efficiency when both packet streams are received. In particular, they use a single
prediction loop in a manner similar to single description coding. If both streams
are received they provide excellent quality; however, the prediction requires in-
formation from both packet streams and if either is lost then mismatch occurs
with subsequent error propagation. There are also predictive MD coders that try
to operate between these two extremes, providing the ability to trade off compres-
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sion efficiency (when both streams are received) versus resilience to the full or
partial loss of a stream. An active area of research is designing MD coders that
automatically adjust the compression efficiency versus resiliency as a function of
the channel characteristics to maximize the expected quality at the receiver, for
example, [15,40].

Video, like audio, is frequently used in situations that require low latency. If
latency is not a primary concern, one approach to MD video coding is to care-
fully combine a scalable video coder with UEP in a manner analogous to MD
image coding (Section 17.4.4). This technique provides a straightforward way
to produce many packet streams. In contrast, the predictive MD video coding
methods described earlier are generally limited to a small number of description
streams (typically two) because compression efficiency decreases with the num-
ber of streams. It is worth noting that while predictively coded video has histor-
ically provided significant compression benefits over scalable coding, and hence
the widespread use of predictive coded video for both practical applications and
MD video coder design, this may change in the future with some of the emerging
scalable video coding techniques, as discussed in Chapter 5.

17.4.6 Repairable MD Coding

Repairable MD coding (also known as state recovery in MD coding) is an ex-
tension of conventional MD coding beneficial for temporally predictively coded
media such as video [1]. Predictive coding causes errors in one frame, due, for
example, to lost packets, to propagate to potentially many subsequent frames. In
repairable MD coding the decoder attempts to stop error propagation by repairing
the corrupted frames in one description using uncorrupted frames from the other
description. This technique can maintain usable quality even when both descrip-
tions suffer losses, as long as both descriptions are not simultaneously lost.

Figure 17.11 illustrates the impact of packet loss on a conventional SD MPEG-
type video coder and on a repairable MD coder. The particular MD video coder in
Figure 17.11 forms the first description by predicting even frames from previously
coded even frames and forms the second description likewise from odd frames.
For both SD and MD examples, the packet(s) that describes how frame 3 is used
to predict the subsequent coded frame is assumed lost. For SD, the packet that
predicts frame P4 from P3 is lost, and the decoder estimates the missing frame 4
using the last correctly decoded frame (frame 3), where the inaccuracy leads to
error propagation that continues until the next I frame. The repairable MD decoder
estimates the lost frame by bidirectionally predicting it (that is, interpolating it)
from neighboring frames in both descriptions. The use of both previous and future
frames to estimate the lost frame provides significant improvements in accuracy
as compared to the use of only previous frames.
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FIGURE 17.11: Benefits of repairable MD coding to reduce error prop-
agation. The arrows show the prediction dependencies between frames,
and each “X” denotes packet loss that leads to an error in the following
predicted frame. The conventional SD coder exhibits error propagation
that continues until the next I frame. The repairable MD decoder limits er-
ror propagation by repairing the missing or damaged frame by estimating
it using neighboring previous and future frames from both descriptions.

Repairable MD coding and path diversity complement each other to improve
the effectiveness of MD coding: the path diversity transmission system reduces
the probability that both descriptions are simultaneously lost, and the MD decoder
enables recovery from losses as long as both descriptions are not simultaneously
lost [1]. This is illustrated in Figure 17.11 where the MD coder is afflicted by
three losses affecting both descriptions—without repairing then both descriptions
would be corrupted and the MD video quality would likely be no better than the
SD quality. This example also highlights the importance of considering the ef-
fect of partial losses of both descriptions, in particular since even a single lost
packet can lead to significant error propagation that corrupts a description for a
long length of time. This comparatively recent decoder-side optimization is com-
plementary to the ongoing efforts to improve the rate vs. quality trade-off of MD
encoders, which typically do not consider partial losses of both descriptions.

17.4.7 Comments on SD, Scalable, and MD Coding for Media

The relative compression efficiencies of SD, scalable, and MD coding depend on
the media type. For image and audio sources, scalable coding can be as efficient
as SD coding, and many recent coding standards, for example, JPEG-2000, are
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scalable. In addition, scalable image or audio coding may be combined with un-
equal error protection to provide an efficient MD-like system: more redundancy
is allocated to high-priority data relative to low-priority data, improving the prob-
ability that high-priority data are correctly received. For video sources both scal-
able coding and MD coding are currently less efficient than SD coding; however,
they provide valuable properties for streaming and, as a result, there is intense
research underway to improve their performance and reduce the compression ef-
ficiency gap.

17.5 DESIGN, ANALYSIS, AND OPERATION OF MULTIPATH
STREAMING SYSTEMS

The prior sections discuss the potential benefits of path diversity for media stream-
ing and describe media coding techniques useful for path diversity. This section
discusses issues that arise in effectively designing and using path diversity in
streaming media systems.

17.5.1 Joint and Disjoint Paths

Multiple paths are not guaranteed in practice to be independent and may, for ex-
ample, share links. The benefits of path diversity do not depend on whether paths
are completely disjoint, but rather on whether bottlenecks occur on shared or dis-
joint portions. Shared bottlenecks reduce the impact of path diversity, while dis-
joint bottlenecks do not. Identifying bottlenecks and avoiding them if possible are
important elements in effective use of path diversity. Joint bottleneck detection is
an active area of research, for example, [34].

17.5.2 How Many Paths to Use?

How do diversity benefits scale with the number of paths and when is it worth-
while to use more than one path? These complicated questions depend on the
specifics of the application, the path diversity benefits that one is trying to ex-
ploit, and the characteristics of the available paths. For example, for repairable
MD video coding, the improved error recovery arises with two paths, and while
increasing the number of paths helps there are no further jumps in performance.

End-to-end network characteristics improve in different ways with the num-
ber of paths. Total aggregated bandwidth (in principle) increases additively with
the number of paths. Probability of outage decreases exponentially with the num-
ber of independent paths. Delay variability, measured in terms of standard de-
viation, decreases as 1/

√
N where N is the number of independent paths. For

media streaming in a real-world scenario with reasonably reliable networks and
servers, we would expect that typically a small number of paths would provide
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a good balance between complexity and performance. In a peer-to-peer scenario
in which hosts frequently enter and leave, a much larger number of paths could
prove useful.

17.5.3 Selecting the Best Paths or Best Servers

As discussed earlier, the effectiveness of using multiple paths depends less on
their lengths than on their shared vs. disjoint topology. Of still greater importance
is whether bottlenecks occur on shared portions. Thus, it may be preferable to
have longer paths or longer shared portions of paths if the resulting bottlenecks
are not shared. This observation hints at the complexity of the important basic
question: How to select the best paths to use?

Determining the best paths is important for point-to-point multipath streaming,
but its impact becomes even more apparent when streaming from multiple servers.
Which of several available servers should be selected? For a single-path system
one typically selects a server that is in some sense nearby. However, a multiple
server system requires fundamentally different metrics: minimizing distance from
the client to multiple servers while maximizing path diversity, two generally con-
flicting objectives. Accurately evaluating these metrics is necessary for designing
and operating a multiple server system that uses path diversity. In addition, the
server selection problem must be solved for every client request, necessitating ef-
ficient solutions. Further characteristics of multiple server systems are provided
in Section 17.6.2.

17.5.4 Modeling Path Diversity Performance

The aforementioned discussion highlights the importance of accurately modeling
the performance of a path diversity system. An accurate model is needed for se-
lecting the best subset of paths from a set of possible paths, selecting the best
subset of servers from a set of possible servers, comparing path diversity sce-
narios, or simply evaluating the merits of a path diversity system relative to a
conventional single path system. Determining an appropriate performance model
depends on the benefits (reviewed in Section 17.3) one intends to capture and on
the particular characteristics of the media and the network.

In the following we describe a model for predicting SD and MD video quality
over a lossy packet network as a function of path diversity and loss characteris-
tics. The model has two parts, one that provides a probabilistic model of the loss
patterns that occur in the network and another that quantifies how packet losses
reduce video quality. See [2,3] for complete details.

The sender(s) and receiver in a path diversity system may be connected through
a wide range of complex topologies that include joint and disjoint links. It can
be shown, however, that under certain assumptions the end-to-end properties of
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the network are captured using the dramatically simplified three-link topologies
shown in Figure 17.12. The bursty losses on each link are modeled using, for
example, a two-state Gilbert model.

Packet losses affect SD and MD video differently. The model must therefore
distinguish among isolated packet losses, burst losses of various lengths, and for
MD whether the loss(es) occurs on one or both descriptions at the same time. For
example, for SD we may have a finite-state model that accounts for the packet loss
burst length, and for MD a four-state model that represents for each pair of packets
transmitted whether both descriptions are correctly received, one is correctly re-
ceived and one is lost, or both are simultaneously lost. Each state transition causes
an incremental change in video quality determined by the details of the particular
codec. The state transition probabilities are derived from the loss model described
in the previous paragraph.

An application-level performance model of this form provides insights into
fundamental questions in path diversity, for example, the relative performance
of conventional SD over a single path versus MD with two-path diversity. Using
the model, one can determine that MD with path diversity is beneficial for video
streaming when the packet losses fall predominantly on disjoint links, while SD
sometimes performs better when the losses are on joint links (see [2,3]).

Additional work includes [10], which investigates rate-distortion optimized
packet transmission schedules across multiple paths, [8], where fast heuristics are
presented for quickly performing path selection when a large number of candidate
path pairs are available while accounting for the loss and on-time arrival probabil-
ity of each path, and [42], which provides an overview of MD video coding and
its transport over multiple paths.

FIGURE 17.12: Complex path diversity topologies (top) and the sim-
plified network models (bottom), which preserve the end-to-end charac-
teristics important for accurately predicting video distortion.
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17.5.5 Streaming and Packet Scheduling Across Asymmetric Paths

Different paths may offer different bandwidths, loss rates, and delay characteris-
tics. A path diversity system should compensate for and exploit these asymme-
tries. The first step is to estimate the characteristics of each path. Path measure-
ment is an active area of research, and many techniques developed for single paths
may be applied to the multiple path case.

When paths have different, potentially time-varying, available bandwidths, it is
important to adapt the rate across paths. In the point-to-point case, rate adaptation
can be performed in a centralized manner. However, in the multipoint-to-point
case, a distributed algorithm is generally required. The distributed rate allocation
should not only perform the appropriate adaptation, but also for SD coding should
ensure that the different senders send disjoint sets of packets (no duplication) to
the receiver [25].

Paths with different packet loss rates or delays provide the opportunity to per-
form packet scheduling across the paths [10]. For example, more important pack-
ets may be sent over the path with the lower packet loss rate. Similarly, packets
with tighter delay constraints may be sent over the path with shorter delay. Fur-
thermore, real-time video encoding can be adapted to react to the time-varying
path characteristics and losses [19].

17.6 APPLICATIONS AND ARCHITECTURES

In this section we examine a variety of application areas for which path diversity
provides performance benefits: low-delay applications, content delivery networks,
peer-to-peer networks, and wireless networks. These application areas also illus-
trate architectures for realizing path diversity, for example, by using mid-network
relays, distributed content, or explicit routing control. We summarize these archi-
tectures at the end of the section.

17.6.1 Low-Delay Applications

Many applications, such as video conferencing and VoIP, require low latency for
effective interactive communication. One possible approach used to achieve a la-
tency guarantee is through network quality-of-service mechanisms. Nevertheless,
schemes such as Skype [7] that operate over best-effort networks have shown to
be effective most of the time. As illustrated in Figure 17.13, in order to bypass
firewalls and network address translators (NAT), Skype uses relay nodes in the
public Internet. The existence of multiple available relay nodes improves its abil-
ity to choose a low-latency relay path. This scheme exploits the existence of multi-
ple paths via selection, or choosing a good or the best path. Generally, knowledge
of network states is imprecise, and selection works best when network statistics
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FIGURE 17.13: Skype uses nodes in the public Internet to bypass fire-
walls and NATs. Multiple relay paths are available for selection.

do not change rapidly. These issues are discussed in more detail in Sections 17.3
and 17.5.

Another consequence of low-latency requirement is the limitation in choices of
error recovery mechanisms. Specifically, common and effective techniques such
as retransmissions, interleaving, and forward error correction tend to introduce
additional latency and may be unacceptable. One practical approach for error re-
covery in voice communication is to append to each voice packet a low-quality
version of the previous packet, as illustrated in Figure 17.8. This technique avoids
gaps in audio playback for isolated losses; however, by itself it is ineffective for
burst losses. By simply alternating packets across multiple paths, or transmitting
the low-quality version on a separate path, burst losses can be effectively reduced
to isolated losses. This scheme exploits the independence of multiple paths. No-
tice that from the network’s perspective, the total number of packets sent and de-
livered remains the same. However, from the application’s perspective, the set of
received packets from multiple paths is far more usable. Chapter 16 examines the
problem of low-latency communication in more depth and shows how the combi-
nation of path diversity and adaptive media playout, where the media playout rate
is varied as a function of the receiver’s playout buffer fullness, can lead to sizable
improvements in user-perceived quality.

17.6.2 Content Delivery Networks

A content delivery network (CDN) is a set of hosts inside a network that cooperate
to improve content delivery by performing functions such as caching, content
serving, and traffic relaying. CDNs have been widely used to provide low latency,
scalability, fault tolerance, and load balancing for the delivery of web content
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and more recently streaming media. Figure 17.14 illustrates the operation of a
CDN. By locating content close to the users, a CDN improves access latency,
lowers packet loss rate, and reduces traffic demand. CDNs are described in detail
in Chapter 19.

The replication of content at multiple servers at different locations provides a
number of benefits. First, it eliminates the bandwidth bottleneck associated with
a single server or the network at a single location, thereby improving scalability
to support a large number of clients. Second, it naturally allows delivery of con-
tent using multiple paths from multiple servers. Unlike the relay example, where
multiple paths are provided between a single sender and a single receiver via mul-
tiple relays, in the context of a CDN, the different paths correspond to different
senders, as shown in Figure 17.2.

The currently prevalent manner in which CDNs exploit multiple paths is via se-
lection, that is, choosing a good or best server. Nevertheless, simultaneous use of
independent paths may provide additional gains. For example, appropriately cou-
pling MD coding with a CDN can provide improved reliability to packet losses,
link outages, and temporary server overload or server failures. This system is re-
ferred to as a Multiple Description Streaming Media Content Delivery Network
or an MD-CDN for short.

FIGURE 17.14: Content C is distributed to multiple CDN nodes. As a
result, a client has the benefits associated with closer access, as well as the
benefits of choosing one or more locations and paths to serve the content.
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An MD-CDN operates in the following manner [3]. The media is coded
into multiple complementary descriptions, which are distributed across different
servers in the CDN. When a client requests a stream, complementary descriptions
are simultaneously sent from different nearby servers through different network
paths to the client. This architecture simultaneously reaps the benefits of path
diversity, of source diversity, and of CDNs.

The multiple servers in a CDN can also provide path diversity with SD coding
and FEC [25]. In this case, the content is replicated on multiple mirror servers
and multiple servers stream disjoint sets of SD and FEC packets to the client.
As discussed earlier, the reduced variability of losses afforded by path diversity
makes FEC more efficient.

It is worth noting that the fundamental problems that arise when designing and
operating a CDN are changed in important ways when using multipath streaming.
Three key CDN problems are:

1. Where to deploy the servers? (Server placement problem)
2. How to distribute the content? (Content distribution across server problem)
3. How to select the best server for each client? (Server selection problem)

In a conventional CDN where each client receives a stream from a single server
over a single path, the problems just given are solved by minimizing some notion
of distance between a client and a server. In contrast, an MD-CDN should use a
different metric that accounts for both distance and path diversity as discussed in
Section 17.5.3. MD-CDN design and operation is discussed in [3].

17.6.3 Peer-to-Peer Networks

Peer-to-peer systems such as BitTorrent [11] are widely used for the distribution
of large data files. The use of such systems for streaming is starting to appear in
large-scale deployments (e.g., [47]) and is an active area of research.

Similar to a CDN, in a peer-to-peer distribution system every piece of content
is stored by multiple peers. This allows scalability: the number of peer servers
and peer clients increases at the same rate, overcoming the bottleneck of a single
central server or a fixed number of CDN servers. Unlike the typical CDN, peers or
locations may only have a portion of the content. This complicates the mechanism
needed to locate content and generally necessitates communication with multiple
peers to complete a transfer. Also, unlike a CDN, successful peer-to-peer systems
usually enforce fairness constraints that enable peers who contribute more serving
bandwidth to receive more in return.

Streaming using a peer-to-peer system, and in particular streaming of live
events, is more difficult than distributing large data files. The essential challenge
lies in providing an uninterrupted flow of data to each client for the duration of
the streaming session. In comparison, for file distribution the data can flow in fits
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and starts, and the users are broadly tolerant of fluctuations in total transfer time
so long as visible progress occurs.

Various structures may be imposed on the relationships between peers to im-
prove performance, for example, to reduce the end-to-end system delay or to in-
crease robustness to peer failures. Peers may be taken as nodes in tightly orga-
nized distribution structures such as trees, sets of trees, or directed acyclic graphs
(DAGs) (e.g., [6,28,37]) or in more flexible distribution nets (e.g., [47]). A com-
parison of various tree-based and DAG-based systems can be found in [6].

The critical need to avoid service outages in the face of uncertain peer and net-
work conditions makes path diversity particularly relevant to peer-to-peer stream-
ing. In many applications the peers are dispersed geographically and are unlikely
to share bottlenecks (such as a DSL or cable modem uplink), hence an environ-
ment suitable for path diversity arises automatically. A system using path diversity
with MD coding for peer-to-peer streaming is described in [28].

17.6.4 Path Diversity over Wireless Networks

Wireless networks are quite challenging for streaming since they generally offer
time-varying and unpredictable behavior caused by multiple users, interference,
propagation effects, and mobility. At the network level, these effects appear as
variable delays, losses, and bandwidth. Wireless links, rather than the wired in-
frastructure, are typically the bottlenecks. As mentioned in the introduction, var-
ious forms of diversity have been used for decades to overcome these problems,
for example, in the cellular environment.

Wireless LANs such as IEEE 802.11 are becoming widespread as they provide
simple connectivity and data delivery. One approach to reliable streaming over
802.11 connections, in particular for low-latency or interactive communication,
is to exploit the potential path diversity between each mobile client and multiple
802.11 access points (APs) in the infrastructure [23,24]. A mobile 802.11 wire-
less client is often in range of multiple APs, each offering a different relationship
to the client with respect to distance, obstructions, multipath, signal strength, con-
tention, available bandwidth, neighboring interferers, and potential hidden nodes.
Figure 17.15 illustrates the variability seen by a mobile client in an 802.11 net-
work with two access points.

If a router on the wired side of the network were clever enough to select the
best access point for each packet at each time—or, more boldly, to schedule all
the traffic flowing to all clients through the entire wireless system—significant
performance gains would result. This is in fact the goal of some of the “switched
WLAN” products currently on the market (e.g., those of Meru Networks and oth-
ers). The scheduling in switched WLANs cannot, of course, be ideal because the
current state of the wired and wireless network cannot be perfectly known even
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FIGURE 17.15: Performance statistics for path diversity between a
mobile 802.11 wireless client and two APs in the distributed infrastruc-
ture [23]: received packet signal strength variation (top), average packet
loss rate (second), and number of loss events of burst length ≥ 2 (third)
as a function of packet sequence number for a 15-min packet trace. The
bottom plot illustrates video quality when using only AP1 or only AP2,
and the upper bound on achievable performance by selecting the best AP
for every packet.

with a centralized controller. When some uncertainty about the best path at any
given moment exists, path diversity techniques become useful.

By using multiple paths simultaneously or by switching between multiple paths
(site selection) as a function of channel characteristics, results indicate that signif-
icant benefits may be achieved by using a wireless path diversity system compared
to a conventional single access point system. In addition, these benefits may be
achieved using a single client radio on a single channel [23]; there is no need to
perform physical layer combining or multichannel operation or require multira-
dios.



586 Chapter 17: PATH DIVERSITY FOR MEDIA STREAMING

Path diversity is also beneficial in ad-hoc wireless networks, where the topology
may change or nodes may come or go. Many ad-hoc routing protocols identify
multiple paths between the sender and the receiver, and the use of multiple paths
can improve the reliability of the connection between the two wireless hosts. The
effectiveness of path diversity over an ad-hoc wireless network for image and
video communication is examined in [12] and [21].

17.6.5 Controlling Packet Routes

Path diversity requires, by definition, that packets destined for a receiver tra-
verse different paths through the network. Even if the set of all possible paths
was known (which would require learning the underlying network topology) and
all the links in these paths were statistically characterized (another difficult mea-
surement problem) and it was known how to both generate and apportion packets
across paths to maximize some measure of performance (the subject of previous
sections), there remains the problem of achieving the required degree of control
over packet routing.

Indeed, the end-to-end structure of IP network is designed to achieve the oppo-
site effect: packets are routed independently based on the destination address and
reach their destination at the whim of a variety of midnetwork routers. It would
seem that path diversity requires this structure to be circumvented, for example,
using source routing. As shown earlier this turns out to be partially but not en-
tirely true; there are a variety of scenarios where path diversity arises “for free” as
a consequence of other architectural features of the system. For example, path di-
versity occurs naturally when the desired content is available in multiple physical
locations. As discussed previously, this can be arranged in a distributed caching
infrastructure such as in a content delivery network or in a peer-to-peer delivery
system.

When the content is available at only one location and cannot be cached, for
example, real-time speech or video, path diversity must be realized using network
or infrastructure support. One approach for directing different streams over dif-
ferent paths is to send each stream to a different relay host placed at a strategic (or
merely convenient) node in the network. The relays forward the streams to their
final destination(s) [1]. In a large corporation, for example, the relay hosts can
be installed at the corporation’s various points of presence scattered throughout
the country or the world. The relay infrastructure forms an application-specific
overlay network on top of the conventional Internet, thereby providing a service
of improved reliability while leveraging the infrastructure of the Internet.

Source routing, when available, can be an attractive option for achieving path
diversity. In certain circumstances it is possible for the packet source to specify the
set of nodes or “source route” for each packet to traverse. Path diversity can then
be achieved by explicitly specifying different source routes for different subsets
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of packets. While IP source routing is theoretically straightforward, there are a
number of problems that limit its use in the current Internet, although it may be
useful within a private network. It has been argued that IPv6 may allow source
routing to be adopted more widely.

17.7 SUMMARY AND FURTHER READING

Media streaming with path diversity has gained significant interest in the last few
years, as it provides valuable benefits for overcoming some of the challenges that
afflict best-effort packet networks, including dynamic and unpredictable available
bandwidth, delay, and loss rate. Studies have shown promise for both the single
sender to single receiver case and the multiple sender to single receiver case as in
a streaming media CDN, as well as for both wired and wireless networks. A me-
dia streaming system may use multiple paths at the same time or may perform
path selection where it chooses the best path to use at any point in time. Multiple
description coding combined with path diversity can enhance the benefits of each
and, in certain circumstances, can lead to sizable improvements over media coded
with single description coding and sent over a single path. Path diversity helps us
take a step closer to feedback-free video streaming, which could simplify a range
of applications from low-latency communication to multicast or broadcast stream-
ing. The combination of media streaming and path diversity provides significant
promise, and it is likely to see continued evolution and adoption in the future.

A variety of excellent sources exist for further reading. For a description of the
early work on path diversity for data delivery see [4,5,22] and the overview paper
[14]. The idea that multiple paths can improve fault tolerance and link recovery for
data delivery, as well as provide larger aggregate bandwidth and load balancing,
has long been known. The combination of using multiple paths and sophisticated
rateless FEC codes can provide faster bulk data downloads, without the transmis-
sion of redundant data [9]. The use of path diversity for media streaming gained
attention more recently. The paths may originate from a single source (e.g., [1,8,
12,19–21,23]) or from multiple sources (e.g., [3,10,25]). Dynamic path selection
for streaming, from a set of possible paths, is also an important problem [36].
While path diversity can be exploited with many different types of media coding,
the combination of multiple description coding and path diversity is conceptually
particularly appealing. Excellent reviews of MD coding, both history and theory,
and of MD video coding are available in [13] and [42], respectively.
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18.1 INTRODUCTION

Contemporary digital video coding architectures have been driven primarily
by the “downlink” broadcast model of a complex encoder and a multitude of
light decoders. However, with the current proliferation of video devices ranging
from hand-held digital cameras to low-power video sensor networks to camera-
equipped cellphones, the days of typecasting digital video transmission as a down-
link experience are over. We expect future systems to use multiple video input
and output streams captured using a network of distributed devices and transmit-
ted over a bandwidth-constrained, noisy wireless transmission medium, to either
a peer (as in a peer-to-peer network) or a central location for processing. This new
emerging class of “uplink”-rich media applications places a new set of architec-
tural requirements that include:

• robustness to packet/frame loss caused by channel transmission errors;
• low-power and light-footprint encoding due to limited battery power and/or

device memory; and
• high compression efficiency due to both bandwidth and transmission power

limitations.

In addition, certain applications may impose very stringent end-to-end delay re-
quirements. Current video coding paradigms fail to simultaneously address these
requirements well. Predictive or full-motion inter-frame video coding approaches
that are part of popular standards, such as H.26x and MPEGx [1,3,4,10] achieve
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state-of-the-art compression efficiency, but fail to meet the other two criteria, as
they are fragile to packet losses1 while being computationally heavy at the en-
coder (primarily due to motion search). Alternatively, intra-frame video coding
(motion-JPEG) methods, where individual frames are encoded as still images, are
robust to packet drops and have low computational complexity but they take a
high hit in compression efficiency.

One approach to overcoming these limitations and designing a new video cod-
ing solution that has inbuilt robustness to channel losses, a flexible distribution
of computational complexity between encoder and decoder2 depending upon the
device constraints and the channel conditions, and high compression efficiency is
to have a more statistical rather than a deterministic mindset. It is in this context
that we introduce PRISM, a video coding paradigm founded on the principles of
distributed source coding (also called source coding with side information) [38,
40]. Recently, there has been a spate of research activity in the area of video cod-
ing based on the ideas of distributed source coding (see Section 18.3.6). In this
chapter, however, we will limit our discussion to the PRISM codec [32].

This chapter is organized as follows. Sections 18.2 and 18.3 provide back-
ground information motivating the PRISM framework. Section 18.4 lists the
key architectural goals underlying the proposed PRISM framework. With a view
to quantify the key architectural traits of PRISM, we present the information–
theoretic performance limits of prediction-based and side information-based
video codecs in Section 18.5. These theoretical insights guide the practical im-
plementation of PRISM described in detail in Sections 18.6 and 18.7 along with
experimental results presented in Section 18.8.

With the continued expansion of high-speed wireless networks, such as third-
generation cellular networks, 802.11a/b/g (WiFi), and 802.16 (WiMAX), we ex-
pect the proliferation of “video sensor networks” in the near future. Typical video
sensor networks would be made up of multiple cameras with varying degrees of
spatially and temporally overlapping coverage, generating correlated signals that
need to be processed, compressed, and exchanged in a loss-prone wireless en-
vironment in order to facilitate real-time decisions. Since there would be a high
degree of spatiotemporal correlation in the data gathered by a video sensor net-
work, distributed source coding principles can provide useful tools for efficiently
exploiting this correlation. In Section 18.9 we discuss briefly how the PRISM
architecture can be scaled to scenarios involving multicamera applications.

1The loss of predictor information in inter-frame coding renders the residue information useless
from the point of view of decoding leading to fragility.

2In this work, by complexity we refer to motion search complexity.
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18.2 CONVENTIONAL VIDEO CODING BACKGROUND

This section quickly overviews the conventional video inter-frame motion-
compensated predictive coding (MCPC) architecture that underlies current video
coding standards such as the MPEGx and H.26x. Video is a temporal sequence
of two-dimensional images (also called frames). For the purpose of encoding,
each of these frames is partitioned into regular spatial blocks. These blocks are
encoded primarily in the following two modes.

1. Intra-Coding (I) Mode: The intra-coding mode exploits the spatial corre-
lation in the frame that contains the current block by using a block trans-
form such as the Discrete Cosine Transform. It typically achieves poor
compression, since it does not exploit the temporal redundancies in video.

2. Inter-Coding or Motion-Compensated Predictive (P) Mode: This mode
exploits both spatial and temporal correlations present in the video se-
quence, resulting in high compression. The high-complexity motion esti-
mation operation uses the frame memory to infer the best predictor block
for the block being encoded. Motion compensation provides the residue
between the predictor block and the block in question, which is then trans-
formed and encoded. Inter-coding is illustrated in Figure 18.1.

FIGURE 18.1: P-Frame coding (motion-compensated predictive video
coding): The current frame is divided up into blocks of n pixels. X is
the current block being encoded. Y1, . . . ,YM are M candidate predictor
blocks for X in the previous decoded frame within a search range. YT is
the best predictor for X. Z corresponds to the prediction error (or innova-
tions noise).
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FIGURE 18.2: A Group of Frames. I, intra-mode coded frames; P, mo-
tion-compensated predictive mode coded frames.

Typically, the video sequence is grouped into a Group of Frames (see Fig-
ure 18.2) where the first frame in the group is coded in Intra-mode only while
the remaining frames in the group are usually coded in Inter-mode.

Intra-coding has low encoding complexity and high robustness (being a self-
contained description of the block being encoded) but has poor compression ef-
ficiency. To offset this, the MPEGx and H.26x standards use MCPC to achieve
the compression needed to communicate over bandwidth-constrained networks.
However, MCPC suffers from two major drawbacks.

(a) Fragility to synchronization or “drift”3 between encoder and decoder in
the face of prediction mismatch, primarily due to channel loss, is a major
drawback of the current paradigms. This is a major problem in wireless
communication environments, which are characterized by noise and deep
fades.

(b) These frameworks are hampered by a rigid computational complexity par-
tition between encoder (heavy) and decoder (light) where the encoding
complexity is dominated by the motion search operation.

18.3 BACKGROUND ON SOURCE CODING WITH SIDE
INFORMATION

We now introduce the concept of source coding with side information (distrib-
uted source coding) by examining the following illustrative example [31] (see
Figure 18.3).

3Difference in frame memories at the encoder and the decoder results in the residue error being
encoded at the encoder off some predictor and decoded at the decoder off some other predictor caus-
ing drift. Scenarios such as transmission losses can lead to nonidentical encoder and decoder frame
memories.
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(a)

(b)

FIGURE 18.3: (a) Source coding with side information at both encoder
and decoder. (b) Source coding with side information only at the decoder.

18.3.1 Example for Source Coding with Side Information

Let X and Y be length 3-bit binary data that can equally likely take each of eight
possible values. However, they are correlated such that the Hamming distance
between them is at most 1. That is, given Y (e.g., [0 1 0]), X is either the same as
Y ([0 1 0]) or different in the first ([1 1 0]) or the middle ([0 0 0]) or the last bit
([0 1 1]). The goal is to efficiently encode X in the following two scenarios (see
Figure 18.3) so that it can be perfectly reconstructed at the decoder.

Scenario 1: In the first scenario (see Figure 18.3a), Y is present both at the
encoder and at the decoder. Here X can be predicted from Y . The residue (X⊕Y )
or the error pattern of X with respect to Y takes four distinct values and hence can
be encoded with 2 bits. The decoder can combine the residue with Y to obtain X.
We note that X is analogous to the current video block that is being encoded, Y

is analogous to the predictor from the frame memory, the correlation between X

and Y is analogous to the temporal correlation, hence this method corresponds to
predictive coding (Section 18.2).

Scenario 2: Here Y is made available to the decoder but the encoder for X

does not have access to Y as illustrated in Figure 18.3b. However, it does know
the correlation structure and also knows that the decoder has access to Y . This
scenario being necessarily no better than the first scenario, its performance is
limited by that of the first scenario. However, even in this seemingly worse case,
we can achieve the same performance as in the first scenario (i.e., encode X using
2 bits)!

This can be done using the following approach. The space of codewords of X

is partitioned into four sets each containing two codewords, namely Coset1 ([0 0
0] and [1 1 1]), Coset2 ([0 0 1] and [1 1 0]), Coset3 ([0 1 0] and [1 0 1]), and
Coset4 ([1 0 0] and [0 1 1]). The encoder for X identifies the set containing the
codeword for X and sends the index for the set (which can be described in 2 bits),
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also called syndrome, instead of the individual codeword. The decoder, in turn, on
the reception of the coset index (syndrome), uses Y to disambiguate the correct
X from the set by declaring the codeword that is closest to Y as the answer. Note
that the distance between X and Y is at most 1, and the distance between the two
codewords in any set is 3. Hence, decoding can be done perfectly.

Such an encoding method, where the decoder has access to correlated side in-
formation, is known as coding with side information (also called distributed
source coding). We note that Coset1 in the aforementioned example is a repeti-
tion channel code [27] of distance 3 and the other sets are cosets [12,13] of this
code in the codeword space of X. In channel coding terminology, each coset is as-
sociated with a unique syndrome. We have used a channel code that is “matched”
to the correlation distance (equivalently, noise) between X and Y to partition the
source codeword space of X (which is the set of all possible 3 bit words) into
cosets of the 3-bit repetition channel code. The decoder here needs to perform
channel decoding since it needs to guess the source codeword from among the
list of possibilities enumerated in the coset indicated by the encoder. To do so, it
finds the codeword in the indicated coset closest to Y . Since the encoder sends the
label or syndrome for the coset containing the codeword for X to the decoder, we
sometimes refer to this operation as syndrome coding.

The general source coding with side-information problem, where the source X

and decoder side information Y are discrete random variables and X is to be com-
municated losslessly to the decoder (as in the aforementioned example), has been
solved in literature [38] and is known as the Slepian–Wolf theorem. This result,
which gives the smallest rate required for communicating X, is summarized in
Section 18.3.2.

18.3.2 Source Coding with Side Information: Lossless Case

Consider the problems depicted in Figure 18.3. In Figure 18.3a, the side-
information Yn is available only to the decoder, while in Figure 18.3b it is avail-
able to both encoder and decoder. In both cases, let {Xi,Yi}ni=1 be i.i.d.∼ p(x, y),
where X and Y are discrete random variables drawn from finite alphabets X and
Y , respectively. The decoder is interested in recovering Xn perfectly with high
probability, that is,

P (n)
e = P

(
X̂n 
=Xn

)→ 0 as n→∞.

Now, from information theory [11] we know that the rate region for the problem
of Figure 18.3b, when the side information is available to both encoder and de-
coder, is R ≥H(X|Y). The surprising result of Slepian and Wolf [38] is that the
rate region for the problem of Figure 18.3a, when the side information is only
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available to the decoder, is also R ≥H(X|Y).4 Thus one can do as well when the
side information is available only to the decoder as when it is available to both
encoder and decoder.

We now turn to the case when we are interested in recovering Xn at the de-
coder to within some distortion. This is the subject matter of the Wyner–Ziv the-
orem [40] presented later (see Section 18.3.3), which extends distributed source
coding to the more general case of lossy coding with a distortion measure, which
is the case of interest for video.

18.3.3 Source Coding with Side Information: Lossy Case

Consider again the problem of Figure 18.3a. We now remove the constraint on X

and Y to be discrete and allow them to be continuous random variables as well.
We are now interested in recovering Xn at the decoder to within a distortion con-
straint D for some distortion measure d(x, x̂). Let {Xi,Yi}ni=1 be i.i.d. ∼ p(x, y)

and let the distortion measure be d(xn, x̂n)= 1
n

∑n
i=1 d(xi, x̂i ). Then the Wyner–

Ziv theorem [40] states that the rate–distortion function for this problem is

R(D)= min
p(u|x)p(x̂|u,y)

I (X;U)− I (Y ;U),

where

p(x, y,u)= p(u|x)p(x, y)

and the minimization is under the distortion constraint

∑

x,u,y,x̂

p
(
x̂ | u,y

)
p(u|x)p(x, y)d

(
x, x̂

)≤D.

Here U is the active source codeword and the term I (Y ;U)5 is the rate rebate due
to the presence of side information at the decoder. For the case when X and Y

are jointly Gaussian and the mean-squared error (MSE) is the distortion mea-
sure, it can be shown [40], using the Wyner–Ziv theorem, that the rate–distortion
performance for coding Xn is the same whether or not the encoder has access
to Yn (i.e., the encoder cannot use the knowledge of Yn for improving the rate–
distortion performance in coding Xn). Later in [30] it was shown that this also
holds true for the case of X = Y + Z, where Z is independent and identically
distributed Gaussian, and the distortion measure is the MSE. In general, however,

4The notation H(A) stands for the Shannon entropy of random variable A [11].
5The notation I (A;B) stands for the Shannon mutual information between two random variables A

and B [11].
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when compared with a predictive coding approach, the side information-based ap-
proach has a small loss in performance [42]. This loss is often termed Wyner–Ziv
rate loss. Let us now consider the following illustrative example from [23] for the
Wyner–Ziv problem.

18.3.4 Illustrative Example for Wyner–Ziv Coding

In this example, X is a real-valued number. The encoder will first quantize X to
X̂ with a scalar quantizer with step size δ (Figure 18.4). Clearly, the distance be-
tween X and X̂ is bounded as |X − X̂| ≤ δ/2. We can think of the quantizer as
consisting of three interleaved quantizers (cosets), each of step size 3δ. In Fig-
ure 18.4 we have labeled the reconstruction levels of the three quantizers as ‘A’,
‘B’, and ‘C’, respectively. The encoder, after quantizing X, will note the label of
X̂ and send this label to the decoder, which requires log2(3) bits on average.

The decoder has access to the label transmitted by the encoder and the side
information Y . In this example, we assume that X and Y are correlated such that
|Y −X|< δ. Thus, we can bound the distance between X̂ and Y as

∣
∣X̂− Y

∣
∣≤ ∣

∣X̂−X
∣
∣+ |X− Y |< δ

2
+ δ = 3δ

2
.

Because X̂ and Y are within a distance of 3δ
2 of each other and the reconstruc-

tion levels with the same label are separated by 3δ, the decoder can correctly find
X̂ by selecting the reconstruction level with the label sent by the encoder that is
closest to Y . This can be seen in Figure 18.4, which shows one realization of X

and Y .
In this example, the encoder has transmitted only log2(3) bits per sample, and

the decoder can correctly reconstruct X̂, an estimate within δ/2 of the source X.
In the absence of Y at the decoder, the encoder would need to quantize X on
an m-level quantizer of step-size δ. Thus, by exploiting the presence of Y at the

FIGURE 18.4: Distributed compression example: The encoder quan-
tizes X to X̂ and transmits the label of X̂, an ‘A’. The decoder finds the re-
construction level labeled ‘A’ that is closest to the side information, which
is equal to X̂.
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decoder, the encoder saves (log2(m)− log2(3))+ bits—this can be quite large if m

is large, which should be the case if the variance of X is large.
Intuitively, what is happening here is that the source quantizer is partitioned

into cosets of a channel code. We can think of the side-information Y as a free
(but noisy) version of the source X available at the decoder. The decoder decodes
this noisy version of X in a channel codebook (the specific codebook used will be
the coset specified by the encoder). Just as in channel coding, the decoder needs
to guess the source codeword from among a set of possible codewords. If the
channel code is strong enough, Y will be decoded correctly to X̂. Thus, the goal
is to partition a source codebook into good channel codes. We see that the Wyner–
Ziv problem requires a combination of source and channel coding. Note that this
was also true for the lossless case (the Slepian–Wolf problem) as illustrated in the
example of Section 18.3.1.

Let us now take a more formal look at Wyner–Ziv encoding and decoding.

18.3.5 Wyner–Ziv Encoding and Decoding

As in regular source coding, encoding proceeds by first designing a rate–distortion
codebook of rate R′ (containing 2nR′ codewords) constituting the space of quan-
tized codewords for X. Each n-length block of source samples X is first quantized
to the “nearest” codeword in the codebook. As in the illustrative example given
earlier, the quantized codeword space (of size 2nR′ codewords) is further parti-
tioned into 2nR cosets or bins (R < R′) so that each bin contains 2n(R′−R) code-
words. This can be achieved by the information theoretic operation of random
binning. The encoder only transmits the index of the bin in which the quantized
codeword lies and thereby only needs R bits/sample.

The decoder receives the bin index and disambiguates the correct codeword
in this bin by exploiting the correlation between the codeword and the matching
n-length block of side-information samples Y. This operation is akin to chan-
nel decoding. Once the decoder recovers the codeword, if MSE is the distortion
measure, it forms the minimum MSE estimate of the source to achieve an MSE
of D.

The optimal codec structure for this problem is illustrated in Figure 18.5 and
can be briefly described as follows. The reader is referred to [11] for details.

• Codebook Construction: As in regular source coding, we first construct a
codebook for quantization of source X to a random variable U . This is
done by drawing 2nR′ n-length vectors, each of whose components is in-
dependent and identically distributed according to the marginal distribution
pU(u), where pU,X(u, x) = p(x)p(u|x). For X = Y + Z, where Z is in-
dependent and identically distributed Gaussian of variance σ 2

Z , and MSE
distortion measure, we have p(u|x)=N (αx,Dα), and α := 1

D
(σ 2

Z −D).
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(a)

(b)

(c)

FIGURE 18.5: (a) Structure of distributed encoders. Encoding consists
of quantization followed by a binning operation. (b) Structure of distrib-
uted decoders. Decoding consists of “de-binning” followed by estimation.
(c) Structure of the codebook bins. The R–D codebook containing approx-
imately 2nR′ codewords is partitioned into 2nR bins each with approxi-
mately 2n(R′−R) codewords.

This constitutes the space of quantized codewords for X. As in the illus-
trative example given earlier, this quantized codeword space (of size 2nR′

codewords) is further partitioned into 2nR cosets or bins (R < R′) so that
each bin contains 2n(R′−R) codewords. This can be achieved by the infor-
mation theoretic operation of random binning.

• Encoding: Each n-length block of source samples X is first quantized to the
“nearest” codeword in the codebook. By standard rate–distortion theory
arguments [11], this can be ensured by choosing a rate R′ = I (X;U). The
encoder then transmits the index of the bin in which the quantized codeword
lies and thereby only needs R bits/sample.

• Decoding: The decoder receives the bin index and attempts to disambiguate
the correct codeword in this bin by exploiting the correlation between the
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codeword and the matching n-length block of side-information samples Y.
This operation succeeds (with high probability) if the bin size is not too
large to cause irrecoverable confusion: quantitatively, if R′ −R ≤ I (U ;Y).
Hence, R ≥ I (X;U) − I (U ;Y). For the choice of p(u|x) given earlier,
it can be shown that for X = Y + Z, where Z is independent and identi-
cally distributed Gaussian, and the MSE distortion measure, this is the same
rate distortion function as would be obtained if the side-information Y was
available to both encoder and decoder. As mentioned earlier, the decoding
operation is akin to channel decoding since the decoder needs to guess the
correct source codeword from all the possible codewords in the bin.

• Reconstruction: Once the decoder recovers the codeword, it forms the
best estimate of the source word using the recovered codeword and the
side information. For the MSE distortion case, the decoder forms the
minimum MSE estimate of the source-word X̂(j) to achieve a distortion
D, where X̂(j) = f (U(j),Y (j)) := E[X(j) | U(j),Y (j)], j = 1, . . . , n.
Here f (u, y)= u+ (1− α)y and the MSE is E(X− f (U,Y ))2 =D.

Thus, we see that Wyner–Ziv encoding is an interplay of both source and chan-
nel coding, requiring us to design a good source codebook that can be partitioned
into cosets of a good channel code.

18.3.6 Related Work

Before we describe the PRISM video compression framework, we briefly describe
some of the related research activity. As mentioned before, PRISM is founded
on the principles of distributed source coding, the information theory for which
was established in the Slepian–Wolf [38] and the Wyner–Ziv [40] theorems for
lossless and lossy cases, respectively. In fact, PRISM represents a generalization
of the latter to the case where there is uncertainty in side information [20].

The first instance of distributed compression ideas for video coding can be
found in [39], which pointed out the feasibility of distributed compression for
video coding. However, [39] merely offers a conceptual treatment; there are no
codec details and it does not address critical issues such as motion compensa-
tion. More recently, [32–34] proposed the PRISM distributed video codec system
based on the framework of [20] in a block-level setup with motion search at the
decoder. The distributed video coding problem was also independently studied
in [6]. Further, [22,37] study the robustness property associated with distributed
source coding and its application to video.

The idea of moving the computational burden away from the encoder was first
presented in [35] in an MCPC setup, where the task of motion estimation was
essentially transferred from the video encoder to the network terminal. In the
distributed video coding context, the concept of moving motion estimation to the
decoder was first presented in PRISM [32] and later in [17].
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Further, there has been a spate of research activity in the area of distributed
video coding addressing issues such as standards-compatible distributed video
coding architectures [29,37] and scalability in the distributed video coding frame-
work [36,41]. Finally, extensions of the PRISM framework from the point-to-
point single camera case (as in the distributed video coding application) to the
multicamera case (as in the video sensor network application) have been consid-
ered in [16,19,43].

18.4 ARCHITECTURAL GOALS OF PRISM

We now discuss the three major architectural goals of PRISM.

18.4.1 Compression Performance

As discussed before, it has been shown that in general, source coding with a
side–information-based approach can have a small loss in compression perfor-
mance when compared with a predictive coding approach [42]. However, it was
shown in [30,38,40] that in many situations of interest, the performance of a side-
information coding system can match that of one based on predictive coding, as
in the example given in Section 18.3.1.

We note that Coset1 in this example is a repetition channel code [27] of dis-
tance 3 and the other sets are cosets [12,13] of this code in the codeword space
of X. We have thus used a channel code that is “matched” to the unit correla-
tion distance (equivalently, noise) between X and Y to partition the source code-
word space of X into cosets. This reduces the encoding rate for X and enables
a side–information encoding system to give a high compression performance,
comparable to a predictive coding system.

We now revisit the video coding problem. Let X denote the current macro-block
to be encoded. Let Y denote the best (motion-compensated) predictor block for
X and let Y = X + N. Using the insight from the aforementioned example, we
can encode X by finding a channel code that is matched to the correlation noise
N (also called innovations process from X to Y) and use that to partition the
codeword space of X.

18.4.2 Robustness

A major goal of PRISM is in-built robustness to packet and frame drops in contrast
to what is possible with today’s video codecs. PRISM targets this by using the
“universally robust” side–information-based coding framework. The partitioning
of X in the example of Section 18.3.4 is universal, that is, the same partitioning
of X works for all Y regardless of the value of Y as long as both X and Y satisfy
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the correlation structure. Note that in this example, as long as |Y − X| < δ, the
decoder is guaranteed to recover the correct X̂.

Essentially, in the predictive coding framework the encoding for the current
unit hinges on a single deterministic predictor, the loss of which results in er-
roneous decoding and error propagation. A side-information coding-based para-
digm encodes the current unit, in principle, with respect to the correlation statis-
tics between the current unit and the predictor only. At the decoder, the availability
of any predictor that satisfies the correlation statistics enables correct decoding.
A valid question to ask is: how does PRISM differ from the conventional use of
Forward Error Correction (FEC) codes [27] on top of a MCPC compressed bit
stream? Primarily, we note that FEC-based solutions serve to minimize the prob-
ability of error, thereby reducing the likelihood of mismatch between the encoder
and the decoder but they cannot fix the mismatch when there is one (which is al-
most inevitable). Second, FEC-based solutions usually need large block lengths of
data for attaining good performance, thus adding to the overall end-to-end delay
while PRISM offers a low-latency solution.

18.4.3 Moving Motion-Search Complexity to the Decoder

Another architectural goal is to allow for a much more flexible distribution of
the computational complexity (motion search) between encoder and decoder, de-
pending upon device constraints, than is possible today. For example, in uplink-
rich media applications, it is desirable to move the bulk of the complexity from
the battery-power constrained encoder to the more capable decoder. PRISM facil-
itates this by allowing for partly or wholly moving the computationally intensive
motion search module to the decoder. That is, in addition to the conventional
high-complexity encoder and low-complexity decoder setting, PRISM also al-
lows for the reverse possibility comprising a low-complexity encoder and a high-
complexity decoder. The underlying theoretical paradigm for this is based on a
generalization of the Wyner–Ziv side-information coding framework to the case
where there is uncertainty at the receiver about the exact state of the side infor-
mation [20], as will be described in Section 18.5.1.

In this context, we would like to point out that in conventional MCPC systems
(where only the encoder performs motion search), a low-complexity encoding so-
lution can be realized by limiting the amount of motion estimation performed at
the encoder. This, however, decreases the overall compression efficiency of the
system. In the case of PRISM, while in theory motion complexity can be com-
pletely moved to the decoder with little loss of compression performance (as is
detailed in Section 18.5.1), in practice, however, we observe a similar complexity-
compression trade-off in the PRISM video codec with a no-motion PRISM en-
coder generally taking a hit in compression performance relative to an inter-frame
codec (see Section 18.8).
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However, when we consider the end-to-end performance of PRISM for the case
of transmission over a loss-prone channel, we can show that (see Section 18.5.3)
as the channel noise increases, doing a motion search at the encoder gives dimin-
ishing marginal utility. At the same time, as the channel degrades, the decoder
will need to search more among the list of available predictors to find one that
enables successful decoding.

18.5 A THEORY FOR DISTRIBUTED VIDEO CODING

In Section 18.4, we proposed the distributed compression paradigm as a feasi-
ble approach for addressing the architectural goals of PRISM. In this section, we
first describe a generalization of the concepts of lossy source coding with side
information to the case when there is uncertainty in the side information at the
decoder [20] (Section 18.5.1). This corresponds to the exact theoretical paradigm
that underlies the PRISM framework. We then present an analysis that showcases
the advantages of the side–information-based framework over the predictive cod-
ing framework when transmitting over a lossy channel (Section 18.5.2). We also
discuss the complexity performance trade-offs for a side–information-based video
codec when there are losses on the transmission channel (Section 18.5.3).

While the relatively simple models used in the following do not capture the
rich and complex video phenomenon in its entirety, they are powerful enough
to capture the essence of the problem at hand and offer valuable insights into
developing the practical PRISM solution.

18.5.1 Sharing Motion Complexity Between Encoder and Decoder

In [20], it was shown that for an interesting class of signal models, motion
complexity can be arbitrarily shared between encoder and decoder. Specifically,
in [20] the information-theoretic rate–MSE performance of encoding X when the
encoder does not have access to the decoded blocks in the previous frame(s), that
is, motion compensation is not possible at the encoder, is compared with the per-
formance when the encoder has access to all the correlated decoded blocks in the
previous frame(s) to encode X, as is done in contemporary video codecs that are
based on MCPC. The surprising answer is that both systems have the same per-
formance (when the innovations process has Gaussian statistics). In this section
we give a short overview of the results of [20].

18.5.1.1 A Motion-Compensated Video Model

A model for video signals is depicted in Figures 18.1 and 18.6. Here, a block of
pixels X in the current frame is modeled as the sum of a block of pixels YT in
the previous decoded frame that is spatially close to X and a block of independent
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FIGURE 18.6: Motion-indexed additive–innovations model for video
signals. X denotes a block of size n pixels in the current frame to be
encoded and {Yi}Mi=1 the set of blocks (each of size n) in the previous
decoded frame corresponding to different values of the motion vector in-
dexed by T .

FIGURE 18.7: Motion-Compensated Predictive Coding (MCPC). En-
coder sends motion using 1

n
logM bpp and the quantized residual Z using

R(D) bpp.

and identically distributed (i.i.d.) white Gaussian “innovations noise” Z. That is,
X=YT +Z where the parameter T ∈ {1, . . . ,M} (called motion index) accounts
for any motion that has occurred in consecutive frames.

18.5.1.2 Motion-Compensated Predictive Coding

We first derive the rate–MSE performance for the MCPC approach. Conventional
MCPC is done in the following two steps (see Figure 18.7).

(a) The encoder estimates and transmits the index of the estimated motion vector
to the decoder. The rate (bits per pixel or bpp) needed to specify T is given by
logM

n
.

(b) Once the decoder knows T , the video coding problem is reduced to the prob-
lem of compressing the “source” X using the correlated side-information YT now
available to both the encoder and the decoder. The solution to this problem is well
known: for a target MSE value of D, the minimum rate R(D) (in bpp) needed to
encode X is given by the smallest rate that is needed to quantize Z to the nearest
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codeword Ẑ within a distortion D. That is, R(D) is given by [11]

R(D)=min
(
0,0.5 log2(σ

2
Z/D)

)
. (18.1)

The decoder receives the quantized codeword and reconstructs the source block
as YT + Ẑ whose MSE is D. The total rate needed is logM

n
+R(D) bpp.

18.5.1.3 Distributed Video Coding

In this case, due to severely limited processing capability (or some other reason),
the encoder is disallowed from performing the complex motion-compensated pre-
diction task. This is in effect pretending that the encoder does not have access to
the previous decoded blocks Y1, . . . ,YM .

Help from an Oracle:
As an intermediate step, consider the situation depicted in Figure 18.8 where an
oracle reveals the true value of T only to the decoder (the encoder still does
not know T ). This is precisely the setup of the source coding with the decoder
side information problem [40]. As mentioned in Section 18.3.3, for the special
case of i.i.d. Gaussian statistics for Z, the performance in the coding with side–
information case is identical to MCPC, that is, the minimum bit rate needed to
achieve an MSE D is given by (18.1). The encoding and decoding operations are
as described in Section 18.3.3.
Reality: no oracle is available:
In the absence of the oracle, T is not available to the decoder and represents
an additional source of uncertainty (see Figure 18.9). However, it turns out that
this additional uncertainty can be overcome by decreasing the size of the bins or
equivalently by having more bins. This incurs an additional bit budget of 1

n
logM

bpp, which is precisely the bit budget needed by motion-compensated predictive
video codecs to convey the motion index to the decoder. The encoder uses the same
rate–distortion codebook as before. Whereas earlier each bin contained 2n(R′−R)

FIGURE 18.8: Wyner–Ziv codec with Oracle. Oracle reveals YT to the
decoder only. Encoder does not have access to or is constrained from using
Y1, . . . ,YM .
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FIGURE 18.9: Low encoding complexity-distributed video codec. The
encoder is incapable of using the previous decoded blocks. The decoder
does not know the hidden motion index T .

codewords, now each bin will contain 2n(R′−R− 1
n

logM) codewords. Upon receiv-
ing a bin index, the decoder tries each Yi in turn and stops as soon as it has found
a codeword in the bin with which it is “sufficiently strongly correlated” according
to the joint component statistics expected of YT and the quantized representation
of X.6 This is like a “block-matching” motion-compensation operation but done
at the decoder. It can be rigorously demonstrated that this algorithm not only finds
the correct quantized codeword of X, but also recovers the correct motion index T

with high probability [20].
We have thus summarized an information-theoretic construction that enables

shifting the motion complexity to the decoder without losing any performance
relative to MCPC.

18.5.2 Robustness to Transmission Errors

In this section, we present an information-theoretic analysis for a very simple
mismatched side-information problem that clarifies the nature of the drift prob-
lem associated with predictive coding and the value of distributed coding. This
will highlight the superior robustness properties of the distributed video coding
approach.

Consider the setup depicted in Figure 18.10. Here, X = Y + Z stands for the
data source that needs to be transmitted, Y denotes the predictor for X available
at the encoder with associated independent innovations Z, and Y ′ = Y +W is the
predictor for X available at the destination. Here, W denotes the accumulated drift
noise that cannot be observed at the encoder. We shall compare the performance of
the predictive and distributed approaches for communicating X to the destination
for two cases detailed later. In this analysis, we will consider that the encoder does
a motion search and finds the best block to use from the previous frame(s) (which
is the predictor Y ) and sends the motion vector to the decoder. Hence, the decoder
knows what side information to use, unlike in Section 18.5.1.3. At the end of this

6This is also referred to as “jointly typical decoding” [11].
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FIGURE 18.10: Problem setup: The encoder needs to compress the
source X = Y + Z. Y is the predictor available to the encoder while
Y ′ =(Y +W ) is the “drifted” predictor available to the decoder.

section, we will return to the model of Section 18.5.1.3, where the decoder needs
to perform a motion search to find the correct side information to use.

18.5.2.1 Discrete Data, Lossless Recovery

The encoder does not have access to the realization of the drift random variable
W , only to the joint statistics of Y , Z, and W . We assume that Z is independent
of Y and Y ′. The goal is to ensure that X̂ is equal to X with high probability. It
can be shown (see [28]) that the optimal solution is to ignore Y at the encoder and
hence, using the Slepian–Wolf theorem [38], the smallest encoding rate in bits per
sample needed to convey X losslessly to the decoder is given by

Rdsc =H
(
X|Y ′).

Here the subscript “dsc” stands for distributed source coding.
We now outline the derivation of a lower bound on the rate required by a pre-

dictive coding system. The predictive coding system first forms the innovations Z

and sends it to the decoder, incurring a total rate of H(Z) bits per sample. If
there is no drift between the encoder and the decoder (W = 0), the decoder can
recover Z and use Y to recover X. However, with a nonzero drift between the en-
coder and the decoder, an additional drift correction rate needs to be incurred. But
the encoder does not have access to the realization of the drift random variable W .
To correct for the drift, the best that the encoder can do is to use a distributed
source coding approach to convey the missing information needed to recover X.
This incurs an extra rate of H(X|Z,Y ′) bits per sample. Note, however, that this
method of using distributed source coding to correct for the drift is not followed
by the MPEGx or H.26x standards and so we can term this extra rate to correct for
drift as a lower bound for the extra rate required by the predictive coding system
to correct the drift. Hence, the predictive coding approach needs a total bit rate
not smaller than

Rlb
pc =H(Z)+H

(
X |Z,Y ′

)=H(Z)+H
(
Y +Z | Z,Y ′

)=H(Z)+H
(
Y |Y ′),
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where the subscripts “pc” and “lb” stand, respectively, for predictive coding
and lower bound. The last equality follows from the fact that Z is independent
of Y . The last expression suggests an alternative interpretation for Rpc. The term
H(Y |Y ′) can be interpreted as the rate required to “correct” the side information,
that is, resynchronize the encoder and the decoder frame memories.

Note that H(Z|Y ′)=H(Z) since Z is independent of Y ′. So, we have

Rlb
pc = H(Z)+H

(
X | Z,Y ′

)

= H
(
Z|Y ′)+H

(
X |Z,Y ′

)

= H
(
Z,X | Y ′)

= H
(
X|Y ′)+H

(
Z |X,Y ′

)

= Rdsc +H
(
Z |X,Y ′

)
.

The rate penalty due to drift for the predictive coding approach over the distrib-
uted source coding approach is then

Rlb
pc −Rdsc =H

(
Z |X,Y ′

)=H
(
(X− Y) |X,Y ′

)=H
(
Y |X,Y ′

)
,

which is always nonnegative and zero only when Y = Y ′ (i.e., W = 0) or if Z = 0.
The rate penalty Rlb

pc − Rdsc evaluated earlier is significant only if the “inno-
vations” component H(Z) and the “channel noise” component H(Y |Y ′) are both
large [since H(Z | X,Y ′) ≤ H(Z) and H(Y | X,Y ′) ≤ H(Y |Y ′)]. This is not
surprising since when H(Z) is small the two-step approach is not “wasting” a
lot of rate by sending H(Z) simply because it does not require a lot of bits to
send H(Z). However, when H(Y |Y ′) is small, the drift is small and it does not
take too many bits to correct it (in the extreme case when there is no drift, predic-
tive coding is, of course, optimal). However, the interesting case is really when
the drift is significant and it is in this case that the aforementioned rate penalty
is also significant. Hence, when there is significant drift, the predictive coding
framework can be quite suboptimal.

18.5.2.2 Jointly Gaussian Data, Recovery with MSE ≤ D

We now present a rate–distortion analysis for the two approaches in a jointly
Gaussian setting. Random variables Y,Z,W are jointly Gaussian and mutually
independent Gaussian random variables with variances σ 2

y , σ 2
z , σ 2

w , respectively.

Let U denote the quantization random variable (the output of the encoder) and X̂

the reconstruction random variable. We are interested in recovering X to a target
distortion D.
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It can be shown [28] that the optimal solution here is to ignore Y at the encoder
and hence, using the Wyner–Ziv theorem [40], the smallest encoding rate in bits
per sample needed is

Rdsc(D)= min
p(u|x)p(x̂|u,y′)

I
(
X;U | Y ′)= min

p(u|x)p(x̂|u,y′)
I (X;U)− I (Y ;U),

where Y ′ = Y +W and the minimization is under the constraint that the overall
expected distortion is at most D where MSE is the distortion measure. Then we
have the following theorem:

Theorem 18.5-1. For jointly Gaussian and mutually independent random vari-
ables, Y,Z,W with variances σ 2

y , σ 2
z , σ 2

w , respectively, and an MSE distortion
measure, let X = Y +Z be the source to be encoded with Y available at the en-
coder and Y ′ = Y +W available at the decoder. Then the rate–distortion function
for the distributed source coding approach is

Rdsc(D)=max

(
0,

1

2
log2

σ 2
z + σ 2

y σ 2
w/(σ 2

y + σ 2
w)

D

)
. (18.2)

For the proof of Theorem 18.5-1 please refer to [28].
As in Section 18.5.2.1, we lower bound the rate required by the predictive cod-

ing system using a two-step approach. The predictive coding system quantizes Z

to Ẑ with a distortion D. We assume D < σ 2
z since otherwise the predictive cod-

ing system will not encode the innovations at all. If the encoder and the decoder
use identical predictor information, X̂ can be recovered from Ẑ as X̂ = Ẑ+Y . In
the general case, however, there is a drift between the encoder and the decoder.
As in Section 18.5.2.1, the encoder needs to spend an additional rate (using dis-
tributed coding techniques) to correct for the drift, thus resulting in a total rate

Rlb
pc(D)= I

(
Z; Ẑ)+ min

p(u|x)p(x̂|u,y′,ẑ)
I
(
X;U | Y ′, Ẑ), (18.3)

where Y ′ = Y +W and the minimization is under the constraint that the over-
all expected distortion is at most D where MSE is the distortion measure.
The rate required to correct the drift (using Wyner–Ziv techniques) is given by
minp(u|x)p(x̂|u,y′,ẑ) I (X;U |Y ′, Ẑ). Then we have the following theorem.

Theorem 18.5-2. For jointly Gaussian and mutually independent random vari-
ables, Y,Z,W with variances σ 2

y , σ 2
z , σ 2

w , respectively, and an MSE distortion
measure, let X = Y + Z be the source to be encoded with Y available at the
encoder and Y ′ = Y + W available at the decoder. Then for target distortion
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D < σ 2
z , the rate distortion function for the two-step predictive coding and drift

correction method is

Rlb
pc(D)= 1

2
log2

σ 2
z (D + σ 2

y σ 2
w/(σ 2

y + σ 2
w))

D2
. (18.4)

For the proof of Theorem 18.5-2 please refer to [28].
Note that when D < σ 2

z ,

Rdsc(D)= 1

2
log2

σ 2
z + σ 2

y σ 2
w/(σ 2

y + σ 2
w)

D
.

The rate penalty due to drift for the predictive coding approach over the distributed
source coding approach is then

Rlb
pc −Rdsc = 1

2
log2

1+A/D

1+A/σ 2
z

,

where A= σ 2
y σ 2

w/(σ 2
y + σ 2

w). For the range of interest D < σ 2
z , the difference is

positive. In fact, Rlb
pc ≥Rdsc, with Rlb

pc =Rdsc if D ≥ σ 2
z , or σ 2

y = 0, or σ 2
w = 0. In

the context of video coding, D ≥ σ 2
z is akin to the case of not sending the block

at all (the “skip” mode), σ 2
y = 0 is like not having any useful predictor available

(the “intra” mode), and σ 2
w = 0 implies that the encoder and decoder are in sync

(no drift). For all other cases, Rlb
pc > Rdsc.

Further, we note in the high-quality regime (i.e., D→ 0), we have

lim
D→0

Rpc −Rdsc

Rdsc
→ 1, (18.5)

that is, the predictive coding system needs nearly double the rate as compared to
the distributed coding system.7

The analysis of this section is readily extended to the multiple predictors case
of Section 18.5.1 where the side information at the decoder is not known exactly
and is only known to be one among a set of predictors {Yi}ni=1.

To see this, note that the rate–distortion functions for the case when the side
information is known at the decoder (the motion vector is known) and the case
when it is not (the motion vector is unknown) are identical (as n→∞) [20]. That
is, the problems depicted in Figures 18.9 and 18.8 have the same rate–distortion
function. Thus it is sufficient to consider the case when the side information is
known at the decoder, which is the case considered here.

7Equation (18.5) can be proved using L’Hospital’s rule.
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18.5.3 Complexity Performance Trade-Offs

In the previous sections of this chapter, we had assumed perfect knowledge of
the correlation statistics at both the encoder and the decoder. However, real-world
video encoding algorithms involve an “online” learning of the correlation statis-
tics through the process of motion estimation. Typically, the more the complexity
invested in the motion estimation process, the more accurate is the estimate of
the statistics leading to better compression performance. While this is true for the
case of transmission over a clean channel, in the following we show that, using a
distributed video coding approach over a lossy channel, the marginal value of ac-
curately learning the correlation statistics at the encoder diminishes as the channel
noise increases.

Let X be the block to be encoded. Let Y= (Y1, Y2, . . . , YM) be the set of pre-
dictors available to the encoder for the block X. Let Y′ = (Y ′1, Y ′2, . . . , Y ′M) be the
set of predictors available to the decoder for the same block. Here Y′ is a noisy
version of Y (due to previous transmission errors). We assume that X↔Y↔Y′
form a Markov chain, that is, the set of predictors Y′ is a degraded version of the
set of predictors Y. As in Section 18.5.2.1, we are interested in communicating X

losslessly to the decoder.
Note that the minimum rate required to losslessly communicate X to the de-

coder is Rdsc =H(X|Y′), since Y′ is the side information available to the decoder.
It can be shown [21] that this rate is

Rdsc =H
(
X|Y′)=H

(
Y|Y′)+H(X|Y)−H

(
Y |X,Y′

)
.

Since we are interested in observing the effect of channel noise, we will upper
bound Rdsc by neglecting the last term (since H(Y | X,Y′) can at most increase
to H(Y|X) as the noise increases). So

Rdsc ≤H
(
Y|Y′)+H(X|Y). (18.6)

Note that the term H(X|Y) is a measure of the source correlation while H(Y|Y′)
is a measure of the effect of channel noise. Further, also note that

H(X|Y1)≥H(X | Y1, Y2)≥ · · · ≥H(X|Y).

H(X|Y1) can be thought of as the encoder estimate of H(X|Y) if the encoder
only looked at one predictor from the previous frame. Similarly, H(X | Y1, Y2)

would be the encoder estimate of H(X|Y) if it looked at two predictors from
the previous frame, and so on. Thus, we will get better estimates of H(X|Y) as
we search the list of predictors (motion search). However, as (18.6) shows, the
rate Rdsc depends on the sum of the correlation noise and the channel noise. For a
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fixed correlation noise, the reduction in Rdsc , as we find the correlation noise more
accurately (through more motion search), diminishes as we increase the channel
noise.

18.6 PRISM: ENCODING

We have thus summarized a system-level information theory for distributed video
coding with the goal of addressing the feasibility of the architectural goals of
PRISM. In extending these methods to the real-world video scenario, we recog-
nize that we are dealing with sources having complex correlation noise struc-
tures that are imprecisely known, requiring estimation models. In this context, we
would like to point out a principal reason underlying the success of current video
coding standards (H.26x and MPEGx), namely their ability to model, estimate,
and process motion as a local block-level phenomenon. Realizing that accurate
motion modeling is the key to success, we have based our implementation of the
PRISM on the local block-motion, block-DCT, block-coding framework.

We now list the main aspects of the PRISM encoding process. We note that
the video frame to be encoded is divided into nonoverlapping spatial blocks (we
choose blocks of size 8× 8 in our implementation).

18.6.1 Decorrelating Transform

We first apply a DCT on the source block. The transformed coefficients X are
then arranged in a one-dimensional order (size 64) by doing a zig-zag scan on the
two-dimensional block (size 8× 8).

18.6.2 Quantization

Following this, we apply a scalar quantizer. The transformed coefficients are
quantized with a target quantization step size chosen based on the desired re-
construction quality (as in [10]).

18.6.3 Classification

The next step involves the design of a Wyner–Ziv codebook in order to exploit
the correlation between the source and the side information. In this context, it
is convenient to view individual quantized coefficients in a block in terms of bit
planes, as shown in Figure 18.11. Correlation between a source coefficient Xi

(i ∈ {0,1, . . . ,63}) and the corresponding side-information Yi can be interpreted
in terms of the number of most-significant bit planes of the quantized representa-
tion of Xi that can be inferred from side-information Yi (Figure 18.11 illustrates
this with the bits corresponding to the white color being predictable using the
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FIGURE 18.11: A bit plane view of a block of 64 coefficients. Bit
planes are arranged in increasing order with 0 corresponding to the
least-significant bit.

decoder side information). The remaining least-significant bit planes (shown in
gray and black in Figure 18.11) are not inferable at the decoder and need to be
encoded. These bits constitute the Wyner–Ziv encoding (syndrome) for source
coefficient Xi .

This is also illustrated in Figure 18.12. Here Ui corresponds to the quantized
representation for Xi with a target step-size δ. Starting from the least-significant
bit plane of Ui , each successive bit plane identifies a partition of codewords con-
taining Ui . The number of least-significant bits that need to be communicated to
the decoder is given by the tree depth for which the distance between successive
codewords in the partition is greater than twice the correlation noise magnitude
between Ui and Yi . This would enable correct decoding (in other words, inferring
the remaining most-significant bit planes) of Ui at the decoder using Yi . Clearly,
the higher the correlation, the smaller the correlation noise, the greater the num-
ber of most-significant bit planes that can be predicted from the side information.
The Wyner–Ziv encoding of a source block X thus corresponds to a suitable num-
ber of least-significant bit planes for each coefficient Xi such that the remaining
(most-significant) bit planes can be inferred at the decoder.

While the previous paragraph describes the method for Wyner–Ziv encoding of
source block X, one important difference between the aforementioned description
and the problem at hand is that the aforementioned description assumes knowl-
edge of the correlation structure between X and Y at the encoder. In practice,
however, this structure is not known precisely and needs to be estimated for better
compression performance. It is for this reason that we use a classification module
in our approach, with the goal of estimating the correlation noise between each
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FIGURE 18.12: Partitioning of the quantization lattice into levels. Xi is
the source, Ui is the (quantized) codeword, and Yi is the side information.
The number of levels in the partition tree depends on the effective noise
between Ui and Yi .

video block and its temporal predictor from frame memory, as measured in num-
ber of most-significant bits that are predictable at the decoder for every quantized
coefficient.

Real-world video sources exhibit a spatiotemporal correlation noise structure
with highly varying statistics. Spatial blocks that are a part of the scene back-
ground or relate to previous frames via simple/regular motion exhibit high corre-
lation with their temporal predictor blocks (i.e., they are associated with correla-
tion noise N that is “small”). However, blocks that are a part of a scene change,
occlusion, or arise from irregular motion have little correlation with their temporal
predictor blocks (“large” N). Our classification module deploys block-motion es-
timation to infer the correlation noise between the current 8× 8 spatial block and
its temporal predictors. As discussed in Section 18.5.3, depending on the avail-
able complexity budget, as well as the prevailing channel conditions, the clas-
sification module can perform varying degrees of motion search, ranging from
an exhaustive motion search to a coarse motion search to no motion search at
all. We now discuss our implementation of the classification module for two ex-
treme configurations—one corresponding to little motion search and the other
corresponding to an exhaustive motion search. The compression/robustness per-
formance of these schemes is presented later in Section 18.8.

(a) No motion search: In this case, we use the residue information between the
current block (considered in the pixel domain) and the colocated block in the pre-
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vious frame (corresponding to zero motion) to infer the correlation noise N and,
consequently, the number of least-significant bits that need to be communicated to
the decoder. We use a combination of online measurements and off-line training
to accomplish this objective.

• We first determine the scalar mean-squared error E corresponding to the
residue information between the current block and its zero-motion predic-
tor.

• The appropriate “class” for the current block is then determined by thresh-
olding E using a set of predetermined threshold values. We use a set of 15
thresholds (Ti where i ∈ {0, . . . ,14}) in our implementation corresponding
to 16 classes labeled 0 through 15. Class i is chosen when Ti−1 ≤E < Ti .

• Each class i is associated with a block correlation noise Ni whose statis-
tics were determined using off-line training.8 The inferred block correlation
noise is used to determine the number of least-significant bits for individual
coefficients that need to be communicated to the decoder.

• Note that by following this procedure, we have made a conservative de-
termination of the correlation noise between the current block and its best
motion-compensated temporal predictor block. As a result of this, due to the
need to communicate more bit planes to the decoder, we can incur excessive
bit rate. We treat this inefficiency by jointly encoding the most-significant
bit planes of individual coefficients that need to be communicated to the
decoder with a coset channel code. These bit planes correspond to the gray
color in Figure 18.11. The remaining least-significant bit planes, shown in
black in Figure 18.11, are encoded using a suitable entropy code. This is
further detailed in Section 18.6.4.

(b) High-complexity motion search: Similar to conventional video encoders, in
this case, we make a precise determination of the correlation noise between the
current block and its best motion-compensated temporal predictor. The residue
information between the current block and its motion-compensated temporal pre-
dictor is used to obtain the number of least-significant bits for individual coef-
ficients that need to be communicated to the decoder. In terms of Figure 18.11,
these bit planes correspond to black color (there is no gray color in this case) and
are encoded using a suitable entropy code. Optionally, we can also indicate the
chosen motion vector at the encoder as a part of the bitstream.

8We consider Ni in the transform domain where the absolute values of its components were mod-
eled as a set of independent Laplacian random variables {Ni

0,Ni
1,Ni

2, . . . ,Ni
63}. The parameters cor-

responding to the various Laplacian random variables (a Laplacian random variable is completely
characterized by its mean value) belonging to different classes were obtained by off-line training. We
used a long news clip from the “Euronews” TV channel to derive these statistics. The choice of the
Laplacian model was based on its success as reported in the literature [6] and by our experiments on
statistical modeling of residue coefficients in the transform domain.
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18.6.4 Syndrome Encoding

The syndrome encoding step is assigned the task of encoding the least-significant
bits of individual coefficients in a block (as determined by the classification step)
in an efficient manner. As described in Section 18.6.3, the least-significant bit
planes for individual coefficients in a block fall under two cases—bit planes cor-
responding to black in Figure 18.11 are encoded using an entropy code and bit
planes corresponding to gray are encoded using a coset channel code.

(a) Entropy Coding: We note that contemporary video compression standards
including [1,3,10] use a (run, level, sign, last) 4-tuple9-based alphabet for entropy
coding the residue information. Given the alphabet, the actual entropy coding is
then accomplished by using Huffman coding [11] or arithmetic coding [25].

In our implementation, we use a variant of this method for defining the alpha-
bet used for entropy coding of the least-significant bit planes shown in black in
Figure 18.11. Our entropy coding alphabet consists of (run, depth, path, last)
4-tuple. Here run indicates the number of coefficients prior to the current coef-
ficient for which no bit planes are encoded, depth indicates the number of least-
significant bit planes encoded for the current coefficient, and path indicates the
bit path in the binary tree that specifies the coset containing the current coefficient.
The number of values taken by path is given by 2depth. The entry last has iden-
tical meaning to the corresponding term used in contemporary video compression
standards. We use an arithmetic coding engine that operates on this alphabet to
efficiently code the syndrome information.

(b) Coset Channel Coding: As mentioned in Section 18.6.3, for the case of an
encoder with no motion search, we make a conservative determination of corre-
lation noise between the current block and its best motion-compensated tempo-
ral predictor block. As a result of this, due to the need to communicate more bit
planes to the decoder, we can incur excessive bit rate. We treat this inefficiency by
jointly encoding the topmost least-significant bit planes (corresponding to gray in
Figure 18.11) using a coset channel code. These bits are encoded using the parity
check matrix [27] of an (n, ki) linear error correction code. si = Hibi , where si

and Hi represent the syndrome and parity check matrix corresponding to the ith
linear channel code and bi represents the corresponding input bits. The encoding
rate for this case is given by (n− ki)/n bits per coefficient.

9A block of quantized residue coefficients is interpreted as a set of (run, level, sign, last) tuples
where run indicates the number of coefficients with a value equal to zero before a nonzero coeffi-
cient residue, level indicates the absolute value of the nonzero coefficient residue, sign indicates the
sign associated with the nonzero coefficient residue, and the binary-valued last indicates whether the
nonzero coefficient is the last in the block.
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Since we have small block lengths at our disposal (640 samples for an 8× 8
block), we use the relatively simple BCH [27] block codes, which work well even
at reasonably small block lengths (unlike more sophisticated channel codes, such
as LDPC codes [15] and turbo codes [7]). The parameter ki associated with the ith
channel code is a function of the class i (see Section 18.6.3) to which the block
belongs. The parameters for each class were chosen by using the error probability
versus SNR performance curves of the various BCH codes.

18.6.5 Hash Generation

When the encoder is of low complexity and/or the channel is lossy, we require the
decoder to perform motion search. For this case, unlike the classical Wyner–Ziv
coding setup, we have several side-information candidates Yi at the decoder cor-
responding to various motion-predictor choices (as described in Section 18.5.1).
The decoder does not know the “best” predictor for the block X. In theory (see
Section 18.5.1), it is possible to find the best predictor and decode the block X
through joint-typical decoding. In practice, however, joint-typical decoding is
not feasible given the short block lengths and the complexity constraints at the
decoder. Accordingly, the encoder needs to transmit not only the syndrome for
the side–information-encoded coefficients, but also a hash signature (of sufficient
strength) for the quantized sequence codewords.

For this purpose, we use a cyclic redundancy check (CRC) checksum as a “sig-
nature” of the quantized codeword sequence. In contrast to the conventional par-
adigm, it is the decoder’s task to do motion search here, and it searches over the
space of candidate predictors one by one to decode a sequence from the set la-
beled by the syndrome. When the decoded sequence matches the CRC check,
decoding is declared to be successful. Note that the CRC needs to be sufficiently
strong so as to act as a reliable signature for the codeword sequence. For this rea-
son, we use a 16-bit checksum, which has a reasonable error performance, in our
implementation.

18.6.6 Summary

The bit stream associated with a block is illustrated in Figure 18.13. Depending
on the scenario at hand, different subsets of these fields are used to represent
the block. For instance, for the case when we are interested in pure compression

FIGURE 18.13: Bit stream associated with a block.
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FIGURE 18.14: Functional block diagram of the encoder.

FIGURE 18.15: Functional block diagram of the decoder.

performance, since there is no need for motion search at the decoder, we do not
indicate the hash signature associated with a block. Instead, like conventional
video compression standards, we indicate the motion vector information for the
current block, as determined by the encoder.

Figure 18.14 summarizes the encoding process through the overall encoder
block diagram.

18.7 PRISM: DECODING

The block diagram of the PRISM decoder is shown in Figure 18.15. We note that
when the decoder does not have to do a motion search, the encoder sends the
motion vector that points to the correct side-information block to use and hence
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the motion search and CRC check modules in Figure 18.15 are unnecessary. We
now describe the main decoder modules.

1. Generation of Side Information (Motion Search): The decoder does a
motion search to generate candidate predictors, which are tried one by one
to decode the sequence of quantized codewords from the set labeled by
the received syndrome. In our current implementation, a half-pixel mo-
tion search is used to obtain various candidate predictors, as is also done
at the encoding side in the standard video algorithms [1,4,10]. We reiter-
ate that the framework is very general so as to accommodate any other
sophisticated motion estimation procedures, such as multiframe prediction
[18], variable block-sized motion estimation [4], and optical flow [24]. The
choice of a more sophisticated algorithm can only serve to enhance the per-
formance of the PRISM paradigm.

2. Syndrome Decoding: Each of the candidate predictors generated by the
motion search module forms the side-information (Y) for the syndrome
decoding step. The syndrome decoding consists of two steps. In the first
step, the bits that were entropy coded (the black-colored bit planes in Fig-
ure 18.11) are run through an entropy decoder to recover the source bits. If
there are no coset channel-coded bit planes (the gray-colored bit plane in
Figure 18.11), then the entropy-decoded bits uniquely identify the coset in
which the side-information Y must be decoded. If there is a coset channel-
coded bit plane, then the syndrome from the coset channel encoding opera-
tion, together with the entropy-decoded bits, specifies the coset in which Y
must be decoded. In the second step, soft decision decoding is performed
on the side information, Y, to find the closest codeword within the spec-
ified coset. In general, soft decision decoding is computationally inten-
sive for block codes. To reduce the computational burden, we chose to use
ordered-statistics decoding [14]. Soft decision decoding based on [14] is
near optimal with a loss in performance on the order of 0.2–0.3 dB.

3. Hash Check: Since for every candidate predictor, we will decode one
codeword sequence from the set of sequences labeled by the syndrome
that is nearest to it, the hash signature mechanism is required to infer the
codeword sequence intended by the encoder. Thus for every decoded se-
quence we check if it matches the transmitted hash. If so, then the decoding
is declared to be successful. Else using the motion search module, the next
candidate predictor is obtained and then the whole procedure is repeated.
When correct, the syndrome decoding process recovers the base quantiza-
tion intervals for the coefficients that are syndrome encoded.

4. Estimation and Reconstruction: Once the quantized codeword sequence
is recovered, it is used along with the predictor to obtain the best recon-
struction of the source. In our current implementation, we use the best
mean-squared estimate from the predictor and the quantized codeword
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to obtain the source reconstruction. However, any sophisticated signal
processing algorithm (e.g., spatiotemporal interpolation) or post process-
ing mechanism can be deployed in this framework, which can only serve
to improve the overall performance.

5. Inverse Transform: Once all the transform coefficients have been dequan-
tized, the zig-zag scan operation carried out at the encoder is inverted to
obtain a two-dimensional block of reconstructed coefficients. The trans-
formed coefficients are then inverted using the inverse transform so as to
give reconstructed pixels.

18.8 SIMULATION RESULTS

In this section, we present some preliminary simulation results that illustrate the
various features of PRISM. As mentioned earlier, we use the block size 8 × 8
processing primitives for the motion search, DCT, and entropy coding, same as in
the H.263+ codec [10] when used in the advanced prediction mode. Thus for the
purpose of a fair comparison, we use the H.263+10 codec as our reference system.

Compression Performance Tests: For tests on pure compression performance,
both PRISM and the reference predictive codec use a full-motion search at the
encoder. Figure 18.16 shows a comparison of the compression performance of
the PRISM video coding algorithm and H.263+ for the first 15 frames of the
Football (352× 240, 15 fps) and Stefan (176× 144, 15 fps) sequences. As can be
seen from Figure 18.16, the performance of the proposed scheme nearly matches
that of H.263+. This shows that distributed source coding-based video coding can
approach the performance of prediction-based coders when it can estimate the
correlation structure accurately through the use of good-motion models.

Robustness tests: For robustness tests, PRISM uses the frame difference-based
low-complexity classifier. The objective here is to show that even with a low-
complexity encoder PRISM can outperform a predictive codec when there are
channel losses.

For these robustness tests we used a wireless channel simulator obtained from
Qualcomm Inc. This simulator adds packet errors to multimedia data streams
transmitted over wireless networks conforming to the CDMA2000 1X stan-
dard [2]. (The packet error rates are determined by computing the carrier to
interference ratio of the cellular system.) We tested PRISM, H.263+, H.263+
protected with FEC codes (Reed–Solomon codes used, 20% of total rate used
for parity bits), and H.263+ with intra-refresh over this simulated wireless chan-
nel. Figure 18.17 shows the performance comparison of these four schemes over

10Obtained from the University of British Columbia, Vancouver.



622 Chapter 18: DISTRIBUTED VIDEO CODING

(a)

(b)

FIGURE 18.16: Lossless channel results: Comparison of proposed Dis-
tributed Video Coding (DVC) algorithm and H.263+ for (a) the Football
sequence (352 × 240, 15 fps) and (b) the Stefan sequence (176 × 144,
15 fps).

a range of error rates for the Football (352 × 240, 15 fps, 1700 kbps), Stefan
(176×144, 15 fps, 720 kbps), Football (176×128, 15 fps, 160 kbps), and Flower
Garden (176 × 128, 15 fps, 700 kbps) sequences. Figure 18.17 clearly demon-



Section 18.8: SIMULATION RESULTS 623

(a) (b)

(c) (d)

FIGURE 18.17: Lossy channel results: Comparison of the PRISM Dis-
tributed Video Coding algorithm, H.263+, H.263+ protected with Forward
Error Correcting (FEC) codes (Reed–Solomon codes used, 20% of total
rate used for parity bits), and H.263+ with intra-refresh over a simulated
CDMA2000 1X channel for (a) the Football sequence (352× 240, 15 fps,
1700 kbps), (b) the Stefan sequence (176× 144, 15 fps, 720 kbps), (c) the
Football sequence (176× 128, 15 fps, 160 kbps), and (d) the Flower Gar-
den sequence (176× 128, 15 fps, 700 kbps).

strates the superior robustness properties of PRISM. While the decoded quality
for the H.263+ system decreases drastically with an increase in packet error rate
and saturates at a low value, the decoded quality for PRISM degrades in a graceful
fashion.

Figure 18.18 shows the decoded visual quality for the three schemes for the
Football (352 × 240, 15 fps, 1700 kbps) sequence at 8% average error rate. As
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(H.263+) (H.263+ with FEC)

(PRISM)

FIGURE 18.18: Decoded visual quality of the 9th frame of the Foot-
ball sequence (352 × 240, 15 fps, 1700 kbps) encoded using PRISM,
H.263+, and H.263+ protected with Forward Error Correcting (FEC)
codes (Reed–Solomon codes used, 20% of total rate used for parity bits).
In each case 15 frames were encoded and then sent over a simulated
CDMA2000 1X channel. Note that there are very noticeable artifacts for
both H.263+ and H.263+ protected with FECs while PRISM has been able
to recover from past errors.

can be seen in Figure 18.18, PRISM is able to recover from past errors while
error propagation continues to occur for both H.263+ and H.263+ protected with
FECs.

As mentioned earlier, PRISM does not do any motion search at the encoder and
so loses to H.263+ at a 0% loss rate due to inaccurate modeling of the DFD statis-
tics. However, as channel noise increases, the importance of such accurate mod-
eling diminishes (as described in Section 18.5.3) and the robustness advantages
of distributed video coding start to dominate, leading to significant performance
gains (over even H.263+ protected with FEC and H.263+ with intra-refresh), as
highlighted in Figure 18.17.
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FIGURE 18.19: Effect of frame drops: Comparison of PRISM and
H.263+ for the Football sequence (352 × 240, 15 fps, 1700 kbps) when
the third frame was dropped.

Figure 18.19 shows the effect on quality when an entire frame is dropped. For
this test the two comparison systems were PRISM and H.263+ and the sequence
used was Football (352× 240, 15 fps, 1700 kbps). For both PRISM and H.263+,
the third frame was dropped. As can be seen from Figure 18.19, the decoded qual-
ity in both cases drops drastically for the third frame. However, while the PRISM
system recovers quickly and is still able to deliver high quality for subsequent
frames, the H.263+ system can only recover to a small extent. This indicates that
PRISM can quickly recover from errors.

18.9 SUMMARY AND FURTHER READING

While the simulation results described earlier fuel optimism about the promise
of PRISM for uplink-rich media applications, much work remains before a com-
plete codec system can be endorsed. We envisage a scale of effort similar to what
has gone into current commercial standards for video compression to make the
concepts of PRISM a reality for practical and ubiquitous deployment. There are
numerous promising directions for future research.

• More sophisticated motion models need to be integrated into PRISM.
• More sophisticated channel codes based on turbo codes [7,8] and low-

density parity check (LDPC) codes [9,15] need to be integrated into the
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PRISM fold while keeping intact the block-level motion modeling philoso-
phy of PRISM.

• The classification phase of the codec in estimating the temporal correla-
tion (innovations) noise variance is critical to the performance of PRISM.
We plan to direct our future study toward more robust and sophisticated
approaches to classification, keying on the complexity versus performance
trade-off benefits. The work of [26] on fast motion search appears to be a
promising hunting ground for this.

We would like to point out that we have described the PRISM framework
primarily in a point-to-point single-camera single receiver setup. Our proposed
paradigm, however, scales naturally to scenarios involving multiple-camera ap-
plications that we believe will form the cornerstone of emerging video sensor
networks. Section 18.9.1 describes an exciting application of multicamera video
sensor networks.

18.9.1 Scene Super-Resolution Through the Network

Imagine a dense configuration of cameras conducting surveillance in the parking
lot of your office building. These cameras have overlapping coverage and each
of these individual cameras is an inexpensive low-resolution device. For instance,
each of these cameras can offer a low frame rate (low temporal resolution). An in-
teresting question that arises here is whether all these low-resolution observations
can be synergistically combined, providing a “virtual super-resolution” system
that allows for enhanced capabilities ranging from novel spatiotemporal view-
point generation/rendering with robustness to individual camera failures? This is
indeed feasible, as is demonstrated by Figure 18.20, which shows three consecu-
tive video frames from two adjacent cameras: A (middle row) and B (top row).
Even though the middle frame in stream A (bordered) is missing (e.g., when A

operates at half the frame rate of B), sophisticated processing based on camera
motion (between A and B), as well as object-motion modeling, enables a near-
perfect reconstruction of the missing scene (bottom row).

Additionally, we can also ask if these correlated data can be efficiently com-
pressed for the purpose of archiving/storage. The increasing relevance of this
problem can be gauged from the fact that an industry-wide initiative [5] has been
launched in the International Standards Organization MPEG group with the pur-
pose of addressing this question.

The caveat here is that our sophisticated processing/compression algorithms
require all the frames to be present at one central location. While this is easy
to resolve in the high-bandwidth wired network case, where the individual cam-
eras can communicate their respective streams (uncompressed or marginally com-
pressed) to the central processing location, this can be a real daunting task in the
low-bandwidth, harsh transmission environment wireless network case. It is here
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FIGURE 18.20: Top row: video stream from camera B . Middle row:
video stream from camera A, including the missing “original” middle
frame (bordered). Bottom row: reconstructed missing middle frame from
camera A.

that we can use distributed compression algorithms to reduce our transmission
bandwidth, as well as provide natural robustness to the vagaries of the wireless
transmission environment.

We realize that this problem requires an interdisciplinary approach leverag-
ing the latest advances in the areas of signal and video processing, computer vi-
sion, and wireless networking. However, the fundamental architectural features
of PRISM, which include robustness as well as an ability to share computa-
tional complexity between different network nodes, offer the necessary building
blocks that form the core of the solution for this problem. While this problem
remains an ongoing challenge for the video networking community at large at
this time, promising preliminary efforts are already under way in the research
community. The interested reader is referred to [16,19,43] for an overview of the
same.
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18.9.2 Conclusions

We have introduced PRISM, a practical video coding framework built on distrib-
uted source coding principles. Based on a generalization of the classical Wyner–
Ziv setup, PRISM is characterized by an inherent system uncertainty about the
“state” of the relevant side information that is known at the decoder. The two
main architectural goals of PRISM that make it radically different from exist-
ing video codecs are (i) flexible distribution of complexity between encoder and
decoder (including the special case of reversal of complexities with the decoder
picking up the expensive task of motion search, as has been detailed in this work),
and (ii) naturally in-built robustness to drift between encoder and decoder caused
by a lack of synchronization due to channel loss (as has been demonstrated suc-
cessfully through simulations in this work). This renders PRISM as an attractive
candidate for wireless video applications.

The fundamental architectural traits of PRISM are also well suited for the mul-
ticamera regime. Indeed, as the scale of video sensor networks increases in the
future, the architectural benefits of PRISM will be magnified. The full potential
of large-scale ubiquitous video sensor networks of the future will require an in-
terdisciplinary approach involving signal and video processing, computer vision,
multiterminal information theory, and wireless networking. The work presented
here represents an important first step toward this goal.

To conclude, our work represents but a tip of the surface of what we believe is
an exciting new direction for video coding for a large class of emerging uplink-
rich media applications (including broadband wireless video sensor networks).
We are optimistic that our work represents a promising start to this exciting jour-
ney.
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Infrastructure-Based
Streaming Media
Overlay Networks

Susie Wee, Wai-Tian Tan, and John Apostolopoulos

19.1 INTRODUCTION

Technology advances are giving people increasingly immersive multimedia ex-
periences in their home entertainment systems, on their portable media players,
on their desktop and laptop computers, and even on their mobile phones. While
IP networks provide unprecedented connectivity between people and devices for
data applications, even today, large fractions of the network are not suitable for
the high bandwidths and real-time streaming requirements of multimedia applica-
tions. For example, the Internet provides connectivity between any two end nodes
on the Internet; however, it only provides best-effort service and therefore pro-
vides no guarantees on the available bandwidth, maximum delay or delay jitter,
or loss rates. Thus, there remains a challenge for providing high-quality media be-
tween people and devices over large portions of the network, and these problems
are amplified as the number of people trying to use the network increases.

In this chapter, we describe the basic concepts and architecture of a media over-
lay, which adds resources to an existing network infrastructure to enhance the me-
dia capability of the network. A media overlay can enable new media capabilities
in the network, while improving the end-user media performance and the system-
wide efficiency of the network for both its media and nonmedia traffic. This is
achieved by leveraging the underlying resources and existing connectivity pro-
vided by the original network, while enhancing it to improve its ability to deliver
real-time media to end users and scaling to support a large number of users.

The term “overlay” refers to the approach of adding resources on top of an
existing network infrastructure, as shown in Figure 19.1. This has the advantage
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FIGURE 19.1: Media overlays add resources to an existing network
to enable new media capabilities and to improve end-user media perfor-
mance, scaling to support large numbers of users, and system-wide effi-
ciency.

of leveraging the attributes of the existing infrastructure, such as its existing de-
ployment, widespread connectivity, and built-in network services such as domain
name services (DNS) and system management. While the existing network has
some inherent capabilities, the overlay provides additional capabilities to achieve
an extended set of goals, such as enhancing the media capabilities of a network,
improving the operational efficiency and system-wide performance of the network
itself, and improving the user-perceived performance of media applications.

The benefit of an overlay can be illustrated with a simple example. Consider a
corporation that wants to stream corporate webcasts to their employees over their
existing corporate intranet. In most cases, the existing intranet will not have the
capacity to support a centralized streaming service for all their employees, where
a single server would stream a separate unicast stream for each employee. In this
case, a media overlay can provide distributed caching to replicate the webcast
content at overlay nodes close to large employee sites. The employee requests
would then be served by streaming the replica on the nearest overlay node rather
than from the centralized server. In this example, the media overlay allowed the
webcast application to be provided on an existing corporate intranet using the
overlay capabilities of media caching and streaming, and it was performed in a
manner that significantly reduced the network load on the corporate intranet.
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19.1.1 Comparing Client–Server, Overlay, and Peer-to-Peer Models

To better understand media overlays, it is helpful to consider the traditional ca-
pabilities provided by current networks and the relative contributions of a me-
dia overlay to its alternatives. In this chapter we focus on infrastructure-based
overlay systems. Some peer-to-peer systems can be considered as client-based
overlays [11], but to simplify terminology we use the term overlay to refer to
infrastructure-based overlays.

A challenge to all successful networks is the possibility of having usage de-
mand outgrow the original capacity or design. In order to maintain or improve
the performance of existing services or to provide new services, enhancement
mechanisms need to be added in a fashion transparent to existing clients, with-
out prolonged disruption to the services. One example of such evolution includes
Intelligent Networks (IN) in telecommunications networks, which provide func-
tions such as three-way calling and call waiting for a network originally designed
for point-to-point voice communications. Another example is Content Distribu-
tion Networks (CDN) for the Internet, which provide reduced access latency for
end users and improves scalability to a larger number of users by having multi-
ple caches near the end users [20]. With an ever-increasing growth of multimedia
access, especially for video, in both cellular networks and the Internet, it is be-
coming important to examine mechanisms to provide improved performance and
added features for multimedia communications. In this chapter, similar to what
INs have done for telephone networks and CDNs for the Internet, our focus will
be on improvement in the existing delivery infrastructure itself, rather than devel-
oping a completely new infrastructure or assuming a peer-to-peer architecture.

The traditional approach to supporting streaming media and Web traffic alike
is to use the Client–Server model of Figure 19.2a where a single server is in
charge of serving all clients. As the client population grows, this model hits two
limitations. First, a single server cannot scale to serve an ever-increasing number
of clients. This problem is sometimes solved by implementing a logical server
by multiple physical servers. Second, since a server cannot be simultaneously
close to all clients, access latency for some clients is bound to be long. The use
of an overlay infrastructure, as shown in Figure 19.2b, is one possible solution
to the limitations of the client–server approach. An overlay network is a logical
network that relies on a physical network for connectivity service. Specifically,
in Figure 19.2b, having nodes A and B inside the infrastructure allows content
to be served from multiple possible servers, and specifically for each requesting
client we can choose the “closest” server to serve the content. A key point is
that an overlay infrastructure is designed based on the underlying network, as
well as expected client demands and desired services. An important example of
commercially deployed overlay infrastructure are CDNs for Web traffic. So far,
we have only discussed the use of an overlay infrastructure for caching purposes.
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(a) Client–Server Model (b) Overlay Model

(c) Peer-to-Peer Model

FIGURE 19.2: (a) The classical Client–Server Model assumes only ba-
sic connectivity service from the network. (b) The Overlay Model uses the
same connectivity service, but also has overlay nodes inside the infrastruc-
ture to provide computation and storage inside the infrastructure. (c) The
Peer-to-Peer Model, however, relies on peer nodes outside the infrastruc-
ture to provide storage and computation.

Other benefits include the possibility of performing additional services and the
provisioning of multiple paths. For example, the minimum-hop path between the
client and the server in Figure 19.2 traverses links 1, 2, 3, 4, 5, and 6 and involves
a bottleneck link 3. Using an overlay infrastructure for relaying, it is possible to
effectively use another path 1, 7, 8, 9, 10, 6 even when the physical network does
not offer routing choices.

Another approach used to overcome the limitations of the client–server model
is the peer-to-peer model (P2P) of Figure 19.2c. Common for file-swapping appli-
cations in which a large number of clients want to receive the same piece of con-
tent, the P2P architecture allows every client to access the already-downloaded
portions of other clients. In return, every client would make available the portion
of content it has downloaded. A P2P network is therefore self-scaling in the sense
that the number of requesting nodes and potential serving nodes is equal. There-
fore, P2P architectures have the advantage of supporting potentially very large
active client populations. In addition, for popular content it is possible for a client
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Table 19.1: Comparison among client–server, overlay infrastructure, and peer-
to-peer systems for three different classes of metrics.

Metric Client–server Overlay Peer-to-peer
Availability Bad Good Good–poor

User-centric Latency Bad Good Good–poor
performance Streaming quality Bad Good Average

File transfer quality Bad Good Best

System-wide Low control overhead Best Good Poor
efficiency Bandwidth usage Bad Good Good

Control/manageability Good Good Bad

Service Ease to add services Good Good Poor
extensibility and capabilities

to download from a closer location under P2P than is possible under infrastruc-
ture overlay. In P2P systems the peers view network and infrastructure as a black
box providing connectivity, and the P2P intelligence resides at the end hosts. One
major disadvantage of P2P is the lack of control of peers in terms of population
size, availability, and actions, making it difficult to provide predictable quality of
service. For example, P2P networks are typically afflicted by sizable churn where
the peers may come and go. Another disadvantage is the large amount of control
traffic necessary in a typical implementation to maintain the distribution structure.
Furthermore, fairness is a difficult problem in P2P systems. An overview of when
P2P systems or infrastructure solutions are preferred based on desired application
attributes is given in [31].

In this chapter, we focus on infrastructure-based overlay networks that are de-
signed and deployed with the underlying network resources in mind [18]. A sim-
plistic overlay network can be constructed, for example, by using the system
shown in Figure 19.2c, where content distribution is performed in a way that the
server streams to P , which in turns relays to P ′. In this case, P is a new physical
resource that enables an overlay relaying service to P ′, but is impractical due to
the lack of resource planning.

In Table 19.1, we compare the relative merits of the client–server model, the
overlay model, and the P2P model in the following three classes of metrics. The
first class is user centric and involves access latency and availability for a single
user. The second class relates to system-wide performance. The third class focuses
on the ability to introduce new services. We see that the overlay infrastructure
provides a useful balance among the three classes of objectives.

19.1.2 Overview of a Streaming Media Overlay

A streaming media overlay is designed to provide a number of basic capabili-
ties, such as media streaming, caching, content distribution, resource monitor-
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ing, resource management, and signaling. These capabilities are discussed in Sec-
tion 19.2. An overlay may also have advanced capabilities that can perform ses-
sion management of streaming media sessions, request redirection, load balanc-
ing, caching, and relaying media streams. Furthermore, an overlay can perform
media processing operations such as transcoding to adapt media streams for dif-
ferent display sizes and network capacities, perform logo insertion to personalize
media streams for individuals or locations, or voice/video activity detection to en-
able applications such as multiuser conferencing, which is discussed in Sections
19.2 and 19.5. These capabilities can be upgraded over time to provide new media
services.

Existing network infrastructure can be viewed as a number of layers, as shown
in Figure 19.3. At the base level, there is a base-wired/wireless IP network that,
for example, could be a telecom network, an enterprise, the open Internet, a hot
spot network, or a home network. Any of these networks may have a series of
elementary network services in them. For example, a telecom network may have
a home location registry that tracks client movements. The next layer may contain
a number of overlay network subsystems. The media overlay and media service
network reside at this layer. Finally, a system and network management layer may
exist to monitor and manage the entire network and systems.

Since the overlay becomes an integral part of the infrastructure, it is important
that it respects the existing network applications and perhaps even improves them.
Thus, manageability is critical to an overlay’s success. Thus, the overlay nodes
perform a valuable distributed network monitoring function to make network and
system measurements based on their observations of network and system load

FIGURE 19.3: A media overlay is an integrated part of an extended
system architecture. It exploits the base network and elementary network
services for data delivery, but may itself be managed by other entities.
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and client requests. These measurements can be aggregated and analyzed to make
decisions on how to handle media streams in the overlay. For example, it may de-
cide to cache popular content at overlay nodes closer to end users, reroute streams
to avoid congestion points, or transcode media streams to adapt them for lower
bandwidth links.

The overlay can be architected in a manner that provides the benefits of in-
cremental deployment and upgradeability. Thus, a small overlay deployment can
be used to provide an initial media service or application. Then, more resources
can be deployed over time based on the measured usage of the application. Fur-
thermore, the capabilities of the overlay can be upgraded to provide new services
or new capabilities. This can be done by adding additional overlay resources or
upgrading the existing resources with new capabilities.

19.1.3 Chapter Outline

This chapter continues in Section 19.2 by examining the basic capabilities that
may be provided by a streaming media infrastructure, including an example to
illustrate the use of these capabilities. The architectural and design considerations
that arise when designing and operating this infrastructure are discussed in Sec-
tion 19.3. More advanced functions that may be provided by a streaming media
infrastructure are then discussed in Section 19.4. The benefits of such streaming
media overlays are discussed in Section 19.5. The chapter concludes by providing
a summary and pointers for further reading in Section 19.6.

19.2 CAPABILITIES OF A STREAMING MEDIA OVERLAY

A streaming media overlay infrastructure can enable large-scale media delivery on
an existing network infrastructure. A media overlay can improve the performance
of a media delivery system in a number of ways. For example, if a requested
media stream is cached on the overlay, the request can be served from the overlay,
thereby reducing the latency of the streaming session. Also, since the overlay
server can be colocated at the network edge, it can quickly adapt the streaming
session to the rapid variations of the last link; for example, it can be colocated at
a wireless base station to adapt to a rapidly varying wireless channel. In addition,
since overlay servers are located at intermediate locations in the network, they
can act as monitoring points in the network and provide system and network load
information that can be used to improve the performance of the overall system.

19.2.1 Media Overlay Server Capabilities

A media overlay adds resources on top of an existing network to enhance its me-
dia capabilities. These added resources can include overlay servers and managers
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that can be placed in the middle and at the edge of the network, as shown in
Figure 19.4. Overlay servers are the basic building block of a media overlay, and
they can have capabilities of streaming, caching and content distribution, resource
monitoring and management, signaling, and possibly media processing [26]. They
can be used to store or cache media streams in the network and to relay media
streams across the network. Furthermore, overlay servers can monitor and log the
conditions of their surroundings and gather valuable network health information.

The overlay server’s basic streaming capabilities allow it to send and receive
media streams to and from streaming servers and clients. The overlay server is ca-
pable of handling many simultaneous input and output streams; it uses a scheduler
to coordinate the streaming of these sessions. Furthermore, the overlay server is
able to start, stop, and pause its outgoing streaming media sessions and record its
incoming streaming media sessions. Handoff capabilities during streaming ses-
sions can also be an important capability for streaming media overlay servers, in
particular because of the long-lived nature of streaming media sessions.

The overlay server has caching capabilities that allow it to store requested me-
dia content for future requests. An overlay server can obtain media data to be
cached via data transfer or streaming modes. The resulting cached media streams
can then be transmitted as data transfers or streaming sessions as well.

Media content can also be distributed across the overlay infrastructure using
the overlay’s content distribution capabilities. This allows the overlay servers to
transfer media streams to other overlay servers, web servers, and media servers.
Cached media content can be possibly locked for a specified period of time to
prevent premature eviction.

FIGURE 19.4: Overlay resources are placed at strategic locations in a
network. Each location may contain one or more overlay servers and/or
managers.
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The overlay server has resource monitoring and management capabilities that
allow it to monitor and log its observations over time and to share these logs with
other overlay servers and managers through the control/management interface.
Overlay servers can track user requests as well as server load and observed net-
work conditions over time. These logs can be gathered and analyzed to improve
the performance of the media overlay.

Overlay servers have coordination capabilities that allow them to query or track
the contents of other overlay servers for requests that are not in its cache. It can
have parent/child or sibling relationships with other overlay servers, which can be
set or changed through the management and control interface.

These capabilities are discussed in more detail in the following sections.

19.2.2 Media Transport and Streaming

Media overlay servers must be able to transport media to and from sources, other
overlay servers, and clients. Media transport can be performed in different ways
depending on the needs of the application and the capabilities of the origin servers
and clients.

Sending media to clients: A media overlay must be able to deliver media to
clients using protocols that the clients understand. Download media clients re-
ceive media streams in a file or data transfer mode using protocols such as TCP/IP
or HTTP. These clients download the entire media file and store them on a local
disk and then allow a user to play the locally stored media content at any time af-
ter the download. Streaming media clients receive packetized media content in a
streaming mode using protocols such as UDP or RTP streaming or HTTP stream-
ing. These clients store the received media packets in a receiver buffer and then
decode and play back these media packets after a short delay. Note that when pro-
tocols such as UDP or RTP are used, it is possible that some packets will be lost
before reaching the client. In this case, it is important that the media client has
error-resilience capabilities to be able to deal with lost packets effectively [40].
Further discussion on error-resilience can be found in Chapters 2 and 3.

Receiving media from media sources: A media overlay must be able to receive
media from various media sources that are not part of the media overlay using
protocols that the media sources understand. Media sources such as web servers
and content servers and media upload clients often use file and data transfer pro-
tocols such as TCP/IP, HTTP, or even FTP for reliable media transport. Media
sources also include streaming servers and live media recorders that use stream-
ing protocols such as UDP or RTP streaming and HTTP streaming. Note that if
UDP or RTP streaming is used and an overlay server wants to cache or store the
stream, then it is possible that some media packets will be lost and the stored
media content will have some errors. In this case, the overlay server needs to
know how to handle these streams by only transferring these streams to clients
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with error-resilience capabilities or by repairing the stream into a recognizable
media stream format before sending the media content to clients that do not have
error-resilience capabilities.

Media transport between overlay servers: In addition to delivering media to and
from media clients and sources, media overlay servers can also transport streams
with each other. This can be done in data or file transport modes to perform opera-
tions such as content distribution, prefetching, and caching. This can also be done
using streaming connections to perform operations such as stream redirection,
stream relay, and stream splitting.

Stream relay: Overlay servers that can send and receive media streams through
streaming connections allow the overlay to perform stream relay tasks. Stream re-
lay can be used to explicitly route or redirect streams in the network, for example,
to avoid network bottlenecks that are detected by the overlay. Routing streams
through overlay servers can improve operational efficiency of the network by ex-
ploiting routes with underutilized resources, while allowing health monitoring of
the network or media stream by detecting packet loss or performing bandwidth
and latency measurements using the media packets.

Note that the overlay can be designed so that it is transparent as to whether the
media is going to or coming from a media source, another overlay server, or a
media client. This design allows media streams to be relayed through any number
of overlay servers, allowing for various degrees of precision in stream routing and
network health monitoring.

Stream splitting: A key problem in networked multimedia is supporting pop-
ular events with many users and supporting one-to-many communication [17].
While IP Multicast is a possible solution to this problem, difficulties arise when
media streams must traverse networks that do not have IP Multicast support. In
these cases, stream splitting, also referred to as overlay or application-level mul-
ticast, can be used to increase the scalability of the system and improve network
efficiency.

Stream splitting is also useful if a sending device is capable of serving only
one stream but many clients are interested in receiving that stream. In that case,
the original stream can be sent to an overlay server, which can relay it to multi-
ple downstream devices, as shown in Figure 19.5. This is called stream splitting,
overlay multicast, or application-layer multicast. Stream splitting has the advan-
tage that it can be used to provide multicast-like capabilities on networks that do
not have native IP multicast support.

19.2.3 Media Distribution and Caching

Media distribution across overlay infrastructure: Placing media content on an
overlay server close to a requesting client can lead to the media being streamed
over a shorter network path, thus reducing the start-up latency of a streaming ses-
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FIGURE 19.5: Stream relay and stream multicast capabilities allow
overlay nodes to form flexible media distribution paths, as illustrated here
in the form of a multicast tree. Other benefits include the ability to route or
redirect media streams around failed links, perform network health mon-
itoring operations by analyzing the media packets, and efficiently deliver
media streams to many users.

sion, the probability of packet loss, and the total network usage. This motivates the
need for media distribution algorithms that optimize system performance based
on the predicted demand. These optimizations can be performed by aggregating
measured statistics and developing predictive prefetching algorithms based on sta-
tistical analysis. Specifically, the prediction can be based on the content request
patterns monitored, logged, and reported by the overlay servers through control
and management interfaces. Therefore, important issues relate to the number of
caching nodes, their placement in the network based on traffic demands, the pre-
distribution of media content across the caching infrastructure, and the dynamic
cache allocation within a single node as described next [27].

Media caching: Closely related is the problem of media caching on the over-
lay servers. The goal of improving the cache hit rate makes it desirable to store
large numbers of media streams on the overlay servers. However, since media
streams can require large amounts of storage, storing entire media streams in a
cache is clearly inefficient. Thus, the media caching problem involves determin-
ing which media streams [23] to cache. These decisions can be based on a number
of factors, such as media popularity, size, cacheability, and other factors such as
premium content versus free content. Media distribution and caching are critical
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FIGURE 19.6: A media overlay improves network efficiency by allow-
ing a cached replica of the media to be streamed from the edge rather than
from the origin.

components of a streaming media infrastructure as they can lead to considerable
improvements in resource utilization and system reliability (Figure 19.6).

Media segmentation: Another interesting overlay capability is media segmen-
tation, where a long media stream is divided into media segments that can then be
distributed across the network and cached in various overlay servers [8,34]. These
segments can be cached in a manner that is aligned with user-viewing statistics.
For example, an overlay may stream a live sporting event to many users. At the
same time, it may record and store the stream for users who wish to view the
event at a later time. However, it may turn out that the most viewed segments of
a sporting event are where the goals and highlights occur. The overlay can track
this behavior and then cache the various segments according to the user-viewing
statistics. For example, the most watched highlight segments can be replicated
more frequently than the less viewed segments.

19.2.4 Client Request Handling

There are a number of ways a client can gain access to the services in a media
overlay. In the simplest model, a client directly accesses a service portal that is part
of the media overlay. Examples discussed in further details later include recording
and retrieval of multimedia messages. Alternatively, if a client is attempting to
access portals outside the overlay, additional mechanisms are necessary in order to
invoke overlay services. If a request always traverses the overlay network, explicit
detection and redirection are possible. Otherwise, common techniques include
explicit proxy configuration at the clients or DNS-based redirection [5].
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After a request reaches a portal in an overlay node, the client needs to be redi-
rected to a server with appropriate capability to satisfy the request. This requires
determining which is the “best” overlay server for serving the client, where best
is determined by a number of metrics, including which server(s) has the desired
content, as well as the server and network loads and capabilities such as transcod-
ing. To evaluate the suitability of each server requires a system monitoring and
management component for gathering and processing this information in a timely
manner. An example of an architecture designed for monitoring the server and
network load of overlay servers and assigning requests to the least-loaded, avail-
able edge server is given in [32]. Once the best server is determined the client
redirection to that server can be achieved through a number of mechanisms, such
as techniques based on DNS [5]. Alternatively, redirection to an appropriate server
can happen through mechanisms such as dynamic SMIL rewriting [46].

19.2.5 System Monitoring and Management

System monitoring: Monitoring is an important capability in an overlay network.
As mentioned before, statistics such as server and network load allow selection of
appropriate servers for satisfying a particular request. Generally, monitoring en-
ables other adaptation on a finer or coarser timescale. For example, real-time net-
work and server statistics can guide short timescale adaptations such as transcod-
ing or other media adaptation, and server handoffs. Longer timescale statistics,
however, facilitate resource planning, such as reservation of resources for “flash
crowds.”

The application awareness of a media overlay allows collection of semantically
meaningful statistics, such as the response time of a request to retrieve a stored
multimedia message. Furthermore, the location of overlay nodes inside the in-
frastructure and its application awareness allow collection of better statistics than
is possible between end points only. For example, in a traditional client–server
streaming setting, a server has limited visibility for the state of the network since
it can only observe aggregate conditions along the entire path, and only from traf-
fic originating from itself. An overlay node, however, can observe statistics for a
segment shorter than the end-to-end path, and it can observe flows from all servers
traversing through it. By observing the network statistics on shorter network path
segments, the overlay can achieve improved streaming performance by provid-
ing functions such as network-adaptive streaming, as discussed in Section 19.4.1.
Furthermore, an overlay can collect certain useful statistics that are not possible
without application awareness. For example, an overlay node can differentiate
adaptive UDP flows from nonadaptive UDP flows, which are generally difficult
to differentiate [14].

System management: Management is another important feature of a media
overlay. While monitoring allows the overlay to gather system statistics, man-
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agement allows the overlay to analyze the gathered data and assert control on
various parts of the overlay and system as a whole. Management capabilities al-
low managers and overlay servers to query other media overlay components for
their monitored information, such as content usage statistics, server load, and net-
work congestion, and to give commands to other media overlay components. This
allows the overlay servers to cooperate and act as a system to collect and ana-
lyze statistics, predict behaviors from these statistics, and perform tasks to serve
predicted user requests in a resource-efficient manner. Furthermore, this allows
the overlay servers to work cooperatively to handle the media delivery load in
response to changing user patterns and time-varying network and system loads.

An overlay’s control and management capabilities also allow the media overlay
to receive information from other layers of the network, as shown in Figure 19.3.
For example, the control interface can allow a home location registry to pass client
mobility information to the overlay server to trigger a streaming server handoff.
Furthermore, it allows the overlay to perform operational roles, such as adding or
reconfiguring overlay servers and shutting them down for maintenance.

19.2.6 Media Processing Services

Up to this point, this chapter has discussed how an overlay can be used for deliver-
ing media streams across a network. In this section, we discuss another important
capability that the overlay can provide, namely performing media processing op-
erations on the media streams that are transported by the overlay. We refer to
networked media processing operations performed by overlay servers as media
processing services or, more simply, media services provided by the overlay.

Media processing: An overlay server may be able to perform a media service
such as media transcoding to adapt media streams for diverse client capabilities
and changing network conditions [6,19,36,43]. For example, Figure 19.7 shows
a high-resolution, high-bandwidth media stream being simultaneously delivered
to two clients with different display capabilities and network connections. The
first client may be able to receive and decode the entire high-resolution, high-
bandwidth media stream. However, a second client with a lower display resolu-
tion and slower network connection may not be able to receive and decode the
entire stream. In this case, the overlay can transcode the media stream to a lower
resolution and bit rate and then relay the transcoded stream to the low-resolution
client.

Other media processing services that an overlay can provide include video and
audio processing operations such as VCR functionalities, speed-up/slow-down,
logo insertion, background removal, and noise reduction. Overlays can also pro-
vide conferencing services such as video tiling, speaker detection, and speaker
focus.
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FIGURE 19.7: Performing live transcoding inside an overlay simplifies
requirements on both clients and senders. To support the multicast appli-
cation shown, the clients and senders need only support one stream and do
not need the resource or algorithm to perform transcoding.

For mobile multimedia applications, it may be useful for overlay servers to be
able to perform midstream handoffs of streaming sessions to adapt to user move-
ments across cell sites. If a transcoding service is provided in a mobile overlay
network, it may also be useful for overlay servers to be able to perform midstream
handoffs of live transcoding sessions [33].

Notice that when an overlay performs media processing services in the middle
of the network, it often operates on input compressed media streams and pro-
duces output compressed media streams. Some of these processing operations
can be compute-intensive. Since an overlay server may need to process many me-
dia streams at once, it is useful to develop computationally efficient algorithms
for processing compressed streams [44]. This is a research area that has been ex-
amined for many years, and technology advances are now allowing these media
processing services to be performed in real time.

Media services architecture: In addition to being able to perform media
processing operations, the overlay must be able to manage the media services.
Thus, it is important to have a media services architecture that allows the media
services to be deployed, operated, and managed in the overlay [16] in a manner
that works smoothly with the media delivery capabilities of the overlay. This re-
quires the overlay to be able to deploy new media service capabilities on existing
overlay servers, track which servers have which media service capabilities, and
redirect media streams to the appropriate overlay servers for a streaming session.
In addition, the overlay should be able to track the load of the various overlay
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servers to ensure that a chosen server is capable of handling the additional stream-
ing task.

19.2.7 Example Walk-Through of Media Overlay Usage

Figure 19.8 shows an illustration of one possible way in which different functions
discussed in Sections 19.2.3 to 19.2.5 can act together. Other choices are possible
and are discussed further in Section 19.3.

In Figure 19.8, two events happen before a client can access a piece of con-
tent from a media overlay. First, information such as availability of contents and
server load are continuously collected, as shown by step 0 in Figure 19.8. In Fig-
ure 19.8, the information is collected centrally by a Location Manager. Such ex-
changes can be conveniently implemented using standardized protocols such as
the Simple Object Access Protocol, and possibly digests [30] of server contents
are exchanged to reduce communication cost. Second is the media distribution
described in Section 19.2.3, which is indicated by step 1 in Figure 19.8. In our
example, media is predelivered to one or more servers before the first request ar-
rives; however, it is also possible to perform delivery following the initial request.
The preferred mode of operation depends on the prediction or measurement of the
content’s demand, as well as the relative demand for other content, which may be

FIGURE 19.8: Various parts of a media overlay, shown in rounded
boxes and enclosed, function together to allow access of media content
from Content Server 1 to Client 1.
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cached in the same servers, etc. One possible implementation of media transport
for step 1 is HTTP, which is widely used for data transport.

When a client wishes to retrieve a content, it would contact an Access Portal
using common mechanisms such as the Real-Time Streaming Protocol (RTSP) or
Synchronized Multimedia Integration Language (SMIL). Further details on some
common streaming protocols can be found in Chapter 15. In the case of RTSP,
step 2 of Figure 19.8 may be an RTSP SETUP message, upon receiving which
the Access Portal would consult the Location Manager in step 3 for the name
of an appropriate server. The requesting client can be redirected to the appropri-
ate server through the use of an RTSP REDIRECT message, although it can be
more convenient to simply return an error of “moved temporarily” to Server 1
in response to the SETUP message. This would instruct the client to contact the
intended server in step 5 using another RTSP SETUP message, which eventually
leads to streaming of media in step 6, possibly using RTP transport.

When using the SMIL-based approach, described in further detail in [46], the
request in step 2 may assume the form of an HTTP GET message to retrieve
an SMIL file. After consulting with the Location Manager in step 3, the Access
Portal would dynamically rewrite the content of the SMIL to use the intended
server. Step 4 then becomes the HTTP transport of the (rewritten) SMIL file,
which contains instructions on how to access and compose the media content. In
particular, it may contain instruction to access the desired content using RTSP to
Server 1. An RTSP SETUP message would then be generated in step 5, which
results in media streaming in step 6. In both the RTSP and SMIL examples, the
client is not aware of the complex operations between the overlay entities and
assumes the simple client–server model.

Figure 19.9 shows a possible implementation of messages in steps 2 and 4 of
Figure 19.8 when RTSP is used by the client. Note that the Location Manager
determines that the desired server is Server 1 and specifies the redirected location
for the content in the response to the RTSP SETUP message. Example content of
an SMIL file for client redirection is given in Figure 19.10. Note that the address
of the desired server, Server 1, is specified in the body of the file. As a reminder,

SETUP rtsp://Access-Portal:554/content.3gp RTSP/1.0
CSeq: 2
Transport: RTP/AVP;unicast;client_port=8322-8323

RTSP/1.0 302 Moved Temporarily
CSeq: 2
Location: rtsp://Server_1:554/content.3gp

FIGURE 19.9: Example content of messages in steps 2 (top) and 4 (bot-
tom) of Figure 19.8 when client makes an RTSP request.
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<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
...
<body>

<audio src="rtsp://Server_1:554/content.3gp/Track1"/ >

<video src="rtsp://Server_1:554/content.3gp/Track2"/ >

</body>

</smil>

FIGURE 19.10: Example content of an SMIL file for client redirection.

the SMIL file may be rewritten for each client’s request based on network and
server load.

So far, our media overlay example illustrates how a client can be redirected to
a desired server to obtain the same piece of content. A media overlay can perform
media processing functions as well. For instance, through various client capability
exchanges, a streaming server may determine that it is necessary to transcode
a content to a reduced frame size for proper display on a client. Clearly, other
content transformations are possible, and further discussion about incorporation
of media processing functions is given in Section 19.2.6.

19.3 ARCHITECTURE AND DESIGN PRINCIPLES

Media overlays must have a very modular and robust design and architecture to
meet the demands of large-scale, streaming media delivery. This section describes
the architecture and design principles of an infrastructure-based media overlay
network.

19.3.1 Modular Media Overlay Design

A modular design allows a media overlay to be scaled over time in a manner
that adapts to user demand and network and system load. For example, as seen
in Figure 19.11, an initial deployment of a media overlay network can include a
number of overlay servers at a couple of network nodes in different locations in
the network. As the number of users increases, additional overlay servers can be
added in those locations to satisfy the user demand. As the number of users fur-
ther increases, the network resource usage may become prohibitive. At this stage,
a new overlay server location can be added to improve the network efficiency.
A well-architected media overlay with a modular design can allow for this type
of scalability over time.

The philosophy of the overlay is that if even just one overlay server is deployed,
it should work independently to improve the media delivery performance of the
system, and if more and more overlay servers are deployed they should work
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FIGURE 19.11: Media overlays should be designed and architected in a
manner that allows them to be scaled to adapt to user demand and system
and network load over time. An initial deployment (upper left) can add
basic media capabilities to the network. As usage increases, additional
resources can be deployed to satisfy the increased user demand (upper
right) and improve resource efficiency (bottom).

cooperatively so that their combined performance is greater than the sum perfor-
mance of the individual components. Also, overlay servers should have peering
capabilities so that they can be grouped with other overlay servers.

The media overlay architecture should allow for the incremental deployment of
overlay servers. Since the peering relationships can be controlled, the process of
adding a new overlay server can be as simple as putting the new overlay server
in place and then setting a peering relationship with an existing overlay server.
Likewise, user requests can now be directed to the new overlay server, which can
act in isolation as a cache or can be peered with other overlay servers as well.

Furthermore, the system should be scalable and adaptable to load in a num-
ber of ways. For example, if an overlay server receives many requests, additional
overlay servers can be added to increase the cluster size of the existing overlay
server. Also, if new areas of the network start experiencing high loads, new over-
lay servers can be added to those areas. If neighboring areas start seeing lots of
correlation between their requests, they can be peered to share content usage sta-
tistics and content data between them. If the correlation patterns change, the peer-
ing relationships between servers can also be changed. This adaptability makes
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the media overlay well suited for campus and enterprise environments and cellu-
lar and 802.11 wireless environments.

19.3.2 Media Overlay System Management

Manageability was a key design goal of the media overlay. Media overlay man-
agement can be divided into two functions: (1) system monitoring, measure-
ment, and analysis (through queries) and (2) system control (through commands).
Both these functions can be performed between components through a manage-
ment/control interface. The control interface allows the system to accept and give
requests and commands. Since each overlay server tracks its own statistics, it can
respond to queries for content usage, server load, and network conditions. Also,
overlay servers can respond to commands for moving content, beginning and end-
ing streaming sessions, and processing streams. These commands and requests
can be from other overlay servers or managers. It is this modular design that al-
lows the media overlay to be configured in many different modes of operation.

A number of specific notes can be made about media overlay system manage-
ment. First, since overlay servers are constantly monitoring and logging statistics,
they can be configured to periodically report their statistics to a specified entity
or to reply to queries for these statistics received through the management/control
interface. Next, it should be noted that overlay servers can be turned on or off
for administrative needs such as system maintenance. Also, overlay servers can
be added to the media overlay to facilitate incremental deployment, and they can
be moved between nodes to adapt to evolving request patterns and system and
network load patterns. In addition, as overlay servers get loaded with streaming
sessions or as overlay network links become congested, it may become necessary
to change servers during midsession. This can be done with the overlay server’s
streaming handoff capabilities. Thus, management can influence active stream-
ing sessions. Finally, managers can change the peering relationships of overlay
servers through the management interface. Peered overlay servers can be in the
same overlay node or in different overlay nodes, and different overlay servers
within a single overlay node do not necessarily have to be peered with each other.

19.3.3 Media Overlay Design Choices

The flexibility and modularity of the media overlay architecture allow it to be used
in a number of modes of operation and customized for a number of deployment
scenarios. We discuss a few of these modes and scenarios.

The modular components and interfaces of the media overlay allow it to work
in a centralized or distributed mode of operation (Figure 19.12). In centralized
mode, a central manager can collect statistics from all the overlay servers, ana-
lyze these statistics, determine the best strategy for delivering media streams, and
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FIGURE 19.12: Centralized vs. distributed management: a media over-
lay can be managed centrally (top) where all overlay servers report to and
are controlled by a central manager. A media overlay can also be operated
in a more distributed fashion (bottom) where overlay servers are peered to
share statistics and make more rapid, local decisions.

send commands to the overlay servers to carry out this strategy. In distributed
mode, each overlay server can analyze its own statistics and perhaps collect and
analyze statistics from neighboring overlay servers, and then make decisions on
how best to serve mobile streaming requests. The centralized operation has the ad-
vantage of having a global view of the statistics, but may be better suited to longer
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timescale adjustments, whereas the distributed operation may allow quicker data
collection and analysis and allow quicker reactions to rapidly changing user pat-
terns and system and network load patterns. Of course, hybrid combinations may
be advantageous for a number of scenarios.

A media overlay network can have a single owner responsible for its operation.
In this case, system management becomes much simpler because the owner can
track the deployment of each overlay server and monitor the server and network
load. Alternatively, a media overlay can have multiple owners who must agree
to how their overlay resources should cooperate to deliver the media streams be-
tween end points. Finally, a media overlay can have no defined owner, in which
case each of the overlay servers must be able to operate independently and coop-
eratively using standard compliant protocols for its interfaces.

The system can act in push or pull mode. In pull mode, content distribution
can be triggered by user requests, for example, by caching the content with the
highest number of requests. In push mode, the content can be distributed based
on an analysis of user requests and network and system load performed by an
overlay’s management capabilities. In other words, content can be prefetched by
the various overlay servers. Also, the push to overlay servers can be explicitly
configured, for example, by an operator or content owner to ensure high-quality
access to specific content.

19.4 ADVANCED TOPICS

A variety of more advanced capabilities can also be incorporated in a media over-
lay to improve the media delivery performance for end users or to improve the
network utilization. This section briefly highlights some of the advanced capabil-
ities that have been developed in recent years.

19.4.1 Network-Adaptive Media Streaming

Once media distribution and client request redirection are performed, the stream-
ing session itself can begin. Streaming involves the delivery of long, continuous
media streams and desires highly predictable bandwidths, low delay, and prefer-
ably no losses. In particular, midstream disruption of a streaming session can be
highly distracting. There are a variety of important opportunities in overlay nodes
for performing adaptive streaming for improving system performance, for exam-
ple, see [37].

Stream scheduling: A number of opportunities lie in the general area of stream
scheduling, where the basic idea is scheduling the packet transmissions for a me-
dia stream over a channel that may exhibit time-varying available bandwidth,
loss rate, and delay. These scheduling problems have a number of flavors, includ-
ing scheduling delivery of a single stream over a rate-constrained, time-varying
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channel, shared scheduling of many streams across a shared channel, and shared
scheduling of many streams of a single server itself. While basic streaming sys-
tems simply transmit media packets in consecutive order without regard to the
importance of individual packets, significant benefits can be obtained by exploit-
ing the natural priority of each packet, for example, I, P, or B frames or scalable
layer [1]. Further benefits result from rate-distortion optimized packet schedul-
ing, which decides which packet should be transmitted at each transmission op-
portunity, as a function of each packet’s importance and coding dependencies,
estimated channel conditions, and feedback from the client on prior received/lost
packets (see [10,15] and Chapters 4, 10, and 14). In addition, low-complexity
stream scheduling algorithms can exploit periodic coding structures in the en-
coded video [45].

Wireless streaming: Wireless channels are a shared, highly dynamic medium,
leading to unpredictable, time-varying available bandwidth, delay, and loss rates
[13]. A key opportunity lies in optimizing wireless streaming algorithms from the
overlay nodes to the mobile client. The streaming algorithm must adapt to time-
varying network conditions and must be resilient to packet loss over error-prone
wireless channels, as described in Chapters 11–13.

When an overlay server is colocated with a wireless base station and has ac-
curate and timely information about the channel conditions, it can more readily
adapt the streaming to the wireless channel variations. If an overlay server is not
serving a stream but merely relaying content to a wireless client, there are still
several beneficial functions that it can perform. First, it provides an additional
observation point for packet reception statistics. When combined with reception
statistics observed at the client, this allows the determination of whether packet
losses are due to congestion or wireless link corruption. Such information is im-
portant for congestion control purposes. Second, in wireless wide-area networks,
wireless link delay is typically very high, making adaptation inefficient. The over-
lay node could provide feedback on a much shorter timescale to make media
adaptation more effective [9].

Adaptive streaming for multiple clients: Streaming applications may need to
stream media to clients with different network bandwidths. These clients require
different bit rate versions of the same content. This can be supported by using
scalable coding and sending different layers on different multicast trees—each
receiver joins the appropriate multicast tree(s) based on the desired content [22].
Similarly, multiple multicast trees can provide different amounts of forward error
correction (FEC) for error control, where each client selects the desired amount
of FEC [38].

19.4.2 Real-Time Media Adaptation and Transcoding

A streaming system must be able to deliver media streams to a diverse range of
clients over heterogeneous, time-varying networks. In many scenarios, the down-
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stream network conditions and client capabilities are not known in advance, and
the network conditions may be time varying based on cross traffic. To overcome
these obstacles requires dynamically matching the streaming media to the avail-
able bandwidth and capabilities of the specific client device. A number of ap-
proaches can be used to solve this problem. Multiple file switching switches be-
tween media files coded at different data rates [12]. Scalable coding stores base
and enhancement streams that can be sent in a prioritized fashion [28]. Transcod-
ing adapts precompressed streams into formats better suited for downstream con-
ditions. These methods provide different trade-offs in terms of flexibility, com-
pression efficiency, and complexity [6,19,36,39,43,44].

Mid-network stream adaptation: Media adaptation or transcoding may be per-
formed at the sender or at a mid-network node. For example, for pre-encoded
content it is customary to adapt the pre-encoded content at the sender for the
current delivery situation. However, it is often valuable to transcode at a mid-
network node—a node in the middle of the network between the sender and the
receiver. A practical reason is that it is unlikely that every content source will have
transcoding capability, and a transcoding-capable overlay is arguably the simplest
solution. There are technical advantages in other situations as well. Another ex-
ample is multicast video, where a single input stream is adapted to create multiple
streams of different bit rates. Note that mid-network node transcoding is impor-
tant for both pre-encoded and live content. Therefore, mid-network transcoding
is a generally useful capability for overlay nodes to transcode streams according
to downstream network conditions, such as lower bandwidth channels, congested
network nodes, and time varying wireless channels. Since an overlay node may
have to transcode many streams at once, both quality and computational efficiency
are of importance.

19.4.3 Media Security

There are a number of important issues that relate to media security in the context
of streaming media infrastructure. These include security issues related to the me-
dia itself, such as providing confidentiality of the media content or limiting access
to the content to only those with appropriate access rights. Digital rights manage-
ment becomes more involved since centralized solutions at the origin server must
be extended to the distributed infrastructure where caching and streaming may
occur at overlay nodes. For example, the policies for certain content may specify
that it should not be cached. There is a need to control malicious attacks, such
as Denial of Service attacks. Many of the aforementioned security issues are not
specific to media and are not discussed further here due to limited space. One
security problem that does directly relate to media processing is the question of
how to transcode encrypted content.
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End-to-end security and mid-network secure transcoding: A practically impor-
tant problem involves how to provide end-to-end security for a streaming session,
while also supporting mid-network transcoding. End-to-end security corresponds
to encrypting the content at the sender, decrypting at the receiver, and having
the content in encrypted form everywhere in between. Mid-network transcoding
is therefore challenging because the content is encrypted. The conventional ap-
proach is to give the transcoder the key so that it can decrypt/transcode/re-encrypt
the content, but this breaks the end-to-end security. To be more specific, giving the
transcoder the key raises the key distribution problem, and the transcoder may also
be untrustworthy. While end-to-end security and mid-network transcoding appear
to be mutually exclusive, a careful codesign of the compression, encryption, and
packetization can enable mid-network transcoding while preserving end-to-end
security—referred to as secure transcoding to emphasize that the transcoding is
performed without compromising end-to-end security [3,42].

19.4.4 Path and Server Diversities

Routing around failures: The ability of an overlay node to relay traffic provides
flexibility in selecting the network path. Path selection, whereby a path of best
or good quality is chosen among a set of candidate paths, is an obvious way to
improve streaming quality. In particular, selection allows routing around failed
links, which may otherwise render parts of a network inaccessible.

Robust streaming using distributed infrastructure and diversity: The distrib-
uted infrastructure of the overlay network also provides an opportunity to explic-
itly achieve path diversity and server diversity between each client and multiple
nearby overlay servers. For example, multiple servers can send different streams
over different paths (partially shared and partially not) to each client, thereby pro-
viding various forms of diversity that can overcome congestion or outage along
a single path and improved fault tolerance. This may be achieved using multiple
description (MD) coding as an MD-CDN [4] (using various MD codecs, e.g. [2,
29,41]) or single description or scalable coding with FEC [7,21,25]. It can also
be achieved by using multiple wireless base stations or 802.11 access points [24].
A more detailed discussion of the benefits and use of path diversity is given in
Chapter 17.

19.4.5 Mid-Session Streaming Handoff

Handoff of streaming sessions: Streaming media delivery differs from webpage
delivery in that streaming sessions are often long lived. The long-lived nature
of streaming sessions, combined with user mobility, raises the possible need of
midstream handoffs of streaming sessions between overlay servers. This handoff
should be transparent to the receiving client. Handoff of video sessions between
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overlay servers is challenging since the receiving client is highly sensitive to any
interrupts. Furthermore, when the streaming session involves transcoding, mid-
session handoff of the transcoding session may also be required between overlay
nodes [33].

Dynamic load balancing of long-lived streaming sessions: The midstream
handoff capability is also useful for enabling improved dynamic load balanc-
ing and fault tolerance. As more streaming or transcoding sessions are started,
it may be useful to rebalance the streaming or transcoding sessions. For example,
the overlay nodes can be used to explicitly route streams by using application-
level forwarding where the overlay servers act as relays. By combining this with
midstream handoff capability, streams can be dynamically rerouted to alleviate
network congestion and improve load balancing.

19.5 MEDIA OVERLAY USES AND BENEFITS

In this section, we discuss some example applications enabled by a media overlay
infrastructure. The advantages of media overlay can be examined from several
perspectives: (1) improvement for the end user, (2) improvement for system scal-
ability and performance, and (3) new capabilities. For each of the examples dis-
cussed in the remainder of this section we highlight important advantages along
these three perspectives.

19.5.1 Media Delivery

The most basic function of a network is the delivery of data. In this section, we
discuss how media delivery can be improved with a media overlay.

Consider an end user who is employing streaming media for entertainment and
communication. The user’s primary concerns (cost not withstanding) are ease of
content access, smooth media playback, and acceptable latency for interactive
communication. We next examine how a media overlay can help achieve these
objectives.

Similar to how CDNs reduce access latency for web access, a media over-
lay improves latency when accessing media by physically locating the content
closer to the user. By using multiple distributed servers, and selecting the “clos-
est” server for each requesting client, improved responsiveness can be achieved
as compared to using a single, likely distant server. The shorter distance from
server to user also reduces the likelihood of encountering a network bottleneck
that causes packet losses and throughput degradation, thereby improving user
streaming experience.

Media overlays provide unique features for streaming media that have no cor-
respondence in CDNs for web access. These are needed to accommodate the con-
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tinuous requirement to have streaming media delivered on time to end users. One
important feature that provides many advantages is media multicast or splitting;
this is discussed further in Section 19.5.2.

In addition, the overlay can provide the feature of adapting media content on
a real-time basis. One example of such adaptation is prioritized dropping, where
packets that are more disposable are preferentially discarded when needed. Such
dropping of data is best performed inside the infrastructure for a number of rea-
sons. First, while a transmitting source can best prioritize its own traffic, it cannot
optimize across the different media flows that are sharing the resource bottleneck.
Second, real-time information for the resource bottleneck may be difficult to ob-
tain due to large physical separation or impossible to obtain due to the presence
of administrative boundaries.

Another example of media adaptation by a media overlay is transcoding a me-
dia stream to a lower bit rate in response to, for example, throughput degrada-
tion. Traditional approaches to address throughput variation in networks include
adaptive live encoding or rate transcoding at the transmitting source for live con-
tent and switching between multiple copies of the same content at different bit
rates for stored content. A media overlay is superior for the former by being
able to perform adaptation closer to the bottleneck. For stored content, it is of-
ten economical to produce multiple copies only for content that is popular, and
even then, only very limited bit rate options are available. Live transcoding in-
side a media overlay provides the option of a customized stream whenever neces-
sary.

One key benefit of a media overlay architecture is the possibility of having
path diversity, which is the subject of Chapter 17. Path diversity can be exploited
in several ways, including selection and aggregation. Under selection, a good or
best path is selected for a media stream, while multiple paths are used for a sin-
gle stream under aggregation. The advantages afforded by path diversity include
improved reliability. This is achieved by the ability to bypass network failures via
alternative paths and by the potential to exploit underutilized paths to improve
throughput stability.

From a system perspective, a media overlay enables a number of advantages,
which we shall discuss shortly. Similar to CDN for web traffic, by locating con-
tent close to the user, a media overlay is efficient in that the network resources
needed to achieve a task are typically reduced compared to using a single distant
server. This is achieved by the caching functions of a media overlay. In addition,
the possibility of using multiple paths and servers allows a more efficient use of
resources via balancing of network and server loads. One benchmark for an effi-
cient delivery infrastructure is that every packet traverses every link at most once.
The combination of caching and routing functions of a media overlay provides
the key components for realizing this ideal.
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19.5.2 Multicast or “Splitting” Service

A well-known overlay application is point-to-multipoint communication or mul-
ticast, under which overlay architectures are used to form distribution trees for
relaying a single content to multiple recipients [11,17]. These overlays effectively
emulate a multicast service in an otherwise point-to-point network. Since an over-
lay node may receive one copy of a packet and relay it to multiple recipients, the
operation is sometimes called “splitting.” This is achieved by the flexible delivery
path afforded by a media overlay discussed in Section 19.4.4.

Traditionally in a point-to-point network, the only way to achieve multicast
communications is to employ multiple independent transmissions of the same
data. Clearly, such repetition can be wasteful for large group sizes and poses heavy
loads for servers and networks alike. Nevertheless, repetition allows the preserva-
tion of the simple client–server model of Figure 19.2a, which is of practical im-
portance for compatibility with capability-constrained devices or older devices. In
the other extreme, it is possible to establish relaying infrastructure using end hosts
only, as is done in many peer-to-peer systems. For example, in Figure 19.2c, it is
possible for “Server” to stream to client P , which is then responsible for relaying
data to P ′. When each client relays data to only one other client, we have a dis-
tribution chain, but more general distribution structures are clearly possible. The
use of end-host systems can surely relieve the server load and, to a certain extent,
relieve network load as well, depending on the particular distribution structure
employed. Nevertheless, these all come at the expense of higher complexity and
resource requirements for the clients. For example, the simple client–server model
is no longer valid, and a client has to maintain communications with multiple end
hosts and change these connections based on end-host churning. Furthermore, end
hosts now need to perform data transmission in addition to reception.

By strategically placing the “splitting” function in the overlay nodes, the over-
lay multicast solution allows clients to assume the simple client–server model,
while relieving the high server and network loads associated with using multi-
ple independent transmissions. End-user video quality is improved with reduced
server and network load, and the possibility of having “local” retransmissions be-
tween overlay nodes. For the operator, the reduction of network traffic associated
with multicast greatly reduces network cost, and the simple client–server model
guarantees support for a wide range of clients, as well as simpler problem diag-
nosis.

Many multicast communications with large client population are scheduled in
advance. Examples include major sports events for entertainment and CEO an-
nouncements for corporate communications in a large enterprise. In Figure 19.4,
overlay resources are represented as overlay nodes inside the infrastructure and
edge servers near the clients. One possible approach to affect multicast is then to
use the push mode of operation discussed in Section 19.3.3. Under push mode, the



Section 19.5: MEDIA OVERLAY USES AND BENEFITS 661

overlay nodes and edge nodes form a distribution tree, with edge nodes assum-
ing the additional duty of streaming to clients. A client can be redirected to an
appropriate edge node via one of several mechanisms discussed in Section 19.4.

Application-level multicast or “splitting” architectures are particularly relevant
for video content due to the high volume of data involved. However, many tech-
nical issues remain. For example, in the dense client situation (when the expected
number of clients per nearby edge server is large) it is sensible to push the con-
tent to an edge server. This design provides two advantages. First, the edge server
serves as a rendezvous point for clients to access the content. Second, a relatively
static distribution structure can be used to connect the edge servers, each of which
individually handles joining and leaving of clients. When clients are sparsely dis-
tributed, two corresponding problems arise. First, it may no longer be efficient to
involve an edge server, and an entry point into the overlay system is required, for
example, via a portal. Second, the distribution structure may need to evolve as
clients join and leave, which is typically challenging due to the relatively unpre-
dictable behavior of individual clients.

19.5.3 Multi-Way Conferencing

A media overlay allows new capabilities to be introduced incrementally to an ex-
isting network without modifying existing clients or requiring global infrastruc-
ture upgrades. For example, consider a network that supports point-to-point video
communication. In this example, client devices have a video conferencing appli-
cation that can receive, decode, and play back one audio/video stream and that can
capture, encode, and send one audio/video stream. Normally, clients can commu-
nicate directly with one another to establish a two-way conference, as shown in
the upper left of Figure 19.13. Three-way or multi-way video conferencing can
be achieved, as shown in the upper right of Figure 19.13, where all the streams
are sent to all the clients, but this approach requires upgrading all the clients and
requires each client to have the ability to receive and process multiple streams.
However, the question that we now consider is how to support three-way or, more
generally, multi-way video conferencing using existing applications designed for
two-way conferencing? We show how the media overlay can enable this improved
functionality without requiring any changes in the client, as shown in the lower
right of Figure 19.13.

Since the client is able to send and receive a single audio/video stream, the
key capability that the media overlay must provide is the ability to combine the
audio/video streams from all the other clients in the video conferencing session
into a single audio/video stream that can be decoded by the client. This single
audio/video stream should contain the appropriate view from one or more of the
various session participants. This can be achieved in a number of ways. First, the
media overlay can turn the remote participants’ streams into a single stream by
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FIGURE 19.13: Conferencing. (Upper left) Two-way conferencing.
(Upper right) Three-way conferencing can be accomplished by sending
all streams to all other users, but this requires each participant to be able
to receive all the clients to be upgraded and capable of receiving and
playing multiple streams. (Lower left) Multi-way conferencing can also
be achieved by upgrading only one client with conferencing capabilities
and having all the clients send and receive to this client. (Lower right)
Multi-way conferencing can be achieved transparently to all clients with
the overlay approach. All the clients interact with an overlay server as if
it were a single client. The overlay then combines the streams into the ap-
propriate single stream for each client. The overlay can be upgraded over
time to provide improved conferencing capabilities in a manner that is
transparent to clients.

performing a video transcoding operation that downscales all the video streams
and stitches or tiles them together into a single video stream and by performing
an audio processing operation that combines all the audio streams into a single
audio stream. Another option for combining multiple downscaled video streams
is selecting the video of the active speaker. The media overlay can achieve this
by applying an activity detection algorithm to the audio and/or video streams and
selecting the video of the active participant. The media overlay can perform other
options as well, such as combining the first two approaches where all the video
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streams are transcoded, but done in a manner so that the active remote partici-
pant is displayed with a larger display size than the nonactive participants. In all
these examples, since the media overlay performs the multistream transcoding in a
manner that produces a single audio/video stream that is accepted by the two-way
video conferencing client application, multiuser conferencing is a new capability
that is seamlessly provided by the media overlay.

To further understand the advantages provided by an overlay approach as com-
pared to end-host approaches, the next few paragraphs further examine the trade-
offs that arise with different end-host approaches to multi-way conferencing. If the
video conferencing client application could be upgraded, then one way to achieve
multi-party conferencing is for each client to send to and receive from all other
participants as shown in the upper left of Figure 19.13. Analogous client-side op-
erations to achieve the features described earlier, such as video downscaling and
audio mixing, are then performed locally. This is most flexible, but also requires
the largest amount of network and system resources both in the infrastructure and
at the clients. Therefore, this approach is not scalable to large conference sizes.
In addition, this solution presumes appropriate network support: it may not be
possible to get a new multi-party conferencing phone to work with the existing
telephone network.

For tiling display of multiple participants, the scheme presented earlier can be
improved by allowing participants to downscale their video streams to an appro-
priate size before sending them to the other participants. This requires coordi-
nation and signaling between the various clients to determine the size that each
participant’s video must be reduced to. For display of active speaker only, the
scheme presented earlier can be improved by locally performing activity detec-
tion. Coordination and signaling for selecting an active sender are also required.

To allow Alice, Bob, and Carol to participate in three-way conferencing, it is
possible for Alice alone to have an updated application, while Bob and Carol
use their legacy application to call Alice. This is shown in the lower left of Fig-
ure 19.13. Alice then plays the role of the central aggregator and performs all me-
dia processing for the entire conference. Compared to the overlay solution, this
end-host only solution has four limitations. First, it is not applicable to networks
such as telephone networks that only allow a single point-to-point communica-
tion. Second, at least one participant must have an upgraded application that is
known to all participants. Third, the limit on maximum number of participants is
likely to be much lower for an end host than an overlay infrastructure. Finally,
Alice, the central aggregator, cannot leave the conference without ending the con-
ference.

For end users, overlay conferencing allows existing applications to be used, and
simple logic for joining and leaving a conference that is likely to translate into
fewer disturbances for other participants. It can also support greater customiza-
tion, where each client decides, for example, on the desired viewing size for each
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stream. From a systems perspective, the overlay solution is attractive due to the
lower amount of traffic corresponding to a central aggregation point.

19.5.4 Additional Overlay-Based Media Features

Recording and retrieval of multimedia messages: In addition to data delivery,
the recording and retrieval of voice and video messages have evolved to become
common features in many networks. An overlay infrastructure of Figure 19.4 is
well equipped for this task because of its storage and streaming capabilities. The
recording and retrieval of multimedia messages can be implemented in the client
if it is permanently attached to a network, as is the case in land-line telephones.
Nevertheless, the overlay implementation offers several advantages. For the user,
it provides higher service availability, as the client no longer needs to be always
turned on and attached to a network. The user also benefits from easier access
to the content from other devices. From a systems perspective, the economy of
scale allows such recording and retrieval functions to be more economically im-
plemented in the infrastructure than in the end clients.

Enhanced media access: With new media formats being created, and the ca-
pability of network and client devices being improved continuously, the range of
available media content becomes highly diversified in terms of codec types and
options, bit rates, and picture sizes. This clearly poses a nightmare for interoper-
ability. While updating applications on clients to support new codecs is arguably
possible, although administratively difficult, a high bit rate or high complexity
content may always be incompatible with a constrained client. A media overlay
is in an ideal position to bridge the gap. Since a media overlay is involved in the
delivery of the media content, it can exploit its available computation resources
to transcode the media content to a format that a client is capable of handling,
where format subsumes relevant parameters such as codec types and options, bit
rate, and frame size. For the user, the benefit is access to content that would oth-
erwise be unaccessible. While there may be slight quality degradations associated
with transcoding, for a large class of content whose purpose is communication
rather than visual entertainment, such a trade-off is well justified. From a systems
perspective, the overlay solution provides a single point of upgrading for new
capabilities, such as a new codec. In addition, it is impossible to predict and im-
practical to encode, at content creation time, all possible configurations required
by different clients. The overlay solution effectively provides a way of dynami-
cally creating a custom stream only when necessary. The possibility of caching
transcoded content makes the solution more competitive in terms of computation
requirements [35].

Content sharing: In an example given earlier, the overlay infrastructure stores
the multimedia message boxes for users. Generally, the infrastructure can store
other content for the user and allow playback not only to a device, but to a con-
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ference of participants as well. This allows an enhanced version of the multi-
way conferencing discussed earlier, where the display options are expanded from
scaled and tiled video of participants, and the active speaker, to include a docu-
ment under discussion or vacation video being shared. Again, the overlay solution
does not require any clients to be modified. An equivalent system implemented
in the end host would require all clients wishing to share content to be upgraded,
along with other drawbacks outlined in Section 19.5.2. While the necessary media
processing may be held in an overlay server, the content to be shared may reside
in another server inside or outside the overlay infrastructure. Therefore, this ap-
plication cannot be realized without the media processing and content distribution
functions of the overlay infrastructure.

Content adaptation for improved usability: Similar to transcoding of media
discussed earlier, there are a number of other media processing that could be in-
corporated in a media overlay infrastructure without requiring client changes. We
will discuss here two examples for improving usability of media content. The first
example is “camera stabilization.” Many mobile devices are equipped with cam-
eras, but shooting usable video requires a trained and stable hand. When incorpo-
ration of image stabilization in the end devices is not computationally practical,
the media overlay provides a natural place for such algorithms, especially when
the content is stored in the overlay. The second example relates to the rendering of
speech as text overlayed onto the video. This is important for viewing content in
public places, such as libraries, or in noisy places, such as trains and restaurants.
In noisy environments, visual text may be more comprehensible than listening to
the original audio through an earphone. While the overlaying of text onto video
is not a difficult task and may be performed at the client, speech recognition may
prove too complex for most client devices. Again, the media overlay infrastructure
is conveniently involved in the delivery of content and can perform the aforemen-
tioned processing to render an appropriate stream to be delivered to the client.

Additional possible services: There are many other potentially important
media services, including video or audio processing operations, such as speed
up/slow down of playback, VCR functionalities, logo insertion, background re-
moval, enhancing resolution, and deblurring and noise reduction. In addition,
and very importantly, an overlay infrastructure provides a convenient and highly
flexible platform for introducing new services and gradually expanding the ser-
vices based on the number of users or improved functionalities, and it provides
this capability while generally enabling backward compatibility with older client
devices.

19.6 SUMMARY AND FURTHER READING

This chapter introduces the basic concepts, capabilities, and operations of a me-
dia overlay. The media overlay is an extension of an existing network infrastruc-
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ture and improves upon the basic network by having strategically located overlay
nodes with processing, storage, and relaying capabilities. This is in contrast to
the traditional client–server approach, where all intelligence and processing re-
side in the two end points, and the peer-to-peer model, where the intelligence
and processing are distributed across multiple end points without being integrated
with the basic network.

The benefits of the infrastructure approach assumed by a media overlay can
be examined in many different respects, including (1) improved availability, la-
tency, and quality of service for end users, (2) improved operational efficiency
and manageability for network operators, and (3) ease of adding new services
and capabilities. All of these benefits are achieved with minimal changes to exist-
ing clients and network infrastructure and allow incremental introduction of new
features and scaling of existing features to a larger audience.

Many capabilities are central to the operations of a media overlay. For media
delivery, these include media distribution, caching, multicast, media serving, and
security. For maintenance and management, these include resource monitoring,
management, and handoffs functions. For media services, these include opera-
tions that adapt the content of the media being delivered. For example, transcod-
ing can be used to adapt a media stream’s display resolution for a particular client
device or bit rate for a congested network.

Since the overlay is a part of a larger infrastructure, design and architectural
considerations are important. Some important design considerations for media
overlay design discussed in this chapter include modular design with well-defined
interfaces for data and control, push and pull delivery of media, and centralized
and distributed modes of operation for the media overlay. Some architectural con-
siderations discussed in this chapter include the system and network monitoring
capabilities of the overlay and the manageability of the overlay, which includes
allowing incremental deployment and upgradeability over time.

By properly designing a media overlay, an existing network infrastructure can
be evolved to handle multimedia applications. This chapter discusses a number of
overlay-enabled applications, including media delivery, overlay multicast, multi-
way conferencing, and other media services, including multimedia messaging,
enhanced media access, content sharing, and content adaptation.

Evolution of networked media services: Many networked media services
such as multimedia messaging, streaming media, video conferencing, mobile tele-
vision, multiplayer gaming, and video blogging and podcasting are beginning to
emerge. We foresee widespread adoption in the coming decade, and we believe
that two key ingredients are giving users compelling media services and high-
quality media experiences. This requires a flexible infrastructure that allows new
services to be incrementally deployed, since it is difficult to predict user response
to new services, and allows its media delivery capabilities to be upgraded in an
evolutionary manner, since there are costs associated with infrastructure improve-
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ments and network owners are hesitant to upgrade their infrastructure until they
see signs of high adoption and associated revenue.

Media overlays are a likely path to the widespread adoption of networked multi-
media services because they provide a highly flexible platform for introducing and
trying new services and are a means for gradually expanding the service deploy-
ment as the number of users increases. It also allows the infrastructure’s media
capabilities to be upgraded in an evolutionary manner. Furthermore, over time we
believe that many of these media overlay capabilities will eventually be built into
the base network itself, but on the path to widespread deployment, media over-
lays will provide the vehicle through which these capabilities and new services
will first be developed and deployed.

Comparisons of infrastructure-based overlays to other approaches are given
in [11,17,20,31]. In [20], the design issues and choices of an infrastructure-based
overlay are discussed. In [17], the trade-offs among several approaches for video-
on-demand applications are evaluated. A readable account of when to adopt peer-
to-peer systems is given in [31], while [11] presents an approach in which an
overlay is formed by clients rather than by infrastructure nodes. Readers interested
in problems relating to server placement or content placement may consult [27],
while [4] discusses the use of media overlays for streaming of video coded in
a multiple-description fashion. A detailed example of SMIL-based redirection,
as well as the use of segmented video, is discussed in [46]. Further discussion
on how media processing services, such as transcoding, may be implemented in a
media overlay is given in [16]. An example of possible media adaptation inside an
overlay infrastructure to improve transport over wireless networks is given in [9].
Further readings on several topics can be found in other chapters in this book.
For example, bandwidth adaptation techniques are discussed in Chapters 4 and
10, streaming media on demand in Chapter 14, and media streaming protocols in
Chapter 15.
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aggregation, 564f
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Bernoulli loss probabilities, 296
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231–232, 233, 267–268
cascaded, 232–233
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representation of, 231f
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Binary symmetric channel (BSC), 192, 194
Bit error rate (BER), 194, 245

channel coding and, 196–217
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Bit planes, 614f

approximation quantization of, 124–127
structure of, 129

Bit redundancy, 74
Bit stream assembler, 181–182
Bit stream switching, 106f
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Bit stream syntax, 181

EAC, 182f
Bit stream transmission, 8–9
Bit streams associated with blocks, 618f
Bits, 73
BitTorrent, 3, 5
BL. See Base layer
Block codes, 204

performance of, 196
Block diagonal structure, 69
Block diagrams, 64f, 619f
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Block scheme of turbo decoders, 216f
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Block-based motion-compensated

prediction, 135–136
Blocking artifacts, 66
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Bluetooth, 337, 409
BM. See Bandwidth managers
BOPs. See Blocks of packets
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downlink model, 591
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live, 6, 453, 489–496
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Buffering approach, 419, 420f
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Prediction
Central Spectrum Moderator (CSM), 397,
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Channel coding, 192, 476–479
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rates, 477

Channel decoders, 187–188, 596
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allotted to each flow, 430f
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concepts of, 230–231

Channel quality monitoring, 426–427
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CIF. See Common Intermediate Formate
Cisco Aironet, 420
Classical communication systems, 187
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Client application, 293
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loading, 85, 455

Client time, 475
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adaptive streaming for multiple, 655
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request handling, 644–645
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Coarse grained selection, 463
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Codebook Excited Linear Prediction

(CELP), 60, 63–65, 79
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Coded block pattern (CBP), 129
Coded video data, 15–16
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Coding delay, 517f
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scheduling
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PRISM, 602
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Context adaptive entropy coder, 177–178
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generation of, 211
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trellis representation of, 209f
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CPU energy saving, 417–418
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Cross-layer solutions
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integrated approach, 355
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loss, 16–17
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delay, 87, 467
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Decoding deadlines, 474–475
Decoding delay, 87

buffer, 87
Decorrelating transform, 613
Delay, 4, 5
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coding, 517f
constraints, 339
decoder buffer, 87
decoding, 87
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end-to-end, 86, 95, 308f, 516f, 532–533,
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Delay management architecture, 430–432
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overview, 431f
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delay management architecture in,
430–432

relative, 424
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218f
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curves for, 529–530
Digital video signal, sender and receiver
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of video signals, 547–548
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Discrete Cosine Transform type IV
(DCT-IV), 164

Discrete data, 608–609
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235
Discrete sources, 188–189
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control, 549–550
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theory for, 604–613

DMC. See Discrete memoryless channel
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Drift effect, 124
dRSVP, 424
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EDCA. See Enhanced distributed channel
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Egalitarian bargaining solution, 395
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bit stream output, 179
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bit stream syntax, 182f
framework, 161f
subbit plane coders in, 172
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171–172
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Encoder application, 293
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buffer delay, 86–87
delay, 86
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End-to-end delay, 86, 95, 308f, 516f,
532–533, 536, 539f

End-to-End video transmission, 14–15
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Energy saving

CPU, 417–418
network, 418–419
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Kullback–Leibler divergence
Entropy coding, 617
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EOS. See Energy-efficient operating systems
EPS. See Error protection strategy
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performance of, 38f
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Error correction, 201
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Error mitigation, 41–53

motivation, 41–42
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motion-compensated, 133
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Fine granularity scalability (FGS)
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ITU G.722.2, 65, 66
iTunes, 3

Jitter delay, 257, 262–263, 566
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Media on demand (continued)
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communication protocols, 457–460
compound streams, 471–473
control objective, 482
controller design, 484–487
controller interpretation, 488–489
file formats, 461–464
frame rates, 487
fundamental abstractions, 464–476
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Media overlays, 633–634, 635–637
adaptive streaming for multiple clients,

655
advanced topics, 654–658
architecture and design, 650–654
caching, 642–644
capabilities of, 639–641
client request handling, 644–645
content adaptation, 665
content sharing, 664–665
design choices, 652–653
enhanced media access, 664
in extended system architecture, 638f
in media delivery, 658–659
media distribution, 642–644
media security, 656–657
mid-session streaming handoff, 657–658
modular, 650–652
multi-way conferencing, 661–664
network-adaptive media streaming,

654–655
overview of streaming, 637–639
path and server diversities, 657
processing services, 646–648
real-time media adaptation and

transcoding, 655–656
receiving media, 641–642
recording and retrieving multimedia

messages, 664
sending media, 641
server capabilities of, 640–641
splitting service, 660–661
stream relay, 642
system monitoring and management,

645–646, 652
transport and streaming, 641–642
uses and benefits, 658–665
walk-through, 648–650

Media processing services, 646–648
Media quality, 86, 94–95
Media server, 293
Media services architecture, 647–648
Media time, 475
Media transport and control protocols, 510
Media-dependent FEC, 73–78
Medium access control (MAC), 313, 325,

335, 340, 343–344, 435, 436
in cross-layer solutions, 355
PLR, 357f
protocols, 314

MELP. See Mixed excitation linear
prediction

Memory length of Markov chains, 316–317
Memory lengths, 315–316
Memoryless sources, 188–189
Meshes, 136
Message flow, 507f
Metrics for quantifying performance, 7–8
Microsoft Messenger, 79
Middleware control framework, 439f
Middleware-based adaptation services,

439–440
MIL-STD-3005, 63
MIME, 457
MIMO. See Multiple Input Multiple Output
Minimal real-time processing, 128
Minimum distance coding, 193
Mismatch, 17
MIX. See Channel mixers
Mixed excitation linear prediction (MELP),

63
MLT. See Modulated Lapped Transform
Mobile operating systems

architecture of, 415f
coordination in, 414–416
CPU energy saving in, 417–418
CPU speed changing in, 419f
design and algorithms of, 414
experimental results, 420–422
network energy saving in, 418–419
QoS in, 413–422
soft real-time CPU scheduling in, 416–417

Mobile sequence, 389
Model based coders, 144
Modem error correction protocols, 260
Modified discrete cosine transform (MDCT),

163–164, 181
with switching window, 165f
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Modulated Lapped Transform (MLT), 66,
67f, 68, 163–164

Modulators, 187–188
Modulo-2 addition, 208
Monitor, 439
Moore-Penrose generalized inverse, 70
Most significant bit (MSB) plane, 129,

171–172
Motion complexity, in DVC, 604
Motion search, 615–616

high complexity, 616–617
no, 615–616

Motion vector (MV), 24, 132, 154
scalability, 120

Motion-Compensated FGS (MC-FGS), 133
Motion-Compensated Prediction (MCP), 13,

104, 593
Motion-Compensated Predictive Coding

(MCPC), 605–606
Motion-Compensated Temporal Filtering

(MCTF), 135–140, 153–154
2D + t , 150, 151f
t + 2D, 150, 151f
unconstrained, 145–147
wavelet, 139

Motion-Compensated Video Model,
604–605

Motion-compensated wavelet video codecs,
135–151

Motion-search complexity, 603–604
MP3, 5, 66, 159
MPARC, 424
MPEG-1, 20
MPEG-2, 8, 26, 30, 118, 409
MPEG-4, 5, 13, 15, 20, 21, 46, 53, 118, 159,

409, 519
AVC/H.264 scalable extension, 152–153
FGS coding, 127–135, 279
FGS encoders, 128f
FGS two-layer bit stream, 130f
hybrid temporal-SNR scalability with

FGS structure, 129–132
SNR FGS structure in, 127–129
video packetization, 515f

MPFGS. See Macroblock-based PFGS
MRF. See Markov Random Field
MSB plane. See Most significant bit
MSE. See Mean square error
MSNBC.com, 3

Multicast, 7, 97. See also Receiver-driven
layered multicast

address, 490
backbone, 242–243
layered, 490

Multidimensional adaptation (MDA), 153
Multi-hop ad hoc networks (MANET),

441–442
best effort traffic in, 442

Multimedia codecs, 83
Multimedia communication, 4–8

applications, 4–5
sender and receiver curves for, 528–532

Multimedia quality fairness, 395–396
Multipath streaming systems

analysis, 577–580
asymmetric paths in, 580
design, 577–580
joint and disjoint paths, 577
number of paths, 577–578
operation, 577–580
path selection in, 578

Multiple bit rate coding, 463
in bandwidth adaptation, 105–107

Multiple deadlines, 303–305
Multiple Description Coding (MDC), 79,

104, 567–577
audio coding, 571–572
basic, 567f
benefits of, 576f
CDN, 582–583
FEC, 573f
image coding, 572
information theory perspective on,

569–570
for media, 576–577
packet losses and, 579
predictive, 574
repairable, 575–576
scalable coding v., 568–569
SD coding v., 568–569
speech coding, 571–572
video coding, 572–573

Multiple description coding (MDC), 552
Multiple Input Multiple Output (MIMO),

341
Multiresolution motion compensation coder,

149f
Multiuser wireless video resource allocation

game, 398f
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Mutual information, 189
pair-wise, 390t

Mutually exclusive media streams, 473
MV. See Motion vector

NACK, 53
NAK. See Negative acknowledgment
NAL. See Network abstraction layer
Napster, 3
Nash bargaining solution, 395
n-dimensional vector, 205
Negative acknowledgment (NAK), 47, 50,

222, 243, 247, 257, 262, 301,
302, 456

Nemesis, 414
Network abstraction layer (NAL), 15
Network adaptive transmission, 293
Network energy saving, 418–419
Network layer, 340
New Prediction (NEWPRED), 46, 519
NEWPRED. See New Prediction
NMB/DU , 30
NMR, 181
No excitation response, 70–71
Nonconversational services, AMP for,

538–540
Nonsignificance pass, 126
Normalization, 143
Normalized waiting time, 433

Observation Task, 439
ODWT. See Overcomplete discrete wavelet

data
Offline encoding, 6
Online encoding, 6
Open Systems Interconnection (OSI), 337
Open-loop architecture, 101
Operation encoder control, 42–44
Operational coder control, 42, 43f
Optimal expected cross-layer strategy, 400
Optimal joint strategy, 400
Optimal real-time cross-layer strategy, 401
Optimal revealing strategy, 400
Optimization complexity, 109
Optimization procedure, 76f, 77
Optimum rate allocation, 77–78
OPTIONS method, 506
Oracle, 606

Orthogonal Frequency Division
Multiplexing, 342

OSI. See Open Systems Interconnection
Overall probabilities, 237
Overcomplete discrete wavelet data

(ODWT), 150
Overcomplete wavelet domain, motion

estimation and compensation in,
148–151

Overlapped block motion compensation, 36
Overlapped transforms, 66–67

P frames, 26
P2P networks. See Peer-to-peer networks
Packet(s), 74, 75, 279

blocks of, 274t
error detection, 279–284
loaded, 254
media to, 562–563
partially late, 257
unloaded, 254
useless, 257

Packet compression event, 262
Packet correlation

over channels with memory, 238–240
probabilities and, 239f, 240f

Packet Data Unit (PDU), 39, 40
Packet erasure channel (PEC), 234, 267–268
Packet expansion events, 263
Packet losses, 236–238, 358

average, 252f
burst durations, 254–255
burst lengths, 252–254
channel coding and, 196–217
heavy tails, 255–257
over cascaded channels with memory,

240–241
over channels with memory, 236–238
overview of, 251–252
per-state, 251
protection with QoS, 278
SD and MD video, 579
in Wide Scale Internet streaming study,

251–257
Packet path diversity, 552–553

for low-delay conversational services, 552
Packet reception, 241f
Packet reordering, 263–266

distance, 264



INDEX 685

Packet routes, controlling, 586–587
Packet transmission duration, 346–349
Packetization modes, 31f
Packetization scheme, 562f
PAL, 537
PANs. See Personal Area Networks
Parallel traceroutes, 245
Pareto distribution, 257, 261
Parity bits, 280f
Parity check matrix, 199, 201
Parity packets, generation of, 495
Parity symbols, 273
Partition tree, 212f
Path diversity, 559, 560f

applications and architectures, 580–587
benefits of, 563–567
content delivery networks, 581–583
controlling packet routes, 586–587
low-delay applications for, 580–581
in media overlays, 657
modeling, 578–579
over peer-to-peer networks, 583–584
over wireless networks, 584–586
selection of, 565f
topologies, 580f

PBRA, 424
PBx, 3–4
PCF. See Point coordination function
PCM. See Pulse Code Modulation
PDF, 257
PDU. See Packet Data Unit
Peak Signal-to-Noise Ratio (PSNR), 8, 39,

41f, 48, 49f, 50, 51, 52f, 95, 282
decoded, 362t, 393t
plot of, 40f
rate curves v., 305
transmitted bit rate v., 298f, 302

PEC. See Packet erasure channel
Peering, 651
Peer-to-peer (P2P) networks, 84, 635–637

path diversity over, 583–584
Perfect state measurement, 486
Performance bounds, 230
Per-hop-behavior (PHB), 433
Personal Area Networks (PANs), 337, 340
PET. See Priority encoding transmission
PFC. See Previous Frame Concealment
PFGS. See Progressive FGS
P-frames, 105, 106, 295f

coding, 593f

PHB. See Per-hop-behavior
PHY. See Physical layer
Physical layer (PHY), 340, 342, 349, 352
Piecewise linear mapping, 437f
PIFS time, 373
Pitch period, 62, 545–547
Playback, 85

deadline, 479
latency, 85

Playout speed control mechanisms, 548–551
distortion-latency optimized, 549–550
heuristic, 548–549
for low-delay applications, 550–551

PMFs. See Probability mass functions
PN. See Predicted insignificance
Podcasting, 3, 5
Point coordination function (PCF), 344
Point-to-point protocol (PPP), 245

Compression Control Protocol, 260
Positive acknowledgment (ACK), 47, 222,

243, 265–266, 506
Power measurement, 421f
Power-saving mode (PSM), 420
PPLive, 3
PPP. See Point-to-point protocol
Predicted insignificance (PN), 173
Predicted significance (PS), 173
Prediction across frames, 109
Predictive coding, 595
Predictive video coding scheme, 119f
Preroll delay, 467
Presentation Time Stamp (PTS), 47, 475
Previous Frame Concealment (PFC), 34–35
Prioritization methods, 19
Priority encoding transmission (PET),

272–279, 491
BOPs in, 277
with eight transmitted packets, 273t
FEC and, 493–494
optimization, 275–276
packetization, 492f
QoS of, 277–278
quality, 493f

PRISM, 601, 628
architectural goals of, 602–604
classification, 613–614
compression performance of, 602
decoding, 619–621
decorrelating transform, 613
encoding, 613–619
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PRISM (continued)
future research in, 625–626
lossless channel results, 622f
lossy channel results, 623f
motion-search complexity, 603–604
quantization, 613
robustness, 602–603
simulation results, 621–625

Private information estimation, 400
Probability estimation, 180–181
Probability mass functions (PMFs), 317–318
Product code system, 285, 286–287, 287t,

289t
Progressive downloading, 455
Progressive FGS (PFGS), 133

macroblock-based, 133–134
Proportional service differentiation model,

434
Protocol stack, 506f
Provisional response, 506
Proxy, 84

in bandwidth adaptation mechanisms, 92
PS. See Predicted significance
PSM. See Power-saving mode
PSNR. See Peak Signal-to-Noise Ratio
PTS. See Presentation Time Stamp
Pulse Code Modulation (PCM), 60, 61, 74
Pure ARQ protocols, 222–223
Purged datasets, 250–251

QCIF. See Quarter Common Intermediate
Format

QM coder, 178
QoS. See Quality-of-Service
QP. See Quantization step size
QPSK. See Quadrature Phase Shift Keying
Quadrature Phase Shift Keying (QPSK), 217
Quality-of-Service (QoS), 13, 20, 81, 337,

371, 503
architectures, 440
end-to-end, 410
in mobile operating systems, 413–422
in mobile wireless networks, 422–445
models, 423–424, 446
priority encoding transmission and,

277–278
sub-flow, token rates, 384t, 385t

token rate adaptation for link adaptation,
383–384

VoIP, 516–522
Quantization

lattice, 615f
section split and, 165–166

Quantization step size (QP), 99, 100
Quarter Common Intermediate Format

(QCIF), 39
Queue diversity, 566
QuickTime, 457

RA codes. See Repeat-accumulate codes
RaDiO. See Rate-distortion optimized

streaming
Radio Link Control (RLC), 39, 40
Random process, memory lengths of,

315–316
Rapid adaptation mode, 551
Raptor codes, 204
Rate, 14
Rate compatible punctured convolutional

(RCPC) codes, 196, 211, 285,
288

decoders, 287
decreasing, 289t
encoders, 286
within packet error detection, 279–284

Rate control, 102, 110
for bandwidth adaptation, 98–99

Rate distortion (RD), 98
preamble, 89, 299

Rate estimation, 496–498
Rate-adaptive applications, 314
Rate-based optimization, 282–283
Rate-Based Transmission, 442
Rate-control system, 425
Rate-distortion function, 191
Rate-distortion optimized streaming

(RaDiO), 294–300, 460
basic framework, 295–298
CoDiO and, 308f, 309f
multiple deadlines in, 303–305
proxy driven streaming, 300f
receiver-driven streaming, 298–300

Rate-distortion performance, 304f, 306f
Rate-optimal solutions, 276–277
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Rate-priority points in subbit
plane-embedded entropy coding,
175

Rayleigh channel, 287
RCPC codes. See Rate compatible punctured

convolutional codes
RD. See Rate distortion
R-D curves, 76, 100
R-D optimization algorithm, 305
R-D optimized system, 297, 305, 550
R-D value pairs, 144
Reaction time in bandwidth adaptation

mechanisms, 95–96
Real Audio, 159
Real Time Streaming Protocol (RTSP), 458,

459t, 649
RealMedia, 457
RealNetworks, 457
RealPlayer, 83
RealSystem, 97
Real-time adaptive packetization, 362
Real-time algorithms, 367
Real-time communication, 6, 59, 461
Real-time cross-layer algorithm for wireless

video streaming, 368–370
Real-time cross-layer optimization, 386–393

feature selection, 388–391
Real-time greedy algorithm for adaptive

packetization, 369t
Real-time retransmission limit optimization

(RTRO), 358, 360
Real-time strategy selection, 388
Real-time streaming, 246–247
Real-time Transport Control Protocol

(RTCP), 44, 504
VoIP, 512–513

Real-time Transport Protocol (RTP), 44,
504, 510–512, 511

header format, 511f
Receiver curves

for digital speech signal transmission,
529–530

for digital video signal transmission,
530–532

for multimedia communication, 528–532
for voice packets, 534f

Receiver devices, 7
Receiver driven streaming, 298–300
Receiver-driven layered multicast (RLM),

456, 490

Recursive Optimal per-Pixel Estimate
(ROPE), 45

RED, 253
Redirectional response, 507
Redundancy, 82, 187

rates, 366–367
Redundant slices, 25–26
Reed–Solomon codes, 196, 202, 272, 346
REF. See Refinement
Reference areas with expected distortion

update, 51
Reference frames, synchronized, 50
Reference Picture Selection (RPS), 26
Refinement (REF), 173

context, 176
subbit plane, 173

Refinement bit, context for, 176
Refinement pass, 127
Region of Interest (ROI), 23
REGISTER method, 506
Regular prediction with limited error

propagation, 50–51
Regular users, 243
Reliable routing protocols, 314
Render buffers, 455
Reordering delay, 264–265

histogram of, 265f
Reordering distance, 265–266
Repeat-accumulate (RA) codes, 204
Replacement excitation, 64–65
Request failure, 507
Request for Comments (RFC), 458
Resource monitoring, 641
Resynchronization, 29–41
Retransmission schemes, 244

optimal packet sizes for, 350f
Revealing strategy, 397
Reverse hops, 245
Reversible Variable Length Coding (RVLC),

21
RFC. See Request for Comments
RFGS. See Robust FGS
RIch acknowledgments, 300–303

conventional acknowledgments v., 302f
RLC. See Radio Link Control
RLM. See Receiver-driven layered multicast
Robust FGS (RFGS), 133
Robustness tests, 621–622
ROI. See Region of Interest
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ROPE. See Recursive Optimal per-Pixel
Estimate

Round-trip delay (RTT), 243, 259–262, 487
average, 261f
calculation, 513f
heavy tails, 260–261
histograms of, 259f
overview of, 259–260
variation of, 261–262

Router-Assisted Flow Control, 442
RPS. See Reference Picture Selection
RSC encoders, 214
RTCP. See Real-Time Control Protocol;

Real-time Transport Control
Protocol

RTP. See Real-Time Transport Protocol
RTRO. See Real-time retransmission limit

optimization
RTSP. See Real Time Streaming Protocol
RTT. See Round-trip delay
RVLC. See Reversible Variable Length

Coding

SAD. See Sum of Absolute Differences
Scalability, 24, 91, 117, 651

in bandwidth adaptation mechanisms, 90f
complex, 127
content, 127
in current video coding standards,

118–127
fine granularity, 103, 463
frequency, 127
hybrid temporal-SNR, 129–132
layered SNR, 125f
layered spatial, 122f
layered temporal, 123f
motion vector, 120
multilayer FGS-temporal, 132f
SNR, 103, 124
spatial, 103, 120
temporal, 103, 123

Scalable audio coding framework, 161–162
Scalable coding, 160. See also Layered

coding
in bandwidth adaptation, 103–104
MDC v., 568–569
for media, 576–577

Scalable streaming, 473–474

Scalable video admission control
mechanisms, over IEEE 802.11,
374–376

Scene super-resolution, 626–627
SDP. See Session Description Protocol
Search regions, 545
Secondary SP (SSP), 29
Section split, quantization and, 165–166
Security, 656–657
Selective-Repeat ARQ, 223–224, 224f
Self-congestion, 307
Sender curves

for digital speech signal transmission,
529–530

for digital video signal transmission,
530–532

for multimedia communication, 528–532
for voice packets, 534f

Sender-driven streaming, 299f
Senders, 84, 110

in bandwidth adaptation mechanisms, 91
Sending rates, 476–479
Server failure, 507
Service intervals (SI), 373
Session Description Protocol (SDP), 509

MDC v., 568–569
for media, 576–577
packet losses and, 579

Session initiation protocol (SIP), 504,
505–508

call setup using, 515f
H.323 v., 510t
Uniform Resource Identifiers, 508

S-frames, 106
Shadow retry limit (SRL), 359
Shannon information theory, 178
Shannon’s channel theorem, 188–196

source channel coding, 194
Shannon’s noiseless coding theorem, 190

lossy source coding, 190–191
Shannon’s source theorem, 188–196

channel coding, 192
Shannon’s source-channel coding theorem,

194–195
Shift registers, 214f
Shift variance of Haar transform, 150f
SI. See Service intervals; Switching Intra
Side information, source coding with,

595–596
SI-frames in bandwidth adaptation, 107
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Sign bits, 176
Sign coding, 176

sign and context for, 177f
Sign count, 177f
Signaling protocols, VoIP, 505–508
Signal-to-noise ratio (SNR), 213, 350

BER v., in 802.11, 343f
subjectively weighted, 78f

Significance identification, context for, 177f
Significance Propagation, 143
Silence periods, 548
Simple Object Access Protocol, 648
Simplified systems, 84
Simulated retransmission, 248
Simulcast, 117–118, 490
Single rate distortion functions, 75
Single voice packets, extension and

compression of, 546f
Single-hop ad hoc network, 422
Single-hop wireless networks, 440–442
SIP. See Session initiation protocol
16-QAM, 217, 218f, 219f, 220

nonuniform, 220f
64-QAM, 218f, 219f, 220, 221
Skype, 3–4
Slice groups, 23
Slice structured coding, 21–22

example of, 22f
SMIL. See Synchronized Multimedia

Integration Language
SMPTE, 361
SNR. See Signal-to-noise ratio
SNR coding structure, 118–124
Social decisions, 400
Soft IP switches, 3–4
Soft real-time CPU scheduling, 416–417
Soft real-time tasks, 412
Software adaptation, 446
Source coding, 455, 470, 476

background, 594–602
control, 478, 479
with side information, 595–596

Source encoders, 187
SP pictures. See Switching-Predictive
Spatial coding structure, 118–124
Spatial reuse, 428f
Spatial transforms, 126

temporal transforms and, 147–148
Spatial wavelet transform, 148

Spatiotemporal decomposition,
parent-offspring relationship in,
142f

Spatiotemporal error propagation, 17
Spatiotemporal motion-compensated lifting

scheme, 138f
Spatiotemporal SNR, visual performance

and, 153
Speech codecs, 68–72
Speech signal, 61f, 67f

FEC for, 72–78
SP-frames, in bandwidth adaptation, 107
SPIHT, 141, 144, 145, 282
Spike delay, 551
Split-level adaptation, 444
Splitting function, 660–661
SRL. See Shadow retry limit
SSD. See Sum of Squared Differences
SSP. See Secondary SP
Stack algorithm, 211
Standard array, 200f

tabulating, 201
Standard error, between cumulative

densities, 317–318
Stationary sources, entropy of, 195–196
Statistical feedback, 491
Statistical mindset, 592
Steady-state probabilities, 239
Stop-and-wait ARQ, 222–223
Storage in bandwidth adaptation

mechanisms, 96
Stream morphing in bandwidth adaptation,

107–108
Stream relay, 642, 643f
Streaming, 303–305. See also

Rate-distortion optimized
streaming

building blocks for, 561–563
characteristics, 562
on demand, 6
downloading v., 5–6, 85–86
MBR, 473–474
over packet networks, 476–489
overlays, 637–639
protocol, 459
real-time, 246–247
receiver-driven, 298–300
scalable, 473–474
sender-driven, 299f
statistics, 246t
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Streaming (continued)
video, 368–370, 548–549

Subbit plane context adaptive entropy coder,
175–177

Subbit plane-embedded entropy coding, 172f
encoding critical bands in, 174–175
finding current gap in, 174
initialization of, 174
recording rate-priority points in, 175
updating JND threshold in, 175

Sub-flow concept, 374–376
with different transmission durations, 378f
examples of transmission, 384–386
formation, 375f
frame rates and, 386f
QoS token rates, 384, 385t
scalable, with dynamic adaptation,

382–383
transmission of packets of, 382t

Suboptimal algorithms, 278
Subsequences, 26
Successful response, 507
Successive packets, 305
Successive refinement, 24
Sum of Absolute Differences (SAD), 36
Sum of Squared Differences (SSD), 36
Supplementary materials, 10
Surestream, 83, 97
SWAN, 424, 441
Switching Intra (SI), 29
Switching pictures, 29
Switching windows, MDCT with, 165f
Switching-Predictive (SP) pictures, 29
Synchronized Multimedia Integration

Language (SMIL), 649, 650f
Syndrome coding, 596
Syndrome decoding, 200, 620
Syndrome vector, 199–200
Syntax-constrained rate-distortion

optimization, 42–43
Synthesis filter parameters, 64
System management, 645–646
System monitoring, 645–646

Tanner graphs, 202, 203f
Target schedule design, 483–484
Target System, 439
Task States, 439
TCM codes. See Trellis-coded modulation

TCP. See Transmission Control Protocol
TCP-friendly rate control (TFRC), 460, 477
TDA. See Time domain aliasing
Template segments, 545
Temporal coding structure, 118–124
Temporal coordinate systems, 474–476
Temporal decomposition, 136–137
Temporal Haar wavelet decomposition, 136f
Temporal masking, 168, 169f
Temporal MC Haar filtering, 137f
Temporal transforms, spatial transforms and,

147–148
Ternary random variables, 231
TFRC. See TCP-friendly rate control
TH_INTERi,k , 168
TH_INTRAi,k4,168
Third Generation Partnership Project. See

3GPP
3D ESCOT, 142–144

neighbors of sample in, 143f
3D EZBC, 144–145, 145f

quad tree decomposition, 145f
3D SPIHT, 141–142
3D-wavelet coefficients coding, 140–141

separable, 140f
3GPP (Third Generation Partnership

Project), 63, 65
Three-band lifting scheme, 146f
Three-band lifting-like scheme, 147f
Throughput efficiency

with application-layer RS code, 348–349
cross-layer impact on, 346–351

Tightest leaky bucket, 469
Tightly coupled resources, 445–446
Time compression

dilation of speech and audio signals and,
543–547

dilation of video signals, 547–548
of silence periods, 548

Time domain aliasing (TDA), 164
Time fairness, 394–395
TIMELY, 424
Timescale modification, 544
Timestamps, 474–476

decoder, 474–475
presentation, 47, 475

Time-to-live (TTL), 245
Tornado codes, 196, 204
Traditional auditory masking, 170f
Traffic specification (TSPEC), 371, 375, 376
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Train classifiers, 388
Transcaling (TS), 134
Transcoding

in bandwidth adaptation, 101–103
for bit rate reductions, 102f

Transfer computations, 399
Transmission channel delay, 87
Transmission Control Protocol (TCP), 20,

234, 242
EXACT and, 444f
variable bandwidth over, 489f

Transmission opportunities (TXOPs), 370,
373–374, 383, 397, 399

Transmission policy, 295–296, 495
Transmission rates, 476–479
Transport layer, 340
Transport mechanisms, 293
Trellis, 208–209, 210

of convolutional code, 209f
Trellis-coded modulation (TCM) codes,

212–213
Truncation points, 181
TS. See Transcaling
TS 26.190, 65
TSPEC. See Traffic specification
TTL. See Time-to-live
Turbo codes, 196, 214–217

block scheme of, 216f
classical, 215f

TXOPs. See Transmission opportunities

UA. See User agent
UAC. See User agent client
UAS. See User agent server
UDP. See User Datagram Protocol
UEP. See Unequal Error Protection
Ultra Wide Bands (UWBs), 337
UMCTF. See Unconstrained MCTF
UMTS, 217
Unconstrained MCTF (UMCTF), 145–147
Underflow events, 244, 257–260
Unequal Error Protection (UEP), 25, 359
Unicast, 7
Uniform resource locators (URLs), 457
Uniquely decodable sources, 190
Unloaded packets, 254
Upstream, 266, 267
Urge, 3
URLs. See Uniform resource locators

User agent (UA), 506
User agent client (UAC), 506
User agent server (UAS), 506
User Datagram Protocol (UDP), 16, 234
UUNET, 244, 249
UWBs. See Ultra Wide Bands

V.42, 260
Variable bandwidth over TCP, 489f
Variable bit rate (VBR), 464, 470f
Variable-length channel codewords, 281f
VBR. See Variable bit rate
VCG. See Vickrey-Clarke-Groves
VCI, 13
Vector-matrix products, 208
Vickrey-Clarke-Groves (VCG), 397
Video applications, 15
Video coding techniques, 109

conventional, 593–594
Video communication systems, 14–18
Video data units, 31
Video packetization modes, 30–31
Video payload format, in VoIP, 514–515
Video quality, subjective experiment, 360t
Virtual frames, 487
Visual performance, spatiotemporal SNR

and, 153
Viterbi decoding algorithm, 209, 210, 211,

284
Voice over IP (VoIP), 3–4, 60, 82, 503

active techniques in, 518–519
address, 508
AMP for, 538
architecture, 504–516
audio-video synchronization, 520–522
available bandwidth, 520
call setup, 515–516
client-side techniques in, 518
combating losses in, 518
end-to-end delay for, 534–535
header fields, 508, 509t
late loss rate for, 534–535
latency in, 516–518
media transport and control protocols, 510
message body, 509–510
packet delivery times for, 535f
QoS, 516–522
real-time transport protocols, 510–512
RTCP in, 512–513
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Voice over IP (VoIP) (continued)
signaling protocols, 505–508
systems, 504
typical configuration for, 504f
video payload format in, 514–515

VoIP. See Voice over IP
Voronoi region, 205

Waiting time priority (WTP), 433
WANs. See Wide Area Networks
Waveform Similarity Overlap-Add

(WSOLA), 544, 545
Waveform speech codecs, loss concealment
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