

Migrating Applications to IPv6

Migrating Applications to IPv6

Dan York

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Migrating Applications to IPv6
by Dan York

Copyright © 2011 Dan York. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Teresa Elsey
Proofreader: Teresa Elsey

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
June 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Migrating Applications to IPv6, the image of a brant goose, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30787-5

[LSI]

1307712685

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . vii

1. User Interface Changes . 1
Presentation Format Changes 2
Variable-Length IPv6 Addresses 2
Port Number Colon 3
Classless (CIDR) Notation Versus Subnet Masks 4
Case Sensitivity 5
Validity Checking of Input Fields 6

2. DNS Changes . 7
Handling AAAA Records 7
Prioritization of AAAA and A Records 8
Happy Eyeballs 9

The Google Chrome Example 9

3. Application Programming Interfaces (APIs) . 11
Checking the API Transport 12
Checking the API Data 12

An Example: The Session Initiation Protocol (SIP) 13
Handling the API Connection 14

4. Storage of IP Addresses . 15
Memory Locations 15
Databases 15
Configuration Files 16
Case Sensitivity and Leading Zero Suppression 17

5. Transport Layer . 19
Dual-Stack versus IPv6-Only 19

Operating System Support 19

v

Application Dual-Stack Support 20
Multiple IPv6 Addresses 21
Privacy Extensions for IPv6 Addresses 21
Path MTU Discovery 23
Multicast and Broadcast 24
Security 24
NAT and IPv6 24

6. Documentation, Training, and Testing . 27
Documentation 27
Training 29
Testing 29

7. Resources and Next Steps . 31
Resources 31

Websites 31
Books 32

IPv6 Application Migration Checklist 32
The End? Or the Beginning? 33

vi | Table of Contents

Preface

Why This Book?
How badly will IPv6 break your application? What do you need to consider to make
your application “IPv6-ready”? What questions should you ask?

In the ideal world, your application should “just work” on IPv6, just as it does on IPv4.
However, in the real world, application issues crop up. These could be as simple as
having a user interface field that only allows the input of dotted-decimal IPv4 addresses,
or something more fundamental, such as an application binding exclusively to an IPv4
transport interface.

While there have been many books published about IPv6, including O’Reilly’s own
IPv6 Essentials and IPv6 Network Administration, almost all existing books focus on
understanding the protocol itself and using it at a network layer. They contain much
discussion about using network-level tools and even about creating applications that
interact directly with the network. However, the concerns related to IPv6 at the upper
application layers are mentioned only briefly, if at all. The Internet Engineering Task
Force (IETF) has published RFC 4038, which addresses many of these concerns, but
the concerns have not found their way out into mainstream books.

This short book is designed to help you understand what you need to think about to
be sure that your app will work as well with IPv6 as it does with IPv4. This book is not
so much about all the solutions but rather about the questions you need to be asking.

For IPv6 to truly be adopted on a large scale, ultimately the applications running on our
desktop systems, laptops, and mobile devices all need to play nice with IPv6. That is
the end goal of this book—to help enable individuals, companies, and organizations
to migrate their apps to IPv6 so that they can transition their networks into IPv6
networks.

Given that now, in 2011, many companies are just starting to pay attention to IPv6,
and given that many apps are just now moving to IPv6, this book will continue to evolve
to address issues identified as more applications make the move. I’d love to receive any
feedback you have on issues you encounter in migrating your apps to IPv6—and I
expect that you’ll see updates to this book come out over time.

vii

http://oreilly.com/catalog/9780596100582/
http://oreilly.com/catalog/9780596009342/
http://tools.ietf.org/html/rfc4038

Is This Book for You?
Are you an application developer? A product manager? A product marketing manager?
A documentation author? A training instructor? A system/network architect? This book
is designed to help you understand what issues you need to explore with your
application.

Developers, you will come away with enough information to go through your appli-
cation and make the necessary changes. Product managers, you will gain an under-
standing of what points you need to consider—and what you need to ask of your tech-
nical teams. If you are in marketing, documentation, or training, you will get a good
sense of what you’ll need to think about changing in your materials. And if you are a
system/network architect looking at your overall IPv6 implementation, you should
leave with a better sense of what changes may need to be considered across the appli-
cations that are deployed in your infrastructure.

This book is not a tutorial in the details of IPv6. The focus is on IPv6
issues as they relate to application developers and the book does not get
into topics such as network-layer changes between IPv4 and IPv6. If you
would like to gain a deeper understanding of IPv6, I recommend also
reading IPv6 Essentials by Silvia Hagen.

What Is in the Book?
To start your dive into IPv6 application migration, Chapter 1, User Interface
Changes, explores one of the biggest ways that IPv6 may impact your application: all
the many little tweaks you may need to make to your user interfaces. These could be
changes to your display or input fields—or something more subtle, like the fact that
you may have to think about capitalization in IP addresses.

Chapter 2, DNS Changes, explains the new DNS records for IPv6 addresses and explains
how a “happy eyeballs” approach can get users the information they want in the fastest
way possible.

Chapter 3, Application Programming Interfaces (APIs), raises questions around APIs,
both those your app provides and those your app uses, and how they treat IP addresses.

Chapter 4, Storage of IP Addresses, wraps up this first bit of the book by exploring how
you store the IPv6 addresses you receive from user input, DNS, or APIs. If you store
them in a memory location, is the location big enough or will there be a buffer overflow?
Can a configuration file accommodate both IPv4 and IPv6 address types?

Chapter 5, Transport Layer, drops down briefly into the network layer to discuss issues
application developers may need to think about. Does your application work in a dual-
stack system? Will it bind to both addresses? Does it need to care about multiple IPv6
addresses or about IPv6 privacy extensions? And is NAT a concern at all?

viii | Preface

http://oreilly.com/catalog/9780596100582/

Chapter 6, Documentation, Training, and Testing, explores three areas that complement
your actual application—documentation, training, and testing—and asks how you are
handling IPv6 in those areas.

Finally, the book wraps up with Chapter 7, Resources and Next Steps, providing links
to more about migrating applications and a checklist summarizing the key questions
from the earlier chapters.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

Preface | ix

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Migrating Applications to IPv6 by Dan York
(O’Reilly). Copyright 2011 Dan York, 978-1-449-30787-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449307875/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449307875/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

How to Contact the Author
Dan York also maintains his own site with information about this book, including notes
about his IPv6-related presentations, links to webinars, and other resources at:

http://migratingappstoipv6.com/

More information about Dan York can be found at:

http://www.danyork.com/

Dan can be contacted via email at:

dyork@Lodestar2.com

You can follow Dan on Twitter at:

http://twitter.com/danyork

He welcomes feedback about this book through any channel, and would even accept
that feedback via pen on paper…although no one seems to do that anymore.

Acknowledgments
First, I’d like to thank Mike Loukides of O’Reilly Media for approaching me about this
project. I’d submitted a proposal (which was accepted) to speak on this issue at OSCON
2011 and Mike asked, simply, “Would you like to write a short ebook on the topic?”
As the world of publishing is going through such incredible changes, it’s great to work
with a publisher like O’Reilly that is open to trying out new approaches. I’m looking
forward to seeing how this all works out.

My wife once again read through every page and section, offering me critical feedback,
even though the subject area has absolutely zero interest to her. One of these days, dear,
I will try my hand at a fiction book or something outside the tech sphere.

I’d like to thank three friends from the IETF and SIP circles—Olle Johansson, Alan
Johnston, and Dan Wing—who reviewed my initial outline and provided excellent
feedback.

I’d also like to thank my colleagues at my employer, Voxeo, for developing dual-stack
versions of our Prophecy and PRISM communications application platforms. It’s in-
credibly awesome when your personal passions and interests (such as IPv6) can inter-
sect so nicely with what is going on at work.

Preface | xi

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://migratingappstoipv6.com/
http://www.danyork.com/
mailto:dyork@Lodestar2.com
http://twitter.com/danyork

Thanks, too, to all the participants in the IPv6-related webinars I’ve given recently, who
asked me tough questions and deepened my own understanding of the migration chal-
lenges with IPv6.

Finally, I’d like to thank all the engineers, administrators, technicians, architects, and
everyone else who has been working so long and so hard to bring about the migration
to IPv6. Thank you all for continuing to believe and to do all that you do.

xii | Preface

CHAPTER 1

User Interface Changes

What is the single biggest way that IPv6 may bite you as an application developer? Sure,
if you are dealing with network applications like, say, Wireshark, you’re going to be
hit by changes down at the socket level. But for the vast majority of applications, which
simply need to interact with other applications at a network layer, what is the biggest
change?

The user interface!

“Huh?” you might be asking yourself…but think about it. How many times have you
looked at an application’s “Preferences” or “Options” window and seen a screen like
this:

How well will that work with an IPv6 address?

In fact, as I was writing this book, I happened to notice that the game Minecraft had a
new release. One of the many changes was related to the format of the IPv6 address
being entered into the app:

* Fixed IPv6 addresses being parsed wrongly. To connect to a
specific port in IPv6, use the format [1234:567::1]:25565

These are just two of the many little ways that IPv6 will mess with your mind and with
your app. You’ll need to think about and investigate how you present IP addresses for
display and how you accept IP addresses for input. This may, surprisingly, be the area
that will cause you the most pain and require the most testing. Ideally, we will move
away from using IP addresses and toward using DNS domain names, but in some cases,

1

http://notch.tumblr.com/post/5775170768/the-changelist-for-1-6

you may still need to accept or display IP addresses. In this chapter, you’ll look at the
issues you need to consider.

Presentation Format Changes
The single biggest user-visible change with IPv6 is the move away from the IPv4 “dotted
decimal” fixed format of four address blocks, to the IPv6 colon-separated format of
varying size. Now instead of an IPv4 address such as:

• 198.51.100.12

you may have a much longer address, such as:

• 2001:db8:1212:3434:1212:5454:1afc:4001

This change raises a number of questions about how you display (output) IP addresses
and how you accept (input) IP addresses. Some questions to consider are:

• Are display areas in your application wide enough to accommodate the larger IPv6
addresses? For example, if you have an “IP Address” field in a Preferences window
or a pop-up dialog box, will an IPv6 address extend beyond the display area and
be cut off or interfere with the design of the window?

• Are your current input fields composed of four boxes for an IPv4 address? Do you
need to change them to, for instance, a large text box to accommodate the IPv6
address?

You need to go through your application and look at every instance where you either
display or accept IP addresses and determine whether an IPv6 address would work
correctly there.

You also need to consider whether you are going to have two separate input/output
fields for IPv4 and IPv6 addresses. Will you simply have a “IP address” field where a
user can enter either an IPv4 or IPv6 address? Or will you have different entry fields
with another control (such as a radio button) allowing the user to select which address
will be entered?

Variable-Length IPv6 Addresses
The second biggest change is the variability in IP address length. With IPv4, addresses
have a fixed format of four blocks of decimal numbers. However, in IPv6, the address
can vary from the full eight blocks of hexadecimal numbers separated by colons—or
blocks with zeros can be compressed with the double-colon (“::”) notation, resulting
in a much shorter address. Consider that any of these are perfectly valid IPv6 addresses:

• 2001:db8::1

• 2001:db8:10ff::ae:44f2

2 | Chapter 1: User Interface Changes

• 2001:db8:1212:3434:1212:5454:1afc:4001

Can your application cope with the variability of the address format?

Now instead of thinking about an IP address as a simple case of four decimal numbers
separated by dots, you have to think of it more as a text string to be parsed with sepa-
rations based on a colon.

Consider these other examples:

• In IPv4, the local loopback address is 127.0.0.1. In IPv6 it is ::1.

• IPv4-mapped IPv6 addresses take the form ::FFFF:198:51:100:1.

Is your application able to handle the variations?

Port Number Colon
Further confusing the matter is the fact that in IPv4 you append the TCP or UDP port
number to the IPv4 address using a colon. For example, if you wanted to connect to
the web server running on port 8000 of a given system, you would use a URL similar
to this:

• http://198.51.100.22:8000/

Do you see the problem this is going to cause in IPv6?

If the colon is used as a delimiter within the IPv6 address, how do you represent port
numbers? One solution is discussed in the next section, but this is a general concern
you need to think about. Where in your application are you representing or allowing
IPv4 addresses with accompanying port numbers? Can you find all of those instances
and ensure that they will also work with IPv6?

The primary way to get around the port number colon issue is to use square brackets
around the IPv6 address as specified in RFC 3986. Consider that with IPv4, if you want
to connect to a service running on a system, it is very common to simply enter the IPv4
address directly in the URL. For instance, in a web browser, you might enter either of
these IP addresses:

• http://198.51.100.22/

• http://198.51.100.22:8000/

With IPv6, the URLs might then look like:

• http://[2001:db8:10ff::ae:44f2]/

• http://[2001:db8:10ff::ae:44f2]:8000/

Note that in the second instance the port number is outside the square brackets, thus
solving the port number colon issue.

Port Number Colon | 3

http://tools.ietf.org/html/rfc3986#section-3.2.2

This square bracket notation does not just apply to web URLs. It can
also be used in the URIs of other protocols. For instance, URIs used with
the Session Initiation Protocol (SIP) for Voice over IP might look like
this:

• sip:dan@[2001:db8:34a5::1]

• sip:dan@[2001:db8:34a5::1]:5060

Of course, ideally you are using domain names and only have to type
addresses like these for testing purposes.

If your application uses URLs or URIs anywhere, can it parse the square brackets cor-
rectly? What will it do if someone enters a URL with an IPv6 address without the square
brackets?

Classless (CIDR) Notation Versus Subnet Masks
Another change in IPv6 is the way in which you differentiate the network portion of
the IP address from the host portion. With IPv4, if you were giving someone your IP
address, you would typically give it to them like this:

• IP address 198.51.100.22 with subnet mask 255.255.255.0

From an application point-of-view, you would typically have two separate fields to
enter the IPv4 address and the corresponding subnet.

Now, some people in the IPv4 world would use Classless Inter-Domain Routing (CIDR)
notation as specified in RFC 4632. You may have also heard this called slash notation
or something similar. The idea is that instead of providing a specific subnet mask, you
specify the number of bits that are significant for the network portion of the address. In
the example above, the subnet mask of 255.255.255.0 indicates that the first 24 bits
(the three blocks of 8 bits) of the address represent the network portion and the re-
maining 8 bits represent the host portion. This is written in CIDR notation as:

• IP address 198.51.100.22/24

While this notation is certainly used with IPv4 in some areas, many application inter-
faces still look for a separate IP address and subnet mask.

With IPv6, however, this notation is mandatory. All addresses are written using the
slash notation. An IPv6 address might be written as:

• IP address 2001:db8:1234:5a:f3a3::22/48

indicating that the first 48 bits (the first three blocks of the address) represent the net-
work portion of the address.

4 | Chapter 1: User Interface Changes

http://tools.ietf.org/html/rfc4632

Similarly, if you are given an IPv6 network block, it would typically be written as:

• 2001:db8:1234:56::/64

indicating that the first 64 bits (or four blocks of the address) represent the network
portion.

You may also hear people talk about a network as a “/48” (and saying
“a slash 48”) or a “/64” (“slash 64”), as in “You’ll need to get a /48 from
your ISP if you are going to have multiple IPv6 subnets.”

From an application developer point-of-view, the main issues here are:

• How do you display the IPv6 address and netmask? If you previously displayed
two different fields in a dialog box or command output, you’ll need to merge that
information for IPv6 addresses.

• Similarly, how do you accept input for an IPv6 address and the corresponding
netmask? Will you have two separate fields? Or will you have users enter it all in
one “IP Address” field and parse out the netmask portion?

Case Sensitivity
As your application handles all these different IPv6 address formats, one more subtle
change from IPv4 that may impact your app is the fact that IPv6 addresses can be entered
with the text in either uppercase or lowercase. Consider that both of these addresses
are identical:

2001:db8:10ff::ae:44f2
2001:DB8:10FF::AE:44F2

And of course someone manually entering an IPv6 address could wind up with some
mixture of upper- and lowercase letters. Is your application sensitive to case in any way?

For example, if your app later compares an IPv6 address to past addresses, is the com-
parison function case-insensitive? Or would it treat the above two addresses as differ-
ent addresses?

A best practice to avoid any case-sensitivity issues is to simply normalize all IPv6 ad-
dresses to lowercase when your application receives them as input. This follows the
recommendation of RFC 5952 that all IPv6 addresses should be written in lowercase.
It does, though, require another step in the processing of an input field that you didn’t
have to do with the numeric addresses of IPv4.

Case Sensitivity | 5

http://tools.ietf.org/html/rfc5952

RFC 5952 contains a number of other great recommendations with re-
gard to how IPv6 addresses are written. For example, it recommends
that the zero compression using “::” be performed on the longest string
of zeroes in an IPv6 address. While this might seem to be common sense,
it is not specified by RFC 4291, which defines the architecture of IPv6
addresses. RFC 5952 also provides some other interesting use cases
where the textual representation of IPv6 addresses could be a problem,
and it is worth a read for anyone working on user interface design for
interaction with end users.

Validity Checking of Input Fields
Finally, when thinking about changes in the address format, you need to think about
validity testing in any input forms. Typically you want to perform some form of validity
testing on any kind of input forms to ensure that a proper IP address has been entered
and to guard against security issues such as cross-site scripting, injection attacks, and
the like.

With IPv4, this is relatively straightforward. An IPv4 address has a fixed format and
uses only decimal numbers. As you’ve seen in this chapter, IPv6 addresses can have a
variable format and use hexadecimal numbers. Validity testing can certainly be done—
it is just a bit more involved.

You also need to go back to the question raised at the beginning of this chapter: are
you going to have one generic entry field for an “IP address” that accepts both IPv4 and
IPv6 addresses? If so, you are going to need to test for both kinds of IP addresses.

Similarly, if you have fields allowing the entry of a URL/URI, you need to consider
whether you are checking for IPv6 addresses—with and without the square brackets.

6 | Chapter 1: User Interface Changes

http://tools.ietf.org/html/rfc5952
http://tools.ietf.org/html/rfc4291

CHAPTER 2

DNS Changes

Ideally you are using domain names instead of IPv6 addresses, but to do so, you need
to ensure that your application is retrieving the correct information from the Domain
Name System (DNS).

In IPv4, the DNS record pointing a hostname www to an IP address is an A record and
would look like this in a DNS zone file:

www 3600 A 198.51.100.22

With IPv6, the new DNS record is the AAAA (also known as a “quad A”) record, as in
this example:

www 3600 AAAA 2001:db8:12af::53

Ultimately, we will get to a point where DNS zone files contain both an A and an AAAA
record for a host name. For example:

www 3600 A 198.51.100.22
www 3600 AAAA 2001:db8:12af::53

Today, some operational issues (see below) have prevented widespread deployment of
both A and AAAA records for the same host name, but this is the direction in which DNS
records will go.

Handling AAAA Records
The first question is obviously whether your application can correctly handle AAAA re-
cords. When you issue a request for a hostname, does the underlying library even return
AAAA records?

If your app does get an AAAA record back, what does it do with the AAAA record? Does it
use the record to correctly obtain the IPv6 address for the hostname? Or does your app
ignore the returned AAAA record and only look for A records?

7

It is incredibly important to realize that AAAA records can be retrieved
over IPv4. In other words, just because you can retrieve a DNS AAAA
record does not mean you can connect to that site using IPv6.

You can try this yourself if you have only IPv4. Simply go to a command
line where you have access to the “dig” command and type:

dig AAAA ipv6.google.com

You will receive back the AAAA record for that address. However, whether
or not you can connect to that site using the AAAA address will depend
on whether you have a working IPv6 connection. The point is that your
application should not use merely the availability of an AAAA address as
a deciding factor in attempting to connect over IPv6.

Prioritization of AAAA and A Records
A larger question is which address will your application default to using when contacting
the host? The IPv6 address supplied by the AAAA record? Or the IPv4 address supplied
by the A record?

This is a key question and it is one of the factors that has slowed down deployment of
AAAA records for major domains. It makes sense to use the IPv6 address first, given that
IPv4 addresses will eventually fade away, but this may not always make sense. For
instance, in some earlier experiments where sites listed both A and AAAA records for a
web server, a web browser on a computer without a full IPv6 connection would try to
connect to the IPv6 address first. Eventually it would time out and switch to using the
IPv4 address, but the timeout took so long that it made for a horrible user experience.

For that reason, some websites have gone to having an IPv6-labeled version of the site.
For instance:

• ipv6.google.com

• www.v6.facebook.com

Obviously it is not ideal to have separate IPv4 and IPv6 DNS names, but it provides a
workaround until applications are correctly able to handle both record types.

This is a very real issue, particularly for web browsers. During the writ-
ing of this book, the IPv6 tunnel from my home office went down at one
point and suddenly all my browsing to IPv6-related sites became pain-
fully slow, as those sites had both AAAA and A records for their main
domain name. It was so glacially slow, in fact, that I wound up turning
IPv6 off on one of my computers simply so that I could get to some of
the websites I needed to reach.

8 | Chapter 2: DNS Changes

Happy Eyeballs
A potential solution to the prioritization issue is a proposal within the IETF referred to
as the “happy eyeballs” solution. On the face of it, “happy eyeballs” is an extremely
simple idea:

When you receive both an A and an AAAA record, try contacting the site using both
addresses and then use whichever address responds first.

If the IPv6 address is available and able to respond quickly, the communication will
happen over IPv6. If an IPv6 connection isn’t available, the communication will occur
over IPv4. Similarly, if the IPv6 connection is slower, perhaps because it is tunneled
over IPv4, the application uses the faster IPv4 connection.

With this approach, the user will be happier, as he or she will get information in the
fastest way possible—hence the “happy eyeballs” name.

If more applications adopt this approach, we will get to the point where we can have
both AAAA and A records listed for the same host name.

This “happy eyeballs” idea is not just for web browsers. The idea is
applicable to any application that could connect to either an IPv6 or
IPv4 address. For instance, a Voice over IP (VoIP) softphone is another
great candidate for a “happy eyeballs” approach of connecting to which-
ever IPv6 or IPv4 address replies the quickest.

The Google Chrome Example
In May 2011, Google implemented a variation on this “happy eyeballs” approach in
the developer builds of Google Chrome and in the public Chrome builds starting with
version 11.0.696.71. The Chrome technique is summarized in the description of the
code change:

When a hostname has both IPv6 and IPv4 addresses, and the IPv6 address is listed first,
we start a timer (300 ms) (deliberately chosen to be different from the backup connect
job). If the timer fires, that means the IPv6 connect() hasn’t completed yet, and we start
a second socket connect() where we give it the same AddressList, except we move all
IPv6 addresses that are in front of the first IPv4 address to the end. That way, we will use
the first IPv4 address. We will race these two connect()s and pass the first one to complete
to ConnectJob::set_socket().

In this implementation, Google Chrome tweaks the “happy eyeballs” idea to try the
IPv6 address first, but only for 300 ms. If no IPv6 connection is successfully made in
that time, Chrome will initiate an IPv4 connection and then race the two to see which
connection will complete first.

Happy Eyeballs | 9

http://tools.ietf.org/html/draft-ietf-v6ops-happy-eyeballs
http://bit.ly/chromeipv6fallback
http://bit.ly/chromeipv6fallback

This is a great solution because it still gives preference to IPv6 and saves on an extra
network query if the response comes back quickly enough for the connection to proceed
entirely over IPv6.

What can you do in your applications to ensure that users are not sitting waiting for
IPv6 connections to time out before trying to fall back and connect over IPv4?

If you are interested in diving deeper into DNS and IPv6, O’Reilly pub-
lished a new short book on the topic in May 2011: DNS and BIND on
IPv6 by Cricket Liu.

10 | Chapter 2: DNS Changes

http://oreilly.com/catalog/0636920020158/
http://oreilly.com/catalog/0636920020158/

CHAPTER 3

Application Programming Interfaces
(APIs)

What about the application programming interfaces (APIs) you expose for other appli-
cations to use to communicate with your application? What about the APIs you con-
sume in your application? How well do they work with IPv6?

Today it seems that every application or service needs to have some type of API for
other apps to use. We live in a time of mashups, where applications are frequently built
by pulling data from multiple sources, using APIs of some sort. If your application lives
“in the cloud,” where other applications may connect to it across the public Internet,
you will have certain APIs publicly exposed to which apps connect. If your application
resides on an on-premises server on an internal network, it may allow connections
across that local network. Even an application installed on a single machine may expose
certain APIs that allow connections from other apps running on that same machine. In
all of these cases, your app may also be connecting to APIs exposed by other services
and systems.

Some of these APIs may be simple web connections where information is exchanged
using a data format like JSON or XML. Others may be exposed ports that allow con-
nections using an industry-standard protocol such as the Session Initiation Protocol
(SIP) or the eXtensible Messaging and Presence Protocol (XMPP, formerly known as
the Jabber protocol). Still other APIs may use custom proprietary protocols.

The questions you have to answer are these:

• Does your application expose any APIs that have an IP address format dependency?

• Does your application consume any APIs that have an IP address format
dependency?

In both cases, the answers depend upon two factors: the transport and the data payload
of the API.

11

Checking the API Transport
The first step for APIs you are exposing is naturally to determine if an external appli-
cation can connect to your API using IPv6. This sounds like common sense. I mean…
after all, if the application is accessible over IPv6, shouldn’t the API be accessible that
way, too?

Unfortunately, the answer will depend on how you have exposed the API. If it is, for
instance, a simple REST-based call over your regular HTTP connection, all you may
have to do is be sure that your system has a valid IPv6 connection and, if necessary, the
appropriate DNS AAAA record for the IPv6 address—and of course, make sure that your
HTTP server is listening on your IPv6 address.

However, many apps may make the API connection available through an additional
web server running on a different port. In that case, is that additional web server
listening on the IPv6 address as well? If you have two different web servers with two
different configuration files/systems, you may need to ensure that both are listening on
both the IPv4 and IPv6 addresses. (Chapter 5, on the transport layer, will dive into this
topic in greater detail.)

Similarly, applications that are cloud-based may make their APIs available through a
different domain name or subdomain. For instance, an application running at
www.example.com may make its API available through api.example.com. Is that domain
accessible via IPv6? Is there a quad-A record available in DNS? Is the application lis-
tening on the IPv6 address if it is different from the regular IPv6 address?

Cloud-based applications can, of course, introduce added complexity into a situation
because the API may in fact be handled through a separate server than where the pri-
mary application runs. The API server may or may not be in the same data center or
same network as the main servers. Again, this will obviously vary based on how you
have deployed your application, but if you do use a separate server, realize that it needs
to be treated exactly like your main server in terms of IPv6 access.

For APIs that your application consumes, the steps are very similar. Can you reach the
remote APIs over IPv6? Do you need to use any special domain names or port numbers?

Checking the API Data
Once you have a verified IPv6 transport for your API connection, you need to look at
the actual data that is being exchanged over that API. Are IP addresses exchanged in
some manner? If so, is there a restriction on the IP address type that can be sent? If the
API uses a simple format like JSON or XML for the exchange of data, it may be a simple
matter of scanning through a “normal” data payload to understand if there are any IP
address dependencies. You may, of course, want to read through the API reference or
documentation (or source code, if it is your own) to see if there are any optional

12 | Chapter 3: Application Programming Interfaces (APIs)

parameters that could potentially be passed in the API payload but might not be part
of a typical payload.

On the other hand, if the API uses a larger protocol, you may need to dive into deeper
documentation to determine what type of IP address dependencies are out there.

An Example: The Session Initiation Protocol (SIP)
As an example, let’s take a look at the Session Initiation Protocol (SIP) used commonly
in Voice over IP (VoIP) and Unified Communications (UC) systems. As part of the
initiation of a SIP connection, the SIP packets contain a payload of the Session De-
scription Protocol (SDP), defined in RFC 4566. The challenge here is that SDP
hardcodes IP addresses directly into the information that is exchanged. For instance,
here is how a basic bit of SDP might look:

v=0
o=Example-UA 12224 1749 IN IP4 198.51.100.54
s=SIP Call
c=IN IP4 198.51.100.54
t=0 0
m=audio 49170 RTP/AVP 0

The important line is the c= line that defines a new connection. As you can see, it clearly
defines an IPv4 address:

c=IN IP4 198.51.100.54

Alternatively, it could have defined an IPv6 address:

c=IN IP6 2001:db8:42d7::101

However, one current limitation with SIP is that it cannot define both an IPv4 and an
IPv6 address for the same connection. You can put two different c= lines in the SDP,
but this has the result of actually creating two separate connections, which is probably
not what you are looking to do.

In the case of SIP, the IETF has actually published a separate document, RFC 6157,
IPv6 Transition in the Session Initiation Protocol (SIP), that explains issues related to
IPv6 for SIP. For SDP payloads, Section 4 of RFC 6157 explores this issue, with the
recommendation to use Interactive Connectivity Establishment (ICE), defined in RFC
5245, to determine the best addresses to use before sending the SDP packets.

If you are using SIP as part of your APIs, part of your migration to supporting IPv6
might also involve adding ICE support to your SIP stack—or whatever other systems
may be developed as there is more deployment of SIP usage over IPv6. The point is that
understanding what you need to do to migrate your API usage to IPv6 may be a bit
more involved, depending on the protocol that is being used.

Checking the API Data | 13

http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/rfc6157
http://tools.ietf.org/html/rfc6157
http://tools.ietf.org/html/rfc6157#section-4
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245

Handling the API Connection
Once you are sure that you can connect or receive API connections over IPv6 and that
the data exchanged correctly handles IPv6, the remaining question is whether the com-
ponents of your application that deal with API connections can correctly handle IPv6
addresses.

When an IPv6 address is part of an API communication, can all the functions, modules,
libraries, and the like correctly deal with that IPv6 address?

14 | Chapter 3: Application Programming Interfaces (APIs)

CHAPTER 4

Storage of IP Addresses

Once your application accepts an IPv6 address via an input field or an API or retrieves
it from DNS, how does your app actually store that address?

And, given that we will be working with dual-stack systems for quite some time, can
your application handle both an IPv4 and an IPv6 address?

Memory Locations
Consider, for instance, memory locations. With IPv4, you have a rigid 32-bit address.
Is your application only allocating a fixed size in memory? What happens when you
try to insert the 128-bit IPv6 address into that memory location? Will you have a buffer
overflow?

Similarly, in reading from a memory location, have you again addressed the fact that
IPv6 addresses may have a variable length, depending on whether address compression
was used?

In a dual-stack environment, are you allocating memory space for two addresses, so
that you can store both an IPv4 and an IPv6 address?

Databases
As with memory locations, you need to look at your database tables where you store
IP addresses. Is the field you use to store IPv4 addresses big enough to handle the much
larger IPv6 addresses? Do you need to modify any components of your application that
interact with the database to address the larger size?

In reading or writing to the database, do you again need to compensate for the variable
length of IPv6 addresses? With IPv4, you always knew you had four octets that were
represented by decimal numbers. If you applied a format to the results retrieved from
your database, it was incredibly trivial to do using IPv4. It’s a nice, fixed format.

15

However, with IPv6 the address could be as short as:

::1

or as long as:

2001:db8:3f4d:ccdd:4179:880a:f00d:5511

Can your routines that read or write to your database handle this variability?

Configuration Files
Similarly, text-based configuration files have the same issues, regardless of whether
they are written by the application or manually edited by users. Are the components
of your app that read from or write to any configuration files able to work with IPv6
addresses? Can they handle the variable IPv6 address length?

Configuration files also have another issue you need to think about, namely:

Are there hardcoded IP addresses lurking in the configuration file?

Think of the many times you have browsed through an application’s config file and
seen instances of hardcoded IP addresses. It could be something as basic as a default
address, or it could be an IP address inside of a URL. As a simple example, consider a
configuration file that references localhost as 127.0.0.1 in IPv4. In IPv6, localhost
is ::1. Do you need to update the configuration file? Can the configuration file reference
both an IPv4 and an IPv6 value?

As another example, take a look at the httpd.conf file used by Apache web servers. To
indicate that Apache should listen on a specific IPv4 address, a Listen directive is in-
cluded in the file:

Listen 198.51.100.55

With IPv6, you need to change the Listen directive to have the IPv6 address in square
brackets:

Listen [2001:db8:3145::100]

You can, of course, include a port number after either address. For a dual-stack system
where you want the Apache server to listen on both IPv4 and IPv6 addresses, you need
to include both Listen directives:

Listen 198.51.100.55
Listen [2001:db8:3145::100]

Similarly, when configuring a <VirtualHost> directive, you might use an IPv4 address
as shown here:

<VirtualHost 198.51.100.55>
ServerAdmin webadmin@example.com
DocumentRoot /var/www/html
ServerName www.example.com
</VirtualHost>

16 | Chapter 4: Storage of IP Addresses

http://httpd.apache.org/docs/current/configuring.html
http://httpd.apache.org/docs/current/mod/mpm_common.html#listen
http://httpd.apache.org/docs/current/mod/core.html#virtualhost

For IPv6, the file would need to be updated with the IPv6 address (note again the square
bracket notation):

<VirtualHost [2001:db8:3145::100]>
ServerAdmin webadmin@example.com
DocumentRoot /var/www/html
ServerName www.example.com
</VirtualHost>

Again, similar to the Listen directive, if you want a VirtualHost directive to apply to
both an IPv4 and IPv6 address, you need to have multiple VirtualHost directives, al-
though both could simply point to the identical information.

How would your application handle storing IP addresses in a configuration file?

• Would someone need to edit your configuration file to change addresses from IPv4
to IPv6?

• How do you address providing both an IPv4 and IPv6 address?

• Have you checked all the components of your application that reference the con-
figuration file to see if they can read both styles of IP addresses? And can they deal
with having both addresses in a dual-stack environment?

To this last point, you do need to consider that dual-stack systems will undoubtedly
be around for quite a long time and you may therefore need to be sure you can store
multiple IP addresses, whereas in the past you might have been able to store only a
single address.

Case Sensitivity and Leading Zero Suppression
Regardless of how you are storing the IPv6 address, remember the case-sensitivity issue
raised earlier. Unlike the all-numeric IPv4 addresses, IPv6 addresses can contain text
in the form of the letters a–f. However, the specification for IPv6 addresses does not
mandate whether those letters are uppercase or lowercase, and so you must assume
that users of your application may provide IPv6 addresses using either case (or even a
mixture).

RFC 5952 recommends that IPv6 addresses be entered entirely in lowercase and, for the
sake of simplicity, you may want to simply have a routine that normalizes all incoming
IPv6 addresses to lowercase before they are stored in memory, a database, or configu-
ration files. Of course, given that some of those storage media may be able to be altered
through another means (such as a system administrator editing a configuration file),
you may want to also have your application normalize all IPv6 addresses to lowercase
when reading from where the IPv6 address was stored.

Case Sensitivity and Leading Zero Suppression | 17

http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc5952

Similarly, the IPv6 address specification allows for an address to either include or not
include leading zeroes. These two addresses are identical:

2001:db8:10ff::ae:2
2001:0db8:10ff::00ae:0002

In fact, you could remove the zero compression and show the address in its full form:

2001:0db8:10ff:0000:0000:0000:00ae:0002

If you store the address in this longer form and then go to compare it later to the same
address in a shorter form, your comparison routine needs to take into account these
possible variations.

Again RFC 5952 makes some recommendations here and specifies that leading zeroes
must be suppressed and the zero compression indicator (“::”) be used whenever pos-
sible (except for the case where there is only one zero, in which case the compression
indicator should not be used). Given all of this, the recommended address for your app
to store of the ones shown here would be:

2001:db8:10ff::ae:2

Your application needs to consider these points when storing the IPv6 address—and
also when reading the IPv6 address in from storage. Will you normalize IPv6 addresses
to a standard format? Do you need to for your application? If you are doing any kind
of comparisons, it would definitely make sense. If you are simply connecting to a net-
work address, you may not need to go through this extra work.

Just a wee bit more complicated than IPv4, eh?

18 | Chapter 4: Storage of IP Addresses

CHAPTER 5

Transport Layer

Ultimately, your application needs to bind to the network layer for the actual transport
of messages to and from your application. In the ideal world, this is handled transpar-
ently for the application by the underlying operating system or the network bindings
of the programming language being used. But is it?

Ideally, many of you can simply rely on your underlying operating system and skip this
chapter entirely, but for those of you who do need to work at the network layer, read
on for some points to consider.

Dual-Stack versus IPv6-Only
Eventually, we’ll wind up in a situation where we have “IPv6-only” network stacks and
will simply connect out to the network via IPv6. Whether that will occur in our lifetimes,
though, is an open question. The reality is that we will be using “dual-stack” systems
throughout the “transition” from IPv4 to IPv6 and potentially for quite some time after
that. The challenge with dual-stack systems is in verifying that your application can in
fact access both IPv4 and IPv6 network stacks—and that your application does choose
to bind to both network stacks.

The availability of a dual-stack solution will depend largely upon the
target platform on which your application runs. For instance, some em-
bedded systems may not have the processing power or the memory to
run multiple network stacks. Your options may then be limited to using
either IPv4 or IPv6, but not both.

Operating System Support
As this book is being written in 2011, all current releases of the major operating systems
support a dual stack. Microsoft Windows, Mac OS X, and Linux all have native IPv6
support. Whether or not that support is enabled on your particular server may be a
different question—but the support is in the operating systems.

19

If you drop to a command line and type either ifconfig (Mac OS X, Linux) or ipcon
fig (Windows), you should see that your current network interfaces have IPv6 support,
at least for a link-local IPv6 address. If you do not see IPv6 addresses, you may need to
enable IPv6 support through the network configuration for your operating system.

Application Dual-Stack Support
Assuming that your system does have IPv6 support, the next question is does your
application need to be changed to bind to the IPv6 address? Now, for many of you reading
this book, your application may be at a high level, where you rely on calls to the un-
derlying language or operating system. But some of you may in fact be writing at a low
enough level where you have to care.

Here is a quick example. Consider this extremely basic Node.js application that runs
on a server. All it does is wait for incoming HTTP connections; once such a connection
is received, the app sends back “Hello World!” and logs a message to the console:

var http = require('http');

var handler = function (request, response) {
 response.writeHead(200, {"Content-Type":"text/plain"});
 response.end ("Hello World!\n");
 console.log("Got a connection from " + request.connection().stream.remoteAddress);
};

var server= http.createServer();
server.addListener("request",handler);
server.listen(80,"198.51.100.22");

console.log("Server running on localhost at port 80");

The critical part for our purposes is the line that binds our application to an IPv4
address:

server.listen(80,"198.51.100.22");

The issue here is that this binds only to the IPv4 address. If we want to also bind to the
IPv6 address, we need to explicitly add a section to the app so that it binds to both the
IPv4 and IPv6 addresses:

var http = require('http');

var handler = function (request, response) {
 response.writeHead(200, {"Content-Type":"text/plain"});
 response.end ("Hello World!\n");
 console.log("Got a connection from " + request.connection().stream.remoteAddress);
};

var server= http.createServer();
server.addListener("request",handler);
server.listen(80,"198.51.100.22");

var server6= http.createServer();

20 | Chapter 5: Transport Layer

server6.addListener("request",handler);
server6.listen(80,"2001:db8:42d7::2");

console.log("Server running on localhost at port 80");

Now, again, your application and language of choice may not require you to get down
to this level of detail, but you need to investigate to determine what changes you may
or may not need to do within the part of your code that handles interaction with the
network itself.

Multiple IPv6 Addresses
Another challenge with IPv6 is that each network interface can have multiple IPv6 ad-
dresses. Right from the start, each interface is going to have a link-local IPv6 address
by default. Assuming you have real IPv6 connectivity, each interface will also have a
global IPv6 address (even if “global” actually means within your network). You also
can assign additional IPv6 addresses to each network interface.

Which address should your application use?

The truth is that you shouldn’t have to worry about this choice. RFC 3484, Default
Address Selection for Internet Protocol version 6 (IPv6), defines a selection algorithm
that must be implemented by IPv6 network stacks. You should just be able to trust the
operating system here…but it’s important to consider if you are trying to debug any
connection issues.

Privacy Extensions for IPv6 Addresses
One other fact about IPv6 addresses that you may need to be aware of is that the IPv6
address for a given system may change over time if “privacy extensions” are enabled.

To explain what is going on, let’s back up a step and talk about the “autoconfiguration”
of IPv6 addresses. As explained in RFC 4862, IPv6 Stateless Address Autoconfigura-
tion, systems on an IPv6 network do not need to use the Dynamic Host Configuration
Protocol (DHCP) to receive their IPv6 addresses. Instead, a system can automatically
create the IPv6 address by combining a “router advertisement” sent out by the local
router with a unique identifier for the network interface. The router advertisement
provides the “network” portion of the IPv6 address and the unique identifier for the
interface provides the “host” portion of the IPv6 address.

In practice, this “unique identifier” is the IEEE identifier burned into the network in-
terface card at its time of manufacture, commonly known as its “MAC address” or
“Ethernet address.” Thus, the creation of an IPv6 address looks like this:

Privacy Extensions for IPv6 Addresses | 21

http://tools.ietf.org/html/rfc3484
http://tools.ietf.org/html/rfc3484
http://tools.ietf.org/html/rfc4862
http://tools.ietf.org/html/rfc4862

This works wonderfully and provides a very easy way for a system to autoconfigure
itself and connect out to the network. There is no need to wait for a DHCP exchange
to get on the network. Moving between subnets is also trivial, as the system can simply
autoconfigure itself on the new subnet as soon as it gets the router advertisement with
the new network prefix.

Now, one problem with this approach is that the host portion of the IPv6 address is
now globally unique, which is a very different concept from IPv4. If you were to go
around with your laptop or mobile phone from one IPv6 network to other IPv6 net-
works (perhaps in that far-off day when cafes all have IPv6 WiFi), you would leave a
trail of where you had been, based on the unique host portion of your IP address. An
attacker with access to network traces or address logs could do some data mining and
correlate your network usage across multiple networks, conceivably learning your lo-
cation or gaining some insight into the type of traffic you generate and applications you
use.

Additionally, an attacker even just watching your IPv6 packet stream go across a net-
work could make guesses as to the type of system you had, based on the autoconfigured
host address, and tweak his or her attacks to work with your operating system or device
type.

For example, you can go to the IEEE’s registry of public Organization-
ally Unique Identifiers (OUIs) at http://standards.ieee.org/develop/re
gauth/oui/public.html and enter in the first three blocks of an Ethernet
address to determine the vendor of that specific network interface card.
I can look at my link-local IPv6 address on the computer where I am
writing this book and see that it begins with: fe80::21f:5bff:. With a
little bit of knowledge about how to interpret that address, I can know
that the Ethernet address of my computer begins with “00:1f:5b”. I can
then go to that website and enter the address as “00-1f-5b” and find out
that the OUI was issued to Apple Computer—and indeed, I am writing
on an iMac. An attacker with this knowledge could then try to attack
my system with attacks against Apple operating systems.

22 | Chapter 5: Transport Layer

http://standards.ieee.org/develop/regauth/oui/public.html
http://standards.ieee.org/develop/regauth/oui/public.html

Because of these security and privacy concerns, the IETF came out with RFC 4941,
Privacy Extensions for Stateless Address Autoconfiguration in IPv6. If this is enabled on
a computer, two things will happen:

1. The autoconfigured host portion of the address will be randomly generated so that
it has no relationship to the Ethernet address.

2. A “lifetime” will be assigned to the address, so that at the end of that time period
the IPv6 address will be destroyed and recreated using this same randomized
process.

The primary issue here for you as an application developer is the temporary nature of
these IPv6 addresses if you have some reason to rely on an IPv6 address for an extended
period of time. You may need to account for this possibility of changing addresses or
focus instead on using domain names that could be dynamically updated by the systems
when the IPv6 address is changed.

IPv6 networks are not required to use stateless address autoconfigura-
tion. While autoconfiguration is easy and convenient, some organiza-
tions may instead opt for the greater control over addressing provided
by DHCP and use DHCP for IPv6, defined in RFC 3315. Using DHCP
would also get around this entire privacy concern because the IPv6 ad-
dresses would be assigned from the DHCP address pool and would not
include any sign of the network interface’s Ethernet address.

Path MTU Discovery
Diving again down into the weeds, if you want to send large blocks of data with IPv4,
your network stack would send the packets out on the local network using the maxi-
mum transmission unit (MTU) of the underlying network (for example, Ethernet or
PPP). If somewhere between your application and the destination there was a network
segment with a smaller MTU, the router or other network device connected to that
segment would fragment individual packets if necessary to fit the smaller MTU. The
packets would then need to be reassembled at the destination.

However, in IPv6, such fragmentation in the network path is not allowed. Instead, IPv6
uses Path MTU Discovery, defined in RFC 1981, to find the smallest MTU in the path
between the source and the destination. Once the Path MTU is found, all packets are
sent from the source with that MTU. In theory, this would let IPv6 connections make
use of underlying network technologies with larger MTU sizes. In practice, however,
what this means is that basically all packets are sent on a typical Ethernet network with
the minimum MTU of 1280 defined in Section 5 of RFC 2460.

Path MTU Discovery | 23

http://tools.ietf.org/html/rfc4941
http://tools.ietf.org/html/rfc4941
http://tools.ietf.org/html/rfc3315
http://tools.ietf.org/html/rfc1981
http://tools.ietf.org/html/rfc2460#section-5

Multicast and Broadcast
Does your application rely on either multicast or broadcast packets in IPv4? If so, you
need to be aware that these aspects of IP have fundamentally changed in IPv6. A full
discussion of the changes is beyond the scope of this book, but suffice it to say that
there is no longer any concept of a “broadcast” packet—and multicasting is baked into
the core of IPv6. To learn more about multicast addresses in IPv6, you can read section
2.7 of RFC 2373 and then RFC 3306, which extends IPv6 multicast addressing to allow
the dynamic allocation of multicast addresses. O’Reilly’s IPv6 Essentials also has a good
section on the changes in multicast addressing in IPv6.

Security
At an application level, the security aspects of IPv6 are very similar to IPv4. You still
will have firewalls. You will still need services to traverse the firewalls. In Linux and
UNIX systems, you still have the iptables command, although for IPv6 it may be
ip6tables instead. You still have port numbers, services…at the application layer, IP
security is still very much the same as IPv4. (Down at the network layer, however, it
has changed substantially.)

Two items you should know about, though. First, IPSEC is now mandatory for every
IPv6 stack. With IPv4, you often had to install additional software to support IPSEC.
With IPv6, IPSEC is baked into the core of the protocol and is mandated to be available.
Note that this does not mean that IPSEC is enabled—it just means that it has to be
available. If your application needs transport encryption, IPv6 may make that a bit
easier.

Second, while it is incredibly easy to set up an IPv6 tunnel via free services such as
Tunnelbroker.net and put your office or test lab on the IPv6 Internet, please remember
that when you use a service like this you are directly connected to the public Internet!
There is no NAT or firewall in the way: you have a direct connection from whatever
machine is the tunnel endpoint out to the public IPv6 Internet. Please make sure that
you are running some type of IPv6 firewall on that system to protect your system and
network.

For those looking for a deep dive into IPv6 security, the U.S. National
Institute of Standards and Technology (NIST) published a great docu-
ment in December 2010 entitled Guidelines for the Secure Deployment
of IPv6.

NAT and IPv6
Finally, a note about Network Address Translation, a.k.a. NAT. We have all gotten
used to NAT and its companion, Port Translation, in IPv4 networks. Probably all of

24 | Chapter 5: Transport Layer

http://tools.ietf.org/html/rfc2373#section-2.7
http://tools.ietf.org/html/rfc2373#section-2.7
http://tools.ietf.org/html/rfc3306
http://oreilly.com/catalog/9780596100582/
http://tunnelbroker.net
http://csrc.nist.gov/publications/nistpubs/800-119/sp800-119.pdf
http://csrc.nist.gov/publications/nistpubs/800-119/sp800-119.pdf

our home networks and the vast majority of business networks use NAT to hide the
entire internal network behind a single public IPv4 address.

We had to use NAT. There simply weren’t enough IPv4 addresses.

And even now, with IPv4 address allocations exhausted, some ISPs are considering so-
called Carrier-Grade NAT or Large Scale NAT as a way to hide their entire network
behind a single public IPv4 address, thus extending even further the lifetime of IPv4
usage.

However, NAT creates numerous problems in terms of network architecture, many of
which are enumerated in RFC 2993 and countless other documents and articles online.
On a fundamental level, NAT breaks the “end-to-end” principle, where the intelligence
resides in the network endpoints and they are able to reach other endpoints by direct
addresses. RFC 4924 provides a recent summary of the end-to-end principle. For in-
stance, endpoints that use real-time communications using the SIP protocol are unable
to communicate with another endpoint across a NAT device without some kind of
assistance in terms of an application-layer gateway (ALG), SIP-aware firewall, or session
border controller (SBC). All of these add complexity and challenges to the SIP-based
communication.

The promise of IPv6 is that with such a large address space there is no longer any need
for NAT. NAT can die. This point has been argued quite forcefully within the IETF in
many documents, including RFC 4864, Local Network Protection for IPv6. The rea-
soning is extremely solid and makes a compelling case.

However, the reality of IPv6 is that we will still see NAT being deployed with IPv6.
Certainly within many enterprises, network architects and administrators have become
wed to NAT for a variety of reasons and will continue to use NAT for both IPv4 and
IPv6. Instead of RFC 1918 private IPv4 addresses and firewalls with NAT, they will use
RFC 4193 Unique Local Addresses (ULAs) for IPv6 and firewalls with application-layer
gateways (ALGs). The results will be the same: an internal network using private, non-
routable addresses connected out to the global network through a limited number of
public addresses.

A July 2010 document from the Internet Architecture Board (IAB) captures the thinking
from the two sides quite well: RFC 5902, IAB Thoughts on IPv6 Network Address
Translation. It includes this problem statement:

The discussions on the desire for IPv6 NAT can be summarized as follows. Network
address translation is viewed as a solution to achieve a number of desired properties for
individual networks: avoiding renumbering, facilitating multihoming, making configu-
rations homogeneous, hiding internal network details, and providing simple security.

The document goes on from there to discuss each of these concerns, the architectural
issues around NAT, and potential solutions. The document concludes with the un-
derstanding that NAT will be deployed for IPv6 if adequate solutions are not found for
the reasons why NAT is desired.

NAT and IPv6 | 25

http://tools.ietf.org/html/rfc2993
http://tools.ietf.org/html/rfc4924
http://tools.ietf.org/html/rfc4864
http://tools.ietf.org/html/rfc1918
http://tools.ietf.org/html/rfc4193
http://tools.ietf.org/html/rfc5902
http://tools.ietf.org/html/rfc5902

The religious war between those who see NAT for IPv6 as inherently evil and those
who see NAT for IPv6 as incredibly useful will undoubtedly continue for quite a long
time.

For you as an application developer, there are a number of key points to consider:

• In an ideal environment, you may not have to worry about NAT with IPv6 and can
indeed provide a globally unique IPv6 address to a remote connection. Keep in
mind that this doesn’t mean the remote connection can immediately connect to
your system. Firewalls are still there in IPv6 to prevent unauthorized connections.

• You may find that some networks will implement Unique Local Addresses (ULAs)
and have private IPv6 addresses with application-layer gateways to connect to the
public Internet. In these cases, you still have techniques like STUN, RFC 5389, and
TURN, RFC 6156 for IPv6, that are functionally the same as their IPv4 counterparts
to help you connect across a firewall and/or NAT.

• For “offer/answer protocols,” such as SIP for real-time communications, there is
Interactive Connectivity Establishment (ICE), defined in RFC 5245, which involves
a negotiation session between two endpoints where they agree on which IPv4 or
IPv6 addresses to use for communication.

• The BEHAVE Working Group within the IETF continues to look at NAT issues
with a focus on translation between IPv6 and IPv4. Expect to see more documents
and recommendations coming out of this group. Note that there is a document
heading toward “Experimental” status outlining how to do NAT in an IPv6-to-
IPv6 environment.

• IPv6 is really only now starting to be actually deployed in larger networks. As the
deployment grows and actual operational experience accumulates, we’ll undoubt-
edly see which of the various paths are used in terms of NAT usage—or not—
within IPv6 networks.

No easy answers, unfortunately.

26 | Chapter 5: Transport Layer

http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc6156
http://tools.ietf.org/html/rfc5245
http://datatracker.ietf.org/wg/behave/charter/
http://tools.ietf.org/html/draft-mrw-nat66

CHAPTER 6

Documentation, Training, and Testing

While the bulk of this book has been focused on your application itself, three areas that
complement your application also need to be considered: documentation, training, and
testing.

Documentation
When you write documentation for your application (you are writing documentation,
aren’t you?), what IPv6 addresses are you using in your examples?

If you just use a random IPv6 address, it could turn out to be someone’s real IPv6
address. Even with the IPv6 address space being so huge, there still is the remote chance
that your documentation choice could collide with a real address and potentially cause
traffic or routing issues. If you use your own IPv6 addresses, well, are you sure you want
the traffic of people typing in examples and hitting your systems? (And maybe I’m
personally just too concerned about security, but I don’t want to have people probing
around my systems!)

Thankfully, the good folks at the IETF solved this issue for us with RFC 3849, IPv6
Address Prefix Reserved for Documentation. The magic IPv6 address prefix to use for
documentation is:

2001:db8::/32

That prefix has been permanently allocated for documentation purposes and will never
be assigned to an actual end party. It is, as they say, “nonroutable.”

27

http://tools.ietf.org/html/rfc3849
http://tools.ietf.org/html/rfc3849

If you look at the IPv6 addresses I have been using throughout this book, you’ll see that
they all use the 2001:db8: prefix, although with various lengths:

2001:db8::1
2001:db8:10ff::ae:44f2
2001:db8:1212:3434:1212:5454:1afc:4001

When you are writing your documentation, if you need to show communication oc-
curring between multiple IPv6 networks, you can simply subdivide the 2001:db8:: ad-
dress space into appropriate subnets. For example, if you wanted to show two different
networks, you could use address blocks such as these:

2001:db8:1::/48 with addresses such as 2001:db8:1::1, 2001:db8:1::2, etc.
2001:db8:2::/48 with addresses such as 2001:db8:2::1, 2001:db8:2::2, etc.

Or you could make the address ranges a bit more distinct visually:

2001:db8:1::/48
2001:db8:9999::/48
2001:db8:5000::/48
2001:db8:af15::/48

The inclusion of letters makes for interesting documentation possibilities. You could
simply have ranges like these:

2001:db8:aaaa::/48
2001:db8:bbbb::/48
2001:db8:cccc::/48

or you could get a bit more creative:

2001:db8:feed::/48
2001:db8:fa11::/48
2001:db8:d00d::/48
2001:db8:bad:f00d:/64

On this last example, note that while the earlier examples showed a /48 address range,
you can certainly use more specific subnets, such as a /64, or even smaller if you need
to do so.

Regardless of whether you write about a single or multiple networks, as you write your
documentation (or training materials), please use this 2001:db8: IPv6 prefix for any
examples in your documentation. It’s definitely the safest way to proceed.

28 | Chapter 6: Documentation, Training, and Testing

Did you know that there is a similar range of IPv4 addresses set aside
for documentation? While not widely used in my own experience, the
IPv4 address ranges are defined in RFC 5737 and consist of:

192.0.2.0/24
198.51.100.0/24
203.0.113.0/24

The first 192.0.2.0/24 range was reserved way back in 1989 in RFC
1116, while the second two ranges were added in 2010 so that docu-
mentation authors could more easily write about multiple networks
without fear of using conflicting addresses. My experience is that au-
thors are more likely to use either the 10.x.x.x/8 or the 192.168.x.x/
16 IPv4 address blocks defined in RFC 1918. Regardless of which you
choose, the point is that you want to use nonroutable IPv4 addresses in
documentation so that there is no conflict if someone attempts to con-
nect to that actual IP address when following along with your
documentation.

While on the topic of addresses to use in documentation, are you aware
that example.com|net|org have all been set aside as example domain
names for you to use in documentation? This is specified in RFC 2606.

Training
Beyond the user guide or similar documents related to your application, do you have
training materials for your application?

Do you have actual training classes with associated courseware or slides? Online videos
or screencasts?

Do any of these training materials need to be updated for IPv6? Do you need new screen
captures for your documentation? Do you need to provide guidance on using your
application with IPv6?

Odds are that if you have made any changes to address the issues raised in earlier
chapters, you will have some work to do here to bring your training materials up to
date, even if IPv6 usage or configuration is only a new appendix or additional section.

Testing
As you get a new release ready for your application, have you incorporated IPv6 testing
into your test plans? If you have unit tests that are automatically run, have you created
appropriate tests that stress the IPv6 interfaces? Do you test out all the IP address entry
fields, storage, and the like, to verify that IPv6 addresses can be handled?

Testing | 29

http://tools.ietf.org/html/rfc5737
http://tools.ietf.org/html/rfc1116
http://tools.ietf.org/html/rfc1116
http://tools.ietf.org/html/rfc1918
http://tools.ietf.org/html/rfc2606

If you have a quality assurance (QA) team that tests your app, do their test plans include
a segment on IPv6? Do they have an IPv6 test lab where they can actually test your
application in a live environment?

Exactly what you need to test will obviously vary depending on your application, but
whatever the case, do not forget to include IPv6 testing in your plans.

30 | Chapter 6: Documentation, Training, and Testing

CHAPTER 7

Resources and Next Steps

So…are you ready to migrate your applications to IPv6 now? At this point, you may
either be saying “Sounds like a piece of cake!” and are ready to go—or be saying
“Sounds like a nightmare!” and hoping that IPv4 stays around for a very long time.
Odds are you are somewhere in between. Let’s wrap up this book with some lists and
a checklist to get you started in your migration.

Resources
Let’s start with some lists of resources to help you with migrating applications to IPv6.

Websites
The number of IPv6 resource sites is constantly expanding. Rather than include links
to specific sites that will surely become outdated, I want to include list a couple of
external sites where the list of links can be more easily updated.

http://migratingappstoipv6.com
My site for the book, where I will include a list of all the URLs referenced in this
book, along with a number of tutorials I’ve given about IPv6 and information about
how to get started with IPv6. The site also includes a blog that I will update with
new information about migrating applications to IPv6, as well as upcoming events
and webinars related to IPv6.

http://www.oreilly.com/catalog/9781449307875/
O’Reilly’s site for this book with errata, examples, and more information.

http://tools.ietf.org/html/rfc4038
RFC 4038, Application Aspects of IPv6 Transition, is an IETF document that pro-
vides another approach to the subject of migrating applications to IPv6. The au-
thors go into more detail on some topics than I have, less detail on other topics,
and cover a few topics I didn’t (and vice versa). Worth a read to get another view
on application migration.

31

http://migratingappstoipv6.com
http://www.oreilly.com/catalog/9781449307875/
http://tools.ietf.org/html/rfc4038

Books
O’Reilly has several excellent books on the topic of IPv6.

IPv6 Essentials
Silvia Hagen’s book is probably the premiere book diving into the intricacies of the
IPv6 protocol. While it has some information on network administration, it is
much more targeted at developers and engineers who need to understand IPv6 at
the protocol layer. Outstanding book for anyone looking to really understand IPv6.

IPv6 Network Administration
This book from Niall Richard Murphy and David Malone explores the network
administration side of IPv6, with information on configuring IPv6 on various op-
erating systems, routing IPv6, deploying IPv6, running services, and much, much
more. The book was published in 2005, and some aspects of the configuration on
operating systems have changed a bit, but the fundamentals remain the same.

DNS and BIND on IPv6
The newest book out there (except for the one you are reading), this short book
by Cricket Liu builds on her experience with her DNS and BIND book to deliver
a concise focus on what you need to know about DNS and IPv6.

IPv6 Application Migration Checklist
Here is a simple checklist hitting the main points of the previous chapters:

□ When displaying IP addresses, can your application correctly display the longer
IPv6 addresses?

□ When receiving IP addresses as input, do the entry boxes in your app allow for the
entry of IPv6 addresses?

□ In the display or input of IPv6 addresses, can your application handle the variable
length of IPv6 addresses?

□ Does your app correctly use or accept the “square bracket” notation to allow port
numbers to be displayed after an IPv6 address?

□ Does your app correctly handle the input and display of subnet masks using CIDR
notation?

□ Is there a need to be concerned about case-sensitivity? Do you need to normalize
IPv6 addresses on input to be entirely lowercase?

□ If you perform validity checking on an input field for an IP address, have you up-
dated that validity checking for IPv6?

□ Can your application handle both A and AAAA records from DNS?

□ Does your app implement any kind of “happy eyeballs” mechanism to try to con-
nect over both IPv4 and IPv6?

□ Does your app expose any APIs where there is an IP address format dependency?

32 | Chapter 7: Resources and Next Steps

http://oreilly.com/catalog/9780596100582/
http://oreilly.com/catalog/9780596009342/
http://oreilly.com/catalog/0636920020158/
http://oreilly.com/catalog/9780596100575/

□ Does your app consume any APIs where there is an IP address format dependency?

□ Can the components of your application that work with your API correctly handle
IPv6 addresses?

□ If you store IP addresses in either memory or a database, is the location or field
large enough for an IPv6 address? Or could there be a buffer overflow or database
error?

□ For dual-stack systems, can you store two IP addresses in memory, database, or a
configuration file for both IPv4 and IPv6?

□ In storing addresses, are you compensating for the variable length, case-insensi-
tivity, and zero compression in IPv6 addresses?

□ Are there hardcoded IP addresses lurking in your configuration files?

□ Can your application work in a dual-stack environment? Or will it only work with
either IPv4 or IPv6?

□ If you app runs in a dual-stack environment, does it in fact bind to both interfaces?

□ Does your app need to get down into network layer issues? Does it use multicast
or broadcast or have to worry about MTU discovery?

□ Is NAT traversal a concern for your application?

□ Will your documentation materials need to be updated to reflect any changes to
the user interface?

□ Will your training materials need any updates?

□ Do your test plans now incorporate IPv6?

The End? Or the Beginning?
Do you have a sense now of how IPv6 will work with your application? Will it break
your app? Will your app “just work”? Or will it need a few tweaks and changes? Do
you think you understand what questions you need to ask about your application for
it to be “IPv6-ready”?

My hope is that you are now better equipped to ensure that your applications can work
with IPv6. We’re in a bit of a catch-22 with IPv6: application providers are often re-
luctant to add in IPv6 support because the underlying network is still all IPv4—while
network operators are often reluctant to add IPv6 support to their networks because
all the applications only support IPv4!

The reality is that with the exhaustion of IPv4 address allocations and with the con-
tinued explosion of new devices we’d like to connect to the Internet, more and more
organizations will be looking at IPv6 as a potential solution. You can help with that
process by doing what you can to ensure your apps play nice with IPv6.

The other reality is that even though IPv6 has been around now for more than 10 years,
only now are we starting to see larger deployments and large-scale interoperability

The End? Or the Beginning? | 33

testing. We’re going to learn a great amount about how networks and applications
work with IPv6 in the months and years ahead. I’m sure it will not all be pretty…there
will be broken implementations and broken services, I’m sure. But we’ll learn together
as we collectively join in this experiment of upgrading the Internet while still using it
for everything we want to do.

To that end, as you learn about migrating your applications to IPv6, I’d love to get your
feedback on what you find to be the biggest obstacles you have to overcome. Are they
topics covered in this book? Other topics not covered in this book? Any particular tips
or tricks that you found? Areas that you wished had deeper coverage?

The beauty of this book being available as an ebook is that it can be updated
frequently—and those updates can be shared with those who have purchased the
ebook. My intent is definitely to update this book periodically as we collectively gain
more experience with migrating applications to actual IPv6 deployments. I’d love your
help with that—contact information for both O’Reilly and me directly can be found in
the Preface. Please do share your experiences so that others can learn from what you’ve
done. Thanks!

34 | Chapter 7: Resources and Next Steps

About the Author
Dan York has been writing, speaking, and teaching about online communication tech-
nology since the mid-1980s. In 1998 he cofounded the Linux Professional Institute
(LPI), today the leading global certification program for Linux professionals, and he
later served on the board of directors of Linux International. He’s written multiple
books on Linux and networking; created some of the first courseware about creating
websites, back in the early 1990s; developed open source software in many languages,
including Python, Perl, LISP, and most recently Node.js; and worked with more XML
variants than he can possibly remember, including DocBook, VoiceXML, and CCXML.
His writing can be found at Code.DanYork.com and he is on GitHub as danyork.

Dan serves as the Director of Conversations at Voxeo, heading up the company’s com-
munication through new and social media including blogs, video, Twitter, and Face-
book, with a focus on creating online content helping developers build applications.
Previously, Dan served in Voxeo’s office of the CTO, focused on analyzing and evalu-
ating emerging technology, participating in industry standards bodies, and addressing
VoIP security issues.

Outside of Voxeo, Dan serves as the chair of the VoIP Security Alliance, is the author
of the book Seven Deadliest Unified Communications Attacks, and was previously the
producer and cohost of the weekly show Blue Box: The VoIP Security Podcast.

Colophon
The animal on the cover of Migrating Applications to IPv6 is a brant goose.

The cover image is from Riverside Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

http://code.danyork.com/

	Copyright
	Table of Contents
	Preface
	Why This Book?
	Is This Book for You?
	What Is in the Book?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	How to Contact the Author
	Acknowledgments

	Chapter 1. User Interface Changes
	Presentation Format Changes
	Variable-Length IPv6 Addresses
	Port Number Colon
	Classless (CIDR) Notation Versus Subnet Masks
	Case Sensitivity
	Validity Checking of Input Fields

	Chapter 2. DNS Changes
	Handling AAAA Records
	Prioritization of AAAA and A Records
	Happy Eyeballs
	The Google Chrome Example

	Chapter 3. Application Programming Interfaces (APIs)
	Checking the API Transport
	Checking the API Data
	An Example: The Session Initiation Protocol (SIP)

	Handling the API Connection

	Chapter 4. Storage of IP Addresses
	Memory Locations
	Databases
	Configuration Files
	Case Sensitivity and Leading Zero Suppression

	Chapter 5. Transport Layer
	Dual-Stack versus IPv6-Only
	Operating System Support
	Application Dual-Stack Support

	Multiple IPv6 Addresses
	Privacy Extensions for IPv6 Addresses
	Path MTU Discovery
	Multicast and Broadcast
	Security
	NAT and IPv6

	Chapter 6. Documentation, Training, and Testing
	Documentation
	Training
	Testing

	Chapter 7. Resources and Next Steps
	Resources
	Websites
	Books

	IPv6 Application Migration Checklist
	The End? Or the Beginning?

	Colophon

