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Foreword 

This is the fourth edition of a landmark book, the book that signaled the coming of 
age of the Internet. Development of the protocols for the Internet started around 1974, 
and they had been in limited but real use starting in the early 80's, but as of 1987, 
there was still no good introduction to how they worked or how to code them. The 
standards documents for TCP, IP and the other protocols existed, of course, but the true 
truth - the collection of knowledge and wisdom necessary to implement a protocol 
stack and actually expect it to work - that was a mystery, known only to a small band 
of the initiated. That was not a good thing, and the initiated knew it. But it takes a lot 
of effort to pull all the right stuff together and write it down. We waited, knowing that 
a good book explaining TCP/IP would be an important step towards the broad accep- 
tance of our protocols. 

And Doug wrote the book. 

We told jokes, waiting for the book. We looked to see how many books there 
were in mature fields, and speculated that the number of books was a metric of success. 
I actually went and looked to see how many books there were on "how to build a com- 
piler" (a post-mature field by now, perhaps - time to count the books again). The 
compiler community was well off, and even "how to build a database" was available. 
But nothing on "how to build a TCP/IP." And then we got our book. 

Of course, knowing that back then this was a landmark book is not enough to 
make you buy it. Collectors might want to find the f i s t  edition, but that gives the true 
truth as of 12 years ago, a long time in Internet years. And that is why this is the fourth 
edition. A lot has changed over that time. We have learned a lot more, the field has 
grown up, whole new protocols have emerged, and Doug has rewritten the book three 
times. That is a measure both of how much and how fast the field changes, and how 
much work must go into keeping this book current. It has all the new stuff, and our 
best current knowledge about all the old stuff. 

Other things have changed in 12 years. Not only has the Internet grown up, but 
some of our heroes have grown old, and some have died. The foreword to the first edi- 
tion was written by Jon Postel, one of the true Internet pioneers, who died in the fall of 
1998. Below, we have reprinted the foreword he wrote for the first edition. Much is 
the same, but much has changed. This is still a very readable book both for details on 
TCP/IP and for an introduction to communications protocols in general. But in 1987, 
Jon wrote "Computer communication systems and networks are currently separated and 
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fragmented. The goal of interconnection and internetworking, to have a single powerful 
computer communication network, is fundamental to the design of TCP/IP." Only 12 
years ago networks were fragmented; today the Internet unites the world. And T C P D  
is still the glue, at the core of the Internet, that makes all this work. And this is still the 
book to read to learn about it. 

David Clark 
Massachusetts Institute of Technology 

December, 1999 



Foreword To The First Edition 
By The Late Jon Postel 

In this book Professor Douglas Comer has provided a long sought overview and 
introduction to TCP/IP. There have been many requests for "the" article, report, or 
book to read to get started on understanding the TCP/IP protocols. At last, this book 
satisfies those requests. Writing an introduction to TCP/IP for the uninitiated is a very 
difficult task. While combining the explanation of the general principles of computer 
communication with the specific examples from the TCP/IP protocol suite, Doug Comer 
has provided a very readable book. 

While this book is specifically about the TCPm protocol suite, it is a good book 
for learning about computer communications protocols in general. The principles of ar- 
chitecture, layering, multiplexing, encapsulation, addressing and address mapping, rout- 
ing, and naming are quite similar in any protocol suite, though, of course, different in 
detail (See Chapters 3, 10, 17, and 18)t. Computer communication protocols do not do 
anything themselves. Like operating systems, they are in the service of applications 
processes. Processes are the active elements that request communication and are the ul- 
timate senders and receivers of the data transmitted. The various layers of protocols are 
like the various layers in a computer operating system, especially the file system. 
Understanding protocol architecture is like understanding operating system architecture. 
In this book Doug Comer has taken the "bottom up" approach - starting with the 
physical networks and moving up in levels of abstraction to the applications. 

Since application processes are the active elements using the communication sup- 
ported by the protocols, TCP/IP is an "interprocess communication" (PC) mechanism. 
While there are several experiments in progress with operating system style message 
passing and procedure call types of IPC based on IP, the focus in this book is on more 
traditional applications that use the UDP datagram or TCP logical connection forms of 
IPC (See Chapters 11, 12, 17, 18, and 19). 

One of the key ideas inherent in TCP/IP and in the title of this book is "internet- 
working." The power of a communication system is directly related to the number of 
entities in that system. The telephone network is very useful because (nearly) all of the 

+Editor's note: chapter numbers have changed since the first edition. 
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telephones are in (as it appears to the users) one network. Computer communication 
systems and networks are currently separated and fragmented. The goal of interconnec- 
tion and internetworking, to have a single powerful computer communication network, 
is fundamental to the design of TCPIIP. Essential to internetworking is addressing (See 
Chapters 4, 5, and 6), and a universal protocol - the Internet Protocol (See Chapters 7, 
8, and 9). 

To have an internetwork the individual networks must be connected. The connect- 
ing devices are called gateways. Further, these gateways must have some procedures 
for forwarding data from one network to the next. The data is in the form of IP da- 
tagrams and the destination is specified by an IP address, but the gateway must make a 
routing decision based on the IP address and what it knows about the connectivity of 
the networks making up the Internet. The procedures for distributing-the current con- 
nectivity information to the gateways are called routing algorithms, and these are 
currently the subject of much study and development (See Chapters 13, 14, 15, and 16). 

Like all communication systems, the TCP/IP protocol suite is an unfinished sys- 
tem. It is evolving to meet changing requirements and new opportunities. Thus, this 
book is, in a sense, a snapshot of TCP/IP circa 1987. And, as Doug Comer points out, 
there are many loose ends (See Chapter 20). 

Most chapters end with a few pointers to material "for further study." Many of 
these refer to memos of the RFC series of notes. This series of notes is the result of a 
policy of making the working ideas and the protocol specifications developed by the 
TCP/IP research and development community widely available. This availability of the 
basic and detailed information about these protocols, and the availability of the early 
implementations of them, has had much to do with their current widespread use. This 
commitment to public documentation at this level of detail is unusual for a research ef- 
fort, and has had significant benefits for the development of computer communication 
(See Appendix 3). 

This book brings together information about the various parts of the TCP/IP archi- 
tecture and protocols and makes it accessible. Its publication is a very significant rnile- 
stone in the evolution of computer communications. 

Jon Postel, 
Internet Protocol Designer and 
Deputy Internet Architect 

December, 1987 



The explosive growth of the Internet continues. When the third edition of this 
book was written five years ago, the Internet connected 4.8 million computers, up from 
5,000 when the first edition was published. The Internet now reaches over 56 million 
computers, meaning that the 1995 Internet was only about 8% of its current size. Dur- 
ing the early 1990s, those of us who were involved with the Internet marveled at how 
large an obscure research project had become. Now, it pervades almost every aspect of 
society. 

T C P D  has accommodated change well. The basic technology has survived nearly 
two decades of exponential growth and the associated increases in traffic. The proto- 
cols have worked over new high-speed network technologies, and the design has han- 
dled applications that could not be imagined in the original design. Of course, the en- 
tire protocol suite has not remained static. New protocols have been deployed, and new 
techniques have been developed to adapt existing protocols to new network technolo- 
gies. 

This edition contains updated information throughout the text as well as new ma- 
terial that describes technical advances and changes. For example, because classless ad- 
dressing has become widely deployed, the description of IP forwarding examines tech- 
niques for classless lookup. In addition, the chapters on IP describe the Differentiated 
Services (DiffServe) scheme for classes of service as well as path MTU discovery and 
anonymous networks. The chapter on TCP describes Random Early Drop (RED). The 
chapter on exterior routing has been updated to use BGP as the primary example. The 
descriptions of protocols such as RIP, IGMP, SNMP, and IPv6 have been revised to in- 
corporate new versions and recent changes. Finally, the chapter on security discusses 
IPsec. 

Four new chapters contain detailed infornlation about significant developments. 
Chapter 19 describes mobile IP - a technology that allows a computer to move from 
one network to another without changing its IP address. Chapter 20 considers two tech- 
nologies used to interconnect private intranets and the global Internet: Virtual Private 
Network (VPN) and Network Address Translation (NAT). Each solves a slightly dif- 
ferent problem; both are widely deployed. Chapter 28 covers the HTML and I-ITTP 
protocols that form the basis for the most significant Internet application: the world 
wide web. Chapter 29 focuses on an exciting new area: sending real-time data such as 
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voice and video over an IP network. The chapter examines the RTP protocol that al- 
lows a receiver to coordinate and play such data as well as the RSVP and COPS proto- 
cols that can be used to provide resource reservation, and describes the H.323 suite of 
protocols used for IP telephony. 

The fourth edition retains the same general contents and overall organization as the 
third edition. The entire text focuses on the concept of internetworking in general and 
the TCP/IP internet technology in particular. Internetworking is a powerful abstraction 
that allows us to deal with the complexity of multiple underlying communication tech- 
nologies. It hides the details of network hardware and provides a high level communi- 
cation environment. The text reviews both the architecture of network interconnections 
and the principles underlying protocols that make such interconnected networks function 
as a single, unified communication system. It also shows how an internet communica- 
tion system can be used for distributed computation. 

After reading this book, you will understand how it is possible to interconnect mul- 
tiple physical networks into a coordinated system, how internet protocols operate in that 
environment, and how application programs use the resulting system. As a specific ex- 
ample, you will learn the details of the global TCP/IP Internet, including the architec- 
ture of its router system and the application protocols it supports. In addition, you will 
understand some of the limitations of the internet approach. 

Designed as both a college text and as a professional reference, the book is written 
at an advanced undergraduate or graduate level. For professionals, the book provides a 
comprehensive introduction to the T C P D  technology and the architecture of the Inter- 
net. Although it is not intended to replace protocol standards, the book is an excellent 
starting point for learning about internetworking because it provides a uniform overview 
that emphasizes principles. Moreover, it gives the reader perspective that can be ex- 
tremely difficult to obtain from individual protocol documents. 

When used in the classroom, the text provides more than sufficient material for a 
single semester network course at either the undergraduate or graduate level. Such a 
course can be extended to a two-semester sequence if accompanied by programming 
projects and readings from the literature. For undergraduate courses, many of the de- 
tails are unnecessary. Students should be expected to grasp the basic concepts 
described in the text, and they should be able to describe or use them. At the graduate 
level, students should be expected to use the material as a basis for further exploration. 
They should understand the details well enough to answer exercises or solve problems 
that require them to explore extensions and subtleties. Many of the exercises suggest 
such subtleties; solving them often requires students to read protocol standards and ap- 
ply creative energy to comprehend consequences. 

At all levels, hands-on experience sharpens the concepts and helps students gain 
intuition. Thus, I encourage instructors to invent projects that force students to use In- 
ternet services and protocols. The semester project in my graduate Internetworking 
course at Purdue requires students to build an IP router. We supply hardware and the 
source code for an operating system, including device drivers for network interfaces; 
students build a working router that interconnects three networks with different MTUs. 
The course is extremely rigorous, students work in teams, and the results have been im- 
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pressive (many industries recruit graduates from the course). Although such experimen- 
tation is safest when the instructional laboratory network is isolated from production 
computing facilities, we have found that students exhibit the most enthusiasm, and 
benefit the most, when they have access to a functional TCP/IP internet. 

The book is organized into four main parts. Chapters 1 and 2 foml an introduction 
that provides an overview and discusses existing network technologies. In particular, 
Chapter 2 reviews physical network hardware. The intention is to provide basic intui- 
tion about what is possible, not to spend inordinate time on hardware details. Chapters 
3-13 describe the TCP/IP Internet from the viewpoint of a single host, showing the pro- 
tocols a host contains and how they operate. They cover the basics of Internet address- 
ing and routing as well as the notion of protocol layering. Chapters 14-20 and 32 
describe the architecture of an internet when viewed globally. They explore routing ar- 
chitecture and the protocols routers use to exchange routing information. Finally, 
Chapters 21-31 discuss application level services available in the Internet. They present 
the client-server model of interaction, and give several examples of client and server 
software. 

The chapters have been organized bottom up. They begin with an overview of 
hardware and continue to build new functionality on top of it. This view will appeal to 
anyone who has developed Internet software because it follows the same pattern one 
uses in implementation. The concept of layering does not appear until Chapter 1 1 .  The 
discussion of layering emphasizes the distinction between conceptual layers of func- 
tionality and the reality of layered protocol software in which multiple objects appear at 
each layer. 

A modest background is required to understand the material. The reader is expect- 
ed to have a basic understanding of computer systems, and to be familiar with data 
structures like stacks, queues, and trees. Readers need basic intuition about the organi- 
zation of computer software into an operating system that supports concurrent prograrn- 
ming and application programs that users invoke to perform computation. Readers do 
not need sophisticated mathematics, nor do they need to know infom~ation theory or 
theorems from data communications; the book describes the physical network as a black 
box around which an internetwork can be built. It states design principles clearly, and 
discusses motivations and consequences. 

I thank all the people who have contributed to versions of this book. Michael 
Evangelista provided extensive assistance with this edition, including classifying RFCs. 
Jeff Case provided the SNMPv3 example. John Lin and Dennis Totin commented on 
some of the new chapters. Jin Zhang, Kechiun He, and Sara Steinbrueck proofread 
parts of the text. Special thanks go to my wife and partner, Chris, whose careful editing 
made many improvements throughout. 

Douglas E. Comer 

January, 2000 
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Introduction And Overview 

1 .I The Motivation For Internetworking 

Internet communication has become a fundamental part of life. The World Wide 
Web contains information about such diverse subjects as atmospheric conditions, crop 
production, stock prices, and airline traffic. Groups establish electronic mailing lists so 
they can share information of common interest. Professional colleagues exchange busi- 
ness correspondence electronically, and relatives exchange personal greetings. 

Unfortunately, most network technologies are designed for a specific purpose. 
Each enterprise chooses hardware technology appropriate for specific communication 
needs and budget. More important, it is impossible to engineer a universal network 
from a single network technology because no single network suffices for all uses. Some 
groups need high-speed networks to connect computers in a single building. Low-cost 
technologies that fill the need cannot span large geographic distances. Other groups set- 
tle for a slower speed network that connects machines thousands of miles apart. 

For over two decades, a new technology has evolved that makes it possible to in- 
terconnect many disparate physical networks and make them function as a coordinated 
unit. The technology, called internetworking, accommodates multiple, diverse underly- 
ing hardware technologies by providing a way to interconnect heterogeneous networks 
and a set of communication conventions that makes them interoperate. The internet 
technology hides the details of network hardware, and permits computers to communi- 
cate independent of their physical network connections. 

The internet technology described in this book is an example of open system inter- 
connection. It is called open because, unlike proprietary communication systems avail- 
able from one specific vendor, the specifications are publicly available. Thus, anyone 
can build the software needed to communicate across an internet. More important, the 
entire technology has been designed to foster communication among machines with 
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diverse hardware architectures, to use almost any packet switched network hardware, to 
accommodate a wide variety of applications, and to accommodate multiple computer 
operating systems. 

To appreciate internet technology, think of how it has changed business. In addi- 
tion to high-speed communication among employees in the office environment, net- 
working technologies provide instant feedback among the production side of the busi- 
ness, sales and marketing, and customers. As a result, the speed with which business 
can plan, implement, assess, and retool has increased; the change is dramatic. 

1.2 The TCPAP Internet 

U.S. government agencies realized the importance and potential of internet technol- 
ogy many years ago, and have funded research that has made possible a global Internet. 
This book discusses principles and ideas underlying the internet technology that has 
resulted from research funded by the Advanced Research Projects Agency (ARPA)j-. 
The ARPA technology includes a set of network standards that specify the details of 
how computers communicate, as well as a set of conventions for interconnecting net- 
works and routing traffic. Officially named the TCPm Internet Protocol Suite and 
commonly referred to as TCPAP (after the names of its two main standards), it can be 
used to communicate across any set of interconnected networks. For example, some 
corporations use TCPlIP to interconnect all networks within their corporation, even 
though the corporation has no connection to outside networks. Other groups use 
TCP/IP for communication among geographically distant sites. 

Although the TCP/IP technology is noteworthy by itself, it is especially interesting 
because its viability has been demonstrated on a large scale. It forms the base technolo- 
gy for the global Internet that connects over 170 million individuals in homes, schools, 
corporations, and government labs in virtually all populated countries. In the U S ,  The 
National Science Foundation (NSF), the Department of Energy (DOE), the Department 
of Defense (DOD), the Health and Human Services Agency (HHS), and the National 
Aeronautics and Space Administration (NASA) have all participated in funding the Inter- 
net, and use TCPILP to connect many of their research sites. Known as the ARPANSF 
Internet, the TCP/IP Internet, the global Internet, or just the Internee, the resulting 
communication system allows subscribers to share information with anyone around the 
world as easily as they share it with someone in the next room. An outstanding suc- 
cess, the Internet demonstrates the viability of the TCP/IP technology and shows how it 
can accommodate a wide variety of underlying network technologies. 

Most of the material in this book applies to any internet that uses TCPm, but 
some chapters refer specifically to the global Internet. Readers interested only in the 
technology should be careful to watch for the distinction between the Internet architec- 
ture as it exists and general TCPlIP internets as they might exist. It would be a mis- 
take, however, to ignore all sections of the text that describe the global Internet - 
many corporate networks are already more complex than the global Internet of a dozen 

tAt various times, ARPA was called the Defense Advanced Research Projects Agency (DARPA). 
$We will follow the usual convention of capitalizing Internet when referring specifically to the global 

Internet, and use lower case to refer to private internets that use TCPm technology. 
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years ago, and many of the problems they face have already been solved in the global 
Internet. 

1.3 lnternet Services 

One cannot appreciate the technical details underlying TCPm without understand- 
ing the services it provides. This section reviews internet services briefly, highlighting 
the services most users access, and leaves to later chapters the discussion of how com- 
puters connect to a TCPDP internet and how the functionality is implemented. 

Much of our discussion of services will focus on standards called protocols. Proto- 
cols like TCP and IP provide the syntactic and semantic rules for communication. They 
contain the details of message formats, describe how a computer responds when a mes- 
sage arrives, and specify how a computer handles errors or other abnornlal conditions. 
Most important, they allow us to discuss computer communication independent of any 
particular vendor's network hardware. In a sense, protocols are to communication what 
algorithms are to computation. An algorithm allows one to specify or understand a 
computation without knowing the details of a particular CPU instruction set. Similarly, 
a communication protocol allows one to specify or understand data communication 
without depending on detailed knowledge of a particular vendor's network hardware. 

Hiding the low-level details of communication helps improve productivity in 
several ways. First, because programmers deal with higher-level protocol abstractions, 
they do not need to learn or remember as many details about a given hardware confi- 
guration. Thus, they can create new programs quickly. Second, because programs built 
using higher-level abstractions are not restricted to a particular computer architecture or 
a particular network hardware, they do not need to be changed when computers or net- 
works are replaced or reconfigured. Third, because application programs built using 
higher-level protocols are independent of the underlying hardware, they can provide 
direct communication between an arbitrary pair of computers. Programmers do not 
need to build a special version of application software for each type of computer or 
each type of network. Instead, software built to use protocols is general-purpose; the 
same code can be compiled and run on an arbitrary computer. 

We will see that the details of each service available on the Internet are given by a 
separate protocol. The next sections refer to protocols that specify some of the 
application-level services as well as those used to define network-level services. Later 
chapters explain each of these protocols in detail. 

1.3.1 Application Level lnternet Services 

From the user's point of view, the Internet appears to consist of a set of application 
programs that use the underlying network to carry out useful communication tasks. We 
use the tern1 interoperability to refer to the ability of diverse computing systems to 
cooperate in solving computational problems. Internet application programs exhibit a 
high degree of interoperability. Most users that access the Internet do so merely by run- 
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ning application programs without understanding the types of computers being accessed, 
the TCP/IP technology, the structure of the underlying internet, or even the path the 
data travels to its destination; they rely on the application programs and the underlying 
network software to handle such details. Only programmers who write network applica- 
tion programs need to view a TCP/IP internet as a network and need to understand 
some of the technology. 

The most popular and widespread Internet application services include: 

World Wide Web. The Web allows users to view documents that contain text and 
graphics, and to follow hypermedia links from one document to another. The 
Web grew to become the largest source of traffic on the global Internet between 
1994 and 1995, and continues to dominate. Some service providers estimate that 
the Web now accounts for 80% of their Internet traffic. 

Electronic mail (e-mail). Electronic mail allows a user to compose a memo and 
send a copy to individuals or groups. Another part of the mail application allows 
users to read memos that they have received. A recent innovation allows users to 
include "attachments" with a mail message that consist of arbitrary files. Elec- 
tronic mail has been so successful that many Internet users depend on it for most 
correspondence. One reason for the popularity of Internet e-mail arises from a 
careful design: the protocol makes delivery reliable. Not only does the mail sys- 
tem on the sender's computer contact the mail system on the receiver's computer 
directly, but the protocol specifies that a message cannot be deleted by the sender 
until the receiver has successfully placed a copy on permanent storage. 

File transfer. The file transfer application allows users to send or receive a copy 
of a data file. File transfer is one of the oldest, and still among the most heavily 
used application services in the Internet. Although small files can now be at- 
tached to an e-mail message, the file transfer service is still needed to handle arbi- 
trarily large files. The system provides a way to check for authorized users, or 
even to prevent all access. Like mail, file transfer across a TCPAP internet is reli- 
able because the two machines involved communicate directly, without relying on 
intermediate machines to make copies of the file along the way. 

Remote login. Remote login allows a user sitting at one computer to connect to a 
remote machine and establish an interactive login session. The remote login 
makes it appear that a window on the user's screen connects directly to the remote 
machine by sending each keystroke from the user's keyboard to the remote 
machine and displaying each character the remote computer prints in the user's 
window. When the remote login session terminates, the application returns the 
user to the local system. 

We will return to these and other applications in later chapters to examine them in more 
detail. We will see exactly how they use the underlying TCPAP protocols, and why 
having standards for application protocols has helped ensure that they are widespread. 
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1.3.2 Network-Level Internet Services 

A programmer who creates application programs that use TCP/IP protocols has an 
entirely different view of an internet than a user who merely executes applications like 
electronic mail. At the network level, an internet provides two broad types of service 
that all application programs use. While it is unimportant at this time to understand the 
details of these services, they cannot be omitted from any overview of T C P m  

Connectionless Packet Delivery Service. This service, explained in detail 
throughout the text, forms the basis for all other internet services. Connectionless 
delivery is an abstraction of the service that most packet-switching networks offer. 
It means simply that a TCPAP internet routes small messages from one computer 
to another based on address information camed in the message. Because the con- 
nectionless service routes each packet separately, it does not guarantee reliable, 
in-order delivery. Because it usually maps directly onto the underlying hardware, 
the connectionless service is extremely efficient. More important, having connec- 
tionless packet delivery as the basis for all internet services makes the TCPLP 
protocols adaptable to a wide range of network hardware. 

Reliable Stream Transport Service. Most applications need much more than 
packet delivery because they require the communication software to recover au- 
tomatically from transmission errors, lost packets, or failures of intermediate 
switches along the path between sender and receiver. The reliable transport ser- 
vice handles such problems. It allows an application on one computer to establish 
a "connection" with an application on another computer, and then to send a large 
volume of data across the connection as if it were a permanent, direct hardware 
connection. Underneath, of course, the communication protocols divide the 
stream of data into small messages and send them, one at a time, waiting for the 
receiver to acknowledge reception. 

Many networks provide basic services similar to those outlined above, so one 
might wonder what distinguishes TCP/IP services from others. The primary distin- 
guishing features are: 

Network Technology Independence. Although TCPm is based on conventional 
packet switching technology, it is independent of any particular vendor's 
hardware. The global Internet includes a variety of network technologies ranging 
from networks designed to operate within a single building to those designed to 
span large distances. TCPm protocols define the unit of data transmission, called 
a datagram, and specify how to transmit datagrams on a particular network. 

Universal Interconnection. A TCP/IP internet allows any pair of computers to 
which it attaches to communicate. Each computer is assigned an address that is 
universally recognized throughout the internet. Every datagram carries the ad- 
dresses of its source and destination. Intermediate switching computers use the 
destination address to make routing decisions. 
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End-to-End Acknowledgements. The TCP/IP internet protocols provide ack- 
nowledgements between the original source and ultimate destination instead of 
between successive machines along the path, even if the source and destination do 
not connect to a common physical network. 

Application Protocol Standarch. In addition to the basic transport-level services 
(like reliable stream connections), the TCP/IP protocols include standards for 
many common applications including electronic mail, file transfer, and remote lo- 
gin. Thus, when designing application programs that use TCPIIP, programmers 
often find that existing software provides the communication services they need. 

Later chapters will discuss the details of the services provided to the programmer as 
well as many of the application protocol standards. 

1.4 History And Scope Of The Internet 

Part of what makes the TCP/IP technology so exciting is its universal adoption as 
well as the size and growth rate of the global Internet. ARPA began working toward an 
internet technology in the mid 1970s, with the architecture and protocols taking their 
current form around 1977-79. At that time, ARPA was known as the primary funding 
agency for packet-switched network research and had pioneered many ideas in packet- 
switching with its well-known ARPANET. The ARPANET used conventional point-to- 
point leased line interconnection, but ARPA had also funded exploration of packet- 
switching over radio networks and satellite communication channels. Indeed, the grow- 
ing diversity of network hardware technologies helped force ARPA to study network in- 
terconnection, and pushed internetworking forward. 

The availability of research funding from ARPA caught the attention and imagina- 
tion of several research groups, especially those researchers who had previous experi- 
ence using packet switching on the ARPANET. ARPA scheduled informal meetings of 
researchers to share ideas and discuss results of experiments. Informally, the group was 
known as the Internet Research Group. By 1979, so many researchers were involved in 
the TCPLP effort that ARPA created an informal committee to coordinate and guide the 
design of the protocols and architecture of the emerging Internet. Called the Internet 
Control and Configuration Board (ICCB), the group met regularly until 1983, when it 
was reorganized. 

The global Internet began around 1980 when ARPA started converting machines 
attached to its research networks to the new TCP/IP protocols. The ARPANET, already 
in place, quickly became the backbone of the new Internet and was used for many of 
the early experiments with TCPLP. The transition to Internet technology became com- 
plete in January 1983 when the Office of the Secretary of Defense mandated that all 
computers connected to long-haul networks use TCPLP. At the same time, the Defense 
Communication Agency (DCA) split the ARPANET into two separate networks, one for 
further research and one for military communication. The research part retained the 
name ARPANET; the military part, which was somewhat larger, became known as the 
military network, MILNET. 
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To encourage university researchers to adopt and use the new protocols, ARPA 
made an implementation available at low cost. At that time, most university computer 
science departments were running a version of the UNIX operating system available in 
the University of California's Berkeley Sofnyare Distribution, commonly called Berke- 
ley UNIX or BSD UNIX. By funding Bolt Beranek and Newman, Incorporated (BBN) to 
implement its TCP/IP protocols for use with UNIX and funding Berkeley to integrate 
the protocols with its software distribution, ARPA was able to reach over 90% of 
university computer science departments. The new protocol software came at a particu- 
larly significant time because many departments were just acquiring second or third 
computers and connecting them together with local area networks. The departments 
needed communication protocols. 

The Berkeley software distribution became popular because it offered more than 
basic TCP/IP protocols. In addition to standard TCPm application programs, Berkeley 
offered a set of utilities for network services that resembled the UNIX services used on 
a single machine. The chief advantage of the Berkeley utilities lies in their similarity to 
standard UNIX. For example, an experienced UNIX user can quickly learn how to use 
Berkeley's remote file copy utility (rcp) because it behaves exactly like the UNIX file 
copy utility except that it allows users to copy files to or from remote machines. 

Besides a set of utility programs, Berkeley UNIX provided a new operating system 
abstraction known as a socket that allowed application programs to access communica- 
tion protocols. A generalization of the UNIX mechanism for 110, the socket has options 
for several types of network protocols in addition to TCPIIP. Its design has been debat- 
ed since its introduction, and many operating systems researchers have proposed alter- 
natives. Independent of its overall merits, however, the introduction of the socket 
abstraction was important because it allowed programmers to use TCPIIP protocols with 
little effort. Thus, it encouraged researchers to experiment with TCPm. 

The success of the TCP/IP technology and the Internet among computer science 
researchers led other groups to adopt it. Realizing that network communication would 
soon be a crucial part of scientific research, the National Science Foundation (NSF) 
took an active role in expanding the TCPAP Internet to reach as many scientists as pos- 
sible. In the late 1970s, NSF funded a project known as the Computer Science NET- 
work (CSNET), which had as its goal connecting all computer scientists. Starting in 
1985, NSF began a program to establish access networks centered around its six super- 
computer centers. In 1986 it expanded networking efforts by funding a new wide area 
backbone network, called the NSFNET?, that eventually reached all its supercomputer 
centers and tied them to the ARPANET. Finally, in 1986 NSF provided seed money 
for many regional networks, each of which now connects major scientific research insti- 
tutions in a given area. All the NSF-funded networks use TCP/IP protocols, and all are 
part of the global Internet. 

Within seven years of its inception, the Internet had grown to span hundreds of in- 
dividual networks located throughout the United States and Europe. It connected nearly 
20,000 computers at universities, government, and corporate research laboratories. Both 
the size and the use of the Internet continued to grow much faster than anticipated. By 

?The tern1 NSFNET is sometimes used loosely to mean all NSF-funded networking activities, but we will 
use it to refer to the backbone. The next chapter gives more details about the technology. 
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late 1987, it was estimated that the growth had reached 15% per month. By 2000, the 
global Internet reached over 50 million computers in 209 countries. 

Early adoption of TCP/IP protocols and growth of the Internet has not been limited 
to government-funded projects. Major computer corporations connected to the Internet 
as did many other large corporations including: oil companies, the auto industry, elec- 
tronics firms, pharmaceutical companies, and telecommunications carriers. Medium and 
small companies began connecting in the 1990s. In addition, many companies have 
used the TCP/IP protocols on their internal corporate internets even though they choose 
not to be part of the global Internet. 

Rapid expansion introduced problems of scale unanticipated in the original design 
and motivated researchers to find techniques for managing large, distributed resources. 
In the original design, for example, the names and addresses of all computers attached 
to the Internet were kept in a single file that was edited by hand and then distributed to 
every site on the Internet. By the mid 1980s, it became apparent that a central database 
would not suffice. First, because computers were being added to the Internet at an in- 
creasing rate, requests to update the file would soon exceed the personnel available to 
process them. Second, even if a correct central f i e  existed, network capacity was insuf- 
ficient to allow either frequent distribution to every site or on-line access by each site. 

New protocols were developed and a naming system was put in place across the 
global Internet that allows any user to resolve the name of a remote machine automati- 
cally. Known as the Domain Name System (DNS), the mechanism relies on machines 
called name servers to answer queries about names. No single machine contains the en- 
tire domain name database. Instead, data is distributed among a set of machines that 
use TCP/IP protocols to communicate among themselves when answering a query. 

1.5 The lnternet Architecture Board 

Because the TCP/IP internet protocol suite did not arise from a specific vendor or 
from a recognized professional society, it is natural to ask, "who sets the technical 
direction and decides when protocols become standard?" The answer is a group known 
as the Internet Architecture Board (IABI-). The IAB provides the focus and coordina- 
tion for much of the research and development underlying the TCP/IP protocols, and 
guides the evolution of the Internet. It decides which protocols are a required part of 
the TCPIIP suite and sets official policies. 

Formed in 1983 when ARPA reorganized the Internet Control and Configuration 
Board, the IAB inherited much of its charter from the earlier group. Its initial goals 
were to encourage the exchange of ideas among the principals involved in research re- 
lated to TCP/IP and the Internet, and to keep researchers focused on common objec- 
tives. Through the first six years, the IAB evolved from an ARPA-specific research 
group into an autonomous organization. During these years, each member of the IAB 
chaired an Internet Task Force charged with investigating a problem or set of issues 
deemed to be important. The IAB consisted of approximately ten task forces, with 
charters ranging from one that investigated how the traffic load from various applica- 

+IAB originally stood for Internet Activities Board. 
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tions affects the Internet to one that handled short tern1 Internet engineering problems. 
The TAB met several times each year to hear status reports from each task force, review 
and revise technical directions, discuss policies, and exchange information with 
representatives from agencies like ARPA and NSF, who funded Internet operations and 
research. 

The chairman of the IAB had the title Internet Architect and was responsible for 
suggesting technical directions and coordinating the activities of the various task forces. 
The IAB chairman established new task forces on the advice of the IAB and also 
represented the IAB to others. 

Newcomers to TCP/IP are sometimes surprised to learn that the IAB did not 
manage a large budget; although it set direction, it did not fund most of the research and 
engineering it envisioned. Instead, volunteers performed much of the work. Members 
of the IAB were each responsible for recruiting volunteers to serve on their task forces, 
for calling and running task force meetings, and for reporting progress to the IAB. Usu- 
ally, volunteers came from the research community or from commercial organizations 
that produced or used TCP/IP. Active researchers participated in Internet task force ac- 
tivities for two reasons. On one hand, serving on a task force provided opportunities to 
learn about new research problems. On the other hand, because new ideas and problem 
solutions designed and tested by task forces often became part of the TCP/IP Internet 
technology, members realized that their work had a direct, positive influence on the 
field. 

1.6 The IAB Reorganization 

By the summer of 1989, both the TCP/IP technology and the Internet had grown 
beyond the initial research project into production facilities on which thousands of peo- 
ple depended for daily business. It was no longer possible to introduce new ideas by 
changing a few installations overnight. To a large extent, the literally hundreds of com- 
mercial companies that offer TCP/IP products determined whether products would in- 
teroperate by deciding when to incorporate changes in their software. Researchers who 
drafted specifications and tested new ideas in laboratories could no longer expect instant 
acceptance and use of the ideas. It was ironic that the researchers who designed and 
watched TCPm develop found themselves overcome by the commercial success of 
their brainchild. In short, TCP/IP became a successful, production technology and the 
market place began to dominate its evolution. 

To reflect the political and commercial realities of both TCPIIP and the Internet, 
the IAB was reorganized in the summer of 1989. The chairmanship changed. 
Researchers were moved from the IAB itself to a subsidiary group and a new IAB 
board was constituted to include representatives from the wider community. 

Figure 1.1 illustrates the IAB organization and the relationship of subgroups. 
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research groups working groups 

Figure 1.1 The structure of the IAB after the 1989 reorganization. 

As Figure 1.1 shows, in addition to the board itself, the IAB organization con- 
tained two major groups: the Internet Research Task Force (IRTF) and the Internet En- 
gineering Task Force (IETF). 

As its name implies, the IETF concentrates on short-term or medium-term en- 
gineering problems. The IETF existed in the original IAB structure, and its success 
provided part of the motivation for reorganization. Unlike most IAB task forces, which 
were limited to a few individuals who focused on one specific issue, the IETF was large 
- before the reorganization, it had grown to include dozens of active members who 
worked on many problems concurrently. It was divided into over 20 working groups, 
each focusing on a specific problem. Working groups held individual meetings to for- 
mulate problem solutions. In addition, the entire IETF met regularly to hear reports 
from working groups and discuss proposed changes or additions to the TCPtIP technol- 
ogy. Usually held three times annually, full IETF meetings attracted hundreds of parti- 
cipants and spectators. The IETF had become too large for the chairman to manage. 

Because the IETF was known throughout the Internet, and because its meetings 
were widely recognized and attended, the reorganized IAB structure retains the IETF, 
but splits it into approximately ten areas, each with its own manager. The IETF chair- 
man and the area managers comprise the Internet Engineering Steering Group (IESG), 
the individuals responsible for coordinating the efforts of IETF working groups. The 
name "IETF" now refers to the entire body, including the chairman, area managers, 
and all members of working groups. 
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Created during the reorganization, the Internet Research Task Force is the research 
counterpart to the IETF. The IRTF coordinates research activities related to TCPIIP 
protocols or internet architecture in general. Like the IETF, the IRTF has a small 
group, called the Internet Research Steering Group (IRSG), that sets priorities and coor- 
dinates research activities. Unlike the IETF, the IRTF is currently a much smaller and 
less active organization. In fact, most of the research is being done within the IETF. 

1.7 The lnternet Society 

In 1992, as the Internet moved away from its U.S. government roots, a society was 
formed to encourage participation in the Internet. Called the Intenzet Society (ISOQ, 
the group is an international organization inspired by the National Geographic Society. 
The host for the IAB, the Internet Society continues to help people join and use the In- 
ternet around the world. 

1.8 Internet Request For Comments 

We have said that no vendor owns the TCPBP technology nor does any profession- 
al society or standards body. Thus, the documentation of protocols, standards, and poli- 
cies cannot be obtained from a vendor. Instead, the documentation is placed in on-line 
repositories and made available at no charge. 

Documentation of work on the Internet, proposals for new or revised protocols, and 
TCPnP protocol standards all appear in a series of technical reports called Internet Re- 
quests For Comments, or RFCs. RFCs can be short or long, can cover broad concepts 
or details, and can be standards or merely proposals for new protocols?. While RFCs 
are not refereed in the same way as academic research papers, they are edited. For 
many years, a single individual, Jon Postel$, served as RFC editor. The task of editing 
RFCs now falls to area managers of the IETF; the IESG as a whole approves new 
RFCs. 

Finally, a few reports pertinent to the Internet were published in an earlier, parallel 
series of reports called Internet Engineering Notes, or IENs. Although the IEN series is 
no longer active, not all IENs appear in the RFC series. There are references to RFCs 
(and still a few to IENs) throughout the text. 

The RFC series is numbered sequentially in the chronological order RFCs are writ- 
ten. Each new or revised RFC is assigned a new number, so readers must be careful to 
obtain the highest numbered version of a document; an RFC index is available to help 
identify the correct version. 

To make document retrieval quicker, many sites around the world store copies of 
RFCs and make them available to the community. One can obtain RFCs by postal 
mail, by electronic mail, or directly across the Internet using a fde transfer program. In 
addition, preliminary versions of RFC documents, which are known as Internet drafts, 

- 

?Appendix I contains an introduction to RFCs that examines the diversity of RFCs, including jokes that 
have appeared. 

$Jon passed away in the fall of 1998. He was one of the pioneers who made significant contributions to 
TCP/IP and the Internet. Those of us who knew him feel the loss deeply. 
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are also available. Ask a local network expert how to obtain RFCs or Internet drafts at 
your site, or refer to Appendix I for further instructions on how to retrieve them. 

1.9 lnternet Protocols And Standardization 

Readers familiar with data communication networks realize that a myriad of com- 
munication protocol standards exist. Many of them precede the Internet, so the question 
arises, "Why did the Internet designers invent new protocols when so many internation- 
al standards already existed?" The answer is complex, but follows a simple maxim: 

Use existing protocol standards whenever such standards apply; in- 
vent new protocols only when existing standards are insufficient, and 
be prepared to use new standards when they become available and 
provide equivalent functionalio. 

So, despite appearances to the contrary, the TCPm Internet Protocol Suite was not 
intended to ignore or avoid extant standards. It came about merely because none of the 
existing protocols satisfied the need for an interoperable internetworking communication 
system. 

1.1 0 Future Growth And Technology 

Both the TCPIIP technology and the Internet continue to evolve. New protocols 
are being proposed, old ones are being revised. NSF added considerable complexity to 
the system by introducing a backbone network, regional networks, and hundreds of 
campus networks. Other groups around the world continue to connect to the Internet as 
well. The most significant change comes not from added network connections, howev- 
er, but from additional traffic. As new users connect to the Internet and new applica- 
tions appear, traffic patterns change. When physicists, chemists, and biologists began to 
use the Internet, they exchanged files of data collected from experiments. Files of 
scientific data were large compared to electronic mail messages. As the Internet be- 
came popular and users began to browse information using services like the World Wide 
Web, traffic patterns increased again. 

To accommodate growth in traffic, the capacity of the NSFNET backbone was in- 
creased three times. The final version, known as ANSNET after the company that sup- 
plied it, had a capacity approximately 840 times larger than the original. Since 1995, 
companies known as Internet Service Providers (ISPs) have each built their own back- 
bone network, many of which have significantly more capacity than the last 
government-funded backbone. At the current time, it is difficult to foresee an end to the 
need for more capacity. 
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Growth in demands for networking is not unexpected. The computer industry has 
enjoyed a continual demand for increased processing power and larger data storage for 
many years. Users have only begun to understand how to use networks. In the future 
we can expect continual increases in the demand for communications. Soon, for exam- 
ple, TCPnP technologies will be used for telephone and video services as well as data 
services. Thus, higher-capacity communication technologies will be needed to accom- 
modate the growth. 

Figure 1.2 summarizes expansion of the Internet and illustrates an important com- 
ponent of growth: much of the change in complexity has arisen because multiple groups 
now manage various parts of the whole. Because the technology was developed when a 
single person at ARPA had control of all aspects of the Internet, the designs of many 
subsystems depended on centralized management and control. As the Internet grew, 
responsibility and control were divided among multiple organizations. In particular, as 
the Internet became global, the operation and management needed to span multiple 
countries. Much of the effort since the early 1990s has been directed toward finding 
ways to extend the design to accommodate decentralized management. 

number of number of number of number of 
networks computers users managers 

Figure 1.2 Growth of the connected Internet. In addition to traffic increases 
that result from increased size, the Internet faces complexity that 
results from decentralized management of both development and 
operations. 

1 .I 1 Organization Of The Text 

The material on TCPAP has been written in three volumes. This volume presents 
the TCPIIP technology, applications that use it, and the architecture of the global Inter- 
net in more detail. It discusses the fundamentals of protocols like TCP and IP, and 
shows how they fit together in an internet. In addition to giving details, the text 
highlights the general principles underlying network protocols, and explains why the 
TCPLP protocols adapt easily to so many underlying physical network technologies. 
Volume I1 discusses in depth the internal details of the TCPm protocols and shows 
how they are implemented. It presents code from a working system to illustrate how 
the individual protocols work together, and contains details useful to people responsible 
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for building a corporate internet. Volume 111 shows how distributed applications use 
TCP/IP for communication. It focuses on the client-server paradigm, the basis for all 
distributed programming. It discusses the interface between programs and protocols?, 
and shows how client and server programs are organized. In addition, Volume 111 
describes the remote procedure concept, middleware, and shows how programmers use 
tools to build client and server software. 

So far, we have talked about the TCPm technology and the Internet in general 
terms, summarizing the services provided and the history of their development. The 
next chapter provides a brief summary of the type of network hardware used throughout 
the Internet. Its purpose is not to illuminate nuances of a particular vendor's hardware, 
but to focus on the features of each technology that are of primary importance to an in- 
ternet architect. Later chapters delve into the protocols and the Internet, fulfilling three 
purposes: they explore general concepts and review the Internet architectural model, 
they examine the details of TCP/IP protocols, and they look at standards for high-level 
services like electronic mail and electronic file transfer. Chapters 3 through 14 review 
fundamental principles and describe the network protocol software found in any 
machine that uses TCP/IP. Later chapters describe services that span multiple 
machines, including the propagation of routing information, name resolution, and appli- 
cations like electronic mail. 

Two appendices follow the main text. The first appendix contains a guide to 
RFCs. It expands on the description of RFCs found in this chapter, and gives examples 
of information that can be found in RFCs. It describes in detail how to obtain RFCs by 
electronic mail, postal mail, and file transfer. Finally, because the standard RFC index 
comes in chronological order, the appendix presents a list of RFCs organized by topic 
to make it easier for beginners to find RFCs pertinent to a given subject. 

The second appendix contains an alphabetical list of terms and abbreviations used 
throughout the literature and the text. Because beginners often find the new terminolo- 
gy overwhelming and difficult to remember, they are encouraged to use the alphabetical 
list instead of scanning back through the text. 

1.1 2 Summary 

An internet consists of a set of connected networks that act as a coordinated whole. 
The chief advantage of an internet is that it provides universal interconnection while al- 
lowing individual groups to use whatever network hardware is best suited to their needs. 
We will examine principles underlying internet communication in general and the de- 
tails of one internet protocol suite in particular. We will also discuss how internet pro- 
tocols are used in an internet. Our example technology, called T C P m  after its two 
main protocols, was developed by the Advanced Research Projects Agency. It provides 
the basis for the global Internet, a large, operational internet that connects universities, 
corporations, and government departments in many countries around the world. The 
global Internet is expanding rapidly. 

Wolume III is available in three versions: one that uses the Unix socket interface interface in examples, a 
second that uses the Transport Layer Interface (TLI), and a third that uses the Windows Sockets Interface de- 
fined by Microsoft. 
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FOR FURTHER STUDY 

Cerf s A History Of The ARPANET [I9891 and History of the Internet Activities 
Board [RFC 11601 provide fascinating reading and point the reader to early research pa- 
pers on TCP/IP and internetworking. Denning [Nov-Dec 19891 provides a different per- 
spective on the history of the ARPANET. Jennings et. al. [I9861 discusses the impor- 
tance of computer networking for scientists. Denning [Sept-Oct 19891 also points out 
the importance of internetworking and gives one possible scenario for a world-wide In- 
ternet. The U.S. Federal Coordinating Committee for Science, Engineering and Tech- 
nology [FCCSm suggested networking should be a national priority. 

The IETF (iegorg) publishes minutes from its regular meetings. The Internet So- 
ciety (www.isoc.org) produces newsletters that discuss the penetration of the Internet in 
countries around the world. The World Wide Web Consortium (w3c.org) produces pro- 
tocols and standards for Web technologies. Finally, the reader is encouraged to 
remember that the TCPhP protocol suite and the Internet continue to evolve; new infor- 
mation can be found in RFCs and at conferences such as the annual ACM SIGCOMM 
Symposium and NETWORLD+INTEROP events held around the world. 

EXERCISES 

1.1 Explore*application programs at your site that use TCP/IP. 
1.2 Plot the growth of TCP/IP technology and Internet access at your organization. How many 

computers, users, and networks were connected each year? 
13 TCPm products account for several billion dollars per year in gross revenue. Read trade 

publications to find a list of vendors offering such products. 





Re view Of Underlying 
Network Technologies 

2.1 Introduction 

It is important to understand that the Internet is not a new kind of physical net- 
work. It is, instead, a method of interconnecting physical networks and a set of conven- 
tions for using networks that allow the computers they reach to interact. While network 
hardware plays only a minor role in the overall design, understanding the internet tech- 
nology requires one to distinguish between the low-level mechanisms provided by the 
hardware itself and the higher-level facilities that the TCPAP protocol software pro- 
vides. It is also important to understand how the interfaces supplied by underlying 
packet-switched technology affect our choice of high-level abstractions. 

This chapter introduces basic packet-switching concepts and temunology, and then 
reviews some of the underlying network hardware technologies that have been used in 
TCPAP internets. Later chapters describe how these networks are interconnected and 
how the TCPAP protocols accommodate vast differences in the hardware. While the list 
presented here is certainly not comprehensive, it clearly demonstrates the variety among 
physical networks over which TCPAP operates. The reader can safely skip many of the 
technical details, but should try to grasp the idea of packet switching and try to imagine 
building a homogeneous communication system using such heterogeneous hardware. 
Most important, the reader should look closely at the details of the physical address 
schemes the various technologies use; later chapters will discuss in detail how high- 
level protocols use physical addresses. 
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2.2 Two Approaches To Network Communication 

Whether they provide connections between one computer and another or between a 
terminal and a computer, communication networks can be divided into two basic types: 
connection-oriented (sometimes called circuit-switched) and connectionless (sometimes 
called packet-switched?). Connection-oriented networks operate by forming a dedicated 
connection or circuit between two points. The U.S. telephone system uses a 
connection-oriented technology - a telephone call establishes a connection from the 
originating phone through the local switching office, across trunk lines, to a remote 
switching office, and finally to the destination telephone. While a connection is in 
place, the phone equipment samples the microphone repeatedly, encodes the samples di- 
gitally, and transmits them across the connection to the receiver. The sender is 
guaranteed that the samples can be delivered and reproduced because the connection 
provides a guaranteed data path of 64 Kbps (thousand bits per second), the rate needed 
to send digitized voice. The advantage of connection-oriented networking lies in its 
guaranteed capacity: once a circuit is established, no other network activity will de- 
crease the capacity of that circuit. One disadvantage of connection-oriented technology 
arises from cost: circuit costs are fixed, independent of use. For example, one pays a 
fixed rate for a phone call, even when the two parties do not talk. 

Connectionless networks, the type often used to connect computers, take an entire- 
ly different approach. In a connectionless network, data to be transferred across a net- 
work is divided into small pieces called packets that are multiplexed onto high capacity 
intermachine connections. A packet, which usually contains only a few hundred bytes 
of data, carries identification that enables the network hardware to know how to send it 
to the specified destination. For example, a large file to be transmitted between two 
machines must be broken into many packets that are sent across the network one at a 
time. The network hardware delivers the packets to the specified destination, where 
software reassembles them into a single file again. The chief advantage of packet- 
switching is that multiple communications among computers can proceed concurrently, 
with intermachine connections shared by all pairs of computers that are communicating. 
The disadvantage, of course, is that as activity increases, a given pair of communicating 
computers receives less of the network capacity. That is, whenever a packet switched 
network becomes overloaded, computers using the network must wait before they can 
send additional packets. 

Despite the potential drawback of not being able to guarantee network capacity, 
connectionless networks have become extremely popular. The motivations for adopting 
packet switching are cost and performance. Because multiple computers can share the 
network bandwidth, fewer connections are required and cost is kept low. Because en- 
gineers have been able to build high speed network hardware, capacity is not usually a 
problem. So many computer interconnections use connectionless networks that, 
throughout the remainder of this text, we will assume the term network refers to a con- 
nectionless network unless otherwise stated. 

+In fact, it is possible to build hybrid hardware technologies; for our purposes, only the difference in 
functionality is important. 
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2.3 Wide Area And Local Area Networks 

Data networks that span large geographical distances (e.g., the continental U.S.) are 
fundamentally different from those that span short distances (e.g., a single room). To 
help characterize the differences in capacity and intended use, packet switched technolo- 
gies are often divided into two broad categories: wide area networks (WANs) and Local 
Area Networks (LANs). The two categories do not have formal definitions. Instead, 
vendors apply the terms loosely to help customers distinguish among technologies. 

WAN technologies, sometimes called long had networks, provide communication 
over long distances. Most WAN technologies do not limit the distance spanned; a 
WAN can allow the endpoints of a communication to be arbitrarily far apart. For ex- 
ample, a WAN can span a continent or can join computers across an ocean. Usually, 
WANs operate at slower speeds than LANs, and have much greater delay between con- 
nections. TypicaI speeds for a WAN range from 1.5 Mbps to 155 Mbps (million bits 
per second). Delays across a WAN can vary from a few milliseconds to several tenths 
of a secondf. 

LAN technologies provide the highest speed connections among computers, but sa- 
crifice the ability to span long distances. For example, a typical LAN spans a small 
area like a single building or a small campus, and operates between 10 Mbps and 2 
Gbps (billion bits per second). Because LAN technologies cover short distances, they 

- offer lower delays than WANs. The delay across a LAN can be as short as a few tenths 
of a millisecond or as long as 10 milliseconds. 

We have already stated the general tradeoff between speed and distance: technolo- 
gies that provide higher speed communication operate over shorter distances. There are 
other differences among the technologies as well. In LAN technologies, each computer 
usually contains a device known as a Network Inter&ace Card (NIC) that connects the 
machine directly to the network. The network itself need not contain much intelligence; 
it can depend on electronic interface devices in the attached computers to generate and 
receive the complex electrical signals. In WAN technologies, a network usually con- 
sists of a series of complex computers called packet switches interconnected by long- 
distance communication lines. The size of the network can be extended by adding a 
new switch and another communication line. Attaching a user's computer to a WAN 
means connecting it to one of the packet switches. Each switch along a path in the 
WAN introduces delay when it receives a packet and forwards it to the next switch. 
Thus, the larger the WAN becomes the longer it takes to route traffic across it. 

This book discusses software that hides the technological differences among net- 
works and makes interconnection independent of the underlying hardware. To appreci- 
ate design choices in the software, it is necessary to understand how it relates to net- 
work hardware. The next sections present examples of network technologies that have 
been used in the Internet, showing some of the differences among them. Later chapters 
show how the TCP/IP software isolates such differences and makes the communication 
system independent of the underlying hardware technology. 

TSuch long delays result from WANs that communicate by sending signals to a satellite orbiting the 
earth. 
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2.3.1 Network Hardware Addresses 

Each network hardware technology defines an addressing mechanism that comput- 
ers use to specify the destination for a packet. Every computer attached to a network is 
assigned a unique address, usually an integer. A packet sent across a network includes 
a destination address field that contains the address of the intended recipient. The des- 
tination address appears in the same location in all packets, making it possible for the 
network hardware to examine the destination address easily. A sender must know the 
address of the intended recipient, and must place the recipient's address in the destina- 
tion address field of a packet before transmitting the packet. 

Each hardware technology specifies how computers are assigned addresses. The 
hardware specifies, for example, the number of bits in the address as well as the loca- 
tion of the destination address field in a packet. Although some technologies use com- 
patible addressing schemes, many do not. This chapter contains a few examples of 
hardware addressing schemes; later chapters explain how TCP/IP accommodates diverse 
hardware addressing schemes. 

2.4 Ethernet Technology 

Ethemet is the name given to a popular packet-switched LAN technology invented 
at Xerox PARC in the early 1970s. Xerox Corporation, Intel Corporation, and Digital 
Equipment Corporation standardized Ethernet in 1978; IEEE released a compatible ver- 
sion of the standard using the standard number 802.3. Ethernet has become the most 
popular LAN technology; it now appears in virtually all corporate networks as well as 
many small installations. Because Ethernet is so popular, many variants exist. 
Although the original wiring scheme has been superceded, understanding the original 
design helps clarify the intent and some of the design decisions. Thus, we will discuss 
the original design fist ,  and then cover variants. 

Formally known as IOBase.5, the original Ethernet design uses a coaxial cable as 
Figure 2.1 illustrates. 

1R INCH I 
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CENTER WIRE 

Figure 2.1 A cross-section of the coaxial cable used in the original Ethernet. 

Called the ether, the cable itself is completely passive; all the active electronic 
components needed to make the network function are associated with the computers at- 
tached to the network. Each Ethemet cable is about 112 inch in diameter and up to 500 
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meters long. A resistor is added between the center wire and shield at each end to 
prevent reflection of electrical signals. 

The connection between a computer and the original Ethernet coaxial cable re- 
quires a hardware device called a transceiver. Physically, the connection between a 
transceiver and the inner wire of an Ethernet cable enters through a small hole in the 
outer layers of the cable as Figure 2.2 illustrates. Technicians often use the term tap to 
describe such connections. Usually, small metal pins mounted in the transceiver go 
through the hole and provide electrical contacts to the center wire and the braided 
shield. Some manufacturers' connectors require that the cable be cut and a "T" insert- 
ed. 

CENTER WIRE 

METAL SHIELD 

-gJ--& . '7; INTERFACE 

Figure 2.2 (a) A cutaway view of an Ethernet cable showing the details of 
electrical connections between a transceiver and the cable, and (b) 
the schematic diagram of an Ethernet with many computers con- 
nected. 

Each connection to an original Ethernet uses two major electronic components. A 
transceiver connects to the center wire and braided shield on the cable, sensing and 
sending signals on the ether. A host interface card or host adapter plugs into the 
computer's bus (e.g., to a motherboard) and connects to the transceiver. 

A transceiver is a small piece of hardware usually found physically adjacent to the 
ether. In addition to the analog hardware that senses and controls electrical signals on 
the ether, a transceiver contains digital circuitry that allows it to communicate with a di- 
gital computer. The transceiver senses when the ether is in use and translates analog 
electrical signals on the ether to (and from) digital fornl. A cable called the Attachment 
Unit Interface (AUZ) cable connects the transceiver to an adapter board in a host com- 
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puter. Informally called a transceiver cable, the AUI cable contains many wires. The 
wires cany the electrical power needed to operate the transceiver, the signals that con- 
trol the transceiver operation, and the contents of the packets being sent or received. 
Figure 2.3 illustrates how the components form a connection between a bus in a com- 
puter system and an Ethernet cable. 

ETHERNET 

HOST INTERFACE 
AUI CABLE ON ADAPTER BOARD 

Figure 2.3 The two main electronic components that form a connection 
between a computer's bus and an Ethernet in the original scheme. 
The AUI cable that connects the host interface to the transceiver 
carry power and signals to control transceiver operation as well as 
packets being transmitted or received. 

Each host interface controls the operation of one transceiver according to instruc- 
tions it receives from the computer software. To the operating system software, the in- 
terface appears to be an input/output device that accepts basic data transfer instructions 
from the computer, controls the transceiver to cany them out, interrupts when the task 
has been completed, and reports status information. Although a transceiver is a simple 
hardware device, the host interface can be complex (e.g., some interfaces contain a mi- 
croprocessor used to control transfers between the computer memory and the ether). 

In practice, organizations that use the original Ethernet wiring in a conventional of- 
fice environment run the Ethernet cable along the ceiling in each hall, and arrange for a 
connection from each office to attach to the cable. Figure 2.4 illustrates the resulting 
physical wiring scheme. 
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ETHERNET CABLE (USUALLY IN CEILING) 

A TRANSCEIVERS 

I AUI CABLE 

COMPUTER A COMPUTER B 

Figure 2.4 The physical connection of two computers to an Ethernet using the 
original wiring scheme. In an office environment, the Ethernet 
cable is usually placed in the hallway ceiling; each office has an 
AUI cable that connects a computer in the office to a transceiver 
attached to the Ethernet cable. 

2.4.1 Thin-Wire Ethernet 

Several components of the original Ethernet technology have undesirable proper- 
ties. For example, because a transceiver contains electronic components, it has a non- 
trivial cost. Furthermore, because transceivers are located with the cable and not with 
computers, locating or replacing them is difficult. The coaxial cable that fornls the eth- 
er is difficult to install. In particular, to provide maximum protection against electrical 
interference from devices like electric motors, the cable contains heavy shielding that 
makes it difficult to bend. Finally, the AUI cable is also thick and difficult to bend. 

To reduce costs for environments like offices that do not contain much electrical 
interference, engineers developed an alternative Ethernet wiring scheme. Fornlally 
known as lOBase2 and usually called thin-wire E t h e m t  or thinnett, the alternative 
coaxial cable is thinner, less expensive, and more flexible. However, thin-wire Ethernet 

tTo contrast it with thin-wire, the original Ethernet cable became known as thick Ethernet, or thicknet. 
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has some disadvantages. Because it does not provide as much protection from electrical 
interference, thin-wire Ethernet cannot be placed adjacent to powerful electrical equip- 
ment like that found in a factory. Furthermore, thin-wire Ethernet covers somewhat 
shorter distances and supports fewer computer connections per network than thick Eth- 
ernet. 

When designing thin-wire Ethernet, engineers replaced costly transceiver hardware 
with special high-speed digital circuits, and provided a direct connection from a com- 
puter to the network. Thus, in a thin-wire scheme, a computer contains both the host 
interface and the circuitry that connects to the cable. Manufacturers of small computers 
and workstations find thin-wire Ethernet an especially attractive scheme because they 
can integrate Ethernet hardware into single board computers and mount connectors 
directly on the back of the computer. 

Because a thin-wire Ethernet connects directly from one computer to another, the 
wiring scheme works well when many computers occupy a single room. The thin-wire 
cable runs directly from one computer to the next. To add a new computer, one only 
needs to link it into the chain. Figure 2.5 illustrates the connections used with thin-wire 
Ethernet. 

THINNET CABLE 

COMPUTER A COMPUTER B 

Figure 2.5 The physical connection of two computers using the thinnet wiring 
scheme. The ether passes directly from one computer to another; 
no external transceiver hardware is required. 

Thin-wire Ethernets were designed to be easy to connect and disconnect. Thin- 
wire uses BNC connectors, which do not require tools to attach a computer to the cable. 
Thus, a user can connect a computer to a thin-wire Ethernet without the aid of a techni- 
cian. Of course, allowing users to manipulate the ether has disadvantages: if a user 
disconnects the ether, it prevents all machines on the ether from communicating. In 
many situations, however, the advantages outweigh the disadvantages. 
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2.4.2 Twisted Pair Ethernet 

Advances in technology have made it possible to build Ethernets that do not need 
the electrical shielding of a coaxial cable. Called twisted pair Ethernet, the technology 
allows a computer to access an Ethernet using conventional unshielded copper wires 
similar to the wires used to connect telephones?. The advantages of using twisted pair 
wiring are that it further reduces costs and protects other computers on the network 
from a user who disconnects a single computer. In some cases, a twisted pair technolo- 
gy can make it possible for an organization to use Ethernet over existing wiring; in oth- 
ers, the needed wiring (called category 5 cable) is cheaper and easier to install than 
coaxial cable. 

Fonnally known as 1OBase-T, the first twisted pair Ethernet operated at 10 Mbps, 
exactly like thick or thin Ethernet. A set of eight wires (four pairs) is used to connect 
each computer to an Ethernet hub as Figure 2.6 shows. 

HUB 

COMPUTER A COMPUTER B 

Figure 2.6 An illustration of Ethernet using twisted pair wiring. Each com- 
puter connects to a hub over four pairs of wire. 

The hub is an electronic device that simulates the signals on an Ethernet cable. 
Physically, a hub consists of a small box that usually resides in a wiring closet; a con- 
nection between a hub and a computer must be less than 100 meters long. A hub re- 
quires power, and can allow authorized personnel to monitor and control its operation 

?The term twisted pair arises because conventional telephone wiring uses the technique of twisting the 
wires to avoid interference. 
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over the network. To the host interface in a computer, a connection to a hub appears to 
operate the same way as a connection to a transceiver. That is, an Ethernet hub pro- 
vides the same communication capability as a thick or thin Ethernet; hubs merely offer 
an alternative wiring scheme. 

2.4.3 Ethernet Capacity 

Although the wiring scheme evolved from the original thick cable to thin cable and 
finally to twisted pair, much of the original Ethernet design remained the same. In par- 
ticular, the initial twisted pair Ethernet design operates at the same rate as the original 
thick Ethernet, which means that data can be transmitted at 10 million bits per second. 
Although a computer can generate data at Ethernet speed, raw network speed should not 
be thought of as the rate at which two computers can exchange data. Instead, network 
speed should be thought of as a measure of total traffic capacity. Think of a network as 
a highway connecting multiple cities, and think of packets as cars on the highway. 
High bandwidth makes it possible to carry heavy traffic loads, while low bandwidth 
means the highway cannot carry as much traffic. A 10 Mbps Ethernet, for example, can 
handle a few computers that generate heavy loads, or many computers that generate 
light loads. 

In the late 1970s when Ethernet was standardized, a LAN operating at 10 Mbps 
had more than sufficient capacity for many computers because the available CPU 
speeds and network interface hardware prohibited a given computer from transmitting 
data rapidly. By the mid 1990s, however, CPU speeds had increased dramatically as 
had the use of networks. Consequently, an Ethernet operating at 10 Mbps did not have 
sufficient capacity to act as a central corporate backbone for even a moderate sized cor- 
poration - Ethernet had become a bottleneck. 

2.4.4 Fast Ethernet 

To overcome the throughput limitation of Ethernet, engineers designed a new ver- 
sion of Ethernet that operates an order of magnitude faster. Known formally as 
l0OBase-T, the technology is usually called Fast Ethernet. As the formal name implies, 
Fast Ethernet uses category 5 twisted pair wiring, the same wiring used for 10Base-T. 
However, through clever use of the wires, Fast Ethernet allows a station to transmit or 
receive data at 100 Mbps. 

To understand the significance of the increase in capacity, it is important to under- 
stand two facts. First, although computers have become faster, few computer systems 
can transmit data at a sustained rate of 100 Mbps. Second, the 100Base-T standard did 
not change other parts of the Ethernet standard. In particular, the maximum packet size 
remains the same as for 10Base-T. These two facts imply that Fast Ethernet is not op- 
timized to provide the highest possible throughput between a pair of computers. In- 
stead, the design is optimized to allow more stations and more total traffic. 
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2.4.5 1011 00 Ethernet 

Soon after the invention of Fast Ethernet, manufacturers began to build devices 
that could accept either a 10 or 100 Mbps connection. The technology, which is known 
as dual-speed Ethernet or I0/100 Ethernet, is available for computer interfaces as well 
as for hubs. In essence, all 100Base-T hardware interjects extra signals, making it pos- 
sible for the hardware at one end of a cable to know which hardware type is connected 
to the other end. In fact, as long as all eight wires connect to the FU-45 connector, the 
cabling and connectors used with 10Base-T are compatible with the cable and connec- 
tors used for 100Base-T. 

Although 101100 hardware is slightly more expensive than 10Base-T hardware, it 
has become extremely popular. Dual speed devices are especially helpful during a tran- 
sition from 10 Mbps technology to 100 Mbps technology. For example, consider a 
computer that has a 101100 interface card. If the computer is connected to a 10Base-T 
hub, the hardware in the card will automatically detect the speed and communicate at 10 
Mbps. If the same computer is then unplugged from the 10Base-T hub and connected 
to a 100Base-T hub, the hardware will automatically detect the new speed and begin 
transmitting at 100 Mbps. The transition in speed is completely automatic: neither the 
software nor the hardware needs to be reconfigured. 

2.4.6 Gigabit Ethernet 

By the late 1990s, as the market share of 100Base-T Ethemet began to grow, it be- 
came obvious that there was a demand for even higher capacity Ethernet. Consequent- 
ly, engineers extended the Ethernet technology to a bit rate of 1 Gbps (gigabits per 
second). Known as IOOOBase-T, the high throughput rate makes the technology ex- 
tremely attractive for use in corporate backbone networks, where traffic from many 
computers passes through the network. The high data rate does have a slight disadvan- 
tage - it makes gigabit Ethernet more susceptible to electrical interference. Conse- 
quently, wiring that operates well with 10Base-T or even 100Base-T may not work well 
with 1000Base-T. 

Like Fast Ethernet, the design of gigabit Ethernet was optimized for total 
throughput. The original packet format and maximum packet size were retained, mak- 
ing packets used on 10Base-T, 100Base-T and 1000Base-T networks interchangeable. 
Consequently, it is possible to collect traffic from ten 100Base-T Ethernets, each run- 
ning at full speed, and pass the traffic across a single 1000Base-T network. 

2.4.7 Properties of an Ethernet 

Ethernet was designed to be a shared bus technology that supports broadcast, uses 
best-effort delivery semantics, and has distributed access control. The topology is 
called a shared bus because all stations connect to a single, shared communication 
channel; it is called a broudcast technology because all stations receive every transmis- 
sion, making it possible to transmit a packet to all stations at the same time. The 
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method used to direct packets from one station to just one other station or a subset of 
all stations will be discussed later. For now, it is enough to understand that the lowest 
level hardware does not distinguish among transmissions - a hub passes all packets to 
each host interface, which chooses packets the computer should receive and filters out 
all others. Ethernet is called a best-effort delivery mechanism because the hardware 
provides no information to the sender about whether the packet was delivered. For ex- 
ample, if the destination machine happens to be powered down, packets sent to it will 
be lost, and the sender will not be notified. We will see later how the TCPnP protocols 
accommodate best-effort delivery hardware. 

Ethernet access control is distributed because, unlike some network technologies, 
Ethernet has no central authority to grant access. The Ethernet access scheme is called 
Carrier Sense Multiple Access with Collision Detect (CSMAKD). It is CSMA because 
multiple machines can access an Ethernet simultaneously and each machine determines 
whether the network is idle by sensing whether a carrier wave is present. When a host 
interface 'has a packet to transmit, it listens to see if a message is being transmitted (i.e., 
performs carrier sensing). When no transmission is sensed, the host interface starts 
transmitting. Each transmission is limited in duration because there is a maximum 
packet size. Furthermore, the hardware must observe a minimum idle time between 
transmissions, which means that no single pair of communicating machines can use the 
network without giving other machines an opportunity for access. 

2.4.8 Collision Detection And Recovery 

When a station begins transmission, the signal does not reach all parts of the net- 
work simultaneously. Instead it travels along copper wires at approximately 70% of the 
speed of light. Thus, it is possible for two transceivers to both sense that the network is 
idle and begin transmission simultaneously. When the two electrical signals cross they 
become scrambled, meaning that neither remains meaningful. Such incidents are called 
collisions. 

The Ethernet handles collisions in an ingenious fashion. Each station monitors the 
cable while it is transmitting to see if a foreign signal interferes with its transmission. 
Technically, the monitoring is called collision detection (CD), making the Ethernet a 
CSMAJCD network. When a collision is detected, the host interface aborts transmis- 
sion, waits for activity to subside, and tries again. Care must be taken or the network 
could wind up with all stations busily attempting to transmit and every transmission 
producing a collision. To help avoid such situations, Ethernet uses a binary exponential 
backoff policy where a sender delays a random time after the first collision, doubles the 
range if a second attempt to transmit also produces a collision, quadruples the range if a 
third attempt results in a collision, and so on. The motivation for exponential backoff is 
that in the unlikely event many stations attempt to transmit simultaneously, a severe 
traffic jam could occur. In such a jam, there is a high probability two stations will 
choose random backoffs that are close together. Thus, the probability of another colli- 
sion is high. By doubling the range of the random delay, the exponential backoff stra- 
tegy quickly spreads the stations' attempts to retransmit over a reasonably long period 
of time, making the probability of further collisions extremely small. 
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2.4.9 Ethernet Hardware Addresses 

Ethernet defines a 48-bit addressing scheme. Each computer attached to an Ether- 
net network is assigned a unique 48-bit number known as its Ethernet address. To as- 
sign an address, Ethernet hardware manufacturers purchase blocks of Ethernet ad- 
dresses? and assign them in sequence as they manufacture Ethernet interface hardware. 
Thus, no two hardware interfaces have the same Ethernet address. 

Usually, the Ethernet address is fixed in machine readable form on the host inter- 
face hardware. Because each Ethernet address belongs to a hardware device, they are 
sometimes called hardware addresses, physical addresses, media access (MAC) ad- 
dresses, or layer 2 addresses. Note the following important property of Ethernet physi- 
cal addresses: 

Physical addresses are associated with the Ethernet integace 
hardware; moving the hardware integace to a new machine or re- 
placing a hardware integace that has failed changes the machine's 
physical address. 

Knowing that Ethernet physical addresses can change will make it clear why higher lev- 
els of the network software are designed to accommodate such changes. 

The host interface hardware examines packets and determines the packets that 
should be sent to the host. Recall that each interface receives a copy of every packet 
that passes through a hub - even those addressed to other machines. The host inter- 
face uses the destination address field in a packet as a filter. The interface ignores those 
packets that are addressed to other machines, and passes to the host only those packets 
addressed to it. The addressing mechanism and hardware filter are needed to prevent a 
computer from being overwhelmed with incoming data. Although the computer's cen- 
tral processor could perfornl the check, doing so in the host interface keeps traffic on 
the Ethernet from slowing down processing on all computers. 

A 48-bit Ethernet address can do more than specify a single destination computer. 
An address can be one of three types: 

The physical address of one network interface (a unicast address) 
The network broadcast address 
A multicast address 

By convention, the broadcast address (all 1s) is reserved for sending to all stations 
simultaneously. Multicast addresses provide a limited f o m ~  of broadcast in which a 
subset of the computers on a network agree to listen to a given multicast address. The 
set of participating computers is called a multicast group. To join a multicast group, a 
computer must instruct its host interface to accept the group's multicast address. The 
advantage of multicasting lies in the ability to limit broadcasts: every computer in a 
multicast group can be reached with a single packet transmission, but computers that 
choose not to participate in a particular multicast group do not receive packets sent to 
the group. 

tThe Institute for Electrical and Electronic Engineers (IEEE) manages the Ethernet address space and as- 
signs addresses as needed. 
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To accommodate broadcast and multicast addressing, Ethernet interface hardware 
must recognize more than its physical address. A computer interface usually accepts at 
least two kinds of packets: those addressed to the interface's physical (i.e., unicast) ad- 
dress and those addressed to the network broadcast address. Some interfaces can be 
programmed to recognize multicast addresses or even alternate physical addresses. 
When a computer boots, the operating system initializes the Ethernet interface hardware, 
giving it a set of addresses to recognize. The interface then examines the destination 
address field in each packet, passing on to the computer only those transmissions desig- 
nated for one of the specified addresses. 

2.4.1 0 Ethernet Frame Format 

Ethernet should be thought of as a link-level connection among machines. Thus, it 
makes sense to view the data transmitted as a frame?. Ethernet frames are of variable 
length, with no frame smaller than 64 octets* or larger than 1518 octets (header, data, 
and CRC). As in all packet-switched networks, each Ethernet frame contains a field 
that contains the address of its destination. Figure 2.7 shows that the Ethernet frame 
format contains the physical source address as well as the destination address. 

Destination Source Frame 
Preamble Address Address T v ~ e  Frame Data CRC 

Figure 2.7 The format of a frame (packet) as it travels across an Ethernet pre- 
ceded by a preamble. Fields are not drawn to scale. 

-. 

In addition to identifying the source and destination, each frame transmitted across 
the Ethernet contains a preamble, type field, data field, and Cyclic Redundancy Check 
(CRC). The preamble consists of 64 bits of alternating 0s and I s  to help receiving in- 
terfaces synchronize. The 32-bit CRC helps the interface detect transmission errors: the 
sender computes the CRC as a function of the data in the frame, and the receiver 
recomputes the CRC to verify that the packet has been received intact. 

The frame type field contains a 16-bit integer that identifies the type of the data be- 
ing carried in the frame. From the Internet point of view, the frame type field is essen- 
tial because it means Ethernet frames are self-identzfying. When a frame arrives at a 
given machine, the operating system uses the frame type to determine which protocol 
software module should process the frame. The chief advantages of self-identifying 
frames are that they allow multiple protocols to be used together on a single computer 
and they allow multiple protocols to be intermixed on the same physical network 
without interference. For example, one could have an application program on a com- 
puter using Internet protocols while another application on the same computer uses a lo- 
cal experimental protocol. The operating system examines the type field of each aniv- 

8 octets 

+The termframe derives from communication over serial lines in which the sender "frames" the data by 
adding special characters before and after the transmitted data. 

$Technically, the term byte refers to a hardwaredependent character size; networking professionals use 
the term octet, because it refers to an 8-bit quantity on all computers. 

6 octets 4 octets 6 octets 2 octets 46-1 500 octets 



Sec. 2.4 Ethernet Technology 31 

ing frame to decide how to process the contents. We will see that the TCPDP protocols 
use self-identifying Ethernet frames to distinguish among several protocols. 

2.4.1 1 Extending An Ethernet With Repeaters 

Although the original Ethernet cable had a maximum length, a network could be 
extended in two ways: using repeaters and bridges. An electronic device called a re- 
peater operates on analog electrical signals. Like a hub in a twisted pair Ethernet, a re- 
peater relays all electrical signals from one cable to another. Specifically, in the origi- 
nal thick Ethernet wiring scheme, a repeater can be placed between a pair of coaxial ca- 
bles to double the total length. However, to preserve the CSMNCD timing, the Ether- 
net standard restricts the use of repeaters - at most two repeaters can be placed 
between any two machines. Figure 2.8 shows a typical use of repeaters in an office 
building. A single cable runs vertically up the building, and a repeater attaches the 
backbone to an additional cable on each floor. Computers attach to the cables on each 
floor. 

2.4.12 Extending An Ethernet With Bridges 

Connecting two Ethernets with a bridge is superior to connecting them with a re- 
peater or hub because bridges operate on packets rather than electrical signals. In par- 
ticular, a bridge does not replicate noise, errors, or malformed frames; the bridge must 
receive a completely valid frame from one segment before the bridge will accept and 
transmit it on the other segment. Furthemlore, each connection between a bridge and 
an Ethernet network follows the CSMNCD rules, so collisions and propagation delays 
on one segment remain isolated from those on the other. As a result, an (almost) arbi- 
trary number of Ethernets can be connected together with bridges. The important point 
is: 

Bridges hide the details of interconnection: a set of bridged segments 
acts like a single Ethernet. 

Bridged networks are classified as transparent because a computer does not know 
how many bridges connect segments of the network. The computer uses exactly the 
same hardware, frame fom~at, and procedures to communicate with a computer across a 
bridge as it uses to communicate with a computer on the local segment. 

Most bridges do much more than replicate frames from one wire to another: they 
make intelligent decisions about which frames to forward. Such bridges are called 
adaptive or learning bridges. An adaptive bridge consists of a computer with two Eth- 
ernet interfaces. The software in an adaptive bridge keeps two address lists, one for 
each interface. When a frame arrives from Ethernet E,, the adaptive bridge adds the 
48-bit Ethernet source address to the list associated with E,. Similarly, when a frame 
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Figure 2.8 Repeaters used to join Ethernet cables in a building. At most two 
repeaters can be placed between a pair of communicating 
machines. 

arrives from Ethernet E,, the bridge adds the source address to the list associated with 
E,. Thus, over time the adaptive bridge will learn which machines lie on E, and which 
lie on E,. 

After recording the source address of a frame, the adaptive bridge uses the destina- 
tion address to determine whether to forward the frame. If the address list shows that 
the destination lies on the Ethernet from which the frame arrived, the bridge does not 
forward the frame. If the destination is not in the address list (i.e., the destination is a 
broadcast or multicast address or the bridge has not yet learned the location of the desti- 
nation), the bridge forwards the frame to the other Ethernet. 

The advantages of adaptive bridges should be obvious. Because the bridge uses 
addresses found in normal traffic, it is completely automatic - humans need not con- 
figure the bridge with specific addresses. Because it does not forward traffic unneces- 
sarily, a bridge helps improve the performance of an overloaded network by isolating 
traffic on specific segments. Bridges work exceptionally well if a network can be divid- 
ed physically into two segments that each contain a set of computers that communicate 
frequently (e.g., each segment contains a set of workstations along with a server, and 
the workstations direct most of their traffic to the server). To summarize: 
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An adaptive Ethernet bridge connects two Ethernet segments, for- 
warding frames from one to the other. It uses source addresses to 
learn which machines lie on which Ethernet segment, and it combines 
information learned with destination addresses to eliminate forward- 
ing when unnecessary. 

From the TCPIIP point of view, bridged Ethernets are merely another form of physical 
network connection. The important point is: 

Because the connection among physical cables provided by bridges 
and repeaters is transparent to machines using the Ethernet, we think 
of multiple Ethernet segments connected by bridges and repeaters as a 
single physical network system. 

Most commercial bridges are much more sophisticated and robust than our descrip- 
tion indicates. When first powered up, they check for other bridges and learn the topol- 
ogy of the network. They use a distributed spanning-tree algorithm to decide how to 
forward frames. In particular, the bridges decide how to propagate broadcast packets so 
only one copy of a broadcast frame is delivered to each wire. Without such an algo- 
rithm, Ethemets and bridges connected in a cycle would produce catastrophic results be- 
cause they would forward broadcast packets in both directions simultaneously. 

2.5 Fiber Distributed Data Interconnect (FDDI) 

FDDI is another popular local area networking technology that provides a data rate 
of 100 Mbps (i.e., the same data rate as Fast Ethemet). Unlike Ethernet and other LAN 
technologies that use copper cables to carry electrical signals, FDDI is designed to use 
optical fiber. Data is encoded in pulses of light?. 

Optical fiber has two advantages over copper wire. First, because electrical noise 
does not interfere with an optical connection, the fiber can lie adjacent to powerful 
electrical devices. Second, because optical fibers use light, the amount of data that can 
be sent per unit time is much higher than cables that carry electrical signals. 

It might seem that glass fibers would be difficult to install and would break if bent. 
However, an optical cable is surprisingly flexible. The glass fiber itself has an extreme- 
ly small diameter, and the cable includes a plastic jacket that protects the fiber from 
breaking. Such a cable cannot bend at a ninety degree angle, but it can bend in an arc 
with a diameter of a few inches. Thus, installation is not difficult. 

tA related technology known as Copper Distributed Data Interface (CDDI) works like FDDI, but uses 
copper cables to carry signals. 
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2.5.1 Properties Of An FDDI Network 

An FDDI network is a 100 Mbps shared token passing ring technology with a 
self-healing capability. An FDDI network is shared because multiple computers con- 
nect to a given network and take turns sending packets. FDDI is known as a ring be- 
cause the network forms a cycle that starts at one computer, passes through all others 
computers, and ends back at the source. FDDI is a token passing ring (or simply a to- 
ken ring) technology because it uses token passing to control transmission. When the 
network is idle, a special, reserved frame called a token circulates around the ring from 
station to station. When a station has a packet to send, it waits for the token to arrive, 
sends its packet, and then passes the token to the next station. The circulating token 
guarantees fairness: it ensures that all stations have an opportunity to send a packet be- 
fore any station sends a second packet. - 

Perhaps the most interesting property of an FDDI lies in its ability to detect and 
correct problems. The network is called self-healing because the hardware can automat- 
ically accommodate a failure. 

2.5.2 Dual Counter-Rotating Rings 

To provide automatic recovery from failures, FDDI hardware uses two independent 
rings that both connect to each computer. Figure 2.9 illustrates the topology. 

FDDI RING NETWORK l i t 1  

Figure 2.9 An FDDI network with optical fibers interconnecting six comput- 
ers. Arrows show the direction of traffic on the fibers and 
through the attached computers. 

FDDI rings are called counter rotating because traffic passes in the opposite direc- 
tion on each ring. The reason for using a counter rotating scheme will become clear 
when we consider how FDDI handles failures. 

Unless an error has occurred, an FDDI hardware does not need both rings. In fact, 
an FDDI interface behaves like any token passing network interface until an error oc- 
curs. The interface examines all packets that circulate around the ring, comparing the 
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destination address in each packet to the computer's address. The interface keeps a 
copy of any packet destined for the local computer, but also forwards the packet around 
the ring. 

When a computer needs to transmit a packet, it waits for the token to arrive, tem- 
porarily stops forwarding bits, and sends its packet. After sending one packet, the inter- 
face transmits the token, and begins forwarding bits again. Even if a station has more 
than one packet ready to be sent when it receives the token, the station only sends one 
packet before passing the token. 

FDDI hardware becomes more interesting when a hardware error occurs. When an 
interface detects that it cannot communicate with the adjacent computer, the interface 
uses the backup ring to bypass the failure. For example, Figure 2.10 shows an FDDI 
ring in which an interface has failed, and the two adjacent interfaces have eliminated it 
from the ring. 

STATION IMPLEMENTING 
LOOPBACK 

STATION THAT 
HAS FAILED 

. . . . . . . 

FDDI RING NETWORK fi 

Figure 2.10 An FDDI ring after a failure. When FDDI hardware detects such 
a failure, it uses the second ring to bypass the failure and allows 
remaining stations to communicate. 

The purpose of the second ring and the reason data flows in the opposite direction 
should now be clear: a failure can mean that the fiber has been disconnected (e.g., ac- 
cidentally cut). If the fiber from both rings follows the same physical path, chances are 
high that the second fiber may have been disconnected as well. FDDI hardware au- 
tomatically uses the counter rotating ring to form a closed loop in the direction that is 
still working. Doing so permits the other computers to continue communication despite 
the failure. 
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When FDDI hardware detects a failure on the network, it automati- 
cally loops data across the backup ring to permit communication 
among remaining stations. 

2.5.3 FDDI Frame Format 

FDDI standards specify the exact format of frames used on the network. The table 
in Figure 2.1 1 lists fields in an FDDI frame. 

Field 

PA 
SD 
FC 
DA 
SA 
RI 
DATA 
FCS 
ED 
FS 

Length in 
4-bit units 
4 or more 

2 
2 

4or 12 
4or 12 
0 to 60 
0 or more 

8 
1 

3 or more 

Contents 

Preamble 
Start Delimiter 
Frame Control 
Destination Address 
Source Address 
Routing Information 
Data 
Frame Check Sequence 
End Delimiter 
Frame Status 

Figure 2.11 The format of frames used by FDDI, with fields measured in 4- 
bit units called symbols. The maximum frame length is 9000 
symbols. 

Like other technologies, each computer attached to an FDDI network is assigned 
an address, and each frame contains a destination address field. However, to make 
FDDI more flexible and to provide a standard way to interconnect two FDDI rings, the 
designers allowed more than one frame format. For example, the destination address 
field is either 4 or 12 symbols long, where a symbol is a 4-bit unit. The frame also in- 
cludes a field used for routing. The sender can use the routing field to specify that a 
frame must be sent first to a connection point and then on to a destination on an at- 
tached ring. 

One of the advantages of FDDI arises from its large frame size. Because a frame 
can contain 9000 4-bit symbols, the total frame can be 4500 octets long. Because 
header information occupies at most a few hundred octets, a single frame can carry 4K 
octets of user data. For applications that transfer large volumes of data (e.g., file 
transfer), the large frame size means less overhead and consequently high throughput. 
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2.6 Asynchronous Transfer Mode 

Asynchronous Transfer Mode (ATM) is the name given to a connection-oriented 
networking technology that is intended for use in both local area and wide area net- 
works. ATM is designed to permit extremely high speed data switching; the fastest 
ATM hardware can switch data at gigabit speeds?. Of course, such high speeds require 
complex, state-of-the-art hardware. As a result, ATM networks are more expensive 
than other technologies. 

To achieve high transfer speeds, an ATM network uses special-purpose hardware 
and software techniques. First, an ATM network consists of one or more high-speed 
switches that each connect to computers and to other ATM switches. Second, ATM 
uses optical fibers for connections, including connections from a user's computer to an 
ATM switch. Optical fibers provide a higher transfer rate than copper wires; typically, 
the connection between a user's computer and an ATM switch operates at 155 Mbps. 
Third, the lowest layers of an ATM network use fixed-size frames called cells. Because 
each cell is exactly the same size, ATM switch hardware can process cells quickly. 

2.6.1 ATM Cell Size 

Surprisingly, each ATM cell is only 53 octets long. The cell contains 5 octets of 
header followed by 48 octets of data. Later chapters will show, however, that when us- 
ing ATM to send IP traffic, the 53 octet size is irrelevant - an ATM network accepts 
and delivers much larger packets. 

2.6.2 Connection-Oriented Networking 

ATM differs from the packet-switching networks described earlier because it offers 
connection-oriented service. Before a computer connected to an ATM switch can send 
cells, a connection must be established manually or the host must first interact with the 
switch to specify a destination. The interaction is analogous to placing a telephone 
call$. The requesting computer specifies the remote computer's address, and waits for 
the ATM switch to find a path through the network and establish a connection. If the 
remote computer rejects the request, does not respond, or the ATM switches between 
the sender and receiver cannot currently establish a path, the request to establish com- 
munication fails. 

Once a connection succeeds, the local ATM switch chooses an identifier for the 
connection, and passes the connection identifier to the computer along with a message 
that informs the computer of success. The computer uses the connection identifier 
when sending or receiving cells. 

When it finishes using a connection, the computer again communicates with the 
ATM switch to request that the connection be broken. The switch then disconnects the 
two computers. Disconnection is equivalent to hanging up a telephone at the end of a 
telephone call; after a disconnection, the computers cannot communicate until they es- 

tMost computers cannot generate or absorb data at gigabit rates; ATM networks operate at gigabit speed 
to handle the MIC from many computers. 

$Because ATM was designed to carry voice as well as data, there is a strong relationship between an 
ATM network and a telephone system. 
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tablish a new connection. Furthermore, identifiers used for a connection can be recy- 
cled; once a disconnection occurs, the switch can reuse the connection identifier for a 
new connection. 

2.7 WAN Technologies: ARPANET 

We will see that wide area networks have important consequences for internet ad- 
dressing and routing. The technologies discussed in the remainder of this chapter were 
selected because they figure prominently in both the history of the Internet and later ex- 
amples in the text. 

One of the oldest wide area technologies, the ARPANET, was funded by ARPA, 
the Advanced Research Projects Agency. ARPA awarded a contract for the develop- 
ment of the ARPANET to Bolt, Beranek and Newman of Cambridge, MA in the fall of 
1968. By September 1969, the first pieces of the ARPANET were in place. 

The ARPANET served as a testbed for much of the research in packet-switching. 
In addition to its use for network research, researchers in several universities, military 
bases, and government labs regularly used the ARPANET to exchange files and elec- 
tronic mail and to provide remote login among their sites. In 1975, control of the net- 
work was transferred from ARPA to the U.S. Defense Communications Agency (DCA). 
The DCA made the ARPANET part of the Defense Data Network @DN), a program 
that provides multiple networks as part of a world-wide communication system for the 
Department of Defense. 

In 1983, the Department of Defense partitioned the ARPANET into two connected 
networks, leaving the ARPANET for experimental research and forming the MILNET 
for military use. MILNET was restricted to unclassified data because it was not con- 
sidered secure. Although under normal circumstances, both ARPANET and MILNET 
agreed to pass traffic to each other, controls were established that allowed them to be 
disconnected?. Because the ARPANET and MILNET used the same hardware technol- 
ogy, our description of the technical details apply to both. In fact, the technology was 
also available commercially and was used by several corporations to establish private 
packet switching networks. 

Because the ARPANET was already in place and used d i l y  by many of the 
researchers who developed the Internet architecture, it had a profound effect on their 
work. They came to think of the ARPANET as a dependable wide area backbone 
around which the Internet could be built. The influence of a single, central wide area 
backbone is still painfully obvious in some of the Internet protocols that we will discuss 
later, and has prevented the Internet from accommodating additional backbone networks 
gracefully. 

Physically, the ARPANET consisted of approximately 50 BBN Corporation C30 
and C300 minicomputers, called Packet Switching Nodes or PSNs$ scattered across the 
continental U.S. and western Europe; MILNET contained approximately 160 PSNs, in- 
cluding 34 in Europe and 18 in the Pacific and Far East. One PSN resided at each site 
participating in the network and was dedicated to the task of switching packets; it could 

tPerhaps the best known example of disconnection occurred in November 1988 when a worm program 
attacked the Internet and replicated itself as quickly as possible. 

.$PSNs were initially called Inregace Message Processors or IMPS; some publications still use the term 
IMP as a synonym for packet switch. 
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not be used for general-purpose computation. Indeed, each PSN was considered to be 
part of the ARPANET, and was owned and controlled by the Network Operations 
Center (NOC) located at BBN in Cambridge, Massachusetts. 

Point-to-point data circuits leased from common carriers connected the PSNs to- 
gether to form a network. For example, leased data circuits connected the ARPANET 
PSN at Purdue University to the ARPANET PSNs at Camegie Mellon and at the 
University of Wisconsin. Initially, most of the leased data circuits in the ARPANET 
operated at 56 Kbps, a speed considered fast in 1968 but extremely slow by current 
standards. Remember to think of the network speed as a measure of capacity rather 
than a measure of the time it takes to deliver packets. As more computers used the AR- 
PANET, capacity was increased to accommodate the load. For example, during the fi- 
nal year the ARPANET existed, many of the cross-country links operated over 
megabit-speed channels. 

The idea of having no single point of failure in a system is common in military ap- 
plications because reliability is important. When building the ARPANET, ARPA decid- 
ed to follow the military requirements for reliability, so they mandated that each PSN 
had to have at least two leased line connections to other PSNs, and the software had to 
automatically adapt to failures and choose alternate routes. As a result, the ARPANET 
continued to operate even if one of its data circuits failed. 

In addition to connections for leased data circuits, each ARPANET PSN had up to 
22 ports that connected it to user computers, called hosts. Originally, each computer 
that accessed the ARPANET connected directly to one of the ports on a PSN. Nornlal- 
ly, host connections were formed with a special-purpose interface board that plugged 
into the computer's YO bus. 

The original PSN port hardware used a complex protocol for transfemng data 
across the ARPANET. Known as 1822, after the number of a technical report that 
described it, the protocol permitted a host to send a packet across the ARPANET to a 
specified destination PSN and a specified port on that PSN. Perfomung the transfer 
was complicated, however, because 1822 offered reliable, flow-controlled delivery. To 
prevent a given host from saturating the net, 1822 limited the number of packets that 
could be in transit. To guarantee that each packet arrived at its destination, 1822 forced 
the sender to await a Ready For Next Message (RFNM) signal from the PSN before 
transmitting each packet. The RFNM acted as an acknowledgement. It included a 
buffer reservation scheme that required the sender to reserve a buffer at the destination 
PSN before sending a packet. 

Although there are many aspects not discussed here, the key idea is that underneath 
all the detail, the ARPANET was merely a transfer mechanism. When a computer con- 
nected to one port sent a packet to another port, the data delivered was exactly the data 
sent. Because the ARPANET did not provide a network-specific frame header, packets 
sent across it did not have a fixed field to specify packet type. Thus, unlike some net- 
work technologies, the ARPANET did not deliver self-identifying packets. In sum- 
mary: 
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Networks such as the ARPANET or an ATM network do not have 
self-identifying frames. The attached computers must agree on the for- 
mat and contents of packets sent or received to a specific destination. 

Unfortunately, 1822 was never an industry standard. Because few vendors 
manufactured 1822 interface boards, it became difficult to connect new machines to the 
ARPANET. To solve the problem, ARPA later revised the PSN interface to use the 
X.25 standard?. The first version of an X.25 PSN implementation used only the data 
transfer part of the X.25 standard (known as HDLCILAPB), but later versions made it 
possible to use all of X.25 when connecting to a PSN (i.e., ARPANET appeared to be 
an X.25 network). 

Internally, of course, the ARPANET used its own set of protocols that were invisi- 
ble to users. For example, there was a special protocol that allowed one PSN to request 
status from another, a protocol that PSNs used to send packets among themselves, and 
one that allowed PSNs to exchange information about link status and optimal routes. 

Because the ARPANET was originally built as a single, independent network to be 
used for research, its protocols and addressing structure were designed without much 
thought given to expansion. By the mid 1970's, it became apparent no single network 
would solve all communication problems, and ARPA began to investigate satellite and 
packet radio network technologies. This experience with a variety of network technolo- 
gies led to the concept of an internetwork. 

2.7.1 ARPANET Addressing 

While the details of ARPANET addressing are unimportant, they illustrate an alter- 
native way in which wide area networks form physical addresses. Unlike the $at ad- 
dress schemes used by LAN technologies, wide area networks usually embed informa- 
tion in the address that helps the network route packets to their destination efficiently. 
In the ARPANET technology, each packet switch is assigned a unique integer, P, and 
each host port on the switch is numbered from 0 to N-I. Conceptually, a destination 
address consists of a pair of small integers, (P, N). In practice, the hardware uses a sin- 
gle, large integer address, with some bits of the address used to represent N and others 
used to represent P. 

2.8 National Science Foundation Networking 

Realizing that data communication would soon be crucial to scientific research, in 
1987 the National Science Foundation established a Division of Network and Communi- 
cations Research and Infrastructure to help ensure that requisite network communica- 
tions will be available for U.S. scientists and engineers. Although the division funds 
basic research in networking, its emphasis so far has been concentrated on providing 
seed funds to build extensions to the Internet. 

tX.25 was standardized by the Consultative Committee on International Telephone and Telegraph 
( C C I W ,  which later became the Telecommunication Section of the Inremrional Telecommunication Union 
(ITu). 
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NSF's Internet extensions introduced a three-level hierarchy consisting of a U.S. 
backbone, a set of "mid-level" or "regional" networks that each span a small geo- 
graphic area, and a set of "campus" or "access" networks. In the NSF model, mid- 
level networks attach to the backbone and campus networks attach to the mid-level nets. 
Each researcher had a connection from their computer to the local campus network. 
They used that single connection to communicate with local researchers' computers 
across the local campus net, and with other researchers further away. The campus net- 
work routed traffic across local nets to one of the mid-level networks, which routed it 
across the backbone as needed. 

2.8.1 The Original NSFNET Backbone 

Of all the NSF-funded networks, the NSFNET backbone has the most interesting 
history and used the most interesting technology. The backbone evolved in four major 
steps; it increased in size and capacity at the time the ARPANET declined until it be- 
came the dominant backbone in the Internet. The first version was built quickly, as a 
temporary measure. One early justification for the backbone was to provide scientists 
with access to NSF supercomputers. As a result, the first backbone consisted of six Di- 
gital Equipment Corporation LSI-ll microcomputers located at the existing NSF super- 
computer centers. Geographically, the backbone spanned the continental United States 
from Princeton, NJ to San Diego, CA, using 56 Kbps leased lines as Figure 2.12 shows. 

At each site, the LSI-11 microcomputer ran software affectionately known as fuzz- 
ball? code. Developed by Dave Mills, each fuzzball accessed computers at the local 
supercomputer center using a conventional Ethernet interface; it accessed leased lines 
leading to fuzzballs at other supercomputer centers using conventional link-level proto- 
cols over leased serial lines. Fuzzballs contained tables with addresses of possible des- 
tinations and used those tables to direct each incoming packet toward its destination. 

The primary connection between the original NSFNET backbone and the rest of 
the Internet was located at Carnegie Mellon, which had both an NSFNET backbone 
node and an ARPANET PSN. When a user, connected to NSFNET, sent traffic to a 
site on the ARPANET, the packets would travel across the NSFNET to CMU where the 
fuzzball would route them onto the ARPANET via a local Ethernet. Similarly, the 
fuzzball understood that packets destined for NSFNET sites should be accepted from 
the Ethernet and sent across the NSF backbone to the appropriate site. 

?The exact origin of the term "fuzzball" is unclear. 
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Figure 2.12 Circuits in the original NSFNET backbone with sites in (1)  San 
Diego, CA; (2) Boulder, CO; (3) Champaign, IL; (4) Pittsburgh, 
PA; (5) Ithaca, NY; and (6) Princeton, NJ. 

2.8.2 The Second NSFNET Backbone 1988-1 989 

Although users were excited about the possibilities of computer communication, 
the transmission and switching capacities of the original backbone were too small to 
provide adequate service. Within months after its inception, the backbone became over- 
loaded and its inventor worked to engineer quick solutions for the most pressing prob- 
lems, while NSF began the arduous process of planning for a second backbone. 

In 1987, NSF issued a request for proposals from groups that were interested in es- 
tablishing and operating a new, higher-speed backbone. Proposals were submitted in 
August of 1987 and evaluated that fall. On November 24, 1987 NSF announced it had 
selected a proposal submitted by a partnership of: MERIT Inc., the statewide computer 
network run out of the University of Michigan in Ann Arbor; IBM Corporation; and 
MCI Incorporated. The partners proposed to build a second backbone network, estab- 
lish a network operation and control center in Ann Arbor, and have the system opera- 
tional by the following summer. Because NSF had funded the creation of several new 
mid-level networks, the proposed backbone was designed to serve more sites than the 
original. Each additional site would provide a connection between the backbone and 
one of the NSF mid-level networks. 
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The easiest way to envision the division of labor among the three groups is to as- 
sume that MERIT was in charge of planning, establishing, and operating the network 
center. IBM contributed machines and manpower from its research labs to help MERIT 
develop, configure, and test needed hardware and software. MCI, a long-distance car- 
rier, provided the communication bandwidth using the optical fiber already in place for 
its voice network. Of course, in practice there was close cooperation between all 
groups, including joint study projects and representatives from IBM and MCI in the 
project management. 

By the middle of the summer of 1988, the hardware was in place and NSFNET be- 
gan to use the second backbone. Shortly thereafter, the original backbone was shut 
down and disconnected. Figure 2.13 shows the logical topology of the second back- 
bone after it was installed in 1988. 

g NSF Mid-level network 
0 NSF supercomputer center - 
@ both 

Figure 2.13 Logical circuits in the second NSFNET backbone from summer 
1988 to summer 1989. 

The technology chosen for the second NSFNET backbone was interesting. In 
essence, the backbone was a wide area network composed of packet routers intercon- 
nected by communication lines. As with the original backbone, the packet switch at 
each site connected to the site's local Ethernet as well as to communication lines lead- 
ing to other sites. 
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2.8.3 NSFNET Backbone 1989-1 990 

After measuring traffic on the second NSFNET backbone for a year, the operations 
center reconfigured the network by adding some circuits and deleting others. In addi- 
tion, they increased the speed of circuits to DS-1 (1.544 Mbps). Figure 2.14 shows the 
revised connection topology, which provided redundant connections to all sites. 

@ NSF Mid-level network 
0 NSF supercomputer center 
@ both - v  

Figure 2.14 Circuits in the second NSFNET backbone from summer 1989 to 
1990. 

2.9 ANSNET 

By 1991, NSF and other U.S. government agencies began to realize that the Inter- 
net was growing beyond its original academic and scientific domain. Companies 
around the world began to connect to the Internet, and nonresearch uses increased rapid- 
ly. Traffic on NSFNET had grown to almost one billion packets per day, and the 1.5 
Mbps capacity was becoming insufficient for several of the circuits. A higher capacity 
backbone was needed. As a result, the U.S. government began a policy of cornmerciali- 
zation and privatization. NSF decided to move the backbone to a private company and 
to charge institutions for connections. 

Responding to the new government policy in December of 1991, IBM, MERIT, 
and MCI formed a not-for-profit company named Advanced Networks and Services 
(ANS). ANS proposed to build a new, higher speed Internet backbone. Unlike previous 
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wide area networks used in the Internet which had all been owned by the U.S. govern- 
ment, ANS would own the new backbone. By 1993, ANS had installed a new network 
that replaced NSFNET. Called ANSNET, the backbone consisted of data circuits operat- 
ing at 45 Mbpst, giving it approximately 30 times more capacity than the previous 
NSFNET backbone. Figure 2.15 shows major circuits in ANSNET and a few of the 
sites connected in 1994. Each point of presence represents a location to which many 
sites connect. 

Figure 2.15 Circuits in ANSNET, the backbone of the U.S. Internet starting 
in 1993. Each circuit operates at 45 Mbps. 

2.1 0 A Very High Speed Backbone (vBNS) 

In 1995, NSF awarded MCI a contract to build a backbone operating at 155 Mbps 
(OC3 speed) to replace ANSNET. Called the vely high speed Backbone Network Ser- 
vice (vBNS), the new backbone offered a substantial increase in capacity, and required 
higher speed processors to route packets. 

2.10.1 Commercial Internet Backbones 

Since 1995, the Internet has become increasingly commercial, with the percentage 
of funding from the U.S. government steadily decreasing. Although vBNS still exists, it 
is now devoted to networking research. In its place, commercial companies have creat- 
ed large privately-funded backbones that carry Internet traffic. For example, public car- 

tTelecommunication camers use the term DS3 to denote a circuit that operates at 45 Mbps; the term is 
often confused with T3, which denotes a specific encoding used over a circuit operating at DS3 speed. 
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riers like AT&T and MCI have each created large, high-capacity backbone networks 
used to cany Internet traffic from their customers. As discussed later, commercial 
backbones are interconnected through peering arrangements, making it possible for a 
customer of one company to send packets to a customer of another. 

2.11 Other Technologies Over Which TCPIIP Has Been Used 

One of the major strengths of TCPIIP lies in the variety of physical networking 
technologies over which it can be used. We have already discussed several widely used 
technologies, including local area and wide area networks. This section briefly reviews 
others that help illustrate an important principle: 

Much of the success of the T C P m  protocols lies in their ability to ac- 
commodate almost any underlying communication technology. 

2.1 1.1 X25NET And Tunnels 

In 1980, NSF formed the Computer Science NETwork (CSNET) organization to 
help provide Internet services to industry and small schools. CSNET used several tech- 
nologies to connect its subscribers to the Internet, including one called X25NET. Origi- 
nally developed at Purdue University, X25NET ran TCPOP protocols over Public Data 
Networks (PDNs). The motivation for building such a network arose from the econom- 
ics of telecommunications: although leased serial lines were expensive, common carriers 
had begun to offer public packet-switched services. X25NET was designed to allow a 
site to use its connection to a public packet-switched service to send and receive Inter- 
net traffic. 

Readers who know about public packet-switched networks may find X25NET 
strange because public services use the CCITT X.25 protocols exclusively while the In- 
ternet uses TCP/IP protocols. Unlike most packet switching hardware, X.25 protocols 
use a connection-oriented paradigm; like ATM, they were designed to provide 
comection-oriented service to individual applications. Thus, the use of X.25 to tran- 
sport TCPILP traffic foreshadowed the ways TCP/IP would later be transferred across 
ATM. 

We have already stated that many underlying technologies can be used to cany In- 
ternet traffic, and X25NET illustrates how TCPW has been adapted to use high level 
facilities. The technique, sometimes called tunneling, simply means that TCPIIP treats 
a complex network system with its own protocols like any other hardware delivery sys- 
tem. To send TCPnP traffic through an X.25 tunnel, a computer forms an X.25 connec- 
tion and then sends TCPnP packets as if they were data. The X.25 system carries the 
packets along its connection and delivers them to another X.25 endpoint, where they 
must be picked up and forwarded on to their ultimate destination. Because tunneling 
treats IP packets like data, the tunnel does not provide for self-identifying frames. 
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Thus, tunneling only works when both ends of the X.25 connection agree a priori that 
they will exchange IP packets (or agree on a format for encoding type information 
along with each packet). 

Its connection-oriented interface makes X.25 even more unusual. Unlike connec- 
tionless networks, connection-oriented systems use a virtual circuit (VC) abstraction. 
Before data can be sent, switches in the network must set up a VC (i.e., a "path") 
between the sender and the receiver. We said that the Internet protocols were optimized 
to run over a connectionless packet delivery system, which means that extra effort is re- 
quired to run them over a connection-oriented network. 

In theory, a single connection suffices for a tunnel through a connection-oriented 
network - after a pair of computers has established a VC, that pair can exchange 
TCP/IP traffic. In practice, however, the design of the protocols used on the 
connection-oriented system can make a single connection inefficient. For example, be- 
cause X.25 protocols limit the number of packets that can be sent on a connection be- 
fore an acknowledgement is received, such networks exhibit substantially better 
throughput when data is sent across multiple connections simultaneously. Thus, instead 
of opening a single connection to a given destination, X25NET improved performance 
by arranging for a sender to open multiple VCs and distribute traffic among them. A 
receiver must accept packets arriving on all connections, and combine them together 
again. 

Tunneling across a high-level network such as X.25 requires mapping between the 
addresses used by the internet and addresses used by the network. For example, consid- 
er the addressing scheme used by X.25 networks, which is given in a related standard 
known as X.121. Physical addresses each consist of a 14-digit number, with 10 digits 
assigned by the vendor that supplies the X.25 network service. Resembling telephone 
numbers, one popular vendor's assignment includes an area code based on geographic 
location. The addressing scheme is not surprising because it comes from an organiza- 
tion that determines international telephone standards. There is no mathematical rela- 
tionship between such addresses and the addresses used by TCP/IP. Thus, a computer 
that tunnels TCP/IP data across an X.25 network must maintain a table of mappings 
between internet addresses and X.25 network addresses. Chapter 5 discusses the ad- 
dress mapping problem in detail and gives an alternative to using fixed tables. Chapter 
18 shows that exactly the same problem arises for ATM networks, which use yet anoth- 
er alternative. 

Because public X.25 networks operated independently of the Internet, a point of 
contact was needed between the two. Both ARPA and CSNET operated dedicated 
machines that provided the interconnection between X.25 and the ARPANET. The pri- 
mary interconnection was known as the VAN gateway. The VAN agreed to accept X.25 
connections and route each datagram that arrived over such a connection to its destina- 
tion. 

X25NET was significant because it illustrated the flexibility and adaptability of the 
TCP/IP protocols. In particular, it showed that tunneling makes it possible to use an ex- 
tremely wide range of complex network technologies in an internet. 
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2.1 1.2 Point-To-Point Networks 

We said that Wide Area Networks are usually composed of dedicated packet 
switches interconnected by data circuits leased from a telephone company. Phone com- 
panies originally designed such circuits to carry digitized voice calls; only later did their 
use in data networks become important. Consequently, the data rates of available cir- 
cuits are not powers of ten. Instead, they have been chosen to carry multiples of 64 
Kbps because a digitized voice call uses an encoding known as Pulse Code Modulation 
(PCM), which produces 8000 samples per second, where each sample is 8 bits. 

The table in Figure 2.16 lists a few common data rates used in North America and 
Europe. 

Name Bit Rate Voice Circuits Location 
- 0.064 Mbps 1 
T I  1.544 Mbps 24 North America 
T2 6.312 Mbps 96 North America 
T3 44.736 Mbps 672 North America 
E l  2.048 Mbps 30 Europe 
E2 8.448 Mbps 120 Europe 
E3 34.368 Mbps 480 Europe 

Figure 2.16 Example data rates available on digital circuits leased from a 
telephone company. The rates were chosen to encode multiple 
voice calls. 

Higher rate digital circuits are also available. In addition to standards that specify 
the transmission of high data rates over copper, the phone companies have developed 
standards for transmission of the same rates over optical fiber. The table in Figure 2.17 
contains examples. Of course, circuits that operate at such high data rates are consider- 
ably more expensive than circuits that operate at lower rates. 

Standard Name Optical Name Bit Rate Voice Circuits 
STS-1 OC-1 51.840 Mbps 81 0 
STS-3 OC-3 155.520 Mbps 2430 
STS-12 OC-12 622.080 Mbps 9720 
STS-24 OC-24 1,244.1 60 Mbps 19440 
STS-48 OC-48 2,488.320 Mbps 38880 

Figure 2.17 Example data rates of high-capacity circuits that can be leased 
from phone companies. Optical fiber is used to achieve such 
high rates over long distances. 
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From TCPhP's point of view, any communication system that connects exactly 
two computers is known as a point-to-point network. Thus, a leased data circuit 
between two computers is an example of a point-to-point network. Of course, using the 
term "network" to describe a connection between two computers stretches the concept. 
However, we will learn that viewing a connection as a network helps maintain con- 
sistency. For now, we only need to note that a point-to-point network differs from con- 
ventional networks in one significant way: because only two computers attach, no 
hardware addresses are used. When we discuss internet address binding, the lack of 
hardware addresses will make point-to-point networks an exception. 

Another interesting use of TCPhP pioneered by CSNET involves running TCPAP 
protocols over the dial-up voice network (i.e., the telephone system). CSNET member 
sites that used the Internet infrequently could not justify the cost of a leased line con- 
nection. For such sites, CSNET developed a dial-up IF' system that worked as expected: 
whenever a connection was needed, software at the member's site used a modem to 
form a connection to the CSNET hub over the voice telephone network. A computer at 
the hub answered the phone call and, after obtaining valid authorization, began to for- 
ward traffic between the site and other computers on the Internet. Dialing introduced a 
delay after the first packet was sent. However, for automated services like electronic 
mail, the delay was unnoticeable. 

Dialup internet access provides another example of a point-to-point network. From 
the TCP/IP view, dialing a telephone call is equivalent to running a wire. Once the call 
has been answered by a modem on the other end, there is a connection from one com- 
puter directly to another, and the connection stays in place as long as needed. 

2.1 1.4 Other Token Ring Technologies 

FDDI is not the first token ring network technology; token ring products have ex- 
isted for nearly twenty years. For example, IBM produces a popular token ring LAN 
technology. Early versions of the IBM token ring operated at 4 Mbps; later versions 
operate at 16 Mbps. Like other token ring systems, an IBM token ring network consists 
of a loop that attaches to all computers. A station must wait for a token before 
transmitting, and sends the token along after transferring a packet. 

An older token ring technology designed by Proteon Corporation employs a novel 
hardware addressing scheme that will be used in a later chapter to illustrate one of the 
ways TCP/IP uses hardware addresses. Called a proNET network, the technology per- 
mits customers to choose a hardware address for each computer. Unlike an Ethernet, in 
which each interface board contains a unique address assigned by the manufacturer, a 
proNET interface board contains eight switches that must be set before the interface is 
installed in a computer. The switches form a number in binary between 0 and 255, in- 
clusive. A given proNET network could have at most 254 computers attached because 
address 255 was reserved for broadcast and address 0 was not used. When first instal- 
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ling a proNET network, a network administrator chose a unique address for each com- 
puter. Typically, addresses were assigned sequentially, starting with 1. 

A technology that permits customers to assign hardware addresses has advantages 
and disadvantages. The chief disadvantage arises from the potential for problems that 
occur if a network administrator accidentally assigns the same address to two comput- 
ers. The chief advantage arises from ease of maintenance: if an interface board fails, it 
can be replaced without changing the computer's hardware address. 

2.1 1.5 Wireless Network Technologies 

One of the most interesting ARPA experiments in packet switching resulted in a 
packet radio technology that uses broadcast radio waves to carry packets. Designed for 
a military environment in which stations might be mobile, packet radio includes 
hardware and software that allow sites to find other sites, establish point-to-point com- 
munication, and then use the point-to-point cornmunication to carry packets. Because 
sites change geographic location and may move out of cornmunication range, the sys- 
tem must constantly monitor connectivity and recompute routes to reflect changes in to- 
pology. An operational packet radio system was built and used to demonstrate TCPJIP 
communication between a remote packet radio site and other sites on the Internet. 

In recent years, a wide variety of wireless networking equipment has become avail- 
able commercially. Wireless L A N  use spread spectrum techniques such as direct 
sequencing or frequency hopping to provide data connections among a set of computers 
inside a building. The transmitters and antennas for such equipment are small and 
lightweight. The equipment can be attached to a portable notebook computer, making it 
convenient to move around an area such as an office building while remaining in com- 
munication. 

Wireless broadband technology, originally developed as an alternative to cable 
television, is being used to transmit data. Known as Multichannel Multipoint Distribu- 
tion System (MMDS), the scheme has sufficient capacity to provide data rates as fast as 
those offered by the popular Digital Subscriber Line (DSL) technologies that deliver 
high data rates over copper telephone wires. 

Cellular technology, which was originally designed for voice networks, has also 
been adapted to carry data. The chief advantage of a cellular system is the speed with 
which it allows users to move. Because the technology was designed to maintain voice 
communication even if a user travels by car, the underlying hardware can easily main- 
tain contact with a mobile unit while transferring a stream of packets. 

2.1 2 Summary And Conclusion 

We have reviewed several network hardware technologies used by the TCPIIP pro- 
tocols, ranging from inexpensive Local Area Network technologies like Ethernet and 
FDDI to expensive Wide Area Network technologies that use leased digital circuits to 
provide backbones. We have also seen that it is possible to run the TCP/IP protocols 
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over other general-purpose network protocols using a technique called tunneling. While 
the details of specific network technologies are not important, a general idea has em- 
erged: 

The TCPLP protocols are extremely flexible; almost any underlying 
technology can be used to transfer TCPAP trafic. 

FOR FURTHER STUDY 

Early computer communication systems employed point-to-point interconnection, 
often using general-purpose serial line hardware that McNamara [I9821 describes. 
Metcalf and Boggs [I9761 introduces the Ethernet with a 3 Mbps prototype version. 
Digital et. al. [I9801 specifies the original 10 Mbps Ethernet standard, with IEEE stan- 
dard 802.3 reported in Nelson [1983]. Shoch, Dalal, and Redell [I9821 provides an his- 
torical perspective of the Ethernet evolution. Related work on the ALOHA network is 
reported in Abramson [1970], with a survey of technologies given by Cotton [1979]. 

Token passing ring technology is proposed in Farmer and Newhall [1969]. Miller 
and Thompson [1982], as well as Andrews and Shultz [1982], provide summaries. 
Another alternative, the slotted ring network, is proposed by Pierce [1972]. For a com- 
parison of technologies, see Rosenthal [1982]. 

For more infom~ation on the ARPANET see Cerf [1989] and BBN [1981]. The 
ideas behind X25NET are summarized in Comer and Korb [1983]; Lanzillo and Par- 
tridge [January 19891 describes dial-up IP. De Prycker [I9931 describes Asynchronous 
Transfer Mode and its use for wide area services. Partridge [I9941 surveys many giga- 
bit technologies, including ATM, and describes the internal structure of high speed 
switches. 

EXERCISES 

2.1 Find out which network technologies your site uses. 

2.2 What is the maximum size packet that can be sent on a high-speed network like Network 
System Corporation's Hyperchannel? 

2 3  If your site uses Ethernet hub technology, find out how many connections can be attached 
to a single hub. If your site has multiple hubs (e.g., one on each floor of a building), find 
out how the hubs communicate. 

2.4 What are the advantages and disadvantages of tunneling? 

2 5  Read the Ethernet standard to find exact details of the inter-packet gap and preamble size. 
What is the maximum steady-state rate at which Ethernet can transport data? 
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2.6 What characteristic of a satellite communication channel is most desirable? Least desir- 
able? 

2.7 Find a lower bound on the time it takes to transfer a 5 megabyte file across a network that 
operates at: 28.8 Kbps, 1.54 Mbps, 10 Mbps, 100 Mbps, and 2.4 Gbps. 

2 8  Does the processor, disk, and internal bus on your computer operate fast enough to send 
data from a disk file at 2 gigabits per second? 



Internetworking Concept 
And Architectural Model 

3.1 Introduction 

So far we have looked at the low-level details of transmission across individual 
data networks, the foundation on which all computer communication is built. This 
chapter makes a giant conceptual leap by describing a scheme that allows us to collect 
the diverse network technologies into a coordinated whole. The primary goal is a sys- 
tem that hides the details of underlying network hardware while providing universal 
communication services. The primary result is a high-level abstraction that provides the 
framework for all design decisions. Succeeding chapters show how we use this abstrac- 
tion to build the necessary layers of internet communication software and how the 
software hides the underlying physical transport mechanisms. Later chapters also show 
how applications use the resulting communication system. 

3.2 Application-Level Interconnection 

Designers have taken two different approaches to hiding network details, using ap- 
plication programs to handle heterogeneity or hiding details in the operating system. 
Early heterogeneous network interconnections provided uniformity through application- 
level programs called application gateways. In such systems, an application-level pro- 
gram, executing on each computer in the network, understands the details of the net- 
work connections for that computer, and interoperates across those connections with ap- 
plication programs on other computers. For example, some electronic mail systems 
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consist of mail programs that are each configured to forward a memo to a mail program 
on the next computer. The path from source to destination may involve many different 
networks, but that does not matter as long as the mail systems on all the machines 
cooperate by forwarding each message. 

Using application programs to hide network details may seem natural at first, but 
such an approach results in limited, cumbersome communication. Adding new func- 
tionality to the system means building a new application program for each computer. 
Adding new network hardware means modifying existing programs (or creating new 
programs) for each possible application. On a given computer, each application pro- 
gram must understand the network connections for the computer, resulting in duplica- 
tion of code. 

Users who are experienced with networking understand that once the interconnec- 
tions grow to hundreds or thousands of networks, no one can possibly build all the 
necessary application programs. Furthermore, success of the step-at-a-time communica- 
tion scheme requires correctness of all application programs executing along the path. 
When an intermediate program fails, the source and destination remain unable to detect 
or control the problem. Thus, systems that use intermediate applications programs can- 
not guarantee reliable communication. 

3.3 Network-Level Interconnection 

The alternative to providing interconnection with application-level programs is a 
system based on network-level interconnection. A network-level interconnection pro- 
vides a mechanism that delivers small packets of data from their original source to their 
ultimate destination without using intermediate application programs. Switching small 
units of data instead of files or large messages has several advantages. First, the 
scheme maps directly onto the underlying network hardware, making it extremely effi- 
cient. Second, network-level interconnection separates data communication activities 
from application programs, permitting intermediate computers to handle network traffic 
without understanding the applications that are sending or receiving it. Third, using 
network connections keeps the entire system flexible, making it possible to build gen- 
eral purpose communication facilities. Fourth, the scheme allows network managers to 
add new network technologies by modifying or adding a single piece of new network 
level software, while application programs remain unchanged. 

The key to designing universal network-level interconnection can be found in an 
abstract communication system concept known as internetworking. The internetwork, 
or internet, concept is an extremely powerful one. It detaches the notions of communi- 
cation from the details of network technologies and hides low-level details from the 
user. More important, it drives all software design decisions and explains how to han- 
dle physical addresses and routes. After reviewing basic motivations for internetwork- 
ing, we will consider the properties of an internet in more detail. 

We begin with two fundamental observations about the design of communication 
systems: 
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No single network hardware technology can satisfy all constraints. 
Users desire universal interconnection. 

The first observation is an economic as well as technical one. Inexpensive Local Area 
Networks that provide high speed communication only cover short distances; wide area 
networks that span long distances cannot supply local communication cheaply. Because 
no single network technology satisfies all needs, we are forced to consider multiple 
underlying hardware technologies. 

The second observation is self-evident. Ultimately, users would like to be able to 
communicate between any two points. In particular, we desire a communication system 
that is not constrained by the boundaries of physical networks. 

The goal is to build a unified, cooperative interconnection of networks that sup- 
ports a universal communication service. Within each network, computers will use 
underlying technology-dependent communication facilities like those described in 
Chapter 2. New software, inserted between the technology-dependent communication 
mechanisms and application programs, will hide the low-level details and make the col- 
lection of networks appear to be a single large network. Such an interconnection 
scheme is called an internetwork or internet. 

The idea of building an internet follows a standard pattern of system design: 
researchers imagine a high-level computing facility and work from available computing 
technology, adding layers of software until they have a system that efficiently imple- 
ments the imagined high-level facility. The next section shows the first step of the 
design process by defining the goal more precisely. 

3.4 Properties Of The Internet 

The notion of universal service is important, but it alone does not capture all the 
ideas we have in mind for a unified internet because there can be many implementations 
of universal services. In our design, we want to hide the underlying internet architec- 
ture from the user. That is, we do not want to require users or application programs to 
understand the details of hardware interconnections to use the internet. We also do not 
want to mandate a network interconnection topology. In particular, adding a new net- 
work to the internet should not mean connecting to a centralized switching point, nor 
should it mean adding direct physical connections between the new network and all ex- 
isting networks. We want to be able to send data across intermediate networks even 
though they are not directly connected to the source or destination computers. We want 
all computers in the internet to share a universal set of machine identifiers (which can 
be thought of as names or addresses). 

Our notion of a unified internet also includes the idea of network independence in 
the user interface. That is, we want the set of operations used to establish cornrnunica- 
tion or to transfer data to remain independent of the underlying network technologies 
and the destination computer. Certainly, a user should not have to understand the net- 
work interconnection topology when creating or using application programs that com- 
municate. 
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3.5 Internet Architecture 

We have seen how computers connect to individual networks. The question arises, 
"How are networks interconnected to form an internetwork?" The answer has two 
parts. Physically, two networks can only be connected by a computer that attaches to 
both of them. A physical attachment does not provide the interconnection we have in 
mind, however, because such a connection does not guarantee that the computer will 
cooperate with other machines that wish to communicate. To have a viable internet, we 
need special computers that are willing to transfer packets from one network to another. 
Computers that interconnect two networks and pass packets from one to the other are 
called internet gateways or internet routersf. 

Consider an example consisting of two physical networks shown in Figure 3.1. In 
the figure, router R connects to both network I and network 2. For R to act as a router, 
it must capture packets on network 1 that are bound for machines on network 2 and 
transfer them. Similarly, R must capture packets on network 2 that are destined for 
machines on network I and transfer them. 

Figure 3.1 Two physical networks interconnected by R, a router (IP gateway). 

In the figure, clouds are used to denote physical networks because the exact 
hardware is unimportant. Each network can be a LAN or a WAN, and each may have 
many computers attached or a few computers attached. 

3.6 Interconnection Through IP Routers 

Although it illustrates the basic connection strategy, Figure 3.1 is quite simplistic. 
In an actual internet that includes many networks and routers, each router needs to 
know about the topology of the internet beyond the networks to which it connects. For 
example, Figure 3.2 shows three networks i n t e r c o ~ e c t d  by two routers. 

tThe original literature used the term IP gateway. However, vendors have adopted the term IP router - 
the two terms are used interchangeably throughout this text. 
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Figure 3.2 Three networks interconnected by two routers. 

In this example, router R, must transfer from network I to network 2 all packets des- 
tined for computers on either network 2 or network 3. For a large internet composed of 
many networks, the router's task of making decisions about where to send packets be- 
comes more complex. 

The idea of a router seems simple, but it is important because it provides a way to 
interconnect networks, not just computers. In fact, we have already discovered the prin- 
ciple of interconnection used throughout an internet: 

In a TCPBP internet, special computers called IP routers or IP gate- 
ways provide interconnections among physical networks. 

You might suspect that routers, which must each know how to forward packets to- 
ward their destination, are large machines with enough primary or secondary memory to 
hold information about every computer in the internet to which they attach. In fact, 
routers used with TCPAP internets are usually small computers. They often have little 
disk storage and modest main memories. The trick to building a small internet router 
lies in the following concept: 

Routers use the destination network, not the destination computer, 
when forwarding a packet. 

If packet forwarding is based on networks, the amount of information that a router 
needs to keep is proportional to the number of networks in the internet, not the number 
of computers. 

Because routers play a key role in internet communication, we will return to them 
in later chapters and discuss the details of how they operate and how they learn about 
routes. For now, we will assume that it is possible and practical to have correct routes 
for all networks in each router in the internet. We will also assume that only routers 
provide connections between physical networks in an internet. 
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3.7 The User's View 

Remember that TCPAP is designed to provide a universal interconnection among 
computers independent of the particular networks to which they attach. Thus, we want 
a user to view an internet as a single, virtual network to which all machines connect 
despite their physical connections. Figure 3.3a shows how thinking of an internet in- 
stead of constituent networks simplifies the details and makes it easy for the user to 
conceptualize communication. In addition to routers that interconnect physical net- 
works, software is needed on each computer to allow application programs to use an in- 
ternet as if it were a single, physical network. 

The advantage of providing interconnection at the network level now becomes 
clear. Because application programs that communicate over the internet do not know 
the details of underlying connections, they can be run without change on any computer. 
Because the details of each machine's physical network connections are hidden in the 
internet software, only the internet software needs to change when new physical connec- 
tions are added or existing connections are removed. In fact, it is possible to optimize 
the internal structure of the internet by altering physical connections while application 
programs are executing. 

A second advantage of having communication at the network level is more subtle: 
users do not have to understand, remember, or specify how networks connect or what 
traffic they carry. Application programs can be written that communicate independent 
of underlying physical connectivity. In fact, network managers are free to change inte- 
rior parts of the underlying internet architecture without changing application software 
in most of the computers attached to the internet (of course, network software must be 
reconfigured when a computer moves to a new network). 

As Figure 3.3b shows, routers do not provide direct connections among all pairs of 
networks. It may be necessary for traffic traveling from one computer to another to 
pass through several routers as the traffic crosses intermediate networks. Thus, net- 
works participating in an internet are analogous to highways in the U.S. interstate sys- 
tem: each net agrees to handle transit traffic in exchange for the right to send traffic 
throughout the internet. Typical users are unaffected and unaware of extra traffic on 
their local network. 

3.8 All Networks Are Equal 

Chapter 2 reviewed examples of the network hardware used to build TCPW inter- 
nets, and illustrated the great diversity of technologies. We have described an internet 
as a collection of cooperative, interconnected networks. It is now important to under- 
stand a fundamental concept: from the internet point of view, any communication sys- 
tem capable of transferring packets counts as a single network, independent of its delay 
and throughput characteristics, maximum packet size, or geographic scale. In particular, 
Figure 3.3b uses the same small cloud shape to depict each physical network because 
TCPIIP treats them equally despite their differences. The point is: 
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The TCPLP internet protocols treat all networks equally. A Local 
Area Network like an Ethernet, a Wide Area Network used as a back- 
bone, or a point-to-point link between two computers each count as 
one network 

Readers unaccustomed to internet architecture may find it difficult to accept such a 
simplistic view of networks. In essence, TCPAP defines an abstraction of "network 
that hides the details of physical networks; we will learn that such abstractions help 
make TCPIIP extremely powerful. 

internet internet 

Figure 33  (a) The user's view of a TCPlIP internet in which each computer 
appears to attach to a single large network, and (b) the structure 
of physical networks and routers that provide interconnection. 

3.9 The Unanswered Questions 

Our sketch of internets leaves many unanswered questions. For example, you 
might wonder about the exact form of internet addresses assigned to computers or how 
such addresses relate to the Ethernet, FDDI, or ATM physical hardware addresses 
described in Chapter 2. The next three chapters confront these questions. They 
describe the format of P addresses and illustrate how software on a computer maps , 

between internet addresses and physical addresses. You might also want to know exact- 
ly what a packet looks like when it travels through an internet, or what happens when 
packets arrive too fast for some computer or router to handle. Chapter 7 answers these 
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questions. Finally, you might wonder how multiple application programs executing 
concurrently on a single computer can send and receive packets to multiple destinations 
without becoming entangled in each other's transmissions or how internet routers leam 
about routes. All of these questions will be answered as well. 

Although it may seem vague now, the direction we are following will let us leam 
about both the structure and use of internet protocol software. We will examine each 
part, looking at the concepts and principles as well as technical details. We began by 
describing the physical communication layer on which an internet is built. Each of the 
following chapters will explore one part of the internet software, until we understand 
how all the pieces fit together. 

3.10 Summary 

An internet is more than a collection of networks interconnected by computers. In- 
ternetworking implies that the interconnected systems agree to conventions that allow 
each computer to communicate with every other computer. In particular, an internet 
will allow two computers to communicate even if the communication path between 
them passes across a network to which neither connects directly. Such cooperation is 
only possible when computers agree on a set of universal identifiers and a set of pro- 
cedures for moving data to its final destination. 

In an internet, interconnections among networks are formed by computers called IP 
routers, or IP gateways, that attach to two or more networks. A router forwards packets 
between networks by receiving them from one network and sending them to another. 

FOR FURTHER STUDY 

Our model of an internetwork comes from Cerf and Cain [I9831 and Cerf and 
Kahn [1974], which describe an internet as a set of networks interconnected by routers 
and sketch an internet protocol similar to that eventually developed for the TCP/IP pro- 
tocol suite. More information on the connected Internet architecture can be found in 
Postel [1980]; Postel, Sunshine, and Chen [1981]; and in Hinden, Haverty, and Sheltzer 
[1983]. Shoch [I9781 presents issues in internetwork naming and addressing. Boggs et. 
al. [I9801 describes the internet developed at Xerox PARC, an alternative to the TCPlIP 
internet we will examine. Cheriton [I9831 describes internetworking as it relates to the 
V-system. 
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EXERCISES 

What processors have been used as routers in the c o ~ e c t e d  Internet? Does the size and 
speed of early router hardware surprise you? Why? 
Approximately how many networks comprise the internet at your site? Approximately how 
many routers? 
Consider the internal structure of the example internet shown in Figure 3.3b. Which 
routers are most crucial? Why? 
Changing the information in a router can be tricky because it is impossible to change all 
routers simultaneously. Investigate algorithms that guarantee to either install a change on a 
set of computers or install it on none. 
In an internet, routers periodically exchange information from their routing tables, making 
it possible for a new router to appear and begin routing packets. Investigate the algorithms 
used to exchange routing information. 
Compare the organization of a TCPlIP internet to the style of internet designed by Xerox 
Corporation. 
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4.1 Introduction 

The previous chapter defines a TCPm internet as a virtual network built by inter- 
connecting physical networks with routers. This chapter discusses addressing, an essen- 
tial ingredient that helps TCPm software hide physical network details and makes the 
resulting internet appear to be a single, uniform entity. 

4.2 Universal Identifiers 

A communication system is said to supply universal communication service if it al- 
lows any host computer to communicate with any other host. To make our communica- 
tion system universal, it needs a globally accepted method of identifying each computer 
that attaches to it. 

Often, host identifiers are classified as names, addresses, or routes. Shoch [I9781 
suggests that a name identifies what an object is, an address identifies where it is, and a 
route tells how to get there?. Although these definitions are intuitive, they can be 
misleading. Names, addresses, and routes really refer to successively lower level 
representations of host identifiers. In general, people usually prefer pronounceable 
names to identify machines, while software works more efficiently with compact 
representations of identifiers that we think of as addresses. Either could have been 
chosen as the TCP/IP universal host identifiers. The decision was made to standardize 
on compact, binary addresses that make computations such as the selection of a route 
efficient. For now, we will discuss only binary addresses, postponing until later the 
questions of how to map between binary addresses and pronounceable names, and how 
to use addresses for routing. 

tAn identifier that specifies where an object can be found is also called a locator. 



64 Classful Internet Addresses Chap. 4 

4.3 The Original Classful Addressing Scheme 

Think of an internet as a large network like any other physical network. The 
difference, of course, is that the internet is a virtual structure, imagined by its designers, 
and implemented entirely in software. Thus, the designers are free to choose packet for- 
mats and sizes, addresses, delivery techniques, and so on; nothing is dictated by 
hardware. For addresses, the designers of TCP/IP chose a scheme analogous to physical 
network addressing in which each host on the internet is assigned a 32-bit integer ad- 
dress called its internet address or IP address. The clever part of internet addressing is 
that the integers are carefully chosen to make routing efficient. Specifically, an IP ad- 
dress encodes the identification of the network to which a host attaches as well as the 
identification of a unique host on that network. We can summarize: 

Each host on a TCPLP internet is assigned a unique 32-bit internet 
address that is used in all communication with that host. 

The details of IP addresses help clarify the abstract ideas. For now, we give a sim- 
plified view and expand it later. In the simplest case, each host attached to an internet 
is assigned a 32-bit universal identifier as its internet address. A prefix of an IP address 
identifies a network. That is, the IP addresses in all hosts on a given network share a 
common prefix. 

Conceptually, each address is a pair (netid, hostid), where netid identifies a net- 
work, and hostid identifies a host on that network. In practice, however, the partition 
into prefix and suffix is not uniform throughout the entire internet because the designers 
did not specify a single boundary. In the original addressing scheme, which is known 
as classful, each IP address had one of the first three forms shown in Figure 4. lt .  

Class A 101 netid hostid I 

class B F101 netid hostid I 
C I ~ S S C  [111101 netid I hostid 

C I ~ S S D  111111101 multicast address I 
CIassE F1111111 reserved for future use 

Figure 4.1 The five forms of Internet (IP) addresses used with the original 
classful addressing scheme. The three primary classes, A, B and 
C, can be distinguished by the first three bits. 

+The fourth form, reserved for internet multicasting, will be described later; for now, we will restrict our 
comments to the fonns that specify addresses of individual objects. 
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In the classful addressing scheme, each address is said to be self-identifying be- 
cause the boundary between prefn and suffix can be computed from the address alone, 
without reference to external information. In particular, the class of an address can be 
determined from the three high-order bits, with two bits being sufficient to distinguish 
among the three primary classes. Class A addresses, used for the handful of networks 
that have more than 216 (i.e., 65,536) hosts, devote 7 bits to netid and 24 bits to hostid. 
Class B addresses, used for intern~ediate size networks that have between 28 (i.e., 256) 
and 216 hosts, allocate 14 bits to the netid and 16 bits to the hostid. Finally, class C ad- 
dresses, used for networks that have less than 28 hosts, allocate 21 bits to the netid and 
only 8 bits to the hostid. Note that the IP address was originally defined in such a way 
that it was possible to extract the hostid or netid portions quickly. Efficiency was espe- 
cially important for routers, which use the netid portion of an address when deciding 
where to send a packet. We will return to the discussion of efficient route lookup after 
examining recent changes and extensions to the addressing scheme. 

4.4 Addresses Specify Network Connections 

To simplify the discussion, we said that an internet address identifies a host, but 
that is not strictly accurate. Consider a router that attaches to two physical networks. 
How can we assign a single IP address if the address encodes a network identifier as 
well as a host identifier? In fact, we cannot. When conventional computers have two 
or more physical connections they are called multi-homed hosts. Multi-homed hosts 
and routers require multiple IP addresses. Each address corresponds to one of the 
machine's network connections. Looking at multi-homed hosts leads to the following 
important idea: 

Because IP addresses encode both a network and a host on that net- 
work, they do not specify an individual computer, but a connection to 
a network. 

Thus, a router connecting n networks has n distinct IP addresses, one for each network 
connection. 

4.5 Network And Directed Broadcast Addresses 

We have already cited the major advantage of encoding network inforn~ation in in- 
ternet addresses: it makes efficient routing possible. Another advantage is that internet 
addresses can refer to networks as well as hosts. By convention, hostid 0 is never as- 
signed to an individual host. Instead, an IP address with hostid portion equal to zero is 
used to refer to the network itself. In summary: 
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Internet addresses can be used to refer to networks as well as indivi- 
dual hosts. By convention, an address that has all bits of the hostid 
equal to 0 is reserved to refer to the network. 

Another significant advantage of the internet addressing scheme is that it includes a 
directed broadcast address that refers to all hosts on the network. According to the 
standard, any address with the hostid consisting of all Is is reserved for directed broad- 

' cast?. When a packet is sent to such an address, a single copy of the packet is 
transferred across the internet from the source. Routers along the path use the netid 
portion of the address when choosing a path; they do not look at the host portion. Once 
the packet reaches a router attached to the final network, that router examines the host 
portion of the address to determine how to deliver the packet. If it finds all Is, the 
router broadcasts the packet to all hosts on the network. 

On many network technologies (e.g., Ethernet), broadcasting is as efficient as uni- 
cast transmission; on others, broadcasting is supported by the network software, but re- 
quires substantially more delay than single transmission. Some network hardware does 
not support broadcast at all. Thus, having an IP directed broadcast address does not 
guarantee the availability or efficiency of broadcast delivery. In summary, 

ZP addresses can be used to specify a directed broadcast in which a 
packet is sent to all computers on a network; such addresses map to 
hardware broadcast, if available. By convention, a directed broad- 
cast address has a valid netid and has a hostid with all bits set to I. 

4.6 Limited Broadcast 

The broadcast address we just described is known as directed because it contains 
both a valid network ID and the broadcast hostid. A directed broadcast address can be 
interpreted unambiguously at any point in an internet because it uniquely identifies the 
target network in addition to specifying broadcast on that network. Directed broadcast 
addresses provide a powerful (and somewhat dangerous) mechanism that allows a re- 
mote system to send a single packet that will be broadcast on the specified network. 

From an addressing point of view, the chief disadvantage of directed broadcast is 
that it requires knowledge of the network address. Another form of broadcast address, 
called a limited broadcast address or local network broadcast address, provides a 
broadcast address for the local network independent of the assigned IP address. The lo- 
cal broadcast address consists of thirty-two I s  (hence, it is sometimes called the "all 
Is" broadcast address). A host may use the limited broadcast address as part of a start- 
up procedure before it learns its IP address or the IP address prefm for the local net- 
work. Once the host learns the correct IP address for the local network, however, it 
should use directed broadcast. 

?Unfortunately, an early release of TCPm code that accompanied Berkeley UNIX incorrectly used all 
zeroes for broadcast. Because the error stilt survives, TCPm software often includes an option that allows a 
site to use all zeroes for directed broadcast. 
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As a general rule, TCP/IP protocols restrict broadcasting to the smallest possible 
set of machines. We will see how this rule affects multiple networks that share ad- 
dresses in the chapter on subnet addressing. 

4.7 Interpreting Zero To Mean "This" 

We have seen that a field consisting of 1s can be interpreted to mean "all," as in 
"all hosts" on a network. In general, internet software interprets fields consisting of 0s 
to mean "this." The interpretation appears throughout the literature. Thus, an IP ad- 
dress with hostid 0 refers to "this" host, and an internet address with network ID 0 
refers to "this" network. Of course, it is only meaningful to use such an address in a 
context where it can be interpreted unambiguously. For example, if a machine receives 
a packet in which the netid portion of the destination address is 0 and the hostid portion 
of the destination address matches its address, the receiver interprets the netid field to 
mean "this" network (i.e., the network over which the packet arrived). 

Using netid 0 is especially important in those cases where a host wants to com- 
municate over a network but does not yet know the network IP address. The host uses 
network ID 0 temporarily, and other hosts on the network interpret the address as mean- 
ing "this" network. In most cases, replies will have the network address fully speci- 
fied, allowing the original sender to record it for future use. Chapters 9 and 23 will dis- 
cuss in detail mechanisms a host can use to determine the network ID of the local net- 
work. 

4.8 Subnet And Supernet Extensions 

The addressing scheme described so far requires a unique network prefix for each 
physical network. Although that was, indeed, the original plan, it did not last long. In 
the 1980s as Local Area Network technologies became increasingly popular, it became 
apparent that requiring a unique prefix for each physical network would exhaust the ad- 
dress space quickly. Consequently, an addressing extension was developed to conserve 
network prefixes. Known as subnet addressing, the scheme allows multiple physical 
networks to share a prefix. 

In the 1990s, a second extension was devised that ignored the classful hierarchy 
and allowed the division between prefix and suffm to occur at an arbitrary point. 
Called classless addressing or supernetting, the scheme allows more complete utiliza- 
tion of the address space. 

Chapter 10 will consider details of the subnet and supernet addressing extensions. 
For now, it is only important to know that the addressing scheme has been extended, 
and that the original classful scheme described in this chapter is no longer the most 
widely used. 
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4.9 IP Multicast Addresses 

In addition to unicast delivery, in which a packet is delivered to a single computer, 
and broadcast delivery, in which a packet is delivered to all computers on a given net- 
work, the IP addressing scheme supports a special form of multipoint delivery known as 
multicasting, in which a packet is delivered to a specific subset of hosts. IP multicast- 
ing is especially useful for networks where the hardware technology supports multicast 
delivery. Chapter 17 discusses multicast addressing and delivery in detail. For now, it 
is sufficient to understand that Class D addresses are reserved for multicasting. 

4.10 Weaknesses In Internet Addressing 

Encoding network information in an internet address does have some disadvan- 
tages. The most obvious disadvantage is that addresses refer to network connections, 
not to the host computer: 

If a host computer moves from one network to another, its IP address 
mist change. 

To understand the consequences, consider a traveler who wishes to disconnect his or her 
personal computer, carry it along on a trip, and reconnect it to the Internet after reach- 
ing the destination. The personal computer cannot be assigned a permanent IP address 
because an IP address identifies the network to which the machine attaches. Chapter 19 
shows how the IP addressing scheme makes mobility a complex problem. 

Another weakness of the classful addressing scheme is that when any class C net- 
work grows to more than 255 hosts, it must have its address changed to a class B ad- 
dress. While this may seem like a minor problem, changing network addresses can be 
incredibly time-consuming and difficult to debug. Because most software is not 
designed to handle multiple addresses for the same physical network, administrators 
cannot plan a smooth transition in which they introduce new addresses slowly. Instead, 
they must abruptly stop using one network address, change the addresses of all 
machines, and then resume communication using the new network address. 

The most important flaw in the internet addressing scheme will not become fully 
apparent until we examine routing. However, its importance warrants a brief introduc- 
tion here. We have suggested that routing will be based on internet addresses, with the 
netid portion of an address used to make routing decisions. Consider a host with two 
connections to the internet. We know that such a host must have more than one IP ad- 
dress. The following is true: 

Because routing uses the network portion of the IP address, the path 
taken by packets traveling to a host with multiple IP addresses 
depends on the address used. 
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The implications are surprising. Humans think of each host as a single entity and want 
to use a single name. They are often surprised to find that they must learn more than 
one name and even more surprised to find that packets sent using multiple names can 
behave differently. 

Another surprising consequence of the internet addressing scheme is that merely 
knowing one IP address for a destination may not be sufficient; it may be impossible to 
reach the destination using that address. Consider the example internet shown in Figure 
4.2. In the figure, two hosts, A and B, both attach to network 1, and usually communi- 
cate directly using that network. Thus, users on host A should normally refer to host B 
using IP address I,. An alternate path from A to B exists through router R, and is used 
whenever A sends packets to IP address I, (B's address on network 2). Now suppose 
B's connection to network 1 fails, but the machine itself remains running (e.g., a wire 
breaks between B and network 1). Users on A who specify IP address I, cannot reach 
B, although users who specify address I, can. These problems with naming and ad- 
dressing will arise again in later chapters when we consider routing and name binding. 

NETWORK 1 

NETWORK 2 1 Is 

Figure 4.2 An example internet with a multi-homed host, B, that demon- 
strates a disadvantage of the IP addressing scheme. If interface I3 

becomes disconnected, A must use address Is to reach B, sending 
packets through router R. 

4.1 1 Dotted Decimal Notation 

When communicated to humans, either in technical documents or through applica- 
tion programs, IP addresses are written as four decimal integers separated by decimal 
points, where each integer gives the value of one octet of the IP address?. Thus, the 
32-bit internet address 

10000000 00001010 00000010 00011110 

is written 

128.10.2.30 

tDotted decimal notation is sometimes called doned quad notation. 
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We will use dotted decimal notation when expressing IP addresses throughout the 
remainder of this text. Indeed, most TCPJIP software that displays or requires a human 
to enter an IP address uses dotted decimal notation. For example, the UNIX netstat 
command, which displays information about routes and connections, and application 
programs such as telnet and ftp all use dotted decimal notation when accepting or 
displaying IP addresses. Thus, when classful addressing is used, it is helpful to under- 
stand the relationship between IP address classes and dotted decimal numbers. The 
table in Figure 4.3 summarizes the range of values for each class. 

Class Lowest Address Highest Address 
A 1  .O.O.O 126.0 .0 .0  

Figure 4 3  The range of dotted decimal values that correspond to each IP ad- 
dress class. Some values are reserved for special purposes. 

4.12 Loopback Address 

The table in Figure 4.3 shows that not all possible addresses have been assigned to 
classes. In particular, the network prefix 127.0.0.0, a value from the class A range, is 
reserved for loopback, and is intended for use in testing TCPm and for inter-process 
communication on the local computer. When any program uses the loopback address as 
a destination, the protocol software in the computer processes the data without sending 
traffic across any network. The literature explicitly states that a packet sent to a net- 
work 127 address should never appear on any network. Furthermore, a host or router 
should never propagate routing or reachability information for network number 127; it 
is not a network address. 

4.13 Summary Of Special Address Conventions 

In practice, IP uses only a few combinations of 0s ("this") or 1s ("all"). Figure 
4.4 lists the possibilities. 
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I all 0s 

I 
-- 

all I s  

all 0s 

I net I all 1s I 

host 

1 127 1 anything (often 1) 1 

This host 

Host on this net 

Limited broadcast (local net)2 

Directed broadcast for net 

Loopback 

Notes: I Allowed only at system startup and is 
never a valid destination address. 

Never a valid source address. 
Should never appear on a network. 

Figure 4.4 Special forms of IP addresses, including valid combinations of 0s 
("this"), 1s ("all"). The length of the net portion of a directed 
broadcast depends on the network address class. 

As the notes in the figure mention, using all 0s for the network is only allowed 
during the bootstrap procedure. Doing so allows a machine to communicate temporari- 
ly. Once the machine learns its correct network and IP address, it must not use network 
prefix 0. 

4.14 lnternet Addressing Authority 

Each network address prefix used within a given TCPAP internet must be unique. 
An organization that uses TCPDP technology to build a completely private internet (i.e., 
one that is not connected to the global Internet) can assign address prefixes without con- 
sidering the assignments made by other organizations. However, an organization that 
connects to the global Internet must not use address prefixes assigned to another organi- 
zation. To ensure that the network portion of an address is unique in the global inter- 
net, all Internet addresses are assigned by a central authority. Originally, the Internet 
Assigned Number Authority (IANA) had control over numbers assigned, and set the poli- 
cy. From the time the Internet began until the fall of 1998, a single individual, Jon Pos- 
tel, ran the IANA and assigned addresses. h late 1998, after Jon's untimely death, a 
new organization was created to handle address assignment. Named the Internet Cor- 
poration For Assigned Names and Numbers (ICANN), the organization sets policy and 
assigns values for names and other constants used in protocols as well as addresses. 
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In the original classful scheme, the Internet authority chose an address appropriate 
to the size of the network. A class C number was assigned to a network with a small 
number of attached computers (less than 255); class B numbers were reserved for larger 
networks. Finally, a network needed to have more than 65,535 hosts before it could ob- 
tain a class A number. The address space was skewed because most networks are 
small, fewer are of medium size, and only a handful are gigantic. 

Most organizations never interact with the central authority directly. Instead, to 
connect its networks to the global Internet, an organization usually contracts with a lo- 
cal Internet Service Provider (ISP). In addition to providing a connection between the 
organization and the rest of the Internet, an ISP obtains a valid address prefix for each 
of the customer's networks. Many local ISPs are, in fact, customers of larger ISPs - 
when a customer requests an address prefix, the local ISP merely obtains a prefix from 
a larger ISP. Thus, only the largest ISPs need to contact ICANN. 

Note that the central authority only assigns the network portion of an address; once 
an organization obtains a prefx for a network, the organization can choose how to as- 
sign a unique suffix to each host on the network without contacting the central authori- 
ty. Furthermore, remember that it is only essential for the central authority to assign IP 
addresses for networks that are (or will be) attached to the global Internet. 

4.1 5 Reserved Address Prefixes 

We said that as long as it never connects to the outside world, an individual cor- 
poration has responsibility for assigning unique network addresses within its TCP/IP in- 
ternet. Indeed, many corporate groups that use TCP/IP protocols do assign internet ad- 
dresses on their own. For example, the network address 9.0.0.0 has been assigned to 
IBM Corporation, and address 12.0.0.0 has been assigned to AT&T. If an organization 
decides to use TCPIIP protocols on two of their networks with no connections to the 
global Internet, the organization can choose to assign addresses 9.0.0.0 and 12.0.0.0 to 
their local networks. 

Experience has shown, however, that it is unwise to create a private internet using 
the same network addresses as the global Internet because most sites eventually connect 
to the Internet and doing so may cause problems when trying to exchange software with 
other sites. To avoid addressing conflicts between addresses used on private internets 
and addresses used on the global Internet, the IETF reserved several address prefixes, 
and recommends using them on private internets. Because the set of reserved prefixes 
includes both classful and classless values, they are described in Chapter 10. 

4.16 An Example 

To clarify the IP addressing scheme, consider an example of two networks in the 
Computer Science Department at Purdue University as they were connected to the Inter- 
net in the mid-1980s. Figure 4.5 shows the network addresses, and illustrates how 
routers interconnect the networks. 
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routers 
ETHERNET 
128.1 0.0.0 

Figure 4.5 The logical connection of two networks to the Internet backbone. 
Each network has been assigned an IP address. 

The example shows three networks and the network numbers they have been as- 
signed: the ARPANET (10.0.0.0), an Ethernet (128.10.0.0), and a token ring network 
(192.5.48.0). According to the table in Figure 4.3, the addresses have classes A, B, and 
C, respectively. 

Figure 4.6 shows the same networks with host computers attached and Internet ad- 
dresses assigned to each network connection. 

ETHERNET 128.1 0.0.0 

(multi-homed 

192.5.48.3 

GLATISANT TALIESYN 
(router) 

192.5.48.6 10.0.0.37 

To ARPANET 

Figure 4.6 Example IP address assignment for routers and hosts attached to 
the three networks in the previous figure. 
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In the figure, four hosts labeled Arthur, Merlin, Guenevere, and Lancelot, attach to 
the networks, Taliesyn is a router that connects the ARPANET and the token ring net- 
work, and Glatisant is a router that connects the token ring network to the Ethernet. 
Host Merlin has connections to both the Ethernet and the token ring network, so it can 
reach destinations on either network directly. Although a multi-homed host like Merlin 
can be configured to route packets between the two nets, most sites use dedicated com- 
puters as routers to avoid overloading conventional computer systems with the process- 
ing required for routing. In the figure, a dedicated router, Glatisant, performs the task 
of routing traffic between the Ethernet and token ring networks. (Note: actual traffic 
between these two networks was higher than this configuration suggests because the fig- 
ure only shows a few of the computers attached to the nets.) 

As Figure 4.5 shows, an IP address must be assigned to each network connection. 
Lancelot, which connects only to the Ethernet, has been assigned 128.10.2.26 as its only 
IP address. Merlin has address 128.10.2.3 for its connection to the Ethernet and 
192.5.48.3 for its connection to the token ring network. Whoever made the address as- 
signment chose the same value for the low-order byte of each address. The addresses 
assigned to routers Glatisant and Taliesyn do not follow the convention. For example, 
Taliesyn's addresses, 10.0.0.37 and 192.5.48.6, are two completely unrelated strings of 
digits. IP does not care whether any of the bytes in the dotted decimal form of a 
computer's addresses are the same or different. However, network technicians, 
managers, and administrators may need to use addresses for maintenance, testing, and 
debugging. Choosing to make all of a computer's addresses end with the same octet 
makes it easier for humans to remember or guess the address of a particular interface. 

4.17 Network Byte Order 

To create an internet that is independent of any particular vendor's machine archi- 
tecture or network hardware, the software must define a standard representation for data. 
Consider what happens, for example, when software on one computer sends a 32-bit 
binary integer to another computer. The physical transport hardware moves the se- 
quence of bits from the first machine to the second without changing the order. How- 
ever, not all architectures store 32-bit integers in the same way. On some (called Little 
Endian), the lowest memory address contains the low-order byte of the integer. On oth- 
ers (called Big Endian), the lowest memory address holds the high-order byte of the in- 
teger. Still others store integers in groups of 16-bit words, with the lowest addresses 
holding the low-order word, but with bytes swapped. Thus, direct copying of bytes 
from one machine to another may change the value of the number. 

Standardizing byte-order for integers is especially important in an internet because 
internet packets carry binary numbers that specify information like destination addresses 
and packet lengths. Such quantities must be understood by both the senders and re- 
ceivers. The TCP/IP protocols solve the byte-order problem by defining a network 
standard byte order that all machines must use for binary fields in internet packets. 
Each host or router converts binary items from the local representation to network stan- 
dard byte order before sending a packet, and converts from network byte order to the 
host-specific order when a packet arrives. Naturally, the user data field in a packet is 
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exempt from this standard because the TCPIIP protocols do not know what data is being 
carried - application programmers are free to format their own data representation and 
translation. When sending integer values, many application programmers do choose to 
follow the TCPIIP byte-order standards. Of course, users who merely invoke applica- 
tion programs never need to deal with the byte order problem directly. 

The internet standard for byte order specifies that integers are sent with the most 
significant byte first (i.e., Big Endian style). If one considers the successive bytes in a 
packet as it travels from one machine to another, a binary integer in that packet has its 
most significant byte nearest the beginning of the packet and its least significant byte 
nearest the end of the packet. Many arguments have been offered about which data 
representation should be used, and the internet standard still comes under attack from 
time to time. In particular, proponents of change argue that although most computers 
were big endian when the standard was defined, most are now little endian. However, 
everyone agrees that having a standard is crucial, and the exact form of the standard is 
far less important. 

4.18 Summary 

TCPIIP uses 32-bit binary addresses as universal machine identifiers. Called Inter- 
net Protocol addresses or IP addresses, the identifiers are partitioned into two parts: a 
prefix identifies the network to which the computer attaches and the suffix provides a 
unique identifier for the computer on that network. The original IP addressing scheme 
is known as classful, with each prefix assigned to one of three primary classes. Leading 
bits define the class of an address; the classes are of unequal size. The classful scheme 
provides for 127 networks with over a million hosts each, thousands of networks with 
thousands of hosts each, and over a million networks with up to 254 hosts each. To 
make such addresses easier for humans to understand, they are written in dotted decimal 
notation, with the values of the four octets written in decimal, separated by decimal 
points. 

Because the IP address encodes network identification as well as the identification 
of a specific host on that network, routing is efficient. An important property of IP ad- 
dresses is that they refer to network connections. Hosts with multiple connections have 
multiple addresses. One advantage of the internet addressing scheme is that the form 
includes an address for a specific host, a network, or all hosts on a network (broadcast). 
The biggest disadvantage of the IP addressing scheme is that if a machine has multiple 
addresses, knowing one address may not be sufficient to reach it when no path exists to 
the specified interface (e.g., because a particular network is unavailable). 

To permit the exchange of binary data among machines, TCPm protocols enforce 
a standard byte ordering for integers within protocol fields. A host must convert all 
binary data from its internal form to network standard byte order before sending a pack- 
et, and it must convert from network byte order to internal order upon receipt. 



ClassN Internet Addresses Chap. 4 

FOR FURTHER STUDY 

The internet addressing scheme presented here can be found in Reynolds and Pos- 
tel [RFC 17001; further information can be found in Stahl, Romano, and Recker [RFC 
11 171. 

Several important additions have been made to the Internet addressing scheme over 
the years; later chapters cover them in more detail. Chapter 10 discusses an important 
extension called classless addressing that permits the division between prefix and suffix 
to occur at an arbitrary bit position. In addition, Chapter 10 examines an essential part 
of the Internet address standard called subnet addressing. Subnet addressing allows a 
single network address to be used with multiple physical networks. Chapter 17 contin- 
ues the exploration of IP addresses by describing how class D addresses are assigned 
for internet multicast. 

Cohen [I9811 explains bit and byte ordering, and introduces the terms "Big Endi- 
an" and "Little Endian." 

EXERCISES 

Exactly how many class A, B, and C networks can exist? Exactly how many hosts can a 
network in each class have? Be careful to allow for broadcast as well as class D and E ad- 
dresses. 
A machine readable list of assigned addresses is sometimes called an internet host table. If 
your site has a host table, find out how many class A, B, and C network numbers have been 
assigned. 

How many hosts are attached to each of the local area networks at your site? Does your 
site have any local area networks for which a class C address is insufficient? 

What is the chief difference between the IP addressing scheme and the U.S. telephone 
numbering scheme? 

A single central authority cannot manage to assign Internet addresses fast enough to accom- 
modate the demand. Can you invent a scheme that allows the central authority to divide its 
task among several groups but still ensure that each assigned address is unique? 

Does network standard byte order differ from your local machine's byte order? 

How many IP addresses would be needed to assign a unique IP address to every house in 
your country? the world? Is the IP address space sufficient? 



Mapping Internet Addresses 
To Physical Addresses 
(ARP) 

5.1 Introduction 

We described the TCPIIP address scheme in which each host is assigned a 32-bit 
address, and said that an internet behaves like a virtual network, using only the assigned 
addresses when sending and receiving packets. We also reviewed several network 
hardware technologies, and noted that two machines on a given physical network can 
communicate only if they know each other's physical network address. What we have 
not mentioned is how a host or a router maps an IP address to the correct physical ad- 
dress when it needs to send a packet across a physical net. This chapter considers that 
mapping, showing how it is implemented for the two most common physical network 
address schemes. 

5.2 The Address Resolution Problem 

Consider two machines A and B that connect to the same physical network. Each 
has an assigned IP address ZA and ZB and a physical address PA and PB. The goal is to 
devise low-level software that hides physical addresses and allows higher-level pro- 
grams to work only with internet addresses. Ultimately, however, communication must 
be carried out by physical networks using whatever physical address scheme the under- 
lying network hardware supplies. Suppose machine A wants to send a packet to 
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machine B across a physical network to which they both attach, but A has only B's in- 
ternet address IB. The question arises: how does A map that address to B's physical ad- 
dress, PB? 

Address mapping must be performed at each step along a path from the original 
source to the ultimate destination. In particular, two cases arise. First, at the last step 
of delivering a packet, the packet must be sent across one physical network to its final 
destination. The computer sending the packet must map the final destination's Internet 
address to the destination's physical address. Second, at any point along the path from 
the source to the destination other than the final step, the packet must be sent to an in- 
termediate router. Thus, the sender must map the intermediate router's Internet address 
to a physical address. 

The problem of mapping high-level addresses to physical addresses is known as 
the address resolution problem and has been solved in several ways. Some protocol 
suites keep tables in each machine that contain pairs of high-level and physical ad- 
dresses. Others solve the problem by encoding hardware addresses in high-level ad- 
dresses. Using either approach exclusively makes high-level addressing awkward at 
best. This chapter discusses two techniques for address resolution used by TCPIIP pro- 
tocols and shows when each is appropriate. 

5.3 Two Types Of Physical Addresses 

There are two basic types of physical addresses, exemplified by the Ethernet, 
which has large, fixed physical addresses, and proNET, which has small, easily config- 
ured physical addresses. Address resolution is difficult for Ethernet-like networks, but 
easy for networks like proNET. We will consider the easy case first. 

5.4 Resolution Through Direct Mapping 

Consider a proNET token ring network. Recall from Chapter 2 that proNET uses 
small integers for physical addresses and allows the user to choose a hardware address 
when installing an interface board in a computer. The key to making address resolution 
easy with such network hardware lies in observing that as long as one has the freedom 
to choose both IP and physical addresses, they can be selected such that parts of them 
are the same. Typically, one assigns IP addresses with the hostid portion equal to 1, 2, 
3, and so on, and then, when installing network interface hardware, selects a physical 
address that corresponds to the IP address. For example, the system administrator 
would select physical address 3 for a computer with the IP address 192.5.48.3 because 
192.5.48.3 is a class C address with the host portion equal to 3. 

For networks like proNET, computing a physical address from an IP address is 
trivial. The computation consists of extracting the host portion of the IP address. Ex- 
traction is computationally efficient on most architectures because it requires only a few 
machine instructions. The mapping is easy to maintain because it can be performed 
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without reference to external data. Finally, new computers can be added to the network 
without changing existing assignments or recompiling code. 

Conceptually, choosing a numbering scheme that makes address resolution effi- 
cient means selecting a function f that maps IP addresses to physical addresses. The 
designer may be able to select a physical address numbering scheme as well, depending 
on the hardware. Resolving IP address IA means computing 

We want the computation off to be efficient. If the set of physical addresses is con- 
strained, it may be possible to arrange efficient mappings other than the one given in 
the example above. For instance, when using IP over a connection-oriented network 
such as ATM, one cannot choose physical addresses. On such networks, one or more 
computers (servers) store pairs of addresses, where each pair contains an Internet ad- 
dress and the corresponding physical address. Typically, such servers store the pairs in 
a table in memory to speed searching. To guarantee efficient address resolution in such 
cases, software can use a conventional hash function to search the table. Exercise 5.1 
suggests a related alternative. 

5.5 Resolution Through Dynamic Binding 

To understand why address resolution is difficult for some networks, consider Eth- 
ernet technology. Recall from Chapter 2 that each Ethernet interface is assigned a 48- 
bit physical address when the device is manufactured. As a consequence, when 
hardware fails and requires that an Ethernet interface be replaced, the machine's physi- 
cal address changes. Furthermore, because the Ethernet address is 48 bits long, there is 
no hope it can be encoded in a 32-bit IP addresst. 

Designers of TCPLP protocols found a creative solution to the address resolution 
problem for networks like the Ethernet that have broadcast capability. The solution al- 
lows new hosts or routers to be added to the network without recompiling code, and 
does not require maintenance of a centralized database. To avoid maintaining a table of 
mappings, the designers chose to use a low-level protocol to bind addresses dynamical- 
ly. Termed the Address Resolution Protocol (ARP), the protocol provides a mechanism 
that is both reasonably efficient and easy to maintain. 

As Figure 5.1 shows, the idea behind dynamic resolution with ARP is simple: 
when host A wants to resolve IP address ZB, it broadcasts a special packet that asks the 
host with IP address l e  to respond with its physical address, PB. AU hosts, including B, 
receive the request, but only host B recognizes its IP address and sends a reply that con- 
tains its physical address. When A receives the reply, it uses the physical address to 
send the internet packet directly to B. We can summarize: 

tBecause direct mapping is more convenient and efficient than dynamic binding, the next generation of 
IP is being designed to allow 48-bit hardware addresses to be encoded in IP addresses. 



Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5 

The Address Resolution Protocol, ARP, allows a host to find the phy- 
sical address of a target host on the same physical network, given 
only the target's IP address. 

Figure 5.1 The ARP protocol. To determine PB, B's physical address, from 
IB, its IP address, (a) host A broadcasts an ARP request containing 
IB to all machines on the net, and (b) host B responds with an 
ARP reply that contains the pair (Is, PB).  

5.6 The Address Resolution Cache 

It may seem silly that for A to send a packet to B it first sends a broadcast that 
reaches B. Or it may seem even sillier that A broadcasts the question, "how can I reach 
you?" instead of just broadcasting the packet it wants to deliver. But there is an impor- 
tant reason for the exchange. Broadcasting is far too expensive to be used every time 
one machine needs to transmit a packet to another because every machine on the net- 
work must receive and process the broadcast packet. 
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5.7 ARP Cache Timeout 

To reduce communication costs, computers that use ARP maintain a cache of re- 
cently acquired IP-to-physical address bindings. That is, whenever a computer sends an 
ARP request and receives an ARP reply, it saves the IP address and corresponding 
hardware address information in its cache for successive lookups. When transmitting a 
packet, a computer always looks in its cache for a binding before sending an AFW re- 
quest. If it finds the desired binding in its ARP cache, the computer need not broadcast 
on the network. Thus, when two computers on a network communicate, they begin 
with an ARP request and response, and then repeatedly transfer packets without using 
ARP for each one. Experience shows that because most network communication in- 
volves more than one packet transfer, even a small cache is worthwhile. 

The AFW cache provides an example of soj? state, a technique commonly used in 
network protocols. The name describes a situation in which information can become 
"stale" without warning. In the case of ARP, consider two computers, A and B, both 
connected to an Ethernet. Assume A has sent an ARP request, and B has replied. 
Further assume that after the exchange B crashes. Computer A will not receive any no- 
tification of the crash. Moreover, because it already has address binding information for 
B in its ARP cache, computer A will continue to send packets to B. The Ethernet 
hardware provides no indication that B is not on-line because Ethernet does not have 
guaranteed delivery. Thus, A has no way of knowing when information in its AFW 
cache has become incorrect. 

To accommodate soft state, responsibility for correctness lies with the owner of the 
information. Typically, protocols that implement soft state use timers, with the state in- 
formation being deleted when the timer expires. For example, whenever address bind- 
ing information is placed in an AFW cache, the protocol requires a timer to be set, with 
a typical timeout being 20 minutes. When the timer expires, the information must be 
removed. After removal there are two possibilities. If no further packets are sent to the 
destination, nothing occurs. If a packet must be sent to the destination and there is no 
binding present in the cache, the computer follows the normal procedure of broadcasting 
an ARP request and obtaining the binding. If the destination is still reachable, the bind- 
ing will again be placed in the ARP cache. If not, the sender will discover that the des- 
tination is off-line. 

The use of soft state in ARP has advantages and disadvantages. The chief advan- 
tage arises from autonomy. First, a computer can determine when information in its 
ARP cache should be revalidated independent of other computers. Second, a sender 
does not need successful communication with the receiver or a third party to determine 
that a binding has become invalid; if a target does not respond to an ARP request, the 
sender will declare the target to be down. Third, the scheme does not rely on network 
hardware to provide reliable transfer. The chief disadvantage of soft state arises from 
delay - if the timer interval is N seconds, a sender may not detect that a receiver has 
crashed until N seconds elapse. 
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5.8 ARP Refinements 

Several refinements of ARP have been included in the protocol. First, observe that 
if host A is about to use ARP because it needs to send to B, there is a high probability 
that host B will need to send to A in the near future. To anticipate B's need and avoid 
extra network traffic, A includes its IP-to-physical address binding when sending B a re- 
quest. B extracts A's binding from the request, saves the binding in its ARP cache, and 
then sends a reply to A. Second, notice that because A broadcasts its initial request, all 
machines on the network receive it and can extract and update A's IP-to-physical ad- 
dress binding in their cache. Third, when a computer has its host interface replaced, 
(e.g., because the hardware has failed) its physical address changes. Other computers 
on the net that have stored a binding in their ARP cache need to be informed so they 
can change the entry. The computer can notify others of a new address by sending an 
ARP broadcast when it boots. 

The following rule summarizes refinements: 

The sender's IP-to-physical address binding is included in every ARP 
broadcast; receivers update the IP-to-physical address binding infor- 
mation in their cache before processing an ARP packet. 

5.9 Relationship Of ARP To Other Protocols 

ARP provides one possible mechanism to map from IP addresses to physical ad- 
dresses; we have already seen that some network technologies do not need it. The point 
is that ARP would be completely unnecessary if we could make all network hardware 
recognize IP addresses. Thus, ARP merely imposes a new address scheme on top of 
whatever low-level address mechanism the hardware uses. The idea can be summar- 
ized: 

ARP is a low-level protocol that hides the underlying network physi- 
cal addressing, permitting one to assign an arbitrary IP address to 
every machine. We think of ARP as part of the physical network sys- 
tem, and not as part of the internet protocols. 

5.1 0 ARP Implementation 

Functionally, ARP is divided into two parts. The first part maps an IP address to a 
physical address when sending a packet, and the second part answers requests from oth- 
er machines. Address resolution for outgoing packets seems straightforward, but small 
details complicate an implementation. Given a destination IP address the software con- 
sults its ARP cache to see if it knows the mapping from IP address to physical address. 
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If it does, the software extracts the physical address, places the data in a frame using 
that address, and sends the frame. If it does not know the mapping, the software must 
broadcast an ARP request and wait for a reply. 

Broadcasting an ARP request to find an address mapping can become complex. 
The target machine can be down or just too busy to accept the request. If so, the sender 
may not receive a reply or the reply may be delayed. Because the Ethernet is a best- 
effort delivery system, the initial ARP broadcast request can also be lost (in which case 
the sender should retransmit, at least once). Meanwhile, the host must store the original 
outgoing packet so it can be sent once the address has been resolvedt. In fact, the host 
must decide whether to allow other application programs to proceed while it processes 
an AFW request (most do). If so, the software must handle the case where an applica- 
tion generates additional ARP requests for the same address without broadcasting multi- 
ple requests for a given target. 

Finally, consider the case where machine A has obtained a binding for machine B, 
but then B's hardware fails and is replaced. Although B's address has changed, A's 
cached binding has not, so A uses a nonexistent hardware address, making successful re- 
ception impossible. This case shows why it is important to have ARP software treat its 
table of bindings as a cache and remove entries after a fixed period. Of course, the ti- 
mer for an entry in the cache must be reset whenever an AFW broadcast arrives contain- 
ing the binding (but it is not reset when the entry is used to send a packet). 

The second part of the ARP code handles ARP packets that arrive from the net- 
work. When an ARP packet arrives, the software first extracts the sender's IP address 
and hardware address pair, and examines the local cache to see if it already has an entry 
for the sender. If a cache entry exists for the given IP address, the handler updates that 
entry by overwriting the physical address with the physical address obtained from the 
packet. The receiver then processes the rest of the AFW packet. 

A receiver must handle two types of incoming ARP packets. If an ARP request ar- 
rives, the receiving machine must see if it is the target of the request (i.e., some other 
machine has broadcast a request for the receiver's physical address). If so, the ARP 
software fomls a reply by supplying its physical hardware address, and sends the reply 
directly back to the requester. The receiver also adds the sender's address pair to its 
cache if the pair is not already present. If the IP address mentioned in the ARP request 
does not match the local IP address, the packet is requesting a mapping for some other 
machine on the network and can be ignored. 

The other interesting case occurs when an AFW reply arrives. Depending on the 
implementation, the handler may need to create a cache entry, or the entry may have 
been created when the request was generated. In any case, once the cache has been up- 
dated, the receiver tries to match the reply with a previously issued request. Usually, 
replies arrive in response to a request, which was generated because the machine has a 
packet to deliver. Between the time a machine broadcasts its ARP request and receives 
the reply, application programs or higher-level protocols may generate additional re- 
quests for the same address; the software must remember that it has already sent a re- 
quest and not send more. Usually, ARP software places the additional packets on a 
queue. Once the reply arrives and the address binding is known, the ARP software re- 

?If the delay is significant, the host may choose to discard the outgoing packet(s). 
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moves packets from the queue, places each packet in a frame, and uses the address 
binding to fill in the physical destination address. If it did not previously issue a re- 
quest for the IP address in the reply, the machine updates the sender's entry in its cache, 
and then simply stops processing the packet. 

5.1 1 ARP Encapsulation And Identification 

When ARP messages travel from one machine to another, they must be carried in 
physical frames. Figure 5.2 shows that the ARP message is carried in the data portion 
of a frame. 

ARPMESSAGE 

FRAME I HEADER I FRAME DATA AREA 

Figure 5.2 An ARP message encapsulated in a physical network frame. 

To identify the frame as carrying an ARP message, the sender assigns a special value to 
the type field in the frame header, and places the ARP message in the frame's data 
field. When a frame arrives at a computer, the network software uses the frame type to 
determine its contents. In most technologies, a single type value is used for all frames 
that carry an ARP message - network software in the receiver must further examine 
the ARP message to distinguish between ARP requests and ARP replies. For example, 
on an Ethernet, frames carrying ARP messages have a type field of 0806,,. This is a 
standard value assigned by the authority for Ethernet; other network hardware technolo- 
gies use other values. 

5.1 2 ARP Protocol Format 

Unlike most protocols, the data in ARP packets does not have a fixed-format 
header. Instead, to make ARP useful for a variety of network technologies, the length 
of fields that contain addresses depend on the type of network. However, to make it 
possible to interpret an arbitrary ARP message, the header includes fixed fields near the 
beginning that speclfy the lengths of the addresses found in succeeding fields. In fact, 
the ARP message format is general enough to allow it to be used with arbitrary physical 
addresses and arbitrary protocol addresses. The example in Figure 5.3 shows the 28- 
octet ARP message format used on Ethernet hardware (where physical addresses are 
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48-bits or 6 octets long), when resolving IP protocol addresses (which are 4 octets 
long). 

Figure 5.3 shows an ARP message with 4 octets per line, a format that is standard 
throughout this text. Unfortunately, unlike most of the remaining protocols, the 
variable-length fields in ARP packets do not align neatly on 32-bit boundaries, making 
the diagram difficult to read. For example, the sender's hardware address, labeled 
SENDER HA, occupies 6 contiguous octets, so it spans two lines in the diagram. 

SENDER IP (octets 2-3) I TARGET HA (octets 0-1) I 

PROTOCOL TYPE 

OPERATION 

HARDWARE TYPE 

SENDER HA (octets 4-5) 

TARGET HA (octets 2-5) 

TARGET IP (octets 0-3) 

SENDER HA (octets 0-3) 

HLEN 

SENDER IP (octets 0-1) 

Figure 5.3 An example of the A R P W  message format when used for IP- 
to-Ethernet address resolution. The length of fields depends on 
the hardware and protocol address lengths, which are 6 octets for 
an Ethernet address and 4 octets for an IP address. 

PLEN 

Field HARDWARE TYPE specifies a hardware interface type for which the sender 
seeks an answer; it contains the value 1 for Ethernet. Similarly, field PROTOCOL 
TYPE specifies the type of high-level protocol address the sender has supplied; it con- 
tains 0800,, for IP addresses. Field OPERATION specifies an ARP request (I), ARP 
response (2), RARPt request (3), or RARP response (4). Fields HLEN and PLEN allow 
ARP to be used with arbitrary networks because they speclfy the length of the hardware 
address and the length of the high-level protocol address. The sender supplies its 
hardware address and IF' address, if known, in fields SENDER HA and SENDER IP. 

When making a request, the sender also supplies the target hardware address 
(RARP) or target IP address (ARP), using fields TARGET HA or TARGET IP. Before 
the target machine responds, it fills in the missing addresses, swaps the target and 
sender pairs, and changes the operation to a reply. Thus, a reply carries the IP and 
hardware addresses of the original requester, as well as the IP and hardware addresses 
of the machine for which a binding was sought. 

tThe next chapter describes RAW, another protocol that uses the same message format. 
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5.13 Summary 

IP addresses are assigned independent of a machine's physical hardware address. 
To send an internet packet across a physical net from one computer to another, the net- 
work software must map the IP address into a physical hardware address and use the 
hardware address to transmit the frame. If hardware addresses are smaller than IP ad- 
dresses, a direct mapping can be established by having the machine's physical address 
encoded in its IP address. Otherwise, the mapping must be performed dynamically. 
The Address Resolution Protocol (ARP) performs dynamic address resolution, using 
only the low-level network communication system. ARP permits machines to resolve 
addresses without keeping a permanent record of bindings. 

A machine uses ARP to find the hardware address of another machine by broad- 
casting an ARP request. The request contains the IP address of the machine for which a 
hardware address is needed. All machines on a network receive an ARP request. If the 
request matches a machine's IP address, the machine responds by sending a reply that 
contains the needed hardware address. Replies are directed to one machine; they are 
not broadcast. 

To make ARP efficient, each machine caches IP-to-physical address bindings. Be- 
cause internet traffic tends to consist of a sequence of interactions between pairs of 
machines, the cache eliminates most ARP broadcast requests. 

FOR FURTHER STUDY 

The address resolution protocol used here is given by Plummer [RFC 8261 and has 
become a TCPAP internet protocol standard. Dalal and Printis [I9811 describes the re- 
lationship between Ethernet and IP addresses, and Clark [RFC 8141 discusses addresses 
and bindings in general. Parr [RFC 10291 discusses fault tolerant address resolution. 
Kirkpatrick and Recker [RFC 11661 specifies values used to identify network frames in 
the Internet Numbers document. Volume 2 of this text presents an example ARP im- 
plementation, and discusses the caching policy. 

EXERCISES 

5.1 Given a small set of physical addresses (positive integers), can you find a function f and an 
assignment of IP addresses such that f maps the P addresses 1-to-1 onto the physical ad- 
dresses and computing f is efficient? (Hint: look at the literature on perfect hashing). 

5.2 In what special cases does a host connected to an Ethernet not need to use ARP or an ARP 
cache before transmitting an IP datagram? 
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One common algorithm for managing the ARP cache replaces the least recently used entry 
when adding a new one. Under what circumstances can this algorithm produce unneces- 
sary network traffic? 
Read the standard carefully. Should ARP update the cache if an old entry already exists for 
a given IP address? Why or why not? 

Should ARP software modify the cache even when it receives information without specifi- 
cally requesting it? Why or why not? 

Any implementation of ARP that uses a fixed-size cache can fail when used on a network 
that has many hosts and much ARP traffic. Explain how. 

ARP is often cited as a security weakness. Explain why. 
Suppose an (incorrect) ARP implementation does not remove cache entries if they are fre- 
quently used. Explain what can happen if the hardware address field in an ARP response 
becomes corrupted during transmission. 

Suppose machine C receives an ARP request sent from A looking for target B, and suppose 
C has the binding from Is to PB in its cache. Should C answer the request? Explain. 

How can a workstation use ARP when it boots to find out if any other machine on the net- 
work is impersonating it? What are the disadvantages of the scheme? 

Explain how sending IP packets to nonexistent addresses on a remote Ethernet can generate 
excess broadcast traffic on that network. 





Determining An Internet 
Address At Startup (RA RP) 

6.1 Introduction 

We now know that physical network addresses are both low-level and hardware 
dependent, and we understand that each machine using TCP/IP is assigned one or more 
32-bit IP addresses that are independent of the machine's hardware addresses. Applica- 
tion programs always use the IP address when specifying a destination. Because hosts 
and routers must use a physical address to transmit a datagram across an underlying 
hardware network; they rely on address resolution schemes like ARP to map between an 
IP address and an equivalent hardware address. 

Usually, a computer's IP address is kept on its secondary storage, where the 
operating system finds it at startup. The question arises, "How does a machine without 
a permanently attached disk determine its IP address?" The problem is critical for 
workstations that store files on a remote server or for small embedded systems because 
such machines need an IP address before they can use standard TCPm file transfer pro- 
tocols to obtain their initial boot image. This chapter explores the question of how to 
obtain an IP address, and describes a low-level protocol that such machines can use be- 
fore they boot from a remote file server. Chapter 23 extends the discussion of 
bootstrapping, and considers popular alternatives to the protocol presented here. 

Because an operating system image that has a specific IP address bound into the 
code cannot be used on multiple computers, designers usually try to avoid compiling a 
machine's IP address in the operating system code or support software. In particular, 
the bootstrap code often found in Read Only Memory (ROM) is usually built so the 
same image can run on many machines. When such code starts execution, it uses the 
network to contact a server and obtain the computer's IP address. 
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The bootstrap procedure sounds paradoxical: a machine communicates with a re- 
mote server to obtain an address needed for communication. The paradox is only ima- 
gined, however, because the machine does know how to communicate. It can use its 
physical address to communicate over a single network. Thus, the machine must resort 
to physical network addressing temporarily in the same way that operating systems use 
physical memory addressing to set up page tables for virtual addressing. Once a 
machine knows its IP address, it can communicate across an internet. 

The idea behind finding an IP address is simple: a machine that needs to know its 
address sends a request to a server? on another machine, and waits until the server 
sends a response. We assume the server has access to a disk where it keeps a database 
of internet addresses. In the request, the machine that needs to know its internet address 
must uniquely identify itself, so the server can look up the correct internet address and 
send a reply. Both the machine that issues the request and the server that responds use 
physical network addresses during their brief communication. How does the requester 
know the physical address of a server? Usually, it does not - it simply broadcasts the 
request to all machines on the local network. One or more servers respond. 

Whenever a machine broadcasts a request for an address, it must uniquely identify 
itself. What information can be included in its request that will uniquely identify the 
machine? Any unique hardware identification suffices (e.g., the CPU serial number). 
However, the identification should be something that an executing program can obtain 
easily. Unfortunately, the length or format of CPU-specific information may vary 
among processor models, and we would like to devise a server that accepts requests 
from all machines on the physical network using a single format. Furthermore, en- 
gineers who design bootstrap code attempt to create a single software image that can 
execute on an arbitrary processor, and each processor model may have a slightly dif- 
ferent set of instructions for obtaining a serial number. 

6.2 Reverse Address Resolution Protocol (RARP) 

The designers of TCP/IP protocols realized that there is another piece of uniquely 
identifying information readily available, namely, the machine's physical network ad- 
dress. Using the physical address as a unique identification has two advantages. Be- 
cause a host obtains its physical addresses from the network interface hardware, such 
addresses are always available and do not have to be bound into the bootstrap code. 
Because the identifying information depends on the network and not on the CPU vendor 
or model, all machines on a given network will supply uniform, unique identifiers. 
Thus, the problem becomes the reverse of address resolution: given a physical network 
address, devise a scheme that will allow a server to map it into an internet address. 

The TCPnP protocol that allows a computer to obtain its IP address from a server 
is known as the Reverse Address Resolution Protocol (RARP). RARP is adapted from 
the ARP protocol of the previous chapter and uses the same message format shown in 
Figure 5.3. In practice, the RARP message sent to request an internet address is a little 
more general than what we have outlined above: it allows a machine to request the IP 

tChapter 21 discusses servers in detail. 
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address of a third party as easily as its own. It also allows for multiple physical net- 
work types. 

Like an ARP message, a RARP message is sent from one machine to another en- 
capsulated in the data portion of a network frame. For example, an Ethernet frame car- 
rying a RARP request has the usual preamble, Ethernet source and destination ad- 
dresses, and packet type fields in front of the frame. The frame type contains the value 
8035,, to identify the contents of the frame as a RARP message. The data portion of 
the frame contains the 28-octet RARP message. 

Figure 6.1 illustrates how a host uses RARP. The sender broadcasts a RARP re- 
quest that specifies itself as both the sender and target machine, and supplies its physi- 
cal network address in the target hardware address field. All computers on the network 
receive the request, but only those authorized to supply the RARP service process the 
request and send a reply; such computers are known informally as RARP servers. For 
RARP to succeed, the network must contain at least one RARP server. 

Figure 6.1 Example exchange using the RARP protocol. (a) Machine A 
broadcasts a RARP request specifying itself as a target, and (b) 
those machines authorized to supply the RAW service (C and D) 
reply directly to A. 

Servers answer requests by filling in the target protocol address field, changing the 
message type from request to reply, and sending the reply back directly to the machine 
making the request. The original machine receives replies from all RARP servers, even 
though only the first is needed. 
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Keep in mind that all communication between the computer seeking its IP address 
and the server supplying it must be carried out using only the physical network. Furth- 
ermore, the protocol allows a host to ask about an arbitrary target. Thus, the sender 
supplies its hardware address separate from the target hardware address, and the server 
is careful to send the reply to the sender's hardware address. On an Ethernet, having a 
field for the sender's hardware address may seem redundant because the information is 
also contained in the Ethernet frame header. However, not all Ethernet hardware pro- 
vides the operating system with access to the physical frame header. 

6.3 Timing RARP Transactions 

Like any communication on a best-effort delivery network, RARP requests and 
responses are susceptible to loss (including discard by the network interface if the CRC 
indicates that the frame was corrupted). Because RARP uses the physical network 
directly, no other protocol software will time the response or retransmit the request; 
RARP software must handle these tasks. In general, RARP is used only on local area 
networks like the Ethernet, where the probability of failure is low. If a network has 
only one RARP server, however, that machine may not be able to handle the load, so 
packets may be dropped. 

Some computers that rely on RARP to boot, choose to retry indefinitely until they 
receive a response. Other implementations announce failure after only a few tries to 
avoid flooding the network with unnecessary broadcast traffic (e.g., in case the server is 
unavailable). On an Ethernet, network failure is less likely than server overload. Mak- 
ing RARP software retransmit quickly may have the unwanted effect of flooding a 
congested server with more traffic. Using a large delay ensures that servers have ample 
time to satisfy the request and return an answer. 

6.4 Primary And Backup RARP Servers 

The chief advantage of having several computers function as RARP servers is that 
it makes the system more reliable. If one server is down or too heavily loaded to 
respond, another answers the request. Thus, it is highly likely that the service will be 
available. The chief disadvantage of using many servers is that when a machine broad- 
casts a RARP request, the network becomes overloaded because all servers attempt to 
respond. On an Ethernet, for example, using multiple RARP servers makes the proba- 
bility of collision high. 

How can the RAW service be arranged to keep it available and reliable without 
incurring the cost of multiple, simultaneous replies? There are at least two possibilities, 
and they both involve delaying responses. In the first solution, each machine that 
makes RARP requests is assigned a primary server. Under normal circumstances, only 
the machine's primary server responds to its RARP request. All nonprimary servers re- 
ceive the request but merely record its arrival time. If the primary server is unavailable, 
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the original machine will timeout waiting for a response and then rebroadcast the re- 
quest. Whenever a nonprimary server receives a second copy of a RARP request within 
a short time of the fist, it responds. 

The second solution uses a similar scheme but attempts to avoid having all nonpri- 
mary servers transmit responses simultaneously. Each nonprimary machine that re- 
ceives a request computes a random delay and then sends a response. Under normal 
circumstances, the primary server responds immediately and successive responses are 
delayed, so there is low probability that several responses arrive at the same time. 
When the primary server is unavailable, the requesting machine experiences a small de- 
lay before receiving a reply. By choosing delays carefully, the designer can ensure that 
requesting machines do not rebroadcast before they receive an answer. 

6.5 Summary 

At system startup, a computer that does not have permanent storage must contact a 
server to find its IP address before it can communicate using TCP/IP. This chapter ex- 
amined the RARP protocol that uses physical network addressing to obtain the 
machine's internet address. The RARP mechanism supplies the target machine's physi- 
cal hardware address to uniquely identify the processor and broadcasts the RARP re- 
quest. Servers on the network receive the message, look up the mapping in a table 
(presumably from secondary storage), and reply to the sender. Once a machine obtains 
its IP address, it stores the address in memory and does not use RARP again until it re- 
boots. 

FOR FURTHER STUDY 

The details of RARP are given in Finlayson, et. al. [RFC 9031. Finlayson [RFC 
9061 describes workstation bootstrapping using the TFTP protocol. Bradley and Brown 
[RFC 12931 specifies a related protocol, Inverse ARP. Inverse ARP p e m ~ t s  a computer 
to query the machine at the opposite end of a hardware connection to determine its IP 
address, and was intended for computers on a connection-oriented network such as 
Frame Relay or ATM. Volume 2 of this text describes an example implementation of 
RARP. 

Chapter 23 considers alternatives to RARP known as BOOTP and DHCP. Unlike 
the low-level address determination scheme RARP supplies, BOOTP and DHCP build 
on higher level protocols like IP and UDP. Chapter 23 compares the two approaches, 
discussing the strengths and weaknesses of each. 
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A RARP server can broadcast RARP replies to all machines or transmit each reply directly 
to the machine that makes the request. Characterize a network technology in which broad- 
casting replies to all machines is beneficial. 

RARP is a narrowly focused protocol in the sense that replies only contain one piece of in- 
formation (i.e., the requested IP address). When a computer boots, it usually needs to 
know its name in addition to its Internet address. Extend RARP to supply the additional in- 
formation. 

How much larger will Ethernet frames become when information is added to RAW as 
described in the previous exercise? 

Adding a second RARP server to a network increases reliability. Does it ever make sense 
to add a third? How about a fourth? Why or Why not? 

The diskless workstations from one vendor use RARP to obtain their IP addresses, but al- 
ways assume the response comes from the workstation's file server. The diskless machine 
then tries to obtain a boot image from that server. If it does not receive a response, the 
workstation enters an infinite loop broadcasting boot requests. Explain how adding a back- 
up RARP server to such a configuration can cause the network to become congested with 
broadcasts. Hint: think of power failures. 

Monitor a local network while you reboot various computers. Which use RARP? 

The backup RARP servers discussed in the text use the arrival of a second request in a 
short period of time to trigger a reply. Consider the RARP server scheme that has all 
servers answer the first request, but avoids congestion by having each server delay a ran- 
dom time before answering. Under what circumstances could such a design yield better 
results than the design described in the text? 



Internet Protocol: 
Connectionless Datagram 
Delivery 

7.1 Introduction 

Previous chapters review pieces of network hardware and software that make inter- 
net communication possible, explaining the underlying network technologies and ad- 
dress resolution. This chapter explains the fundamental principle of connectionless 
delivery and discusses how it is provided by the Internet Protocol (IP), which is one of 
the two major protocols used in internetworking (TCP being the other). We will study 
the format of IP datagrams and see how they form the basis for all internet communica- 
tion. The next two chapters continue our examination of the Internet Protocol by dis- 
cussing datagram routing and error handling. 

7.2 A Virtual Network 

Chapter 3 discusses an internet architecture in which routers connect multiple phy- 
sical networks. Looking at the architecture may be misleading, because the focus 
should be on the interface that an internet provides to users, not on the interconnection 
technology. 
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A user thinks of an internet as a single virtual network that intercon- 
nects all hosts, and through which communication is possible; its 
underlying architecture is both hidden and irrelevant. 

In a sense, an internet is an abstraction of physical networks because, at the lowest lev- 
el, it provides the same functionality: accepting packets and delivering them. Higher 
levels of internet software add most of the rich functionality users perceive. 

7.3 Internet Architecture And Philosophy 

Conceptually, a TCPIIP internet provides three sets of services as shown in Figure 
7.1; their arrangement in the figure suggests dependencies among them. At the lowest 
level, a connectionless delivery service provides a foundation on which everything rests. 
At the next level, a reliable transport service provides a higher level platform on which 
applications depend. We will soon explore each of these services, understand what they 
provide, and see the protocols associated with them. 

RELIABLE TRANSPORT SERVICE 

CONNECTIONLESS PACKET DELIVERY SERVICE 

Figure 7.1 The three conceptual layers of internet services. 

7.4 The Conceptual Service Organization 

Although we can associate protocol software with each of the services in Figure 
7.1, the reason for identifying them as conceptual parts of the internet is that they clear- 
ly point out the philosophical underpinnings of the design. The point is: 

Internet sofrware is designed around three conceptual networking ser- 
vices arranged in a hierarchy; much of its success has resulted be- 
cause this architecture is surprisingly robust and adaptable. 
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One of the most significant advantages of this conceptual separation is that it becomes 
possible to replace one service without disturbing others. Thus, research and develop- 
ment can proceed concurrently on all three. 

7.5 Connectionless Delivery System 

The most fundamental internet service consists of a packet delivery system. 
Technically, the service is defined as an unreliable, best-effort, comectionless packet 
delivery system, analogous to the service provided by network hardware that operates 
on a best-effort delivery paradigm. The service is called unreliable because delivery is 
not guaranteed. The packet may be lost, duplicated, delayed, or delivered out of order, 
but the service will not detect such conditions, nor will it infornl the sender or receiver. 
The service is called connectionless because each packet is treated independently from 
all others. A sequence of packets sent from one computer to another may travel over 
different paths, or some may be lost while others are delivered. Finally, the service is 
said to use best-effort delivery because the internet software makes an earnest attempt to 
deliver packets. That is, the internet does not discard packets capriciously; unreliability 
arises only when resources are exhausted or underlying networks fail. 

7.6 Purpose Of The lnternet Protocol 

The protocol that defines the unreliable, connectionless delivery mechanism is 
called the Internet Protocol and is usually referred to by its initials, IPt. IP provides 
three important definitions. First, the IP protocol defines the basic unit of data transfer 
used throughout a TCPhP internet. Thus, it specifies the exact format of all data as it 
passes across the internet. Second, IP software performs the routing function, choosing 
a path over which data will be sent. Third, in addition to the precise, formal specifica- 
tion of data formats and routing, IP includes a set of rules that embody the idea of un- 
reliable packet delivery. The rules characterize how hosts and routers should process 
packets, how and when error messages should be generated, and the conditions under 
which packets can be discarded. IP is such a fundamental part of the design that a 
TCP/IP internet is sometimes called an IP-based technology. 

We begin our consideration of IP in this chapter by looking at the packet format it 
specifies. We leave until later chapters the topics of routing and error handling. 

7.7 The lnternet Datagram 

The analogy between a physical network and a TCP/IP internet is strong. On a 
physical network, the unit of transfer is a frame that contains a header and data, where 
the header gives information such as the (physical) source and destination addresses. 
Th -internet chlf its basic transfer unit anJnternet datagram, sometimes referred to as < 

tThe abbreviation IF' gives rise to the term "IF' address." 
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an IP datagram or merely a datagram. Like a typical physical network frame, a da- 
tagram is divided into header and data areas. Also like a frame, the datagram header 
contains the source and destination addresses and a type field that identifies the contents 
of the datagram. The difference, of course, is that the datagram header contains IP ad- 
dresses whereas the frame header contains physical addresses. Figure 7.2 shows the 
general form of a datagram: 

DATAGRAM HEADER DATAGRAM DATA AREA 

Figure 7.2 General form of an IP datagram, the TCP/IP analogy to a network 
frame. IP specifies the header format including the source and 
destination IP addresses. IP does not specify the format of the 
data area; it can be used to transport arbitrary data. 

7.7.1 Datagram Format 

Now that we have described the general layout of an IP datagram, we can look at 
the contents in more detail. Figure 7.3 shows the arrangement of fields in a datagram: 

I SOURCE lP ADDRESS I 

VERS I HLEN I SERVICE TYPE 

IDENTIFICATION 

TIME TO LIVE I PROTOCOL 

I DESTINATION IP ADDRESS I 

TOTAL LENGTH 

 FLAGS^ FRAGMENT OFFSET 

HEADER CHECKSUM 

I IP OPTIONS (IF ANY) I PADDING I 
I DATA I 

Figure 7 3  Format of an Internet datagram, the basic unit of transfer in a 
TCPLP internet. 

Because datagram processing occurs in software, the contents and format are not 
constrained by any hardware. For example, the first Cbit field in a datagram (VERS) 
contains the version of the IP protocol that was used to create the datagram. It is used 
to verify that the sender, receiver, and any routers in between them agree on the format 
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of the datagram. All IP software is required to check the version field before processing 
a datagram to ensure it matches the fomlat the software expects. If standards change, 
machines will reject datagrams with protocol versions that differ from theirs, preventing 
them from misinterpreting datagram contents according to an outdated format. The 
current IP protocol version is 4. Consequently, the term IPv4 is often used to denote 
the current protocol. 

The header length field (HLEN), also 4 bits, gives the datagram header length 
measured in 32-bit words. As we will see, all fields in the header have fixed length ex- 
cept for the IP OPTIONS and corresponding PADDING fields. The most common 
header, which contains no options and no padding, measures 20 octets and has a header 
length field equal to 5. 

The TOTAL LENGTH field gives the length of the IP datagram measured in octets, 
including octets in the header and data. The size of the data area can be computed by 
subtracting the length of the header (HLEN) from the TOTAL LENGTH. Because the 
TOTAL LENGTH field is 16 bits long, the maximum possible size of an IP datagram is 
216 or 65,535 octets. In most applications this is not a severe limitation. It may become 
more important in the future if higher speed networks can carry data packets larger than 
65,535 octets. 

7.7.2 Datagram Type Of Service And Differentiated Services 

Informally called Type Of Service (TOS), the 8-bit SERVICE TYPE field specifies 
how the datagram should be handled. The field was originally divided into five sub- 
fields as shown in Figure 7.4: 

Figure 7.4 The original five subfields that comprise the 8-bit SERVICE TYPE 
field. 

0 1 2 3 4 5 6 7 

Three PRECEDENCE bits specify datagram precedence, with values ranging from 0 
(normal precedence) through 7 (network control), allowing senders to indicate the im- 
portance of each datagram. Although some routers ignore type of service, it is an im- 
portant concept because it provides a mechanism that can allow control information to 
have precedence over data. For example, many routers use a precedence value of 6 or 7 
for routing traffic to make it possible for the routers to exchange routing information 
even when networks are congested. 

Bits D, T, and R specify the type of transport desired for the datagram. When set, 
the D bit requests low delay, the T bit requests high throughput, and the R bit requests 
high reliability. Of course, it may not be possible for an internet to guarantee the type 

UNUSED PRECEDENCE T D R 
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of transport requested (i.e., it could be that no path to the destination has the requested 
property). Thus, we think of the transport request as a hint to the routing algorithms, 
not as a demand. If a router does know more than one possible route to a given desti- 
nation, it can use the type of transport field to select one with characteristics closest to 
those desired. For example, suppose a router can select between a low capacity leased 
line or a high bandwidth (but high delay) satellite connection. Datagrams carrying 
keystrokes from a user to a remote computer could have the D bit set requesting that 
they be delivered as quickly as possible, while datagrams carrying a bulk file transfer 
could have the T bit set requesting that they travel across the high capacity satellite 
path. 

In the late 1990s, the IETF redefined the meaning of the 8-bit SERVICE TYPE 
field to accommodate a set of diferentiated services (DS). Figure 7.5 illustrates the 
resulting definition. 

Figure 7.5 The differentiated services (DS) interpretation of the SERVICE 
TYPE field in an IP datagram. 

CODEPOINT 

Under the differentiated services interpretation, the first six bits comprise a 
codepoint, which is sometimes abbreviated @CPL and the last two bits are left unused. 
A codepoint value maps to an underlying service definition, typically through an array 
of pointers. Although it is possible to define 64 separate services, the designers suggest 
that a given router will only have a few services, and multiple codepoints will map to 
each service. Moreover, to maintain backward compatibility with the original defini- 
tion, the standard distinguishes between the first three bits of the codepoint (the bits that 
were formerly used for precedence) and the last three bits. When the last three bits con- 
tain zero, the precedence bits define eight broad classes of service that adhere to the 
same guidelines as the original definition: datagrams with a higher number in their pre- 
cedence field are given preferential treatment over datagrams with a lower number. 
That is, the eight ordered classes are defined by codepoint values of the form: 

UNUSED 

xxxo 0 0 

where x denotes either a zero or a one. 
The differentiated services design also accommodates another existing practice - 

the widespread use of precedence 6 or 7 for routing traffic. The standard includes a 
special case to handle these precedence values. A router is required to implement at 
least two priority schemes: one for normal traffic and one for high-priority traffic. 
When the last three bits of the CODEPOINT field are zero, the router must map a 
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codepoint with precedence 6 or 7 into the higher priority class and other codepoint 
values into the lower priority class. Thus, if a datagram arrives that was sent using the 
original TOS scheme, a router using the differentiated services scheme will honor pre- 
cedence 6 and 7 as the datagram sender expects. 

The 64 codepoint values are divided into three administrative groups as Figure 7.6 
illustrates. 

Pool Codepoint Assigned By 
1 xxxxxo Standards organization 
2 X X X X ~  1 Local or experimental 
3 xxxxo 1 Local or experimental for now 

Figure 7.6 The three administrative pools of codepoint values. 

As the figure indicates, half of the values (i.e., the 32 values in pool I) must be as- 
signed interpretations by the ETF. Currently, all values in pools 2 and 3 are available 
for experimental or local use. However, if the standards bodies exhaust all values in 
pool I, they may also choose to assign values in pool 3. 

The division into pools may seem unusual because it relies on the low-order bits of 
the value to distinguish pools. Thus, rather than a contiguous set of values, pool I con- 
tains every other codepoint value (i.e., the even numbers between 2 and 64). The divi- 
sion was chosen to keep the eight codepoints corresponding to values xxxO 0 0 in the 
same pool. 

Whether the original TOS interpretation or the revised differentiated services in- 
terpretation is used, it is important to realize that routing software must choose from 
among the underlying physical network technologies at hand and must adhere to local 
policies. Thus, specifying a level of service in a datagram does not guarantee that 
routers along the path will agree to honor the request. To summarize: 

We regard the service type specification as a hint to the routing algo- 
rithm that helps it choose among various paths to a destination based 
on local policies and its knowledge of the hardware technologies 
available on those paths. An internet does not guarantee to provide 
any particular type of service. 

7.7.3 Datagram Encapsulation 

Before we can understand the next fields in a datagram, it is important to consider 
how datagrams relate to physical network frames. We start with a question: "How 
large can a datagram be?" Unlike physical network frames that must be recognized by 
hardware, datagrams are handled by software. They can be of any length the protocol 
designers choose. We have seen that the Pv4 datagram format allots 16 bits to the total 
length field, limiting the datagram to at most 65,535 octets. 
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More fundamental limits on datagram size arise in practice. We know that as da- 
tagrams move from one machine to another, they must always be transported by the 
underlying physical network. To make internet transportation efficient, we would like 
to guarantee that each datagram travels in a distinct physical frame. That is, we want 
our abstraction of a physical network packet to map directly onto a real packet if possi- 
ble. 

The idea of carrying one datagram in one network frame is called encapsulation. 
To the underlying network, a datagram is like any other message sent from one machine 
to another. The hardware does not recognize the datagram format, nor does it under- 
stand the IP destination address. Thus, as Figure 7.7 shows, when one machine sends 
an IP datagram to another, the entire datagram travels in the data portion of the network 
frame t . 

DATAGRAM DATA AREA 

Figure 7.7 The encapsulation of an lP datagram in a frame. The physical net- 
work treats the entire datagram, including the header, as data. 

+ + 

7.7.4 Datagram Size, Network MTU, and Fragmentation 

FRAME 
HEADER 

In the ideal case, the entire IP datagram fits into one physical frame, making 
transmission across the physical net efficient. To achieve such efficiency, the designers 
of IP might have selected a maximum datagram size such that a datagram would always 
fit into one frame. But which frame size should be chosen? After all, a datagram may 
travel across many types of physical networks as it moves across an internet to its final 
destination. 

To understand the problem, we need a fact about network hardware: each packet- 
switching technology places a fixed upper bound on the amount of data that can be 
transferred in one physical frame. For example, Ethernet limits transfers to 1500$ oc- 
tets of data, while FDDI permits approximately 4470 octets of data per frame. We refer 
to these limits as the network's maximum transfer unit or MTU. MTU sizes can be 
quite small: some hardware technologies limit transfers to 128 octets or less. Limiting 
datagram to fit the smallest possible MTU in the internet makes transfers inefficient 
when datagrams pass across a network that can carry larger size frames. However, al- 
lowing datagrams to be larger than the minimum network MTU in an internet means 
that a datagram may not always fit into a singIe network frame. 

FRAME DATA AREA 

tA field in the frame header usually identifies the data being carried; Ethernet uses the type value O8OO16 
to specify that the data area contains an encapsulated IP datagram. 
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The choice should be obvious: the point of the internet design is to hide underlying 
network technologies and make communication convenient for the user. Thus, instead 
of designing datagrams that adhere to the constraints of physical networks, TCP/IP 
software chooses a convenient initial datagram size and arranges a way to divide large 
datagrams into smaller pieces when the datagram needs to traverse a network that has a 
small MTU. The small pieces into which a datagram is divided are calledfragments, 
and the process of dividing a datagram is known as fragmentation. 

As Figure 7.8 illustrates, fragmentation usually occurs at a router somewhere along 
the path between the datagram source and its ultimate destination. The router receives a 
datagram from a network with a large MTU and must send it over a network for which 
the MTU is smaller than the datagram size. 

Net 1 1 1 Net 3 

MTU=1500 MTU=1500 

F i r e  7.8 An illustration of where fragmentation occurs. Router R, frag- 
ments large datagrams sent from A to B; R, fragments large da- 
tagrams sent from B to A. 

In the figure, both hosts attach directly to Ethernets which have an MTU of 1500 
octets. Thus, both hosts can generate and send datagrams up to 1500 octets long. The 
path between them, however, includes a network with an MTU of 620. If host A sends 
host B a datagram larger than 620 octets, router R, will fragment the datagram. Similar- 
ly, if B sends a large datagram to A, router R, will fragment the datagram. 

Fragment size is chosen so each fragment can be shipped across the underlying 
network in a single frame. In addition, because IP represents the offset of the data in 
multiples of eight octets, the fragment size must be chosen to be a multiple of eight. Of 
course, choosing the multiple of eight octets nearest to the network MTU does not usu- 
ally divide the datagram into equal size pieces; the last piece is often shorter than the 
others. Fragments must be reassembled to produce a complete copy of the original da- 
tagram before it can be processed at the destination. 

The IP protocol does not limit datagrams to a small size, nor does it guarantee that 
large datagrams will be delivered without fragmentation. The source can choose any 
datagram size it thinks appropriate; fragmentation and reassembly occur automatically, 
without the source taking special action. The IP specification states that routers must 
accept datagrarns up to the maximum of the MTUs of networks to which they attach. 
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In addition, a router must always handle datagrams of up to 576 octets. (Hosts are also 
required to accept, and reassemble if necessary, datagrams of at least 576 octets.) 

Fragmenting a datagram means dividing it into several pieces. It may surprise you 
to learn that each piece has the same format as the original datagram. Figure 7.9 illus- 
trates the result of fragmentation. 

DATAGRAM 
HEADER 

data, data, t data, 
600 octets 600 octets : 200 octets 

I FRAGMENT31 HEADER data, I 

Fragment 1 (offset 0) FRAGMENT 1 
HEADER 

FRAGMENT 2 
HEADER 

Fragment 3 (offset 1200) 

data, 

Figure 7.9 (a) An original datagram carrying 1400 octets of data and (b) the 
three fragments for network MTU of 620. Headers 1 and 2 have 
the more fragments bit set. Offsets shown are decimal octets; 
they must be divided by 8 to get the value stored in the fragment 
headers. 

data, 

Each fragment contains a datagram header that duplicates most of the original da- 
tagram header (except for a bit in the FLAGS field that shows it is a fragment), fol- 
lowed by as much data as can be carried in the fragment while keeping the total length 
smaller than the MTU of the network over which it must travel. 

Fragment 2 (offset 600) 

7.7.5 Reassembly Of Fragments 

Should a datagram be reassembled after passing across one network, or should the 
fragments be carried to the final host before reassembly? In a TCP/IP internet, once a 
datagram has been fragmented, the fragments travel as separate datagrams all the way to 
the ultimate destination where they must be reassembled. Preserving fragments all the 
way to the ultimate destination has two disadvantages. First, because datagrams are not 
reassembled immediately after passing across a network with small MTU, the small 
fragments must be carried from the point of fragmentation to the ultimate destination. 
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Reassembling datagrams at the ultimate destination can lead to inefficiency: even if 
some of the physical networks encountered after the point of fragmentation have large 
MTU capability, only small fragments traverse them. Second, if any fragments are lost, 
the datagram cannot be reassembled. The receiving machine starts a reassembly timer 
when it receives an initial fragment. If the timer expires before all fragments arrive, the 
receiving machine dlscards the surviving pieces without processing the datagram. Thus, 
the probability of datagram loss increases when fragmentation occurs because the loss 
of a single fragment results in loss of the entire datagram. 

Despite the minor disadvantages, performing reassembly at the ultimate destination 
works well. It allows each fragment to be routed independently, and does not require 
intermediate routers to store or reassemble fragments. 

7.7.6 Fragmentation Control 

Three fields in the datagram header, IDENTIFICATION, FLAGS, and FRAGMENT 
OFFSET, control fragmentation and reassembly of datagrams. Field IDENTIFICATION 
contains a unique integer that identifies the datagram. Recall that when a router frag- 
ments a datagram, it copies most of the fields in the datagram header into each frag- 
ment. Thus, the IDENTIFICATION field must be copied. Its primary purpose is to al- 
low the destination to know which arriving fragments belong to which datagrams. As a 
fragment arrives, the destination uses the IDENTIFICATION field along with the da- 
tagram source address to identify the datagram. Computers sending IP datagrams must 
generate a unique value for the IDENTIFICATION field for each datagram?. One tech- 
nique used by IP software keeps a global counter in memory, increments it each time a 
new datagram is created, and assigns the result as the datagram's IDENTIFICATION 
field. 

Recall that each fragment has exactly the same format as a complete datagram. 
For a fragment, field FRAGMENT OFFSET specifies the offset in the original datagram 
of the data being carried in the fragment, measured in units of 8 octets*, starting at 
offset zero. To reassemble the datagram, the destination must obtain all fragments start- 
ing with the fragment that has offset 0 through the fragment with highest offset. Frag- 
ments do not necessarily arrive in order, and there is no communication between the 
router that fragmented the datagram and the destination trying to reassemble it. 

The low-order two bits of the 3-bit FLAGS field control fragmentation. Usually, 
application software using TCPIIP does not care about fragmentation because both frag- 
mentation and reassembly are automatic procedures that occur at a low level in the 
operating system, invisible to end users. However, to test internet software or debug 
operational problems, it may be important to test sizes of datagrams for which fragmen- 
tation occurs. The first control bit aids in such testing by specifying whether the da- 
tagram may be fragmented. It is called the do notfragment bit because setting it to 1 
specifies that the datagram should not be fragmented. An application may choose to 
disallow fragmentation when only the entire datagram is useful. For example, consider 
a bootstrap sequence in which a small embedded system executes a program in ROM 
that sends a request over the internet to which another machine responds by sending 

+In theory, retransmissions of a packet can carry the same IDENTIFICATION field as the original; in 
practice, higher-level protocols perform retransmission, resulting in a new datagram with its own IDENTIFI- 
CA TZON. 
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back a memory image. If the embedded system has been designed so it needs the entire 
image or none of it, the datagram should have the do notfragment bit set. Whenever a 
router needs to fragment a datagram that has the do not fragment bit set, the router dis- 
cards the datagram and sends an error message back to the source. 

The low order bit in the FLAGS field specifies whether the fragment contains data 
from the middle of the original datagram or from the end. It is called the more frag- 
ments bit. To see why such a bit is needed, consider the IP software at the ultimate 
destination attempting to reassemble a datagram. It will receive fragments (possibly out 
of order) and needs to know when it has received all fragments for a datagram. When a 
fragment arrives, the TOTAL LENGTH field in the header refers to the size of the frag- 
ment and not to the size of the original datagram, so the destination cannot use the TO- 
TAL LENGTH field to tell whether it has collected all fragments. The more fragments 
bit solves the problem easily: once the destination receives a fragment with the more 
fragments bit turned off, it knows this fragment carries data from the tail of the original 
datagram. From the FRAGMENT OFFSET and TOTAL LENGTH fields, it can compute 
the length of the original datagram. By examining the FRAGMENT OFFSET and TO- 
TAL LENGTH of all fragments that have arrived, a receiver can tell whether the frag- 
ments on hand contain all pieces needed to reassemble the original datagram. 

7.7.7 Time to Live (TTL) 

In principle, field TIME TO L N E  specifies how long, in seconds, the datagram is 
allowed to remain in the internet system. The idea is both simple and important: when- 
ever a computer injects a datagram into the internet, it sets a maximum time that the da- 
tagram should survive. Routers and hosts that process datagrams must decrement the 
TIME TO L N E  field as time passes and remove the datagram from the internet when its 
time expires. 

Estimating exact times is difficult because routers do not usually know the transit 
time for physical networks. A few rules simplify processing and make it easy to handle 
datagrams without synchronized clocks. First, each router along the path from source to 
destination is required to decrement the TIME TO L N E  field by I when it processes the 
datagram header. Furthermore, to handle cases of overloaded routers that introduce 
long delays, each router records the local time when the datagram arrives, and decre- 
ments the TIME TO W E  by the number of seconds the datagram remained inside the 
router waiting for service?. 

Whenever a TIME TO W E  field reaches zero, the router discards the datagram 
and sends an error message back to the source. The idea of keeping a timer for da- 
tagrams is interesting because it guarantees that datagram cannot travel around an in- 
ternet forever, even if routing tables become corrupt and routers route datagrams in a 
circle. 

Although once important, the notion of a router delaying a datagram for many 
seconds is now outdated - current routers and networks are designed to forward each 
datagram within a reasonable time. If the delay becomes excessive, the router simply 
discards the datagram. Thus, in practice, the TIME TO W E  acts as a "hop limit" 
rather than an estimate of delay. Each router only decrements the value by 1. 

?In practice, modem routers do not hold datagrams for multiple seconds. 



Sec. 7.7 The Internet Datagram 107 

7.7.8 Other Datagram Header Fields 

Field PROTOCOL is analogous to the type field in a network frame; the value 
specifies which high-level protocol was used to create the message carried in the DATA 
area of the datagram. In essence, the value of PROTOCOL specifies the fom~at of the 
DATA area. The mapping between a high level protocol and the integer value used in 
the PROTOCOL field must be administered by a central authority to guarantee agree- 
ment across the entire Internet. 

Field HEADER CHECKSUM ensures integrity of header values. The IP checksum 
is formed by treating the header as a sequence of 16-bit integers (in network byte ord- 
er), adding them together using one's complement arithmetic, and then taking the one's 
complement of the result. For purposes of computing the checksum, field HEADER 
CHECKSUM is assumed to contain zero. 

It is important to note that the checksum only applies to values in the IP header 
and not to the data. Separating the checksum for headers and data has advantages and 
disadvantages. Because the header usually occupies fewer octets than the data, having a 
separate checksum reduces processing time at routers which only need to compute 
header checksums. The separation also allows higher level protocols to choose their 
own checksum scheme for the data. The chief disadvantage is that higher level proto- 
cols are forced to add their own checksum or risk having corrupted data go undetected. 

Fields SOURCE IP ADDRESS and DESTINATION IP ADDRESS contain the 32-bit 
IP addresses of the datagram's sender and intended recipient. Although the datagram 
may be routed through many intermediate routers, the source and destination fields nev- 
er change; they speclfy the IP addresses of the original source and ultimate destination?. 

The field labeled DATA in Figure 7.3 shows the beginning of the data area of the 
datagram. Its length depends, of course, on what is being sent in the datagram. The IP 
OPTIONS field, discussed below, is variable length. The field labeled PADDING, 
depends on the options selected. It represents bits containing zero that may be needed 
to ensure the datagram header extends to an exact multiple of 32 bits (recall that the 
header length field is specified in units of 32-bit words). 

7.8 Internet Datagram Options 

The IP OPTIONS field following the destination address is not required in every 
datagram; options are included primarily for network testing or debugging. Options 
processing is an integral part of the IP protocol, however, so all standard implementa- 
tions must include it. 

The length of the IP OPTIONS field varies depending on which options are select- 
ed. Some options are one octet long; they consist of a single octet option code. Other 
options are variable length. When options are present in a datagram, they appear con- 
tiguously, with no special separators between them. Each option consists of a single oc- 
tet option code, which may be followed by a single octet length and a set of data octets 
for that option. The option code octet is divided into three fields as Figure 7.10 shows. 

?An exception is made when the datagram includes the source route options listed below. 
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0 1 2 3 4 5 6 7 

I COPY I OPTION CLASS I OPTION NUMBER 

Figure 7.10 The division of the option code octet into three fields of length 1, 
2, and 5 bits. 

The fields of the OPTION CODE consist of a 1-bit COPY flag, a 2-bit OPTION CLASS, 
and the 5-bit OPTION NUMBER. The COPY flag controls how routers treat options 
during fragmentation. When the COPY bit is set to I ,  it specifies that the option should 
be copied into all fragments. When set to 0, the COPY bit means that the option should 
only be copied into the first fragment and not into all fragments. 

The OPTION CLASS and OPTION NUMBER bits specify the general class of the 
option and a specific option in that class. The table in Figure 7.1 1 shows how option 
classes are assigned. 

Option Class Meaning 
0 Datagram or network control 
1 Reserved for future use 
2 Debugging and measurement 
3 Reserved for future use 

Figure 7.11 Classes of IP options as encoded in the OPTION CLASS bits of 
an option code octet. 

The table in Figure 7.12 lists examples of options that can accompany an IP da- 
tagram and gives their OPTION CLASS and OPTION NUMBER values. As the list 
shows, most options are used for control purposes. 
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Option Option 
Class Number Length Description 

- 

- 

11 

var 

var 
4 

var 

4 
4 
4 

var 

var 

End of option list. Used if options do 
not end at end of header (see header 
padding field for explanation). 

No operation. Used to align octets in a 
list of options. 

Security and handling restrictions 
(for military applications). 

Loose source route. Used to request 
routing that includes the specified routers. 

Record route. Used to trace a route. 
Stream identifier. Used to carry a 
SATNET stream identifier (obsolete). 

Strict source route. Used to specify 
a exact path through the internet. 

MTU Probe. Used for path MTU discovery. 
MTU Reply. Used for path MTU discovery. 
Router Alert. Router should examine this 
datagram even if not an addressee. 

Internet timestamp. Used to record 
timestamps along the route. 

Traceroute. Used by traceroute program 
to find routers along a path. 

Figure 7.12 Examples of IP options with their numeric class and number 
codes. The value var in the length column stands for variable. 

7.8.1 Record Route Option 

The routing and timestamp options are the most interesting because they provide a 
way to monitor or control how internet routers route datagram. The record route op- 
tion allows the source to create an empty list of IP addresses and arrange for each router 
that handles the datagram to add its IP address to the list. Figure 7.13 shows the format 
of the record route option. 

As described above, the CODE field contains the option class and option number 
(0 and 7 for record route). The LENGTH field specifies the total length of the option as 
it appears in the IP datagram, including the first three octets. The fields starting with 
the one labeled FIRST IP ADDRESS comprise the area reserved for recording internet 
addresses. The POINTER field specifies the offset within the option of the next avail- 
able slot. 
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Figure 7.13 The format of the record route option in an IP datagram. The 
option begins with three octets immediately followed by a list of 
addresses. Although the diagram shows addresses in 32 bit un- 
its, they are not aligned on any octet boundary in a datagram. 

0 8 16 24 31 

Whenever a machine handles a datagram that has the record route option set, the 
machine adds its address to the record route list (enough space must be allocated in the 
option by the original source to hold all entries that will be needed). To add itself to 
the list, a machine first compares the pointer and length fields. If the pointer is greater 
than the length, the list is full, so the machine forwards the datagram without inserting 
its entry. If the list is not full, the machine inserts its Coctet IP address at the position 
specified by the POINTER, and increments the POINTER by four. 

When the datagram arrives, the destination machine can extract and process the list 
of IP addresses. Usually, a computer that receives a datagram ignores the recorded 
route. Using the record route option requires two machines that agree to cooperate; a 
computer will not automatically receive recorded routes in incoming datagrams after it 
turns on the record route option in outgoing datagrams. The source must agree to en- 
able the record route option and the destination must agree to process the resultant list. 

CODE(7) I LENGTH 

7.8.2 Source Route Options 

POINTER 

Another idea that network builders find interesting is the source route option. The 
idea behind source routing is that it provides a way for the sender to dictate a path 
through the internet. For example, to test the throughput over a particular physical net- 
work, N, system administrators can use source routing to force IP datagrams to traverse 
network N even if routers would normally choose a path that did not include it. The 
ability to make such tests is especially important in a production environment, because 
it gives the network manager freedom to route users' datagrams over networks that are 
known to operate correctly while simultaneously testing other networks. Of course, 
source routing is only useful to people who understand the network topology; the aver- 
age user has no need to know or use it. 

FIRST IP ADDRESS 

SECOND lP ADDRESS 

. . . 
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IF' supports two forms of source routing. One form, called strict source routing, 
specifies a routing path by including a sequence of IP addresses in the option as Figure 
7.14 shows. 

0 8 16 24 31 

I CODE(137) I LENGTH I POINTER I 
IP ADDRESS OF FIRST HOP 

IP ADDRESS OF SECOND HOP 

Figure 7.14 The strict source route option specifies an exact route by giving a 
list of IP addresses the datagram must follow. 

Strict source routing means that the addresses specify the exact path the datagram must 
follow to reach its destination. The path between two successive addresses in the list 
must consist of a single physical network; an error results if a router cannot follow a 
strict source route. The other form, called loose source routing, also includes a se- 
quence of IP addresses. It specifies that the datagram must follow the sequence of IP 
addresses, but allows multiple network hops between successive addresses on the list. 

Both source route options require routers along the path to overwrite items in the 
address list with their local network addresses. Thus, when the datagram anives at its 
destination, it contains a list of all addresses visited, exactly like the list produced by 
the record route option. 

The format of a source route option resembles that of the record route option 
shown above. Each router examines the POINTER and LENGTH fields to see if the list 
has been exhausted. If it has, the pointer is greater than the length, and the router routes 
the datagram to its destination as usual. If the list is not exhausted, the router follows 
the pointer, picks up the IP address, replaces it with the router's address?, and routes 
the datagram using the address obtained from the list. 

7.8.3 Timestamp Option 

The timestamp option works like the record route option in that the timestamp op- 
tion contains an initially empty list, and each router along the path from source to desti- 
nation fills in one item in the list. Each entry in the list contains two 32-bit items: the 
IP address of the router that supplied the entry and a 32-bit integer timestamp. Figure 
7.15 shows the format of the timestamp option. 

t A  router has one address for each interface; it records the address that corresponds to the network over 
which it routes the datagram. 
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I FIRST IP ADDRESS I 
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FIRST TIMESTAMP 

CODE(68) 1 LENGTH 

Figure 7.15 The format of the timestamp option. Bits in the FLAGS field 
control the exact format and rules routers use to process this op- 
tion. 

In the figure, the LENGTH and POINTER fields are used to specify the length of 
the space reserved for the option and the location of the next unused slot (exactly as in 
the record route option). The 4-bit OFLOW field contains an integer count of routers 
that could not supply a timestamp because the option was too small. 

The value in the 4-bit FLAGS field controls the exact format of the option and tells 
how routers should supply timestamps. The values are: 

POINTER 

Flags value Meaning 
0 Record timestamps only; omit IP addresses. 
1 Precede each timestamp by an IP address 

(this is the format shown in Figure 7.15). 
3 IP addresses are specified by sender; a 

router only records a timestamp if the 
next IP address in the list matches the 
router's IP address. 

OFLOW 1 FLAGS 

Figure 7.16 The interpretation of values in the FLAGS field of a timestamp 
option. 

Timestamps give the time and date at which a router handles the datagram, ex- 
pressed as milliseconds since midnight, Universal Time?. If the standard representation 
for time is unavailable, the router can use any representation of local time provided it 
turns on the high-order bit in the timestamp field. Of course, timestamps issued by in- 
dependent computers are not always consistent even if represented in universal time; 
each machine reports time according to its local clock, and clocks may differ. Thus, 
timestamp entries should always be treated as estimates, independent of the representa- 
tion. 

It may seem odd that the timestamp option includes a mechanism to have routers 
record their IP addresses along with timestamps because the record route option already 
provides that capability. However, recording IP addresses with timestamps eliminates 

t Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian. 
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ambiguity. Having an address recorded along with each timestamp is also useful be- 
cause it allows the receiver to know exactly which path the datagram followed. 

7.8.4 Processing Options During Fragmentation 

The idea behind the COPY bit in the option CODE field should now be clear. 
When fragmenting a datagram, a router replicates some IP options in all fragments 
while it places others in only one fragment. For example, consider the option used to 
record the datagram route. We said that each fragment will be handled as an indepen- 
dent datagram, so there is no guarantee that all fragments follow the same path to the 
destination. If all fragments contained the record route option, the destination might re- 
ceive a different list of routes from each fragment. It could not produce a single, mean- 
ingful list of routes for the reassembled datagram. Therefore, the IP standard specifies 
that the record route option should only be copied into one of the fragments. 

Not all IP options can be restricted to one fragment. Consider the source route op- 
tion, for example, that specifies how a datagram should travel through the internet. 
Source routing information must be replicated in all fragment headers, or fragments will 
not follow the specified route. Thus, the code field for source route specifies that the 
option must be copied into all fragments. 

7.9 Summary 

The fundamental service provided by TCPIIP internet software is a connectionless, 
unreliable, best-effort packet delivery system. The Internet Protocol (IP) formally speci- 
fies the format of internet packets, called ahtagrams, and informally embodies the ideas 
of connectionless delivery. This chapter concentrated on datagram fonats;  later 
chapters will discuss IP routing and error handling. 

Analogous to a physical frame, the IP datagram is divided into header and data 
areas. Among other infornlation, the datagram header contains the source and destina- 
tion IP addresses, fragmentation control, precedence, and a checksum used to catch 
transmission errors. Besides fixed-length fields, each datagram header can contain an 
options field. The options field is variable length, depending on the number and type of 
options used as well as the size of the data area allocated for each option. Intended to 
help monitor and control an internet, options allow one to specify or record routing in- 
formation, or to gather timestamps as the datagram traverses an internet. 

FOR FURTHER STUDY 

Postel [I9801 discusses possible ways to approach internet protocols, addressing, 
and routing. In later publications, Postel [RFC 7911 gives the standard for the Internet 
Protocol. Braden [RFC 11221 further refines the standard. Hornig [RFC 8941 specifies 
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the standard for the transmission of IP  datagrarns across an Ethernet. Clark [RFC 8151 
describes efficient reassembly of fragments; Kent and Mogul [I9871 discusses the 
disadvantages of fragmentation. 

Nichols et. al. [RFC 24741 specifies the differentiated service interpretation of the 
service type bits in datagram headers, and Blake et. al. [RFC 24751 discusses an archi- 
tecture for differentiated services. In addition to the packet format, many constants 
needed in the network protocols are also standardized; the values can be found in the 
Official Internet Protocols RFC, which is issued periodically. 

An alternative internet protocol suite known as XNS, is given in Xerox [1981]. 
Boggs et. al. [I9801 describes the PARC Universal Packet (PUP) protocol, an abstrac- 
tion from XNS closely related to the IP datagram. 

EXERCISES 

What is the single greatest advantage of having the IF' checksum cover only the datagram 
header and not the data? What is the disadvantage? 

Is it ever necessary to use an IP checksum when sending packets over an Ethernet? Why 
or why not? 

What is the MTU size for a Frame Relay network? Hyperchannel? an ATM network? 

Do you expect a high-speed local area network to have larger or smaller MTU size than a 
wide area network? 

Argue that fragments should have small, nonstandard headers. 

Find out when the IP protocol version last changed. Is having a protocol version number 
useful? 
Extend the previous exercise by arguing that if the IP version changes, it makes more sense 
to assign a new frame type than to encode the version number in the datagram. 

Can you imagine why a one's complement checksum was chosen for IF' instead of a cyclic 
redundancy check? 

What are the advantages of doing reassembly at the ultimate destination instead of doing it 
after the datagram travels across one network? 
What is the minimum network MTU required to send an IP datagram that contains at least 
one octet of data? 

Suppose you are hired to implement IP datagram processing in hardware. Is there any rear- 
rangement of fields in the header that would have made your hardware more efficient? 
Easier to build? 

If you have access to an implementation of IP, revise it and test your locally available im- 
plementations of IP to see if they reject IP datagrarns with an out-of-date version number. 

When a minimum-size IF' datagram travels across an Ethernet, how large is the frame? 

The differentiated services interpretation of the SERVICE TYPE field allows up to 64 
separate service levels. Argue that fewer levels are needed (i.e., make a list of all possible 
services that a user might access). 

The differentiated service definition was chosen to make it backward compatible with the 
original type-of-service priority bits. Will the backward compatibility force implementa- 
tions to be less efficient than an alternative scheme? Explain. 



lnternet Protocol: Routing IP 
Datagrams 

8.1 Introduction 

We have seen that all internet services use an underlying, connectionless packet 
delivery system, and that the basic unit of transfer in a TCP/IP internet is the IP da- 
tagram. This chapter adds to the description of connectionless service by describing 
how routers forward IP datagrams and deliver them to their final destinations. We think 
of the datagram format from Chapter 7 as characterizing the static aspects of the Inter- 
net Protocol. The description of routing in this chapter characterizes the operational as- 
pects. The next chapter completes our basic presentation of IP by describing how errors 
are handled. Chapter 10 then describes extensions for classless and subnet addressing, 
and later chapters show how other protocols use IP to provide higher-level services. 

8.2 Routing In An lnternet 

In a packet switching system, routing refers to the process of choosing a path over 
which to send packets, and router refers to a computer making the choice. Routing oc- 
curs at several levels. For example, within a wide area network that has multiple physi- 
cal connections between packet switches, the network itself is responsible for routing 
packets from the time they enter until they leave. Such internal routing is completely 
self-contained inside the wide area network. Machines on the outside cannot participate 
in decisions; they merely view the network as an entity that delivers packets. 
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Remember that the goal of IP is to provide a virtual network that encompasses 
multiple physical networks and offers a connectionless datagram delivery service. 
Thus, we will focus on IP forwarding, which is also called internet routing or IP rout- 
ingf. The information used to make routing decisions is known as IP routing informa- 
tion. Like routing within a single physical network, IP routing chooses a path over 
which a datagram should be sent. Unlike routing within a single network, the IP rout- 
ing algorithm must choose how to send a datagram across multiple physical networks. 

Routing in an internet can be difficult, especially among computers that have mul- 
tiple physical network connections. Ideally, the routing software would examine net- 
work load, datagram length, or the type of service specified in the datagram header 
when selecting the best path. Most internet routing software is much less sophisticated, 
however, and selects routes based on fixed assumptions about shortest paths. 

To understand IP routing completely, we must review the architecture of a TCP/IP 
internet. First, recall that an internet is composed of multiple physical networks inter- 
connected by computers called routers. Each router has direct connections to two or 
more networks. By contrast, a host computer usually connects directly to one physical 
network. We know that it is possible, however, to have a multi-homed host connected 
directly to multiple networks. 

Both hosts and routers participate in routing an IP datagram to its destination. 
When an application program on a host attempts to communicate, the TCPJIP protocols 
eventually generate one or more IP datagram. The host must make an initial routing 
decision when it chooses where to send the datagrams. As Figure 8.1 shows, hosts 
must make routing decisions even if they have only one network connection. 

A path to some 
p i n a t i o n s  

path to other 4 
destinations L 

Figure 8.1 An example of a singly-homed host that must route datagram. 
The host must choose to send a datagram either to router R, or to 
router %, because each router provides the best path to some des- 
tinations. 

The primary purpose of routers is to make IP routing decisions. What about 
multi-homed hosts? Any computer with multiple network connections can act as a 
router, and as we will see, multi-homed hosts running TCPJIP have all the software 

TChapter 18 describes a related topic known as layer 3 switching or IP switching. 
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needed for routing. Furthermore, sites that cannot afford separate routers sometimes use 
general-purpose timesharing machines as both hosts and routers. However, the TCPDP 
standards draw a sharp distinction between the functions of a host and those of a router, 
and sites that try to mix host and router functions on a single machine sometimes find 
that their multi-homed hosts engage in unexpected interactions. For now, we will dis- 
tinguish hosts from routers, and assume that hosts do not perform the router's function 
of transferring packets from one network to another. 

8.3 Direct And Indirect Delivery 

Loosely speaking, we can divide routing into two forms: direct delivery and in- 
direct delivery. Direct delivery, the transmission of a datagram from one machine 
across a single physical network directly to another, is the basis on which all internet 
communication rests. Two machines can engage in direct delivery only if they both at- 
tach directly to the same underlying physical transmission system (e.g., a single Ether- 
net). Indirect delivery occurs when the destination is not on a directly attached net- 
work, forcing the sender to pass the datagram to a router for delivery. 

8.3.1 Datagram Delivery Over A Single Network 

We know that one machine on a given physical network can send a physical frame 
directly to another machine on the same network. To transfer an IP datagram, the 
sender encapsulates the datagram in a physical frame, maps the destination IP address 
into a physical address, and uses the network hardware to deliver it. Chapter 5 present- 
ed two possible mechanisms for address resolution, including using the ARP protocol 
for dynamic address binding on Ethernet-like networks. Chapter 7 discussed datagram 
encapsulation. Thus, we have reviewed all the pieces needed to understand direct 
delivery. To summarize: 

Transmission of an IP datagram between two machines on a single 
physical network does not involve routers. The sender encapsulates 
the datagram in a physical frame, binds the destination ZP address to 
a physical hardware address, and sends the resulting frame directly to 
the destination. 

How does the sender know whether the destination lies on a directly connected net- 
work? The test is straightforward. We know that IP addresses are divided into a 
network-specific prefix and a host-specific suffix. To see if a destination lies on one of 
the directly connected networks, the sender extracts the network portion of the destina- 
tion IP address and compares it to the network portion of its own IP address(es). A 
match means the datagram can be sent directly. Here we see one of the advantages of 
the Internet address scheme, namely: 
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Because the internet addresses of all machines on a single network in- 
clude a common network pre& and extracting that pre& requires 
only a few machine instructions, testing whether a machine can be 
reached directly is extremely eficient. 

From an internet perspective, it is easiest to think of direct delivery as the final 
step in any datagram transmission, even if the datagram traverses many networks and 
intermediate routers. The final router along the path between the datagram source and 
its destination will connect directly to the same physical network as the destination. 
Thus, the final router will deliver the datagram using direct delivery. We can think of 
direct delivery between the source and destination as a special case of general purpose 
routing - in a direct route the datagram does not happen to pass through any intervening 
routers. 

8.3.2 Indirect Delivery 

Indirect delivery is more difficult than direct delivery because the sender must 
identify a router to which the datagram can be sent. The router must then forward the 
datagram on toward its destination network. 

To visualize how indirect routing works, imagine a large internet with many net- 
works interconnected by routers but with only two hosts at the far ends. When one host 
wants to send to the other, it encapsulates the datagram and sends it to the nearest 
router. We know that the host can reach a router because all physical networks are in- 
terconnected, so there must be a router attached to each network. Thus, the originating 
host can reach a router using a single physical network. Once the frame reaches the 
router, software extracts the encapsulated datagram, and the IP software selects the next 
router along the path towards the destination. The datagram is again placed in a frame 
and sent over the next physical network to a second router, and so on, until it can be 
delivered directly. These ideas can be summarized: 

Routers in a TCPAP internet form a cooperative, interconnected 
structure. Datagrams pass from router to router until they reach a 
router that can deliver the datagram directly. 

How can a router know where to send each datagram? How can a host know 
which router to use for a given destination? The two questions are related because they 
both involve IP routing. We will answer them in two stages, considering the basic 
table-driven routing algorithm in this chapter and postponing a discussion of how 
routers learn new routes until later. 
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8.4 Table-Driven IP Routing 

The usual IP routing algorithm employs an Internet routing table (sometimes 
called an IP routing table) on each machine that stores information about possible desti- 
nations and how to reach them. Because both hosts and routers route datagrams, both 
have IP routing tables. Whenever the IP routing software in a host or router needs to 
transmit a datagram, it consults the routing table to decide where to send the datagram. 

What information should be kept in routing tables? If every routing table con- 
tained information about every possible destination address, it would be impossible to 
keep the tables current. Furthermore, because the number of possible destinations is 
large, machines would have insufficient space to store the information. 

Conceptually, we would like to use the principle of information hiding and allow 
machines to make routing decisions with minimal information. For example, we would 
like to isolate information about specific hosts to the local environment in which they 
exist and arrange for machines that are far away to route packets to them without know- 
ing such details. Fortunately, the IP address scheme helps achieve this goal. Recall 
that IP addresses are assigned to make all machines connected to a given physical net- 
work share a common prefix (the network portion of the address). We have already 
seen that such an assignment makes the test for direct delivery efficient. It also means 
that routing tables only need to contain network prefixes and not full IP addresses. 

8.5 Next-Hop Routing 

Using the network portion of a destination address instead of the complete host ad- 
dress makes routing efficient and keeps routing tables small. More important, it helps 
hide information, keeping the details of specific hosts confined to the local environment 
in which those hosts operate. Typically, a routing table contains pairs (N, R), where N 
is the IP address of a destination network, and R is the IP address of the "next" router 
along the path to network N. Router R is called the next hop, and the idea of using a 
routing table to store a next hop for each destination is called next-hop routing. Thus, 
the routing table in a router R only specifies one step along the path from R to a desti- 
nation network - the router does not know the complete path to a destination. 

It is important to understand that each entry in a routing table points to a router 
that can be reached across a single network. That is, all routers listed in machine M's 
routing table must lie on networks to which M connects directly. When a datagram is 
ready to leave M, IP software locates the destination IP address and extracts the network 
portion. M then uses the network portion to make a routing decision, selecting a router 
that can be reached directly. 

In practice, we apply the principle of infomlation hiding to hosts as well. We in- 
sist that although hosts have IP routing tables, they must keep minimal information in 
their tables. The idea is to force hosts to rely on routers for most routing. 

Figure 8.2 shows a concrete example that helps explain routing tables. The exam- 
ple internet consists of four networks connected by three routers. In the figure, the rout- 
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ing table gives the routes that router R uses. Because R connects directly to networks 
20.0.0.0 and 30.0.0.0, it can use direct delivery to send to a host on either of those net- 
works (possibly using ARP to find physical addresses). Given a datagram destined for 
a host on network 40.0.0.0, R routes it to the address of router S, 30.0.0.7. S will then 
deliver the datagram directly. R can reach address 30.0.0.7 because both R and S attach 
directly to network 30.0.0.0. 

TO REACH HOSTS ROUTE TO 
ON NETWORK THIS ADDRESS 

I 20.0.0.0 I DELIVER DIRECTLY 

I 30.0.0.0 I DELIVER DIRECTLY 

Figure 8.2 (a) An example intemet with 4 networks and 3 routers, and (b) the 
routing table in R. 

As Figure 8.2 demonstrates, the size of the routing table depends on the number of 
networks in the intemet; it only grows when new networks are added. However, the 
table size and contents are independent of the number of individual hosts connected to 
the networks. We can summarize the underlying principle: 

To hide information, keep routing tables small, and make routing de- 
cisions efficient, IP routing software only keeps information about 
destination network addresses, not about individual host addresses. 
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Choosing routes based on the destination network ID alone has several conse- 
quences. First, in most implementations, it means that all traffic destined for a given 
network takes the same path. As a result, even when multiple paths exist, they may not 
be used concurrently. Also, all types of traffic follow the same path without regard to 
the delay or throughput of physical networks. Second, because only the final router 
along the path attempts to communicate with the destination host, only it can deternine 
if the host exists or is operational. Thus, we need to arrange a way for that router to 
send reports of delivery problems back to the original source. Third, because each 
router forwards traffic independently, datagrams traveling from host A to host B may 
follow an entirely different path than datagrams traveling from host B back to host A. 
We need to ensure that routers cooperate to guarantee that two-way communication is 
always possible. 

8.6 Default Routes 

Another technique used to hide information and keep routing table sizes small con- 
solidates multiple entries into a default case. The idea is to have the IP routing software 
first look in the routing table for the destination network. If no route appears in the 
table, the routing routines send the datagram to a default router. 

Default routing is especially useful when a site has a small set of local addresses 
and only one connection to the rest of the internet. For example, default routes work 
well in host computers that attach to a single physical network and reach only one 
router leading to the remainder of the internet. The routing decision consists of two 
tests: one for the local net and a default that points to the only router. Even if the site 
contains a few local networks, the routing is simple because it consists of a few tests for 
the local networks plus a default for all other destinations. 

8.7 Host-Specific Routes 

Although we said that all routing is based on networks and not on individual hosts, 
most IP routing software allows per-host routes to be specified as a special case. Hav- 
ing per-host routes gives the local network administrator more control over network use, 
permits testing, and can also be used to control access for security purposes. When de- 
bugging network connections or routing tables, the ability to specify a special route to 
one individual machine turns out to be especially useful. 

8.8 The IP Routing Algorithm 

Taking into account everything we have said, the IP algorithm used to forward da- 
tagrams becomes?: 

tChapter 10 discusses a slightly modified algorithm used with classless IP addresses. 
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Algorithm: 

RouteDatagram (Datagram, RoutingTable) 

Extract destination IP address, D, from the datagram 
and compute the network prefix, N; 

if N matches any directly connected network address 
deliver datagram to destination D over that network 
(This involves resolving D to a physical address, 
encapsulating the datagram, and sending the frame.) 

else if the table contains a host-specific route for D 
send datagram to next-hop specified in table 

else if the table contains a route for network N 
send datagram to next-hop specified in table 

else if the table contains a default route 
send datagram to the default router specified in table 

else declare a routing error; 

Figure 8 3  The algorithm IP uses to forward a datagram. Given an IF' da- 
tagram and a routing table, this algorithm selects the next hop to 
which the datagram should be sent. All routes must specify a 
next hop that lies on a directly C O M ~ C ~ ~  network. 

8.9 Routing With IP Addresses 

It is important to understand that except for decrementing the time to live and 
recomputing the checksum, IP routing does not alter the original datagram. In particu- 
lar, the datagram source and destination addresses remain unaltered; they always specify 
the IP address of the original source and the IP address of the ultimate destination?. 
When IP executes the routing algorithm, it selects a new IP address, the IP address of 
the machine to which the datagram should be sent next. The new address is most likely 
the address of a router. However, if the datagram can be delivered directly, the new ad- 
dress is the same as the address of the ultimate destination. 

We said that the IP address selected by the IP routing algorithm is known as the 
next hop address because it tells where the datagram must be sent next. Where does IP 
store the next hop address? Not in the datagram; no place is reserved for it. In fact, IP 
does not "store" the next hop address at all. After executing the routing algorithm, IP 
passes the datagram and the next hop address to the network interface software respon- 
sible for the physical network over which the datagram must be sent. The network in- 

tThe only exception occurs when the datagram contains a source route option. 
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terface software binds the next hop address to a physical address, forms a frame using 
that physical address, places the datagram in the data portion of the frame, and sends 
the result. After using the next hop address to find a physical address, the network in- 
terface software discards the next hop address. 

It may seem odd that routing tables store the IP address of a next hop for each des- 
tination network when those addresses must be translated into corresponding physical 
addresses before the datagram can be sent. If we imagine a host sending a sequence of 
datagrams to the same destination address, the use of IF' addresses will appear incredi- 
bly inefficient. IP dutifully extracts the destination address in each datagram and uses 
the routing table to produce a next hop address. It then passes the datagram and next 
hop address to the network interface, which recomputes the binding to a physical ad- 
dress. If the routing table used physical addresses, the binding between the next hop's 
IP address and physical address could be performed once, saving unneeded computa- 
tion. 

Why does IP software avoid using physical addresses when storing and computing 
routes? As Figure 8.4 illustrates, there are two important reasons. 

EXAMINATION OR DATAGRAM 
UPDATES OF ROUTES TO BE ROUTED 

u 
ZP addresses used . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - - - - - - - - - - -  

Physical addresses used -1 
DATAGRAM TO BE SENT 

PLUS ADDRESS OF NEXT HOP 

Figure 8.4 IP software and the routing table it uses reside above the address 
boundary. Using only IP addresses makes routes easy to examine 
or change and hides the details of physical addresses. 

First, the routing table provides an especially clean interface between IP software 
that routes datagram and high-level software that manipulates routes. To debug rout- 
ing problems, network managers often need to examine the routing tables. Using only 
IF' addresses in the routing table makes it easy for managers to understand and to deter- 
mine whether software has updated the routes correctly. Second, the whole point of the 
Internet Protocol is to build an abstraction that hides the details of underlying networks. 
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Figure 8.4 shows the address boundary, the important conceptual division between 
low-level software that understands physical addresses and internet software that only 
uses high-level addresses. Above this boundary, all software can be written to com- 
municate using internet addresses; knowledge of physical addresses is relegated to a few 
small, low-level routines. We will see that observing the boundary also helps keep the 
implementation of remaining TCPJIP protocols easy to understand, test, and modify. 

8.1 0 Handling Incoming Datagrams 

So far, we have discussed IP routing by describing how forwarding decisions are 
made about outgoing packets. It should be clear, however, that IP software must pro- 
cess incoming datagrams as well. 

When an IP datagram arrives at a host, the network interface software delivers it to 
the IP module for processing. If the datagram's destination address matches the host's 
IP address, IP software on the host accepts the datagram and passes it to the appropriate 
higher-level protocol software for further processing. If the destination IP address does 
not match, a host is required to discard the datagram (i.e., hosts are forbidden from at- 
tempting to forward datagrams that are accidentally routed to the wrong machine). 

Unlike hosts, routers perform forwarding. When an IP datagram arrives at a 
router, it is delivered to the IP software. Again, two cases arise: the datagram could 
have reached its final destination, or it may need to travel further. As with hosts, if the 
datagram destination IP address matches the router's own IP address, the IP software 
passes the datagram to higher-level protocol software for processingt. If the datagram 
has not reached its final destination, IP routes the datagram using the standard algorithm 
and the information in the local routing table. 

Determining whether an IP datagram has reached its final destination is not quite 
as trivial as it seems. Remember that even a host may have multiple physical connec- 
tions, each with its own IP address. When an IP datagram arrives, the machine must 
compare the destination internet address to the IP address for each of its network con- 
nections. If any match, it keeps the datagram and processes it. A machine must also 
accept datagrams that were broadcast on the physical network if their destination IP ad- 
dress is the limited IP broadcast address or the directed IP broadcast address for that 
network. As we will see in Chapters 10 and 17, classless, subnet, and multicast ad- 
dresses make address recognition even more complex. In any case, if the address does 
not match any of the local machine's addresses, IP decrements the time-to-live field in 
the datagram header, discarding the datagram if the count reaches zero, or computing a 
new checksum and routing the datagram if the count remains positive. 

Should every machine forward the IP datagrams it receives? Obviously, a router 
must forward incoming datagrams because that is its main function. We have also said 
that some multi-homed hosts act as routers even though they are really general purpose 
computing systems. While using a host as a router is not usually a good idea, if one 
chooses to use that arrangement, the host must be configured to route datagrams just as 
a router does. But what about other hosts, those that are not intended to be routers? 

+Usually, the only datagrams destined for a router are those used to test connectivity or those that carry 
router management commands, but a router must also keep a copy of datagrams that are broadcast on the net- 
work. 
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The answer is that hosts not designated to be routers should not route datagrams that 
they receive; they should discard them. 

There are four reasons why a host not designated to serve as a router should refrain 
from perfom~ng any router functions. First, when such a host receives a datagram in- 
tended for some other machine, something has gone wrong with internet addressing, 
routing, or delivery. The problem may not be revealed if the host takes corrective ac- 
tion by routing the datagram. Second, routing will cause unnecessary network traffic 
(and may steal CPU time from legitimate uses of the host). Third, simple errors can 
cause chaos. Suppose that every host routes traffic, and imagine what happens if one 
machine accidentally broadcasts a datagram that is destined for some host, H. Because 
it has been broadcast, every host on the network receives a copy of the datagram. 
Every host forwards its copy to H, which will be bombarded with many copies. Fourth, 
as later chapters show, routers do more than merely route traffic. As the next chapter 
explains, routers use a special protocol to report errors, while hosts do not (again, to 
avoid having multiple error reports bombard a source). Routers also propagate routing 
information to ensure that their routing tables are consistent. If hosts route datagrams 
without participating fully in all router functions, unexpected anomalies can arise. 

8.1 1 Establishing Routing Tables 

We have discussed how IP routes datagram based on the contents of routing 
tables, without saying how systems initialize their routing tables or update them as the 
network changes. Later chapters deal with these questions and discuss protocols that al- 
low routers to keep routes consistent. For now, it is only important to understand that 
IP software uses the routing table whenever it decides how to forward a datagram, so 
changing routing tables will change the paths datagrams follow. 

8.12 Summary 

IP uses routing information to forward datagrams; the computation consists of de- 
ciding where to send a datagram based on its destination IP address. Direct delivery is 
possible if the destination machine lies on a network to which the sending machine at- 
taches; we think of this as the final step in datagram transmission. If the sender cannot 
reach the destination directly, the sender must forward the datagram to a router. The 
general paradigm is that hosts send indirectly routed datagrams to the nearest router; the 
datagrams travel through the internet from router to router until they can be delivered 
directly across one physical network. 

When IP software looks up a route, the algorithm produces the 1P address of the 
next machine (i.e., the address of the next hop) to which the datagram should be sent; 
IP passes the datagram and next hop address to network interface software. Transrnis- 
sion of a datagram from one machine to the next always involves encapsulating the da- 
tagram in a physical frame, mapping the next hop internet address to a physical address, 
and sending the frame using the underlying hardware. 
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The internet routing algorithm is table driven and uses only IP addresses. 
Although it is possible for a routing table to contain a host-specific destination address, 
most routing tables contain only network addresses, keeping routing tables small. Us- 
ing a default route can also help keep a routing table small, especially for hosts that can 
access only one router. 

FOR FURTHER STUDY 

Routing is an important topic. Frank and Chou [1971] and Schwartz and Stem 
[I9801 discuss routing in general; Postel [1980] discusses internet routing. Braden and 
Postel [RFC 10091 provides a summary of how Internet routers handle IP datagram. 
Narten [I9891 contains a survey of Intemet routing. Fultz and Kleinrock [I9711 
analyzes adaptive routing schemes; and McQuillan, Richer, and Rosen [I9801 describes 
the ARPANET adaptive routing algorithm. 

The idea of using policy statements to formulate rules about routing has been con- 
sidered often. Leiner [RFC 11241 considers policies for interconnected networks. 
Braun [RFC 11041 discusses models of policy routing for internets, Rekhter [RFC 10921 
relates policy routing to the second NSFNET backbone, and Clark [RFC 11021 
describes using policy routing with IP. 

EXERCISES 

Complete routing tables for all routers in Figure 8.2. Which routers will benefit most from 
using a default route? 
Examine the routing algorithm used on your local system. Are all the cases mentioned in 
the chapter covered? Does the algorithm allow anything not mentioned? 

What does a router do with the time to live value in an IF' header? 

Consider a machine with two physical network connections and two IP addresses I, and I,. 
Is it possible for that machine to receive a datagram destined for I, over the network with 
address I,? Explain. 
Consider two hosts, A and B, that both attach to a common physical network, N. Is it ever 
possible, when using our routing algorithm, for A to receive a datagram destined for B? 
Explain. 

Modify the routing algorithm to accommodate the IF' source route options discussed in 
Chapter 7. 

An IP router must perform a computation that takes time proportional to the length of the 
datagram header each time it processes a datagram. Explain. 

A network administrator argues that to make monitoring and debugging his local network 
easier, he wants to rewrite the routing algorithm so it tests host-specific routes before it 
tests for direct delivery. How can he use the revised algorithm to build a network monitor? 
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8.9 Is it possible to address a datagram to a router's IP address? Does it make sense to do so? 

8.10 Consider a modified routing algorithm that examines host-specific routes before testing for 
delivery on directly connected networks. Under what circumstances might such an algo- 
rithm be desirable? undesirable? 

8.11 Play detective: after monitoring IP traffic on a local area network for 10 minutes one even- 
ing, someone notices that all frames destined for machine A carry IP datagrams that have 
destination equal to A's IP address, while all frames destined for machine B carry IP da- 
tagrams with destination not equal to B's IP address. Users report that both A and B can 
communicate. Explain. 

8.12 How could you change the IP datagram format to support high-speed packet switching at 
routers? Hint: a router must recompute a header checksum after decrementing the time-to- 
live field. 

8.13 Compare CLNP, the I S 0  connectionless delivery protocol ( IS0 standard 8473) with IP. 
How well will the I S 0  protocol support high-speed switching? Hint: variable length fields 
are expensive. 





lnternet Protocol: Error And 
Control Messages (ICMP) 

9.1 Introduction 

The previous chapter shows how the Internet Protocol software provides an unreli- 
able, connectionless datagram delivery service by arranging for each router to forward 
datagrams. A datagram travels from router to router until it reaches one that can deliver 
the datagram directly to its final destination. If a router cannot route or deliver a da- 
tagram, or if the router detects an unusual condition that affects its ability to forward the 
datagram (e.g., network congestion), the router needs to infornl the original source to 
take action to avoid or correct the problem. This chapter discusses a mechanism that 
internet routers and hosts use to communicate such control or error information. We 
will see that routers use the mechanism to report problems and hosts use it to test 
whether destinations are reachable. 

9.2 The lnternet Control Message Protocol 

In the connectionless system we have described so far, each router operates auto- 
nomously, routing or delivering datagrams that arrive without coordinating with the ori- 
ginal sender. The system works well if all machines operate correctly and agree on 
routes. Unfortunately, no large communication system works correctly all the time. 
Besides failures of communication lines and processors, IP fails to deliver datagrams 
when the destination machine is temporarily or permanently disconnected from the net- 
work, when the time-to-live counter expires, or when intermediate routers become so 
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congested that they cannot process the incoming traffic. The important difference 
between having a single network implemented with dedicated hardware and an internet 
implemented with software is that in the former, the designer can add special hardware 
to inform attached hosts when problems arise. In an internet, which has no such 
hardware mechanism, a sender cannot tell whether a delivery failure resulted from a lo- 
cal malfunction or a remote one. Debugging becomes extremely difficult. The IP pro- 
tocol itself contains nothing to help the sender test connectivity or learn about such 
failures. 

To allow routers in an internet to report errors or provide information about unex- 
pected circumstances, the designers added a special-purpose message mechanism to the 
TCP/IP protocols. The mechanism, known as the Internet Control Message Protocol 
(ICMP), is considered a required part of IP and must be included in every IP implemen- 
tation. 

Like all other traffic, ICMP messages travel across the internet in the data portion 
of IP datagrams. The ultimate destination of an ICMP message is not an application 
program or user on the destination machine, however, but the Internet Protocol software 
on that machine. That is, when an ICMP error message arrives, the ICMP software 
module handles it. Of course, if ICMP determines that a particular higher-level proto- 
col or application program has caused a problem, it will inform the appropriate module. 
We can summarize: 

The Internet Control Message Protocol allows routers to send error 
or control messages to other routers or hosts; ICMP provides com- 
munication between the Internet Protocol sofrware on one machine 
and the Internet Protocol sofrware on another. 

Initially designed to allow routers to report the cause of delivery errors to hosts, 
ICMP is not restricted to routers. Although guidelines restrict the use of some ICMP 
messages, an arbitrary machine can send an ICMP message to any other machine. 
Thus, a host can use ICMP to correspond with a router or another host. The chief ad- 
vantage of allowing hosts to use ICMP is that it provides a single mechanism used for 
all control and information messages. 

9.3 Error Reporting vs. Error Correction 

Technically, ICMP is an error reporting mechanism. It provides a way .for routers 
that encounter an error to report the error to the original source. Although the protocol 
specification outlines intended uses of ICMP and suggests possible actions to take in 
response to error reports, ICMP does not fully specify the action to be taken for each 
possible error. In short, 
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When a datagram causes an error, ICMP can only report the error 
condition back to the original source of the datagram; the source 
must relate the error to an individual application program or take 
other action to correct the problem. 

Most errors stem from the original source, but others do not. Because ICMP re- 
ports problems to the original source, however, it cannot be used to inform intermediate 
routers about problems. For example, suppose a datagram follows a path through a se- 
quence of routers, RI, R2, ..., Rk. If Rk has incorrect routing information and mistakenly 
routes the datagram to router RE, RE cannot use ICMP to report the error back to router 
Rk; ICMP can only send a report back to the original source. Unfortunately, the original 
source has no responsibility for the problem or control over the misbehaving router. In 
fact, the source may not be able to detemune which router caused the problem. 

Why restrict ICMP to communication with the original source? The answer should 
be clear from our discussion of datagram formats and routing in the previous chapters. 
A datagram only contains fields that specify the original source and the ultimate desti- 
nation; it does not contain a complete record of its trip through the internet (except for 
unusual cases where the record route option is used). Furthermore, because routers can 
establish and change their own routing tables, there is no global knowledge of routes. 
Thus, when a datagram reaches a given router, it is impossible to know the path it has 
taken to arrive there. If the router detects a problem, it cannot know the set of inter- 
mediate machines that processed the datagram, so it cannot inform them of the problem. 
Instead of silently discarding the datagram, the router uses ICMP to inform the original 
source that a problem has occurred, and trusts that host administrators will cooperate 
with network administrators to locate and repair the problem. 

9.4 ICMP Message Delivery 

ICMP messages require two levels of encapsulation as Figure 9.1 shows. Each 
ICMP message travels across the internet in the data portion of an IP datagram, which 
itself travels across each physical network in the data portion of a frame. Datagrams 
carryin ICMP messages are routed exactly like datagrams carrying information for 
users; i ere is no additional reliability or priority. Thus, error messages themselves may 
be lost dr discarded. Furthermore, in an already congested network, the error message 
may cause additional congestion. An exception is made to the error handling pro- 
cedures if an IP datagram carrying an ICMP message causes an error. The exception, 
established to avoid the problem of having error messages about error messages, speci- 
fies that ICMP messages are not generated for errors that result from datagrams carrying 
ICMP error messages. 
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FRAME FRAME DATA AREA 
HEADER 

ICMP 
HEADER 

Figure 9.1 Two levels of ICMP encapsulation. The ICMP message is encap- 
sulated in an IP datagram, which is further encapsulated in a 
frame for transmission. To identify ICMP, the datagram protocol 
field contains the value I. 

ICMP DATA 

It is important to keep in mind that even though ICMP messages are encapsulated 
and sent using IP, ICMP is not considered a higher level protocol - it is a required part 
of IP. The reason for using IP to deliver ICMP messages is that they may need to trav- 
el across several physical networks to reach their final destination. Thus, they cannot 
be delivered by the physical transport alone. 

9.5 ICMP Message Format 

Although each ICMP message has its own format, they all begin with the same 
three fields: an 8-bit integer message TYPE field that identifies the message, an 8-bit 
CODE field that provides further information about the message type, and a 16-bit 
CHECKSUM field (ICMP uses the same additive checksum algorithm as IP, but the 
ICMP checksum only covers the ICMP message). In addition, ICMP messages that re- 
port errors always include the header and first 64 data bits of the datagram causing the 
problem. 

The reason for returning more than the datagram header alone is to allow the re- 
ceiver to determine more precisely which protocol(s) and which application program 
were responsible for the datagram. As we will see later, higher-level protocols in the 
TCPIIP suite are designed so that crucial information is encoded in the f i s t  64 bits. 

The ICMP TYPE field defines the meaning of the message as well as its format. 
The types include: 
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Type Field 
0 
3 
4 
5 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

ICMP Message Type 
Echo Reply 
Destination Unreachable 
Source Quench 
Redirect (change a route) 
Echo Request 
Router Advertisement 
Router Solicitation 
Time Exceeded for a Datagram 
Parameter Problem on a Datagram 
Timestamp Request 
Timestamp Reply 
Information Request (obsolete) 
Information Reply (obsolete) 
Address Mask Request 
Address Mask Reply 

The next sections describe each of these messages, giving details of the message format 
and its meaning. 

9.6 Testing Destination Reachability And Status (Ping) 

TCP/IP protocols provide facilities to help network managers or users identlfy net- 
work problems. One of the most frequently used debugging tools invokes the ICMP 
echo request and echo reply messages. A host or router sends an ICMP echo request 
message to a specified destination. Any machine that receives an echo request formu- 
lates an echo reply and returns it to the original sender. The request contains an option- 
al data area; the reply contains a copy of the data sent in the request. The echo request 
and associated reply can be used to test whether a destination is reachable and respond- 
ing. Because both the request and reply travel in IP datagrams, successful receipt of a 
reply verifies that major pieces of the transport system work. First, IP software on the 
source computer must route the datagram. Second, intermediate routers between the 
source and destination must be operating and must route the datagram correctly. Third, 
the destination machine must be running (at least it must respond to interrupts), and 
both ICMP and IP software must be working. Finally, all routers along the return path 
must have correct routes. 

On many systems, the command users invoke to send ICMP echo requests is 
named ping?. Sophisticated versions of ping send a series of ICMP echo requests, cap- 
ture responses, and provide statistics about datagram loss. They allow the user to speci- 
fy the length of the data being sent and the interval between requests. Less sophisticat- 
ed versions merely send one ICMP echo request and await a reply. 

tDave Mills once suggested that PING is an acronym for Packer InrerNer Groper. 
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9.7 Echo Request And Reply Message Format 

Figure 9.2 shows the format of echo request and reply messages. 

I TYPE (8 or 0) I CODE (0) I CHECKSUM I 
I IDENTIFIER I SEQUENCE NUMBER I 

OPTIONAL DATA 

. . . 

Figure 9.2 ICMP echo request or reply message format. 

The field listed as OPTIONAL DATA is a variable length field that contains data to be 
returned to the sender. An echo reply always returns exactly the same data as was re- 
ceived in the request. Fields IDENTIFIER and SEQUENCE NUMBER are used by the 
sender to match replies to requests. The value of the TYPE field specifies whether the 
message is a request (8) or a reply (0). 

9.8 Reports Of Unreachable Destinations 

When a router cannot forward or deliver an IP datagram, it sends a destination un- 
reachable message back to the original source, using the format shown in Figure 9.3. 

TYPE (3) I CODE (0-12) 1 CHECKSUM 

UNUSED (MUST BE ZERO) 

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM 

Figure 9.3 ICMP destination unreachable message format. 

The CODE field in a destination unreachable message contains an integer that further 
describes the problem. Possible values are: 
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Code Value 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Meaning 
Network unreachable 
Host unreachable 
Protocol unreachable 
Port unreachable 
Fragmentation needed and DF set 
Source route failed 
Destination network unknown 
Destination host unknown 
Source host isolated 
Communication with destination 

network administratively prohibited 
Communication with destination host 

administratively prohibited 
Network unreachable for type of service 
Host unreachable for type of service 

Although IP is a besteffort delivery mechanism, discarding datagrams should not 
be taken lightly. Whenever an error prevents a router from routing or delivering a da- 
tagram, the router sends a destination unreachable message back to the source and then 
drops (i.e., discards) the datagram. Network unreachable errors usually imply routing 
failures; host unreachable errors imply delivery failurest. Because the ICMP error mes- 
sage contains a short prefn of the datagram that camed the problem, the source will 
know exactly which address is unreachable. 

Destinations may be unreachable because hardware is temporarily out of service, 
because the sender specified a nonexistent destination address, or (in rare cir- 
cumstances) because the router does not have a route to the destination network. Note 
that although routers report failures they encounter, they may not know of all delivery 
failures. For example, if the destination machine connects to an Ethernet network, the 
network hardware does not provide acknowledgements. Therefore, a router can contin- 
ue to send packets to a destination after the destination is powered down without receiv- 
ing any indication that the packets are not being delivered. To summarize: 

Although a router sends a destination unreachable message when it 
encounters a datagram that cannot be forwarded or delivered, a 
router cannot detect all such errors. 

The meaning of protocol and port unreachable messages will become clear when 
we study how higher level protocols use abstract destination points called ports. Most 
of the remaining messages are self explanatory. If the datagram contains the source 
route option with an incorrect route, it may trigger a source route failure message. I f  a 
router needs to fragment a datagram but the "don't fragment" bit is set, the router 
sends afragmentation needed message back to the source. 

tAn exception occurs for routers using the subnet addressing scheme of Chapter 10. They report a sub- 
net routing failure with an ICMP host unreachable message. 
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9.9 Congestion And Datagram Flow Control 

Because JP is connectionless, a router cannot reserve memory or communication 
resources in advance of receiving datagram. As a result, routers can be overrun with 
traffic, a condition known as congestion. It is important to understand that congestion 
can arise for two entirely different reasons. First, a high-speed computer may be able to 
generate traffic faster than anetwork can transfer it. For example, imagine a supercom- 
puter generating internet traffic. The datagrams may eventually need to cross a slower- 
speed wide area network (WAN) even though the supercomputer itself attaches to a 
high-speed local area net. Congestion will occur in the router that attaches the LAN to 
the WAN because datagrams arrive faster than they can be sent. Second, if many com- 
puters simultaneously need to send datagrams through a single router, the router can ex- 
perience congestion, even though no single source causes the problem. 

When datagrams arrive too quickly for a host or router to process, it enqueues 
them in memory temporarily. If the datagrams are part of a small burst, such buffering 
solves the problem. If the traffic continues, the host or router eventually exhausts 
memory and must discard additional datagram that arrive. A machine uses ICMP 
source quench messages to report congestion to the original source. A source quench 
message is a request for the source to reduce its current rate of datagram transmission. 
Usually, congested routers send one source quench message for every datagram that 
they discard. Routers may also use more sophisticated congestion control techniques. 
Some monitor incoming traffic and quench sources that have the highest datagram 
transmission rates. Others attempt to avoid congestion altogether by arranging to send 
quench requests as their queues start to become long, but before they overflow. 

There is no ICMP message to reverse the effect of a source quench. Instead, a host 
that receives source quench messages for a destination, D, lowers the rate at which it 
sends datagrams to D until it stops receiving source quench messages; it then gradually 
increases the rate as long as no further source quench requests are received. 

9.10 Source Quench Format 

In addition to the usual ICMP TYPE, CODE, CHECKSUM fields, and an unused 
32-bit field, source quench messages have a field that contains a datagram prefix. Fig- 
ure 9.4 illustrates the format. As with most ICMP messages that report an error, the da- 
tagram prefix field contains a prefix of the datagram that triggered the source quench re- 
quest. 
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Figure 9.4 ICMP source quench message format. A congested router sends 
one source quench message each time it discards a datagram; the 
datagram prefix identifies the datagram that was dropped. 

TYPE (4) 

9.1 1 Route Change Requests From Routers 

Internet routing tables usually remain static over long periods of time. Hosts ini- 
tialize them from a configuration file at system startup, and system administrators sel- 
dom make routing changes during normal operations. If the network topology changes, 
routing tables in a router or host may become incorrect. A change can be temporary 
(e.g., when hardware needs to be repaired) or permanent (e.g., when a new network is 
added to the internet). As we will see in later chapters, routers exchange routing infor- 
mation periodically to accommodate network changes and keep their routes up-to-date. 
Thus, as a general rule: 

UNUSED (MUST BE ZERO) 

CODE (0) 

Routers are assumed to know correct routes; hosts begin with minimal 
routing infonnution and learn new routes from routers. 

CHECKSUM 

To help follow this rule and to avoid duplicating routing information in the confi- 
guration file on each host, the initial host route configuration specifies the minimum 
possible routing information needed to communicate (e.g., the address of a single 
router). Thus, the host begins with minimal information and relies on routers to update 
its routing table. In one special case, when a router detects a host using a nonoptimal 
route, it sends the host an ICMP message, called a redirect, requesting that the host 
change its route. The router also forwards the original datagram on to its destination. 

The advantage of the ICMP redirect scheme is simplicity: it allows a host to boot 
knowing the address of only one router on the local network. The initial router returns 
ICMP redirect messages whenever a host sends a datagram for which there is a better 
route. The host routing table remains small but still contains optimal routes for all des- 
tinations in use. 

Redirect messages do not solve the problem of propagating routes in a general 
way, however, because they are limited to interactions between a router and a host on a 
directly connected network. Figure 9.5 illustrates the limitation. In the figure, assume 
source S sends a datagram to destination D. Assume that router R, incorrectly routes 
the datagram through router R, instead of through router R, (i.e., R, incorrectly chooses 
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a longer path than necessary). When router R, receives the datagram, it cannot send an 
ICMP redirect message to R, because it does not know R,'s address. Later chapters ex- 
plore the problem of how to propagate routes across multiple networks. 

Figure 95 ICMP redirect messages do not provide routing changes among 
routers. In this example, router R, cannot redirect R, to use the 
shorter path for datagrams from S to D. 

In addition to the requisite TYPE, CODE, and CHECKSUM fields, each redirect 
message contains a 32-bit ROUTER INTERNET ADDRESS field and an INTERNET 
HEADER field, as Figure 9.6 shows. 

I TYPE (5) I CODE (0 to 3) I CHECKSUM 

1 ROUTER INTERNET ADDRESS 

I INTERNET HEADER + FIRST 64 BITS OF DATAGRAM I 

Figure 9.6 ICMP redirect message format. 

The ROUTER INTERNET ADDRESS field contains the address of a router that the host 
is to use to reach the destination mentioned in the datagram header. The INTERNET 
HEADER field contains the IP header plus the next 64 bits of the datagram that trig- 
gered the message. Thus, a host receiving an ICMP redirect examines the datagram 
prefm to determine the datagram's destination address. The CODE field of an ICMP 
redirect message further specifies how to interpret the destination address, based on 
values assigned as follows: 
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Code Value Meaning 
0 Redirect datagrams for the Net (now obsolete) 
1 Redirect datagrams for the Host 
2 Redirect datagrams for the Type of Service? and Net 
3 Redirect datagrams for the Type of Service and Host 

As a general rule, routers only send ICMP redirect requests to hosts and not to oth- 
er routers. We will see in later chapters that routers use other protocols to exchange 
routing information. 

9.12 Detecting Circular Or Excessively Long Routes 

Because internet routers compute a next hop using local tables, errors in routing 
tables can produce a routing cycle for some destination, D. A routing cycle can consist 
of two routers that each route a datagram for destination D to the other, or it can consist 
of several routers. When several routers form a cycle, they each route a datagram for 
destination D to the next router in the cycle. If a datagram enters a routing cycle, it will 
pass around the cycle endlessly. As mentioned previously, to prevent datagrams from 
circling forever in a TCP/IP internet, each IP datagram contains a time-to-live counter, 
sometimes called a hop count. A router decrements the time-to-live counter whenever it 
processes the datagram and discards the datagram when the count reaches zero. 

Whenever a router discards a datagram because its hop count has reached zero or 
because a timeout occurred while waiting for fragments of a datagram, it sends an 
ICMP time exceeded message back to the datagram's source, using the format shown in 
Figure 9.7. 

TYPE(11) I CODE(Oor1) I CHECKSUM I 
UNUSED (MUST BE ZERO) 

I INTERNET HEADER + FIRST 64 BITS OF DATAGRAM I 

Figure 9.7 ICMP time exceeded message format. A router sends this mes- 
sage whenever a datagram is discarded because the time-to-live 
field in the datagram header has reached zero or because its 
reassembly timer expired while waiting for fragments. 

ICMP uses the CODE field in each time exceeded message (value zero or one) to ex- 
plain the nature of the tirneout being reported: 

tRecall that each IP header specifies a type of service used for routing. 
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Code Value Meaning 
0 Time-to-live count exceeded 
1 Fragment reassembly time exceeded 

Fragment reassembly refers to the task of collecting all the fragments from a da- 
tagram. When the first fragment of a datagram arrives, the receiving host starts a timer 
and considers it an error if the timer expires before all the pieces of the datagram arrive. 
Code value I is used to report such errors to the sender; one message is sent for each 
such error. 

9.1 3 Reporting Other Problems 

When a router or host finds problems with a datagram not covered by previous 
ICMP error messages (e.g., an incorrect datagram header), it sends a parameter problem 
message to the original source. One possible cause of such problems occurs when argu- 
ments to an option are incorrect. The message, formatted as shown in Figure 9.8, is 
only sent when the problem is so severe that the datagram must be discarded. 

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM 

0 8 16 31 

Figure 9.8 ICMP parameter problem message format. Such messages are 
only sent when the problem causes the datagram to be dropped. 

TYPE (12) 

POINTER 

To make the message unambiguous, the sender uses the POINTER field in the message 
header to identify the octet in the datagram that caused the problem. Code 1 is used to 
report that a required option is missing (e.g., a security option in the military communi- 
ty); the POINTER field is not used for code 1. 

CODE (o or 1) I CHECKSUM 

UNUSED (MUST BE ZERO) 

9.14 Clock Synchronization And Transit Time Estimation 

Although machines on an internet can communicate, they usually operate indepen- 
dently, with each machine maintaining its own notion of the current time. Clocks that 
differ widely can confuse users of distributed systems software. The TCPJIP protocol 
suite includes several protocols that can be used to synchronize clocks. One of the sim- 
plest techniques uses an ICMP message to obtain the time from another machine. A re- 
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questing machine sends an ICMP timestamp request message to another machine, ask- 
ing that the second machine return its current value for the time of day. The receiving 
machine returns a timestamp reply back to the machine making the request. Figure 9.9 
shows the fom~at of timestamp request and reply messages. 

I IDENTIFIER I SEQUENCE NUMBER I 

0 8 16 31 

ORIGINATE TIMESTAMP I 

TYPE (13 or 14) ( CODE (0) 

RECEIVE TIMESTAMP I 

CHECKSUM 

I TRANSMIT TIMESTAMP I 

Figure 9.9 ICMP timestamp request or reply message format. 

The TYPE field identifies the message as a request (13) or a reply (14); the IDEN- 
TIFIER and SEQUENCE NUMBER fields are used by the source to associate replies 
with requests. Remaining fields specify times, given in milliseconds since midnight, 
Universal Time?. The ORIGINATE TIMESTAMP field is filled in by the original 
sender just before the packet is transmitted, the RECEIVE TIMESTAMP field is filled 
immediately upon receipt of a request, and the TRANSMIT TIMESTAMP field is filled 
immediately before the reply is transmitted. 

Hosts use the three timestamp fields to compute estimates of the delay time 
between them and to synchronize their clocks. Because the reply includes the ORI- 
GINATE TIMESTAMP field, a host can compute the total time required for a request to 
travel to a destination, be transforn~ed into a reply, and return. Because the reply canies 
both the time at which the request entered the remote machine, as well as the time at 
which the reply left, the host can compute the network transit time, and from that, esti- 
mate the differences in remote and local clocks. 

In practice, accurate estimation of round-trip delay can be difficult and substantial- 
ly restricts the utility of ICMP timestamp messages. Of course, to obtain an accurate 
estimate of round trip delay, one must take many measurements and average them. 
However, the round-trip delay between a pair of machines that connect to a large inter- 
net can vary dramatically, even over short periods of time. Furthermore, recall that be- 
cause IP is a best-effort technology, datagrams can be dropped, delayed, or delivered 
out of order. Thus, merely taking many measurements may not guarantee consistency; 
sophisticated statistical analysis is needed to produce precise estimates. 

t Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian. 
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9.15 Information Request And Reply Messages 

The ICMP informution request and information reply messages (types 15 and 16) 
are now considered obsolete and should not be used. They were originally intended to 
allow hosts to discover their internet address at system startup. The current protocols 
for address determination are RAW, described in Chapter 6, and BOOTP, described in 
Chapter 23. 

9.16 Obtaining A Subnet Mask 

Chapter 10 discusses the motivation for subnet addressing as well as the details of 
how subnets operate. For now, it is only important to understand that when hosts use 
subnet addressing, some bits in the hostid portion of their IP address identlfy a physical 
network. To participate in subnet addressing, a host needs to know which bits of the 
32-bit internet address correspond to the physical network and which correspond to host 
identifiers. The information needed to interpret the address is represented in a 32-bit 
quantity called the subnet mask. 

To learn the subnet mask used for the local network, a machine can send an ad- 
dress mask request message to a router and receive an address mask reply. The 
machine making the request can either send the message directly, if it knows the 
router's address, or broadcast the message if it does not. Figure 9.10 shows the format 
of address mask messages. 

TYPE (1 7 or 18) 1 CODE (0) I CHECKSUM I 
IDENTIFIER I SEQUENCE NUMBER 

ADDRESS MASK 

Figure 9.10 ICMP address mask request or reply message format. Usually, 
hosts broadcast a request without knowing which specific router 
will respond. 

The TYPE field in an address mask message specifies whether the message is a request 
(17) or a reply (18). A reply contains the network's subnet address mask in the AD- 
DRESS MASK field. As usual, the IDENTIFIER and SEQUENCE NUMBER fields al- 
low a machine to associate replies with requests. 
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9.1 7 Router Discovery 

After a host boots, it must learn the address of at least one router on the local net- 
work before it can send datagram to destinations on other networks. ICMP supports a 
router discovery scheme that allows a host to discover a router address. 

ICMP router discovery is not the only mechanism a host can use to find a router 
address. The BOOTP and DHCP protocols described in Chapter 23 provide the main 
alternative - each of the protocols provides a way for a host to obtain the address of a 
default router along with other bootstrap information. However, BOOTP and DHCP 
have a serious deficiency: the information they return comes from a database that net- 
work administrators configure manually. Thus, the information cannot change quickly. 

Of course, static router ~ o ~ g u r a t i o n  does work well in some situations. For ex- 
ample, consider a network that has only a single router connecting it to the rest of the 
Internet. There is no need for a host on such a network to dynamically discover routers 
or change routes. However, if a network has multiple routers comecting it to the rest 
of the Internet, a host that obtains a default route at startup can lose connectivity if a 
single router crashes. More important, the host cannot detect the crash. 

The ICMP router discovery scheme helps in two ways. First, instead of providing 
a statically configured router address via a bootstrap protocol, the scheme allows a host 
to obtain information directly from the router itself. Second, the mechanism uses a soft 
state technique with timers to prevent hosts from retaining a route after a router crashes 
- routers advertise their information periodically, and a host discards a route if the ti- 
mer for a route expires. 

Figure 9.11 illustrates the format of the advertisement message a router sends. 

I TYPE (9) I CODE (0) I CHECKSUM I 
[ -NUM ADDRS I ADDR SIZE (1) 1 LIFETIME I 

ROUTER ADDRESS 1 

PREFERENCE LEVEL 1 

ROUTER ADDRESS 2 
- 

PREFERENCE LEVEL 2 

Figure 9.11 ICMP router advertisement message format used with IPv4. 
Routers send these messages periodically. 

Besides the TYPE, CODE, and CHECKSUM fields, the message contains a field 
labeled NUM ADDRS that specifies the number of address entries which follow (often 
I), an ADDR SIZE field that specifies the size of an address in 32-bit units (1 for IPv4 
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addresses), and a LIFETIME field that specifies the time in seconds a host may use the 
advertised address(es). The default value for LIFETIME is 30 minutes, and the default 
value for periodic retransmission is 10 minutes, which means that a host will not dis- 
card a route if the host misses a single advertisement message. 

The remainder of the message consists of NUM ADDRS pairs of fields, where each 
pair contains a ROUTER ADDRESS and an integer PRECEDENCE LEVEL for the 
route. The precedence value is a two's complement integer; a host chooses the route 
with highest precedence. 

If the router and the network support multicast as described in Chapter 17, a router 
multicast5 ICMP router advertisement messages to the all-systems multicast address 
(i.e., 224.0.0.1). If not, the router sends the messages to the limited broadcast address 
(i.e., the all 1's address). Of course, a host must never send a router advertisement mes- 
sage. 

9.18 Router Solicitation 

Although the designers provided a range of values to be used as the delay between 
successive router advertisements, they chose the default of 10 minutes. The value was 
selected as a compromise between rapid failure detection and low overhead. A smaller 
value would allow more rapid detection of router failure, but would increase network 
traffic; a larger value would decrease traffic, but would delay failure detection. One of 
the issues the designers considered was how to accommodate a large number of routers 
on the same network. 

From the point of view of a host, the default delay has a severe disadvantage: a 
host cannot afford to wait many minutes for an advertisement when it first boots. To 
avoid such delays, the designers included an ICMP router solicitation message that al- 
lows a host to request an immediate advertisement. Figure 9.12 illustrates the message 
format. 

Figure 9.12 ICMP router solicitation message. A host sends a solicitation 
after booting to request that routers on the local net immediately 
respond with an ICMP router advertisement. 

0 8 16 31 

If a host supports multicasting, the host sends the solicitation to the all-routers 
multicast address (i.e., 224.0.0.2); otherwise the host sends the solicitation to the limited 
broadcast address (i.e., the all 1's address). The arrival of a solicitation message causes 
a router to send a normal router advertisement. As the figure shows, the solicitation 
does not need to carry information beyond the TYPE, CODE, and CHECKSUM fields. 

TYPE (10) 

RESERVED 

CODE (0) CHECKSUM 
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9.19 Summary 

Normal communication across an internet involves sending messages from an ap- 
plication on one host to an application on another host. Routers may need to comrnuni- 
cate directly with the network software on a particular host to report abnormal condi- 
tions or to send the host new routing inforn~ation. 

The Internet Control Message Protocol provides for extranormal communication 
among routers and hosts; it is an integral, required part of IP. ICMP includes source 
quench messages that retard the rate of transmission, redirect messages that request a 
host to change its routing table, echo requestheply messages that hosts can use to deter- 
mine whether a destination can be reached, and router solicitation and advertisement 
messages that hosts use to dynamically maintain a default route. An ICMP message 
travels in the data area of an IP datagram and has three fixed-length fields at the begin- 
ning of the message: an ICMP message type field, a code field, and an ICMP checksum 
field. The message type determines the fornlat of the rest of the message as well as its 
meaning. 

FOR FURTHER STUDY 

Both Tanenbaum [I9811 and Stallings [I9851 discuss control messages in general 
and relate them to various network protocols. The central issue is not how to send con- 
trol messages but when. Grange and Gien [1979], as well as Driver, Hopewell, and Ia- 
quinto [1979], concentrate on a problem for which control messages are essential, 
namely, flow control. Gerla and Kleinrock [I9801 compares flow control strategies 
analytically. For a discussion of clock synchronization protocols see Mills [RFCs 956, 
957, and 13051. 

The Internet Control Message Protocol described here is a TCP/IF' standard defined 
by Postel [RFC '7921 and updated by Braden [RFC [1122]. Nagle [RFC 8961 discusses 
ICMP source quench messages and shows how routers should use them to handle 
congestion control. Prue and Postel [RFC 10161 discusses a more recent technique 
routers use in response to source quench. Nagle [I9871 argues that congestion is always 
a concern in packet switched networks. Mogul and Postel [RFC 9501 discusses subnet 
mask request and reply messages, and Deering [RFC 12561 discusses the solicitation 
and advertisement messages used in router discovery. Jain, Ramakrishnan and Chiu 
[I9871 considers how routers and transport protocols could cooperate to avoid conges- 
tion. 
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Devise an experiment to record how many of each ICMP message type appear on your lo- 
cal network during a day. 

Experiment to see if you can send packets through a router fast enough to trigger an ICMP 
source quench message. 

Devise an algorithm that synchronizes clocks using ICMP timestamp messages. 

See if your local computer system contains a ping command. How does the program inter- 
face with protocols in the operating system? In particular, does the mechanism allow an ar- 
bitrary user to create a ping program, or does such a program require special privilege? 
Explain. 

Assume that all routers send ICMP time-exceeded messages, and that your local TCP/IP 
software will return such messages to an application program. Use the facility to build a 
traceroute command that reports the list of routers between the source and a particular des- 
tination. 

If you connect to the global Internet, try to ping host 128.10.2.1 (a machine at Purdue). 

Should a router give ICMP messages priority over normal traffic? Why or why not? 

Consider an Ethernet that has one conventional host, H, and 12 routers connected to it. 
Find a single (slightly illegal) frame carrying an IP packet that, when sent by host H, 
causes H to receive exactly 24 packets. 

Compare ICMP source quench packets with Jain's 1-bit scheme used in DECNET. Which 
is a more effective strategy for dealing with congestion? Why? 

There is no ICMP message that allows a machine to inform the source that transmission er- 
rors are causing datagram to arrive conupted. Explain why. 

In the previous question, under what circumstances might such a message be useful? 

Should ICMP error messages contain a timestamp that specifies when they are sent? Why 
or why not? 

If routers at your site participate in ICMP router discovery, find out how many addresses 
each router advertises on each interface. 

Try to reach a server on a nonexistent host on your local network. Also try to communi- 
cate with a nonexistent host on a remote network. In which case do you receive an error 
message? Why? 

9.15 Try using ping with a network broadcast address. How many computers answer? Read the 
protocol documents to determine whether answering a broadcast request is required, recom- 
mended, not recommended, or prohibited. 



Classless And Subnet 
Address Extensions (CIDR) 

10.1 Introduction 

Chapter 4 discusses the original Internet addressing scheme and presents the three 
primary forms of IP addresses. This chapter examines five extensions of the IP address 
scheme all designed to conserve network prefixes. The chapter considers the motivation 
for each extension and describes the basic mechanisms used. In particular, it presents 
the details of the address subnet scheme that is now part of the TCP/IF' standards, and 
the classless address scheme that is an elective standard. 

10.2 Review Of Relevant Facts 

Chapter 4 discusses addressing in internetworks and presents the fundamentals of 
the IP address scheme. We said that the 32-bit addresses are carefully assigned to make 
the IP addresses of all hosts on a given physical network share a common prefix. In the 
original IP address scheme, designers thought of the common prefix as defining the net- 
work portion of an internet address and the remainder as a host portion. The conse- 
quence of importance to us is: 

In the original IP addressing scheme, each physical network is as- 
signed a unique network address; each host on a network has the net- 
work address as a prejtx of the host's individual address. 
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The chief advantage of dividing an IP address into two parts arises from the size of the 
routing tables required in routers. Instead of keeping one routing entry per destination 
host, a router can keep one routing entry per network, and examine only the network 
portion of a destination address when making routing decisions. 

Recall that the original IP addressing scheme accommodated diverse network sizes 
by dividing host addresses into three primary classes. Networks assigned class A ad- 
dresses partition the 32 bits into an 8-bit network portion and a 24-bit host portion. 
Class B addresses partition the 32 bits into 16-bit network and host portions, while class 
C partitions the address into a 24-bit network portion and an 8-bit host portion. 

To understand some of the address extensions in this chapter, it will be important 
to realize that individual sites have the freedom to modify addresses and routes as long 
as the modifications remain invisible to other sites. That is, a site can choose to assign 
and use IP addresses in unusual ways internally as long as: 

AU hosts and routers at the site agree to honor the site's addressing scheme. 
Other sites on the Internet can treat addresses as a network prefix and a host 

suffix. 

10.3 Minimizing Network Numbers 

The original classful IP addressing scheme seems to handle all possibilities, but it 
has a minor weakness. How did the weakness arise? What did the designers fail to en- 
vision? The answer is simple: growth. Because they worked in a world of expensive 
mainframe computers, the designers envisioned an internet with hundreds of networks 
and thousands of hosts. They did not foresee tens of thousands of small networks of 
personal computers that would suddenly appear in the decade after TCP/IP was 
designed. 

Growth has been most apparent in the connected Internet, where the size has been 
doubling every nine to fifteen months. The large population of networks with trivial 
size stresses the entire Internet design because it means (I) immense administrative 
overhead is required merely to manage network addresses, (2) the routing tables in 
routers are extremely large, and (3) the address space will eventually be exhausted?. 
The second problem is important because it means that when routers exchange informa- 
tion from their routing tables, the load on the Internet is high, as is the computational 
effort required in participating routers. The third problem is crucial because the original 
address scheme could not accommodate the number of networks currently in the global 
Internet. In particular, insufficient class B prefixes exist to cover all the medium-size 
networks in the Internet. So the question is, "How can one minimize the number of as- 
signed network addresses, especially class B, without abandoning the 32-bit addressing 
scheme?" 

To minimize the number of addresses used, we must avoid assigning network pre- 
fixes whenever possible, and the same IP network prefix must be shared by multiple 
physical networks. To minimize the use of class B addresses, class C addresses must 
be used instead. Of course, the routing procedures must be modified, and all machines 
that connect to the affected networks must understand the conventions used. 

+Although there were many predictions that the lPv4 address space would be exhausted before the year 
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The idea of sharing one network address among multiple physical networks is not 
new and has taken several forms. We will examine three: transparent routers, proxy 
ARP, and standard IP subnets. In addition, we will explore anonymous point-to-point 
networks, a special case in which no network prefix needs to be assigned. Finally, we 
will consider classless addressing, which abandons the rigid class system and allows the 
address space to be divided in arbitrary ways. 

10.4 Transparent Routers 

The transparent router scheme is based on the observation that a network assigned 
a class A IP address can be extended through a simple trick illustrated in Figure 10.1. 

Figure 10.1 Transparent router T extending a wide area network to multiple 
hosts at a site. Each host appears to have an IP address on the 
WAN. 

The trick consists of arranging for a physical network, usually a WAN, to multi- 
plex several host connections through a single host port. As Figure 10.1 shows, a spe- 
cial purpose router, T, connects the single host port from the wide area net to a local 
area network. T is called a transparent router because other hosts and routers on the 
WAN do not know it exists. 

The local area network does not have its own IP prefix; hosts attached to it are as- 
signed addresses as if they connected directly to the WAN. The transparent router 
demultiplexes datagrams that arrive from the WAN by sending them to the appropriate 
host (e.g., by using a table of addresses). The transparent router also accepts datagrams 
from hosts on the local area network and routes them across the WAN toward their des- 
tination. 

To make demultiplexing efficient, transparent routers often divide the IP address 
into multiple parts and encode information in unused parts. For example, the AR- 
PANET was assigned class A network address 10.0.0.0. Each packet switch node 
(PSN) on the ARPANET had a unique integer address. Internally, the ARPANET treat- 
ed any Coctet IP address of the form I0 . p .  u .  i as four separate octets that specify a 
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network (lo), a specific port on the destination PSN @), and a destination PSN (i). 
Octet u remained uninterpreted. Thus, the ARPANET addresses 10.2.5.37 and 
10.2.9.37 both refer to host 2 on PSN 37. A transparent router comected to PSN 37 
on port 2 can use octet u to decide which real host should receive a datagram. The 
WAN itself need not be aware of the multiple hosts that lie beyond the PSN. 

Transparent routers have advantages and disadvantages when compared to conven- 
tional routers. The chief advantage is that they require fewer network addresses because 
the local area network does not need a separate IF' prefm. Another is that they can sup- 
port load balancing. That is, if two transparent routers connect to the same local area 
network, traffic to hosts on that network can be split between them. By comparison, 
conventional routers can only advertise one route to a given network. 

One disadvantage of transparent routers is that they only work with networks that 
have a large address space from which to choose host addresses. Thus, they work best 
with class A networks, and they do not work well with class C networks. Another 
disadvantage is that because they are not conventional routers, transparent routers do not 
provide all the same services as standard routers. In particular, transparent routers may 
not participate fully in ICMP or network management protocols like SNMP. Therefore, 
they do not return ICMP echo requests (i.e., one cannot easily "ping" a transparent 
router to determine if it is operating). 

10.5 Proxy ARP 

The terms proxy ARP, promiscuous ARP, and the ARP hack refer to a second tech- 
nique used to map a single IF' network prefix into two physical addresses. The tech- 
nique, which only applies to networks that use ARP to bind internet addresses to physi- 
cal addresses, can best be explained with an example. 
tion. 

Figure 10.2 illustrates the situa- 

Main Network 

Hidden Network 

Figure 10.2 Proxy ARP technique (the ARP hack) allows one network ad- 
dress to be shared between two physical nets. Router R answers 
ARP requests on each network for hosts on the other network, 
giving its hardware address and then routing datagrams correctly 
when they arrive. In essence, R lies about IP-to-physical address 
bindings. 
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In the figure, two networks share a single IP network address. Imagine that the 
network labeled Main Network was the original network, and that the second, labeled 
Hidden Network, was added later. The router connecting the two networks, R, knows 
which hosts lie on which physical network and uses ARP to maintain the illusion that 
only one network exists. To make the illusion work, R keeps the location of hosts com- 
pletely hidden, allowing all other machines on the network to communicate as if direct- 
ly connected. In our example, when host H, needs to communicate with host H,, it first 
invokes ARP to map H4's IP address into a physical address. Once it has a physical ad- 
dress, HI can send the datagram directly to that physical address. 

Because R runs proxy ARP software, it captures the broadcast ARP request from 
HI, decides that the machine in question lies on the other physical network, and 
responds to the ARP request by sending its own physical address. H, receives the ARP 
response, installs the mapping in its ARP table, and then uses the mapping to send da- 
tagrams destined for H, to R. When R receives a datagram, it searches a special routing 
table to determine how to route the datagram. R must forward datagrams destined for 
H4 over the hidden network. To allow hosts on the hidden network to reach hosts on 
the main network, R performs the proxy ARP service on that network as well. 

Routers using the proxy ARP technique are taking advantage of an important 
feature of the ARP protocol, namely, trust. ARP is based on the idea that all machines 
cooperate and that any response is legitimate. Most hosts install mappings obtained 
through ARP without checking their validity and without maintaining consistency. 
Thus, it may happen that the ARP table maps several IP addresses to the same physical 
address, but that does not violate the protocol specification. 

Some implementations of ARP are not as lax as others. In particular, ARP imple- 
mentations designed to alert managers to possible security violations will infom~ them 
whenever two distinct IF' addresses map to the same physical hardware address. The 
purpose of alerting the manager is to warn about spooJing, a situation in which one 
machine claims to be another in order to intercept packets. Host implementations of 
ARP that warn managers of possible spoofing cannot be used on networks that have 
proxy ARP routers because the software will generate messages frequently. 

The chief advantage of proxy ARP is that it can be added to a single router on a 
network without disturbing the routing tables in other hosts or routers on that network. 
Thus, proxy ARP completely hides the details of physical connections. 

The chief disadvantage of proxy ARP is that it does not work for networks unless 
they use ARP for address resolution. Furthermore, it does not generalize to more com- 
plex network topology (e.g., multiple routers interconnecting two physical networks), 
nor does it support a reasonable form of routing. In fact, most implementations of 
proxy ARP rely on managers to maintain tables of machines and addresses manually, 
making it both time consuming and prone to errors. 
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10.6 Subnet Addressing 

The third technique used to allow a single network address to span multiple physi- 
cal networks is called subnet addressing, subnet routing, or subnetting. Subnetting is 
the most widely used of the three techniques because it is the most general and because 
it has been standardized. In fact, subnetting is a required part of IP addressing. 

The easiest way to understand subnet addressing is to imagine that a site has a sin- 
gle class B IP network address assigned to it, but it has two or more physical networks. 
Only local routers know that there are multiple physical nets and how to route traffic 
among them; routers in other autonomous systems route all traffic as if there were a sin- 
gle physical network. Figure 10.3 shows an example. 

Network 128.10.1.0 

REST OF THE 

Network 128.1 0.2.0 

all traffic to 

128.1 0.0.0 

Figure 103 A site with two physical networks using subnet addressing to la- 
bel them with a single class B network address. Router R ac- 
cepts all traffic for net 128.10.0.0 and chooses a physical net- 
work based on the thud octet of the address. 

In the example, the site is using the single class B network address 128.10.0.0 for 
two networks. Except for router R, all routers in the internet route as if there were a 
single physical net. Once a packet reaches R, it must be sent across the correct physical 
network to its destination. To make the choice of physical network efficient, the local 
site has chosen to use the third octet of the address to distinguish between the two net- 
works. The manager assigns machines on one physical net addresses of the form 
128.10.1. X,  and machines on the other physical net addresses of the form 128.10.2. X,  
where X, the final octet of the address, contains a small integer used to identify a specif- 
ic host. To choose a physical network, R examines the third octet of the destination ad- 
dress and routes datagrams with value 1 to the network labeled 128.10.1.0 and those 
with value 2 to the network labeled 128.10.2.0. 

Conceptually, adding subnets only changes the interpretation of IP addresses slight- 
ly. Instead of dividing the 32-bit IP address into a network prefix and a host suffix, 
subnetting divides the address into a network portion and a local portion. The interpre- 
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tation of the network portion remains the same as for networks that do not use subnet- 
ting. As before, reachability to the network must be advertised to outside autonomous 
systems; all traffic destined for the network will follow the advertised route. The in- 
terpretation of the local portion of an address is left up to the site (within the constraints 
of the formal standard for subnet addressing). To summarize: 

We think of a 32-bit 1P address as having an internet portion and a 
local portion, where the internet portion identijies a site, possibly with 
multiple physical networks, and the local portion identifies a physical 
network and host at that site. 

The example of Figure 10.3 showed subnet addressing with a class B address that 
had a 2-octet internet portion and a 2-octet local portion. To make routing among the 
physical networks efficient, the site administrator in our example chose to use one octet 
of the local portion to identify a physical network, and the other octet of the local por- 
tion to identify a host on that network, as Figure 10.4 shows. 

lnternet 
Part 

Internet 
Part 

physical 
network 

local 
Part 

Figure 10.4 (a) Conceptual interpretation of a 32-bit IP address in the original 
IP address scheme, and (b) conceptual interpretation of ad- 
dresses using the subnet scheme shown in Figure 10.3. The lo- 
cal portion is divided into two parts that identify a physical net- 
work and a host on that network. 

The result is a form of hierarchical addressing that leads to corresponding 
hierarchical routing. The top level of the routing hierarchy (i.e., other autonomous sys- 
tems in the internet) uses the first two octets when routing, and the next level (i.e., the 
local site) uses an additional octet. Finally, the lowest level (i.e., delivery across one 
physical network) uses the entire address. . . 

Hierarchical addressing is not new; many systems have used it before. The best 
example is the U.S. telephone system, where a 10-digit phone number is divided into a 
3-digit area code, 3-digit exchange, and 4-digit connection. The advantage of using 
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hierarchical addressing is that it accommodates large growth because it means a given 
router does not need to know as much detail about distant destinations as it does about 
local ones. One disadvantage is that choosing a hierarchical structure is difficult, and it 
often becomes difficult to change a hierarchy once it has been established. 

10.7 Flexibility In Subnet Address Assignment 

The TCPmP standard for subnet addressing recognizes that not every site will have 
the same needs for an address hierarchy; it allows sites flexibility in choosing how to 
assign them. To understand why such flexibility is desirable, imagine a site with five 
networks interconnected, as Figure 10.5 shows. Suppose the site has a single class B 
network address that it wants to use for all physical networks. How should the local 
part be divided to make routing efficient? 

t To rest of Internet 

Network 2 Network 3 

Network 4 Network 5 

Figure 10.5 A site with five physical networks arranged in three "levels." 
The simplistic division of addresses into physical net and host 
parts may not be optimal for such cases. 

In our example, the site will choose a partition of the local part of the IP address 
based on how it expects to grow. Dividing the 16-bit local part into an &bit network 
identifier and an 8-bit host identifier as shown in Figure 10.4 allows up to 256 net- 
works, with up to 256 hosts per network?. Figure 10.6 illustrates the possible choices if 
a site uses thefied-length subnetting scheme described above and avoids the all 0s and 
all 1s subnet and host addresses. 

?In practice, the limit is 254 subnets of 254 hosts per subnet because the all 1s and all Os host addresses 
are reserved for broadcast, and the all 1s or all Os subnet is not recommended. 
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Subnet Bits Number of Subnets Hosts per Subnet 
0 1 65534 
2 2 16382 
3 6 81 90 
4 14 4094 
5 30 2046 
6 62 1022 
7 126 51 0 
8 254 254 
9 51 0 126 

10 1022 62 
11 2046 30 
12 4094 14 
13 81 90 6 
14 1 6382 2 

Figure 10.6 The possible fixed-length subnets sizes for a class B number, 
with 8 subnet bits being the most popular choice; an organiza- 
tion must choose one line in the table. 

As the figure shows, an organization that adopts fixed-length subnetting must 
choose a compromise. If the organization has a large number of physical networks, the 
networks cannot contain many hosts; if the number of hosts on a network is large, the 
number of physical networks must be small. For example, allocating 3 bits to identify a 
physical network results in up to 6 networks that each support up to 8190 hosts. Allo- 
cating 12 bits results in up to 4094 networks, but restricts the size of each to 62 hosts. 

10.8 Variable-Length Subnets 

We have implied that choosing a subnet addressing scheme is synonymous with 
choosing how to partition the local portion of an IP address into physical net and host 
parts. Indeed, most sites that implement subnetting use a fixed-length assignment. It 
should be clear that the designers did not choose a specific division for subnetting be- 
cause no single partition of the local part of the address works for all organizations - 
some need many networks with few hosts per network, while others need a few net- 
works with many hosts attached to each. The designers realized that the same problem 
can exist within a single organization. To allow maximum autonomy, the TCPAP sub- 
net standard provides even more flexibility than indicated above. An organization may 
select a subnet partition on a per-network basis. Although the technique is known as 
variable-length subnetting, the name is slightly misleading because the value does not 
"vary" over time - once a partition has been selected for a particular network, the 
partition never changes. All hosts and routers attached to that network must follow the 
decision; if they do not, datagrams can be lost or rnisrouted. We can summarize: 
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To allow maximum flexibility in choosing how to partition subnet ad- 
dresses, the TCP/IP subnet standard permits variable-length subnet- 
ting in which the partition can be chosen independently for each phy- 
sical network. Once a subnet partition has been selected, all 
machines on that network must honor it. 

The chief advantage of variable-length subnetting is flexibility: an organization can 
have a mixture of large and small networks, and can achieve higher utilization of the 
address space. However, variable-length subnetting has serious disadvantages. Most 
important, values for subnets must be assigned carefully to avoid address ambiguity, a 
situation in which an address is interpreted differently depending on the physical net- 
work. For example, an address can appear to match two different subnets. As a result, 
invalid variable-length subnets may make it impossible for all pairs of hosts to com- 
municate. Routers cannot resolve such ambiguity, which means that an invalid assign- 
ment can only be repaired by renumbering. Thus, network managers are discouraged 
from using variable-length subnetting. 

10.9 Implementation Of Subnets With Masks 

The subnet technology makes configuration of either fmed or variable length easy. 
The standard specifies that a 32-bit mask is used to specify the division. Thus, a site 
using subnet addressing must choose a 32-bit subnet mask for each network. Bits in the 
subnet mask are set to 1 if machines on the network treat the corresponding bit in the IP 
address as part of the subnet prefix, and 0 if they treat the bit as part of the host identif- 
ier. For example, the 32-bit subnet mask: 

specifies that the first three octets identlfy the network and the fourth octet identifies a 
host on that network. A subnet mask should have 1s for all bits that correspond to the 
network portion of the address (e.g., the subnet mask for a class B network will have 1s 
for the first two octets plus one or more bits in the last two octets). 

The interesting twist in subnet addressing arises because the standard does not res- 
trict subnet masks to select contiguous bits of the address. For example, a network 
might be assigned the mask: 

which selects the first two octets, two bits from the third octet, and one bit from the 
fourth. Although such flexibility makes it possible to arrange interesting assignments of 
addresses to machines, doing so makes assigning host addresses and understanding rout- 
ing tables tricky. Thus, it is recommended that sites use contiguous subnet masks and 
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that they use the same mask throughout an entire set of physical nets that share an IP 
address. 

10.1 0 Subnet Mask Representation 

Specifying subnet masks in binary is both awkward and prone to errors. Therefore, 
most software allows alternative representations. Sometimes, the representation follows 
whatever conventions the local operating system uses for representation of binary quan- 
tities, (e.g., hexadecimal notation). 

Most IP software uses dotted decimal representation for subnet masks; it works 
best when sites choose to align subnetting on octet boundaries. For example, many 
sites choose to subnet class B addresses by using the third octet to identify the physical 
net and the fourth octet to identify hosts as on the previous page. In such cases, the 
subnet mask has dotted decimal representation 255.255.255.0, making it easy to write 
and understand. 

The literature also contains examples of subnet addresses and subnet masks 
represented in braces as a 3-tuple: 

{ <network numbeo , csubnet number>, <host number> ] 

In this representation, the value -1 means "all ones." For example, if the subnet mask 
for a class B network is 255.255.255.0, it can be written (-1, -1,O). 

The chief disadvantage of the 3-tuple representation is that it does not accurately 
speclfy how many bits are used for each part of the address; the advantage is that it 
abstracts away from the details of bit fields and emphasizes the values of the three parts 
of the address. To see why address values are sometimes more important than bit 
fields, consider the 3-tuple: 

which denotes an address with a network number 128.10, all ones in the subnet field, 
and all zeroes in the host field. Expressing the same address value using other 
representations requires a 32-bit subnet mask as well as a 32-bit IP address, and forces 
readers to decode bit fields before they can deduce the values of individual fields. 
Furthermore, the 3-tuple representation is independent of the IP address class or the size 
of the subnet field. Thus, the 3-tuple can be used to represent sets of addresses or 
abstract ideas. For example, the 3-tuple: 

{ <network numbeo, -1, -1 } 

denotes "addresses with a valid network number, a subnet field containing all ones, and 
a host field containing all ones." We will see additional examples later in this chapter. 



158 Classless And Subnet Address Extensions (CIDR) Chap. 10 

10.1 1 Routing In The Presence Of Subnets 

The standard IP routing algorithm must be modified to work with subnet addresses. 
AU hosts and routers attached to a network that uses subnet addressing must use the 
modified algorithm, which is called subnet routing. What may not be obvious is that 
unless restrictions are added to the use of subnetting, other hosts and routers at the site 
may also need to use subnet routing. To see how a problem arises without restrictions, 
consider the example set of networks shown in Figure 10.7. 

In the figure, physical networks 2 and 3 have been (illegally) assigned subnet ad- 
dresses of a single IP network address, N. Although host H does not directly attach to a 
network that has a subnet address, it must use subnet routing to decide whether to send 
datagram destined for network N to router R, or router R,. It could be argued that H 
can send to either router and let them handle the problem, but that solution means not 
all traffic will follow a shortest path. In larger examples, the difference between an op- 
timal and nonoptimal path can be significant. 

Net 1 (not a subnet address) 

1 

Net 2 (subnet of address N) Net 3 (subnet of address N) 

Figure 10.7 An example (illegal) topology with three networks where Nets 2 
and 3 are subnets of a single IP network address, N. If such to- 
pologies were allowed, host H would need to use subnet routing 
even though Net 1 does not have a subnet address. 

In theory, a simple rule determines when machines need to use subnet routing. 
The subnet rule is: 

To achieve optimal routing, a machine M must use subnet routing for 
an IP network address N, unless there is a single path P such that P 
is a shortest path between M and every physical network that is a 
subnet of N .  

Unfortunately, understanding the theoretical restriction does not help in assigning sub- 
nets. First, shortest paths can change if hardware fails or if routing algorithms redirect 
traffic around congestion. Such dynamic changes make it difficult to use the subnet 
rule except in trivial cases. Second, the subnet rule fails to consider the boundaries of 
sites or the difficulties involved in propagating subnet masks. It is impossible to pro- 
pagate subnet routes beyond the boundary of a given organization because the routing 
protocols discussed later do not provide for it. Realistically, it becomes extremely diffi- 

. cult to propagate subnet information beyond a given physical network. Therefore, the 
designers recommend that if a site uses subnet addressing, that site should keep subnet- 
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ting as simple as possible. In particular, network administrators should adhere to the 
following guidelines: 

All subnets of a given network IP address must be contiguous, the 
subnet masks should be uniform across all networks, and all machines 
should participate in subnet routing. 

The guidelines pose special difficulty for a large corporation that has multiple sites each 
connected to the Internet, but not connected directly to one another. Such a corporation 
cannot use subnets of a single address for all its sites because the physical networks are 
not contiguous. 

10.12 The Subnet Routing Algorithm 

Like the standard IF' routing algorithm, the algorithm used with subnets searches a 
table of routes. Recall that in the standard algorithm, per-host routes and default routes 
are special cases that must be checked explicitly; table lookup is used for all others. A 
conventional routing table contains entries of the form: 

(network address, next hop address) 

where the network address field specifies the IP address of a destination network, N, 
and the next hop address field specifies the address of a router to which datagrams des- 
tined for N should be sent. The standard routing algorithm compares the network por- 
tion of a destination address to the network address field of each entry in the routing 
table until a match is found. Because the next hop address field is constrained to speci- 
fy a machine that is reachable over a directly connected network, only one table lookup 
is ever needed. 

The standard algorithm knows how an address is partitioned into network portion 
and local portion because the first three bits encode the address type and format (i.e., 
class A, B, C, or D). With subnets, it is not possible to decide which bits correspond to 
the network and which to the host from the address alone. Instead, the modified algo- 
rithm used with subnets maintains additional information in the routing table. Each 
table entry contains one additional field that specifies the subnet mask used with the 
network in that entry: 

(subnet mask, network address, next hop address) 

When choosing routes, the modified algorithm uses the subnet mask to extract bits of 
the destination address for comparison with the table entry. That is, it performs a bit- 
wise Boolean and of the full 32-bit destination IF' address and the subnet mask field 
from an entry, and it then checks to see if the result equals the value in the network ad- 
dress field of that entry. If so, it routes the datagram to the address specified in the next 
hop address field? of the entry. 

tAs in the standard routing algorithm, the next hop router must be reachable by a directly C O M ~ C ~ ~  net- 
work. 
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10.13 A Unified Routing Algorithm 

Observant readers may have guessed that if we allow arbitrary masks, the subnet 
routing algorithm can subsume all the special cases of the standard algorithm. It can 
handle routes to individual hosts, a default route, and routes to directly connected net- 
works using the same masking technique it uses for subnets. In addition, masks can 
handle routes to conventional classful addresses. The flexibility comes from the ability 
to combine arbitrary 32-bit values in a subnet mask field and arbitrary 32-bit addresses 
in a network address field. For example, to install a route for a single host, one uses a 
mask of all 1s and a network address equal to the host's IP address. To install a default 
route, one uses a subnet mask of all 0s and a network address of all 0s (because any 
destination address and zero equals zero). To install a route to a (nonsubnetted) class B 
network, one specifies a mask with two octets of 1s and two octets of 0s. Because the 
table contains more information, the routing algorithm contains fewer special cases as 
Figure 10.8 shows. 

Algorithm: 

Route-lP-Datagram (datagram, routing-table) 

Extract destination IP address, ID, from datagram; 
If prefix of ID matches address of any directly connected 

network send datagram to destination over that network 
(This involves resolving ID to a physical address, 
encapsulating the datagram, and sending the frame.) 

else 
for each entry in routing table do 

Let N be the bitwise-and of ID and the subnet mask 
If N equals the network address field of the entry then 

route the datagram to the specified next hop address 
endforloop 

If no matches were found, declare a routing error; 

Figure 10.8 The unified IP routing algorithm. Given an IP datagram and a 
routing table with masks, this algorithm selects a next hop router 
to which the datagram should be sent. The next hop must lie on 
a directly connected network. 
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In fact, most implementations eliminate the explicit test for destinations on directly 
connected networks. To do so, one must add a table entry for each directly connected 
network. Like other entries, each entry for a directly connected network contains a 
mask that specifies the number of bits in the prefix. 

10.1 4 Maintenance Of Subnet Masks 

How do subnet masks get assigned and propagated? Chapter 9 answered the 
second part of the question by showing that a host can obtain the subnet mask for a 
given network by sending an ICMP subnet mask request to a router on that network. 
The request can be broadcast if the host does not know the specific address of a router. 
Later chapters will complete the answer to the second part by explaining that some of 
the protocols routers use to exchange routing information pass subnet masks along with 
each network address. 

The first part of the question is more difficult to answer. Each site is free to 
choose subnet masks for its networks. When making assignments, managers attempt to 
balance sizes of networks, numbers of physical networks, expected growth, and ease of 
maintenance. Difficulty arises because nonuniform masks give the most flexibility, but 
make possible assignments that lead to ambiguous routes. Or worse, they allow valid 
assignments that become invalid if more hosts are added to the networks. There are no 
easy rules, so most sites make conservative choices. Typically, a site selects contiguous 
bits from the local portion of an address to identify a network, and uses the same parti- 
tion (i.e., the same mask) for all local physical networks at the site. For example, many 
sites simply use a single subnet octet when subnetting a class B address. 

10.1 5 Broadcasting To Subnets 

Broadcasting is more difficult in a subnet architecture. Recall that in the original 
IP addressing scheme, an address with a host portion of all 1s denotes broadcast to all 
hosts on the specified network. From the viewpoint of an observer outside a subnetted 
site, broadcasting to the network address still makes sense?. That is, the address: 

{ network, -1, -1 ) 

means "deliver a copy to all machines that have network as their network addresses, 
even if they lie on separate physical networks." Operationally, broadcasting to such an 
address makes sense only if the routers that interconnect the subnets agree to propagate 
the datagram to all physical networks. Of course, care must be taken to avoid routing 
loops. In particular, a router cannot merely propagate a broadcast packet that arrives on 
one interface to all interfaces that share the subnet prefix. To prevent such loops, 
routers use reverse path forwarding. The router extracts the source of the broadcast da- 
tagram, and looks up the source in its routing table. The router then discards the da- 

Klassless addressing, covered later in this chapter, has made broadcasting to all subnets obsolete. 

i. 
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tagram unless it arrived on the interface used to route to the source (i.e., arrived from 
the shortest path). 

Within a set of subnetted networks, it becomes possible to broadcast to a specific 
subnet (i.e., to broadcast to all hosts on a physical network that has been assigned one 
of the subnet addresses). The subnet address standard uses a host field of all ones to 
denote subnet broadcast. That is, a subnet broadcast address becomes: 

{ network, subnet, -1 ) 

Considering subnet broadcast addresses and subnet broadcasting clarifies the 
recommendation for using a consistent subnet mask across all networks that share a 
subnetted IP address. As long as the subnet and host fields are identical, subnet broad- 
cast addresses are unambiguous. More complex subnet address assignments may or 
may not allow broadcasting to selected subsets of the physical networks that comprise a 
subnet. 

10.1 6 Anonymous Point-To-Point Networks 

In the original IP addressing scheme, each network was assigned a unique prefm. 
In particular, because IP views each point-to-point connection between a pair of 
machines as a "network," the connection was assigned a network prefm and each com- 
puter was assigned a host suffix. When addresses became scarce, the use of a prefix for 
each point-to-point connection seemed absurd. The problem is especially severe for or- 
ganizations that have many point-to-point connections. For example, an organization 
with multiple sites might use leased digital circuits (e.g., T1 lines) to form a backbone 
that interconnects a router at each site to routers at other sites. 

To avoid assigning a prefm to each point-to-point connection, a simple technique 
was invented. Known as anonymous networking, the technique is often applied when a 
pair of routers is connected with a leased digital circuit. The technique simply avoids 
numbering the leased line, and does not assign a host address to the routers at each end. 
No hardware address is needed, so the interface software is configured to ignore the 
next hop address when sending datagram. Consequently, an arbitrary value can be 
used as the next-hop address in the IP routing table. 

When the anonymous networking technique is applied to a point-to-point comec- 
tion, the connection is known as an unnumbered network or an anonymous network. 
The example in Figure 10.9 will help explain routing in unnumbered networks. 
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R leased serial line 

TO REACH HOSTS ROUTE TO USING THIS 
ON NETWORK THIS ADDRESS INTERFACE 

Figure 10.9 (a) An unnumbered point-to-point connection between two 
routers, and (b) the routing table in router R,. 

128.1 0.0.0 

default 

To understand why unnumbered networks are possible, one must remember that 
serial lines used for point-to-point connections do not operate like shared-media 
hardware. Because there is only one possible destination - the computer at the other 
end of the circuit - the underlying hardware does not use physical addresses when 
transmitting frames. Consequently, when IP hands a datagram to the network interface, 
any value can be specified as a next hop because the hardware will ignore it. Thus, the 
next-hop field of the IP routing table can contain an arbitrary value (e.g., zero). 

The routing table in Figure 10.9b does not have a zero in the next hop field. In- 
stead, the example demonstrates a technique often employed with unnumbered net- 
works. Rather than leaving the next hop empty, it is filled with one of the IP addresses 
assigned to the next-hop router (i.e., an address assigned to another of the router's inter- 
faces). In the example, the address of R,'s Ethernet connection has been used. 

We said that the hardware ignores the next hop address, so it may seem odd that a 
value has been assigned. It may seem even more odd that the next-hop refers to a net- 
work not directly reachable from R,. In fact, neither IP nor the network interface code 
uses the value in any way. The only reason for specifying a non-zero entry is to make 
it easier for humans to understand and remember the address of the router on the other 
end of the point-to-point connection. In the example, we chose the address assigned to 
R,'s Ethernet interface because R, does not have an address for the leased line interface. 

DELIVER DIRECT 

128.21 1.0.1 00 

1 

2 
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10.17 Classless Addressing (Supernetting) 

Subnet addressing was invented in the early 1980s to help conserve the IP address 
space; the unnumbered networking technique followed. By 1993, it became apparent 
that those techniques alone would not prevent Internet growth from eventually exhaust- 
ing the address space. Work had begun on defining an entirely new version of IP with 
larger addresses. To accommodate growth until the new version of IP could be stand- 
ardized and adopted, however, a temporary solution was found. 

Called classless addressing, supernet addressing, or supernetting, the scheme takes 
an approach that is complementary to subnet addressing. Instead of using a single IP 
network prefix for multiple physical networks at a given organization, supernetting al- 
lows the addresses assigned to a single organization to span multiple classed prefixes. 

To understand why classless addressing was adopted, one needs to know three 
facts. First, the classful scheme did not divide network addresses into classes equally. 
Although less than seventeen thousand class B numbers can be assigned, more than two 
million class C network numbers exist. Second, class C numbers were being requested 
slowly; only a small percentage of them had been assigned. Third, studies showed that 
at the rate class B numbers were being assigned, class B prefixes would be exhausted 
quickly. The situation became known as the Running Our of ADdress Space (ROADS) 
problem. 

To understand how supernetting works, consider a medium-sized organization that 
joins the Internet. Such an organization would prefer to use a single class B address for 
two reasons: a class C address cannot accommodate more than 254 hosts and a class B 
address has sufficient bits to make subnetting convenient. To conserve class B 
numbers, the supernetting scheme assigns an organization a block of class C addresses 
instead of a single class B number. The block must be large enough to number all the 
networks the organization will eventually connect to the Internet. For example, suppose 
an organization requests a class B address and intends to subnet using the third octet as 
a subnet field. Instead of a single class B number, supernetting assigns the organization 
a block of 256 contiguous class C numbers that the organization can then assign to phy- 
sical networks. 

Although supernetting is easy to understand when viewed as a way to satisfy a sin- 
gle organization, the proposers intended it to be used in a broader context. They en- 
visioned a hierarchical Internet in which commercial Internet Service Providers (ISPs) 
provide Internet connectivity. To connect its networks to the Internet, an org&zation 
contracts with an ISP; the service provider handles the details of assigning IP addresses 
to the organization as well as installing physical connections. The designers of super- 
netting propose that an Internet Service Provider be assigned a large part of the address 
space (i.e., a set of addresses that span many class C network numbers). The ISP can 
then allocate one or more addresses from the set to each of its subscribers. 
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10.18 The Effect Of Supernetting On Routing 

Allocating many class C addresses in place of a single class B address conserves 
class B numbers and solves the immediate problem of address space exhaustion. How- 
ever, it creates a new problem: the information that routers store and exchange increases 
dramatically. For example, assigning an organization 256 class C addresses instead of a 
class B address requires 256 routes instead of one. 

A technique known as Classless Inter-Domain Routing? (CIDR) solves the prob- 
Iem. Conceptually, CIDR collapses a block of contiguous class C addresses into a sin- 
gle entry represented by a pair: 

( network address, count) 

where network address is the smallest address in the block, and count specifies the total 
number of network addresses in the block. For example, the pair: 

is used to specify the three network addresses 192.5.48.0, 192.5.49.0, and 192.5.50.0. 
If a few Internet Service Providers form the core of the Internet and each ISP owns 

a large block of contiguous IP network numbers, the benefit of supernetting becomes 
clear: routing tables are much smaller. Consider routing table entries in routers owned 
by service provider P. The table must have a correct route to each of P's subscribers, 
but the table does not need to contain a route for other providers' subscribers. Instead, 
the table stores one entry for each other provider, where the entry identifies the block of 
addresses owned by the provider. 

10.19 CIDR Address Blocks And Bit Masks 

In practice, CIDR does not restrict network numbers to class C addresses nor does 
it use an integer count to specify a block size. Instead, CIDR requires the size of each 
block of addresses to be a power of two, and uses a bit mask to identify the size of the 
block. For example, suppose an organization is assigned a block of 2048 contiguous 
addresses starting at address 128.211.168.0. The table in Figure 10.10 shows the binary 
values of addresses in the range. 

CIDR requires two items to specify the block of addresses in Figure 10.10: the 
32-bit value of the lowest address in the block and a 32-bit mask. The mask operates 
like a standard subnet mask by delineating the end of the prefix$. For the range shown, 
a CIDR mask has 21 bits set, which means that the division between prefix and suffix 
occurs after the 21" bit: 

?The name is a slight misnomer because the scheme specifies addressing as well as routing. 
$Unlike a subnet mask, a CIDR mask must use contiguous bits. 
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Dotted Decimal 32-bit Binary Equivalent 
lowest 128.21 1.1 68.0 1 0000000 1 101 001 1 101 01 000 00000000 

highest 128.211.175.255 10000000110100111010111111111111 

Figure 10.10 An example CIDR block of 2048 addresses. The table shows 
the lowest and highest addresses in the range expressed as dot- 
ted decimal and binary values. 

10.20 Address Blocks And CIDR Notation 

Because idenhfying a CIDR block requires both an address and a mask, a short- 
hand notation was devised to express the two items. Called CIDR notation but known 
informally as slash notation, the shorthand represents the mask length in decimal and 
uses a slash to separate it from the address. Thus, in CIDR notation, the block of ad- 
dresses in Figure 10.10 would be expressed as: 

where /21 denotes 21 bits in a mask. The table in Figure 10.1 1 lists dotted decimal 
values for all possible CIDR masks. The 18,l 16, and 124 prefixes correspond to tradi- 
tional class A, B, and C divisions. 

CIDR Notation Dotted Decimal I CIDR Notation Dotted Decimal 

Figure 10.11 Dotted decimal mask values for all possible CIDR prefixes. 
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10.21 A Classless Addressing Example 

The table in Figure 10.1 1 illustrates one of the chief advantages of classless ad- 
dressing: complete flexibility in allocating blocks of various sizes. With CIDR, the ISP 
can choose to assign each customer a block of an appropriate size. If it owns a CIDR 
block of N bits, an ISP can choose to hand customers any piece of more than N bits. 
For example, if the ISP is assigned 128.21 1.0.01 16, the ISP may choose to give one of 
its customers the 2048 address in the 121 range that Figure 10.10 specifies. If the same 
ISP also has a small customer with only two computers, the ISP might choose to assign 
another block 128.21 1.176.212129, which covers the address range that Figure 10.12 
specifies. 

Dotted Decimal 32-bit Binary Equivalent 
lowest 128.21 1 .l76.212 10000000 11 01 001 1 101 10000 11 01 01 00 

highest 128.21 1.176.215 10000000 1101001 1 101 10000 110101 11 

Figure 10.12 An example of CIDR block 128.21 1.176.212129. The use of 
an arbitrary bit mask allows more flexibility in assigning a 
block size than the classful addressing scheme. 

One way to think about classless addresses is as if each customer of an ISP obtains 
a (variable-length) subnet of the ISP's CIDR block. Thus, a given block of addresses 
can be subdivided on an arbitrary bit boundary, and a separate route can be entered for 
each subdivision. As a result, although the group of computers on a given network will 
be assigned addresses in a contiguous range, the range does not need to correspond to a 
predefined class. Instead, the scheme makes subdivision flexible by allowing one to 
specify the exact number of bits that correspond to a prefm. To summarize: 

Classless addressing, which is now used by ISPs, treats IP addresses 
as arbitrary integers, and allows a network administrator to assign 
addresses in contiguous blocks, where the number of addresses in a 
block is a power of two. 

10.22 Data Structures And Algorithms For Classless Lookup 

The fundamental criterion used to judge the algorithms and data structures used 
with routing tables is speed. There are two aspects: the primary consideration is the 
speed of finding a next hop for a given destination, while a secondary consideration is 
the speed of making changes to values in the table. 

The introduction of classless addressing had a profound effect on routing because it 
changed a fundamental assumption: unlike a classful address, a CIDR address is not 
self-identrfying. That is, a router cannot determine the division between prefix and suf- 
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fix merely by looking at the address. The difference is important because it means that 
data structures and search algorithms used with classful addresses do not work when 
routing tables contain classless addresses. After a brief review of classful lookup, we 
will consider one of the data structures used for classless lookup. 

10.22.1 Hashing And Classful Addresses 

All route lookup algorithms are optimized for speed. When IP permitted only 
classful addresses, a single technique provided the necessary optimization: hashing. 
When a classful address is entered in a routing table, the router extracts the network 
portion, N,  and uses it as a hash key. Similarly, given a destination address, the router 
also extracts the network portion, N, computes a hash function h(N), and uses the result 
as an index into a bucket. 

Hashing works well in a classful situation because addresses are self-idenwing. 
Even if some entries in a table correspond to subnet routes, hashing is still efficient be- 
cause the network portion of the address can be extracted and used as a key. If multiple 
routes hash to the same bucket in the table, entries within the bucket are arranged in de- 
creasing order of specificity - subnet routes precede network routes. Thus, if a given 
destination matches both a network route and a subnet route, the algorithm will correct- 
ly find and use the subnet route. 

In a classless world, however, where addresses are not self-identifying, hashing 
does not work well. Because it cannot compute the division between prefix and suffix, 
a router cannot find a hash key for an arbitrary address. Thus, an alternate scheme must 
be found. 

10.22.2 Searching By Mask Length 

The simplest lookup algorithm that accommodates classless addressing merely 
iterates over all possible divisions between prefix and suffix. That is, given a destina- 
tion address, D, the algorithm first tries using 32 bits of D, then 31 bits, and so on down 
to 0 bits. For each possible size, M, the router extracts M bits from D, assumes the ex- 
tracted bits comprise a network prefix, and looks up the prefix in the table. The algo- 
rithm chooses the longest prefix that corresponds to a route in the table (i.e., the search 
stops as soon as a match has been found). 

The disadvantage of trying all possible lengths should be obvious: doing so is 
many times slower than a standard classful lookup because the algorithm must search 
the table for each possible prefix size until a match is found. The worst case occurs 
when no route exists; in which case, the algorithm searches the table 32 times. Even 
when it finds a route, a router using the iterative approach searches the table many 
times unnecessarily. For example, 16 lookups are required before a router can find a 
traditional class B network (i.e., 116) route. More important, the algorithm performs 31 
unnecessary lookups before it succeeds in matching the default route (in many routing 
tables, the default route is heavily used). 
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10.22.3 Binary Trie Structures 

To avoid inefficient searches, production software for classless routing lookup 
must avoid the iterative approach. Instead, classless routing tables are usually stored in 
a hierarchical data structure, and searching proceeds down the hierarchy. The most po- 
pular data structures are variants of a binary trie in which the value of successive bits in 
the address determine a path from the root downward. 

A binary trie is a tree with paths determined by the data stored. To visualize a 
binary trie, imagine that a set of 32-bit addresses is written as binary strings and redun- 
dant suffixes are removed. What remains is a set of prefixes that uniquely identify each 
item. For example, Figure 10.13 shows a set of seven addresses written in binary and 
the corresponding unique prefixes. 

As Figure 10.13 illustrates, the number of bits required to identify an address 
depends on the values in the set. For example, the first address in the figure can be 
uniquely identified by three bits because no other addresses begin with 001. However, 
five bits are required to identify the last item in the table because the Cbit prefix 1011 
is shared by more than one item. 

32-Bit Address 
001 1 01 01 00000000 00000000 00000000 
01 0001 1 0 00000000 00000000 00000000 
01 01 01 1 0 00000000 00000000 00000000 
01100001 0000000000000000 00000000 
1010101 0 11 110000 00000000 00000000 
10110000000000100000000000000000 
10111011 000010100000000000000000 

Unique Prefix 
001 
01 00 
01 01 
01 1 
101 0 
10110 
10111 

Figure 10.13 A set of 32-bit binary addresses and the corresponding set of 
prefixes that uniquely identify each. 

Once a set of unique prefixes has been computed, they can be used to define a 
binary trie. Figure 10.14 illustrates a trie for the seven prefixes in Figure 10.13. 
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Figure 10.14 A binary trie for the seven binary prefixes listed in Figure 
10.13. The path through the hie for prefix 0101 is shown dark- 
ened. 

Each interior node in the trie (shown as a circle) corresponds to two or more pre- 
fixes, and each exterior node (shown as a square) corresponds to one unique prefix. 
The search algorithm stops when it reaches an exterior node or when no path exists for 
the specified prefix. For example, a search for address 

fails because there is no branch with label 0 at the node corresponding to 10. 

To make routing lookup eficient, routing sofrware that handles class- 
less routes must use data structures and algorithms that differ from 
those used for classful lookup. Many systems use a scheme based on 
a binary trie to accommodate classless lookup. 

10.23 Longest-Match Routing And Mixtures Of Route Types 

Our brief description of binary tries only gives a sketch of the data structure used 
in practice. For example, we said that a trie only needs to store a unique prefix for each 
route in the table, without stating that the prefix must cover the entire network portion 
of the route. To guarantee that a router does not forward datagrams unless the entire 
network prefix in the destination matches the route, each exterior node in the trie must 
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contain a 32-bit address, A, and a 32-bit mask, M, that covers the entire network portion 
of A. When the search reaches an exterior node, the algorithm computes the logical d 
of M with the destination address, and compares the result to A in the same way that 
conventional lookup algorithms do. If the comparison fails, the datagram is rejected 
(also like conventional lookup algorithms). In other words, we can view the trie as a 
mechanism that quickly identifies items in the routing table that are potential candidates 
rather than a mechanism that finds an exact match. 

Even if we consider the trie to be a mechanism that identifies potential matches, 
another important detail is missing from our description. We have assumed that each 
entry in a routing table has a unique binary prefix. In practice, however, the entries in 
most routing tables do not have unique prefixes because routing tables contain a mix- 
ture of general and specific routes for the same destination. For example, consider any 
routing table that contains a network-specific route and a different route for one particu- 
lar subnet of the same network. Or consider a routing table that contains both a 
network-specific route and a special route for one host on that network. The binary pre- 
fix of the network route is also a prefix of the subnet or host-specific route. Figure 
10.15 provides an example. 

Prefix 
128.1 0.0.0 I 16 
128.1 0.2.0 124 
128.10.3.0124 
128.1 0.4.0 124 
128.1 0.4.3 132 
128.1 0.5.0 124 
128.10.5.1 132 

Next Hop 
10.0.0.2 
10.0.0.4 
10.1.0.5 
10.0.0.6 
10.0.0.3 
10.0.0.6 
10.0.0.3 

Figure 10.15 An example set of routes without unique prefixes. The situation 
occurs frequently because many routing tables contain a mix- 
ture of general and specific routes for the same network. 

To permit overlapping prefixes, the trie data structure described above must be 
modified to follow the longest-match paradigm when selecting a route. To do so, one 
must allow interior nodes to contain an address 1 mask pair, and modify the search algo- 
rithm to check for a match at each node. A match that occurs later in the search (i.e., a 
match that corresponds to a more specific route) must override any match that occurs 
earlier because a later match corresponds to a longer prefix. 

10.23.1 PATRICIA And Level Compressed Tries 

Our description of binary tries also omits details related to optimization of lookup. 
The most important involves "skipping" levels in the trie that do not distinguish 
among routes. For example, consider a binary trie for the set of routes in Figure 10.15. 
Because each route in the list begins with the same sixteen bits (i.e., the value 
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1OOOOOOO 00001010), a binary trie for the routes will only have one node at each of the 
first sixteen levels below the root. 

In this instance, it would be faster to examine all sixteen bits of a destination ad- 
dress at once rather than extracting bits one at a time and using them to move through 
the trie. Two modified versions of tries use the basic optimization. The first, a PATRZ- 
CIA tree, allows each node to s p e c e  a value to test along with a number of bits to 
skip. The second, a level compressed trie, provides additional optimization by eliminat- 
ing one or more levels in the trie that can be skipped along any path. 

Of course, data structure optimizations represent a tradeoff. Although the optimi- 
zations improve search speed, they require more computation when creating or m o d e -  
ing a routing table. In most cases, however, such optimizations are justified because 
one expects a routing table to be modified much less frequently than it is searched. 

10.24 CIDR Blocks Reserved For Private Networks 

Chapter 4 stated that the IETF had designated a set of prefixes to be reserved for 
use with private networks. As a safeguard, reserved prefmes will never be assigned to 
networks in the global Internet. Collectively, the reserved prefmes are known as private 
addresses or nonroutable addresses. The latter term arises because routers in the global 
Internet understand that the addresses are reserved; if a datagram destined to one of the 
private addresses is accidentally routed onto the global Internet, a router in the Internet 
will be able to detect the problem. 

In addition to blocks that correspond to classful addresses, the set of reserved IPV4 
prefmes contains a CIDR block that spans multiple classes. Figure 10.16 lists the 
values in CIDR notation along with the dotted decimal value of the lowest and highest 
addresses in the block. The last address block listed, 169.254/16, is unusual because it 
is used by systems that autoconfigure IP addresses. 

Prefix Lowest Address Highest Address 
1018 10.0.0.0 10.255.255.255 
172.16112 172.1 6.0.0 172.31.255.255 
192.1681 16 192.1 68.0.0 192.1 68.255.255 
169.254 1 16 169.254.0.0 169.254.255.255 

Figure 10.16 The prefmes reserved for use with private internets not connect- 
ed to the global Internet. If a datagram sent to one of these ad- 
dresses accidentally reaches the Internet, an error will result. 
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10.25 Summary 

The original IP address scheme assigns a unique prefix to each physical network. 
This chapter examined five techniques that have been invented to conserve IP addresses. 
The first technique uses transparent routers to extend the address space of a single net- 
work, usually a WAN, to include hosts on an attached local network. The second tech- 
nique, called proxy ARP, arranges for a router to impersonate computers on another 
physical network by answering ARP requests on their behalf. Proxy ARP is useful only 
on networks that use ARP for address resolution, and only for ARP implementations 
that do not complain when multiple internet addresses map to the same hardware ad- 
dress. The third technique, a TCPnP standard called subnet addressing, allows a site to 
share a single IP network address among multiple physical networks. All hosts and 
routers connected to networks using subnetting must use a modified routing scheme in 
which each routing table entry contains a subnet mask. The modified scheme can be 
viewed as a generalization of the original routing algorithm because it handles special 
cases like default routes or host-specific routes. The fourth technique allows a point- 
to-point link to remain unnumbered (i.e., have no IP prefix). 

The fifth technique, known as classless addressing (CIDR), represents a major shift 
in IP technology. Instead of adhering to the original network classes, classless address- 
ing allows the division between prefix and suffix to occur on an arbitrary bit boundary. 
CIDR allows the address space to be divided into blocks, where the size of each block 
is a power of two. One of the main motivations for CIDR arises from the desire to 
combine multiple class C prefixes into a single supernet block. Because classless ad- 
dresses are not self-identifying like the original classful addresses, CIDR requires signi- 
ficant changes to the algorithms and data structures used by IP software on hosts and 
routers to store and look up routes. Many implementations use a scheme based on the 
binary trie data structure. 

FOR FURTHER STUDY 

The standard for subnet addressing comes from Mogul [RFC 9.501 with updates in 
Braden [RFC 11221. Clark [RFC 9321, Karels [RFC 9361, Gads [RFC 9401, and Mogul 
[RFC 9171 all contain early proposals for subnet addressing schemes. Mogul [RFC 
9221 discusses broadcasting in the presence of subnets. Postel [RFC 9251 considers the 
use of proxy ARP for subnets. Atallah and Comer [I9981 presents a provably optimal 
algorithm for variable-length subnet assignment. Carl-Mitchell and Quarterman W C  
10271 discusses using proxy ARP to implement transparent subnet routers. Rekhter and 
Li [RFC 15181 specifies classless IP address allocation. Fuller, Li, Yu, and Varadhan 
[RFC 15191 specifies CIDR routing and supernetting. Rekhter et. al. [RFC 19181 speci- 
fies address prefixes reserved for private networks. Knuth [I9731 describes the PATRI- 
CIA data structure. 
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EXERCISES 

If routers using proxy ARP use a table of host addresses to decide whether to answer 
ARP requests, the routing table must be changed whenever a new host is added to one of 
the networks. Explain how to assign IP addresses so hosts can be added without chang- 
ing tables. Hint: think of subnets. 

Although the standard allows all-0's to be assigned as a subnet number, some vendors' 
software does not operate correctly. Try to assign a zero subnet at your site and see if 
the route is propagated correctly. 

Can transparent routers be used with local area networks like the Ethernet? Why or why 
not? 

Show that proxy ARP can be used with three physical networks that are interconnected 
by two routers. 

Consider a fixed subnet partition of a class B network number that will accommodate at 
least 76 networks. How many hosts can be on each network? 

Does it ever make sense to subnet a class C network address? Why or why not? 

A site that chose to subnet their class B address by using the third octet for the physical 
net was disappointed that they could not accommodate 255 or 256 networks. Explain. 

Design a subnet address scheme for your organization assuming that you have one class 
B address to use. 

Is it reasonable for a single router to use both proxy ARP and subnet addressing? If so, 
explain how. If not, explain why. 

Argue that any network using proxy ARP is vulnerable to "spoofing" (i.e., an arbitrary 
machine can impersonate any other machine). 

Can you devise a (nonstandard) implementation of ARP that supports normal use, but 
prohibits proxy ARP? 

One vendor decided to add subnet addressing to its IP software by allocating a single 
subnet mask used for all IP network addresses. The vendor modified its standard IP 
routing software to make the subnet check a special case. Find a simple example in 
which this implementation cannot work correctly. (Hint: think of a multi-homed host.) 
Characterize the (restricted) situations in which the subnet implementation discussed in 
the previous exercise will work correctly. 

Read the standard to find out more about broadcasting in the presence of subnets. Can 
you characterize subnet address assignments that allow one to specify a broadcast ad- 
dress for all possible subnets? 

The standard allows an arbitrary assignment of subnet masks for networks that comprise 
a subnetted IP address. Should the standard restrict subnet masks to cover contiguous 
bits in the address? Why or why not? 

Find an example of variable length subnet assignments and host addresses that produces 
address ambiguity. 

Carefully consider default routing in the presence of subnets. What can happen if a 
packet arrives destined for a nonexistent subnet? 
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Compare architectures that use subnet addressing and routers to interconnect multiple 
Ethernets to an architecture that uses bridges as described in Chapter 2. Under what cir- 
cumstances is one architecture preferable to the other? 
Consider a site that chooses to subnet a class B network address, but decides that some 
physical nets will use 6 bits of the local portion to identify the physical net while others 
will use 8. Find an assignment of host addresses that makes destination addresses ambi- 
guous. 
The subnet routing algorithm in Figure 10.8 uses a sequential scan of entries in the rout- 
ing table, allowing a manager to place host-specific routes before network-specific or 
subnet-specific routes. Invent a data structure that achieves the same flexibility but uses 
hashing to make the lookup efficient. [This exercise was suggested by Dave Mills.] 

Although much effort has been expended on making routers operate quickly, software 
for classless route lookup still runs slower than the hashing schemes used with classful 
lookup. Investigate data structures and lookup algorithms that operate faster than a 
binary trie. 
A binary trie uses one bit to select among two descendants at each node. Consider a trie 
that uses two bits to select among four descendants at each node. Under what conditions 
does such a trie make lookup faster? Slower? 
If all Internet service providers use classless addressing and assign subscribers numbers 
from their block of addresses, what problem occurs when a subscriber changes from one 
provider to another? 





Protocol Layering 

11 .l Introduction 

Previous chapters review the architectural foundations of internetworking, describe 
how hosts and routers forward Internet datagrams, and present mechanisms used to map 
IP addresses to physical network addresses. This chapter considers the structure of the 
software found in hosts and routers that carries out network communication. It presents 
the general principle of layering, shows how layering makes Internet Protocol software 
easier to understand and build, and traces the path of datagrams through the protocol 
software they encounter when traversing a TCP/IP internet. 

11.2 The Need For Multiple Protocols 

We have said that protocols allow one to specify or understand communication 
without knowing the details of a particular vendor's network hardware. They are to 
computer communication what programming languages are to computation. It should 
be apparent by now how closely the analogy fits. Like assembly language, some proto- 
cols describe communication across a physical network. For example, the details of the 
Ethernet frame format, network access policy, and frame error handling comprise a pro- 
tocol that describes communication on an Ethernet. Similarly, like a high-level 
language, the Internet Protocol specifies higher-level abstractions (e.g., IP addressing, 
datagram format, and the concept of unreliable, connectionless delivery). 

Complex data communication systems do not use a single protocol to handle all 
transmission tasks. Instead, they require a set of cooperative protocols, sometimes 
called a protocol family or protocol suite. To understand why, think of the problems 
that arise when machines communicate over a data network: 
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Hardware failure. A host or router may fail either because the hardware fails or 
because the operating system crashes. A network transmission link may fail or acciden- 
tally be disconnected. The protocol software needs to detect such failures and recover 
from them if possible. 

Network congestion. Even when aLl hardware and software operates correctly, 
networks have finite capacity that can be exceeded. The protocol software needs to ar- 
range ways that a congested machine can suppress further traffic. 

Packet delay or loss. Sometimes, packets experience extremely long delays or 
are lost. The protocol software needs to learn about failures or adapt to long delays. 

Data corruption. Electrical or magnetic interference or hardware failures can 
cause transmission errors that corrupt the contents of transmitted data. Protocol 
software needs to detect and recover from such errors. 

Data duplication or inverted arrivals. Networks that offer multiple routes may 
deliver data out of sequence or may deliver duplicates of packets. The protocol 
software needs to reorder packets and remove any duplicates. 

Taken together, all the problems seem overwhelming. It is difficult to understand 
how to write a single protocol that will handle them all. From the analogy with pro- 
gramming languages, we can see how to conquer the complexity. Program translation 
has been partitioned into four conceptual subproblems identified with the software that 
handles each subproblem: compiler, assembler, link editor, and loader. The division 
makes it possible for the designer to concentrate on one subproblem at a time, and for 
the implementor to build and test each piece of software independently. We will see 
that protocol software is partitioned similarly. 

Two final observations from our programming language analogy will help clarify 
the organization of protocols. First, it should be clear that pieces of translation software 
must agree on the exact format of data passed between them. For example, the data 
passed from a compiler to an assembler consists of a program defined by the assembly 
programming language. The translation process involves multiple representations. The 
analogy holds for communication software because multiple protocols define the 
representations of data passed among communication software modules. Second, the 
four parts of the translator form a linear sequence in which output from the compiler be- 
comes input to the assembler, and so on. Protocol software also uses a linear sequence. 

11.3 The Conceptual Layers Of Protocol Software 

Think of the modules of protocol software on each machine as being stacked verti- 
cally into layers, as in Figure 11.1. Each layer takes responsibility for handling one 
part of the problem. 
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Sender e I Layer n I 

Receiver B 
Layer n L 

Figure 11.1 The conceptual organization of protocol software in layers. 

... 
Layer 2 

Layer 1 

Conceptually, sending a message from an application program on one machine to 
an application program on another means transfemng the message down through suc- 
cessive layers of protocol software on the sender's machine, forwarding the message 
across the network, and transfemng the message up through successive layers of proto- 
col software on the receiver's machine. 

In practice, the protocol software is much more complex than the simple model of 
Figure 11.1 indicates. Each layer makes decisions about the correctness of the message 
and chooses an appropriate action based on the message type or destination address. 
For example, one layer on the receiving machine must decide whether to keep the mes- 
sage or forward it to another machine. Another layer must decide which application 
program should receive the message. 

To understand the difference between the conceptual organization of protocol 
software and the implementation details, consider the comparison shown in Figure 11.2. 
The conceptual diagram in Figure 11.2a shows an Internet layer between a high level 
protocol layer and a network interface layer. The realistic diagram in Figure 11.2b 
shows that the IP software may communicate with multiple high-level protocol modules 
and with multiple network interfaces. 

Although a diagram of conceptual protocol layering does not show all details, it 
does help explain the general concept. For example, Figure 11.3 shows the layers of 
protocol software used by a message that traverses three networks. The diagram shows 
only the network interface and Internet Protocol layers in the routers because only those 
layers are needed to receive, route, and send datagrams. We understand that any 
machine attached to two networks must have two network interface modules, even 
though the conceptual layering diagram shows only a single network interface layer in 
each machine. 

. . . 
Layer 2 

Layer 1 

Network 
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Conceptual Layers Software Organization 

Internet I Protocol Layer I 
Protocol 1 Protocol 2 

I IP Module I 
Protocol 3 

Interface Layer Interface 1 Interface 2 Interface 3 

Protocol Layer 
r I -  

Figure 11.2 A comparison of (a) conceptual protocol layering and (b) a real- 
istic view of software organization showing multiple network in- 
terfaces below IF' and multiple protocols above it. 

As Figure 11.3 shows, a sender on the original machine transmits a message which 
the IP layer places in a datagram and sends across network 1. On intermediate routers, 
the datagram passes up to the IP layer which sends it back out again (on a different net- 
work). Only when it reaches the final destination machine, does IP extract the message 
and pass it up to higher layers of protocol software. 

lnterface 

Figure 113 The path of a message traversing the Internet from the sender 
through two intermediate routers to the receiver. Intermediate 
routers only send the datagram to the IF' software layer. 
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11.4 Functionality Of The Layers 

Once the decision has been made to partition the communication problem and or- 
ganize the protocol software into modules that each handle one subproblem, the ques- 
tion arises: "what functionality should reside in each module?" The question is not 
easy to answer for several reasons. First, given a set of goals and constraints governing 
a particular communication problem, it is possible to choose an organization that will 
optimize protocol software for that problem. Second, even when considering general 
network-level services such as reliable transport, it is possible to choose from among 
fundamentally distinct approaches to solving the problem. Third, the design of network 
(or internet) architecture and the organization of the protocol software are interrelated; 
one cannot be designed without the other. 

11.4.1 IS0 7-Layer Reference Model 

Two ideas about protocol layering dominate the field. The first, based on early 
work done by the International Organization for Standardization (ISO), is known as 
ISO's Reference Model of Open System Interconnection, often referred to as the IS0 
model. The IS0 model contains 7 conceptual layers organized as Figure 11.4 shows. 

Layer Functionality 

7 1 Application I 
6 I Presentation I 
5 1 Session 

I Transport I 
3 1 Network 

2 
Data Link 

1 Connection 
-- 

Figure 11.4 The IS0 7-layer reference model for protocol software. 
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The IS0  model, built to describe protocols for a single network, does not contain a 
specific layer for internetwork routing in the same way TCPIIP protocols do. 

11.5 X.25 And Its Relation To The IS0 Model 

Although it was designed to provide a conceptual model and not an implementa- 
tion guide, the IS0 layering scheme has been the basis for several protocol implementa- 
tions. Among the protocols commonly associated with the IS0  model, the suite of pro- 
tocols known as X.25 is probably the best known and most widely used. X.25 was es- 
tablished as a recommendation of the International Telecommunications Union (ITU), 
formerly the CCIZT, an organization that recommends standards for international tele- 
phone services. X.25 has been adopted by public data networks, and became especially 
popular in Europe. Considering X.25 will help explain IS0  layering. 

In the X.25 view, a network operates much like a telephone system. An X.25 net- 
work is assumed to consist of complex packet switches that contain the intelligence 
needed to route packets. Hosts do not attach directly to communication wires of the 
network. Instead each host attaches to one of the packet switches using a serial com- 
munication line. In one sense, the connection between a host and an X.25 packet 
switch is a miniature network consisting of one serial link. The host must follow a 
complicated procedure to transfer packets onto the network. 

Physical Layer. X.25 specifies a standard for the physical interconnection 
between host computers and network packet switches, as well as the procedures used to 
transfer packets from one machine to another. In the reference model, layer 1 specifies 
the physical interconnection including electrical characteristics of voltage and current. 
A corresponding protocol, X.21, gives the details used by public data networks. 

Data Link Layer. The layer 2 portion of the X.25 protocol specifies how data 
travels between a host and the packet switch to which it connects. X.25 uses the term 
frame to refer to a unit of data as it passes between a host and a packet switch (it is im- 
portant to understand that the X.25 definition offrame differs slightly from the way we 
have defined it). Because raw hardware delivers only a stream of bits, the layer 2 pro- 
tocol must define the format of frames and spec@ how the two machines recognize 
frame boundaries. Because transmission errors can destroy data, the layer 2 protocol in- 
cludes error detection (e.g., a frame checksum). Finally. because transmission is unreli- 
able, the layer 2 protocol specifies an exchange of acknowledgements that allows the 
two machines to know when a frame has been transferred successfully. 

One commonly used layer 2 protocol, named the High Level Data Link Communi- 
cation, is best known by its acronym, HDLC. Several versions of HDLC exist, with the 
most recent known as HDLCLAPB. It is important to remember that successful 
transfer at layer 2 means a frame has been passed to the network packet switch for 
delivery; it does not guarantee that the packet switch accepted the packet or was able to 
route it. 

Network Layer. The IS0  reference model specifies that the third layer contains 
functionality that completes the definition of the interaction between host and network. 
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Called the network or communication subnet layer, this layer defines the basic unit of 
transfer across the network and includes the concepts of destination addressing and rout- 
ing. Remember that in the X.25 world, communication between host and packet switch 
is conceptually isolated from the traffic that is being passed. Thus, the network might 
allow packets defined by layer 3 protocols to be larger than the size of frames that can 
be transferred at layer 2. The layer 3 software assembles a packet in the form the net- 
work expects and uses layer 2 to transfer it (possibly in pieces) to the packet switch. 
Layer 3 must also respond to network congestion problems. 

Transport Layer. Layer 4 provides end-to-end reliability by having the destina- 
tion host communicate with the source host. The idea here is that even though lower 
layers of protocols provide reliable checks at each transfer, the end-to-end layer double 
checks to make sure that no machine in the middle failed. 

Session Layer. Higher layers of the IS0  model describe how protocol software 
can be organized to handle all the functionality needed by application programs. The 
IS0  committee considered the problem of remote terminal access so fundamental that 
they assigned layer 5 to handle it. In fact, the central service offered by early public 
data networks consisted of terminal to host interconnection. The carrier provides a spe- 
cial purpose host computer called a Packet Assembler And Disassembler (PAD) on the 
network with dialup access. Subscribers, often travelers who cany their own computer 
and modem, dial up the local PAD, make a network connection to the host with which 
they wish to communicate, and log in. Many carriers choose to make using the network 
for long distance communication less expensive than direct dialup. 

Presentation Layer. IS0  layer 6 is intended to include functions that many ap- 
plication programs need when using the network. Typical examples include standard 
routines that compress text or convert graphics images into bit streams for transmission 
across a network. For example an IS0  standard known as Abstract Syntax Notation 1 
(ASN.]), provides a representation of data that application programs use. One of the 
TCP/IP protocols, SNMP, also uses ASN. 1 to represent data. 

Application Layer. Finally, IS0  layer 7 includes application programs that use 
the network. Examples include electronic mail or file transfer programs. In particular, 
the ITU has devised a protocol for electronic mail known as the X.400 standard. In 
fact, the ITU and IS0  worked jointly on message handling systems; the IS0  version is 
called MOTZS. 

11.5.1 The TCPAP 5-Layer Reference Model 

The second major layering model did not arise from a standards committee, but 
came instead from research that led to the TCPIIP protocol suite. With a little work, the 
IS0  model can be stretched to describe the TCPAP layering scheme, but the underlying 
assumptions are different enough to warrant distinguishing the two. 
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Broadly speaking, TCPDP software is organized into five conceptual layers - four 
software layers that build on a fifth layer of hardware. Figure 11.5 shows the conceptu- 
al layers as well as the form of data as it passes between them. 

Conceptual Layer Objects Passed 
Between Layers 

Application 

Messages or Streams 

Transport 

Transport Protocol Packets 

Internet 

IP Datagrams 

Network Interface 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Network-Specific Frames 

; Hardware ; 

Figure 11.5 The 4 conceptual layers of TCPIIP software above the hardware 
layer, and the form of objects passed between layers. The layer 
labeled network interface is sometimes called the data link layer. 

Application Layer. At the highest layer, users invoke application programs that 
access services available across a TCPDP internet. An application interacts with one of 
the transport layer protocols to send or receive data. Each application program chooses 
the style of transport needed, which can be either a sequence of individual messages or 
a continuous stream of bytes. The application program passes data in the required form 
to the transport layer for delivery. 

Transport Layer. The primary duty of the transport layer is to provide com- 
munication from one application program to another. Such communication is often 
called end-to-end. The transport layer may regulate flow of information. It may also 
provide reliable transport, ensuring that data arrives without error and in sequence. To 
do so, transport protocol software arranges to have the receiving side send back ack- 
nowledgements and the sending side retransmit lost packets. The transport software 
divides the stream of data being transmitted into small pieces (sometimes called pack- 
ets) and passes each packet along with a destination address to the next layer for 
transmission. 

Although Figure 11.5 uses a single block to represent the application layer, a gen- 
eral purpose computer can have multiple application programs accessing an internet at 
one time. The transport layer must accept data from several user programs and send it 
to the next lower layer. To do so, it adds additional information to each packet, includ- 
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ing codes that identify which application program sent it and which application program 
should receive it, as well as a checksum. The receiving machine uses the checksum to 
verify that the packet arrived intact, and uses the destination code to identify the appli- 
cation program to which it should be delivered. 

Internet Layer. As we have already seen, the Internet layer handles communica- 
tion from one machine to another. It accepts a request to send a packet from the tran- 
sport layer along with an identification of the machine to which the packet should be 
sent. It encapsulates the packet in an IP datagram, fills in the datagram header, uses the 
routing algorithm to deternune whether to deliver the datagram directly or send it to a 
router, and passes the datagram to the appropriate network interface for transmission. 
The Internet layer also handles incoming datagrams, checking their validity, and uses 
the routing algorithm to decide whether the datagram should be processed locally or for- 
warded. For datagrams addressed to the local machine, software in the internet layer 
deletes the datagram header, and chooses from among several transport protocols the 
one that will handle the packet. Finally, the Internet layer sends and receives ICMP er- 
ror and control messages as needed. 

Network Inte$ace Layer. The lowest layer TCPIIP software comprises a net- 
work interface layer, responsible for accepting IP datagrams and transmitting them over 
a specific network. A network interface may consist of a device driver (e.g., when the 
network is a local area network to which the machine attaches directly) or a complex 
subsystem that uses its own data link protocol (e.g., when the network consists of pack- 
et switches that communicate with hosts using HDLC). 

11.6 Differences Between IS0 And Internet Layering 

There are two subtle and important differences between the TCPm layering 
scheme and the ISOlX.25 scheme. The first difference revolves around the focus of at- 
tention on reliability, while the se&d involves the location of intelligence in the 
overall system. 

11.6.1 Link-Level vs. End-To-End Reliability 

One major difference between the TCPm protocols and the X.25 protocols lies in 
their approaches to providing reliable data transfer services. In the X.25 model, proto- 
col software detects and handles errors at all layers. At the link level, complex proto- 
cols guarantee that the transfer between a host and the packet switch to which it con- 
nects will be correct. Checksums accompany each piece of data transferred, and the re- 
ceiver acknowledges each piece of data received. The link layer protocol includes 
timeout and retransmission algorithms that prevent data loss and provide automatic 
recovery after hardware fails and restarts. 

Successive layers of X.25 provide reliability of their own. At layer 3, X.25 also 
provides error detection and recovery for packets transferred onto the network, wing 
checksums as well as tirneout and retransmission techniques. Finally, layer 4 must pro- 
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vide end-to-end reliability, having the source correspond with the ultimate destination to 
verify delivery. 

In contrast to such a scheme, TCPW bases its protocol layering on the idea that re- 
liability is an end-to-end problem. The architectural philosophy is simple: construct the 
internet so it can handle the expected load, but allow individual links or machines to 
lose data or corrupt it without trying to repeatedly recover. In fact, there is little or no 
reliability in most TCPAP network interface layer software. Instead, the tganspoa layer 
handles most error detection and recovery problems. 

The resulting freedom from interface layer verification makes TCP/IP software 
much easier to understand and implement correctly. Intermediate routers can discard 
datagrams that become corrupted because of transmission errors or that cannot be 
delivered. They can discard datagrams when the arrival rate exceeds machine capacity, 
and can reroute datagrams through paths with shorter or longer delay without informing 
the source or destination. 

Having unreliable links means that some datagrams do not arrive. Detection and 
recovery of datagram loss is carried out between the source host and the ultimate desti- 
nation and is, therefore, called end-to-end verification. The end-to-end software located 
in the TCP/IP transport layer uses checksums, acknowledgements, and timeouts to con- 
trol transmission. Thus, unlike the connection-oriented X.25 protocol layering, the 
TCP/IP software focuses most of its reliability control in one layer. 

11.6.2 Locus of Intelligence and Decision Making 

Another difference between the X.25 model and the TCPAP model emerges when 
one considers the locus of authority and control. As a general rule, networks using 
X.25 adhere to the idea that a network is a utility that provides a transport service. The 
vendor that offers the service controls network access and monitors traffic to keep 
records for accounting and billing. The network vendor also handles problems like 
routing, flow control, and acknowledgements internally, making transfers reliable. This 

[view leaves little that the hosts can (or need to) do. In short, the network is a complex, 
independent system to which one can attach relatively simple host computers; the hosts 

(themselves participate minimally in the network operation. 
In contrast, TCPAP requires hosts to participate in almost all of the network proto- 

cols. We have already mentioned that hosts actively implement end-to-end error detec- 
tion and recovery. They also participate in routing because they must choose a router 
when sending datagrams, and they participate in network control because they must 
handle ICMP control messages. Thus, when compared to an X.25 network, a TCPAP 

'' internet can be viewed as a relatively simple packet delivery system to which intelligent 
I\ ,hosts attach. 
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11.7 The Protocol Layering Principle 

Independent of the particular layering scheme used or the functions of the layers, 
the operation of layered protocols is based on a fundamental idea. The idea, called the 
layering principle, can be summarized succinctly: 

Layered protocols are designed so that layer n at the destination re- 
ceives exactly the same object sent by layer n at the source. 

The layering principle explains why layering is such a powerful idea. It allows the 
protocol designer to focus attention on one layer at a time, without worrying about how 
other layers perform. For example, when building a file transfer application, the 
designer considers only two copies of the application program executing on two com- 
puters, and concentrates on the messages they need to exchange for file transfer. The 
designer assumes that the application on one host receives exactly the data that the ap- 
plication on the other host sends. 

Figure 11.6 illustrates how the layering principle works: 

Host A Host B 

Application L-J - - - - - - - - - -  

Transport 

- - - - - - - - - -  

Internet 

I Application I 
identical - - - - - - - - - -  
message 

I Transport I 
identical - - - - - - - - - -  
packet 

I Internet I 
identical - - - - - - - - - -  
datagram 

Network 
Interface identical Interface 

Physical Net 

Figure 11.6 The path of a message as it passes from an application on one 
host to an application on another. Layer n on host B receives 
exactly the same object that layer n on host A sent. 
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11.7.1 Layering in a TCPnP lnternet Environment 

Our statement of the layering principle is somewhat vague, and the illustration in 
Figure 11.6 skims over an important issue because it fails to distinguish between 
transfers from source to ultimate destination and transfers across multiple networks. 
Figure 11.7 illustrates the distinction, showing the path of a message sent from an appli- 
cation program on one host to an application on another through a router. 

As the figure shows, message delivery uses two separate network frames, one for 
the transmission from host A to router R, and another from router R to host B. The net- 
work layering principle states that the frame delivered to R is identical to the frame sent 
by host A. By contrast, the application and transport layers deal with end-toend issues 
and are designed so the software at the source communicates with its peer at the ulti- 
mate destination. Thus, the layering principle states that the packet received by the 
transport layer at the ultimate destination is identical to the packet sent by the transport 
layer at the original source. 

Host A Host B 

identical 
Application &! - - - 

_ - - -  - - Application _ _ - - -  message - - -  - - - - - - - 

identical 
Transport _ _ - -  - - Transport _ - - - -  packet - - ' - - - - -  - - 

Router R 
1 I 

Internet Internet Internet 
identical identical _ - - - -  - 
datagram - - - - - - - -  datagram - _ 

Network Network Network 
Interface identical Interface identical Interface 

Figure 11.7 The layering principle when a router is used. The frame 
delivered to router R is exactly the frame sent from host A, but 
differs from the frame sent between R and B. 
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It is easy to understand that in higher layers, the layering principle applies across 
end-to-end transfers, and that at the lowest layer it applies to a single machine transfer. 
It is not as easy to see how the layering principle applies to the Internet layer. On one 
hand, we have said that hosts attached to an internet should view it as a large, virtual 
network, with the IP datagram taking the place of a network frame. In this view, da- 
tagrams travel from original source to ultimate destination, and the layering principle 
guarantees that the ultimate destination receives exactly the datagram that the original 
source sent. On the other hand, we know that the datagram header contains fields, like 
a time to live counter, that change each time the datagram passes through a router. 
Thus, the ultimate destination will not receive exactly the same datagram as the source 
sent. We conclude that although most of the datagram stays intact as it passes across an 
internet, the layering principle only applies to datagrarns across single machine 
transfers. To be accurate, we should not view the Internet layer as providing end-to-end 
service. 

11.8 Layering In The Presence Of Network Substructure 

Recall from Chapter 2 that some wide area networks contain multiple packet 
switches. For example, a WAN can consist of routers that connect to a local network at 
each site as well as to other routers using leased serial lines. When a router receives a 
datagram, it either delivers the datagram to its destination on the local network, or 
transfers the datagram across a serial line to another router. The question arises: "How 
do the protocols used on serial lines fit into the TCPJIP layering scheme?" The answer 
depends on how the designer views the serial line interconnections. 

From the perspective of IP, the set of point-to-point connections among routers can 
either function like a set of independent physical networks, or they can function collec- 
tively like a single physical network. In the first case, each physical link is treated ex- 
actly like any other network in the internet. The link is assigned a unique network 
number, and the two hosts that share the link each have a unique IP address assigned 
for their connectiont. Routes are added to the IP routing table as they would be for any 
other network. A new software module is added at the network interface layer to con- 
trol the new link hardware, but no substantial changes are made to the layering scheme. 
The main disadvantage of the independent network approach is that it proliferates net- 
work numbers (one for each connection between two machines) and causes routing 
tables to be larger than necessary. Both S&al Line IP (SLIP) and the Point to Point 
Protocol (PPP) treat each serial link as a separate network. -- 

The second approach to accommodating point-to-point connections avoids assign- 
ing multiple IP addresses to the physical wires. Instead, it treats all the connections col- 
lectively as a single, independent IP network with its own frame format, hardware ad- 
dressing scheme, and data link protocols. Routers that use the second approach need 
only one IP network number for all point-to-point connections. 

Using the single network approach means extending the protocol layering scheme 
to add a new intranetwork routing layer between the network interface layer and the 

tThe only exception arises when using the anonymous network scheme described in Chapter 10; leaving 
the link unnumbered does not change the layering. 
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hardware devices. For machines with only one point-to-point connection, an additional 
layer seems unnecessary. To see why it is needed, consider a machine with several 
physical point-to-point connections, and recall from Figure 11.2 how the network inter- 
face layer is divided into multiple software modules that each control one network. We 
need to add one network interface for the new point-to-point network, but the new inter- 
face must control multiple hardware devices. Furthermore, given a datagram to send, 
the new interface must choose the correct link over which the datagram should be sent. 
Figure 1 1.8 shows the organization. 

The Internet layer software passes to the network interface all datagrams that 
should be sent on any of the point-to-point connections. The network interface passes 
them to the intranet routing module that must further distinguish among multiple physi- 
cal connections and route the datagram across the correct one. 

The programmer who designs the intranet routing software determines exactly how 
the software chooses a physical link. Usually, the algorithm relies on an intranet rout- 
ing table. The intranet routing table is analogous to the internet routing table in that it 
specifies a mapping of destination address to route. The table contains pairs of entries, 
(D, L), where D is a destination host address and L specifies the physical line used to 
reach that destination. 

Conceptual Layer Software Organization 

Transport 

Internet 
P 

Network 
Interface 

lntranet 

Figure 11.8 (a) Conceptual position of an intranet protocol for point-to-point 
connections when IP treats them as a single IP network, and (b) 
detailed diagram of corresponding software modules. Each ar- 
row corresponds to one physical device. 

The difference between an internet routing table and an intranet routing table is 
that intranet routing tables are quite small. They only contain routing information for 
hosts directly attached to the point-to-point network. The reason is simple: the Internet 
layer maps an arbitrary destination address to a specific router address before passing 
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the datagram to a network interface. The intranet only to distinguish 
among machines on a single point-to-point network. 

11.9 Two Important Boundaries In The TCPnP Model 

The conceptual protocol layering includes two boundaries that may not be obvious: 
a protocol address boundary that separates high-level and low-level addressing, and an 
operating system boundary that separates the system from application programs. 

1 1.9.1 High-Level Protocol Address Boundary 

Now that we have seen the layering of TCP/IP software, we can be precise about 
an idea introduced in Chapter 8: a conceptual boundary partitions software that uses 
low-level (physical) addresses from software that uses high-level (IP) addresses. As 
Figure 11.9 shows, the boundary occurs between the network interface layer and the In- 
ternet layer. That is, 

Application programs as well as all protocol software from the Inter- 
net layer upward use only IP addresses; the network interface layer 
handles physical addresses. 

Thus, protocols like ARP belong in the network interface layer. They are not part of IP. 

Conceptual Layer Boundary 

I Application I Sofware outside the operating system 

I transport I Sofware inside the operating system 

I Internet I Only IP addresses used - - - - -  . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Physical addresses used 

Interface 

Hardware ; 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 11.9 The relationship between conceptual layering and the boundaries 
for operating system and high-level protocol addresses. 
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11.9.2 Operating System Boundary 

Figure 11.9 shows another important boundary as well, the division between 
software that is generally considered part of the operating system and software that is 
not. While each implementation of TCP/IP chooses how to make the distinction, many 
follow the scheme shown. Because they lie inside the operating system, passing data 
between lower layers of protocol software is much less expensive than passing it 
between an application program and a transport layer. Chapter 20 discusses the prob- 
lem in more detail and describes an example of the interface an operating system might 
provide. 

1 1 .I  0 The Disadvantage Of Layering 

We have said that layering is a fundamental idea that provides the basis for proto- 
col design. It allows the designer to divide a complicated problem into subproblems 
and solve each one independently. Unfortunately, the software that results from strict 
layering can be extremely inefficient. As an example, consider the job of the transport 
layer. It must accept a stream of bytes from an application program, divide the stream 
into packets, and send each packet across the internet. To optimize transfer, the tran- 
sport layer should choose the largest possible packet size that will allow one packet to 
travel in one network frame. In particular, if the destination machine attaches directly 
to one of the same networks as the source, only one physical net will be involved in the 
transfer, so the sender can optimize packet size for that network. If the software 
preserves strict layering, however, the transport layer cannot know how the Internet 
module will route traffic or which networks attach directly. Furthermore, the transport 
layer will not understand the datagram or frame formats nor will it be able to determine 
how many octets of header will be added to a packet. Thus, strict layering will prevent 
the transport layer from optimizing transfers. 

Usually, implementors relax the strict layering scheme when building protocol 
software. They allow information like route selection and network MTU to propagate 
upward. When allocating buffers, they often leave space for headers that will be added 
by lower layer protocols and may retain headers on incoming frames when passing them 
to higher layer protocols. Such optimizations can make dramatic improvements in effi- 
ciency while retaining the basic layered structure. 

11.1 1 The Basic Idea Behind Multiplexing And Demultiplexing 

Communication protocols use techniques of multiplexing and demultiplexing 
throughout the layered hierarchy. When sending a message, the source computer in- 
cludes extra bits that encode the message type, originating program, and protocols used. 
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Eventually, all messages are placed into network frames for transfer and combined into 
a stream of packets. At the receiving end, the destination machine uses the extra infor- 
mation to guide processing. 

Consider an example of demultiplexing shown in Figure 1 1.10. 

Frame Arrives a 

IP Module ARP Module 

Figure 11.10 Demultiplexing of incoming frames based on the type field 
found in the frame header. 

RARP Module 

The figure illustrates how software in the network interface layer uses the frame type to 
choose a procedure to handle the incoming frame. We say that the network interface 
demultiplexes the frame based on its type. To make such a choice possible, software in 
the source machine must set the frame type field before transmission. Thus, each 
software module that sends frames uses the type field to specify frame contents. 

Multiplexing and demultiplexing occur at almost every protocol layer. For exam- 
ple, after the network interface demultiplexes frames and passes those frames that con- 
tain IP datagrams to the IP module, the IP software extracts the datagram and demulti- 
plexes further based on the transport protocol. Figure 11.11 demonstrates demultiplex- 
ing at the Internet layer. 

A 

Demultiplexing Based 
On Frame Type 



Protocol Layering Chap. 11 

Datagram Arrives 0 
Figure 11.11 Demultiplexing at the Internet layer. IP software chooses an ap- 

propriate procedure to handle a datagram based on the protocol 
type field in the datagram header. 

TCP Protocol ICMP Protocol 

To decide how to handle a datagram, internet software examines the header of a da- 
tagram and selects a protocol handler based on the datagram type. In the example, the 
possible datagram types are: ICMP, which we have already examined, and UDP, and 
TCP, which we will examine in later chapters. 

A 

IP Module 

4 

UDP Protocol 

1 1 .I 2 Summary 

Protocols are the standards that specify how data is represented when being 
transferred from one machine to another. Protocols specify how the transfer occurs, 
how errors are detected, and how acknowledgements are passed. To simplify protocol 
design and implementation, communication problems are segregated into subproblems 
that can be solved independently. Each subproblem is assigned a separate protocol. 

The idea of layering is fundamental because it provides a conceptual framework 
for protocol design. In a layered model, each layer handles one part of the communica- 
tion problem and usually corresponds to one protocol. Protocols follow the layering 
principle, which states that the software implementing layer n on the destination 
machine receives exactly what the software implementing layer n on the source machine 
sends. 

We examined the 5-layer Internet reference model as well as the older IS0 7-layer 
reference model. In both cases, the layering model provides only a conceptual frame- 
work for protocol software. The ITU X.25 protocols follow the IS0 reference model 
and provide an example of reliable communication service offered by a commercial util- 
ity, while the TCPIIP protocols provide an example of a different layering scheme. 

In practice, protocol software uses multiplexing and demultiplexing to distinguish 
among multiple protocols within a given layer, making protocol software more complex 
than the layering model suggests. 



For Further Study 

FOR FURTHER STUDY 

Postel [RFC 7911 provides a sketch of the Internet Protocol layering scheme, and 
Clark [RFC 8171 discusses the effect of layering on implementations. Saltzer, Reed, 
and Clark [I9841 argues that end-to-end verification is important. Chesson [I9871 
makes the controversial argument that layering produces intolerably bad network 
throughput. Volume 2 of this text examines layering in detail, and shows an example 
implementation that achieves efficiency by compromising strict layering and passing 
pointers between layers. 

The IS0  protocol documents [1987a] and [1987b] describe ASN.l in detail. Sun 
[RFC 10141 describes XDR, an example of what might be called a TCPm presentation 
protocol. Clark [I9851 discusses passing information upward through layers. 

EXERCISES 

Study the I S 0  layering model in more detail. How well does the model describe com- 
munication on a local area network like an Ethernet? 

Build a case that T C P m  is moving toward a six-layer protocol architecture that includes 
a presentation layer. (Hint: various programs use the XDR protocol, Courier-Rdi, 
ASN. 1 .) 
Do you think any single presentation protocol will eventually emerge that replaces all 
others? Why or why not? 

Compare and contrast the tagged data format used by the ASN.l presentation scheme 
with the untagged format used by XDR. Characterize situations in which one is better 
than the other. 

Find out how a UNIX system uses the mbuf structure to make layered protocol software 
efficient. 

Read about the System V UNIX streams mechanism. How does it help make protocol 
implementation easier? What is its chief disadvantage? 
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12.1 Introduction 

Previous chapters describe a TCP/IF' internet capable of transferring IP datagrams 
among host computers, where each datagram is routed through the internet based on the 
destination's IP address. At the Internet Protocol layer, a destination address identifies 
a host computer; no further distinction is made regarding which user or which applica- 
tion program will receive the datagram. This chapter extends the TCP/IF' protocol suite 
by adding a mechanism that distinguishes among destinations within a given host, al- 
lowing multiple application programs executing on a given computer to send and re- 
ceive datagrams independently. 

12.2 Identifying The Ultimate Destination 

The operating systems in most computers support multiprogramming, which means 
they permit multiple application programs to execute simultaneously. Using operating 
system jargon, we refer to each executing program as a process, task, application pro- 
gram, or a user level process; the systems are called multitasking systems. It may seem 
natural to say that a process is the ultimate destination for a message. However, speci- 
fying that a particular process on a particular machine is the ultimate destination for a 
datagram is somewhat misleading. First, because processes are created and destroyed 
dynamically, senders seldom know enough to identify a process on another machine. 
Second, we would like to be able to replace processes that receive datagrams without 
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informing all senders (e.g., rebooting a machine can change al l  the processes, but 
senders should not be required to know about the new processes). Third, we need to 
identify destinations from the functions they implement without knowing the process 
that implements the function (e.g., to allow a sender to contact a file server without 
knowing which process on the destination machine implements the file server function). 
More important, in systems that allow a single process to handle two or more functions, 
it is essential that we arrange a way for a process to decide exactly which function the 
sender desires. 

Instead of thinking of a process as the ultimate destination, we will imagine that 
each machine contains a set of abstract destination points called protocol ports. Each 
protocol port is identified by a positive integer. The local operating system provides an 
interface mechanism that processes use to specify a port or access it. 

Most operating systems provide synchronous access to ports. From a particular 
process's point of view, synchronous access means the computation stops during a port 
access operation. For example, if a process attempts to extract data from a port before 
any data arrives, the operating system temporarily stops (blocks) the process until data 
arrives. Once the data arrives, the operating system passes the data to the process and 
restarts it. In general, ports are bufSered, so data that arrives before a process is ready to 
accept it will not be lost. To achieve buffering, the protocol software located inside the 
operating system places packets that arrive for a particular protocol port in a (finite) 
queue until a process extracts them. 

To communicate with a foreign port, a sender needs to know both the IF' address of 
the destination machine and the protocol port number of the destination within that 
machine. Each message must carry the number of the destination port on the machine 
to which the message is sent, as well as the source port number on the source machine 
to which replies should be addressed. Thus, it is possible for any process that receives 
a message to reply to the sender. 

12.3 The User Datagram Protocol 

In the TCPDP protocol suite, the User Datagram Protocol or UDP provides the 
primary mechanism that application programs use to send datagrams to other applica- 
tion programs. UDP provides protocol ports used to distinguish among multiple pro- 
grams executing on a single machine. That is, in addition to the data sent, each UDP 
message contains both a destination port number and a source port number, making it 
possible for the UDP software at the destination to deliver the message to the correct re- 
cipient and for the recipient to send a reply. 

UDP uses the underlying Internet Protocol to transport a message from one 
machine to another, and provides the same unreliable, connectionless datagram delivery 
semantics as IF'. It does not use acknowledgements to make sure messages arrive, it 
does not order incoming messages, and it does not provide feedback to control the rate 
at which information flows between the machines. Thus, UDP messages can be lost, 
duplicated, or arrive out of order. Furthermore, packets can arrive faster than the reci- 
pient can process them. We can summarize: 
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The User Datagram Protocol (UDP) provides an unreliable connec- 
tionless delivery service using IP to transport messages between 
machines. It uses IP to carry messages, but adds the ability to distin- 
guish among multiple destinations within a given host computer. 

An application program that uses UDP accepts full responsibility for handling the 
problem of reliability, including message loss, duplication, delay, out-of-order delivery, 
and loss of connectivity. Unfortunately, application programmers often ignore these 
problems when designing software. Furthermore, because programmers often test net- 
work software using highly reliable, low-delay local area networks, testing may not ex- 
pose potential failures. Thus, many application programs that rely on UDP work well 
in a local environment but fail in dramatic ways when used in a larger TCP/IP internet. 

12.4 Format Of UDP Messages 

Each UDP message is called a user datagram. Conceptually, a user datagram con- 
sists of two parts: a UDP header and a UDP data area. As Figure 12.1 shows, the 
header is divided into four 16-bit fields that specify the port from which the message 
was sent, the port to which the message is destined, the message length, and a UDP 
checksum. 

I UDP SOURCE PORT 1 UDP DESTINATION PORT I 
I DATA I 

UDP MESSAGE LENGTH 

Figure 12.1 The format of fields in a UDP datagram. 

UDP CHECKSUM 

The SOURCE PORT and DESTINATION PORT fields contain the 16-bit UDP pro- 
tocol port numbers used to demultiplex datagram among the processes waiting to re- 
ceive them. The SOURCE PORT is optional. When used, it specifies the port to which 
replies should be sent; if not used, it should be zero. 

The LENGTH field contains a count of octets in the UDP datagram, including the 
UDP header and the user data. Thus, the minimum value for LENGTH is eight, the 
length of the header alone. 

The UDP checksum is optional and need not be used at all; a value of zero in the 
CHECKSUM field means that the checksum has not been computed. The designers 
chose to make the checksum optional to allow implementations to operate with little 

I 
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computational overhead when using UDP across a highly reliable local area network. 
Recall, however, that IP does not compute a checksum on the data portion of an IP da- 
tagram. Thus, the UDP checksum provides the only way to guarantee that data has ar- 
rived intact and should be used. 

B e g i ~ e r s  often wonder what happens to UDP messages for which the computed 
checksum is zero. A computed value of zero is possible because UDP uses the same 
checksum algorithm as IP: it divides the data into 16-bit quantities and computes the 
one's complement of their one's complement sum. Surprisingly, zero is not a problem 
because one's complement arithmetic has two representations for zero: all bits set to 
zero or all bits set to one. When the computed checksum is zero, UDP uses the 
representation with all bits set to one. 

12.5 UDP Pseudo-Header 

The UDP checksum covers more information than is present in the UDP datagram 
alone. To compute the checksum, UDP prepends a pseudo-header to the UDP da- 
tagram, appends an octet of zeros to pad the datagram to an exact multiple of 16 bits, 
and computes the checksum over the entire object. The octet used for padding and the 
pseudo-header are not transmitted with the UDP datagram, nor are they included in the 
length. To compute a checksum, the software first stores zero in the CHECKSUM field, 
then accumulates a 16-bit one's complement sum of the entire object, including the 
pseudo-header, UDP header, and user data. 

The purpose of using a pseudo-header is to venfy that the UDP datagram has 
reached its correct destination. The key to understanding the pseudo-header lies in real- 
izing that the correct destination consists of a specific machine and a specific protocol 
port within that machine. The UDP header itself specifies only the protocol port 
number. Thus, to verify the destination, UDP on the sending machine computes a 
checksum that covers the destination IP address as well as the UDP datagram. At the 
ultimate destination, UDP software verifies the checksum using the destination IP ad- 
dress obtained from the header of the IP datagram that carried the UDP message. If the 
checksums agree, then it must be true that the datagram has reached the intended desti- 
nation host as well as the correct protocol port within that host. 

The pseudo-header used in the UDP checksum computation consists of 12 octets of 
data arranged as Figure 12.2 shows. The fields of the pseudo-header labeled SOURCE 
IP ADDRESS and DESTINATION IP ADDRESS contain the source and destination IP 
addresses that will be used when sending the UDP message. Field PROTO contains the 
IP protocol type code (17 for UDP), and the field labeled UDP LENGTH contains the 
length of the UDP datagram (not including the pseudo-header). To verify the check- 
sum, the receiver must extract these fields from the IP header, assemble them into the 
pseudo-header format, and recompute the checksum. 
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SOURCE IP ADDRESS 

DESTINATION IP ADDRESS 

Figure 12.2 The 12 octets of the pseudo-header used during UDP checksum 
computation. 

ZERO 

12.6 UDP Encapsulation And Protocol Layering 

UDP provides our first example of a transport protocol. In the layering model of 
Chapter 11, UDP lies in the layer above the Internet Protocol layer. Conceptually, ap- 
plication programs access UDP, which uses IP to send and receive datagrams as Figure 
12.3 shows. 

PROTO 

Conceptual Layering 

Application 

User Datagram (UDP) 

UDP LENGTH 

Internet (IP) 

Network Interface 

Figure 123 The conceptual layering of UDP between application programs 
and IP. 

Layering UDP above IP means that a complete UDP message, including the UDP 
header and data, is encapsulated in an IP datagram as it travels across an internet as Fig- 
ure 12.4 shows. 
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UDP 
EADER UDP DATA AREA 

t t 

Figure 12.4 A UDP datagram encapsulated in an IP datagram for transmis- 
sion across an internet. The datagram is further encapsulated in 
a frame each time it travels across a single network. 

I 

IP 
HEADER 

. 

For the protocols we have examined, encapsulation means that UDP prepends a 
header to the data that a user sends and passes it to IP. The IP layer prepends a header 
to what it receives from UDP. Finally, the network interface layer embeds the datagram 
in a frame before sending it from one machine to another. The format of the frame 
depends on the underlying network technology. Usually, network frames include an ad- 
ditional header. 

On input, a packet arrives at the lowest layer of network software and begins its 
ascent through successively higher layers. Each layer removes one header before pass- 
ing the message on, so that by the time the highest level passes data to the receiving 
process, all headers have been removed. Thus, the outermost header corresponds to the 
lowest layer of protocol, while the innermost header corresponds to the highest protocol 
layer. When considering how headers are inserted and removed, it is important to keep 
in mind the layering principle. In particular, observe that the layering principle applies 
to UDP, so the UDP datagram received from IP on the destination machine is identical 
to the datagram that UDP passed to IP on the source machine. Also, the data that UDP 
delivers to a user process on the receiving machine will be exactly the data that a user 
process passed to UDP on the sending machine. 

The division of duties among various protocol layers is rigid and clear: 

IP DATA AREA 

FRAME 
HEADER 

The ZP layer is responsible only for transferring data between a pair 
of hosts on an internet, while the UDP layer is responsible only for 
diferentiating among multiple sources or destinations within one host. 

I I 

FRAME DATA AREA 

Thus, only the IP header identifies the source and destination hosts; only the UDP layer 
identifies the source or destination ports within a host. 

1 
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12.7 Layering And The UDP Checksum Computation 

Observant readers will have noticed a seeming contradiction between the layering 
rules and the UDP checksum computation. Recall that the W P  checksum includes a 
pseudo-header that has fields for the source and destination IP addresses. It can be ar- 
gued that the destination IP address must be known to the user when sending a UDP da- 
tagram, and the user must pass it to the UDP layer. Thus, the UDP layer can obtain the 
destination IP address without interacting with the IP layer. However, the source IP ad- 
dress depends on the route IP chooses for the datagram, because the IP source address 
identifies the network interface over which the datagram is transmitted. Thus, UDP 
cannot know a source IP address unless it interacts with the IP layer. 

We assume that UDP software asks the IP layer to compute the source and (possi- 
bly) destination IP addresses, uses them to construct a pseudo-header, computes the 
checksum, discards the pseudo-header, and then passes the UDP datagram to IP for 
transmission. An alternative approach that produces greater efficiency arranges to have 
the UDP layer encapsulate the UDP datagram in an IP datagram, obtain the source ad- 
dress from IP, store the source and destination addresses in the appropriate fields of the 
datagram header, compute the UDP checksum, and then pass the IP datagram to the IP 
layer, which only needs to fill in the remaining IP header fields. 

Does the strong interaction between UDP and IP violate our basic premise that 
layering reflects separation of functionality? Yes. UDP has been tightly integrated with 
the IP protocol. It is clearly a compromise of the pure separation, made for entirely 
practical reasons. We are willing to overlook the layering violation because it is impos- 
sible to fully identify a destination application program without specifying the destina- 
tion machine, and we want to make the mapping between addresses used by UDP and 
those used by IP efficient. One of the exercises examines this issue from a different 
point of view, asking the reader to consider whether UDP should be separated from IP. 

12.8 UDP Multiplexing, Demultiplexing, And Ports 

We have seen in Chapter 11 that software throughout the layers of a protocol 
hierarchy must multiplex or demultiplex among multiple objects at the next layer. UDP 
software provides another example of multiplexing and demultiplexing. It accepts UDP 
datagrams from many application programs and passes them to IP for transmission, and 
it accepts aniving UDP datagrams from IP and passes each to the appropriate applica- 
tion program. 

Conceptually, all multiplexing and demultiplexing between UDP software and ap- 
plication programs occur through the port mechanism. In practice, each application pro- 
gram must negotiate with the operating system to obtain a protocol port and an associat- 
ed port number before it can send a UDP datagram?. Once the port has been assigned, 
any datagram the application program sends through the port will have that port number 
in its UDP SOURCE PORT field. 

tFor now, we will describe ports abstractly; Chapter 22 provides an example of the operating system 
primitives used to create and use ports. 
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While processing input, UDP accepts incoming datagrams from the IP software 
and demultiplexes based on the UDP destination port, as Figure 12.5 shows. 

r 

Port 1 Port 2 Port 3 

I 

UDP: Demultiplexing 
Based On Port 

A 
UDP Datagram arrives 

I IP Layer I 
Figure 12.5 Example of demultiplexing one layer above IP. UDP uses the 

UDP destination port number to select an appropriate destination 
port for incoming datagram. 

The easiest way to think of a UDP port is as a queue. In most implementations, when 
an application program negotiates with the operating system to use a given port, the 
operating system creates an internal queue that can hold arriving messages. Often, the 
application can specify or change the queue size. When UDP receives a datagram, it 
checks to see that the destination port number matches one of the ports currently in use. 
If not, it sends an ICMP port unreachable error message and discards the datagram. If 
a match is found, UDP enqueues the new datagram at the port where an application pro- 
gram can access it. Of course, an error occurs if the port is full, and UDP discards the 
incoming datagram. 

12.9 Reserved And Available UDP Port Numbers 

How should protocol port numbers be assigned? The problem is important because 
two computers need to agree on port numbers before they can intemperate. For exam- 
ple, when computer A wants to obtain a file from computer B, it needs to know what 
port the file transfer program on computer B uses. There are two fundamental ap- 
proaches to port assignment. The first approach uses a central authority. Everyone 
agrees to allow a central authority to assign port numbers as needed and to publish the 
list of all assignments. Then all software is built according to the list. This approach is 
sometimes called universal assignment, and the port assignments specified by the au- 
thority are called well-known port assignments. 
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The second approach to port assignment uses dynamic binding. In the dynamic 
binding approach, ports are not globally known. Instead, whenever a program needs a 
port, the network software assigns one. To learn about the current port assignment on 
another computer, it is necessary to send a request that asks about the current port as- 
signment (e.g., What port is the file transfer service using?). The target machine replies 
by giving the correct port number to use. 

The TCP/IP designers adopted a hybrid approach that assigns some port numbers a 
priori, but leaves many available for local sites or application programs. The assigned 
port numbers begin at low values and extend upward, leaving large integer values avail- 
able for dynamic assignment. The table in Figure 12.6 lists some of the currently as- 
signed UDP port numbers. The second column contains Internet standard assigned key- 
words, while the third contains keywords used on most UNIX systems. 

Decimal Keyword 

ECHO 
DISCARD 
USERS 
DAYTIME 

QUOTE 
CHARGEN 
TIME 
NAMESERVER 
NICNAME 
DOMAIN 
BOOTPS 
BOOTPC 
TFTP 
KERBEROS 
SUNRPC 
NTP 

UNlX Keyword 

echo 
discard 
systat 
daytime 
netstat 
qotd 
chargen 
time 
name 
whois 
nameserver 
bootps 
bootpc 
tftp 
kerberos 
sunrpc 
ntp 
snmp 
snmp-trap 
biff 
who 
syslog 
timed 

Description 
Reserved 
Echo 
Discard 
Active Users 
Daytime 
Network status program 
Quote of the Day 
Character Generator 
Time 
Host Name Server 
Who Is 
Domain Name Server 
BOOTP or DHCP Server 
BOOTP or DHCP Client 
Trivial File Transfer 
Kerberos Security Service 
Sun Remote Procedure Call 
Network Time Protocol 
Simple Network Management Proto 
SNMP traps 
UNlX comsat 
UNlX rwho daemon 
System log 
Time daemon 

Figure 12.6 An illustrative sample of currently assigned UDP ports showing 
the standard keyword and the UNIX equivalent; the list is not 
exhaustive. To the extent possible, other transport protocols that 
offer identical services use the same port numbers as UDP. 



206 User Datagram Protocol (UDP) Chap. 12 

12.1 0 Summary 

Most computer systems permit multiple application programs to execute simultane- 
ously. Using operating system jargon, we refer to each executing program as a process. 
The User Datagram Protocol, UDP, distinguishes among multiple processes within a 
given machine by allowing senders and receivers to add two 16-bit integers called pro- 
tocol port numbers to each UDP message. The port numbers identify the source and 
destination. Some UDP port numbers, called well known, are permanently assigned and 
honored throughout the Internet (e.g., port 69 is reserved for use by the trivial file 
transfer protocol TFTP described in Chapter 26). Other port numbers are available for 
arbitrary application programs to use. 

UDP is a thin protocol in the sense that it does not add significantly to the seman- 
tics of IP. It merely provides application programs with the ability to communicate us- 
ing IP's unreliable connectionless packet delivery service. Thus, UDP messages can be 
lost, duplicated, delayed, or delivered out of order; the application program using UDP 
must handle these problems. Many programs that use UDP do not work correctly 
across an internet because they fail to accommodate these conditions. 

In the protocol layering scheme, UDP lies in the transport layer, above the Internet 
Protocol layer and below the application layer. Conceptually, the transport layer is in- 
dependent of the Internet layer, but in practice they interact strongly. The UDP check- 
sum includes IP source and destination addresses, meaning that UDP software must in- 
teract with IP software to find addresses before sending datagram. 

FOR FURTHER STUDY 

Tanenbaum [I9811 contains a tutorial comparison of the datagram and virtual cir- 
cuit models of communication. Ball et. al. [I9791 describes message-based systems 
without discussing the message protocol. The UDP protocol described here is a stan- 
dard for TCPm and is defined by Postel [RFC 7681. 

12.1 Try UDP in your local environment. Measure the average transfer speed with messages 
of 256, 512, 1024, 2048, 4096, and 8192 bytes. Can you explain the results (hint: what 
is your network MTU)? 

12.2 Why is the UDP checksum separate from the IP checksum? Would you object to a pro- 
tocol that used a single checksum for the complete IP datagram including the UDP mes- 
sage? 

123 Not using checksums can be dangerous. Explain how a single corrupted ARP packet 
broadcast by machine P can make it impossible to reach another machine, Q. 
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Should the notion of multiple destinations identified by protocol ports have been built 
into IP? Why, or why not? 
Name Registry. Suppose you want to allow arbitrary pairs of application programs to es- 
tablish communication with UDP, but you do not wish to assign them fixed UDP port 
numbers. Instead, you would like potential correspondents to be identified by a charac- 
ter string of 64 or fewer characters. Thus, a program on machine A might want to com- 
municate with the "funny-special-long-id" program on machine B (you can assume that a 
process always knows the IP address of the host with which it wants to communicate). 
Meanwhile, a process on machine C wants to communicate with the "comer's-own- 
program-id" on machine A. Show that you only need to assign one UDP port to make 
such communication possible by designing software on each machine that allows (a) a 
local process to pick an unused UDP port ID over which it will communicate, (b) a local 
process to register the 64-character name to which it responds, and (c) a foreign process 
to use UDP to establish communication using only the 64-character name and destination 
internet address. 
Implement name registry software from the previous exercise. 
What is the chief advantage of using preassigned UDP port numbers? The chief disad- 
vantage? 

What is the chief advantage of using protocol ports instead of process identifiers to 
specify the destination within a machine? 
UDP provides unreliable datagram communication because it does not guarantee delivery 
of the message. Devise a reliable datagram protocol that uses timeouts and ack- 
nowledgements to guarantee delivery. How much network overhead and delay does reli- 
ability introduce? 
Send UDP datagrams across a wide area network and measure the percentage lost and 
the percentage reordered. Does the result depend on the time of day? The network 
load? 





Reliable Stream Transport 
Service (TCP) 

13.1 Introduction 

Previous chapters explore the unreliable comectionless packet delivery service that 
forms the basis for all internet communication and the IP protocol that defines it. This 
chapter introduces the second most important and well-known network-level service, re- 
liable stream delivery, and the Transmission Control Protocol (TCP) that defines it. 
We will see that TCP adds substantial functionality to the protocols already discussed, 
but that its implementation is also substantially more complex. 

Although TCP is presented here as part of the TCP/IP Internet protocol suite, it is 
an independent, general purpose protocol that can be adapted for use with other delivery 
systems. For example, because TCP makes very few assumptions about the underlying 
network, it is possible to use it over a single network like an Ethernet, as well as over a 
complex internet. In fact, TCP has been so popular that one of the International Organi- 
zation for Standardization's open systems protocols, TP-4, has been derived from it. 

13.2 The Need For Stream Delivery 

At the lowest level, computer communication networks provide unreliable packet 
delivery. Packets can be lost or destroyed when transmission errors interfere with data, 
when network hardware fails, or when networks become too heavily loaded to accom- 
modate the load presented. Networks that route packets dynamically can deliver them 
out of order, deliver them after a substantial delay, or deliver duplicates. Furthermore, 
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underlying network technologies may dictate an optimal packet size or pose other con- 
straints needed to achieve efficient transfer rates. 

At the highest level, application programs often need to send large volumes of data 
from one computer to another. Using an unreliable connectionless delivery system for 
large volume transfers becomes tedious and annoying, and it requires programmers to 
build error detection and recovery into each application program. Because it is difficult 
to design, understand, or modlfy software that correctly provides reliability, few appli- 
cation programmers have the necessary technical background. As a consequence, one 
goal of network protocol research has been to find general purpose solutions to the 
problems of providing reliable stream delivery, making it possible for experts to build a 
single instance of stream protocol software that all application programs use. Having a 
single general purpose protocol helps isolate application programs from the details of 
networking, and makes it possible to define a uniform interface for the stream transfer 
service. 

13.3 Properties Of The Reliable Delivery Service 

The interface between application programs and the TCPIIP reliable delivery ser- 
vice can be characterized by 5 features: 

Stream Orientation. When two application programs (user processes) transfer 
large volumes of data, we think of the data as a stream of bits, divided into 8-bit octets, 
which are informally called bytes. The stream delivery service on the destination 
machine passes to the receiver exactly the same sequence of octets that the sender 
passes to it on the source machine. 

Virtual Circuit Connection. Making a stream transfer is analogous to placing a 
telephone call. Before transfer can start, both the sending and receiving application pro- 
grams interact with their respective operating systems, informing them of the desire for 
a stream transfer. Conceptually, one application places a "call" which must be accept- 
ed by the other. Protocol software modules in the two operating systems communicate 
by sending messages across an internet, verifying that the transfer is authorized, and that 
both sides are ready. Once all details have been settled, the protocol modules inform 
the application programs that a connection has been established and that transfer can be- 
gin. During transfer, protocol software on the two machines continue to communicate 
to verify that data is received correctly. If the communication fails for any reason (e.g., 
because network hardware along the path between the machines fails), both machines 
detect the failure and report it to the appropriate application programs. We use the term 
virtual circuit to describe such connections because although application programs view 
the connection as a dedicated hardware circuit, the reliability is an illusion provided by 
the stream delivery service. 

Buffered Transfer. Application programs send a data stream across the virtual 
circuit by repeatedly passing data octets to the protocol software. When transferring 
data, each application uses whatever size pieces it finds convenient, which can be as 
small as a single octet. At the receiving end, the protocol software delivers octets from 
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the data stream in exactly the same order they were sent, making them available to the 
receiving application program as soon as they have been received and verified. The 
protocol software is free to divide the stream into packets independent of the pieces the 
application program transfers. To make transfer more efficient and to minimize net- 
work traffic, implementations usually collect enough data from a stream to fill a reason- 
ably large datagram before transmitting it across an internet. Thus, even if the applica- 
tion program generates the stream one octet at a time, transfer across an internet may be 
quite efficient. Similarly, if the application program chooses to generate extremely 
large blocks of data, the protocol software can choose to divide each block into smaller 
pieces for transmission. 

For those applications where data should be delivered even though it does not fill a 
buffer, the stream service provides a push mechanism that applications use to force a 
transfer. At the sending side, a push forces protocol software to transfer all data that 
has been generated without waiting to fill a buffer. When it reaches the receiving side, 
the push causes TCP to make the data available to the application without delay. The 
reader should note, however, that the push function only guarantees that all data will be 
transferred; it does not provide record boundaries. Thus, even when delivery is forced, 
the protocol software may choose to divide the stream in unexpected ways. 

Unstructured Stream. It is important to understand that the TCPIIP stream ser- 
vice does not honor structured data streams. For example, there is no way for a payroll 
application to have the stream service mark boundaries between employee records, or to 
identify the contents of the stream as being payroll data. Application programs using 
the stream service must understand stream content and agree on stream format before 
they initiate a connection. 

Full Duplex Connection. Connections provided by the TCPhP stream service al- 
low concurrent transfer in both directions. Such connections are called full duplex. 
From the point of view of an application process, a full duplex connection consists of 
two independent streams flowing in opposite directions, with no apparent interaction. 
The stream service allows an application process to terminate flow in one direction 
while data continues to flow in the other direction, making the connection hay duplex. 
The advantage of a full duplex connection is that the underlying protocol software can 
send control information for one stream back to the source in datagrams carrying data in 
the opposite direction. Such piggybacking reduces network traffk. 

13.4 Providing Reliability 

We have said that the reliable stream delivery service guarantees to deliver a 
stream of data sent from one machine to another without duplication or data loss. The 
question arises: "How can protocol software provide reliable transfer if the underlying 
communication system offers only unreliable packet delivery?" The answer is compli- 
cated, but most reliable protocols use a single fundamental technique known as positive 
acknowledgement with retransmission. The technique requires a recipient to communi- 
cate with the source, sending back an acknowledgement (ACK) message as it receives 
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data. The sender keeps a record of each packet it sends and waits for an acknowledge- 
ment before sending the next packet. The sender also starts a timer when it sends a 
packet and retransmits a packet if the timer expires before an acknowledgement arrives. 

Figure 13.1 shows how the simplest positive acknowledgement protocol transfers 
data. 

Events At Sender Site Network Messages Events At Receiver Site 

Send Packet 1 

Receive Packet 1 
Send ACK 1 

Receive ACK 1 
Send Packet 2 

Receive Packet 2 
Send ACK 2 

Receive ACK 2 

Figure 13.1 A protocol using positive acknowledgement with retransmission 
in which the sender awaits an acknowledgement for each packet 
sent. Vertical distance down the figure represents increasing 
time and diagonal lines across the middle represent network 
packet transmission. 

In the figure, events at the sender and receiver are shown on the left and right. Each di- 
agonal line crossing the middle shows the transfer of one message across the network. 

Figure 13.2 uses the same format diagram as Figure 13.1 to show what happens 
when a packet is lost or corrupted. The sender starts a timer after transmitting a packet. 
When the timer expires, the sender assumes the packet was lost and retransmits it. 

The final reliability problem arises when an underlying packet delivery system du- 
plicates packets. Duplicates can also arise when networks experience high delays that 
cause premature retransmission. Solving duplication requires careful thought because 
both packets and acknowledgements can be duplicated. Usually, reliable protocols 
detect duplicate packets by assigning each packet a sequence number and requiring the 
receiver to remember which sequence numbers it has received. To avoid confusion 
caused by delayed or duplicated acknowledgements, positive acknowledgement proto- 
cols send sequence numbers back in acknowledgements, so the receiver can correctly 
associate acknowledgements with packets. 
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Events At Sender Site 

Send Packet 1 
Start Timer 

ACK would normally 
arrive at this time 

Timer Expires 

Retransmit Packet 1 
Start Timer 

Receive ACK 1 
Cancel Timer 

Network Messages 

Packet lost 
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Events At Receiver Site 

Packet should arrive 
ACK should be sent 

Receive Packet 1 
Send ACK 1 

Figure 13.2 Timeout and retransmission that occurs when a packet is lost. 
The dotted lines show the time that would be taken by the 
transmission of a packet and its acknowledgement, if the packet 
was not lost. 

13.5 The Idea Behind Sliding Windows 

Before examining the TCP stream service, we need to explore an additional con- 
cept that underlies stream transmission. The concept, known as a sliding window, 
makes stream transmission efficient. To understand the motivation for sliding windows, 
recall the sequence of events that Figure 13.1 depicts. To achieve reliability, the sender 
transmits a packet and then waits for an acknowledgement before transmitting another. 
As Figure 13.1 shows, data only flows between the machines in one direction at any 
time, even if the network is capable of simultaneous communication in both directions. 
The network will be completely idle during times that machines delay responses (e.g., 
while machines compute routes or checksums). If we imagine a network with high 
transmission delays, the problem becomes clear: 

A simple positive acknowledgement protocol wastes a substantial 
amount of network bandwidth because it must &lay sending a new 
packet until it receives an acknowledgement for the previous packet. 

The sliding window technique is a more complex form of positive acknowledge- 
ment and retransmission than the simple method discussed above. Sliding window pro- 
tocols use network bandwidth better because they allow the sender to transmit multiple 
packets before waiting for an acknowledgement. The easiest way to envision sliding 
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window operation is to think of a sequence of packets to be transmitted as Figure 13.3 
shows. The protocol places a small, fixed-size window on the sequence and transmits 
all packets that lie inside the window. 

initial window 

window slides 

Figure 133 (a) A sliding window protocol with eight packets in the window, 
and (b) The window sliding so that packet 9 can be sent when 
an acknowledgement has been received for packet I .  Only 
unacknowledged packets are retransmitted. 

We say that a packet is unacknowledged if it has been transmitted but no acknowledge- 
ment has been received. Technically, the number of packets that can be unack- 
nowledged at any given time is constrained by the window size and is limited to a 
small, fixed number. For example, in a sliding window protocol with window size 8, 
the sender is permitted to transmit 8 packets before it receives an acknowledgement. 

As Figure 13.3 shows, once the sender receives an acknowledgement for the first 
packet inside the window, it "slides" the window along and sends the next packet. The 
window continues to slide as long as acknowledgements are received. 

The performance of sliding window protocols depends on the window size and the 
speed at which the network accepts packets. Figure 13.4 shows an example of the 
operation of a sliding window protocol when sending three packets. Note that the 
sender transmits all three packets before receiving any acknowledgements. 

With a window size of 1, a sliding window protocol is exactly the same as our 
simple positive acknowledgement protocol. By increasing the window size, it is possi- 
ble to eliminate network idle time completely. That is, in the steady state, the sender 
can transmit packets as fast as the network can transfer them. The main point is: 

Because a well tuned sliding window protocol keeps the network com- 
pletely saturated with packets, it obtains substantially higher 
throughput than a simple positive acknowledgement protocol. 
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Conceptually, a sliding window protocol always remembers which packets have 
been acknowledged and keeps a separate timer for each unacknowledged packet. If a 
packet is lost, the timer expires and the sender retransmits that packet. When the sender 
slides its window, it moves past all acknowledged packets. At the receiving end, the 
protocol software keeps an analogous window, accepting and acknowledging packets as 
they arrive. Thus, the window partitions the sequence of packets into three sets: those 
packets to the left of the window have been successfully transmitted, received, and ack- 
nowledged; those packets to the right have not yet been transmitted; and those packets 
that lie in the window are being transmitted. The lowest numbered packet in the win- 
dow is the first packet in the sequence that has not been acknowledged. 

Events At Sender Site Network Messages 

Send Packet 1 

Send Packet 2 

Send Packet 3 

Receive ACK 1 

Receive ACK 2 

Receive ACK 3 

Events At Receiver Site 

Receive Packet 1 
Send ACK 1 

Receive Packet 2 
Send ACK 2 

Receive Packet 3 
Send ACK 3 

Figure 13.4 An example of three packets transmitted using a sliding window 
protocol. The key concept is that the sender can transmit all 
packets in the window without waiting for an acknowledgement. 

13.6 The Transmission Control Protocol 

Now that we understand the principle of sliding windows, we can examine the reli- 
able stream service provided by the TCPIIP Internet protocol suite. The service is de- 
fined by the Transmission Control Protocol, or TCP. The reliable stream service is so 
important that the entire protocol suite is referred to as TCPAP. It is important to 
understand that: 

TCP is a communication protocol, not a piece of sojhare. 

The difference between a protocol and the software that implements it is analogous 
to the difference between the definition of a programming language and a compiler. As 
in the programming language world, the distinction between definition and implementa- 
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tion sometimes becomes blurred. People encounter TCP software much more frequent- 
ly than they encounter the protocol specification, so it is natural to think of a particular 
implementation as the standard. Nevertheless, the reader should try to distinguish 
between the two. 

Exactly what does TCP provide? TCP is complex, so there is no simple answer. 
The protocol specifies the format of the data and acknowledgements that two computers 
exchange to achieve a reliable transfer, as well as the procedures the computers use to 
ensure that the data arrives correctly. It specifies how TCP software distinguishes 
among multiple destinations on a given machine, and how communicating machines re- 
cover from errors like lost or duplicated packets. The protocol also specifies how two 
computers initiate a TCP stream transfer and how they agree when it is complete. 

It is also important to understand what the protocol does not include. Although the 
TCP specification describes how application programs use TCP in general terms, it does 
not dictate the details of the interface between an application program and TCP. That 
is, the protocol documentation only discusses the operations TCP supplies; it does not 
specify the exact procedures application programs invoke to access these operations. 
The reason for leaving the application program interface unspecified is flexibility. In 
particular, because programmers usually implement TCP in the computer's operating 
system, they need to employ whatever interface the operating system supplies. Allow- 
ing the implementor flexibility makes it possible to have a single specification for TCP 
that can be used to build software for a variety of machines. 

Because TCP assumes little about the underlying communication system, TCP can 
be used with a variety of packet delivery systems, including the IP datagram delivery 
service. For example, TCP can be implemented to use dialup telephone lines, a local 
area network, a high speed fiber optic network, or a lower speed long haul network. In 
fact, the large variety of delivery systems TCP can use is one of its strengths. 

13.7 Ports, Connections, And Endpoints 

Like the User Datagram Protocol (UDP) presented in Chapter 12, TCP resides 
above IP in the protocol layering scheme. Figure 13.5 shows the conceptual organiza- 
tion. TCP allows multiple application programs on a given machine to communicate 
concurrently, and it demultiplexes incoming TCP traffic among application programs. 
Like the User Datagram Protocol, TCP uses protocol port numbers to iden* the ulti- 
mate destination within a machine. Each port is assigned a small integer used to identi- 
fy it?. 

tAlthough both TCP and UDP use integer port identifiers starting at I to identify ports, there is no confu- 
sion between them because an incoming IP datagram identifies the protocol being used as well as the port 
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Conceptual Layering 

Network Interface 

Figure 13.5 The conceptual layering of UDP and TCP above IP. TCP pro- 
vides a reliable stream service, while UDP provides an unreli- 
able datagram delivery service. Application programs use both. 

When we discussed UDP ports, we said to think of each port as a queue into which 
protocol software places arriving datagrams. TCP ports are much more complex be- 
cause a given port number does not correspond to a single object. Instead, TCP has 
been built on the connection abstraction, in which the objects to be identified are virtual 
circuit connections, not individual ports. Understanding that TCP uses the notion of 
connections is crucial because it helps explain the meaning and use of TCP port 
numbers: 

TCP uses the connection, not the protocol port, as its fundamental 
abstraction; connections are identlj?ed by a pair of endpoints. 

Exactly what are the "endpoints" of a connection? We have said that a connec- 
tion consists of a virtual circuit between two application programs, so it might be natur- 
al to assume that an application program serves as the connection "endpoint." It is not. 
Instead, TCP defines an endpoint to be a pair of integers (host,port), where host is the 
IP address for a host and port is a TCP port on that host. For example, the endpoint 
(128.10.2.3,25) specifies TCP port 25 on the machine with IP address 128.10.2.3. 

Now that we have defined endpoints, it will be easy to understand connections. 
Recall that a c o ~ e c t i o n  is defined by its two endpoints. Thus, if there is a connection 
from machine (18.26.0.36) at MIT to machine (128.10.2.3) at Purdue University, it 
might be defined by the endpoints: 

(18.26.0.36, 1069) and (128.10.2.3, 25). 
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Meanwhile, another connection might be in progress from machine (128.9.0.32) at the 
Information Sciences Institute to the same machine at Purdue, identified by its end- 
points: 

(128.9.0.32, 1184) and (128.10.2.3, 53). 

So far, our examples of connections have been straightforward because the ports 
used at all endpoints have been unique. However, the connection abstraction allows 
multiple connections to share an endpoint. For example, we could add another connec- 
tion to the two listed above from machine (128.2.254.139) at CMU to the machine at 
Purdue: 

(128.2.254.139, 1184) and (128.10.2.3, 53). 

It might seem strange that two connections can use the TCP port 53 on machine 
128.10.2.3 simultaneously, but there is no ambiguity. Because TCP associates incom- 
ing messages with a connection instead of a protocol port, it uses both endpoints to 
identify the appropriate connection. The important idea to remember is: 

Because TCP identij?es a connection by a pair of endpoints, a given 
TCP port number can be shared by multiple connections on the same 
machine. 

From a programmer's point of view, the connection abstraction is significant. It 
means a programmer can devise a program that provides concurrent service to multiple 
connections simultaneously without needing unique local port numbers for each connec- 
tion. For example, most systems provide concurrent access to their electronic mail ser- 
vice, allowing multiple computers to send them electronic mail concurrently. Because 
the program that accepts incoming mail uses TCP to communicate, it only needs to use 
one local TCP port even though it allows multiple connections to proceed concurrently. 

13.8 Passive And Active Opens 

Unlike UDP, TCP is a connection-oriented protocol that requires both endpoints to 
agree to participate. That is, before TCP traffic can pass across an internet, application 
programs at both ends of the connection must agree that the connection is desired. To 
do so, the application program on one end performs a passive open function by contact- 
ing its operating system and indicating that it will accept an incoming connection. At 
that time, the operating system assigns a TCP port number for its end of the connection. 
The application program at the other end must then contact its operating system using 
an active open request to establish a connection. The two TCP software modules com- 
municate to establish and verify a connection. Once a connection has been created, ap- 
plication programs can begin to pass data; the TCP software modules at each end ex- 
change messages that guarantee reliable delivery. We win return to the details of estab- 
lishing connections after examining the TCP message format. 
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13.9 Segments, Streams, And Sequence Numbers 

TCP views the data stream as a sequence of octets or bytes that it divides into seg- 
ments for transmission. Usually, each segment travels across an internet in a single IP 
datagram. 

TCP uses a specialized sliding window mechanism to solve two important prob- 
lems: efficient transmission and flow control. Like the sliding window protocol 
described earlier, the TCP window mechanism makes it possible to send multiple seg- 
ments before an acknowledgement arrives. Doing so increases total throughput because 
it keeps the network busy. The TCP form of a sliding window protocol also solves the 
end-to-end flow control problem, by allowing the receiver to restrict transmission until 
it has sufficient buffer space to accommodate more data. 

The TCP sliding window mechanism operates at the octet level, not at the segment 
or packet level. Octets of the data stream are numbered sequentially, and a sender 
keeps three pointers associated with every connection. The pointers define a sliding 
window as Figure 13.6 illustrates. The first pointer marks the left of the sliding win- 
dow, separating octets that have been sent and acknowledged from octets yet to be ack- 
nowledged. A second pointer marks the right of the sliding window and defines the 
highest octet in the sequence that can be sent before more acknowledgements are re- 
ceived. The third pointer marks the boundary inside the window that separates those 
octets that have already been sent from those octets that have not been sent. The proto- 
col software sends all octets in the window without delay, so the boundary inside the 
window usually moves from left to right quickly. 

current window 

Figure 13.6 An example of the TCP sliding window. Octets through 2 have 
been sent and acknowledged, octets 3 through 6 have been sent 
but not acknowledged, octets 7 though 9 have not been sent but 
will be sent without delay, and octets 10 and higher cannot be 
sent until the window moves. 

We have described how the sender's TCP window slides along and mentioned that 
the receiver must maintain a similar window to piece the stream together again. It is 
important to understand, however, that because TCP connections are full duplex, two 
transfers proceed simultaneously over each connection, one in each direction. We think 
of the transfers as completely independent because at any time data can flow across the 
connection in one direction, or in both directions. Thus, TCP software at each end 
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maintains two windows per connection (for a total of four), one slides along the data 
stream being sent, while the other slides along as data is received. 

13.1 0 Variable Window Size And Flow Control 

One difference between the TCP sliding window protocol and the simplified slid- 
ing window protocol presented earlier occurs because TCP allows the window size to 
vary over time. Each acknowledgement, which specifies how many octets have been 
received, contains a window advertisement that specifies how many additional octets of 
data the receiver is prepared to accept. We think of the window advertisement as speci- 
fying the receiver's current buffer size. In response to an increased window advertise- 
ment, the sender increases the size of its sliding window and proceeds to send octets 
that have not been acknowledged. In response to a decreased window advertisement, 
the sender decreases the size of its window and stops sending octets beyond the boun- 
dary. TCP software should not contradict previous advertisements by shrinking the 
window past previously acceptable positions in the octet stream. Instead, smaller adver- 
tisements accompany acknowledgements, so the window size changes at the time it 
slides forward. 

The advantage of using a variable size window is that it provides flow control as 
well as reliable transfer. To avoid receiving more data than it can store, the receiver 
sends smaller window advertisements as its buffer fills. In the extreme case, the re- 
ceiver advertises a window size of zero to stop all transmissions. Later, when buffer 
space becomes available, the receiver advertises a nonzero window size to trigger the 
flow of data again?. 

Having a mechanism for flow control is essential in an internet environment, where 
machines of various speeds and sizes communicate through networks and routers of 
various speeds and capacities. There are two independent flow problems. First, internet 
protocols need end-to-end flow control between the source and ultimate destination. 
For example, when a minicomputer communicates with a large mainframe, the mini- 
computer needs to regulate the influx of data, or protocol software would be overrun 
quickly. Thus, TCP must implement end-to-end flow control to guarantee reliable 
delive~y. Second, internet protocols need a flow control mechanism that allows inter- 
mediate systems (i.e., routers) to control a source that sends more traffic than the 
machine can tolerate. 

When intermediate machines become overloaded, the condition is called conges- 
tion, and mechanisms to solve the problem are called congestion control mechanisms. 
TCP uses its sliding window scheme to solve the end-to-end flow control problem; it 
does not have an explicit mechanism for congestion control. We will see later, howev- 
er, that a carefully programmed TCP implementation can detect and recover from 
congestion while a poor implementation can make it worse. In particular, although a 
carefully chosen retransmission scheme can help avoid congestion, a poorly chosen 
scheme can exacerbate it. 

?There are two exceptions to transmission when the window size is zero. Fist, a sender is allowed to 
transmit a segment with the urgent bit set to inform the receiver that urgent data is available. Second, to avoid 
a potential deadlock that can arise if a nonzero advertisement is lost after the window size reaches zero, the 
-',..A',- ..-nl.-m " C;.,~A ..A",h.., -A,.,4L.*ll., 
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13.1 1 TCP Segment Format 

The unit of transfer between the TCP software on two machines is called a seg- 
ment. Segments are exchanged to establish connections, transfer data, send ack- 
nowledgements, advertise window sizes, and close connections. Because TCP uses pig- 
gybacking, an acknowledgement traveling from machine A to machine B may travel in 
the same segment as data traveling from machine A to machine B, even though the ack- 
nowledgement refers to data sent from B to A t .  Figure 13.7 shows the TCP segment 
format. 

SOURCE PORT DESTINATION PORT 

LEN 

I OPTIONS (IF ANY) I PADDING I 

SEQUENCE NUMBER 

ACKNOWLEDGEMENT NUMBER 

CHECKSUM 

I DATA I 

I RESERVED 

URGENT POINTER 

Figure 13.7 The format of a TCP segment with a TCP header followed by 
data. Segments are used to establish connections as well as to 
carry data and acknowledgements. 

CODE BITS I WINDOW 

1 

Each segment is divided into two parts, a header followed by data. The header, 
known as the TCP header, carries the expected identification and control information. 
Fields SOURCE PORT and DESTINATION PORT contain the TCP port numbers that 
identify the application programs at the ends of the connection. The SEQUENCE 
NUMBER field identifies the position in the sender's byte stream of the data in the seg- 
ment. The ACKNOWLEDGEMENT NUMBER field identifies the number of the octet 
that the source expects to receive next. Note that the sequence number refers to the 
stream flowing in the same direction as the segment, while the acknowledgement 
number refers to the stream flowing in the opposite direction from the segment. 

The HLENS field contains an integer that specifies the length of the segment 
header measured in 32-bit multiples. It is needed because the OPTIONS field varies in 
length, depending on which options have been included. Thus, the size of the TCP 
header varies depending on the options selected. The 6-bit field marked RESERVED is 
reserved for future use. 

?In practice, piggybacking does not usually occur because most applications do not send data in both 
directions simultaneously. 

$The specification says the HLEN field is the offset of the data area within the segment. 
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Some segments carry only an acknowledgement while some carry data. Others 
carry requests to establish or close a connection. TCP software uses the 6-bit field la- 
beled CODE BITS to determine the purpose and contents of the segment. The six bits 
tell how to interpret other fields in the header according to the table in Figure 13.8. 

Bit (left to right) 
URG 
ACK 
PSH 
RST 
SYN 
FIN 

Meaning if bit set to 1 
Urgent pointer field is valid 
Acknowledgement field is valid 
This segment requests a push 
Reset the connection 
Synchronize sequence numbers 
Sender has reached end of its byte stream 

Figure 13.8 Bits of the CODE field in the TCP header. 

TCP software advertises how much data it is willing to accept every time it sends a 
segment by specifying its buffer size in the WINDOW field. The field contains a 16-bit 
unsigned integer in network-standard byte order. Window advertisements provide 
another example of piggybacking because they accompany all segments, including those 
carrying data as well as those carrying only an acknowledgement. 

13.12 Out Of Band Data 

Although TCP is a stream-oriented protocol, it is sometimes important for the pro- 
gram at one end of a connection to send data out of band, without waiting for the pro- 
gram at the other end of the connection to consume octets already in the stream. For 
example, when TCP is used for a remote login session, the user may decide to send a 
keyboard sequence that interrupts or aborts the program at the other end. Such signals 
are most often needed when a program on the remote machine fails to operate correctly. 
The signals must be sent without waiting for the program to read octets already in the 
TCP stream (or one would not be able to abort programs that stop reading input). 

To accommodate out of band signaling, TCP allows the sender to specify data as 
urgent, meaning that the receiving program should be notified of its arrival as quickly 
as possible, regardless of its position in the stream. The protocol specifies that when 
urgent data is found, the receiving TCP should notify whatever application program is 
associated with the connection to go into "urgent mode." After all urgent data has 
been consumed, TCP tells the application program to return to normal operation. 

The exact details of how TCP informs the application program about urgent data 
depend on the computer's operating system, of course. The mechanism used to mark 
urgent data when transmitting it in a segment consists of the URG code bit and the UR- 
GENT POINTER field. When the URG bit is set, the urgent pointer specifies the posi- 
tion in the segment where urgent data ends. 
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13.13 Maximum Segment Size Option 

Not all segments sent across a connection will be of the same size. However, both 
ends need to agree on a maximum segment they will transfer. TCP software uses the 
OPTIONS field to negotiate with the TCP software at the other end of the connection; 
one of the options allows TCP software to specify the maximum segment size (MSS) 
that it is willing to receive. For example, when an embedded system that only has a 
few hundred bytes of buffer space connects to a large supercomputer, it can negotiate an 
MSS that restricts segments so they fit in the buffer. It is especially important for com- 
puters connected by high-speed local area networks to choose a maximum segment size 
that fills packets or they will not make good use of the bandwidth. Therefore, if the 
two endpoints lie on the same physical network, TCP usually computes a maximum 
segment size such that the resulting IP datagrams will match the network MTU. If the 
endpoints do not lie on the same physical network, they can attempt to discover the 
minimum MTU along the path between them, or choose a maximum segment size of 
536 (the default size of an IP datagram, 576, minus the standard size of IP and TCP 
headers). 

In a general internet environment, choosing a good maximum segment size can be 
difficult because performance can be poor for either extremely large segment sizes or 
extremely small sizes. On one hand, when the segment size is small, network utiliza- 
tion remains low. To see why, recall that TCP segments travel encapsulated in IP da- 
tagrams which are encapsulated in physical network frames. Thus, each segment has at 
least 40 octets of TCP and IP headers in addition to the data. Therefore, datagrams car- 
rying only one octet of data use at most 1/41 of the underlying network bandwidth for 
user data; in practice, minimum interpacket gaps and network hardware framing bits 
make the ratio even smaller. 

On the other hand, extremely large segment sizes can also produce poor perfor- 
mance. Large segments result in large IP datagrams. When such datagrams travel 
across a network with small MTU, IP must fragment them. Unlike a TCP segment, a 
fragment cannot be acknowledged or retransmitted independently; all fragments must 
arrive or the entire datagram must be retransmitted. Because the probability of losing a 
given fragment is nonzero, increasing segment size above the fragmentation threshold 
decreases the probability the datagram will arrive, which decreases throughput. 

In theory, the optimum segment size, S, occurs when the IP datagrams carrying the 
segments are as large as possible without requiring fragmentation anywhere along the 
path from the source to the destination. In practice, finding S is difficult for several rea- 
sons. First, most implementations of TCP do not include a mechanism for doing sot. 
Second, because routers in an internet can change routes dynamically, the path da- 
tagrams follow between a pair of communicating computers can change dynamically 
and so can the size at which datagram must be fragmented. Third, the optimum size 
depends on lower-level protocol headers (e.g., the segment size must be reduced to ac- 
commodate IP options). Research on the problem of finding an optimal segment size 
continues. 

?To discover the path MTU, a sender probes the path by sending datagrams with the IP do nor frngment 
bit set. It then decreases the size if ICMP error messages report that fragmentation was required. 
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13.1 4 TCP Checksum Computation 

The CHECKSUM field in the TCP header contains a 16-bit integer checksum used 
to verify the integrity of the data as well as the TCP header. To compute the checksum, 
TCP software on the sending machine follows a procedure like the one described in 
Chapter 12 for UDP. It prepends a pseudo header to the segment, appends enough zero 
bits to make the segment a multiple of 16 bits, and computes the 16-bit checksum over 
the entire result. TCP does not count the pseudo header or padding in the segment 
length, nor does it transmit them. Also, it assumes the checksum field itself is zero for 
purposes of the checksum computation. As with other checksums, TCP uses 16-bit ar- 
ithmetic and takes the one's complement of the one's complement sum. At the receiv- 
ing site, TCP software performs the same computation to verify that the segment arrived 
intact. 

The purpose of using a pseudo header is exactly the same as in UDP. It allows the 
receiver to verify that the segment has reached its correct destination, which includes 
both a host IP address as well as a protocol port number. Both the source and destina- 
tion IP addresses are important to TCP because it must use them to identify a connec- 
tion to which the segment belongs. Therefore, whenever a datagram arrives carrying a 
TCP segment, IP must pass to TCP the source and destination IP addresses from the da- 
tagram as well as the segment itself. Figure 13.9 shows the format of the pseudo 
header used in the checksum computation. 

0 8 16 3 1  

SOURCE IP ADDRESS I 

Figure 13.9 The format of the pseudo header used in TCP checksum compu- 
tations. At the receiving site, this information is extracted from 
the IP datagram that carried the segment. 

DESTINATION IP ADDRESS 

The sending TCP assigns field PROTOCOL the value that the underlying delivery 
system will use in its protocol type field. For IP datagram carrying TCP, the value is 
6. The TCP LENGTH field specifies the total length of the TCP segment including the 
TCP header. At the receiving end, information used in the pseudo header is extracted 
from the IP datagram that carried the segment and included in the checksum computa- 
tion to verify that the segment arrived at the correct destination intact. 

ZERO PROTOCOL TCP LENGTH 
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13.1 5 Acknowledgements And Retransmission 

Because TCP sends data in variable length segments and because retransmitted 
segments can include more data than the original, acknowledgements cannot easily refer 
to datagrams or segments. Instead, they refer to a position in the stream using the 
stream sequence numbers. The receiver collects data octets from arriving segments and 
reconstructs an exact copy of the stream being sent. Because segments travel in IP da- 
tagrams, they can be lost or delivered out of order; the receiver uses the sequence 
numbers to reorder segments. At any time, the receiver will have reconstructed zero or 
more octets contiguously from the beginning of the stream, but may have additional 
pieces of the stream from datagrams that arrived out of order. The receiver always ack- 
nowledges the longest contiguous prefix of the stream that has been received correctly. 
Each acknowledgement specifies a sequence value one greater than the highest octet po- 
sition in the contiguous prefix it received. Thus, the sender receives continuous feed- 
back from the receiver as it progresses through the stream. We can summarize this im- 
portant idea: 

A TCP acknowledgement speczjies the sequence number of the next 
octet that the receiver expects to receive. 

The TCP acknowledgement scheme is called cumulative because it reports how much of 
the stream has accumulated. Cumulative acknowledgements have both advantages and 
disadvantages. One advantage is that acknowledgements are both easy to generate and 
unambiguous. Another advantage is that lost acknowledgements do not necessarily 
force retransmission. A major disadvantage is that the sender does not receive informa- 
tion about all successful transmissions, but only about a single position in the stream 
that has been received. 

To understand why lack of information about all successful transmissions makes 
cumulative acknowledgements less efficient, think of a window that spans 5000 octets 
starting at position 101 in the stream, and suppose the sender has transmitted all data in 
the window by sending five segments. Suppose further that the first segment is lost, but 
all others arrive intact. As each segment arrives, the receiver sends an acknowledge- 
ment, but each acknowledgement specifies octet 101, the next highest contiguous octet 
it expects to receive. There is no way for the receiver to tell the sender that most of the 
data for the current window has arrived. 

When a timeout occurs at the sender's side, the sender must choose between two 
potentially inefficient schemes. It may choose to retransmit one segment or all five seg- 
ments. In this case retransmitting all five segments is inefficient. When the first seg- 
ment arrives, the receiver will have all the data in the window, and will acknowledge 
5101. If the sender follows the accepted standard and retransmits only the first unack- 
nowledged segment, it must wait for the acknowledgement before it can decide what 
and how much to send. Thus, it reverts to a simple positive acknowledgement protocol 
and may lose the advantages of having a large window. 
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13.16 Timeout And Retransmission 

One of the most important and complex ideas in TCP is embedded in the way it 
handles timeout and retransmission. Like other reliable protocols, TCP expects the des- 
tination to send acknowledgements whenever it successfully receives new octets from 
the data stream. Every time it sends a segment, TCP starts a timer and waits for an 
acknowledgement. If the timer expires before data in the segment has been ack- 
nowledged, TCP assumes that the segment was lost or corrupted and retransmits it. 

To understand why the TCP retransmission algorithm differs from the algorithm 
used in many network protocols, we need to remember that TCP is intended for use in 
an internet environment. In an internet, a segment traveling between a pair of machines 
may traverse a single, low-delay network (e.g., a high-speed LAN), or it may travel 
across multiple intermediate networks through multiple routers. Thus, it is impossible 
to know a prion how quickly acknowledgements will return to the source. Further- 
more, the delay at each router depends on traffic, so the total time required for a seg- 
ment to travel to the destination and an acknowledgement to return to the source varies 
dramatically from one instant to another. Figure 13.10, which shows measurements of 
round trip times across the global Internet for 100 consecutive packets, illustrates the 
problem. TCP software must accommodate both the vast differences in the time re- 
quired to reach various destinations and the changes in time required to reach a given 
destination as traffic load varies. 

TCP accommodates varying internet delays by using an adaptive retransmission 
algorithm. In essence, TCP monitors the performance of each connection and deduces 
reasonable values for timeouts. As the performance of a connection changes, TCP re- 
vises its timeout value (i.e., it adapts to the change). 

To collect the data needed for an adaptive algorithm, TCP records the time at 
which each segment is sent and the time at which an acknowledgement arrives for the 
data in that segment. From the two times, TCP computes an elapsed time known as a 
sample round trip time or round trip sample. Whenever it obtains a new round trip 
sample, TCP adjusts its notion of the average round trip time for the connection. Usu- 
ally, TCP software stores the estimated round trip time, RZT, as a weighted average and 
uses new round trip samples to change the average slowly. For example, when comput- 
ing a new weighted average, one early averaging technique used a constant weighting 
factor, a, where 0 I a c 1, to weight the old average against the latest round trip sample: 

R l l  = (a Old-RTT) + ( ( 1 -a) New-Round-Trip-Sample ) 

Choosing a value for a close to 1 makes the weighted average immune to changes that 
last a short time (e.g., a single segment that encounters long delay). Choosing a value 
for a close to 0 makes the weighted average respond to changes in delay very quickly. 
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Figure 13.10 A plot of Internet round trip times as measured for 100 succes- 
sive IP datagrams. Although the Internet now operates with 
much lower delay, the delays still vary over time. 

When it sends a packet, TCP computes a timeout value as a function of the current 
round trip estimate. Early implementations of TCP used a constant weighting factor, $ 
($ > I), and made the timeout greater than the current round trip estimate: 

Timeout = $ * RTT 

Choosing a value for $ can be difficult. On one hand, to detect packet loss quickly, the 
timeout value should be close to the current round trip time (i.e., $ should be close to 
1). Detecting packet loss quickly improves throughput because TCP will not wait an 
unnecessarily long time before retransmitting. On the other hand, if $ = 1, TCP is over- 
ly eager - any small delay will cause an unnecessary retransmission, which wastes net- 
work bandwidth. The original specification recommended setting $=2; more recent 
work described below has produced better techniques for adjusting timeout. 
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We can summarize the ideas presented so far: 

To accommodate the varying delays encountered in an internet en- 
vironment, TCP uses an adaptive retransmission algorithm that moni- 
tors delays on each connection and adjusts its timeout parameter ac- 
cordingly. 

13.1 7 Accurate Measurement Of Round Trip Samples 

In theory, measuring a round trip sample is trivial - it consists of subtracting the 
time at which the segment is sent from the time at which the acknowledgement arrives. 
However, complications arise because TCP uses a cumulative acknowledgement scheme 
in which an acknowledgement refers to data received, and not to the instance of a 
specific datagram that carried the data. Consider a retransmission. TCP forms a seg- 
ment, places it in a datagram and sends it, the timer expires, and TCP sends the seg- 
ment again in a second datagram. Because both datagrams carry exactly the same data, 
the sender has no way of knowing whether an acknowledgement corresponds to the ori- 
ginal or retransmitted datagram. This phenomenon has been called acknowledgement 
ambiguity, and TCP acknowledgements are said to be ambiguous. 

Should TCP assume acknowledgements belong with the earliest (i.e., original) 
transmission or the latest (i.e., the most recent retransmission)? Surprisingly, neither as- 
sumption works. Associating the acknowledgement with the original transmission can 
make the estimated round trip time grow without bound in cases where an internet loses 
datagramst. If an acknowledgement arrives after one or more retransmissions, TCP 
will measure the round trip sample from the original transmission, and compute a new 
R l T  using the excessively long sample. Thus, RTT will grow slightly. The next time 
TCP sends a segment, the larger R R  will result in slightly longer timeouts, so if an 
acknowledgement arrives after one or more retransmissions, the next sample round trip 
time will be even larger, and so on. 

Associating the acknowledgement with the most recent retransmission can also fail. 
Consider what happens when the end-to-end delay suddenly increases. When TCP 
sends a segment, it uses the old round trip estimate to compute a timeout, which is now 
too small. The segment arrives and an acknowledgement starts back, but the increase in 
delay means the timer expires before the acknowledgement arrives, and TCP retransmits 
the segment. Shortly after TCP retransmits, the first acknowledgement arrives and is 
associated with the retransmission. The round trip sample will be much too small and 
will result in a slight decrease of the estimated round trip time, RTT. Unfortunately, 
lowering the estimated round trip time guarantees that TCP will set the timeout too 
small for the next segment. Ultimately, the estimated round trip time can stabilize at a 
value, T, such that the correct round trip time is slightly longer than some multiple of T. 
Implementations of TCP that associate acknowledgements with the most recent re- 
transmission have been observed in a stable state with RTT slightly less than one-half 
of the correct value (i.e., TCP sends each segment exactly twice even though no loss 
occurs). 

tThe estimate can only grow arbitrarily large if every segment is lost at least once. 
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13.1 8 Karn's Algorithm And Timer Backoff 

If the original transmission and the most recent transmission both fail to provide 
accurate round trip times, what should TCP do? The accepted answer is simple: TCP 
should not update the round trip estimate for retransmitted segments. This idea, known 
as Kam's Algorithm, avoids the problem of ambiguous acknowledgements altogether by 
only adjusting the estimated round trip for unambiguous acknowledgements (ack- 
nowledgements that arrive for segments that have only been transmitted once). 

Of course, a simplistic implementation of Karn's algorithm, one that merely ig- 
nores times from retransmitted segments, can lead to failure as well. Consider what 
happens when TCP sends a segment after a sharp increase in delay. TCP computes a 
timeout using the existing round trip estimate. The timeout will be too small for the 
new delay and will force retransmission. If TCP ignores acknowledgements from re- 
transmitted segments, it will never update the estimate and the cycle will continue. 

To accommodate such failures, Kam's algorithm requires the sender to combine re- 
transmission timeouts with a timer backoff strategy. The backoff technique computes 
an initial timeout using a formula like the one shown above. However, if the timer ex- 
pires and causes a retransmission, TCP increases the timeout. In fact, each time it must 
retransmit a segment, TCP increases the timeout (to keep timeouts from becoming ridi- 
culously long, most implementations limit increases to an upper bound that is larger 
than the delay along any path in the internet). 

Implementations use a variety of techniques to compute backoff. Most choose a 
multiplicative factor, y, and set the new value to: 

new-timeout = y * timeout 

Typically, y is 2. (It has been argued that values of y less than 2 lead to instabilities.) 
Other implementations use a table of multiplicative factors, allowing arbitrary backoff at 
each step?. 

Kam's algorithm combines the backoff technique with round trip estimation to 
solve the problem of never increasing round trip estimates: 

Kam's algorithm: When computing the round trip estimate, ignore 
samples that correspond to retransmitted segments, but use a backoff 
strategy, and retain the timeout value from a retransmitted packet for 
subsequent packets until a valid sample is obtained. 

Generally speaking, when an internet misbehaves, Kam's algorithm separates computa- 
tion of the timeout value from the current round trip estimate. It uses the round trip es- 
timate to compute an initial timeout value, but then backs off the timeout on each re- 
transmission until it can successfully transfer a segment. When it sends subsequent seg- 
ments, it retains the timeout value that results from backoff. Finally, when an ack- 
nowledgement arrives corresponding to a segment that did not require retransmission, 

tBerkeley UNIX is the most notable system that uses a table of factors, but current values in the table are 
equivalent to using y =2. 
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TCP recomputes the round trip estimate and resets the timeout accordingly. Experience 
shows that Karn's algorithm works well even in networks with high packet losst. 

13.19 Responding To High Variance In Delay 

Research into round trip estimation has shown that the computations described 
above do not adapt to a wide range of variation in delay. Queueing theory suggests that 
the variation in round trip time, o, varies proportional to ll(1-L), where L is the current 
network load, O I L I l .  If an internet is running at 50% of capacity, we expect the 
round trip delay to vary by a factor of f 20, or 4. When the load reaches 80%, we ex- 
pect a variation of 10. The original TCP standard specified the technique for estimating 
round trip time that we described earlier. Using that technique and limiting P to the 
suggested value of 2 means the round trip estimation can adapt to loads of at most 30%. 

The 1989 specification for TCP requires implementations to estimate both the aver- 
age round trip time and the variance, and to use the estimated variance in place of the 
constant P. As a result, new implementations of TCP can adapt to a wider range of 
variation in delay and yield substantially higher throughput. Fortunately, the approxi- 
mations require little computation; extremely efficient programs can be derived from the 
following simple equations: 

DlFF = SAMPLE - Old-RTT 

Smoothed-RTT = Old-RTT + 6* DlFF 

DEV = Old-DEV + p (IDIFF[ - Old-DEV) 

Timeout = Smoothed-RTT + q DEV 

where DEV is the estimated mean deviation, 6 is a fraction between 0 and 1 that con- 
trols how quickly the new sample affects the weighted average, p is a fraction between 
0 and 1 that controls how quickly the new sample affects the mean deviation, and q is a 
factor that controls how much the deviation affects the round trip timeout. To make the 
computation efficient, TCP chooses 6 and p to each be an inverse of a power of 2, 
scales the computation by 2" for an appropriate n, and uses integer arithmetic. Research 
suggests values of 6 = 1 /2;', p = 1 /22, and n = 3 will work well. The original value for q 
in 4.3BSD UNM was 2; it was changed to 4 in 4.4 BSD UNIX. 

Figure 13.1 1 uses a set of randomly generated values to illustrate how the comput- 
ed timeout changes as the roundtrip time varies. Although the roundtrip times are artifi- 
cial, they follow a pattern observed in practice: successive packets show small varia- 
tions in delay as the overall average rises or falls. 

tPhil Karn is an amateur radio enthusiast who developed this algorithm to allow TCP communication 
across a high-loss packet radio connection. 
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Figure 13.11 A set of 200 (randomly generated) roundtrip times shown as 
dots, and the TCP retransmission timer shown as a solid line. 
The timeout increases when delay varies. 

Note that frequent change in the roundmp time, including a cycle of increase and 
decrease, can produce an increase in the retransmission timer. Furthermore, although 
the timer tends to increase quickly when delay rises, it does not decrease as rapidly 
when delay falls. 

Figure 13.12 uses the data points from Figure 13.10 to show how TCP responds to 
the extreme case of variance in delay. Recall that the goal is to have the retransmission 
timer estimate the actual roundtrip time as closely as possible without underestimating. 
The figure shows that although the timer responds quickly, it can underestimate. For 
example, between the two successive datagrams marked with arrows, the delay doubles 
from less than 4 seconds to more than 8. More important, the abrupt change follows a 
period of relative stability in which the variation in delay is small, making it impossible 
for any algorithm to anticipate the change. In the case of the TCP algorithm, because 
the timeout (approximately 5) substantially underestimates the large delay, an unneces- 
sary retransmission occurs. However, the estimate responds quickly to the increase in 
delay, meaning that successive packets arrive without retransmission. 
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Figure 13.12 The TCP retransmission timer for the data from Figure 13.10. 
Arrows mark two successive datagrams where the delay dou- 
bles. 

13.20 Response To Congestion 

It may seem that TCP software could be designed by considering the interaction 
between the two endpoints of a connection and the communication delays between 
those endpoints. In practice, however, TCP must also react to congestion in the inter- 
net. Congestion is a condition of severe delay caused by an overload of datagrams at 
one or more switching points (e.g., at routers). When congestion occurs, delays in- 
crease and the router begins to enqueue datagrams until it can route them. We must 
remember that each router has finite storage capacity and that datagrams compete for 
that storage (i.e., in a datagram based internet, there is no preallocation of resources to 
individual TCP connections). In the worst case, the total number of datagrams arriving 
at the congested router grows until the router reaches capacity and starts to drop da- 
tagrams. 
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Endpoints do not usually know the details of where congestion has occurred or 
why. To them, congestion simply means increased delay. Unfortunately, most tran- 
sport protocols use tirneout and retransmission, so they respond to increased delay by 
retransmitting datagrams. Retransmissions aggravate congestion instead of alleviating 
it. If unchecked, the increased traffic will produce increased delay, leading to increased 
traffic, and so on, until the network becomes useless. The condition is known as 
congestion collapse. 

To avoid congestion collapse, TCP must reduce transmission rates when conges- 
tion occurs. Routers watch queue lengths and use techniques like ICMP source quench 
to inform hosts that congestion has occurred?, but transport protocols like TCP can help 
avoid congestion by reducing transmission rates automatically whenever delays occur. 
Of course, algorithms to avoid congestion must be constructed carefully because even 
under normal operating conditions an internet will exhibit wide variation in round trip 
delays. 

To avoid congestion, the TCP standard now recommends using two techniques: 
slow-start and multiplicative decrease. They are related and can be implemented easily. 
We said that for each connection, TCP must remember the size of the receiver's win- 
dow (i.e., the buffer size advertised in acknowledgements). To control congestion TCP 
maintains a second limit, called the congestion window limit or congestion window, that 
it uses to restrict data flow to less than the receiver's buffer size when congestion oc- 
curs. That is, at any time, TCP acts as if the window size is: 

Allowed-window = min ( receiver-advertisement, congestion-window ) 

In the steady state on a non-congested connection, the congestion window is the same 
size as the receiver's window. Reducing the congestion window reduces the traffic 
TCP will inject into the connection. To estimate congestion window size, TCP assumes 
that most datagram loss comes from congestion and uses the following strategy: 

Multiplicative Decrease Congestion Avoidance: Upon loss of a seg- 
ment, reduce the congestion window by hay (down to a minimum of at 
least one segment). For those segments that remain in the allowed 
window, backoff the retransmission timer exponentially. 

Because TCP reduces the congestion window by half for every loss, it decreases the 
window exponentially if loss continues. In other words, if congestion is likely, TCP 
reduces the volume of traffic exponentially and the rate of retransmission exponentially. 
If loss continues, TCP eventually limits transmission to a single datagram and continues 
to double tirneout values before retransmitting. The idea is to provide quick and signifi- 
cant traff3c reduction to allow routers enough time to clear the datagrams already in 
their queues. 

How can TCP recover when congestion ends? You might suspect that TCP should 
reverse the multiplicative decrease and double the congestion window when traffic be- 
gins to flow again. However, doing so produces an unstable system that oscillates wild- 

?In a congested network, queue lengths grow exponentially for a significant time 
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ly between no traffic and congestion. Instead, TCP uses a technique called slow-start? 
to scale up transmission: 

Slow-Start (Additive) Recovery: Whenever starting trafic on a new 
connection or increasing trafic after a period of congestion, start the 
congestion window at the size of a single segment and increase the 
congestion window by one segment each time an acknowledgement ar- 
rives. 

Slow-start avoids swamping the internet with additional traffic immediately after 
congestion clears or when new connections suddenly start. 

The term slow-start may be a misnomer because under ideal conditions, the start is 
not very slow. TCP initializes the congestion window to 1, sends an initial segment, 
and waits. When the acknowledgement arrives, it increases the congestion window to 
2, sends two segments, and waits. When the two acknowledgements arrive they each 
increase the congestion window by 1, so TCP can send 4 segments. Acknowledge- 
ments for those will increase the congestion window to 8. Within four round-trip times, 
TCP can send 16 segments, often enough to reach the receiver's window limit. Even 
for extremely large windows, it takes only log,N round trips before TCP can send N 
segments. 

To avoid increasing the window size too quickly and causing additional conges- 
tion, TCP adds one additional restriction. Once the congestion window reaches one half 
of its original size before congestion, TCP enters a congestion avoidance phase and 
slows down the rate of increment. During congestion avoidance, it increases the 
congestion window by 1 only if all segments in the window have been acknowledged. 

Taken together, slow-start increase, multiplicative decrease, congestion avoidance, 
measurement of variation, and exponential timer backoff improve the performance of 
TCP dramatically without adding any significant computational overhead to the protocol 
software. Versions of TCP that use these techniques have improved the performance of 
previous versions by factors of 2 to 10. 

13.21 Congestion, Tail Drop, And TCP 

We said that communication protocols are divided into layers to make it possible 
for designers to focus on a single problem at a time. The separation of functionality 
into layers is both necessary and useful - it means that one layer can be changed 
without affecting other layers, but it means that layers operate in isolation. For exam- 
ple, because it operates end-to-end, TCP remains unchanged when the path between the 
endpoints changes (e.g., routes change or additional networks routers are added). How- 
ever, the isolation of layers restricts inter-layer communication. In particular, although 
TCP on the original source interacts with TCP on the ultimate destination, it cannot in- 
teract with lower layer elements along the path. Thus, neither the sending nor receiving 

tThe term slow-start is attributed to John Nagle; the technique was originally called sofr-start. 
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TCP receives reports about conditions in the network, nor does either end inform lower 
layers along the path before transferring data. 

Researchers have observed that the lack of communication between layers means 
that the choice of policy or implementation at one layer can have a dramatic effect on 
the performance of higher layers. In the case of TCP, policies that routers use to handle 
datagrams can have a significant effect on both the perfomlance of a single TCP con- 
nection and the aggregate throughput of all connections. For example, if a router delays 
some datagrams more than otherst, TCP will back off its retransmission timer. If the 
delay exceeds the retransmission timeout, TCP will assume congestion has occurred. 
Thus, although each layer is defined independently, researchers try to devise mechan- 
isms and implementations that work well with protocols in other layers. 

The most important interaction between IP implementation policies and TCP oc- 
curs when a router becomes overrun and drops datagrams. Because a router places each 
incoming datagram in a queue in memory until it can be processed, the policy focuses 
on queue management. When datagrams arrive faster than they can be forwarded, the 
queue grows; when datagram arrive slower than they can be forwarded, the queue 
shrinks. However, because memory is finite, the queue cannot grow without bound. 
Early router software used a tail-drop policy to manage queue overflow: 

Tail-Drop Policy For Routers: if the input queue is filled when a da- 
tagram arrives, discard the datagram. 

The name tail-drop arises from the effect of the policy on an arriving sequence of 
datagrams. Once the queue fills, the router begins discarding all additional datagrams. 
That is, the router discards the "tail" of the sequence. 

Tail-drop has an interesting effect on TCP. In the simple case where datagram 
traveling through a router carry segments from a single TCP connection, the loss causes 
TCP to enter slow-start, which reduces throughput until TCP begins receiving ACKs 
and increases the congestion window. A more severe problem can occur, however, 
when the datagrams traveling through a router carry segments from many TCP connec- 
tions because tail-drop can cause global synchronization. To see why, observe that da- 
tagrams are typically multiplexed, with successive datagrams each coming from a dif- 
ferent source. Thus, a tail-drop policy makes it likely that the router will discard one 
segment from N connections rather than N segments from one connection. The simul- 
taneous loss causes all N instances of TCP to enter slow-start at the same time. 

13.22 Random Early Discard (RED) 

How can a router avoid global synchronization? The answer lies in a clever 
scheme that avoids tail-drop whenever possible. Known as Random Early Discard, 
Random Early Drop, or Random Early Detection, the scheme is more frequently re- 
ferred to by its acronym, RED. A router that implements RED uses two threshold 

TTechnically, variance in delay is referred to as jitter. 
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values to mark positions in the queue: Tmin and Tma. The general operation of RED 
can be described by three rules that determine the disposition of each arriving datagram: 

If the queue currently contains fewer than Tmin datagrams, add the new 
datagram to the queue. 
If the queue contains more than T- datagrams, discard the new da- 
tagram. 
If the queue contains between Tmin and T- datagrams, randomly dis- 
card the datagram according to a probability, p. 

The randomness of RED means that instead of waiting until the queue overflows and 
then driving many TCP connections into slow-start, a router slowly and randomly drops 
datagrams as congestion increases. We can summarize: 

RED Policy For Routers: i f  the input queue is full when a datagram 
arrives, discard the datagram; if the input queue is not full but the 
size exceeds a minimum threshold, avoid synchronization by discard- 
ing the datagram with probability p. 

The key to making RED work well lies in the choice of the thresholds Tmin and 
T-, and the discard probability p. Tmin must be large enough to ensure that the output 
link has high utilization. Furthermore, because RED operates like tail-drop when the 
queue size exceeds T-, the value must be greater than Tmin by more than the typical 
increase in queue size during one TCP round trip time (e.g., set T- at least twice as 
large as Tmin). Otherwise, RED can cause the same global oscillations as tail-drop. 

Computation of the discard probability, p, is the most complex aspect of RED. In- 
stead of using a constant, a new value of p is computed for each datagram; the value 
depends on the relationship between the current queue size and the thresholds. To 
understand the scheme, observe that all RED processing can be viewed probabilistically. 
When the queue size is less than Tmin, RED does not discard any datagrams, making the 
discard probability 0. Similarly, when the queue size is greater than T-, RED dis- 
cards al l  datagrams, making the discard probability I. For intermediate values of queue 
size, (i.e., those between Tmin and Tmax), the probability can vary from 0 to I linearly. 

Although the linear scheme forms the basis of RED'S probability computation, a 
change must be made to avoid overreacting. The need for the change arises because 
network traffic is bursty, which results in rapid fluctuations of a router's queue. If RED 
used a simplistic linear scheme, later datagrams in each burst would be assigned high 
probability of being dropped (because they arrive when the queue has more entries). 
However, a router should not drop datagrams unnecessarily because doing so has a 
negative impact on TCP throughput. Thus, if a burst is short, it is unwise to drop da- 
tagrams because the queue will never overflow. Of course, RED cannot postpone dis- 
card indefinitely because a long-term burst will overflow the queue, resulting in a tail- 
drop policy which has the potential to cause global synchronization problems. 



Sec. 13.22 Random Early Discard (RED) 237 

How can RED assign a higher discard probability as the queue fills without dis- 
carding datagrams from each burst? The answer lies in a technique borrowed from 
TCP: instead of using the actual queue size at any instant, RED computes a weighted 
average queue size, avg, and uses the average size to detemGne the probability. The 
value of avg is an exponential weighted average, updated each time a datagram arrives 
according to the equation: 

avg = ( 1 - y) * Old-avg + y* Current-queue-size 

where y denotes a value between 0 and 1. If y is small enough, the average will track 
long term trends, but will remain immune to short bursts? 

In addition to equations that determine y, RED contains other details that we have 
glossed over. For example, RED computations can be made extremely efficient by 
choosing constants as powers of two and using integer arithmetic. Another important 
detail concerns the measurement of queue size, which affects both the RED computation 
and its overall effect on TCP. In particular, because the time required to forward a da- 
tagram is proportional to its size, it makes sense to measure the queue in octets rather 
than in datagrams; doing so requires only minor changes to the equations for p and y. 
Measuring queue size in octets affects the type of traffic dropped because it makes the 
discard probability proportional to the amount of data a sender puts in the stream rather 
than the number of segments. Small datagrams (e.g., those that carry remote login traff- 
ic or requests to servers) have lower probability of being dropped than large datagrams 
(e.g., those that cany file transfer traffic). One positive consequence of using size is 
that when acknowledgements travel over a congested path, they have a lower probabili- 
ty of being dropped. As a result, if a (large) data segment does arrive, the sending TCP 
will receive the ACK and will avoid unnecessary retransmission. 

Both analysis and simulations show that RED works well. It handles congestion, 
avoids the synchronization that results from tail drop, and allows short bursts without 
dropping datagrams unnecessarily. The IETF now recommends that routers implement 
RED. 

13.23 Establishing A TCP Connection 

To establish a connection, TCP uses a three-way handshake. In the simplest case, 
the handshake proceeds as Figure 13.13 shows. 

?An example value suggested for y is .002. 
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Events At Site 1 Network Messages Events At Site 2 

Send SYN seq=x 

Receive SYN + ACK segment 
Send ACK y+l 

Receive SYN segment 
Send SYN seq=y, ACK x+l 

Receive ACK segment 

Figure 13.13 The sequence of messages in a three-way handshake. Time 
proceeds down the page; diagonal lines represent segments sent 
between sites. SYN segments cany initial sequence number 
information. 

The first segment of a handshake can be identified because it has the SYNt bit set in 
the code field. The second message has both the SYN bit and ACK bits set, indicating 
that it acknowledges the first SYN segment as well as continuing the handshake. The 
final handshake message is only an acknowledgement and is merely used to inform the 
destination that both sides agree that a connection has been established. 

Usually, the TCP software on one machine waits passively for the handshake, and 
the TCP software on another machine initiates it. However, the handshake is carefully 
designed to work even if both machines attempt to initiate a connection simultaneously. 
Thus, a connection can be established from either end or from both ends simultaneous- 
ly. Once the connection has been established, data can flow in both directions equally 
well. There is no master or slave. 

The three-way handshake is both necessary and sufficient for correct synchroniza- 
tion between the two ends of the connection. To understand why, remember that TCP 
builds on an unreliable packet delivery service, so messages can be lost, delayed, dupli- 
cated, or delivered out of order. Thus, the protocol must use a timeout mechanism and 
retransmit lost requests. Trouble arises if retransmitted and original requests arrive 
while the connection is being established, or if retransmitted requests are delayed until 
after a connection has been established, used, and terminated. A three-way handshake 
(plus the rule that TCP ignores additional requests for connection after a connection has 
been established) solves these problems. 

tSYN stands for synchronization; it is pronounced "sin." 
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13.24 Initial Sequence Numbers 

The three-way handshake accomplishes two important functions. It guarantees that 
both sides are ready to transfer data (and that they know they are both ready), and it al- 
lows both sides to agree on initial sequence numbers. Sequence numbers are sent and 
acknowledged during the handshake. Each machine must choose an initial sequence 
number at random that it will use to identify bytes in the stream it is sending. Sequence 
numbers cannot always start at the same value. In particular, TCP cannot merely 
choose sequence 1 every time it creates a connection (one of the exercises examines 
problems that can arise if it does). Of course, it is important that both sides agree on an 
initial number, so octet numbers used in acknowledgements agree with those used in 
data segments. 

To see how machines can agree on sequence numbers for two streams after only 
three messages, recall that each segment contains both a sequence number field and an 
acknowledgement field. The machine that initiates a handshake, call it A, passes its ini- 
tial sequence number, x, in the sequence field of the first SYN segment in the three-way 
handshake. The second machine, B, receives the SYN, records the sequence number, 
and replies by sending its initial sequence number in the sequence field as well as an 
acknowledgement that specifies B expects octet x + l .  In the final message of the 
handshake, A "acknowledges" receiving from B all octets through y. In all cases, ack- 
nowledgements follow the convention of using the number of the next octet expected. 

We have described how TCP usually carries out the three-way handshake by ex- 
changing segments that contain a minimum amount of information. Because of the pro- 
tocol design, it is possible to send data along with the initial sequence numbers in the 
handshake segments. In such cases, the TCP software must hold the data until the 
handshake completes. Once a connection has been established, the TCP software can 
release data being held and deliver it to a waiting application program quickly. The 
reader is referred to the protocol specification for the details. 

13.25 Closing a TCP Connection 

Two programs that use TCP to communicate can terminate the conversation grace- 
fully using the close operation. Internally, TCP uses a modified three-way handshake to 
close connections. Recall that TCP connections are full duplex and that we view them 
as containing two independent stream transfers, one going in each direction. When an 
application program tells TCP that it has no more data to send, TCP will close the con- 
nection in one direction. To close its half of a comection, the sending TCP finishes 
transmitting the remaining data, waits for the receiver to acknowledge it, and then sends 
a segment with the FIN bit set. The receiving TCP acknowledges the FIN segment and 
informs the application program on its end that no more data is available (e.g., using the 
operating system's end-of-file mechanism). 

Once a connection has been closed in a given direction, TCP refuses to accept 
more data for that direction. Meanwhile, data can continue to flow in the opposite 
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direction until the sender closes it. Of course, acknowledgements continue to flow back 
to the sender even after a connection has been closed. When both directions have been 
closed, the TCP software at each endpoint deletes its record of the connection. 

The details of closing a connection are even more subtle than suggested above be- 
cause TCP uses a modified three-way handshake to close a connection. Figure 13.14 il- 
lustrates the procedure. 

Events At Site 1 

(application closes connection) 
Send FIN seq=x 

Receive ACK segment 

Receive FIN + ACK segment 
Send ACK y+l 

Network Messages 

1 
/ 

/ 

Events At Site 2 

Receive FIN segment 
Send ACK x+l 
(inform application) 

(application closes connection) 
Send FIN seq=y, ACK x+l 

Receive ACK segment 

Figure 13.14 The modified three-way handshake used to close connections. 
The site that receives the first FIN segment acknowledges it 
immediately and then delays before sending the second FIN 
segment. 

The difference between three-way handshakes used to establish and break connections 
occurs after a machine receives the initial FIN segment. Instead of generating a second 
FIN segment immediately, TCP sends an acknowledgement and then informs the appli- 
cation of the request to shut down. Informing the application program of the request 
and obtaining a response may take considerable time (e.g., it may involve human in- 
teraction). The acknowledgement prevents retransmission of the initial FIN segment 
during the wait. Finally, when the application program instructs TCP to shut down the 
connection completely, TCP sends the second FIN segment and the original site replies 
with the third message, an ACK. 
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13.26 TCP Connection Reset 

Normally, an application program uses the close operation to shut down a connec- 
tion when it finishes using it. Thus, closing connections is considered a normal part of 
use, analogous to closing files. Sometimes abnornlal conditions arise that force an ap- 
plication program or the network software to break a connection. TCP provides a reset 
facility for such abnormal disconnections. 

To reset a connection, one side initiates termination by sending a segment with the 
RST bit in the CODE field set. The other side responds to a reset segment immediately 
by aborting the connection. TCP also informs the application program that a reset oc- 
curred. A reset is an instantaneous abort that means that transfer in both directions 
ceases immediately, and resources such as buffers are released. 

13.27 TCP State Machine 

Like most protocols, the operation of TCP can best be explained with a theoretical 
model called afinite state machine. Figure 13.15 shows the TCP finite state machine, 
with circles representing states and arrows representing transitions between them. The 
label on each transition shows what TCP receives to cause the transition and what it 
sends in response. For example, the TCP software at each endpoint begins in the 
CLOSED state. Application programs must issue either a passive open command (to 
wait for a connection from another machine), or an active open command (to initiate a 
connection). An active open command forces a transition from the CLOSED state to 
the SYN SENT state. When TCP follows the transition, it emits a SYN segment. When 
the other end returns a segment that contains a SYN plus ACK, TCP moves to the ES- 
TABLISHED state and begins data transfer. 

The TIMED WAIT state reveals how TCP handles some of the problems incurred 
with unreliable delivery. TCP keeps a notion of maximum segment lifetime (MSL), the 
maximum time an old segment can remain alive in an internet. To avoid having seg- 
ments from a previous connection interfere with a current one, TCP moves to the 
TIMED WAIT state after closing a connection. It remains in that state for twice the 
maximum segment lifetime before deleting its record of the connection. If any dupli- 
cate segments happen to arrive for the connection during the timeout interval, TCP will 
reject them. However, to handle cases where the last acknowledgement was lost, TCP 
acknowledges valid segments and restarts the timer. Because the timer allows TCP to 
distinguish old connections from new ones, it prevents TCP from responding with a 
RST (reset) if the other end retransmits a FIN request. 
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Figure 13.15 The TCP finite state machine. Each endpoint begins in the 
closed state. Labels on transitions show the input that caused 
the transition followed by the output if any. 
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13.28 Forcing Data Delivery 

We have said that TCP is free to divide the stream of data into segments for 
transmission without regard to the size of transfer that application programs use. The 
chief advantage of allowing TCP to choose a division is efficiency. It can accumulate 
enough octets in a buffer to make segments reasonably long, reducing the high overhead 
that occurs when segments contain only a few data octets. 

Although buffering improves network throughput, it can interfere with some appli- 
cations. Consider using a TCP connection to pass characters from an interactive tenni- 
nal to a remote machine. The user expects instant response to each keystroke. If the 
sending TCP buffers the data, response may be delayed, perhaps for hundreds of keys- 
trokes. Similarly, because the receiving TCP may buffer data before making it available 
to the application program on its end, forcing the sender to transmit data may not be 
sufficient to guarantee delivery. 

To accommodate interactive users, TCP provides a push operation that an applica- 
tion program can use to force delivery of octets currently in the stream without waiting 
for the buffer to fill. The push operation does more than force TCP to send a segment. 
It also requests TCP to set the PSH bit in the segment code field, so the data will be 
delivered to the application program on the receiving end. Thus, when sending data 
from an interactive terminal, the application uses the push function after each keystroke. 
Similarly, application programs can force output to be sent and displayed on the termi- 
nal promptly by calling the push function after writing a character or line. 

13.29 Reserved TCP Port Numbers 

Like UDP, TCP combines static and dynamic port binding, using a set of well- 
known port assignments for commonly invoked programs (e.g., electronic mail), but 
leaving most port numbers available for the operating system to allocate as programs 
need them. Although the standard originally reserved port numbers less than 256 for 
use as well-known ports, numbers over 1024 have now been assigned. Figure 13.16 
lists some of the currently assigned TCP ports. It should be pointed out that although 
TCP and UDP port numbers are independent, the designers have chosen to use the same 
integer port numbers for any service that is accessible from both UDP and TCP. For 
example, a domain name server can be accessed either with TCP or with UDP. In ei- 
ther protocol, port number 53 has been reserved for servers in the domain name system. 

13.30 TCP Performance 

As we have seen, TCP is a complex protocol that handles communication over a 
wide variety of underlying network technologies. Many people assume that because 
TCP tackles a much more complex task than other transport protocols, the code must be 
cumbersome and inefficient. Surprisingly, the generality we discussed does not seem to 
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hinder TCP performance. Experiments at Berkeley have shown that the same TCP that 
operates efficiently over the global Internet can deliver 8 Mbps of sustained throughput 
of user data between two workstations on a 10 Mbps Ethernet?. At Cray Research, 
Inc., researchers have demonstrated TCP throughput approaching a gigabit per second. 

Decimal Keyword UNlX Keyword Description 

TCPMUX 
ECHO 
DISCARD 
USERS 
DAYTIME 

QUOTE 
CHARGEN 
FTP-DATA 
FTP 
SSH 
TELNET 
SMTP 
TIME 
NICNAME 
DOMAIN 
BOOTPS 

FINGER 
WWW 
KERBEROS 
SUPDUP 
HOSTNAME 
ISO-TSAP 
X400 
X400-SND 
POP3 
SUNRPC 
AUTH 
UUCP-PATH 
NNTP 
NTP 
NETBIOS-SSN 
SNMP 

echo 
discard 
systat 
daytime 
netstat 
qotd 
chargen 
ftp-data 
ft P 
ssh 
telnet 
smtp 
time 
whois 
nameserver 
bootps 
rje 
finger 
WWW 

kerberos 
supdup 
hostnames 
iso-tsap 
x400 
x400-snd 
pop3 
sunrpc 
auth 
uucp-path 
nntp 
ntp 

snmp 

Reserved 
TCP Multiplexor 
Echo 
Discard 
Active Users 
Daytime 
Network status program 
Quote of the Day 
Character Generator 
File Transfer Protocol (data) 
File Transfer Protocol 
Secure Shell 
Terminal Connection 
Simple Mail Transport Protocol 
Time 
Who Is 
Domain Name Server 
BOOTP or DHCP Server 
any private RJE service 
Finger 
World Wide Web Server 
Kerberos Security Service 
SUPDUP Protocol 
NIC Host Name Server 
ISO-TSAP 
X.400 Mail Service 
X.400 Mail Sending 
Post Office Protocol Vers. 3 
SUN Remote Procedure Call 
Authentication Service 
UUCP Path Service 
USENET News Transfer Protocol 
Network Time Protocol 
NETBIOS Session Service 
Simple Network Management Protc 

Figure 13.16 Examples of currently assigned TCP port numbers. To the ex- 
tent possible, protocols like UDP use the same numbers. 

?Ethernet, IP, and TCP headers and the required inter-packet gap account for the remaining bandwidth. 
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13.31 Silly Window Syndrome And Small Packets 

Researchers who helped developed TCP observed a serious performance problem 
that can result when the sending and receiving applications operate at different speeds. 
To understand the problem, remember that TCP buffers incoming data, and consider 
what can happen if a receiving application chooses to read incoming data one octet at a 
time. When a connection is first established, the receiving TCP allocates a buffer of K 
bytes, and uses the WZNDOW field in acknowledgement segments to advertise the avail- 
able buffer size to the sender. If the sending application generates data quickly, the 
sending TCP will transmit segments with data for the entire window. Eventually, the 
sender will receive an acknowledgement that specifies the entire window has been 
filled, and no additional space remains in the receiver's buffer. 

When the receiving application reads an octet of data from a full buffer, one octet 
of space becomes available. We said that when space becomes available in its buffer, 
TCP on the receiving machine generates an acknowledgement that uses the WINDOW 
field to inform the sender. In the example, the receiver will advertise a window of 1 
octet. When it learns that space is available, the sending TCP responds by transmitting 
a segment that contains one octet of data. 

Although single-octet window advertisements work correctly to keep the receiver's 
buffer filled, they result in a series of small data segments. The sending TCP must 
compose a segment that contains one octet of data, place the segment in an IP datagram, 
and transmit the result. When the receiving application reads another octet, TCP gen- 
erates another acknowledgement, which causes the sender to transmit another segment 
that contains one octet of data. The resulting interaction can reach a steady state in 
which TCP sends a separate segment for each octet of data. 

Transfemng small segments consumes unnecessary network bandwidth and intro- 
duces unnecessary computational overhead. The transmission of small segments con- 
sumes unnecessary network bandwidth because each datagram carries only one octet of 
data; the ratio of header to data is large. Computational overhead arises because TCP 
on both the sending and receiving computers must process each segment. The sending 
TCP software must allocate buffer space, form a segment header, and compute a check- 
sum for the segment. Similarly, IP software on the sending machine must encapsulate 
the segment in a datagram, compute a header checksum, route the datagram, and 
transfer it to the appropriate network interface. On the receiving machine, IP must veri- 
fy the IP header checksum and pass the segment to TCP. TCP must verify the segment 
checksum, examine the sequence number, extract the data, and place it in a buffer. 

Although we have described how small segments result when a receiver advertises 
a small available window, a sender can also cause each segment to contain a small 
amount of data. For example, imagine a TCP implementation that aggressively sends 
data whenever it is available, and consider what happens if a sending application gen- 
erates data one octet at a time. After the application generates an octet of data, TCP 
creates and transmits a segment. TCP can also send a small segment if an application 
generates data in fmed-sized blocks of B octets, and the sending TCP extracts data from 
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the buffer in maximum segment sized blocks, M, where M#B,  because the last block in 
a buffer can be small. 

Known as silly window syndrome (SWS), the problem plagued early TCP imple- 
mentations. To summarize, 

Early TCP implementations exhibited a problem known as silly win- 
dow syndrome in which each acknowledgement advertises a small 
amount of space available and each segment carries a small amount 
of data. 

13.32 Avoiding Silly Window Syndrome 

TCP specifications now include heuristics that prevent silly window syndrome. A 
heuristic used on the sending machine avoids transmitting a small amount of data in 
each segment. Another heuristic used on the receiving machine avoids sending small 
increments in window advertisements that can trigger small data packets. Although the 
heuristics work well together, having both the sender and receiver avoid silly window 
helps ensure good performance in the case that one end of a connection fails to correct- 
ly implement silly window avoidance. 

In practice, TCP software must contain both sender and receiver silly window 
avoidance code. To understand why, recall that a TCP c o ~ e c t i o n  is full duplex - data 
can flow in either direction. Thus, an implementation of TCP includes code to send 
data as well as code to receive it. 

13.32.1 Receive-Side Silly Window Avoidance 

The heuristic a receiver uses to avoid silly window is straightforward and easiest to 
understand. In general, a receiver maintains an internal record of the currently available 
window, but delays advertising an increase in window size to the sender until the win- 
dow can advance a significant amount. The definition of "significant" depends on the 
receiver's buffer size and the maximum segment size. TCP defines it to be the 
minimum of one half of the receiver's buffer or the number of data octets in a 
maximum-sized segment. 

Receive-side silly window prevents small window advertisements in the case where 
a receiving application extracts data octets slowly. For example, when a receiver's 
buffer fills completely, it sends an acknowledgement that contains a zero window adver- 
tisement. As the receiving application extracts octets from the buffer, the receiving 
TCP computes the newly available space in the buffer. Instead of sending a window 
advertisement immediately, however, the receiver waits until the available space reaches 
one half of the total buffer size or a maximum sized segment. Thus, the sender always 
receives large increments in the current window, allowing it to transfer large segments. 
The heuristic can be summarized as follows. 
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Receive-Side Silly Window Avoidance: Before sending an updated 
window advertisement afer advertising a zero window, wait for space 
to become available that is either at least 50% of the total buffer size 
or equal to a maximum sized segment. 

13.32.2 Delayed Acknowledgements 

Two approaches have been taken to implement silly window avoidance on the re- 
ceive side. In the first approach, TCP acknowledges each segment that arrives, but does 
not advertise an increase in its window until the window reaches the limits specified by 
the silly window avoidance heuristic. In the second approach, TCP delays sending an 
acknowledgement when silly window avoidance specifies that the window is not suffi- 
ciently large to advertise. The standards recommend delaying acknowledgements. 

Delayed acknowledgements have both advantages and disadvantages. The chief 
advantage arises because delayed acknowledgements can decrease traffic and thereby in- 
crease throughput. For example, if additional data arrives during the delay period, a 
single acknowledgement will acknowledge all data received. If the receiving applica- 
tion generates a response immediately after data arrives (e.g., character echo in a remote 
login session), a short delay may p e m ~ t  the acknowledgement to piggyback on a data 
segment. Furthermore, TCP cannot move its window until the receiving application ex- 
tracts data from the buffer. In cases where the receiving application reads data as soon 
as it arrives, a short delay allows TCP to send a single segment that acknowledges the 
data and advertises an updated window. Without delayed acknowledgements, TCP will 
acknowledge the arrival of data immediately, and later send an additional acknowledge- 
ment to update the window size. 

The disadvantages of delayed acknowledgements should be clear. Most important, 
if a receiver delays acknowledgements too long, the sending TCP will retransmit the 
segment. Unnecessary retransmissions lower throughput because they waste network 
bandwidth. In addition, retransmissions require computational overhead on the sending 
and receiving machines. Furthermore, TCP uses the arrival of acknowledgements to es- 
timate round trip times; delaying acknowledgements can confuse the estimate and make 
retransmission times too long. 

To avoid potential problems, the TCP standards place a limit on the time TCP de- 
lays an acknowledgement. Implementations cannot delay an acknowledgement for 
more than 500 milliseconds. Furthermore, to guarantee that TCP receives a sufficient 
number of round trip estimates, the standard recommends that a receiver should ack- 
nowledge at least every other data segment. 
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13.32.3 Send-Side Silly Window Avoidance 

The heuristic a sending TCP uses to avoid silly window syndrome is both surpris- 
ing and elegant. Recall that the goal is to avoid sending small segments. Also recall 
that a sending application can generate data in arbitrarily small blocks (e.g., one octet at 
a time). Thus, to achieve the goal, a sending TCP must allow the sending application to 
make multiple calls to write, and must collect the data transferred in each call before 
transmitting it in a single, large segment. That is, a sending TCP must delay sending a 
segment until it can accumulate a reasonable amount of data. The technique is known 
as clumping. 

The question arises, "How long should TCP wait before transmitting data?" On 
one hand, if TCP waits too long, the application experiences large delays. More irnpor- 
tant, TCP cannot know whether to wait because it cannot know whether the application 
will generate more data in the near future. On the other hand, if TCP does not wait 
long enough, segments will be small and throughput will be low. 

Protocols designed prior to TCP confronted the same problem and used techniques 
to clump data into larger packets. For example, to achieve efficient transfer across a 
network, early remote terminal protocols delayed transmitting each keystroke for a few 
hundred milliseconds to determine whether the user would continue to press keys. Be- 
cause TCP is designed to be general, however, it can be used by a diverse set of appli- 
cations. Characters may travel across a TCP connection because a user is typing on a 
keyboard or because a program is transferring a file. A fixed delay is not optimal for 
all applications. 

Like the algorithm TCP uses for retransmission and the slow-start algorithm used 
to avoid congestion, the technique a sending TCP uses to avoid sending small packets is 
adaptive - the delay depends on the current performance of the internet. Like slow- 
start, send-side silly window avoidance is called self clocking because it does not com- 
pute delays. Instead, TCP uses the arrival of an acknowledgement to trigger the 
transmission of additional packets. The heuristic can be summarized: 

Send-Side Silly Window Avoidance: When a sending application gen- 
erates additional data to be sent over a connection for which previous 
data has been transmitted but not acknowledged, place the new data 
in the output buffer as usual, but do not send additional segments un- 
til there is suficient data to fill a maximum-sized segment. If still 
waiting to send when an acknowledgement arrives, send all data that 
has accumulated in the buffer. Apply the rule even when the user re- 
quests a push operation. 

If an application generates data one octet at a time, TCP will send the first octet 
immediately. However, until the ACK arrives, TCP will accumulate additional octets in 
its buffer. Thus, if the application is reasonably fast compared to the network (i.e., a 
file transfer), successive segments will each contain many octets. If the application is 
slow compared to the network (e.g., a user typing on a keyboard), small segments will 
be sent without long delay. 
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Known as the Nagle algorithm after its inventor, the technique is especially elegant 
because it requires little computational overhead. A host does not need to keep separate 
timers for each connection, nor does the host need to examine a clock when an applica- 
tion generates data. More important, although the technique adapts to arbitrary combi- 
nations of network delay, maximum segment size, and application speed, it does not 
lower throughput in conventional cases. 

To understand why throughput remains high for conventional communication, ob- 
serve that applications optimized for high throughput do not generate data one octet at a 
time (doing so would incur unnecessary operating system overhead). Instead, such ap- 
plications write large blocks of data with each call. Thus, the outgoing TCP buffer be- 
gins with sufficient data for at least one maximum size segment. Furthermore, because 
the application produces data faster than TCP can transfer data, the sending buffer 
remains nearly full, and TCP does not delay transmission. As a result, TCP continues 
to send segments at whatever rate the internet can tolerate, while the application contin- 
ues to fill the buffer. To summarize: 

TCP now requires the sender and receiver to implement heuristics 
that avoid the silly window syndrome. A receiver avoids advertising a 
small window, and a sender uses an adaptive scheme to delay 
transmission so it can clump data into large segments. 

13.33 Summary 

The Transmission Control Protocol, TCP, defines a key service provided by an in- 
ternet, namely, reliable stream delivery. TCP provides a full duplex connection 
between two machines, allowing them to exchange large volumes of data efficiently. 

Because it uses a sliding window protocol, TCP can make efficient use of a net- 
work. Because it makes few assumptions about the underlying delivery system, TCP is 
flexible enough to operate over a large variety of delivery systems. Because it provides 
flow control, TCP allows systems of widely varying speeds to communicate. 

The basic unit of transfer used by TCP is a segment. Segments are used to pass 
data or control information (e.g., to allow TCP software on two machines to establish 
connections or break them). The segment fornlat permits a machine to piggyback ack- 
nowledgements for data flowing in one direction by including them in the segment 
headers of data flowing in the opposite direction. 

TCP implements flow control by having the receiver advertise the amount of data 
it is willing to accept. It also supports out-of-band messages using an urgent data facili- 
ty and forces delivery using a push mechanism. 

The current TCP standard specifies exponential backoff for retransmission timers 
and congestion avoidance algorithms like slow-start, multiplicative decrease, and addi- 
tive increase. In addition, TCP uses heuristics to avoid transferring small packets. Fi- 
nally, the IETF recommends that routers use RED instead of tail-drop because doing so 
avoids TCP synchronization and improves throughput. 
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FOR FURTHER STUDY 

The standard for TCP can be found in Postel [RFC 7931; Braden [RFC 11221 con- 
tains an update that clarifies several points. Clark [RFC 8131 describes TCP window 
management, Clark [RFC 8161 describes fault isolation and recovery, and Postel [RFC 
8791 reports on TCP maximum segment sizes. Nagle [RFC 8961 comments on conges- 
tion in TCPAP networks and explains the effect of self clocking for send-side silly win- 
dow avoidance. Karn and Partridge [1987] discusses estimation of round-trip times, and 
presents Karn's algorithm. Jacobson [I9881 gives the congestion control algorithms 
that are now a required part of the standard. Floyd and Jacobson [I9931 presents the 
RED scheme, and Clark and Fang [I9981 discusses an allocation framework that uses 
RED. Tomlinson [I9751 considers the three-way handshake in more detail. Mills [RFC 
8891 reports measurements of Internet round-trip delays. Jain [I9861 describes timer- 
based congestion control in a sliding window environment. Borman [April 19891 sum- 
marizes experiments with high-speed TCP on Cray computers. 

EXERCISES 

TCP uses a finite field to contain stream sequence numbers. Study the protocol specifi- 
cation to find out how it allows an arbitrary length stream to pass from one machine to 
another. 

The text notes that one of the TCP options permits a receiver to specify the maximum 
segment size it is willing to accept. Why does TCP support an option to specify max- 
imum segment size when it also has a window advertisement mechanism? 

Under what conditions of delay, bandwidth, load, and packet loss will TCP retransmit 
significant volumes of data unnecessarily? 

Lost TCP acknowledgements do not necessarily force retransmissions. Explain why. 

Experiment with local machines to determine how TCP handles machine restart. Estab- 
lish a connection (e.g., a remote login) and leave it idle. Wait for the destination 
machine to crash and restart, and then force the local machine to send a TCP segment 
(e.g., by typing characters to the remote login). 

Imagine an implementation of TCP that discards segments that arrive out of order, even 
if they fall in the current window. That is, the imagined version only accepts segments 
that extend the byte stream it has already received. Does it work? How does it compare 
to a standard TCP implementation? 

Consider computation of a TCP checksum. Assume that although the checksum field in 
the segment has not been set to zero, the result of computing the checksum is zero. 
What can you conclude? 

What are the arguments for and against automatically closing idle connections? 



Exercises 25 1 

If two application programs use TCP to send data but only send one character per seg- 
ment (e.g., by using the PUSH operation), what is the maximum percent of the network 
bandwidth they will have for their data? 

Suppose an implementation of TCP uses initial sequence number 1 when it creates a 
connection. Explain how a system crash and restart can confuse a remote system into 
believing that the old connection remained open. 

Look at the round-trip time estimation algorithm suggested in the I S 0  TP-4 protocol 
specification and compare it to the TCP algorithm discussed in this chapter. Which 
would you prefer to use? 

Find out how implementations of TCP must solve the overlapping segment problem. 
The problem arises because the receiver must accept only one copy of all bytes from the 
data stream even if the sender transmits two segments that partially overlap one another 
(e.g., the first segment carries bytes 100 through 200 and the second carries bytes 150 
through 250). 
Trace the TCP finite state machine transitions for two sites that execute a passive and ac- 
tive open and step through the three-way handshake. 

Read the TCP specification to find out the exact conditions under which TCP can make 
the transition from FIN WAIT-1 to TIMED WAIT. 

Trace the TCP state transitions for two machines that agree to close a connection grace- 
fully. 

Assume TCP is sending segments using a maximum window size (64 Kbytes) on a chan- 
nel that has infinite bandwidth and an average roundmp time of 20 milliseconds. What 
is the maximum throughput? How does throughput change if the roundtrip time in- 
creases to 40 milliseconds (while bandwidth remains infinite)? 

As the previous exercise illustrates, higher throughput can be achieved with larger win- 
dows. One of the drawbacks of the TCP segment format is the size of the field devoted 
to window advertisement. How can TCP be extended to allow larger windows without 
changing the segment format? 

Can you derive an equation that expresses the maximum possible TCP throughput as a 
function of the network bandwidth, the network delay, and the time to process a segment 
and generate an acknowledgement. Hint: consider the previous exercise. 

Describe (abnormal) circumstances that can leave one end of a connection in state FIN 
WAIT-2 indefinitely (hint: think of datagram loss and system crashes). 

Show that when a router implements RED, the probability a packet will be discarded 
from a particular TCP connection is proportional to the percentage of traffic that the con- 
nection generates. 



Routing: Cores, Peers, And 
Algorithms 

14.1 Introduction 

Previous chapters concentrate on the network level services TCPm offers and the 
details of the protocols in hosts and routers that provide those services. In the discus- 
sion, we assumed that routers always contain correct routes, and we observed that 
routers can ask directly c o ~ e c t e d  hosts to change routes with the ICMP redirect 
mechanism. 

This chapter considers two broad questions: "What values should routing tables 
contain?" and "How can those values be obtained?" To answer the first question, we 
will consider the relationship between internet architecture and routing. In particular, 
we will discuss internets structured around a backbone and those composed of multiple 
peer networks, and consider the consequences for routing. While many of our examples 
are drawn from the global Internet, the ideas apply equally well to smaller corporate in- 
ternets. To answer the second question, we will consider the two basic types of route 
propagation algorithms and see how each supplies routing information automatically. 

We begin by discussing routing in general. Later sections concentrate on internet 
architecture and describe the algorithms routers use to exchange routing information. 
Chapters 15 and 16 continue to expand our discussion of routing. They explore proto- 
cols that routers owned by two independent administrative groups use to exchange in- 
formation, and protocols that a single group uses among all its routers. 
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14.2 The Origin Of Routing Tables 

Recall from Chapter 3 that IF' routers provide active interconnections among net- 
works. Each router attaches to two or more physical networks and forwards IF' da- 
tagrams among them, accepting datagrams that arrive over one network interface, and 
routing them out over another interface. Except for destinations on directly attached 
networks, hosts pass all IP traffic to routers which forward datagrams on toward their fi- 
nal destinations. A datagram travels from router to router until it reaches a router that 
attaches directly to the same network as the final destination. Thus, the router system 
forms the architectural basis of an internet and handles all traffic except for direct 
delivery from one host to another. 

Chapter 8 describes the IP routing algorithm that hosts and routers follow to for- 
ward datagrams, and shows how the algorithm uses a table to make routing decisions. 
Each entry in the routing table specifies the network portion of a destination address 
and gives the address of the next machine along a path used to reach that network. Like 
hosts, routers directly deliver datagrams to destinations on networks to which the router 
attaches. 

Although we have seen the basics of datagram forwarding, we have not said how 
hosts or routers obtain the information for their routing tables. The issue has two as- 
pects: what values should be placed in the tables, and how routers obtain those values. 
Both choices depend on the architectural complexity and size of the internet as well as 
administrative policies. 

In general, establishing routes involves initialization and update. Each router must 
establish an initial set of routes when it starts, and it must update the table as routes 
change (e.g., when a network interface fails). Initialization depends on the operating 
system. In some systems, the router reads an initial routing table from secondary 
storage at startup, keeping it resident in main memory. In others, the operating system 
begins with an empty table which must be filled in by executing explicit commands 
(e.g., commands found in a startup command script). Finally, some operating systems 
start by deducing an initial set of routes from the set of addresses for the local networks 
to which the machine attaches and contacting a neighboring machine to ask for addi- 
tional routes. 

Once an initial routing table has been built, a router must accommodate changes in 
routes. In small, slowly changing internets, managers can establish and modify routes 
by hand. In large, rapidly changing environments, however, manual update is impossi- 
bly slow and prone to human errors. Automated methods are needed. 

Before we can understand the automatic routing table update protocols used in IF' 
routers, we need to review several underlying ideas. The next sections do so, providing 
the necessary conceptual foundation for routing. Later sections discuss internet archi- 
tecture and the protocols routers use to exchange routing information. 
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14.3 Routing With Partial Information 

The principal difference between routers and typical hosts is that hosts usually 
know little about the structure of the internet to which they connect. Hosts do not have 
complete knowledge of all possible destination addresses, or even of all possible desti- 
nation networks. In fact, many hosts have only two routes in their routing table: a route 
for the local network and a default route for a nearby router. The host sends all nonlo- 
cal datagrams to the local router for delivery. The point is that: 

A host can route datagrams successfully even if it only has partial 
routing information because it can rely on a router. 

Can routers also route datagrams with only partial information? Yes, but only 
under certain circumstances. To understand the criteria, imagine an internet to be a 
foreign country crisscrossed with dirt roads that have directional signs posted at inter- 
sections. Imagine that you have no map, cannot ask directions because you cannot 
speak the local language, have no ideas about visible landmarks, but you need to travel 
to a village named Sussex. You leave on your journey, following the only road out of 
town and begin to look for directional signs. The first sign reads: 

Norfolk to the left; Hammond to the right; others straight ahead.? 

Because the destination you seek is not listed explicitly, you continue straight ahead. In 
routing jargon, we say you follow a default route. After several more signs, you finally 
find one that reads: 

Essex to the left; Sussex to the right; others straight ahead. 

You turn to the right, follow several more signs, and emerge on a road that leads to 
Sussex. 

Our imagined travel is analogous to a datagram traversing an internet, and the road 
signs are analogous to routing tables in routers along the path. Without a map or other 
navigational aids, travel is completely dependent on road signs, just as datagram routing 
in an internet depends entirely on routing tables. Clearly, it is possible to navigate even 
though each road sign contains only partial information. 

A central question concerns correctness. As a traveler, you might ask, "How can I 
be sure that following the signs will lead to my final destination?" You also might ask, 
"How can I be sure that following the signs will lead me to my destination along a 
shortest path?" These questions may seem especially troublesome if you pass many 
signs without finding your destination listed explicitly. Of course, the answers depend 
on the topology of the road system and the contents of the signs, but the fundamental 
idea is that when taken as a whole, the information on the signs should be both con- 
sistent and complete. Looking at this another way, we see that it is not necessary for 
each intersection to have a sign for every destination. The signs can list default paths as 

tFomnately, signs are printed in a language you can read. 
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long as all explicit signs point along a shortest path, and the turns for shortest paths to 
all destinations are marked. A few examples will explain some ways that consistency 
can be achieved. 

At one extreme, consider a simple star-shaped topology of roads in which each vil- 
lage has exactly one road leading to it, and all those roads meet at a central point. To 
guarantee consistency, the sign at the central intersection must contain information 
about all possible destinations. At the other extreme, imagine an arbitrary set of roads 
with signs at all intersections listing all possible destinations. To guarantee consistency, 
it must be true that at any intersection if the sign for destination D points to road R, no 
road other than R leads to a shorter path to D. 

Neither of these architectural extremes works well for an internet router system. 
On one hand, the central intersection approach fails because no machine is fast enough 
to serve as a central switch through which all traffic passes. On the other hand, having 
information about all possible destinations in all routers is impractical because it re- 
quires propagating large volumes of information whenever a change occurs or whenever 
administrators need to check consistency. Thus, we seek a solution that allows groups 
to manage local routers autonomously, adding new network interconnections and routes 
without changing distant routers. 

To help explain some of the architecture described later, consider a third topology 
in which half the cities lie in the eastern part of the country and half lie in the western 
part. Suppose a single bridge spans the river that separates east from west. Assume 
that people living in the eastern part do not like Westerners, so they are willing to allow 
road signs that list destinations in the east but none in the west. Assume that people 
living in the west do the opposite. Routing will be consistent if every road sign in the 
east lists all eastern destinations explicitly and points the default path to the bridge, 
while every road sign in the west lists all western destinations explicitly and points the 
default path to the bridge. 

14.4 Original Internet Architecture And Cores 

Much of our knowledge of routing and route propagation protocols has been 
derived from experience with the global Internet. When TCPDP was first developed, 
participating research sites were connected to the ARPANET, which served as the Inter- 
net backbone. During initial experiments, each site managed routing tables and in- 
stalled routes to other destinations by hand. As the fledgling Internet began to grow, it 
became apparent that manual maintenance of routes was impractical; automated 
mechanisms were needed. 

The Internet designers selected a router architecture that consisted of a small, cen- 
tral set of routers that kept complete information about all possible destinations, and a 
larger set of outlying routers that kept partial information. In terms of our analogy, it is 
like designating a small set of centrally located intersections to have signs that list all 
destinations, and allowing the outlying intersections to list only local destinations. As 
long as the default route at each outlying intersection points to one of the central inter- 
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sections, travelers will eventually reach their destination. The advantage of using partial 
information in outlying routers is that it permits local administrators to manage local 
structural changes without affecting other parts of the Internet. The disadvantage is that 
it introduces the potential for inconsistency. In the worst case, an error in an outlying 
router can make distant routes unreachable. 

We can summarize these ideas: 

The routing table in a given router contains partial information about 
possible destinations. Routing that uses partial information allows 
sites autonomy in making local routing changes, but introduces the 
possibility of inconsistencies that may make some destinations un- 
reachable from some sources. 

Inconsistencies among routing tables usually arise from errors in the algorithms 
that compute routing tables, incorrect data supplied to those algorithms, or from errors 
that occur while transmitting the results to other routers. Protocol designers look for 
ways to limit the impact of errors, with the objective being to keep all routes consistent 
at all times. If routes become inconsistent for some reason, the routing protocols should 
be robust enough to detect and correct the errors quickly. Most important, the protocols 
should be designed to constrain the effect of errors. 

14.5 Core Routers 

Loosely speaking, early Internet routers could be partitioned into two groups, a 
small set of core routers controlled by the Internet Network Operations Center (INOC), 
and a larger set of noncore routersl- controlled by individual groups. The core system 
was designed to provide reliable, consistent, authoritative routes for all possible destina- 
tions; it was the glue that held the Internet together and made universal interconnection 
possible. By fiat, each site assigned an Internet network address had to arrange to ad- 
vertise that address to the core system. The core routers communicated among them- 
selves, so they could guarantee that the infornlation they shared was consistent. Be- 
cause a central authority monitored and controlled the core routers, they were highly re- 
liable. 

To fully understand the core router system, it is necessary to recall that the Internet 
evolved with a wide-area network, the ARPANET, already in place. When the Internet 
experiments began, designers thought of the ARPANET as a main backbone on which 
to build. Thus, a large part of the motivation for the core router system came from the 
desire to connect local networks to the ARPANET. Figure 14.1 illustrates the idea. 

tThe terms srub and nonrouting have also been used in place of noncore. 
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ARPANET BACKBONE 

Core 
Routers 

Figure 14.1 The early Internet core router system viewed as a set of routers 
that connect local area networks to the ARPANET. Hosts on 
the local networks pass all nonlocal traffic to the closest core 
router. 

To understand why such an architecture does not lend itself to routing with partial 
information, suppose that a large internet consists entirely of local area networks, each 
attached to a backbone network through a router. Also imagine that some of the routers 
rely on default routes. Now consider the path a datagram follows. At the source site, 
the local router checks to see if it has an explicit route to the destination and, if not, 
sends the datagram along the path specified by its default route. All datagrams for 
which the router has no route follow the same default path regardless of their ultimate 
destination. The next router along the path diverts datagrams for which it has an expli- 
cit route, and sends the rest along its default route. To ensure global consistency, the 
chain of default routes must reach every router in a giant cycle as Figure 14.2 shows. 
Thus, the architecture requires all local sites to coordinate their default routes. In addi- 
tion, depending on default routes can be inefficient even when it is consistent. As Fig- 
ure 14.2 shows, in the worst case a datagram will pass through all n routers as it travels 
from source to destination instead of going directly across the backbone. 

BACKBONE 

Figure 14.2 A set of routers connected to a backbone network with default 
routes shown. Routing is inefficient even though it is consistent. 
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To avoid the inefficiencies default routes cause, Internet designers arranged for all 
core routers to exchange routing information so that each would have complete informa- 
tion about optimal routes to all possible destinations. Because each core router knew 
routes to all possible destinations, it did not need a default route. If the destination ad- 
dress on a datagram was not in a core router's routing table, the router would generate 
an ICMP destination unreachable message and drop the datagram. In essence, the core 
design avoided inefficiency by eliminating default routes. 

Figure 14.3 depicts the conceptual basis of a core routing architecture. The figure 
shows a central core system consisting of one or more core routers, and a set of outly- 
ing routers at local sites. Outlying routers keep information about local destinations and 
use a'default route that sends datagrams destined for other sites to the core. 

Figure 143 The routing architecture of a simplistic core system showing de- 
fault routes. Core routers do not use default routes; outlying 
routers, labeled Li, each have a default route that points to the 
core. 

Although the simplistic core architecture illustrated in Figure 14.3 is easy to under- 
stand, it became impractical for three reasons. First, the Internet outgrew a single, cen- 
trally managed long-haul backbone. The topology became complex and the protocols 
needed to maintain consistency among core routers became nontrivial. Second, not 
every site could have a core router connected to the backbone, so additional routing 
structure and protocols were needed. Third, because core routers all interacted to ensure 
consistent routing infornlation, the core architecture did not scale to arbitrary size. We 
will return to this last problem in Chapter 15 after we examine the protocols that the 
core system used to exchange routing infonation. 
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14.6 Beyond The Core Architecture To Peer Backbones 

The introduction of the NSFNET backbone into the Internet added new complexity 
to the routing structure. From the core system point of view, the c o ~ e c t i o n  to 
NSFNET was initially no different than the c o ~ e c t i o n  to any other site. NSFNET at- 
tached to the ARPANET backbone through a single router in Pittsburgh. The core had 
explicit routes to all destinations in NSFNET. Routers inside NSFNET knew about lo- 
cal destinations and used a default route to send all non-NSFNET traffic to the core via 
the Pittsburgh router. 

As NSFNET grew to become a major part of the Internet, it became apparent that 
the core routing architecture would not suffice. The most important conceptual change 
occurred when multiple connections were added between the ARPANET and NSFNET 
backbones. We say that the two became peer backbone networks or simply peers. Fig- 
ure 14.4 illustrates the resulting peer topology. 

HOST 1 ARPANET BACKBONE HOST 2 

HOST 3 NSFNET BACKBONE HOST 4 

Figure 14.4 An example of peer backbones interconnected through multiple 
routers. The diagram illustrates the architecture of the Internet 
in 1989. In later generations, parallel backbones were each 
owned by an ISP. 

To understand the difficulties of IP routing among peer backbones, consider routes 
from host 3 to host 2 in Figure 14.4. Assume for the moment that the figure shows 
geographic orientation, so host 3 is on the West Coast attached to the NSFNET back- 
bone while host 2 is on the East Coast attached to the ARPANET backbone. When es- 
tablishing routes between hosts 3 and 2,  the managers must decide whether to (a) route 
the traffic from host 3 through the West Coast router, R1, and then across the AR- 
PANET backbone, or (b) route the traffic from host 3 across the NSFNET backbone, 
through the Midwest router, R2, and then across the ARPANET backbone to host 2,  or 
(c) route the traffic across the NSFNET backbone, through the East Coast router, R3, 
and then to host 2. A more circuitous route is possible as well: traffic could flow from 
host 3 through the West Coast router, across the ARPANET backbone to the Midwest 
router, back onto the NSFNET backbone to the East Coast router, and finally across the 
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ARPANET backbone to host 2. Such a route may or may not be advisable, depending 
on the policies for network use and the capacity of various routers and backbones. 

For most peer backbone configurations, traffic between a pair of geographically 
close hosts should take a shortest path, independent of the routes chosen for cross- 
country traffic. For example, traffic from host 3 to host I should flow through the West 
Coast router because it minimizes distance on both backbones. 

All these statements sound simple enough, but they are complex to implement for 
two reasons. First, although the standard IP routing algorithm uses the network portion 
of an IP address to choose a route, optimal routing in a peer backbone architecture re- 
quires individual routes for individual hosts. For our example above, the routing table 
in host 3 needs different routes for host 1 and host 2, even though both hosts 1 and 2 at- 
tach to the ARPANET backbone. Second, managers of the two backbones must agree 
to keep routes consistent among all routers or routing loops can develop (a routing loop 
occurs when routes in a set of routers point in a circle). 

It is important to distinguish network topology from routing architecture. It is pos- 
sible, for example, to have a single core system that spans multiple backbone networks. 
The core machines can be programmed to hide the underlying architectural details and 
to compute shortest routes among themselves. It is not possible, however, to partition 
the core system into subsets that each keep partial information without losing func- 
tionality. Figure 14.5 illustrates the problem. 

default route to sites 
default routes beyond core 1 default routes 

from sites from sites 
behind core 2 

CORE #l CORE #2 

beyond core 2 

Figure 145 An attempt to partition a core routing architecture into two sets 
of routers that keep partial information and use default routes. 
Such an architecture results in a routing loop for datagrams that 
have an illegal (nonexistent) destination. 

As the figure shows, outlying routers have default routes to one side of the parti- 
tioned core. Each side of the partition has information about destinations on its side of 
the world and a default route for information on the other side of the world. In such an 
architecture, any datagram sent to an illegal address will cycle between the two parti- 
tions in a routing loop until its time to live counter reaches zero. 

We can summarize as follows: 
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A core routing architecture assumes a centralized set of routers serves 
as the repository of information about all possible destinations in an 
internet. Core systems work best for internets that have a single, cen- 
trally managed backbone. Expanding the topology to multiple back- 
bones makes routing complex; attempting to partition the core archi- 
tecture so that all routers use default routes introduces potential rout- 
ing loops. 

14.7 Automatic Route Propagation 

We said that the original Internet core system avoided default routes because it 
propagated complete information about all possible destinations to every core router. 
Many corporate internets now use a similar scheme - routers in the corporation run 
programs that communicate routing information. The next sections discuss two basic 
types of algorithms that compute and propagate routing information, and use the origi- 
nal core routing protocol to illustrate one of the algorithms. A later section describes a 
protocol that uses the other type of algorithm. 

It may seem that automatic route propagation mechanisms are not needed, especial- 
ly on small internets. However, internets are not static. Connections fail and are later 
replaced. Networks can become overloaded at one moment and underutilized at the 
next. The purpose of routing propagation mechanisms is not merely to find a set of 
routes, but to continually update the information. Humans simply cannot respond to 
changes fast enough; computer programs must be used. Thus, when we think about 
route propagation, it is important to consider the dynamic behavior of protocols and al- 
gorithms. 

14.8 Distance Vector (Bellman-Ford) Routing 

The term distance-vectod refers to a class of algorithms routers use to propagate 
routing information. The idea behind distance-vector algorithms is quite simple. The 
router keeps a list of all known routes in a table. When it boots, a router initializes its 
routing table to contain an entry for each directly connected network. Each entry in the 
table identifies a destination network and gives the distance to that network, usually 
measured in hops (which will be defined more precisely later). For example, Figure 
14.6 shows the initial contents of the table on a router that attaches to two networks. 

tThe tern vector-distance, Ford-Fulkerson, Bellman-Ford, and Bellman are synonymous with distance- 
vector, the last two are taken from the names of researchers who published the idea. 
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Destination I Distance I Route 
direct 

Net 2 O I direct 

Fire 14.6 An initial distance-vector routing table with an entry for each 
directly c o ~ e c t e d  network. Each entry contains the IP address 
of a network and an integer distance to that network. 

Periodically, each router sends a copy of its routing table to any other router it can 
reach directly. When a report arrives at router K from router J ,  K examines the set of 
destinations reported and the distance to each. If J knows a shorter way to reach a des- 
tination, or if J lists a destination that K does not have in its table, or if K currently 
routes to a destination through J and J's distance to that destination changes, K replaces 
its table entry. For example, Figure 14.7 shows an existing table in a router, K, and an 
update message from another router, J. 

Destination 
Net 1 
Net 2 
Net 4 
Net 17 
Net 24 
Net 30 
Net 42 

Distance 
0 
0 
8 
5 
6 
2 
2 

(a> 

Route Destination 
direct Net 1 
direct - Net4 

Router L Net 17 
Router M - Net 21 
Router J Net 24 
Router Q Net 30 
Router J - Net 42 

Distance 
2 
3 
6 
4 
5 
10 
3 

Figure 14.7 (a) An existing route table for a router K, and (b) an incoming 
routing update message from router J. The marked entries will 
be used to update existing entries or add new entries to K's 
table. 

Note that if J reports distance N, an updated entry in K will have distance N+I (the 
distance to reach the destination from J plus the distance to reach J). Of course, the 
routing table entries contain a third column that specifies a next hop. The next hop en- 
try in each initial route is marked direct delivery. When router K adds or updates an en- 
try in response to a message from router J, it assigns router J as the next hop for that 
entry. 

The term distance-vector comes from the information sent in the periodic mes- 
sages. A message contains a list of pairs (V ,  D), where V identifies a destination 
(called the vector), and D is the distance to that destination. Note that distance-vector 
algorithms report routes in the first person (i-e., we think of a router advertising, "I can 
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reach destination V at distance D"). In such a design, all routers must participate in the 
distance-vector exchange for the routes to be efficient and consistent. 

Although distance-vector algorithms are easy to implement, they have disadvan- 
tages. In a completely static environment, distance-vector algorithms propagate routes 
to all destinations. When routes change rapidly, however, the computations may not 
stabilize. When a route changes (i.e, a new connection appears or an old one fails), the 
information propagates slowly from one router to another. Meanwhile, some routers 
may have incorrect routing information. 

For now, we will examine a simple protocol that uses the distance-vector algorithm 
without discussing all the shortcomings. Chapter 16 completes the discussion by show- 
ing another distance-vector protocol, the problems that can arise, and the heuristics used 
to solve the most serious of them. 

14.9 Gateway-To-Gateway Protocol (GGP) 

The original core routers used a distance-vector protocol known as the Gateway- 
to-Gateway Protocolf (GGP) to exchange routing information. Although GGP only 
handled classful routes and is no longer part of the TCPJIP standards$, it does provide a 
concrete example of distance-vector routing. GGP was designed to travel in IP da- 
tagrams similar to UDP datagrams or TCP segments. Each GGP message has a f i e d  
format header that identifies the message type and the format of the remaining fields. 
Because only core routers participated in GGP, and because core routers were controlled 
by a central authority, other routers could not interfere with the exchange. 

The original core system was arranged to permit new core routers to be added 
without modifying existing routers. When a new router was added to the core system, 
it was assigned one or more core neighbors with which it communicated. The neigh- 
bors, members of the core, already propagated routing information among themselves. 
Thus, the new router only needed to inform its neighbors about networks it could reach; 
they updated their routing tables and propagated this new information further. 

GGP is a true distance-vector protocol. The information routers exchange with 
GGP consists of a set of pairs, ( N ,  D), where N is an IP network address, and D is a 
distance measured in hops. We say that a router using GGP advertises the networks it 
can reach and its cost for reaching them. 

GGP measures distance in router hops, where a router is defined to be zero hops 
from directly connected networks, one hop from networks that are reachable through 
one other router, and so on. Thus, the number of hops or the hop count along a path 
from a given source to a given destination refers to the number of routers that a da- 
tagram encounters along that path. It should be obvious that using hop counts to calcu- 
late shortest paths does not always produce desirable results. For example, a path with 
hop count 3 that crosses three LANs may be substantially faster than a path with hop 
count 2 that crosses two slow speed serial lines. Many routers use artificially high hop 
counts for routes across slow networks. 

?Recall that although vendors adopted the term IP router, scientists originally used the term IP gateway. 
$The IETF has declared GGP historic, which means that it is no longer recommended for use with 

TCPAP. 
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14.10 Distance Factoring 

Like most routing protocols, GGP uses multiple message types, each with its own 
format and purpose. A field in the message header contains a code that identifies the 
specific message type; a receiver uses the code to decide how to process the message. 
For example, before two routers can exchange routing information, they must establish 
communication, and some message types are used for that purpose. The most funda- 
mental message type in GGP is also fundamental to any distance-vector protocol: a 
routing update which is used to exchange routing information. 

Conceptually, a routing update contains a list of pairs, where each entry contains 
an IP network address and the distance to that network. In practice, however, many 
routing protocols rearrange the information to keep messages small. In particular, ob- 
serve that few architectures consist of a linear arrangement of networks and routers. In- 
stead, most are hierarchical, with multiple routers attached to each network. Conse- 
quently, most distance values in an update are small numbers, and the same values tend 
to be repeated frequently. To reduce message size, routing protocols often use a tech- 
nique that was pioneered in GGP. Known as distance factoring, the technique avoids 
sending copies of the same distance number. Instead, the list of pairs is sorted by dis- 
tance, each distance value is represented once, and the networks reachable at that dis- 
tance follow. The next chapter shows how other routing protocols factor information. 

14.1 1 Reliability And Routing Protocols 

Most routing protocols use connectionless transport. For example, GGP encapsu- 
lates messages directly in IP datagrams; modem routing protocols usually encapsulate in 
UDP?. Both IP and UDP offer the same semantics: messages can be lost, delayed, du- 
plicated, corrupted, or delivered out of order. Thus, a routing protocol that uses them 
must compensate for failures. 

Routing protocols use several techniques to handle delivery problems. Checksums 
are used to handle corruption. Loss is either handled by sofr state$ or through ack- 
nowledgement and retransmission. For example, GGP uses an extended acknowledge- 
ment scheme in which a receiver can return either a positive or negative acknowledge- 
ment. 

To handle delivery out of order and the corresponding reply that occurs when an 
old message arrives, routing protocols often used sequence numbers. In GGP, for ex- 
ample, each side chooses an initial number to use for sequencing when communication 
begins. The other side must then acknowledge the sequence number. After the initial 
exchange, each message contains the next number in the sequence, which allows the re- 
ceiver to know whether the message arrived in order. In a later chapter, we will see an 
example of a routing protocol that uses soft state infornlation. 

tThere are exceptions - the next chapter discusses a protocol that uses TCP. 
:Recall that soft state relies on timeouts to remove old infornlation rather than waiting for a message 

from the source. 



266 Routing: Cores, Peers, And Algorithms Chap. 14 

14.1 2 Link-State (SPF) Routing 

The main disadvantage of the distance-vector algorithm is that it does not scale 
well. Besides the problem of slow response to change mentioned earlier, the algorithm 
requires the exchange of large messages. Because each routing update contains an entry 
for every possible network, message size is proportional to the total number of networks 
in an internet. Furthermore, because a distance-vector protocol requires every router to 
participate, the volume of information exchanged can be enormous. 

The primary alternative to distance-vector algorithms is a class of algorithms 
known as link state, link status, or Shortest Path Firstt (SPF). The SPF algorithm re- 
quires each participating router to have complete topology information. The easiest 
way to think of the topology information is to imagine that every router has a map that 
shows all other routers and the networks to which they connect. In abstract terms, the 
routers correspond to nodes in a graph and networks that connect routers correspond to 
edges. There is an edge (link) between two nodes if and only if the corresponding 
routers can communicate directly. 

Instead of sending messages that contain lists of destinations, a router participating 
in an SPF algorithm performs two tasks. First, it actively tests the status of all neighbor 
routers. In terms of the graph, two routers are neighbors if they share a link; in network 
terms, two neighbors connect to a common network. Second, it periodically propagates 
the link status information to all other routers. 

To test the status of a directly connected neighbor, a router periodically exchanges 
short messages that ask whether the neighbor is alive and reachable. If the neighbor re- 
plies, the link between them is said to be up. Otherwise, the link is said to be down$. 
To inform all other routers, each router periodically broadcasts a message that lists the 
status (state) of each of its links. A status message does not spec@ routes - it simply 
reports whether communication is possible between pairs of routers. Protocol software 
in the routers arranges to deliver a copy of each link status message to all participating 
routers (if the underlying networks do not support broadcast, delivery is done by for- 
warding individual copies of the message point-to-point). 

Whenever a link status message arrives, a router uses the information to update its 
map of the internet, by marking links up or down. Whenever link status changes, the 
router recomputes routes by applying the well-known Dijkstra shortest path algorithm 
to the resulting graph. Dijkstra's algorithm computes the shortest paths to all destina- 
tions from a single source. 

One of the chief advantages of SPF algorithms is that each router computes routes 
independently using the same original status data; they do not depend on the computa- 
tion of intermediate machines. Because link status messages propagate unchanged, it is 
easy to debug problems. Because routers perform the route computation locally, it is 
guaranteed to converge. Finally, because link status messages only carry information 
about the direct connections from a single router, the size does not depend on the 
number of networks in the internet. Thus, SPF algorithms scale better than distance- 
vector algorithms. 

?The name "shortest path first" is a misnomer because all routing algorithms seek shortest paths. 
$In practice, to prevent oscillations between the up and down states, most protocols use a k-our-ofn rule 

to test liveness, meaning that the link remains up until a signif~cant percentage of requests have no reply, and 
then it remains down until a significant percentage of messages receive a reply. 
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14.13 Summary 

To ensure that all networks remain reachable with high reliability, an internet must 
provide globally consistent routing. Hosts and most routers contain only partial routing 
information; they depend on default routes to send datagram to distant destinations. 
Originally, the global Internet solved the routing problem by using a core router archi- 
tecture in which a set of core routers each contained complete information about all net- 
works. Routers in the original Internet core system exchanged routing information 
periodically, meaning that once a single core router learned about a route, all core 
routers learned about it. To prevent routing loops, core routers were forbidden from us- 
ing default routes. 

A single, centrally managed core system works well for an internet architecture 
built on a single backbone network. However, a core architecture does not suff~ce for 
an internet that consists of a set of separately managed peer backbones that interconnect 
at multiple places. 

When routers exchange routing information they use one of two basic algorithms, 
distance-vector or SPF. A distance-vector protocol, GGP, was originally used to pro- 
pagate routing update information throughout the Internet core. 

The chief disadvantage of distance-vector algorithms is that they perform a distri- 
buted shortest path computation that may not converge if the status of network connec- 
tions changes continually. Another disadvantage is that routing update messages grow 
large as the number of networks increases. 

The use of SPF routing predates the Internet. One of the earliest examples of an 
SPF protocol comes from the ARPANET, which used a routing protocol internally to 
establish and maintain routes among packet switches. The ARPANET algorithm was 
used for a decade. 

FOR FURTHER STUDY 

The definition of the core router system and GGP protocol in this chapter comes 
from Hinden and Sheltzer [RFC 8231. Braden and Postel [RFC 18121 contains further 
specifications for Internet routers. Almquist [RFC 17161 summarizes later discussions. 
Braun [RFC 10931 and Rekhter [RFC 10921 discuss routing in the NSFNET backbone. 
Clark W 11021 and Braun [RFC 11041 both discuss policy-based routing. The next 
two chapters present protocols used for propagating routing information between 
separate sites and within a single site. 
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Suppose a router discovers it is about to route an IP datagram back over the same net- 
work interface on which the datagram arrived. What should it do? Why? 
After reading RFC 823 and RFC 1812, explain what an Internet core router (i.e., one 
with complete routing information) should do in the situation described in the previous 
question. 
How can routers in a core system use default routes to send all illegal datagrams to a 
specific machine? 
Imagine students experimenting with a router that attaches a local area network to an in- 
ternet that has a core routing system. The students want to advertise their network to a 
core router, but if they accidentally advertise zero length routes to arbitrary networks, 
traffic from the internet will be diverted to their router incorrectly. How can a core pro- 
tect itself from illegal data while still accepting updates from such "untrusted" routers? 

Which ICMP messages does a router generate? 
Assume a router is using unreliable transport for delivery. How can the router determine 
whether a designated neighbor is "up" or "down"? (Hint: consult RFC 823 to find out 
how the original core system solved the problem.) 
Suppose two routers each advertise the same cost, k, to reach a given network, N. 
Describe the circumstances under which routing through one of them may take fewer to- 
tal hops than routing through the other one. 
How does a router know whether an incoming datagram carries a GGP message? An 
OSPF message? 
Consider the distance-vector update shown in Figure 14.7 carefully. For each item u p  
dated in the table, give the reason why the router will perform the update. 
Consider the use of sequence numbers to ensure that two routers do not become con- 
fused when datagrams are duplicated, delayed, or delivered out of order. How should 
initial sequence numbers be selected? Why? 



Routing: Exterior Gate way 
Protocols And Autonomous 
Systems (BGP) 

15.1 Introduction 

The previous chapter introduces the idea of route propagation and examines one 
protocol routers use to exchange routing information. This chapter extends our under- 
standing of internet routing architectures. It discusses the concept of autonomous sys- 
tems, and shows a protocol that a group of networks and routers operating under one 
administrative authority uses to propagate routing information about its networks to oth- 
er groups. 

15.2 Adding Complexity To The Architectural Model 

The original core routing system evolved at a time when the Internet had a single 
wide area backbone as the previous chapter describes. Consequently, part of the 
motivation for a core architecture was to provide connections between a network at each 
site and the backbone. If an internet consists of only a single backbone plus a set of at- 
tached local area networks, the core approach propagates all necessary routing informa- 
tion correctly. Because all routers attach to the wide area backbone network, they can 
exchange all necessary routing information directly. Each router knows the single local 
network to which it attaches, and propagates that infom~ation to the other routers. Each 
router learns about other destination networks from other routers. 
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It may seem that it would be possible to extend the core architecture to an arbitrary 
size internet merely by adding more sites, each with a router connecting to the back- 
bone. Unfortunately, the scheme does not scale - having all routers participate in a 
single routing protocol only suffices for trivial size internets. There are three reasons. 
First, even if each site consists of a single network, the scheme cannot accommodate an 
arbitrary number of sites because each additional router generates routing traffic. If a 
large set of routers attempt to communicate, the total bandwidth becomes overwhelm- 
ing. Second, the scheme cannot accommodate multiple routers and networks at a given 
site because only those routers that connect directly to the backbone network can com- 
municate directly. Third, in a large internet, the networks and routers are not all 
managed by a single entity, nor are shortest paths always used. Instead, because net- 
works are owned and managed by independent groups, the groups may choose policies 
that differ. A routing architecture must provide a way for each group to independently 
control routing and access. 

The consequences of limiting router interaction are significant. The idea provides 
the motivation for much of the routing architecture used in the global Internet, and ex- 
plains some of the mechanisms we will study. To summarize this important principle: 

Although it is desirable for routers to exchange routing information, it 
is impractical for all routers in an arbitrarily large internet to partici- 
pate in a single routing update protocol. 

15.3 Determining A Practical Limit On Group Size 

The above statement leaves many questions open. For example, what size internet 
is considered "large"? If only a limited set of routers can participate in an exchange of 
routing information, what happens to routers that are excluded? Do they function 
correctly? Can a router that is not participating ever forward a datagram to a router that 
is participating? Can a participating router forward a datagram to a non-participating 
router? 

The answer to the question of size involves understanding the algorithm being used 
and the capacity of the network that connects the routers as well as the details of the 
routing protocol. There are two issues: delay and overhead. Delay is easy to under- 
stand. For example, consider the maximum delay until all routers are informed about a 
change when they use a distance-vector protocol. Each router must receive the new in- 
formation, update its routing table, and then forward the information to its neighbors. 
In an internet with N routers arranged in a linear topology, N steps are required. Thus, 
N must be limited to guarantee rapid distribution of information. 

The issue of overhead is also easy to understand. Because each router that partici- 
pates in a routing protocol must send messages, a larger set of participating routers 
means more routing traffic. Furthermore, if routing messages contain a list of possible 
destinations, the size of each message grows as the number of routers and networks in- 
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crease. To ensure that routing traffic remains a small percentage of the total traffic on 
the underlying networks, the size of routing messages must be limited. 

In fact, most network managers do not have sufficient information required to per- 
form detailed analysis of the delay or overhead. Instead, they follow a simple heuristic 
guideline: 

It is safe to allow up to a dozen routers to participate in a single rout- 
ing infonnation protocol across a wide area network; approximately 
Fve times as many can safely participate across a set of local area 
networks. 

Of course, the rule only gives general advice and there are many exceptions. For 
example, if the underlying networks have especially low delay and high capacity, the 
number of participating routers can be larger. Similarly, if the underlying networks 
have unusually low capacity or a high amount of traffic, the number of participating 
routers must be smaller to avoid overloading the networks with routing traffic. 

Because an internet is not static, it can be difficult to estimate how much traffic 
routing protocols will generate or what percentage of the underlying bandwidth the rout- 
ing tdEc  will consume. For example, as the number of hosts on a network grows over 
time, increases in the traffic generated consume more of the network capacity. In addi- 
tion, increased traffk can arise from new applications. Therefore, network managers 
cannot rely solely on the guideline above when choosing a routing architecture. Instead, 
they usually implement a trafic monitoring scheme. In essence, a traffic monitor 
listens passively to a network and records statistics about the traffic. In particular, a 
monitor can compute both the network utilization (i.e., percentage of the underlying 
bandwidth being used) and the percentage of packets carrying routing protocol mes- 
sages. A manager can observe traffic trends by taking measurements over long periods 
(e.g., weeks or months), and can use the output to determine whether too many routers 
are participating in a single routing protocol. 

15.4 A Fundamental Idea: Extra Hops 

Although the number of routers that participate in a single routing protocol must be 
limited, doing so has an important consequence because it means that some routers will 
be outside the group. It might seem that an "outsider" could merely make a member 
of the group a default. In the early Internet, the core system did indeed function as a 
central routing mechanism to which noncore routers sent datagrams for delivery. How- 
ever, researchers learned an important lesson: if a router outside of a group uses a 
member of the group as a default route, routing will be suboptimal. More important, 
one does not need a large number of routers or a wide area network - the problem can 
occur whenever a nonparticipating router uses a participating router for delivery. To see 
why, consider the example in Figure 15.1. 
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Backbone Network 

participating participating 
router router 

nonparticipating 
router 

Figure 15.1 An architecture that can cause the extra hop problem. Nonop- 
timal routing occurs when a nonparticipating router connected to 
the backbone has a default route to a participating router. 

In the figure, routers R, and R, connect to local area networks 1 and 2, respective- 
ly. Because they participate in a routing protocol, they both know how to reach both 
networks. Suppose nonparticipating router R3 chooses one of the participating routers, 
say R,, as a default. That is, R3 sends R, all datagrams destined for networks to which it 
has no direct connection. In particular, R3 sends datagram destined for network 2 
across the backbone to its chosen participating router, R,, which must then forward 
them back across the backbone to router R,. The optimal route, of course, requires R3 
to transmit datagrams destined for network 2 directly to R,. Notice that the choice of 
participating router makes no difference. Only destinations that lie beyond the chosen 
router have optimal routes; all paths that go through other backbone routers require the 
datagram to make a second, unnecessary trip across the backbone network. Also notice 
that the participating routers cannot use ICMP redirect messages to inform R, that it has 
nonoptimal routes because ICMP redirect messages can only be sent to the original 
source and not to intermediate routers. 

We call the routing anomaly illustrated in Figure 15.1 the extra hop problem. The 
problem is insidious because everything appears to work correctly - datagrams do 
reach their destination. However, because routing is not optimal, the system is extreme- 
ly inefficient. Each datagram that takes an extra hop consumes resources on the inter- 
mediate router as well as twice as much backbone bandwidth as it should. Solving the 
problem requires us to change our view of architecture: 

Treating a group of routers that participate in a routing update proto- 
col as a default delivery system can introduce an extra hop for da- 
tagram trafic; a mechanism is needed that allows nonparticipating 
routers to learn routes from participating routers so they can choose 
optimal routes. 
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15.5 Hidden Networks 

Before we examine mechanisms that allow a router outside a group to learn routes, 
we need to understand another aspect of routing: hidden networks (i.e. networks that are 
concealed from the view of routers in a group). Figure 15.2 shows an example that will 
illustrate the concept. 

Q- router participating 

Local Net 1 (I) 
Local Net 2 

Figure 15.2 An example of multiple networks and routers with a single back- 
bone connection. A mechanism is needed to pass reachability 
information about additional local networks into the core system. 

In the figure, a site has multiple local area networks with multiple routers connect- 
ing them. Suppose the site has just installed local network 4 and has obtained an Inter- 
net address for it (for now, imagine that the site obtained the address from another ISP). 
Also assume that the routers R,, R,, and R, each have correct routes for all four of the 
site's local networks as well as a default route that passes other traffic to the ISP's 
router, R,. Hosts directly attached to local network 4 can communicate with one anoth- 
er, and any computer on that network can route packets out to other Internet sites. 
However, because router R, attaches only to local network 1,  it does not know about lo- 
cal network 4. We say that, from the viewpoint of the ISP's routing system, local net- 
work 4 is hidden behind local network I. The important point is: 

Because an individual organization can have an arbitrarily complex 
set of networks interconnected by routers, no router from another or- 
ganization can attach directly to all networks. A mechanism is need- 
ed that allows nonparticipating routers to inform the other group 
about hidden networks. 
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We now understand a fundamental aspect of routing: information must flow in two 
directions. Routing information must flow from a group of participating routers to a 
nonparticipating router, and a nonparticipating router must pass information about hid- 
den networks to the group. Ideally, a single mechanism should solve both problems. 
Building such a mechanism can be tricky. The subtle issues are responsibility and ca- 
pability. Exactly where does responsibility for informing the group reside? If we de- 
cide that one of the nonparticipating routers should inform the group, which one is ca- 
pable of doing it? Look again at the example. Router R4 is the router most closely as- 
sociated with local network 4, but it lies 2 hops away from the nearest core router. 
Thus, R4 must depend on router R3 to route packets to network 4. The point is that R4 
knows about local network 4 but cannot pass datagrams directly from R,. Router R, lies 
one hop from the core and can guarantee to pass packets, but it does not directly attach 
to local network 4. So, it seems incorrect to grant R3 responsibility for advertising net- 
work 4. Solving this dilemma will require us to introduce a new concept. The next 
sections discuss the concept and a protocol that implements it. 

15.6 Autonomous System Concept 

The puzzle over which router should communicate information to the group arises 
because we have only considered the mechanics of an internet routing architecture and 
not the administrative issues. Interconnections, like those in the example of Figure 
15.2, that arise because an internet has a complex structure, should not be thought of as 
multiple independent networks connected to an internet. Instead, the architecture should 
be thought of as a single organization that has multiple networks under its control. Be- 
cause the networks and routers fall under a single administrative authority, that authori- 
ty can guarantee that internal routes remain consistent and viable. Furthermore, the ad- 
ministrative authority can choose one of its routers to serve as the machine that will ap- 
prise the outside world of networks within the organization. In the example from Fig- 
ure 15.2, because routers R,, R,, and R4 fall under control of one administrative authori- 
ty, that authority can arrange to have R3 advertise networks 2, 3, and 4 (R, already 
knows about network 1 because it has a direct connection to it). 

For purposes of routing, a group of networks and routers controlled by a single ad- 
ministrative authority is called an autonomous system (AS). Routers within an auto- 
nomous system are free to choose their own mechanisms for discovering, propagating, 
validating, and checking the consistency of routes. Note that, under this definition, the 
original Internet core routers formed an autonomous system. Each change in routing 
protocols within the core autonomous system was made without affecting the routers in 
other autonomous systems. In the previous chapter, we said that the original Internet 
core system used GGP to communicate, and a later generation used SPREAD. Eventu- 
ally, ISPs evolved their own backbone networks that use more recent protocols. The 
next chapter reviews some of the protocols that autonomous systems use internally to 
propagate routing information. 
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15.7 From A Core To Independent Autonomous Systems 

Conceptually, the autonomous system idea was a straightforward and natural gen- 
eralization of the original Internet architecture, depicted by Figure 15.2, with auto- 
nomous systems replacing local area networks. Figure 15.3 illustrates the idea. 

System 1 

Figure 153 Architecture of an internet with autonomous systems at backbone 
sites. Each autonomous system consists of multiple networks 
and routers under a single administrative authority. 

To make networks that are hidden inside autonomous systems reachable 
throughout the Internet, each autonomous system must advertise its networks to other 
autonomous systems. An advertisement can be sent to any autonomous system. In a 
centralized, core architecture, however, it is crucial that each autonomous system pro- 
pagate information to one of the routers in the core autonomous system. 

It may seem that our definition of an autonomous system is vague, but in practice 
the boundaries between autonomous systems must be precise to allow automated algo- 
rithms to make routing decisions. For example, an autonomous system owned by a cor- 
poration may choose not to route packets through an autonomous system owned by 
another even though they connect directly. To make it possible for automated routing 
algorithms to distinguish among autonomous systems, each is assigned an autonomous 
system number by the central authority that is charged with assigning all Internet net- 
work addresses. When routers in two autonomous systems exchange routing informa- 
tion, the protocol arranges for messages to carry the autonomous system number of the 
system each router represents. 

We can summarize the ideas: 

A large TCPLIP internet has additional structure to accommodate ad- 
ministrative boundaries: each collection of networks and routers 
managed by one administrative authority is considered to be a single 
autonomous system that is free to choose an internal routing architec- 
ture and protocols. 
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We said that an autonomous system needs to collect information about all its net- 
works and designate one or more routers to pass the information to other autonomous 
systems. The next sections presents the details of a protocol routers use to advertise 
network reachability. Later sections return to architectural questions to discuss an im- 
portant restriction the autonomous system architecture imposes on routing. 

15.8 An Exterior Gateway Protocol 

Computer scientists use the term Exterior Gateway Protocol (EGP)? to denote any 
protocol used to pass routing information between two autonomous systems. Currently 
a single exterior protocol is used in most TCPJIP internets. Known as the Border Gate- 
way Protocol (BGP), it has evolved through four (quite different) versions. Each ver- 
sion is numbered, which gives rise to the formal name of the current version: BGP-4. 
Throughout this text, the term BGP will refer to BGP-4. 

When a pair of autonomous systems agree to exchange routing information, each 
must designate a router* that will speak BGP on its behalf; the two routers are said to 
become BGP peers of one another. Because a router speaking BGP must communicate 
with a peer in another autonomous system, it makes sense to select a machine that is 
near the "edge" of the autonomous system. Hence, BGP terminology calls the 
machine a border gateway or border router. Figure 15.4 illustrates the idea. 

Figure 15.4 Conceptual illustration of two routers, R, and R,, using BGP to 
advertise networks in their autonomous systems after collecting 
the information from other routers internally. An organization 
using BGP usually chooses a router that is close to the outer 
"edge" of the autonomous system. 

In the figure, router R, gathers information about networks in autonomous system I 
and reports that information to router R2 using BGP, while router R2 reports information 
from autonomous system 2. 

?Originally, the term EGP referred to a specific protocol that was used for communication with the Inter- 
net core; the name was coined when the term gateway was used instead of router. 
. $Although the protocol allows an arbitrary computer to be used, most autonomous systems run BGP on a 
router; all the examples in this text will assume BGP is running on a router. 
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15.9 BGP Characteristics 

BGP is unusual in several ways. Most important, BGP is neither a pure distance- 
vector protocol nor a pure link state protocol. It can be characterized by the following: 

Inter-Autonomous System Communication. Because BGP is designed as an exteri- 
or gateway protocol, its primary role is to allow one autonomous system to comrnuni- 
cate with another. 

Coordination Among Multiple BGP Speakers. If an autonomous system has multi- 
ple routers each communicating with a peer in an outside autonomous system, BGP can 
be used to coordinate among routers in the set to guarantee that they all propagate con- 
sistent information. 

Propagation Of Reachability Information. BGP allows an autonomous system to 
advertise destinations that are reachable either in or through it, and to learn such infor- 
mation from another autonomous system. 

Next-Hop Paradigm. Like distance-vector routing protocols, BGP supplies next 
hop information for each destination. 

Policy Support. Unlike most distance-vector protocols that advertise exactly the 
routes in the local routing table, BGP can implement policies that the local administra- 
tor chooses. In particular, a router running BGP can be configured to distinguish 
between the set of destinations reachable by computers inside its autonomous system 
and the set of destinations advertised to other autonomous systems. 

Reliable Transport. BGP is unusual among protocols that pass routing information 
because it assumes reliable transport. Thus, BGP uses TCP for all communication. 

Path Information. In addition to specifying destinations that can be reached and a 
next hop for each, BGP advertisements include path information that allows a receiver 
to learn a series of autonomous systems along a path to the destination. 

Incremental Updates. To conserve network bandwidth, BGP does not pass full in- 
formation in each update message. Instead, full information is exchanged once, and 
then successive messages cany incremental changes called deltas. 

Support For Classless Addressing. BGP supports CIDR addresses. That is, rather 
than expecting addresses to be self-identifying, the protocol provides a way to send a 
mask along with each address. 

Route Aggregation. BGP conserves network bandwidth by allowing a sender to 
aggregate route information and send a single entry to represent multiple, related desti- 
nations. 

Authentication. BGP allows a receiver to authenticate messages (i.e., verify the 
identity of a sender). 
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15.10 BGP Functionality And Message Types 

BGP peers perform three basic functions. The first function consists of initial peer 
acquisition and authentication. The two peers establish a TCP connection and perform 
a message exchange that guarantees both sides have agreed to communicate. The 
second function forms the primary focus of the protocol - each side sends positive or 
negative reachability information. That is, a sender can advertise that one or more des- 
tinations are reachable by giving a next hop for each, or the sender can declare that one 
or more previously advertised destinations are no longer reachable. The third function 
provides ongoing verification that the peers and the network connections between them 
are functioning correctly. 

To handle the three functions described above, BGP defines four basic message 
types. Figure 15.5 contains a summary. 

Type Code Message Type Description 
1 OPEN Initialize communication 
2 UPDATE Advertise or withdraw routes 
3 NOTIFICATION Response to an incorrect message 
4 KEEPALIVE Actively test peer connectivity 

Figure 155 The four basic message types in BGP-4. 

15.1 1 BGP Message Header 

Each BGP message begins with a fmed header that identifies the message type. 
Figure 15.6 illustrates the header format. 

0 16 24 31 

- - 

- MARKER 
- - 

LENGTH I TYPE 

Figure 15.6 The format of the header that precedes every BGP message. 

The 16-octet UARKER field contains a value that both sides agree to use to mark 
the beginning of a message. The Zoctet LENGTH field specifies the total message 
length measured in octets. The minimum message size is 19 octets (for a message type 
that has no data following the header), and the maximum allowable length is 4096 oc- 
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tets. Finally, the 1-octet TYPE field contains one of the four values for the message 
type listed in Figure 15.5. 

The MARKER may seem unusual. In the initial message, the marker consists of all 
1s; if the peers agree to use an authentication mechanism, the marker can contain au- 
thentication information. In any case, both sides must agree on the value so it can be 
used for synchronization. To understand why synchronization is necessary, recall that 
all BGP messages are exchanged across a stream transport (i.e., TCP), which does not 
identify the boundary between one message and the next. In such an environment, a 
simple error on either side can have dramatic consequences. In particular, if either the 
sender or receiver miscounts the octets in a message, a synchronization error will occur. 
More important, because the transport protocol does not specify message boundaries, 
the transport protocol will not alert the receiver to the error. Thus, to ensure that the 
sender and receiver remain synchronized, BGP places a well-known sequence at the be- 
ginning of each message, and requires a receiver to verify that the value is intact before 
processing the message. 

15.12 BGP OPEN Message 

As soon as two BGP peers establish a TCP connection, they each send an OPEN 
message to declare their autonomous system number and establish other operating 
parameters. In addition to the standard header, an OPEN message contains a value for a 
hold timer that is used to specify the maximum number of seconds which may elapse 
between the receipt of two successive messages. Figure 15.7 illustrates the format. 

0 8 16 

1 VERSION I 
AUTONOMOUS SYSTEMS NUM 

HOLD TIME 

I BGP IDENTIFIER I 
PARM. LEN I 

7 

Optional Parameters (variable) 

Figure 15.7 The forniat of the BGP OPEN message that is sent at startup. 
These octets follow the standard message header. 

Most fields are straightforward. The VERSION field identifies the protocol version 
used (this format is for version 4). Recall that each autonomous system is assigned a 
unique number. Field AUTONOMOUS SYSTEMS NUM gives the autonomous system 
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number of the sender's system. The HOLD TIME field specifies a maximum time that 
the receiver should wait for a message from the sender. The receiver is required to im- 
plement a timer using this value. The timer is reset each time a message arrives; if the 
timer expires, the receiver assumes the sender is no longer available (and stops forward- 
ing datagrams along routes learned from the sender). 

Field BGP IDENTIFIER contains a 32-bit integer value that uniquely identifies the 
sender. If a machine has multiple peers (e.g., perhaps in multiple autonomous systems), 
the machine must use the same identifier in all communication. The protocol specifies 
that the identifier is an IP address. Thus, a router must choose one of its IP addresses 
to use with all BGP peers. 

The last field of an OPEN message is optional. If present, field PARM. LEN speci- 
fies the length measured in octets, and the field labeled Optional Parameters contains a 
list of parameters. It has been labeled variable to indicate that the size varies from mes- 
sage to message. When parameters are present, each parameter in the list is preceded 
by a 2-octet header, with the first octet specifying the type of the parameter, and the 
second octet specifying the length. If there are no parameters, the value of PARM. LEN 
is zero and the message ends with no further data. 

Only one parameter type is defined in the original standard: type I is reserved for 
authentication. The authentication parameter begins with a header that identifies the 
type of authentication followed by data appropriate for the type. The motivation for 
making authentication a parameter arises from a desire to allow BGP peers to choose an 
authentication mechanism without making the choice part of the BGP standard. 

When it accepts an incoming OPEN message, a machine speaking BGP responds 
by sending a KEEPALNE message (discussed below). Each side must send an OPEN 
and receive a KEEPALNE message before they can exchange routing information. 
Thus, a KEEPALNE message functions as the acknowledgement for an OPEN. 

15.1 3 BGP UPDATE Message 

Once BGP peers have created a TCP connection, sent OPEN messages, and ack- 
nowledged them, the peers use UPDATE messages to advertise new destinations that 
are reachable or to withdraw previous advertisements when a destination has become 
unreachable. Figure 15.8 illustrates the format of UPDATE messages. 

As the figure shows, each UPDATE message is divided into two parts: the first 
lists previously advertised destinations that are being withdrawn, and the second speci- 
fies new destinations being advertised. As usual, fields labeled variable do not have a 
fixed size; if the information is not needed for a particular UPDATE, the field can be 
omitted from the message. Field WITHDRAWN LEN is a 2-octet field that specifies the 
size of the Withdrawn Destinations field that follows. If no destinations are being with- 
drawn, WlTHDRAWN LEN contains zero. Similarly, the PATH LEN field specifies the 
size of the Path Attributes that are associated with new destinations being advertised. If 
there are no new destinations, the PATH LEN field contains zero. 
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0 16 31 

WITHDRAWN LEN 
1 

I Withdrawn Destinations (variable) I 
I 

PATH LEN 
I 

Path Attributes (variable) 

Destination Networks (variable) 

Figure 15.8 BGP UPDATE message format in which variable size areas of 
the message may be omitted. These octets follow the standard 
message header. 

15.14 Compressed Mask-Address Pairs 

Both the Withdrawn Destinations and the Destination Networks fields contain a list 
of IP network addresses. To accommodate classless addressing, BGP must send an ad- 
dress mask with each IP address. Instead of sending an address and a mask as separate 
32-bit quantities, however, BGP uses a compressed representation to reduce message 
size. Figure 15.9 illustrates the format: 

LEN 

IP Address (1-4 octets) I 
Figure 15.9 The compressed format BGP uses to store a destination address 

and the associated mask. 

The figure shows that BGP does not actually send a bit mask. Instead, it encodes 
information about the mask into a single octet that precedes each address. The mask 
octet contains a binary integer that specifies the number of bits in the mask (mask bits 
are assumed to be contiguous). The address that follows the mask octet is also 
compressed - only those octets covered by the mask are included. Thus, only one ad- 
dress octet follows a mask value of 8 or less, two follow a mask value of 9 to 16, three 
follow a mask value of 17 to 24, and four follow a mask value of 25 to 32. Interesting- 
ly, the standard also allows a mask octet to contain zero (in which case no address oc- 
tets follow it). A zero length is useful because it corresponds to a default route. 
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15.15 BGP Path Attributes 

We said that BGP is not a pure distance-vector protocol because it advertises more 
than a next hop. The additional information is contained in the Path Attributes field of 
an update message. A sender can use the path attributes to specify: a next hop for the 
advertised destinations, a list of autonomous systems along the path to the destinations, 
and whether the path information was learned from another autonomous system or 
derived from within the sender's autonomous system. 

It is important to note that the path attributes are factored to reduce the size of the 
UPDATE message, meaning that the attributes apply to all destinations advertised in the 
message. Thus, if different attributes apply to some destinations, they must be adver- 
tised in a separate UPDATE message. 

Path attributes are important in BGP for three reasons. First, path information al- 
lows a receiver to check for routing loops. The sender can specify an exact path 
through all autonomous systems to the destination. If any autonomous system appears 
more than once on the list, there must be a routing loop. Second, path information al- 
lows a receiver to implement policy constraints. For example, a receiver can examine 
paths to verify that they do not pass through untrusted autonomous systems (e.g., a 
competitor's autonomous system). Third, path information allows a receiver to know 
the source of all routes. In addition to allowing a sender to specify whether the infor- 
mation came from inside its autonomous system or from another system, the path attri- 
butes allow the sender to declare whether the information was collected with an exterior 
gateway protocol such as BGP or an interior gateway protocol?. Thus, each receiver 
can decide whether to accept or reject routes that originate in autonomous systems 
beyond the peer's. 

Conceptually, the Path Attributes field contains a list of items, where each item 
consists of a triple: 

(type, length, value) 

Instead of fixed-size fields, the designers chose a flexible encoding scheme that minim- 
izes the space each item occupies. As specified in Figure 15.10, the type information 
always requires two octets, but other fields vary in size. 

tThe next chapter describes interior gateway protocols. 
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0 1 2 3 4 5 6 7 8  15 

Flag Bits I Type Code I 

Flaa Bits Descri~tion 

0 0 for required attribute, 1 if optional 
1 1 for transitive, 0 for nontransitive 
2 0 for complete, 1 for partial 
3 0 if length field is one octet; 1 if two 

5-7 unused (must be zero) 

Figure 15.10 Bits of the 2-octet type field that appears before each BGP attri- 
bute path item and the meaning of each. 

For each item in the Path Attributes list, a length field follows the 2-octet type 
field, and may be either one or two octets long. As the figure shows, flag bit 3 speci- 
fies the size of the length field. A receiver uses the type field to determine the size of 
the length field, and then uses the contents of the length field to determine the size of 
the value field. 

Each item in the Path attributes field can have one of seven possible type codes. 
Figure 15.1 1 summarizes the possibilities. 

Type Code 
1 
2 
3 
4 
5 
6 
7 

Meaning 
Specify origin of the path information 
List of autonomous systems on path to destination 
Next hop to use for destination 
Discriminator used for multiple AS exit points 
Preference used within an autonomous system 
Indication that routes have been aggregated 
ID of autonomous system that aggregated routes 

Figure 15.11 The BGP attribute type codes and the meaning of each. 

15.16 BGP KEEPALIVE Message 

Two BGP peers periodically exchange KEEPALNE messages to test network con- 
nectivity and to verify that both peers continue to function. A KEEPALNE message 
consists of the standard message header with no additional data. Thus, the total mes- 
sage size is 19 octets (the minimum BGP message size). 

There are two reasons why BGP uses keepalive messages. First, periodic message 
exchange is needed because BGP uses TCP for transport, and TCP does not include a 
mechanism to continually test whether a connection endpoint is reachable. However, 
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TCP does report an error to an application if it cannot deliver data the application sends. 
Thus, as long as both sides periodically send a keepalive, they will know if the TCP 
connection fails. Second, keepalives conserve bandwidth compared to other messages. 
Many early routing protocols used periodic exchange of routing information to test con- 
nectivity. However, because routing information changes infrequently, the message 
content seldom changes. Furthermore, because routing messages are usually large, 
resending the same message wastes network bandwidth needlessly. To avoid the ineffi- 
ciency, BGP separates the functionality of route update from connectivity testing, allow- 
ing BGP to send small KEEPALNE messages frequently, and reserving larger UPDATE 
messages for situations when reachability information changes. 

Recall that a BGP speaker specifies a hoM timer when it opens a connection; the 
hold timer specifies a maximum time that BGP is to wait without receiving a message. 
As a special case, the hold timer can be zero to specify that no KEEPAWE messages 
are used. If the hold timer is greater than zero, the standard recommends setting the 
KEEPAWE interval to one third of the hold timer. In no case can a BGP speaker 
make the KEEPALNE interval less than one second (which agrees with the requirement 
that a nonzero hold timer cannot be less than three seconds). 

15.1 7 Information From The Receiver's Perspective 

Unlike most protocols that propagate routing information, an Exterior Gateway 
Protocol does not merely report the set of destinations it can reach. Instead, exterior 
protocols must provide information that is correct from the outsider's perspective. 
There are two issues: policies and optimal routes. The policy issue is obvious: a router 
inside an autonomous system may be allowed to reach a given destination, while outsid- 
ers are prohibited from reaching the same destination. The routing issue means that a 
router must advertise a next hop that is optimal from the outsider's perspective. Figure 
15.12 illustrates the idea. 
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To peer in other Autonomous System t 

Figure 15.12 Example of an autonomous system. Router R, runs BGP and 
reports information from the outsider's perspective, not from its 
own routing table. 

In the figure, router R, has been designated to speak BGP on behalf of the auto- 
nomous system. It must report reachability to networks I through 4. However, when 
giving a next hop, it reports network 1 as reachable through router R,, networks 3 and 4 
as reachable through router R,, and network 2 as reachable through R,. 

15.18 The Key Restriction Of Exterior Gateway Protocols 

We have already seen that because exterior protocols follow policy restrictions, the 
networks they advertise may be a subset of the networks they can reach. However, 
there is a more fundamental limitation imposed on exterior routing: 

An exterior gateway protocol does not commz4nicate or interpret dis- 
tance metrics, even if metrics are available. 

Protocols like BGP do allow a speaker to declare that a destination has become un- 
reachable or to give a list of autonomous systems on the path to the destination, but 
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they cannot transmit or compare the cost of two routes unless the routes come from 
within the same autonomous system. In essence, BGP can only specify whether a path 
exists to a given destination; it cannot transmit or compute the shorter of two paths. 

We can see now why BGP is careful to label the origin of information it sends. 
The essential observation is this: when a router receives advertisements for a given des- 
tination from peers in two different autonomous systems, it cannot compare the costs. 
Thus, advertising reachability with BGP is equivalent to saying, "My autonomous sys- 
tem provides a path to this network." There is no way for the router to say, "My auto- 
nomous system provides a better path to this network than another autonomous sys- 
tem." 

Looking at interpretation of distances allows us to realize that BGP cannot be used 
as a routing algorithm. In particular, even if a router learns about two paths to the same 
network, it cannot know which path is shorter because it cannot know the cost of routes 
across intermediate autonomous systems. For example, consider a router that uses BGP 
to communicate with two peers in autonomous systems p and f. I f  the peer in auto- 
nomous system p advertises a path to a given destination through autonomous systems 
p, q, and r, and the peer in f advertises a path to the same destination through auto- 
nomous systems f and g, the receiver has no way of comparing the lengths of the two 
paths. The path through three autonomous systems might involve one local area net- 
work in each system, while the path through two autonomous systems might require 
several hops in each. Because a receiver does not obtain full routing information, it 
cannot compare. 

Because it does not include a distance metric, an autonomous system must be care- 
ful to advertise only routes that traffic should follow. Technically, we say that an Exte- 
rior Gateway Protocol is a reachability protocol rather than a routing protocol. We can 
summarize: 

Because an Exterior Gateway Protocol like BGP only propagates 
reachability information, a receiver can implement policy constraints, 
but cannot choose a least cost route. A sender must only advertise 
paths that trafic should follow. 

The key point here is that any internet which uses BGP to provide exterior routing in- 
formation must either rely on policies or assume that each autonomous system crossing 
is equally expensive. Although it may seem innocuous, the restriction has some surpris- 
ing consequences: 

1. Although BGP can advertise multiple paths to a given network, it 
does not provide for the simultaneous use of multiple paths. That is, 
at any given instant, all traffic routed from a computer in one auto- 
nomous system to a network in another will traverse one path, even 
if multiple physical connections are present. Also note that an out- 
side autonomous system will only use one return path even if the 
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source system divides outgoing traffic among two or more paths. As 
a result, delay and throughput between a pair of machines can be 
asymmetric, making an internet difficult to monitor or debug. 

2. BGP does not support load sharing on routers between arbitrary auto- 
nomous systems. If two autonomous systems have multiple routers 
connecting them, one would like to balance the traffic equally among 
all routers. BGP allows autonomous systems to divide the load by 
network (e.g., to partition themselves into multiple subsets and have 
multiple routers advertise partitions), but it does not support more 
general load sharing. 

3. As a special case of point 2, BGP alone is inadequate for optimal 
routing in an architecture that has two or more wide area networks 
interconnected at multiple points. Instead, managers must manually 
configure which networks are advertised by each exterior router. 

4. To have rationalized routing, all autonomous systems in an internet 
must agree on a consistent scheme for advertising reachability. That 
is, BGP alone will not guarantee global consistency. 

15.1 9 The Internet Routing Arbiter System 

For an internet to operate correctly, routing information must be globally con- 
sistent. Individual protocols such as BGP that handle the exchange between a pair of 
routers, do not guarantee global consistency. Thus, a mechanism is needed to rational- 
ize routing information globally. In the original Internet routing architecture, the core 
system guaranteed globally consistent routing information because at any time the core 
had exactly one path to each destination. When the core system was removed, a new 
mechanism was created to rationalize routing information. 

Known as the routing arbiter (RA) system, the new mechanism consists of a repli- 
cated, authenticated database of reachability information. Updates to the database are 
authenticated to prevent an arbitrary router from advertising a path to a given destina- 
tion. In general, only an autonomous system that owns a given network is allowed to 
advertise reachability. The need for such authentication became obvious in the early 
core system, which allowed any router to advertise reachability to any network. On 
several occasions, routing errors occurred when a router inadvertently advertised in- 
correct reachability infornlation. The core accepted the information and changed routes, 
causing some networks to become unreachable. 

To understand how other routers access the routing arbiter database, consider the 
current Internet architecture. We said that major ISPs interconnect at Network Access 
Points (NAPS). Thus, in terms of routing, a NAP represents the boundary between mul- 
tiple autonomous systems. Although it would be possible to use BGP among each pair 
of ISPs at the NAP, doing so is both inefficient and prone to inconsistencies. Instead, 
each NAP has a computer called a route server (RS) that maintains a copy of the rout- 
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ing arbiter database and runs BGP. Each ISP designates one of its routers near a NAP 
to be a BGP border router. The designated border router maintains a connection to the 
route server over which it uses BGP. The ISP advertises reachability to its networks 
and the networks of its customers, and learns about networks in other ISPs. 

One of the chief advantages of using BGP for route server access lies in its ability 
to carry negative information as well as positive information. When a destination be- 
comes unreachable, the ISP informs the route server, which then makes the information 
available to other ISPs. Spreading negative information reduces unnecessary traffic be- 
cause datagram to unreachable destinations can be discarded before they transit from 
one ISP to anothert. 

15.20 BGP NOTIFICATION Message 

In addition to the OPEN and UPDATE message types described above, BGP sup- 
ports a NOTIFICATION message type used for control or when an error occurs. Errors 
are permanent - once it detects a problem, BGP sends a notification message and then 
closes the TCP connection. Figure 15.13 illustrates the message format. 

ERR CODE I ERR SUBCODE ( DATA 

Figure 15.13 BGP NOTIF'ICATION message format. These octets follow the 
standard message header. 

The 8-bit field labeled ERR CODE specifies one of the possible reasons listed in 
Figure 15.14. 

ERR CODE Meaning 
1 Error in message header 
2 Error in OPEN message 
3 Error in UPDATE message 
4 Hold timer expired 
5 Finite state machine error 
6 Cease (terminate connection) 

Figure 15.14 The possible values of the ERR CODE field in a BGP NOTIFI- 
CATION message. 

tLike the core system it replaced, the routing arbiter system does not include default routes. As a conse- 
quence, it is sometimes called a default-free zone. 
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For each possible ERR CODE, the ERR SUBCODE field contains a further expla- 
nation. Figure 15.15 lists the possible values. 

Subcodes For Message Header Errors 

1 Connection not synchronized 
2 lncorrect message length 
3 Incorrect message type 

Subcodes For OPEN Message Errors 

1 Version number unsupported 
2 Peer AS invalid 
3 BGP identifier invalid 
4 Unsupported optional parameter 
5 Authentication failure 
6 Hold time unacceptable 

Subcodes For UPDATE Message Errors 

- 

Attribute list malformed 
Unrecognized attribute 
Missing attribute 
Attribute flags error 
Attribute length error 
Invalid ORIGIN attribute 
AS routing loop 
Next hop invalid 
Error in optional attribute 
Invalid network field 
Malformed AS path 

Figure 15.15 The meaning of the ERR SUBCODE field in a BGP NOTIFI- 
CATION message. 

15.21 Decentralization Of Internet Architecture 

Two important architecture questions remain unanswered. The first focuses on 
centralization: how can the Internet architecture be modified to remove dependence on a 
(centralized) router system? The second concerns levels of trust: can an internet archi- 
tecture be expanded to allow closer cooperation (trust) between some autonomous sys- 
tems than among others? 
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Removing all dependence on a central system and adding trust are not easy. 
Although TCP/IP architectures continue to evolve, centralized roots are evident in many 
protocols. Without some centralization, each ISP would need to exchange reachability 
information with all ISPs to which it attached. Consequently, the volume of routing 
traffic would be significantly higher than with a routing arbiter scheme. Finally, cen- 
tralization fills an important role in rationalizing routes and guaranteeing trust - in ad- 
dition to storing the reachability database, the routing arbiter system guarantees global 
consistency and provides a trusted source of information. 

15.22 Summary 

Routers must be partitioned into groups or the volume of routing traffic would be 
intolerable. The connected Internet is composed of a set of autonomous systems, where 
each autonomous system consists of routers and networks under one administrative au- 
thority. An autonomous system uses an Exterior Gateway Protocol to advertise routes 
to other autonomous systems. Specifically, an autonomous system must advertise 
reachability of its networks to another system before its networks are reachable from 
sources within the other system. 

The Border Gateway Protocol, BGP, is the most widely used Exterior Gateway 
Protocol. We saw that BGP contains three message types that are used to initiate com- 
munication (OPEN), send reachability information (UPDATE) and report an error con- 
dition (NOTIFICATION). Each message starts with a standard header that includes 
(optional) authentication information. BGP uses TCP for communication, but has a 
keepalive mechanism to ensure that peers remain in communication. 

In the global Internet, each ISP is assigned to a separate autonomous system, and 
the main boundary among autonomous systems occurs at NAPS, where multiple ISPs 
interconnect. Instead of requiring pairs of ISPs to use BGP to exchange routing infor- 
mation, each NAP includes a route server. An ISP uses BGP to communicate with the 
route server, both to advertise reachability to its networks and its customers' networks 
as well as to learn about networks in other ISPs. 

FOR FURTHER STUDY 

Background on early Internet routing can be found in [RFCs 827, 888, 904, and 
9751. Rekhter and Li [RFC 17711 describes version 4 of the Border Gateway Protocol 
(BGP-4). BGP has been through three substantial revisions; earlier versions appear in 
[RFCs 1163, 1267, and 16541. Traina [RFC 17731 reports experience with BGP-4, and 
Traina [RFC 17741 analyzes the volume of routing traffic generated. Finally, Villam- 
izar et. al. {RFC 24391 considers the problem of route flapping. 



Exercises 

EXERCISES 

If your site runs an Exterior Gateway Protocol such as BGP, how many routes does 
NSFNET advertise? 

Some implementations of BGP use a "hold down" mechanism that causes the protocol 
to delay accepting an OPEN from a peer for a fixed time following the receipt of a cease 
request message from that neighbor. Find out what problem a hold down helps solve. 

For the networks in Figure 15.2, which router(s) should run BGP? Why? 

The fornlal specification of BGP includes a finite state machine that explains how BGP 
operates. Draw a diagram of the state machine and label transitions. 

What happens if a router in an autonomous system sends BGP routing update messages 
to a router in another autonomous system, claiming to have reachability for every possi- 
ble internet destination? 

Can two autonomous systems establish a routing loop by sending BGP update messages 
to one another? Why or why not? 

Should a router that uses BGP to advertise routes treat the set of routes advertised dif- 
ferently than the set of routes in the local routing table? For example, should a router 
ever advertise reachability if it has not installed a route to that network in its routing 
table? Why or why not? Hint: read the RFC. 
With regard to the przvious question, examine the BGP-4 specification carefully. Is it 
legal to advertise reachability to a destination that is not listed in the local routing table? 

If you work for a large corporation, find out whether it includes more than one auto- 
nomous system. If so, how do they exchange routing information? 

What is the chief advantage of dividing a large, multi-national corporation into multiple 
autonomous systems? What is the chief disadvantage? 

Corporations A and B use BGP to exchange routing idomlation. To keep computers in 
B from reaching machines on one of its networks, N, the network administrator at cor- 
poration A configures BGP to omit N from advertisements sent to B. Is network N 
secure? Why or why not? 

Because BGP uses a reliable transport protocol, KEEPALIVE messages cannot be lost. 
Does it make sense to specify a keepalive interval as one-third of the hold timer value? 
Why or why not? 

Consult the RFCs for details of the Path Anributes field. What is the minimum size of a 
BGP UPDATE message? 





Routing: In An Autonomous 
System (RIP, OSPF, 
HELLO) 

16.1 Introduction 

The previous chapter introduces the autonomous system concept and examines 
BGP, an Exterior Gateway Protocol that a router uses to advertise networks within its 
system to other autonomous systems. This chapter completes our overview of internet 
routing by examining how a router in an autonomous system learns about other net- 
works within its autonomous system. 

16.2 Static Vs. Dynamic Interior Routes 

Two routers within an autonomous system are said to be interior to one another. 
For example, two routers on a university campus are considered interior to one another 
as long as machines on the campus are collected into a single autonomous system. 

How can routers in an autonomous system leam about networks within the auto- 
nomous system? In small, slowly changing internets, managers can establish and modi- 
fy routes by hand. The administrator keeps a table of networks and updates the table 
whenever a new network is added to, or deleted from, the autonomous system. For ex- 
ample, consider the small corporate internet shown in Figure 16.1. 
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Net 1 

Net 3 

Net 4 Net 5 

Figure 16.1 An example of a small internet consisting of 5 Ethernets and 4 
routers at a single site. Only one possible route exists between 
any two hosts in this internet. 

Routing for the internet in the figure is trivial because only one path exists between 
any two points. The manager can manually configure routes in all hosts and routers. If 
the internet changes (e.g., a new network is added), the manager must reconfigure the 
routes in all machines. 

The disadvantages of a manual system are obvious: manual systems cannot accom- 
modate rapid growth or rapid change. In large, rapidly changing environments like the 
global Internet, humans simply cannot respond to changes fast enough to handle prob- 
lems; automated methods must be used. Automated methods can also help improve re- 
liability and response to failure in small internets that have alternate routes. To see 
how, consider what happens if we add one additional router to the internet in Figure 
16.1, producing the internet shown in Figure 16.2. 

In internet architectures that have multiple physical paths, managers usually choose 
one to be the primary path. If the routers along the primary path fail, routes must be 
changed to send traffic along an alternate path. Changing routes manually is both time 
consuming and error-prone. Thus, even in small internets, an automated system should 
be used to change routes quickly and reliably. 
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Net 1 

I 
Net 2 7' 

Net 4 Net 5 

Figure 16.2 The addition of router R, introduces an alternate path between 
networks 2 and 3. Routing software can quickly adapt to a 
failure and automatically switch routes to the alternate path. 

To automate the task of keeping network reachability information accurate, interior 
routers usually communicate with one another, exchanging either network reachability 
data or network routing information from which reachability can be deduced. Once the 
reachability information for an entire autonomous system has been assembled, one of 
the routers in the system can advertise it to other autonomous systems using an Exterior 
Gateway Protocol. 

Unlike exterior router communication, for which BGP provides a widely accepted 
standard, no single protocol has emerged for use within an autonomous system. Part of 
the reason for diversity comes from the varied topologies and technologies used in auto- 
nomous systems. Another part of the reason stems from the tradeoffs between simplici- 
ty and functionality - protocols that are easy to install and configure do not provide 
sophisticated functionality. As a result, a handful of protocols have become popular. 
Most small autonomous systems choose a single protocol, and use it exclusively to pro- 
pagate routing information internally. Larger autonomous systems often choose a small 
set. 

Because there is no single standard, we use the term Interior Gateway Protocol 
(IGP) as a generic description that refers to any algorithm that interior routers use when 
they exchange network reachability and routing information. For example, the last gen- 
eration of core routers used a protocol named SPREAD as its Interior Gateway Protocol. 
Some autonomous systems use BGP as their IGP, although this seldom makes sense for 
small autonomous systems that span local area networks with broadcast capability. 

Figure 16.3 illustrates two autonomous systems, each using an IGP to propagate 
routing information among its interior routers. 
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Figure 16.3 Conceptual view of two autonomous systems each using its own 
IGP internally, but using BGP to communicate between an exte- 
rior router and the other system. 

In the figure, IGP, refers to the interior router protocol used within autonomous 
system 1, and IGP, refers to the protocol used within autonomous system 2. The figure 
also illustrates an important idea: 

A single router may use two dzfferent routing protocols simultaneous- 
ly, one for communication outside its autonomous system and another 
for communication within its autonomous system. 

In particular, routers that run BGP to advertise reachability usually also need to run an 
IGP to obtain information from within their autonomous system. 

16.3 Routing Information Protocol (RIP) 

16.3.1 History of RIP 

One of the most widely used IGPs is the Routing Information Protocol (RIP), also 
known by the name of a program that implements it, routedt. The routed software was 
originally designed at the University of California at Berkeley to provide consistent 
routing and reachability information among machines on their local networks. It relies 
on physical network broadcast to make routing exchanges quickly. It was not designed 
to be used on large, wide area networks (although vendors now sell versions of RIP 
adapted for use on WANs). 

Based on earlier internetworking research done at Xerox Corporation's Palo Alto 
Research Center (PARC), routed implements a protocol derived from the Xerox NS 
Routing Information Protocol (RIP), but generalizes it to cover multiple families of net- 
works. 

?The name comes from the UNIX convention of attaching "d" to the names of daemon processes; it is 
a " -,....- A,, 
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Despite minor improvements over its predecessors, the popularity of RIP as an IGP 
does not arise from its technical merits alone. Instead, it is the result of Berkeley distri- 
buting routed software along with their popular 4BSD UNIX systems. Thus, many 
TCPIIP sites adopted and installed routed, and started using RIP without even consider- 
ing its technical merits or limitations. Once installed and running, it became the basis 
for local routing, and research groups adopted it for larger networks. 

Perhaps the most startling fact about RTP is that it was built and widely adopted 
before a fornlal standard was written. Most implementations were derived from the 
Berkeley code, with interoperability among them limited by the programmer's under- 
standing of undocumented details and subtleties. As new versions appeared, more prob- 
lems arose. An RFC standard appeared in June 1988, and made it possible for vendors 
to ensure interoperability. 

16.3.2 RIP Operation 

The underlying RIP protocol is a straightforward implementation of distance-vector 
routing for local networks. It partitions participants into active and passive (i.e., silent) 
machines. Active participants advertise their routes to others; passive participants listen 
to RIP messages and use them to update their routing table, but do not advertise. Only 
a router can run RIP in active mode; a host must use passive mode. 

A router running RIP in active mode broadcasts a routing update message every 30 
seconds. The update contains information taken from the router's current routing data- 
base. Each update contains a set of pairs, where each pair contains an IP network ad- 
dress and an integer distance to that network. RIP uses a hop count metric to measure 
distances. In the RIP metric, a router is defined to be one hop from a directly connect- 
ed network?, two hops from a network that is reachable through one other router, and 
so on. Thus, the number of hops or the hop count along a path from a given source to a 
given destination refers to the number of routers that a datagram encounters along that 
path. It should be obvious that using hop counts to calculate shortest paths does not al- 
ways produce optimal results. For example, a path with hop count 3 that crosses three 
Ethernets may be substantially faster than a path with hop count 2 that crosses two sa- 
tellite connections. To compensate for differences in technologies, many RIP imple- 
mentations allow managers to configure artificially high hop counts when advertising 
connections to slow networks. 

Both active and passive RIP participants listen to all broadcast messages, and up- 
date their tables according to the distance-vector algorithm described earlier. For exam- 
ple, in the internet of Figure 16.2, router R, will broadcast a message on network 2 that 
contains the pair (1, I), meaning that it can reach network 1 at cost 1. Routers R, and 
R, will receive the broadcast and install a route to network 1 through R, (at cost 2). 
Later, routers R, and R, will include the pair (1,2) when they broadcast their RIP mes- 
sages on network 3. Eventually, all routers and hosts will install a route to network 1. 

FUP specifies a few rules to improve performance and reliability. For example, 
once a router learns a route from another router, it must apply hysteresis, meaning that 
it does not replace the route with an equal cost route. In our example, if routers R, and 

tother routing protocols define a direct connection to be zero hops. 
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R, both advertise network I at cost 2, routers R, and R, will install a route through the 
one that happens to advertise first. We can summarize: 

To prevent oscillation among equal cost paths, RIP specifies that ex- 
isting routes should be retained until a new route has strictly lower 
cost. 

What happens if the first router to advertise a route fails (e.g., if it crashes)? RIP 
specifies that all listeners must timeout routes they leam via RIP. When a router in- 
stalls a route in its table, it starts a timer for that route. The timer must be restarted 
whenever the router receives another RIP message advertising the route. The route be- 
comes invalid if 180 seconds pass without the route being advertised again. 

RIP must handle three kinds of errors caused by the underlying algorithm. First, 
because the algorithm does not explicitly detect routing loops, RIP must either assume 
participants can be trusted or take precautions to prevent such loops. Second, to prevent 
instabilities RIP must use a low value for the maximum possible distance (RIP uses 16). 
Thus, for internets in which legitimate hop counts approach 16, managers must divide 
the internet into sections or use an alternative protocol. Third, the distance-vector algo- 
rithm used by RIP can create a slow convergence or count to infinity problem, in which 
inconsistencies arise because routing update messages propagate slowly across the net- 
work. Choosing a small infiity (16) helps limit slow convergence, but does not elirn- 
inate it. 

Routing table inconsistency is not unique to RIP. It is a fundamental problem that 
occurs with any distance-vector protocol in which update messages carry only pairs of 
destination network and distance to that network. To understand the problem consider 
the set of routers shown in Figure 16.4. The figure depicts routes to network 1 for the 
internet shown in Figure 16.2. 

Network (&+- (a) 

Figure 16.4 The slow convergence problem. In (a) three routers each have a 
route to network 1. In (b) the connection to network I has van- 
ished, but R, causes a loop by advertising it. 
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As Figure 16.4a shows, router R, has a direct connection to network I, so there is a 
route in its table with distance 1 ,  which will be included in its periodic broadcasts. 
Router R, has learned the route from R,, installed the route in its routing table, and ad- 
vertises the route at distance 2. Finally, R, has learned the route from R, and advertises 
it at distance 3. 

Now suppose that R,'s connection to network 1 fails. R, will update its routing 
table immediately to make the distance 16 (infinity). In the next broadcast, R, will re- 
port the higher cost route. However, unless the protocol includes extra mechanisms to 
prevent it, some other router could broadcast its routes before R,. In particular, suppose 
R, happens to advertise routes just after R,'s connection fails. If so, R, will receive R,'s 
message and follow the usual distance-vector algorithm: it notices that R, has advertised 
a route to network 1 at lower cost, calculates that it now takes 3 hops to reach network 
1 (2 for R, to reach network I plus 1 to reach R,), and installs a new route with R, list- 
ed as the next hop. Figure 16.4b depicts the result. At this point, if either R, or R, re- 
ceives a datagram destined for network 1, they will route the datagram back and forth 
until the datagram's time-to-live counter expires. 

Subsequent RIP broadcasts by the two routers do not solve the problem quickly. 
In the next round of routing exchanges, R, broadcasts its routing table entries. When it 
learns that R,'s route to network 1 has distance 3, R, calculates a new distance for its 
route, making it 4. In the third round, R, receives a report from R, which includes the 
increased distance, and then increases the distance in its table to 5. The two routers 
continue counting to RIP infinity. 

16.3.3 Solving The Slow Convergence Problem 

For the example in Figure 16.4, it is possible to solve the slow convergence prob- 
lem by using a technique known as split horizon update. When using split horizon, a 
router does not propagate information about a route back over the same interface from 
which the route arrived. In the example, split horizon prevents router R, from advertis- 
ing a route to network 1 back to router R,, so if R, loses connectivity to network I, it 
must stop advertising a route. With split horizon, no routing loop appears in the exam- 
ple network. Instead, after a few rounds of routing updates, all routers will agree that 
the network is unreachable. However, the split horizon heuristic does not prevent rout- 
ing loops in all possible topologies as one of the exercises suggests. 

Another way to think of the slow convergence problem is in terms of information 
flow. If a router advertises a short route to some network, all receiving routers respond 
quickly to install that route. If a router stops advertising a route, the protocol must 
depend on a timeout mechanism before it considers the route unreachable. Once the 
timeout occurs, the router finds an alternative route and starts propagating that informa- 
tion. Unfortunately, a router cannot know if the alternate route depended on the route 
that just disappeared. Thus, negative information does not always propagate quickly. A 
short epigram captures the idea and explains the phenomenon: 

Good news travels quickly; bad news travels slowly. 
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Another technique used to solve the slow convergence problem employs hold 
down. Hold down forces a participating router to ignore information about a network 
for a fmed period of time following receipt of a message that claims the network is un- 
reachable. Typically, the hold down period is set to 60 seconds. The idea is to wait 
long enough to ensure that all machines receive the bad news and not mistakenly accept 
a message that is out of date. It should be noted that all machines participating in a RIP 
exchange need to use identical notions of hold down, or routing loops can occur. The 
disadvantage of a hold down technique is that if routing loops occur, they will be 
preserved for the duration of the hold down period. More important, the hold down 
technique preserves all incorrect routes during the hold down period, even when alterna- 
tives exist. 

A final technique for solving the slow convergence problem is called poison re- 
verse. Once a connection disappears, the router advertising the connection retains the 
entry for several update periods, and includes an infinite cost in its broadcasts. To 
make poison reverse most effective, it must be combined with triggered updates. Trig- 
gered updates force a router to send an immediate broadcast when receiving bad news, 
instead of waiting for the next periodic broadcast. By sending an update immediately, a 
router minimizes the time it is vulnerable to believing good news. 

Unfortunately, while triggered updates, poison reverse, hold down, and split hor- 
izon techniques all solve some problems, they introduce others. For example, consider 
what happens with triggered updates when many routers share a common network. A 
single broadcast may change all their routing tables, triggering a new round of broad- 
casts. If the second round of broadcasts changes tables, it will trigger even more broad- 
casts. A broadcast avalanche can resultt. 

The use of broadcast, potential for routing loops, and use of hold down to prevent 
slow convergence can make RIP extremely inefficient in a wide area network. Broad- 
casting always takes substantial bandwidth. Even if no avalanche problems occur, hav- 
ing all machines broadcast periodically means that the traffic increases as the number of 
routers increases. The potential for routing loops can also be deadly when line capacity 
is limited. Once lines become saturated by looping packets, it may be difficult or im- 
possible for routers to exchange the routing messages needed to break the loops. Also, 
in a wide area network, hold down periods are so long that the timers used by higher 
level protocols can expire and lead to broken connections. Despite these well-known 
problems, many groups continue to use RIP as an IGP in wide area networks. 

16.3.4 RIP1 Message Format 

RIP messages can be broadly classified into two types: routing information mes- 
sages and messages used to request information. Both use the same format which con- 
sists of a fmed header followed by an optional list of network and distance pairs. Fig- 
ure 16.5 shows the message format used with version 1 of the protocol, which is known 
as RIP1 : 

tTo help avoid collisions on the underlying network, RIP requires each router to wait a small random 
time before sending a triggered update. 
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IP ADDRESS OF NET 1 

0 8 16 24 31 

MUST BE ZERO 

COMMAND (1-5) 1 VERSION (1) 

FAMILY OF NET 1 

I MUST BE ZERO I 

MUST BE ZERO 

MUST BE ZERO 

r -  DISTANCE T o  NET 1 

MUST BE ZERO 

FAMILY OF NET 2 

MUST BE ZERO 

DISTANCE TO NET 2 

MUST BE ZERO 

Figure 16.5 The format of a version 1 RIP message. After the 32-bit header, 
the message contains a sequence of pairs, where each pair con- 
sists of a network IP address and an integer distance to that net- 
work. 

IP ADDRESS OF NET 2 

In the figure, field COMMAND specities an operation according to the following 
table: 

Command 
1 
2 

Meaning 
Request for partial or full routing information 
Response containing network-distance pairs from 

sender's routing table 
Turn on trace mode (obsolete) 
Turn off trace mode (obsolete) 
Reserved for Sun Microsystems internal use 
Update Request (used with demand circuits) 
Update Response (used with demand circuits) 
Update Acknowledge (used with demand circuits) 

A router or host can ask another router for routing information by sending a request 
command. Routers reply to requests using the response command. In most cases, how- 
ever, routers broadcast unsolicited response messages periodically. Field VERSION 
contains the protocol version number (1 in this case), and is used by the receiver to ver- 
Ify it will interpret the message correctly. 
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16.3.5 RIP1 Address Conventions 

The generality of RIP is also evident in the way it transmits network addresses. 
The address format is not limited to use by TCPJIP; it can be used with multiple net- 
work protocol suites. As Figure 16.5 shows, each network address reported by RIP can 
have an address of up to 14 octets. Of course, IP addresses need only 4; RIP specifies 
that the remaining octets must be zero?. The field labeled FAMILY OF NET i identi- 
fies the protocol family under which the network address should be interpreted. RIP 
uses values assigned to address families under the 4BSD UNIX operating system (IP 
addresses are assigned value 2). 

In addition to normal IP addresses, RIP uses the convention that address 0.0.0.0 
denotes a default route. RIP attaches a distance metric to every route it advertises, in- 
cluding default routes. Thus, it is possible to arrange for two routers to advertise a de- 
fault route (e.g., a route to the rest of the internet) at different metrics, making one of 
them a primary path and the other a backup. 

The final field of each entry in a RIP message, DISTANCE TO NET i, contains an 
integer count of the distance to the specified network. Distances are measured in router 
hops, but values are limited to the range 1 through 16, with distance 16 used to signify 
infinity (i.e., no route exists). 

16.3.6 RIP1 Route Interpretation And Aggregation 

Because RIP was originally designed to be used with classful addresses, version 1 
did not include any provision for a subnet mask. When subnet addressing was added to 
IP, version 1 of RIP was extended to permit routers to exchange subnetted addresses. 
However, because RIPl update messages do not contain explicit mask information, an 
important restriction was added: a router can include host-specific or subnet-specific ad- 
dresses in routing updates as long as all receivers can unambiguously interpret the ad- 
dresses. In particular, subnet routes can only be included in updates sent across a net- 
work that is part of the subnetted p r e f ~ ,  and only if the subnet mask used with the net- 
work is the same as the subnet mask used with the address. In essence, the restriction 
means that RIPl cannot be used to propagate variable-length subnet address or classless 
addresses. We can summarize: 

Because it does not include e-xplicit subnet information, RIPl only 
permits a router to send subnet routes if receivers can unambiguously 
interpret the addresses according to the subnet mask they have avail- 
able locally. As a consequence, RIPl can only be used with classful 
or jixed-length subnet addresses. 

What happens when a router running RIPl connects to one or more networks that 
are subnets of a prefix N as well as to one or more networks that are not part of N? The 
router must prepare different update messages for the two types of interfaces. Updates 
sent over the interfaces that are subnets of N can include subnet routes, but updates sent 

tThe designers chose to locate an IP address in the third through sixth octets of the address field to en- 
sure 32-bit alignment. 
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over other interfaces cannot. Instead, when sending over other interfaces the router is 
required to aggregate the subnet information and advertise a single route to network N. 

16.3.7 RIP2 Extensions 

The restriction on address interpretation means that version 1 of RIP cannot be 
used to propagate either variable-length subnet addresses or the classless addresses used 
with CIDR. When version 2 of RIP (RIP2) was defined, the protocol was extended to 
include an explicit subnet mask along with each address. In addition, RIP2 updates in- 
clude explicit next-hop information, which prevents routing loops and slow conver- 
gence. As a result, RIP2 offers siWcantly increased functionality as well as improved 
resistance to errors. 

16.3.8 RIP2 Message Format 

The message format used with RIP2 is an extension of the RIP1 format, with addi- 
tional information occupying unused octets of the address field. In particular, each ad- 
dress includes an explicit next hop as well as an explicit subnet mask as Figure 16.6 il- 
lustrates. 

I NEXT HOP FOR NET 1 I 

0 8 16 24 31 

COMMAND (1-5) 1 VERSION (1) 

FAMILY OF NET 1 

I SUBNET MASK FOR NET 2 I 

MUST BE ZERO 

ROUTE TAG FOR NET 1 

DISTANCE TO NET 1 

NEXT HOP FOR NET 2 

DISTANCE TO NET 2 

IP ADDRESS OF NET 1 

SUBNET MASK FOR NET 1 

FAMILY OF NET 2 

Figure 16.6 The format of a RIP2 message. In addition to pairs of a network 
IP address and an integer distance to that network, the message 
contains a subnet mask for each address and explicit next-hop 
information. 

ROUTE TAG FOR NET 2 

IP ADDRESS OF NET 2 
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RIP2 also attaches a 16-bit ROUTE TAG field to each entry. A router must send 
the same tag it receives when it transmits the route. Thus, the tag provides a way to 
propagate additional information such as the origin of the route. In particular, if RIP2 
learns a route from another autonomous system, it can use the ROUTE TAG to pro- 
pagate the autonomous system's number. 

Because the version number in RIP2 occupies the same octet as in RIP1, both ver- 
sions of the protocols can be used on a given router simultaneously without interfer- 
ence. Before processing an incoming message, RIP software examines the version 
number. 

16.3.9 Transmitting RIP Messages 

RIP messages do not contain an explicit length field or an explicit count of entries. 
Instead, RIP assumes that the underlying delivery mechanism will tell the receiver the 
length of an incoming message. In particular, when used with TCPAP, RIP messages 
rely on UDP to tell the receiver the message length. RIP operates on UDP port 520. 
Although a RIP request can originate at other UDP ports, the destination UDP port for 
requests is always 520, as is the source port from which RIP broadcast messages ori- 
ginate. 

16.3.10 The Disadvantage Of RIP Hop Counts 

Using RIP as an interior router protocol limits routing in two ways. First, RIP res- 
tricts routing to a hop-count metric. Second, because it uses a small value of hop count 
for infinity, RIP restricts the size of any internet using it. In particular, RIP restricts the 
span of an internet (i.e., the maximum distance across) to 16. That is, an internet using 
RIP can have at most 15 routers between any two hosts. 

Note that the limit on network span is neither a limit on the total number of routers 
nor a limit on density. In fact, most campus networks have a small span even if they 
have many routers because the topology is arranged as a hierarchy. Consider, for ex- 
ample, a typical corporate intranet. Most use a hierarchy that consists of a high-speed 
backbone network with multiple routers each connecting the backbone to a workgroup, 
where each workgroup occupies a single LAN. Although the corporation can include 
dozens of workgroups, the span of the entire intranet is only 2. Even if each workgroup 
is extended to include a router that connects one or more additional LANs, the max- 
imum span only increases to 4. Similarly, extending the hierarchy one more level only 
increases the span to 6. Thus, the limit that RIP imposes affects large autonomous sys- 
tems or autonomous systems that do not have a hierarchical organization. 

Even in the best cases, however, hop counts provide only a crude measure of net- 
work capacity or responsiveness. Thus, using hop counts does not always yield routes 
with least delay or highest capacity. Furthermore, computing routes on the basis of 
minimum hop counts has the severe disadvantage that it makes routing relatively static 
because routes cannot respond to changes in network load. The next sections consider 
an alternative metric, and explain why hop count metrics remain popular despite their 
limitations. 



Sec. 16.4 The Hello Protocol 

16.4 The Hello Protocol 

The HELLO protocol provides an example of an IGP that uses a routing metric 
other than hop count. Although HELLO is now obsolete, it was significant in the histo- 
ry of the Internet because it was the IGP used among the original NSFNET backbone 
"fuzzball" routers?. HELLO is significant to us because it provides an example of a 
protocol that uses a metric of delay. 

HELLO provides two functions: it synchronizes the clocks among a set of 
machines, and it allows each machine to compute shortest delay paths to destinations. 
Thus, HELLO messages carry timestamp information as well as routing idomlation. 
The basic idea behind HELLO is simple: each machine participating in the HELLO ex- 
change maintains a table of its best estimate of the clocks in neighboring machines. Be- 
fore transmitting a packet, a machine adds its timestamp by copying the current clock 
value into the packet. When a packet arrives, the receiver computes an estimate of the 
current delay on the link by subtracting the timestamp on the incoming packet from the 
local estimate for the current clock in the neighbor. Periodically, machines poll their 
neighbors to reestablish estimates for clocks. 

HELLO messages also allow participating machines to compute new routes. The 
protocol uses a modified distance-vector scheme that uses a metric of delay instead of 
hop count. Thus, each machine periodically sends its neighbors a table of destinations 
it can reach and an estimated delay for each. When a message arrives from machine X, 
the receiver examines each entry in the message and changes the next hop to X if the 
route through X is less expensive than the current route (i.e., any route where the delay 
to X plus the delay from X to the destination is less than the current delay to the desti- 
nation). 

16.5 Delay Metrics And Oscillation 

It may seem that using delay as a routing metric would produce better routes than 
using a hop count. In fact, HELLO worked well in the early Internet backbone. How- 
ever, there is an important reasons why delay is not used as a metric in most protocols: 
instability. 

Even if two paths have identical characteristics, any protocol that changes routes 
quickly can become unstable. Instability arises because delay, unlike hop counts, is not 
fixed. Minor variations in delay measurements occur because of hardware clock drift, 
CPU load during measurement, or bit delays caused by link-level synchronization. 
Thus, if a routing protocol reacts quickly to slight differences in delay, it can produce a 
two-stage oscillation effect in which traffic switches back and forth between the alter- 
nate paths. In the f i s t  stage, the router finds the delay on path 1 slightly less and 
abruptly switches traffic onto it. In the next round, the router finds that path B has 
slightly less delay and switches traffic back. 

To help avoid oscillation, protocols that use delay implement several heuristics. 
First, they employ the hold down technique discussed previously to prevent routes from 

tThe term fuubaN referred to a noncommercial router that consisted of specially-crafted protocol 
software running on a PDP11 computer. 
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changing rapidly. Second, instead of measuring as accurately as possible and compar- 
ing the values directly, the protocols round measurements to large multiples or imple- 
ment a minimum threshold by ignoring differences less than the threshold. Third, in- 
stead of comparing each individual delay measurement, they keep a running average of 
recent values or alternatively apply a K-out-of-N rule that requires at least K of the most 
recent N delay measurements be less than the current delay before the route can be 
changed. 

Even with heuristics, protocols that use delay can become unstable when compar- 
ing delays on paths that do not have identical characteristics. To undersand why, it is 
necessary to know that traffic can have a dramatic effect on delay. With no traffic, the 
network delay is simply the time required for the hardware to transfer bits from one 
point to another. As the traffic load imposed on the network increases, however, delays 
begin to rise because routers in the system need to enqueue packets that are waiting for 
transmission. If the load is even slightly more than 100% of the network capacity, the 
queue becomes unbounded, meaning that the effective delay becomes infinite. To sum- 
marize: 

The effective delay across a network depends on trafic; as the load 
increases to 100% of the network capacity, delay grows rapidly. 

Because delays are extremely sensitive to changes in load, protocols that use delay 
as a metric can easily fall into a positive feedback cycle. The cycle is triggered by a 
small external change in load (e.g., one computer injecting a burst of additional traffic). 
The increased traffic raises the delay, which causes the protocol to change routes. How- 
ever, because a route change affects the load, it can produce an even larger change in 
delays, which means the protocol will again recompute routes. As a result, protocols 
that use delay must contain mechanisms to dampen oscillation. 

We described heuristics that can solve simple cases of route oscillation when paths 
have identical throughput characteristics and the load is not excessive. The heuristics 
can become ineffective, however, when alternative paths have different delay and 
throughput characteristics. As an example consider the delay on two paths: one over a 
satellite and the other over a low capacity serial line (e.g., a 9600 baud serial line). In 
the first stage of the protocol when both paths are idle, the serial line will appear to 
have significantly lower delay than the satellite, and will be chosen for traffic. Because 
the serial line has low capacity, it will quickly become overloaded, and the delay will 
rise sharply. In the second stage, the delay on the serial line will be much greater than 
that of the satellite, so the protocol will switch traffic away from the overloaded path. 
Because the satellite path has large capacity, traffic which overloaded the serial line 
does not impose a significant load on the satellite, meaning that the delay on the satel- 
lite path does not change with traffic. In the next round, the delay on the unloaded seri- 
al line will once again appear to be much smaller than the delay on the satellite path. 
The protocol will reverse the routing, and the cycle will continue. Such oscillations do, 
in fact, occur in practice. As the example shows, they are difficult to manage because 
traffic which has little effect on one network can overload another. 
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16.6 Combining RIP, Hello, And BGP 

We have already observed that a single router may use both an Interior Gateway 
Protocol to gather routing information within its autonomous system and an Exterior 
Gateway Protocol to advertise routes to other autonomous systems. In principle, it 
should be easy to construct a single piece of software that combines the two protocols, 
making it possible to gather routes and advertise them without human intervention. In 
practice, technical and political obstacles make doing so complex. 

Technically, IGP protocols, like RIP and Hello, are routing protocols. A router 
uses such protocols to update its routing table based on information it acquires from 
other routers inside its autonomous system. Thus, routed, the UNIX program that im- 
plements RIP, advertises infornlation from the local routing table and changes the local 
routing table when it receives updates. RIP trusts routers within the same autonomous 
system to pass correct data. 

In contrast, exterior protocols such as BGP do not trust routers in other auto- 
nomous systems. Consequently, exterior protocols do not advertise all possible routes 
from the local routing table. Instead, such protocols keep a database of network reacha- 
bility, and apply poiicy constraints when sending or receiving infornlation. Ignoring 
such policy constraints can affect routing in a larger sense - some parts of the internet 
can be become unreachable. For example, if a router in an autonomous system that is 
running RIP happens to propagate a low-cost route to a network at Purdue University 
when it has no such route, other routers running RIP will accept and install the route. 
They will then pass Purdue traffic to the router that made the error. As a result, it may 
be impossible for hosts in that autonomous system to reach Purdue. The problem be- 
comes more serious if Exterior Gateway Protocols do not implement policy constraints. 
For example, if a border router in the autonomous system uses BGP to propagate the 
illegal route to other autonomous systems, the network at Purdue may become umeach- 
able from some parts of the internet. 

16.7 Inter-Autonomous System Routing 
i 

We have seen that EGPs such as BGP allow one autonomous system to advertise 
reachability infonnation to another. However, it would be useful to also provide inter- 
azrtonomous system ro ing in which routers choose least-cost paths. Doing so requires Y additional trust. Extending the notions of trust from a single autonomous system to 
multiple autonoqous systems is complex. The simplest approach groups autonomous 
systems hierarchically. Imagine, for example, three autonomous systems in three 
separate academic departments on a large university campus. It is natural to group 
these three together because they share administrative ties. The motivation for hierarch- 
ical grouping comes primarily from the notion of trust. Routers within a group trust 
one another with a higher level of confidence than routers in separate groups. 

Grouping autonomous systems requires extensions to routing protocols. When re- 
porting distances, the values must be increased when passing across the boundary from 
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one group to another. The technique, loosely called metric transformation, partitions 
distance values into three categories. For example, suppose routers within an auto- 
nomous system use distance values less than 128. We can make a rule that when pass- 
ing distance information across an autonomous system boundary within a single group, 
the distances must be transformed into the range of 128 to 191. Finally, we can make a 
rule that when passing distance values across the boundary between two groups, the 
values must be transformed into the range of 192 to 254t. The effect of such transfor- 
mations is obvious: for any given destination network, any path that lies entirely within 
the autonomous system is guaranteed to have lower cost than a path that strays outside 
the autonomous system. Furthermore, among all paths that stray outside the auto- 
nomous system, those that remain within the group have lower cost than those that 
cross group boundaries. The key advantage of metric transformations is that they allow 
each autonomous system to choose an IGP, yet make it possible for other systems to 
compare routing costs. / 

16.8 Gated: Inter-Autonomous System Communication 

A mechanism has been created to provide an interface between autonomous sys- 
tems. Known as gated*, the mechanism understands multiple protocols (both IGPs and 
BGP), and ensures that policy constraints are honored. For example, gated can accept 
RIP messages and modify the local computer's routing table just like the routed pro- 
gram. It can also advertise routes from within its autonomous system using BGP. The 
rules gated follows allow a system administrator to specify exactly which networks gat- 
ed may and may not advertise and how to report distances to those networks. Thus, 
although gated is not an IGP, it plays an important role in routing because it demon- 
strates that it is feasible to build an automated mechanism linking an IGP with BGP 
without sacrificing protection. 

Gated performs another useful task by implementing metric transformations. Thus, 
it is possible and convenient to use gated between two autonomous systems as well as 
on the boundary between two groups of routers that each participate in an IGP. 

16.9 The Open SPF Protocol (OSPF) 

In Chapter 14, we said that a link state routing algorithm, which uses SPF to com- 
pute shortest paths, scales better than a distance-vector algorithm. To encourage the 
adoption of link state technology, a working group of the Internet Engineering Task 
Force has designed an interior gateway protocol that uses the link state algorithm. 
Called Open SPF (OSPF), the new protocol tackles several ambitious goals. 

As the name implies, the specification is available in the published literature. 
Making it an open standard that anyone can implement without paying license fees has 
encouraged many vendors to support OSPF. Consequently, it has become a popular re- 
placement for proprietary protocols. 

?The term autonomous confederation has been used to describe a group of autonomous systems; boun- 
daries of autonomous confederations correspond to transformations beyond 191. 

$The name gated is pronounced "gate d" from "gate daemon." 
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OSPF includes type of service routing. Managers can install multiple routes to a 
given destination, one for each priority or type of service. When routing a datagram, a 
router running OSPF uses both the destination address and type of service field in an IP 
header to choose a route. OSPF is among the first TCP/IF' protocols to offer type of 
service routing. 

OSPF provides load balancing. If a manager specifies multiple routes to a given 
destination at the same cost, OSPF distributes traffic over all routes equally. Again, 
OSPF is among the first open IGPs to offer load balancing; protocols like RIP compute 
a single route to each destination. 

To permit growth and make the networks at a site easier to manage, OSPF allows 
a site to partition its networks and routers into subsets called areas. Each area is self- 
contained; knowledge of an area's topology remains hidden from other areas. Thus, 
multiple groups within a given site can cooperate in the use of OSPF for routing even 
though each group retains the ability to change its internal network topology indepen- 
dently. 

The OSPF protocol specifies that all exchanges between routers can be authenti- 
cated. OSPF allows a variety of authentication schemes, and even allows one area to 
choose a different scheme than another area. The idea behind authentication is to 
guarantee that only trusted routers propagate routing information. To understand why 
this could be a problem, consider what can happen when using RIP1, which has no au- 
thentication. If a malicious person uses a personal computer to propagate RIP messages 
advertising lowcost routes, other routers and hosts running RIP will change their routes 
and start sending datagrams to the personal computer. 

OSPF includes support for host-specific, subnet-specific, and classless routes as 
well as classful network-specific routes. All types may be needed in a large internet. 

To accommodate multi-access networks like Ethernet, OSPF extends the SPF al- 
gorithm described in Chapter 14. We described the algorithm using a point-to-point 
graph and said that each router running SPF would periodically broadcast link status 
messages about each reachable neighbor. If K routers attach to an Ethernet, they will 
broadcast K2 reachability messages. OSPF minimizes broadcasts by allowing a more 
complex graph topology in which each node represents either a router or a network. 
Consequently, OSPF allows every multi-access network to have a designated gateway 
(i.e., a designated router) that sends link status messages on behalf of all routers at- 
tached to the network; the messages report the status of all links from the network to 
routers attached to the network. OSPF also uses hardware broadcast capabilities, where 
they exist, to deliver link status messages. 

To permit maximum flexibility, OSPF allows managers to describe a virtual net- 
work topology that abstracts away from the details of physical connections. For exarn- 
ple, a manager can configure a virtual link between two routers in the routing graph 
even if the physical connection between the two routers requires communication across 
a transit network. 

OSPF allows routers to exchange routing information learned from other (exter- 
nal) sites. Basically, one or more routers with connections to other sites learn informa- 
tion about those sites and include it when sending update messages. The message for- 
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mat distinguishes between information acquired from external sources and information 
acquired from routers interior to the site, so there is no ambiguity about the source or 
reliability of routes. 

16.9.1 OSPF Message Format 

Each OSPF message begins with a fixed, 24-octet header as Figure 16.7 shows: 

SOURCE ROUTER IP ADDRESS 

AREA ID 

VERSION (1) I TYPE 

I CHECKSUM I AUTHENTICATION TYPE ( 

MESSAGE LENGTH 

AUTHENTICATION (octets 0-3) 

AUTHENTICATION (octets 4-7) 

Figure 16.7 The fixed 24-octet OSPF message header. 

Field VERSION specifies the version of the protocol. Field TYPE identifies the 
message type as one of: 

T Y P ~  Meaning 
1 Hello (used to test reachability) 
2 Database description (topology) 
3 Link status request 
4 Link status update 
5 Link status acknowledgement 

The field labeled SOURCE ROUTER IP ADDRESS gives the address of the sender, and 
the field labeled AREA ID gives the 32-bit identification number for the area. 

Because each message can include authentication, field AUTHENTICATION TYPE 
specifies which authentication scheme is used (currently, 0 means no authentication and 
I means a simple password is used). 

16.9.2 OSPF Hello Message Format 

OSPF sends hello messages on each link periodically to establish and test neighbor 
reachability. Figure 16.8 shows the format. 
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OSPF HEADER WITH TYPE = 1 

NETWORK MASK 

DEAD TIMER I HELLO INTER I GWAY PRlO 

DESIGNATED ROUTER 

I BACKUP DESIGNATED ROUTER I 
NEIGHBOR, IP ADDRESS 

NEIGHBOR, IP ADDRESS 

I NEIGHBOR. IP ADDRESS I 

Figure 16.8 OSPF hello message format. A pair of neighbor routers ex- 
changes these messages periodically to test reachability. 

Field NETWORK MASK contains a mask for the network over which the message 
has been sent (see Chapter 10 for details about masks). Field DEAD TIMER gives a 
time in seconds after which a nomesponding neighbor is considered dead. Field HEL- 
LO INTER is the nomlal period, in seconds, between hello messages. Field GWAY 
PRIO is the integer priority of this router, and is used in selecting a backup designated 
router. The fields labeled DESIGNATED ROUTER and BACKUP DESIGNATED 
ROUTER contain IP addresses that give the sender's view of the designated router and 
backup designated router for the network over which the message is sent. Finally, 
fields labeled NEIGHBOR, IP ADDRESS give the IP addresses of all neighbors from 
which the sender has recently received hello messages. 

16.9.3 OSPF Database Description Message Format 

Routers exchange OSPF database description messages to initialize their network 
topology database. In the exchange, one router serves as a master, while the other is a 
slave. The slave acknowledges each database description message with a response. 
Figure 16.9 shows the format. 

Because it can be large, the topology database may be divided into several mes- 
sages using the I and M bits. Bit I is set to I in the initial message; bit M is set to I if 
additional messages follow. Bit S indicates whether a message was sent by a master (I) 
or by a slave (0). Field DATABASE SEQUENCE NUMBER numbers messages sequen- 
tially so the receiver can tell if one is missing. The initial message contains a random 
integer R; subsequent messages contain sequential integers starting at R. 
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OSPF HEADER WITH TYPE =2 

I MUST BE ZERO 1 l 1 ~ 1 ~ 1  
I DATABASE SEQUENCE NUMBER I 
I LINK TYPE I 
I LINK ID I 
I ADVERTISING ROUTER I 

Figure 16.9 OSPF database description message format. The fields starting 
at LlNK TYPE are repeated for each link being specified. 

LlNK SEQUENCE NUMBER 

The fields from LINK TYPE through LINK AGE describe one link in the network 
topology; they are repeated for each link. The LINK TYPE describes a link according to 
the following table. 

LINK CHECKSUM 

Link Type Meaning 
1 Router link 
2 Network link 
3 Summary link (IP network) 
4 Summary link (link to border router) 
5 External link (link to another site) 

LINK AGE 

Field LINK ID gives an identification for the link (which can be the IP address of a 
router or a network, depending on the link type). 

Field ADVERTISING ROUTER specifies the address of the router advertising this 
link, and LINK SEQUENCE NUMBER contains an integer generated by that router to 
ensure that messages are not missed or received out of order. Field LINK CHECKSUM 
provides further assurance that the link information has not been corrupted. Finally, 
field LINK AGE also helps order messages - it gives the time in seconds since the link 
was established. 

. . . 
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16.9.4 OSPF Link Status Request Message Format 

After exchanging database description messages with a neighbor, a router may dis- 
cover that parts of its database are out of date. To request that the neighbor supply up- 
dated information, the router sends a link status request message. The message lists 
specific links as shown in Figure 16.10. The neighbor responds with the most current 
information it has about those links. The three fields shown are repeated for each link 
about which status is requested. More than one request message may be needed if the 
list of requests is long. 

LlNK TYPE 

LlNK ID 

ADVERTISING ROUTER 

Figure 16.10 OSPF link status request message format. A router sends this 
message to a neighbor to request current information about a 
specific set of links. 

16.9.5 OSPF Link Status Update Message Format 

Routers broadcast the status of links with a link status update message. Each up- 
date consists of a list of advertisements, as Figure 16.1 1 shows. 
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0 16 31 

OSPF HEADER WITH TYPE =4  

- - - - - 

NUMBER OF LlNK STATUS ADVERTISEMENTS 

LlNK STATUS ADVERTISEMENT, 

. . . 

LlNK STATUS ADVERTISEMENT, 

Figure 16.11 OSPF link status update message format. A router sends such a 
message to broadcast information about its directly connected 
links to all other routers. 

Each link status advertisement has a header format as shown in Figure 16.12. The 
values used in each field are the same as in the database description message. 

LlNK ID 

0 16 31 

ADVERTISING ROUTER 

LlNK SEQUENCE NUMBER 

LINK CHECKSUM I LENGTH 

LINK AGE 

Figure 16.12 The format of the header used for all link status advertisements. 

LINK TYPE 1 

Following the link status header comes one of four possible formats to describe the 
links from a router to a given area, the links from a router to a specific network, the 
links from a router to the physical networks that comprise a single, subnetted IP net- 
work (see Chapter lo), or the links from a router to networks at other sites. In all cases, 
the LINK TYPE field in the link status header specifies which of the formats has been 
used. Thus, a router that receives a link status update message knows exactly which of 
the described destinations lie inside the site and which are external. 
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16.1 0 Routing With Partial Information 

We began our discussion of internet router architecture and routing by discussing 
the concept of partial information. Hosts can route with only partial idomlation be- 
cause they rely on routers. It should be clear now that not all routers have complete in- 
formation. Most autonomous systems have a single router that connects the auto- 
nomous system to other autonomous systems. For example, if the site connects to the 
global Internet, at least one router must have a connection that leads from the site to an 
ISP. Routers within the autonomous system know about destinations within that auto- 
nomous system, but they use a default route to send all other traffic to the ISP. 

How to do routing with partial information becomes obvious if we examine a 
router's routing tables. Routers at the center of the Internet have a complete set of 
routes to all possible destinations that they learn from the routing arbiter system; such 
routers do not use default routing. In fact, if a destination network address does not ap- 
pear in the routing arbiter database, only two possibilities exist: either the address is not 
a valid destination IF' address, or the address is valid but currently unreachable (e.g., be- 
cause routers or networks leading to that address have failed). Routers beyond those in 
ISPs at the center of the Internet do not usually have a complete set of routes; they rely 
on a default route to handle network addresses they do not understand. 

Using default routes for most routers has two consequences. First, it means that 
local routing errors can go undetected. For example, if a machine in an autonomous 
system incorrectly routes a packet to an external autonomous system instead of to a lo- 
cal router, the external system will route it back (perhaps to a different entry point). 
Thus, connectivity may appear to be preserved even if routing is incorrect. The prob- 
lem may not seem severe for small autonomous systems that have high speed local area 
networks, but in a wide area network, incorrect routes can be disastrous. Second, on the 
positive side, using default routes whenever possible means that the routing update mes- 
sages exchanged by most routers will be much smaller than they would be if complete 
information had to be included. 

16.1 1 Summary 

Managers must choose how to pass routing information among the local routers 
within an autonomous system. Manual maintenance of routing information suffices 
only for small, slowly changing internets that have minimal interconnection; most re- 
quire automated procedures that discover and update routes automatically. Two routers 
under the control of a single manager run an Interior Gateway Protocol, IGP, to ex- 
change routing information. 

An IGP implements either the distance-vector algorithm or the link state algorithm, 
which is known by the name Shortest Path First (SPF). We examined three specific 
IGPs: RIP, HELLO, and OSPF. RIP, a distance-vector protocol implemented by the 
UNIX program routed, is among the most popular. It uses split horizon, hold-down, 
and poison reverse techniques to help eliminate routing loops and the problem of count- 
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ing to infinity. Although it is obsolete, Hello is interesting because it illustrates a 
distance-vector protocol that uses delay instead of hop counts as a distance metric. We 
discussed the disadvantages of delay as a routing metric, and pointed out that although 
heuristics can prevent instabilities from arising when paths have equal throughput 
characteristics, long-term instabilities arise when paths have different characteristics. 
Finally, OSPF is a protocol that implements the link status algorithm. 

Also, we saw that the gated program provides an interface between an Interior 
Gateway Protocol like RE' and the Exterior Gateway Protocol, BGP, automating the 
process of gathering routes from within an autonomous system and advertising them to 
another autonomous system. 

FOR FURTHER STUDY 

Hedrick [RFC 10581 discusses algorithms for exchanging routing information in 
general and contains the standard specification for RIPl. Malkin [RFC 24531 gives the 
standard for RIP2. The HELLO protocol is documented in Mills [RFC 8911. Mills and 
Braun [I9871 considers the problems of converting between delay and hop-count 
metrics. Moy [RFC 15831 contains the lengthy specification of OSPF as well as a dis- 
cussion of the motivation behind it. Fedor [June 19881 describes gated. 

EXERCISES 

What network families does RIP support? Hint: read the networking section of the 4.3 
BSD UNIX Programmer's Manual. 

Consider a large autonomous system using an interior router protocol like HELLO that 
bases routes on delay. What difficulty does this autonomous system have if a subgroup 
decides to use RIP on its routers? 

Within a RIP message, each IP address is aligned on a 32-bit boundary. Will such ad- 
dresses be aligned on a 32-bit boundary if the IP datagram canying the message starts on 
a 32-bit boundary? 

An autonomous system can be as small as a single local area network or as large as mul- 
tiple long haul networks. Why does the variation in size make it difficult to find a stan- 
dard IGP? 
Characterize the circumstances under which the split horizon technique will prevent slow 
convergence. 

Consider an internet composed of many local area networks running RIP as an IGP. 
Find an example that shows how a routing loop can result even if the code uses "hold 
down" after receiving information that a network is unreachable. 

Should a host ever run RIP in active mode? Why or why not? 
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Under what circumstances will a hop count metric produce better routes than a metric 
that uses delay? 

Can you imagine a situation in which an autonomous system chooses not to advertise all 
its networks? Hint: think of a university. 

In broad terms, we could say that RIP distributes the local routing table, while BGP dis- 
tributes a table of networks and routers used to reach them (i.e., a router can send a BGP 
advertisement that does not exactly match items in its own routing table). What are the 
advantages of each approach? 

Consider a function used to convert between delay and hop-count metrics. Can you find 
properties of such functions that are sufficient to prevent routing loops. Are your pro- 
perties necessary as well? (Hint: look at Mills and Braun [1987].) 
Are there circumstances under which an SPF protocol can form routing loops? Hint: 
think of best-effort delivery. 

Build an application program that sends a request to a router running RIP and displays 
the routes returned. 

Read the RIP specification carefully. Can routes reported in a response to a query differ 
from the routes reported by a routing update message? If so how? 

Read the OSPF specification carefully. How can a manager use the virtual link facility? 

OSPF allows managers to assign many of their own identifiers, possibly leading to du- 
plication of values at multiple sites. Which identifier(s) may need to change if two sites 
running OSPF decide to merge? 

Compare the version of OSPF available under 4BSD UNIX to the version of RIP for the 
same system. What are the differences in source code size? Object code size? Data 
storage size? What can you conclude? 

Can you use ICMP redirect messages to pass routing information among interior 
routers? Why or why not? 

Write a program that takes as input a description of your organization's internet, uses 
RIP queries to obtain routes from the routers, and reports any inconsistencies. 

If your organization runs gated, obtain a copy of the configuration files and explain the 
meaning of each item. 





Internet Multicasting 

17.1 Introduction 

Earlier chapters define the original IP classful addressing scheme and extensions 
such as subnetting and classless addressing. This chapter explores an additional feature 
of the IP addressing scheme that permits efficient multipoint delivery of datagram. We 
begin with a brief review of the underlying hardware support. Later sections describe 
IP addressing for multipoint delivery and protocols that routers use to propagate the 
necessary routing information. 

17.2 ~Qrdware Broadcast 
I 

Many hardware technologies contain mechanisms to send packets to multiple desti- 
nations $multaneously (or nearly simultaneously). Chapter 2 reviews several technolo- 
gies 9 discusses the most common form of multipoint delivery: broadcasting. Broad- 
cast delivery means that the network delivers one copy of a packet to each destination. 
On bus technologies like Ethernet, broadcast delivery can be accomplished with a single 
packet transmission. On networks composed of switches with point-to-point comec- 
tions, software must implement broadcasting by forwarding copies of the packet across 
individual connections until all switches have received a copy. 

With most hardware technologies, a computer specifies broadcast delivery by send- 
ing a packet to a special, reserved destination address called the broadcast address. For 
example, Ethernet hardware addresses consist of 48-bit identifiers, with the all 1s ad- 
dress used to denote broadcast. Hardware on each machine recognizes the machine's 
hardware address as well as the broadcast address, and accepts incoming packets that 
have either address as their destination. 
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The chief disadvantage of broadcasting arises from its demand on resources - in 
addition to using network bandwidth, each broadcast consumes computational resources 
on all machines. For example, it would be possible to design an alternative internet 
protocol suite that used broadcast to deliver datagrams on a local network and relied on 
IP software to discard datagrams not intended for the local machine. However, such a 
scheme would be extremely inefficient because all computers on the network would re- 
ceive and process every datagram, even though a machine would discard most of the 
datagrams that arrived. Thus, the designers of TCPIIP used unicast routing and address 
binding mechanisms like ARP to eliminate broadcast delivery. 

17.3 Hardware Origins Of Multicast 

Some hardware technologies support a second, less common form of multi-point 
delivery called multicasting. Unlike broadcasting, multicasting allows each system to 
choose whether it wants to participate in a given multicast. Typically, a hardware tech- 
nology reserves a large set of addresses for use with multicast. When a group of 
machines want to communicate, they choose one particular multicast address to use for 
communication. After configuring their network interface hardware to recognize the 
selected multicast address, all machines in the group will receive a copy of any packet 
sent to that multicast address. 

At a conceptual level, multicast addressing can be viewed as a generalization of all 
other address forms. For example, we can think of a conventional unicast address as a 
form of multicast addressing in which there is exactly one computer in the multicast 
group. Similarly, we can think of directed broadcast addressing as a form of multicast- 
ing in which all computers on a particular network are members of the multicast group. 
Other multicast addresses can correspond to arbitrary sets of machines. 

Despite its apparent generality, multicasting cannot replace conventional forms be- 
cause there is a fundamental difference in the underlying mechanisms that implement 
forwarding and delivery. Unicast and broadcast addresses identify a computer or a set 
of computers attached to one physical segment, so forwarding depends on the network 
topology. A multicast address identifies an arbitrary set of listeners, so the forwarding 
mechanism must propagate the packet to all segments. For example, consider two LAN 
segments connected by an adaptive bridge that has learned host addresses. If a host on 
segment 1 sends a unicast frame to another host on segment 1,  the bridge will not for- 
ward the frame to segment 2. If a host uses a multicast address, however, the bridge 
will forward the frame. Thus. we can conclude: 

Although it may help us to think of multicast addressing as a generali- 
zation that subsumes unicast and broadcast addresses, the underlying 
forwarding and delivery mechanisms can make multicast less eficient. 



Sec. 17.3 Hardware Origins Of Multicast 321 

17.4 Ethernet Multicast 

Ethernet provides a good example of hardware multicasting. One-half of the Eth- 
ernet addresses are reserved for multicast - the low-order bit of the high-order octet 
distinguishes conventional unicast addresses (0) from multicast addresses (I). In dotted 
hexadecimal notation?, the multicast bit is given by: 

When an Ethernet interface board is initialized, it begins accepting packets destined 
for either the computer's hardware address or the Ethernet broadcast address. However, 
device driver software can reconfigure the device to allow it to also recognize one or 
more multicast addresses. For example, suppose the driver configures the Ethernet mul- 
ticast address: 

After the configuration, an interface will accept any packet sent to the computer's uni- 
cast address, the broadcast address, or that one multicast address (the hardware will con- 
tinue to ignore packets sent to other multicast addresses). The next sections explain 
both how IP uses basic multicast hardware and the special meaning of the multicast ad- 
dress 

17.5 IP Multicast 

IP multicasting is the internet abstraction of hardware multicasting. It follows the 
paradigm of allowing transmission to a subset of host computers, but generalizes the 
concept to allow the subset to spread across arbitrary physical networks throughout the 
internet. In IP terminology, a given subset is known as a multicast group. IP multicast- 
ing has the following general characteristics: 

Group address. Each multicast group is a unique class D address. A few IP 
multicast addresses are permanently assigned by the Internet authority, and 
correspond to groups that always exist even if they have no current members. 
Other addresses are temporary, and are available for private use. 

Number of groups. IP provides addresses for up to 228 simultaneous multicast 
groups. Thus, the number of groups is limited by practical constraints on rout- 
ing table size rather than addressing. 

Dynamic group membership. A host can join or leave an IP multicast group at 
any time. Furthermore, a host may be a member of an arbitrary number of 
multicast groups. 

?Dotted hexadecimal notation represents each octet as two hexadecimal digits with octets separated by 
periods; the subscript 16 can be omitted only when the context is unambiguous. 
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Use of hardware. If the underlying network hardware supports multicast, IF' 
uses hardware multicast to send IP multicast. If the hardware does not support 
multicast, IF' uses broadcast or unicast to deliver IP multicast. 

Inter-network forwarding. Because members of an IF' multicast group can at- 
tach to multiple physical networks, special multicast routers are required to for- 
ward IF' multicast; the capability is usually added to conventional routers. 

Delivery semantics. IF' multicast uses the same best-effort delivery semantics 
as other IP datagram delivery, meaning that multicast datagrams can be lost, de- 
layed, duplicated, or delivered out of order. 

Membership and transmission. An arbitrary host may send datagrams to any 
multicast group; group membership is only used to determine whether the host 
receives datagram sent to the group. 

17.6 The Conceptual Pieces 

Three conceptual pieces are required for a general purpose internet multicasting 
system: 

1. A multicast addressing scheme 

2. An effective notification and delivery mechanism 

3. An efficient internetwork forwarding facility 

Many goals, details, and constraints present challenges for an overall design. For 
example, in addition to providing sufficient addresses for many groups, the multicast 
addressing scheme must accommodate two conflicting goals: allow local autonomy in 
assigning addresses, while defining addresses that have meaning globally. Similarly, 
hosts need a notification mechanism to inform routers about multicast groups in which 
they are participating, and routers need a delivery mechanism to transfer multicast pack- 
ets to hosts. Again there are two possibilities: we desire a system that makes effective 
use of hardware multicast when it is available, but also allows IF' multicast delivery 
over networks that do not have hardware support for multicast. Finally a multicast for- 
warding facility presents the biggest design challenge of the three: our goal is a scheme 
that is both efficient and dynamic - it should route multicast packets along the shortest 
paths, should not send a copy of a datagram along a path if the path does not lead to a 
member of the group, and should allow hosts to join and leave groups at any time. 

IF' multicasting includes all three aspects. It defines IP multicast addressing, speci- 
fies how hosts send and receive multicast datagrams, and describes the protocol routers 
use to determine multicast group membership on a network. The remainder of the 
chapter considers each aspect in more detail, beginning with addressing. 
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1 7.7 IP Multicast Addresses 

We said that IP multicast addresses are divided into two types: those that are per- 
manently assigned, and those that are available for temporary use. Permanent addresses 
are called well-known; they are used for major services on the global Internet as well as 
for infrastructure maintenance (e.g., multicast routing protocols). Other multicast ad- 
dresses correspond to transient multicast groups that are created when needed and dis- 
carded when the count of group members reaches zero. 

Like hardware multicasting, IP multicasting uses the datagram's destination ad- 
dress to specify that a particular datagram must be delivered via multicast. IP reserves 
class D addresses for multicast; they have the form shown in Figure 17.1. 

Figure 17.1 The format of class D IP addresses used for multicasting. Bits 4 
through 31 identify a particular multicast group. 

0 1 2 3 4  31 

The first 4 bits contain 1110 and identify the address as a multicast. The remain- 
ing 28 bits specify a particular multicast group. There is no further structure in the 
group bits. In particular, the group field is not partitioned into bits that identify the ori- 
gin or owner of the group, nor does it contain administrative information such as wheth- 
er all members of the group are on one physical network. 

When expressed in dotted decimal notation, multicast addresses range from 

1 1 1 0  

224.0.0.0 through 239.255.255.255 

Group Identification 

However, many parts of the address space have been assigned special meaning. For ex- 
ample, the lowest address, 224.0.0.0, is reserved; it cannot be assigned to any group. 
Furthemlore, the remaining addresses up through 224.0.0.255 are devoted to multicast 
routing and group maintenance protocols; a router is prohibited from forwarding a da- 
tagram sent to any address in that range. Figure 17.2 shows a few examples of per- 
manently assigned addresses. 
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224.0.0.0 
224.0.0.1 
224.0.0.2 
224.0.0.3 
224.0.0.4 
224.0.0.5 
224.0.0.6 
224.0.0.7 
224.0.0.8 
224.0.0.9 
224.0.0.1 0 
224.0.0.1 1 
224.0.0.1 2 
224.0.0.1 3 
224.0.0.1 4 
224.0.0.1 5 
224.0.0.1 6 
224.0.0.1 7 
224.0.0.1 8 

224.0.0.1 9 
through 

224.0.0.255 
224.0.1.21 
224.0.1.84 
224.0.1.85 
239.1 92.0.0 

through 
239.251.255.255 

239.252.0.0 
through 

239.255.255.255 

Address Meaning 
Base Address (Reserved) 
All Systems on this Subnet 
All Routers on this Subnet 
Unassigned 
DVMRP Routers 
OSPFIGP All Routers 
OSPFIGP Designated Routers 
ST Routers 
ST Hosts 
RIP2 Routers 
IGRP Routers 
Mobile-Agents 
DHCP Server / Relay Agent 
All PIM Routers 
RSVP-Encapsulation 
All-CBT-Routers 
Designated-Sbm 
All-Sbms 
VRRP 

Unassigned 

DVMRP on MOSPF 
Jini Announcement 
Jini Request 

Scope restricted to one organization 

Scope restricted to one site 

Figure 17.2 Examples of a few permanent IP multicast address assignments. 
Many other addresses have specific meanings. 

We will see that two of the addresses in the figure are especially important to the 
multicast delivery mechanism. Address 224.0.0.1 is permanently assigned to the all 
systems group, and address 224.0.0.2 is permanently assigned to the all routers group. 
The all systems group includes all hosts and routers on a network that are participating 
in IP multicast, whereas the all routers group includes only the routers that are partici- 
pating. In general, both of these groups are used for control protocols and not for the 
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normal delivery of data. Furthermore, datagrams sent to these addresses only reach 
machines on the same local network as the sender; there are no IP multicast addresses 
that refer to all systems in the internet or all routers in the internet. 

17.8 Multicast Address Semantics 

IP treats multicast addresses differently than unicast addresses. For example, a 
multicast address can only be used as a destination address. Thus, a multicast address 
can never appear in the source address field of a datagram, nor can it appear in a source 
route or record route option. Furthermore, no ICMP error messages can be generated 
about multicast datagrams (e.g., destination unreachable, source quench, echo reply, or 
time exceeded). Thus, a ping sent to a multicast address will go unanswered. 

The rule prohibiting ICMP errors is somewhat surprising because IP routers do 
honor the time-to-live field in the header of a multicast datagram. As usual, each router 
decrements the count, and discards the datagram (without sending an ICMP message) if 
the count reaches zero. We will see that some protocols use the time-to-live count as a 
way to limit datagram propagation. 

17.9 Mapping IP Multicast To Ethernet Multicast 

Although the IP multicast standard does not cover all types of network hardware, it 
does specify how to map an IP multicast address to an Ethernet multicast address. The 
mapping is efficient and easy to understand: 

To map an IP multicast address to the corresponding Ethernet multi- 
cast address, place the low-order 23 bits of the IP multicast address 
into the low-order 23 bits of the special Ethernet multicast address 
01.00.5E.00.00.00,, 

For example, IP multicast address 224.0.0.2 becomes Ethernet multicast address 
01.00.5E.00.00.02,,. 

Interestingly, the mapping is not unique. Because IP multicast addresses have 28 
significant bits that identify the multicast group, more than one multicast group may 
map onto the same Ethernet multicast address at the same time. The designers chose 
this scheme as a compromise. On one hand, using 23 of the 28 bits for a hardware ad- 
dress means most of the multicast address is included. The set of addresses is large 
enough so the chances of two groups choosing addresses with all low-order 23 bits 
identical is small. On the other hand, arranging for IP to use a fmed part of the Ether- 
net multicast address space makes debugging much easier and eliminates interference 
between IP and other protocols that share an Ethernet. The consequence of this design 
is that some multicast datagrams may be received at a host that are not destined for that 
host. Thus, the IP software must carefully check addresses on all incoming datagrams 
and discard any unwanted multicast datagrams. 
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17.10 Hosts And Multicast Delivery 

We said that IP multicasting can be used on a single physical network or 
throughout an internet. In the former case, a host can send directly to a destination host 
merely by placing the datagram in a frame and using a hardware multicast address to 
which the receiver is listening. In the latter case, special multicast routers forward mul- 
ticast datagrams among networks, so a host must send the datagram to a multicast 
router. Surprisingly, a host does not need to install a route to a multicast router, nor 
does the host's default route need to specify one. Instead, the technique a host uses to 
forward a multicast datagram to a router is unlike the routing lookup used for unicast 
and broadcast datagrams - the host merely uses the local network hardware's multicast 
capability to transmit the datagram. Multicast routers listen for all IP multicast 
transmissions; if a multicast router is present on the network, it will receive the da- 
tagram and forward it on to another network if necessary. Thus, the primary difference 
between local and nonlocal multicast lies in multicast routers, not in hosts. 

17.1 1 Multicast Scope 

The scope of a multicast group refers to the range of group members. If all 
members are on the same physical network, we say that the group's scope is restricted 
to one network. Similarly, if all members of a group lie within a single organization, 
we say that the group has a scope limited to one organization. 

In addition to the group's scope, each multicast datagram has a scope which is de- 
fined to be the set of networks over which a given multicast datagram will be propagat- 
ed. Informally, a datagram's scope is referred to as its range. 

IP uses two techniques to control multicast scope. The first technique relies on the 
datagram's time-to-live (mL) field to control its range. By setting the TTL to a small 
value, a host can limit the distance the datagram will be routed. For example, the stan- 
dard specifies that control messages, which are used for communication between a host 
and a router on the same network, must have a TTL of 1. As a consequence, a router 
never forwards any datagram carrying control information because the TTL expires 
causing the router to discard the datagram. Similarly, if two applications mnning on a 
single host want to use IP multicast for interprocessor communication (e.g., for testing 
software), they can choose a TTL value of 0 to prevent the datagram from leaving the 
host. It is possible to use successively larger values of the TTL field to further extend 
the notion of scope. For example, some router vendors suggest configuring routers at a 
site to restrict multicast datagrams from leaving the site unless the datagram has a TTL 
greater than 15. We conclude that it is possible to use the 'ITL field in a datagram 
header to provide coarse-grain control over the datagram's scope. 

Known as administrative scoping, the second technique used to control scoping 
consists of reserving parts of the address space for groups that are local to a given site 
or local to a given organization. According to the standard, routers in the Internet are 
forbidden from forwarding any datagram that has an address chosen from the restricted 
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space. Thus, to prevent multicast communication among group members from acciden- 
tally reaching outsiders, an organization can assign the group an address that has local 
scope. Figure 17.2 shows examples of address ranges that correspond to administrative 
scoping. 

17.12 Extending Host Software To Handle Multicasting 

A host participates in IP multicast at one of three levels as Figure 17.3 shows: 

Level Meaning 
0 Host can neither send nor receive IP multicast 
1 Host can send but not receive IP multicast 
2 Host can both send and receive IP multicast 

Figure 17.3 The three levels of participation in IP multicast. 

Modifications that allow a host to send IP multicast are not difficult. The IP 
software must allow an application program to specify a multicast address as a destina- 
tion IP address, and the network interface software must be able to map an IF' multicast 
address into the corresponding hardware multicast address (or use broadcast if the 
hardware does not support multicasting). 

Extending host software to receive IP multicast datagrams is more complex. IP 
software on the host must have an API that allows an application program to declare 
that it wants to join or leave a particular multicast group. If multiple application pro- 
grams join the same group, the IP software must remember to pass each of them a copy 
of datagrams that arrive destined for that group. If all application programs leave a 
group, the host must remember that it no longer participates in the group. Furthermore, 
as we will see in the next section, the host must run a protocol that informs the local 
multicast routers of its group membership status. Much of the complexity comes from 
a basic idea: 

Hosts join specijk IP multicast groups on specific networks. 

That is, a host with multiple network connections may join a particular multicast group 
on one network and not on another. To understand the reason for keeping group 
membership associated with networks, remember that it is possible to use IP multicast- 
ing among local sets of machines. The host may want to use a multicast application to 
interact with machines on one physical net, but not with machines on another. 

Because group membership is associated with particular networks, the software 
must keep separate lists of multicast addresses for each network to which the machine 
attaches. Furthermore, an application program must specify a particular network when 
it asks to join or leave a multicast group. 
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17.1 3 Internet Group Management Protocol 

To participate in IP multicast on a local network, a host must have software that al- 
lows it to send and receive multicast datagrams. To participate in a multicast that spans 
multiple networks, the host must inform local multicast routers. The local routers con- 
tact other multicast routers, passing on the membership information and establishing 
routes. We will see later that the concept is similar to conventional route propagation 
among internet routers. 

Before a multicast router can propagate multicast membership information, it must 
determine that one or more hosts on the local network have decided to join a multicast 
group. To do so, multicast routers and hosts that implement multicast must use the In- 
ternet Group Management Protocol (IGMP) to communicate group membership infor- 
mation. Because the current version is 2, the protocol described here is officially 
known as IGMPv2. 

IGMP is analogous to ICMP?. Like ICMP, it uses IP datagrams to carry mes- 
sages. Also like ICMP, it provides a service used by IP. Therefore, 

Although IGMP uses IP datagrams to carry messages, we think of it 
as an integral part of ZP, not a separate protocol. 

Furthermore, IGMP is a standard for TCPA'; it is required on all machines that receive 
IP multicast (i.e., all hosts and routers that participate at level 2).  

Conceptually, IGMP has two phases. Phase 1: When a host joins a new multicast 
group, it sends an IGMP message to the group's multicast address declaring its 
membership. Local multicast routers receive the message, and establish necessary rout- 
ing by propagating the group membership information to other multicast routers 
throughout the internet. Phase 2: Because membership is dynamic, local multicast 
routers periodically poll hosts on the local network to determine whether any hosts still 
remain members of each group. If any host responds for a given group, the router 
keeps the group active. If no host reports membership in a group after several polls, the 
multicast router assumes that none of the hosts on the network remain in the group, and 
stops advertising group membership to other multicast routers. 

17.14 IGMP Implementation 

IGMP is carefully designed to avoid adding overhead that can congest networks. 
In particular, because a given network can include multiple multicast routers as well as 
hosts that all participate in multicasting, IGMP must avoid having all participants gen- 
erate control traffic. There are several ways IGMP minimizes its effect on the network: 

First, all communication between hosts and multicast routers uses IP multi- 
cast. That is, when IGMP messages are encapsulated in an IP datagram for 
transmission, the IP destination address is a multicast address - routers 

tChapter 9 discusses ICMP, the Internet Control Message Protocol. 
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send general IGMP queries to the all hosts address, hosts send some IGMP 
messages to the all routers address, and both hosts and routers send IGMP 
messages that are specific to a group to the group's address. Thus, da- 
tagrams carrying IGMP messages are transmitted using hardware multicast 
if it is available. As a result, on networks that support hardware multicast, 
hosts not participating in IP multicast never receive IGMP messages. 

Second, when polling to determine group membership, a multicast router 
sends a single query to request information about all groups instead of 
sending a separate message to each?. The default polling rate is 125 
seconds, which means that IGMP does not generate much traffic. 

Third, if multiple multicast routers attach to the same network, they quickly 
and efficiently choose a single router to poll host membership. Thus, the 
amount of IGMP traffic on a network does not increase as additional multi- 
cast routers are attached to the net. 

Fourth, hosts do not respond to a router's IGMP query at the same time. 
Instead, each query contains a value, N, that specifies a maximum response 
time (the default is 10 seconds). When a query arrives, a host chooses a 
random delay between 0 and N which it waits before sending a response. 
In fact, if a given host is a member of multiple groups, the host chooses a 
different random number for each. Thus, a host's response to a router's 
query will be spaced randomly over 10 seconds. 

Fifth, each host listens for responses from other hosts in the group, and 
suppresses unnecessary response traffic. 

To understand why extra responses from group members can be suppressed, recall 
that a multicast router does not need to keep an exact record of group membership. 
Transmissions to the group are sent using hardware multicast. Thus, a router only 
needs to know whether at least one host on the network remains a member of the group. 
Because a query sent to the all systems address reaches every member of a group, each 
host computes a random delay and begins to wait. The host with smallest delay sends 
its response first. Because the response is sent to the group's multicast address, all oth- 
er members receive a copy as does the multicast router. Other members cancel their ti- 
mers and suppress transmission. Thus, in practice, only one host from each group 
responds to a request message. 

17.1 5 Group Membership State Transitions 

On a host, IGMP must remember the status of each multicast group to which the 
host belongs (i.e., a group from which the host accepts datagram).$. We think of a 
host as keeping a table in which it records group membership information. Initially, all 
entries in the table are unused. Whenever an application program on the host joins a 

?The protocol does include a message type that allows a router to query a specific group, if necessary. 
, ,  . . . A n n ' " - . .  * :  - L--, ,- -_-L^-L:_ :_ .L̂ * 



330 Internet Multicasting Chap. 17 

new group, IGMP software allocates an entry and fills in information about the group. 
Among the information, IGMP keeps a group reference counter which it initializes to 1. 
Each time another application program joins the group, IGMP increments the reference 
counter in the entry. If one of the application programs terminates execution (or expli- 
citly drops out of the group), IGMP decrements the group's reference counter. When 
the reference count reaches zero, the host informs multicast routers that it is leaving the 
multicast group. 

The actions IGMP software takes in response to various events can best be ex- 
plained by the state transition diagram in Figure 17.4. 

another hosf responds/cancel timer 

m 
n pin group/staft timer timer expiredsend response 

leave group/cancel timer query am'ves/start timer 

reference count becomes zeroAeave group 

Figure 17.4 The three possible states of an entry in a host's multicast group 
table and transitions among them where each transition is la- 
beled with an event and an action. The state transitions do not 
show messages sent when joining and leaving a group. 

A host maintains an independent table entry for each group of which it is currently 
a member. As the figure shows, when a host first joins the group or when a query ar- 
rives from a multicast router, the host moves the entry to the DELAYING MEMBER 
state and chooses a random delay. If another host in the group responds to the router's 
query before the timer expires, the host cancels its timer and moves to the MEMBER 
state. If the timer expires, the host sends a response message before moving to the 
MEMBER state. Because a router only generates a query every 125 seconds, one ex- 
pects the host to remain in the MEMBER state most of the time. 

The diagram in Figure 17.4 omits a few details. For example, if a query arrives 
while the host is in the DELAYING MEMBER state, the protocol requires the host to 
reset its timer. More important, to maintain backward compatibility with IGMPVI, ver- 
sion 2 also handles version 1 messages, making it possible to use both IGMPvl and 
IGMPv2 on the same network concurrently. 
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17.16 IGMP Message Format 

As Figure 17.5 shows, IGMP messages used by hosts have a simple format. 

0 8 16 31 

TYPE I RESPTIME I CHECKSUM 

GROUP ADDRESS (ZERO IN QUERY) 1 
Figure 17.5 The fomiat of the &octet IGMP message used for communica- 

tion between hosts and routers. 

Each IGMP message contains exactly eight octets. Field TYPE identifies the type 
of message, with the possible types listed in Figure 17.6. When a router polls for group 
membership, field labeled RESP TIME carries a maximum interval for the random delay 
that group members compute, measured in tenths of seconds. Each host in the group 
delays a random time between zero and the specified value before responding. As we 
said, the default is 10 seconds, which means all hosts in a group choose a random value 
between 0 and 10. IGMP allows routers set a maximum value in each query message to 
give managers control over IGMP traffic. If a network contains many hosts, a higher 
delay value further spreads out response times and, therefore, lowers the probability of 
having more than one host respond to the query. The CHECKSUM field contains a 
checksum for the message (IGMP checksums are computed over the IGMP message 
only, and use the same algorithm as TCP and IP). Finally, the GROUP ADDRESS field 
is either used to specify a particular group or contains zero to refer to all groups. When 
it sends a query to a specific group, a router fills in the GROUP ADDRESS field; hosts 
fill in the field when sending membership reports. 

Type Group Address Meaning 
0x1 1 unused (zero) General membership query 
0x1 1 used Specific group membership query 
0x1 6 used Membership report 
0x1 7 used Leave group 

0x1 2 used Membership report (version 1) 

Figure 17.6 IGMP message types used in version 2. The version 1 member- 
ship report message provides backward compatibility. 

Note that IGMP does not provide a mechanism that allows a host to discover the 
IP address of a group - application software must know the group address before it 
can use IGMP to join the group. Some applications use permanently assigned ad- 
dresses, some allow a manager to configure the address when the software is installed, 
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and others obtain the address dynamically (e.g., from a server). In any case, IGMP pro- 
vides no support for address lookup. 

17.17 Multicast Forwarding And Routing Information 

Although IGMP and the multicast addressing scheme described above spec* how 
hosts interact with a local router and how multicast datagrams are transferred across a 
single network, they do not specify how routers exchange group membership informa- 
tion or how routers ensure that a copy of each datagram reaches all group members. 
More important, although multiple protocols have been proposed, no single standard has 
emerged for the propagation of multicast routing information. In fact, although much 
effort has been expended, there is no agreement on an overall plan - existing protocols 
differ in their goals and basic approach. 

Why is multicast routing so difficult? Why not extend conventional routing 
schemes to handle multicast? The answer is that multicast routing differs from conven- 
tional routing in fundamental ways because multicast forwarding differs from conven- 
tional forwarding. To appreciate some of the differences, consider multicast forwarding 
over the architecture that Figure 17.7 depicts. 

network 1 

network 3 
I 

B C D E  

I network 2 

Figure 17.7 A simple internet with three networks connected by a router that 
illustrates multicast forwarding. Hosts marked with a dot parti- 
cipate in one multicast group while those marked with an "x" 
w c i p a t e  in another. 

17.17.1 Need For Dynamic Routing 

Even for the simple topology shown in the figure, multicast forwarding differs 
from unicast forwarding. For example, the figure shows two multicast groups: the 
group denoted by a dot has members A, B, and C, and the group denoted by a cross has 
members D, E, and F. The dotted group has no members on network 2. To avoid 
wasting bandwidth unnecessarily, the router should never send packets intended for the 
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dotted group across network 2. However, a host can join any group at any time - if 
the host is the first on its network to join the group, multicast routing must be changed 
to include the network. Thus, we come to an important difference between convention- 
al routing and multicast routing: 

Unlike unicast routing in which routes change only when the topology 
changes or equipment fails, multicast routes can change simply be- 
cause an application program joins or leaves a multicast group. 

17.1 7.2 lnsuff iciency Of Destination Routing 

The example in Figure 17.7 illustrates another aspect of multicast routing. If host 
F and host E each send a datagram to the cross group, router R will receive and forward 
them. Because both datagrams are directed at the same group, they have the same des- 
tination address. However, the correct forwarding actions differ: R sends the datagram 
from E to net 2, and sends the datagram from F to net 1. Interestingly, when it receives 
a datagram destinated for the cross group sent by host A, the router uses a third action: 
it forwards two copies, one to net 1 and the other to net 2. Thus, we see the second 
major difference between conventional forwarding and multicast forwarding: 

Multicast forwarding requires a router to examine more than the des- 
tination address. 

17.17.3 Arbitrary Senders 

The final feature of multicast routing illustrated by Figure 17.7 arises because IP 
allows an arbitrary host, one that is not necessarily a member of the group, to send a da- 
tagram to the group. In the figure, for example, host G can send a datagram to the dot- 
ted group even though G is not a member of any group and there are no members of the 
dotted group on G's network. More important, as it travels through the internet, the da- 
tagram may pass across other networks that have no group members attached. Thus, we 
can summarize: 

A multicast datagram may originate on a computer that is not part of 
the multicast group, and may be routed across networks that do not 
have any group members attached. 
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17.18 Basic Multicast Routing Paradigms 

We know from the example above that multicast routers use more than the destina- 
tion address to forward datagram, so the question arises: "exactly what information 
does a multicast router use when deciding how to forward a datagram?" The answer 
lies in understanding that because a multicast destination represents a set of computers, 
an optimal forwarding system will reach all members of the set without sending a da- 
tagram across a given network twice. Although a single multicast router such as the 
one in Figure 17.7 can simply avoid sending a datagram back over the interface on 
which it arrives, using the interface alone will not prevent a datagram from being for- 
warded among a set of routers that are arranged in a cycle. To avoid such routing 
loops, multicast routers rely on the datagram's source address. 

One of the first ideas to emerge for multicast forwarding was a form of broadcast- 
ing described earlier. Known as Reverse Path Forwarding (RPF),I- the scheme uses a 
datagram's source address to prevent the datagram from traveling around a loop repeat- 
edly. To use RPF, a multicast router must have a conventional routing table with shor- 
test paths to all destinations. When a datagram arrives, the router extracts the source 
address, looks it up in the local routing table, and finds I, the interface that leads to the 
source. If the datagram arrived over interface I, the router forwards a copy to each of 
the other interfaces; otherwise, the router discards the copy. 

Because it ensures that a copy of each multicast datagram is sent across every net- 
work in the internet, the basic RPF scheme guarantees that every host in a multicast 
group will receive a copy of each datagram sent to the group. However, RPF alone is 
not used for multicast routing because it wastes bandwidth by transmitting multicast da- 
tagrams over networks that neither have group members nor lead to group members. 

To avoid propagating multicast datagrams where they are not needed, a modified 
form of RPF was invented. Known as Truncated Reverse Path Forwarding (TRPF) or 
Truncated Reverse Path Broadcasting (TRPB), the scheme follows the RPF algorithm, 
but further restricts propagation by avoiding paths that do not lead to group members. 
To use TRPF, a multicast router needs two pieces of information: a conventional rout- 
ing table and a list of multicast groups reachable through each network interface. When 
a multicast datagram anives, the router first applies the RPF rule. If RPF specifies dis- 
carding the copy, the router does so. However, if RPF specifies transmitting the da- 
tagram over a particular interface, the router first makes an additional check to venfy 
that one or more members of the group designated in the datagram's destination address 
are reachable over the interface. If no group members are reachable over the interface, 
the router skips that interface, and continues examining the next one. In fact, we can 
now understand the origin of the term truncated - a router truncates forwarding when 
no more group members lie along the path. 

We can summarize: 

When making a forwarding decision, a multicast router uses both the 
datagram's source and destination addresses. The basic forwarding 
mechanism is known as Truncated Reverse Path Forwarding. 

+Reverse path forwarding is sometimes called Reverse Path Broadcasting (RPB). 
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17.19 Consequences Of TRPF 

Although TRPF guarantees that each member of a multicast group receives a copy 
of each datagram sent to the group, it has two surprising consequences. First, because it 
relies on RPF to prevent loops, TRPF delivers an extra copy of datagrams to some net- 
works just like conventional RPF. Figure 17.8 illustrates how duplicates arise. 

network 1 
I 1 I 

1 network 4 

I 

Figure 17.8 A topology that causes an RPF scheme to deliver multiple copies 
of a datagram to some destinations. 

In the figure, when host A sends a datagram, routers R, and R2 each receive a copy. 
Because the datagram arrives over the interface that lies along the shortest path to A, R, 
forwards a copy to network 2, and R2 forwards a copy to network 3. When it receives a 
copy from network 2 (the shortest path to A), R, forwards the copy to network 4. Un- 
fortunately, R4 also forwards a copy to network 4. Thus, although RPF allows R, and 
R4 to prevent a loop by discarding the copy that arrives over network 4, host B receives 
two copies of the datagram. 

A second surprising consequence arises because TRPF uses both source and desti- 
nation addresses when forwarding datagrarns: delivery depends on a datagram's source. 
For example, Figure 17.9 shows how multicast routers forward datagrams from two dif- 
ferent sources across a fixed topology. 
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net 1 

net 4 net 6 

net 1 

Figure 17.9 Examples of paths a multicast datagram follows under TRPF as- 
suming the source is (a) host X, and @) host Z, and the group 
has a member on each of the networks. The number of copies 
received depends on the source. 

As the figure shows, the source affects both the path a datagram follows to reach a 
given network as well as the delivery details. For example, in part (a) of the figure, a 
transmission by host X causes TRPF to deliver two copies of the datagram to network 5. 
In part (b), only one copy of a transmission by host Z reaches network 5, but two copies 
reach networks 2 and 4. 
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17.20 Multicast Trees 

Researchers use graph theory terminology to describe the set of paths from a given 
source to all members of a multicast group: they say that the paths define a graph- 
theoretic tree?, which is sometimes called a forwarding tree or a delivery tree. Each 
multicast router corresponds to a node in the tree, and a network that connects two 
routers corresponds to an edge in the tree. The source of a datagram is the root or root 
node of the tree. Finally, the last router along each of the paths from the source is 
called a leaf router. The terminology is sometimes applied to networks as well - 
researchers call a network hanging off a leaf router a leaf network. 

As an example of the terminology, consider Figure 17.9. Part a shows a tree with 
mot X, and leaves R,, R,, R,, and R,. Technically, part b does not show a tree because 
router R, lies along two paths. Informally, researchers often overlook the details and 
refer to such graphs as trees. 

The graph terminology allows us to express an important principle: 

A multicast forwarding tree is defined as a set of paths through multi- 
cast routers from a source to all members of a multicast group. For a 
given multicast group, each possible source of datagrams can deter- 
mine a dzfferent forwarding tree. 

One of the immediate consequences of the principle concerns the size of tables 
used to forward multicast. Unlike conventional routing tables, each entry in a multicast 
table is identified by a pair: 

(multicast group, source) 

Conceptually, source identifies a single host that can send datagrams to the group (i.e., 
any host in the internet). In practice, keeping a separate entry for each host is unwise 
because the forwarding trees defined by all hosts on a single network are identical. 
Thus, to save space, routing protocol use a network prefix as a source. That is, each 
router defines one forwarding entry that is used for all hosts on the same physical net- 
work. 

Aggregating entries by network prefix instead of by host address reduces the table 
size dramatically. However, multicast routing tables can grow much larger than con- 
ventional routing tables. Unlike a conventional table in which the size is proportional 
to the number of networks in the internet, a multicast table has size proportional to the 
product of the number of networks in the internet and the number of multicast groups. 

tA graph is a tree if it does not contain any cycles (i.e., a router does not appear on more than one path). 
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17.21 The Essence Of Multicast Routing 

Observant readers may have noticed an inconsistency between the features of IP 
multicasting and TRPF. We said that TRPF is used instead of conventional RPF to 
avoid unnecessary traffic: TRPF does not forward a datagram to a network unless that 
network leads to at least one member of the group. Consequently, a multicast router 
must have knowledge of group membership. We also said that IP allows any host to 
join or leave a multicast group at any time, which results in rapid membership changes. 
More important, membership does not follow local scope - a host that joins may be far 
from some router that is forwarding datagrams to the group. So, group membership in- 
formation must be propagated across the internet. 

The issue of membership is central to routing; all multicast routing schemes pro- 
vide a mechanism for propagating membership information as well as a way to use the 
information when forwarding datagrams. In general, because membership can change 
rapidly, the information available at a given router is imperfect, so routing may lag 
changes. Therefore, a multicast design represents a tradeoff between routing traffic 
overhead and inefficient data transmission. On one hand, if group membership informa- 
tion is not propagated rapidly, multicast routers will not make optimal decisions (i.e., 
they either forward datagrams across some networks unnecessarily or fail to send da- 
tagrams to all group members). On the other hand, a multicast routing scheme that 
communicates every membership change to every router is doomed because the result- 
ing traffic can overwhelm an internet. Each design chooses a compromise between the 
two extremes. 

17.22 Reverse Path Multicasting 

One of the earliest forms of multicast routing was derived from TRPF. Known as 
Reverse Path Multicast (RPM), the scheme extends TRPF to make it more dynamic. 
Three assumptions underlie the design. First, it is more important to ensure that a mul- 
ticast datagram reaches each member of the group to which it is sent than to eliminate 
unnecessary transmission. Second, multicast routers each contain a conventional rout- 
ing table that has correct information. Third, multicast routing should improve efficien- 
cy when possible (i.e. eliminate needless transmission). 

RPM uses a two step process. When it begins, RPM uses the RPF broadcast 
scheme to send a copy of each datagram across all networks in the internet. Doing so 
ensures that all group members receive a copy. Simultaneously, RPM proceeds to have 
multicast routers inform one another about paths that do not lead to group members. 
Once it learns that no group members lie along a given path, a router stops forwarding 
along that path. 

How do routers learn about the location of group members? As in most multicast 
routing schemes, RPM propagates membership information bottom-up. The informa- 
tion starts with hosts that choose to join or leave groups. Hosts communicate member- 
ship information with their local router by using IGMP. Thus, although a multicast 



Sec. 17.22 Reverse Path Multicasting 339 

router does not know about distant group members, it does know about local members 
(i.e. members on each of its directly-attached networks). As a consequence, routers at- 
tached to leaf networks can decide whether to forward over the leaf network - if a leaf 
network contains no members for a given group, the router connecting that network to 
the rest of the internet does not forward on the network. In addition to taking local ac- 
tion, the leaf router infornls the next router along the path back to the source. Once it 
learns that no group members lie beyond a given network interface, the next router 
stops forwarding datagrams for the group across the network. When a router finds that 
no group members lie beyond it, the router informs the next router along the path to the 
root. 

Using graph-theoretic terminology, we say that when a router learns that a group 
has no members along a path and stops forwarding, it has pruned (i.e., removed) the 
path from the forwarding tree. In fact, RPM is called a broadcast and prune strategy 
because a router broadcasts (using RPF) until it receives information that allows it to 
prune a path. Researchers also use another tern1 for the RPM algorithm: they say that 
the system is data-driven because a router does not send group membership information 
to any other routers until datagrams arrive for that group. 

In the data-driven model, a router must also handle the case where a host decides 
to join a particular group after the router has pruned the path for that group. RPM han- 
dles joins bottom-up: when a host informs a local router that it has joined a group, the 
router consults its record of the group and obtains the address of the router to which it 
had previously sent a prune request. The router sends a new message that undoes the 
effect of the previous prune and causes datagrams to flow again. Such messages are 
known as graji requests, and the algorithm is said to graft the previously pruned branch 
back onto the tree. 

17.23 Distance Vector Multicast Routing Protocol 

One of the first multicast routing protocols is still in use in the global Internet. 
Known as the Distance Vector Multicast Routing Protocol (DVMRP), the protocol al- 
lows multicast routers to pass group membership and routing information among them- 
selves. DVMRP resembles the RIP protocol described in Chapter 16, but has been ex- 
tended for multicast. In essence, the protocol passes information about current multicast 
group membership and the cost to transfer datagrams between routers. For each possi- 
ble (group, source) pair, the routers impose a forwarding tree on top of the physical in- 
terconnections. When a router receives a datagram destined for an IP multicast group, 
it sends a copy of the datagram out over the network links that correspond to branches 
in the forwarding tree?. 

Interestingly, DVMRP defines an extended form of IGMP used for communication 
between a pair of multicast routers. It specifies additional IGMP message types that al- 
low routers to declare membership in a multicast group, leave a multicast group, and in- 
terrogate other routers. The extensions also provide messages that carry routing infor- 
mation, including cost metrics. 

tDVMRP changed substantially between version 2 and 3 when it incorporated the RPM algorithm 
described above. 
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17.24 The Mrouted Program 

Mrouted is a well-known program that implements DVMRP for UNM systems. 
Like routed?, mrouted cooperates closely with the operating system kernel to install 
multicast routing information. Unlike routed, however, mrouted does not use the stan- 
dard routing table. Instead, it can be used only with a special version of UNIX known 
as a multicast kernel. A UNIX multicast kernel contains a special multicast routing 
table as well as the code needed to forward multicast datagrams. Mrouted handles: 

Route propagation. Mrouted uses DVMRP to propagate multicast 
routing information from one router to another. A computer running 
mrouted interprets multicast routing information, and constructs a mul- 
ticast routing table. As expected, each entry in the table specifies a 
(group, source) pair and a corresponding set of interfaces over which to 
forward datagrams that match the entry. Mrouted does not replace 
conventional route propagation protocols; a computer usually runs 
mrouted in addition to standard routing protocol software. 

Multicast tunneling. One of the chief problems with internet multicast 
arises because not all internet routers can forward multicast datagrams. 
Mrouted can arrange to tunnel a multicast datagram from one router to 
another through intermediate routers that do not participate in multicast 
routing. 

Although a single mrouted program can perform both tasks, a given computer may 
not need both functions. To allow a manager to specify exactly how it should operate, 
mrouted uses a configuration file. The configuration file contains entries that specify 
which multicast groups mrouted is permitted to advertise on each interface, and how it 
should forward datagrams. Furthermore, the configuration file associates a metric and 
threshold with each route. The metric allows a manager to assign a cost to each path 
(e.g., to ensure that the cost assigned to a path over a local area network will be lower 
than the cost of a path across a slow serial link). The threshold gives the minimum IP 
time to live (7TL) that a datagram needs to complete the path. If a datagram does not 
have a sufficient lTL to reach its destination, a multicast kernel does not forward the 
datagram. Instead, it discards the datagram, which avoids wasting bandwidth. 

Multicast tunneling is perhaps the most interesting capability of mrouted. A tunnel 
is needed when two or more hosts wish to participate in multicast applications, and one 
or more routers along the path between the participating hosts do not run multicast rout- 
ing software. Figure 17.10 illustrates the concept. 

?Recall that routed is the UNIX program that implements RIP. 
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net 1 net 2 

(with no support 

Figure 17.10 An example internet configuration that requires multicast tun- 
neling for computers attached to networks 1 and 2 to partici- 
pate in multicast communication. Routers in the internet that 
separates the two networks do not propagate multicast routes, 
and cannot forward datagrarns sent to a multicast address. 

To allow hosts on networks 1 and 2 to exchange multicast, managers of the two 
routers configure an mrouted tunnel. The tunnel merely consists of an agreement 
between the mrouted programs running on the two routers to exchange datagrams. 
Each router listens on its local net for datagrarns sent to the specified multicast destina- 
tion for which the tunnel has been configured. When a multicast datagram arrives that 
has a destination address equal to one of the configured tunnels, mrouted encapsulates 
the datagram in a conventional unicast datagram and sends it across the internet to the 
other router. When it receives a unicast datagram through one of its tunnels, mrouted 
extracts the multicast datagram, and then forwards according to its multicast routing 
table. 

The encapsulation technique that mrouted uses to tunnel datagrams is known as 
ZP-in-ZP. Figure 17.1 1 illustrates the concept. 

I DtgiE I MULTICAST DATAGRAM DATA AREA I 

Figure 17.11 An illustration of IP-in-IP encapsulation in which one datagram 
is placed in the data area of another. A pair of multicast 
routers use the encapsulation to communicate when intermedi- 
ate routers do not understand multicasting. 
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As the figure shows, IP-in-IP encapsulation preserves the original multicast da- 
tagram, including the header, by placing it in the data area of a conventional unicast da- 
tagram. On the receiving machine, the multicast kernel extracts and processes the mul- 
ticast datagram as if it arrived over a local interface. In particular, once it extracts the 
multicast datagram, the receiving machine must decrement the time to live field in the 
header by one before forwarding. Thus, when it creates a tunnel, mrouted treats the in- 
ternet connecting two multicast routers like a single, physical network. Note that the 
outer, unicast datagram has its own time to live counter, which operates independently 
from the time to live counter in the multicast datagram header. Thus, it is possible to 
limit the number of physical hops across a given tunnel independent of the number of 
logical hops a multicast datagram must visit on its journey from the original source to 
the ultimate destination. 

Multicast tunnels form the basis of the Internet's Multicast Backbone (MBONE). 
Many Internet sites participate in the MBONE; the MBONE allows hosts at participat- 
ing sites to send and receive multicast datagrams, which are then propagated to all other 
participating sites. The MBONE is often used to propagate audio and video (e.g., for 
teleconferences). 

To participate in the MBONE, a site must have at least one multicast router con- 
nected to at least one local network. Another site must agree to tunnel traffic, and a 
tunnel is configured between routers at the two sites. When a host at the site sends a 
multicast datagram, the local router at the host's site receives a copy, consults its multi- 
cast routing table, and forwards the datagram over the tunnel using IP-in-IP. When it 
receives a multicast datagram over a tunnel, a multicast router removes the outer encap- 
sulation, and then forwards the datagram according to the local multicast routing table. 

The easiest way to understand the MBONE is to think of it as a virtual network 
built on top of the Internet (which is a virtual network). Conceptually, the MBONE 
consists of multicast routers that are interconnected by a set of point-to-point networks. 
Some of the conceptual point-to-point connections coincide with physical networks; 
others are achieved by tunneling. The details are hidden from the multicast routing 
software. Thus, when mrouted computes a multicast forwarding tree for a given 
(group, source), it thinks of a tunnel as a single link connecting two routers. 

Tunneling has two consequences. First, because some tunnels are much more ex- 
pensive than others, they cannot all be treated equally. Mrouted handles the problem by 
allowing a manager to assign a cost to each tunnel, and uses the costs when choosing 
routes. Typically, a manager assigns a cost that reflects the number of hops in the 
underlying internet. It is also possible to assign costs that reflect administrative boun- 
daries (e.g., the cost assigned to a tunnel between two sites in the same company is as- 
signed a much lower cost than a tunnel to another company). Second, because DVMRP 
forwarding depends on knowing the shortest path to each source, and because multicast 
tunnels are completely unknown to conventional routing protocols, DVMRP must com- 
pute its own version of unicast forwarding that includes the tunnels. 
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17.25 Alternative Protocols 

Although DVMRP has been used in the MBONE for many years, as the Internet 
grew, the IETF became aware of its limitations. Like RIP, DVMRP uses a small value 
for infinity. More important, the amount of information DVMRP keeps is overwhelm- 
ing - in addition to entries for each active (group, source), it must also store entries for 
previously active groups so it knows where to send a graft message when a host joins a 
group that was pruned. Finally, DVMRP uses a broadcast-and-prune paradigm that 
generates traffic on all networks until membership information can be propagated. Iron- 
ically, DVMRP also uses a distance-vector algorithm to propagate membership informa- 
tion, which makes propagation slow. 

Taken together, the limitations of DVMRP mean that it cannot scale to handle a 
large number of routers, larger numbers of multicast groups, or rapid changes in 
membership. Thus, DVMRP is inappropriate as a general-purpose multicast routing 
protocol for the global Internet. 

To overcome the limitations of DVMRP, the IETF has investigated other multicast 
protocols. Efforts have resulted in several designs, including Core Based Trees (CBT), 
Protocol Independent Multicast (PIM), and Multicast extensions to OSPF (MOSPF). 
Each is intended to handle the problems of scale, but does so in a slightly different way. 
Although all these protocols have been implemented and both PIM and MOSPF have 
been used in parts of the MBONE, none of them is a required standard. 

17.26 Core Based Trees (CBT) 

CBT avoids broadcasting and allows all sources to share the same forwarding tree 
whenever possible. To avoid broadcasting, CBT does not forward multicasts along a 
path until one or more hosts along that path join the multicast group. Thus, CBT rev- 
erses the fundamental scheme used by DVMRP - instead of forwarding datagrams un- 
til negative information has been propagated, CBT does not forward along a path until 
positive information has been received. We say that instead of using the data-driven 
paradigm, CBT uses a demand-driven paradigm. 

The demand-driven paradigm in CBT means that when a host uses IGMP to join a 
particular group, the local router must then inform other routers before datagrams will 
be forwarded. Which router or routers should be informed? The question is critical in 
all demand-driven multicast routing schemes. Recall that in a data-driven scheme, a 
router uses the arrival of data traffic to know where to send routing messages (it pro- 
pagates routing messages back over networks from which the traffic arrives). However, 
in a positive-infom~ation scheme, no traffic will arrive for a group until the membership 
information has been propagated. 

CBT uses a combination of static and dynamic algorithms to build a multicast for- 
warding tree. To make the scheme scalable, CBT divides the internet into regions, 
where the size of a region is determined by network administrators. Within each re- 
gion, one of the routers is designated as a core router; other routers in the region must 
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either be configured to know the core for their region, or use a dynamic discovery 
mechanism to find it. In any case, core discovery only occurs when a router boots. 

Knowledge of a core is important because it allows multicast routers in a region to 
form a shared tree for the region. As soon as a host joins a multicast group, the local 
router that receives the host request, L, generates a CBT join request which it sends to 
the core using conventional unicast routing. Each intermediate router along the path to 
the core examines the request. As soon as the request reaches a router R that is already 
part of the CBT shared tree, R returns an acknowledgement, passes the group member- 
ship information on to its parent, and begins forwarding traffic for the group. As the 
acknowledgement passes back to the leaf router, intermediate routers examine the mes- 
sage, and configure their multicast routing table to forward datagrams for the group. 
Thus, router L is linked into the forwarding tree at router R. 

We can summarize: 

Because CBT uses a demand-driven paradigm, it divides the internet 
into regions and designates a core router for each region; other 
routers in the region dynamically build a forwarding tree by sending 
join requests to the core. 

CBT includes a facility for tree maintenance that detects when a link between a 
pair of routers fails. To detect failure, each router periodically sends a CBT echo re- 
quest to its parent in the tree (i.e., the next router along the path to the core). If the re- 
quest is unacknowledged, CBT informs any routers that depend on it, and proceeds to 
rejoin the tree at another point. 

17.27 Protocol Independent Multicast (PIM) 

In reality, PIM consists of two independent protocols that share little beyond the 
name and basic message header formats: PIM - Dense Mode (PIM-DM) and PIM - 
Sparse Mode (PIM-SM). The distinction arises because no single protocol works well 
in all possible situations. In particular, PIM's dense mode is designed for a LAN en- 
vironment in which all, or nearly all, networks have hosts listening to each multicast 
group; whereas, PIM's sparse mode is deigned to accommodate a wide area environ- 
ment in which the members of a given multicast group occupy a small subset of all pos- 
sible networks. 

17.27.1 PIM Dense Mode (PIM-DM) 

Because PIM's dense mode assumes low-delay networks that have plenty of 
bandwidth, the protocol has been optimized to guarantee delivery rather than to reduce 
overhead. Thus, PIM-DM uses a broadcast-and-prune approach similar to DVMRP - 
it begins by using RPF to broadcast each datagram to every group, and only stops send- 
ing when it receives explicit prune requests. 
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17.27.2 Protocol Independence 

The greatest difference between DVMRP and PIM dense mode arises from the in- 
formation PIM assumes is available. In particular, in order to use RPF, PIM-DM dense 
mode requires traditional unicast routing information - the shortest path to each desti- 
nation must be known. Unlike DVMRP, however, PIM-DM does not contain facilities 
to propagate conventional routes. Instead, it assumes the router also uses a convention- 
al routing protocol that computes the shortest path to each destination, installs the route 
in the routing table, and maintains the route over time. In fact, part of PIM-DM'S pro- 
tocol independence refers to its ability to co-exist with standard routing protocols. 
Thus, a router can use any of the routing protocols discussed (e.g., RIP, or OSPF) to 
maintain correct unicast routes, and PIM's dense mode can use routes produced by any 
of them. To summarize: 

Although it assumes a correct unicast routing table exists, PIM dense 
mode does not propagate unicast routes. Instead, it assumes each 
router also runs a conventional routing protocol which maintains the 
unicast routes. 

17.27.3 PIM Sparse Mode (PIM-SM) 

PIM's sparse mode can be viewed as an extension of basic concepts from CBT. 
Like CBT, PIM-SM is demand-driven. Also like CBT, PIM-SM needs a point to which 
join messages can be sent. Therefore, sparse mode designates a router called a Rendez- 
vous Point (RP) that is the functional equivalent of a CBT core. When a host joins a 
multicast group, the local router unicasts a join request to the RP; routers along the path 
examine the message, and if any router is already part of the tree, the router intercepts 
the message and replies. Thus, PIM-SM builds a shared forwarding tree for each group 
like CBT, and the trees are rooted at the rendezvous point?. 

The main conceptual difference between CBT and PIM-SM arises from sparse 
mode's ability to optimize connectivity through reconfiguration. For example, instead 
of a single RP, each sparse mode router maintains a set of potential RP routers, with 
one selected at any time. If the current RP becomes unreachable (e.g., because a net- 
work failure causes disconnection), PIM-SM selects another RP from the set and starts 
rebuilding the forwarding tree for each multicast group. The next section considers a 
more significant reconfiguration. 

17.27.4 Switching From Shared To Shortest Path Trees 

In addition to selecting an alternative RP, PIM-SM can switch from the shared tree 
to a Shortest Path tree (SP tree). To understand the motivation, consider the network 
interconnection that Figure 17.12 illustrates. 

When an arbitrary host sends a datagram to a multicast group, the datagram is t ~ ~ e k d  to the RP for the 
group, which then multicasts the datagram down the shared tree. 
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Figure 17.12 A set of networks with a rendezvous point and a multicast 
group that contains two members. The demand-driven strategy 
of building a shared tree to the rendezvous results in nonop- 
timal routing. 

In the figure, router R, has been selected as the RP. Thus, routers join the shared 
tree by sending along a path to R,. For example, assume hosts X and Y have joined a 
particular multicast group. The path to the shared tree from host X consists of routers 
R,, R,, and R,, and the path from host Y to the shared tree consists of routers R,, R,-, R,, 
and R,. 

Although the shared tree approach forms shortest paths from each host to the RP, it 
may not optimize routing. In particular, if group members are not close to the RP, the 
inefficiency can be significant. For example, the figure shows that when host X sends a 
datagram to the group, the datagram is routed from X to the RP and from the RP to Y. 
Thus, the datagram must pass through six routers. However, the optimal (i.e., shortest) 
path from X to Y only contains two routers (R, and R,). 

PIM sparse mode includes a facility to allow a router to choose between the shared 
tree or a shorest path tree to the source (sometimes called a source tree). Although 
switching trees is conceptually straightforward, many details complicate the protocol. 
For example, most implementations use the receipt of traffic to trigger the change - if 
the traffic from a particular source exceeds a preset threshold, the router begins to estab- 
lish a shortest path?. Unfortunately, traffic can change rapidly, so routers must apply 
hysteresis to prevent oscillations. Furthermore, the change requires routers along the 
shortest path to cooperate; all routers must agree to forward datagrams for the group. 
Interestingly, because the change affects only a single source, a router must continue its 
connection to the shared tree so it can continue to receive from other sources. More im- 
portant, it must keep sufficient routing information to avoid forwarding multiple copies 
of each datagram from a (group, source) pair for which a shortest path tree has been es- 
tablished. 

tThe implementation from at least one vendor starts building a shortest path immediately (i.e., the traffic 
threshold is zero). 
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17.28 Multicast Extensions To OSPF (MOSPF) 

So far, we have seen that multicast routing protocols like PIM can use infomiation 
from a unicast routing table to form delivery trees. Researchers have also investigated a 
broader question: "how can multicast routing benefit from additional information that is 
gathered by conventional routing protocols?" In particular, a link state protocol such as 
OSPF provides each router with a copy of the internet topology. More specifically, 
OSPF provides the router with the topology of its OSPF area. 

When such information is available, multicast protocols can indeed use it to com- 
pute a forwarding tree. The idea has been demonstrated in a protocol known as Multi- 
cast extensions to OSPF (MOSPF), which uses OSPF's topology database to fornl a for- 
warding tree for each source. MOSPF has the advantage of being demand-driven, 
meaning that the traffic for a particular group is not propagated until it is needed (i.e., 
because a host joins or leaves the group). The disadvantage of a demand-driven scheme 
arises from the cost of propagating routing information - all routers in an area must 
maintain membership about every group. Furthermore, the information must be syn- 
chronized to ensure that every router has exactly the same database. As a consequence, 
MOSPF sends less data traffic, but sends more routing information than data-driven 
protocols. 

Although MOSPF's paradigm of sending all group information to all routers works 
within an area, it cannot scale to an arbitrary internet. Thus, MOSPF defines inter-area 
multicast routing in a slightly different way. OSPF designates one or more routers in an 
area to be an Area Border Router (ABR) which then propagates routing infornlation to 
other areas. MOSPF further designates one or more of the area's ABRs to be a Multi- 
cast Area Border Router MABR which propagates group membership infomiation to 
other areas. MABRs do not implement a symmetric transfer. Instead, MABRs use a 
core approach - they propagate membership information from their area to the back- 
bone area, but do not propagate information from the backbone down. 

An MABR can propagate multicast information to another area without acting as 
an active receiver for traffic. Instead, each area designates a router to receive multicast 
on behalf of the area. When an outside area sends in multicast traffic, traffic for all 
groups in the area is sent to the designated receiver, which is sometimes called a multi- 
cast wildcard receiver. 

17.29 Reliable Multicast And ACK Implosions 

The tern1 reliable multicast refers to any system that uses multicast delivery, but 
also guarantees that all group members receive data in order without any loss, duplica- 
tion, or corruption. In theory, reliable multicast combines the advantage of a forward- 
ing scheme that is more efficient than broadcast with the advantage of having all data 
arrive intact. Thus, reliable multicast has great potential benefit and applicability (e.g., 
a stock exchange could use reliable multicast to deliver stock prices to many destina- 
tions). 
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In practice, reliable multicast is not as general or straightforward as it sounds. 
First, if a multicast group has multiple senders, the notion of delivering datagrams "in 
sequence" becomes meaningless. Second, we have seen that widely used multicast for- 
warding schemes such as RPF can produce duplication even on small internets. Third, 
in addition to guarantees that all data will eventually arrive, applications like audio or 
video expect reliable systems to bound the delay and jitter. Fourth, because reliability 
requires acknowledgements and a multicast group can have an arbitrary number of 
members, traditional reliable protocols require a sender to handle an arbitrary number of 
acknowledgements. Unfortunately, no computer has enough processing power to do so. 
We refer to the problem as an ACK implosion; it has become the main focus of much 
research. 

.- 
To overcome the ACK implosion problem, reliable multicast protocols take a 

hierarchical approach in which multicasting is restricted to a single source?. Before 
data is sent, a forwarding tree is established from the source to all group members, and 
acknowledgement points must be identified. 

An acknowledgement point, which is also known as an acknowledgement aggrega- 
tor or designated router (DR), consists of a router in the forwarding tree that agrees to 
cache copies of the data and process acknowledgements from routers or hosts further 
down the tree. If a retransmission is required, the acknowledgement point obtains a 
copy from its cache. 

Most reliable multicast schemes use negative rather than positive acknowledge- 
ments - the host does not respond unless a datagram is lost. To allow a host to detect 
loss, each datagram must be assigned a unique sequence number. When it detects loss, 
a host sends a NACK to request retransmission. The NACK propagates along the for- 
warding tree toward the source until it reaches an acknowledgement point. The ack- 
nowledgement point processes the NACK, and retransmits a copy of the lost datagram 
along the forwarding tree. 

How does an acknowledgement point ensure that it has a copy of all datagrams in 
the sequence? It uses the same scheme as a host. When a datagram arrives, the ack- 
nowledgement point checks the sequence number, places a copy in its memory, and 
then proceeds to propagate the datagram down the forwarding tree. If it finds that a da- 
tagram is missing, the acknowledgement point sends a NACK up the tree toward the 
source. The NACK either reaches another acknowledgement point that has a copy of 
the datagram (in which case that acknowledgement point transmits a second copy), or 
the NACK reaches the source (which retransmits the missing datagram). 

The choice of branching topology and acknowledgement points is crucial to the 
success of a reliable multicast scheme. Without sufficient acknowledgement points, a 
missing datagram can cause an ACK implosion. In particular, if a given router has 
many descendants, a lost datagram can cause that router to be overrun with retransmis- 
sion requests. Unfortunately, automating selection of acknowledgement points has not 
turned out to be simple. Consequently, many reliable multicast protocols require manu- 
al configuration. Thus, multicast is best suited to: services that tend to persist over long 
periods of time, topologies that do not change rapidly, and situations where intermediate 
routers agree to serve as acknowledgement points. 

?Note that a single source does not limit functionality because the source can agree to forward any mes- 
sage it receives via unicast. Thus, an arbitrary host can send a packet to the source, which then multicasts the 
packet to the group. 
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Is there an alternative approach to reliability? Some researchers are experimenting 
with protocols that incorporate redundant infornlation to reduce or eliminate retransmis- 
sion. One scheme sends redundant datagrams. Instead of sending a single copy of each 
datagram, the source sends N copies (typically 2 or 3). Redundant datagrams work 
especially well when routers implement a Random Early Discard (RED) strategy be- 
cause the probability of more than one copy being discarded is extremely small. 

Another approach to redundancy involves forward error-correcting codes. Analo- 
gous to the error-correcting codes used with audio CDs, the scheme requires a sender to 
incorporate error-correction infomlation into each datagram in a data stream. If one da- 
tagram is lost, the error correcting code contains sufficient redundant information to al- 
low a receiver to reconstruct the missing datagram without requesting a retransmission. 

17.30 Summary 

IP multicasting is an abstraction of hardware multicasting. It allows delivery of a 
datagram to multiple destinations. IP uses class D addresses to specify multicast 
delivery; actual transmission uses hardware multicast, if it is available. 

IP multicast groups are dynamic: a host can join or leave a group at any time. For 
local multicast, hosts only need the ability to send and receive multicast datagrams. 
However, IP multicasting is not limited to a single physical network - multicast routers 
propagate group membership information and arrange routing so that each member of a 
multicast group receives a copy of every datagram sent to that group. 

Hosts communicate their group membership to multicast routers using IGMP. 
IGMP has been designed to be efficient and to avoid using network resources. In most 
cases, the only traffic IGMP introduces is a periodic message from a multicast router 
and a single reply for each multicast group to which hosts on that network belong. 

A variety of protocols have been designed to propagate multicast routing infom~a- 
tion across an internet. The two basic approaches are data-driven and demand-driven. 
In either case, the amount of information in a multicast forwarding table is much larger 
than in a unicast routing table because multicasting requires entries for each 
(group, source) pair. 

Not all routers in the global Internet propagate multicast routes or forward multi- 
cast traffic. Groups at two or more sites, separated by an internet that does not support 
multicast routing, can use an IP tunnel to transfer multicast datagrams. When using a 
tunnel, a program encapsulates a multicast datagram in a conventional unicast datagram. 
The receiver must extract and handle the multicast datagram. 

Reliable multicast refers to a scheme that uses multicast forwarding but offers reli- 
able delivery semantics. To avoid the ACK implosion problem, reliable multicast 
schemes either use a hierarchy of acknowledgement points or send redundant infomla- 
tion. 
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Deering [RFC 22361 specifies the standard for IP multicasting described in this 
chapter, which includes version 2 of IGMP. Waitzman, Partridge, and Deering [RFC 
10751 describes DVMRP, Estrin et. al. [RFC 23621 describes PIM sparse mode, Ballar- 
die [RFCs 2189 22011 describes CBT, and Moy [RFC 15851 describes MOSPF. 

Eriksson [I9941 explains the multicast backbone. Casner and Deering [July 19921 
reports on the first multicast of an IETF meeting. 

The standard suggests using 23 bits of an IP multicast address to form a hardware multi- 
cast address. In such a scheme, how many IP multicast addresses map to a single 
hardware multicast address? 

Argue that IP multicast addresses should use only 23 of the 28 possible bits. Hint: what 
are the practical limits on the number of groups to which a host can belong and the 
number of hosts on a single network? 

IP must always check the destination addresses on incoming multicast datagrams and 
discard datagrams if the host is not in the specified multicast group. Explain how the 
host might receive a multicast destined for a group to which that host is not a member. 
Multicast routers need to know whether a group has members on a given network. Is 
there any advantage to them knowing the exact set of hosts on a network that belong to a 
given multicast group? 

Find three applications in your environment that can benefit from IP multicast. 

The standard says that IP software must arrange to deliver a copy of any outgoing multi- 
cast datagram to application programs on the host that belong to the specified multicast 
group. Does this design make programming easier or more difficult? Explain. 

When the underlying hardware does not support multicast, IP multicast uses hardware 
broadcast for delivery. How can doing so cause problems? Is there any advantage to 
using IP multicast over such networks? 

DVMRP was derived from RIP. Read RFC 1075 on DVMRP and compare the two pro- 
tocols. How much more complex is DVMRP than RIP? 
IGMP does not include a strategy for acknowledgement or retransmission, even when 
used on networks that use besteffort delivery. What can happen if a query is lost? 
What can happen if a response is lost? 

Explain why a multi-homed host may need to join a multicast group on one network, but 
not on another. (Hint: consider an audio teleconference.) 

Estimate the size of the multicast forwarding table needed to handle multicast of audio 
from 100 radio stations, if each station has a total of ten million listeners at random loca- 
tions around the world. 
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Argue that only two types of multicast are practical in the Internet: statically configured 
commercial services that multicast to large numbers of subscribers and dynamically con- 
figured services that include a few participants (e.g., family members in three households 
participating in a conference phone call). 

Consider reliable multicast achieved through redundant transmission. If a given link has 
high probability of corruption, is it better to send redundant copies of a datagram or to 
send one copy that uses forward error-correcting codes? Explain. 

The data-driven multicast routing paradigm works best on local networks that have low 
delay and excess capacity, while the demand-driven paradigm works best in a wide area 
environment that has limited capacity and higher delay. Does it make sense to devise a 
single protocol that combines the two schemes? Why or why not. (Hint: investigate 
MOSPF.) 

Devise a quantitative measure that can be used to decide when PIM-SM should switch 
from a shared tree to a shortest path tree. 

Read the protocol specification to find out the notion of "sparse" used in PIM-SM. 
Find an example of an internet in which the population of group members is sparse, but 
for which DVMRP is a better multicast routing protocol. 





TCP/IP Over ATM Networks 

18.1 Introduction 

Previous chapters explain the fundamental parts of TCPAP and show how the com- 
ponents operate over conventional LAN and WAN technologies. This chapter explores 
how TCP/IP, which was designed for connectionless networks, can be used over a 
connection-oriented technology?. We will see that TCP/IP is extremely flexible - a 
few of the address binding details must be modified for a connection-oriented environ- 
ment, but most protocols remain unchanged. 

The challenge arises when using TCPIIP over Non-Broadcast Multiple-Access 
(NBMA) networks (i.e., connection-oriented networks which allow multiple computers 
to attach, but do not support broadcast from one computer to all others). We will see 
that an NBMA environment requires modifications to IP protocols such as ARP that 
rely on broadcast. 

To make the discussion concrete and relate it to available hardware, we will use 
Asynchronous Transfer Mode (ATM) in all examples. This chapter expands the brief 
description of ATM in Chapter 2, and covers additional details. The next sections 
describe the physical topology of an ATM network, the logical connectivity provided, 
ATM's connection paradigm, and the ATM adaptation protocol used to transfer data. 
Later sections discuss the relationship between ATM and TCP/IP. They explain ATM 
addressing, and show the relationship between a host's ATM address and its IP address. 
They also describe a modified form of the Address Resolution Protocol (ARP) used to 
resolve an IP address across a connection-oriented network, and a modified form of In- 
verse ARP that a server can use to obtain and manage addresses. Most important, we 
will see how IP datagrams travel across an ATM network without IP fragmentation. 

?Some documents use the abbreviation CL for connectionless and CO for connection-oriented 
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18.2 ATM Hardware 

Like most connection-oriented technologies, ATM uses special-purpose electronic 
switches as the basic network building block. The switches in an ATM LAN usually 
provide connections for between 16 and 32 computers.? Although it is possible to use 
copper wiring between a host and an ATM switch, most installations use optical fiber to 
provide higher data rates. Figure 18.1 shows a diagram of an ATM switch with com- 
puters connected, and explains the connection. 

computer attached 
to switch -5' 

fiber to fiber from 
switch 1 1 switch 

Figure 18.1 (a) The schematic diagram of a single ATM switch with four 
computers attached, and (b) the details of each connection. A 
pair of optical fibers carries data to and from the switch. 

Physically, a host interface board plugs into a computer's bus. The interface 
hardware includes optical transmitters and receivers along with the circuitry needed to 
convert between electrical signals and the pulses of light that travel down the fiber to 
the switch. Because each fiber is used to carry light in only one direction, a connection 
that allows a computer to both send and receive data requires a pair of fibers. 

18.3 Large ATM Networks 

Although a single ATM switch has finite capacity, multiple switches can be inter- 
connected to form a larger network. In particular, to connect computers at two sites to 
the same network, a switch can be installed at each site, and the two switches can then 
be connected. The connection between two switches diiers slightly from the connec- 
tion between a host computer and a switch. For example, interswitch connections usu- 
ally operate at higher speeds, and use slightly modified protocols. Figure 18.2 illus- 
trates the topology, and shows the conceptual difference between a Network to Network 
Interface (NNI) and a User to Network Interface (UNI). 

?Switches used in larger networks provide more connections; the point is that the number of computers 
attached to a given switch is limited. 
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NNI or UNI used between UNI used between 
two ATM switches switch and a computer 

ATM SWITCH 

Figure 18.2 Three ATM switches combined to fornl a large network. 
Although an NNI interface is designed for use between switches, 
UNI connections can be used between ATM switches in a 
private network. 

18.4 The Logical View Of An ATM Network 

The goal of ATM is an end-to-end communication system. To a computer at- 
tached to an ATM network, an entire fabric of ATM switches appears to be a homo- 
geneous network. Like the voice telephone system, a bridged Ethernet, or an IP inter- 
net, ATM hides the details of physical hardware and gives the appearance of a single, 
physical network with many computers attached. For example, Figure 18.3 illustrates 
how the ATM switching system in Figure 18.2 appears logically to the eight computers 
that are attached to it. 

0 TM SWITCHING SYSTE 

Figure 1 8 3  The logical view of the ATM switches in Figure 18.2. ATM 
gives the appearance of a uniform network; any computer can 
communicate with any other computer. 

Thus, ATM provides the same general abstraction across homogeneous ATM 
hardware that TCP/IP provides for heterogeneous systems: 

Despite a physical architecture fhat permits a switching fabric to con- 
tain multiple switches, ATM hardware provides attached computers 
with the appearance of a single, physical network. Any computer on 
an ATM network can communicate directly with any other; the com- 
puters remain unaware of the physical network structure. 
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18.5 The Two ATM Connection Paradigms 

ATM provides a connection-oriented interface to attached hosts. That is, before it 
can send data to a remote destination, a host must establish a connection, an abstraction 
analogous to a telephone call. Although there is only one type of underlying connec- 
tion, ATM offers two ways to create a connection. The first is known as a Pennanent 
Virtual Circuit? (PVC), and the second is known as a Switched Virtual Circuit? (SVC). 

18.5.1 Permanent Virtual Circuits 

In telephone jargon, a PVC is said to be a provisioned service. Provisioning sim- 
ply means that a person is required to enter the necessary configuration manually into 
each switch along the path from the source to the destination (e.g., by typing into the 
console on each switch). Although the terms PVC and provisioned service may sound 
esoteric, the concept is not; even the most basic connection-oriented hardware supports 
PVCs. 

On one hand, manual co~gura t ion  has an obvious disadvantage: it cannot be 
changed rapidly or easily. Consequently, PVCs are only used for connections that stay 
in place for relatively long periods of time (weeks or years). On the other hand, manual 
configuration has advantages: a PVC does not require all switches to agree on a stan- 
dard signaling mechanism. Thus, switches from two or more vendors may be able to 
interoperate when using PVCs, even if they cannot when using SVCs. Second, PVCs 
are often required for network management, maintenance, and debugging operations. 

18.5.2 Switched Virtual Circuits 

Unlike a PVC, an SVC is created automatically by software, and terminated when 
no longer needed. Software on a host initiates SVC creation; it passes a request to the 
local switch. The request includes the complete address of a remote host computer with 
which an SVC is needed and parameters that specify the quality of service required 
(e.g., the bandwidth and delay). The host then waits for the ATM network to create a 
circuit and respond. The ATM signaling$ system establishes a path from the originat- 
ing host across the ATM network (possibly through multiple switches) to the remote 
host computer. 

During signaling, each ATM switch along the path and the remote computer must 
agree to establish the virtual circuit. When it agrees, a switch records information about 
the circuit, reserves the necessary resources, and sends the request to the next switch 
along the path. Once all the switches and the remote computer respond, signaling com- 
pletes, and the switches at each end of the connection report to the hosts that the virtual 
circuit is in place. 

Like all abstractions, connections must be identified. The UNI interface uses a 
24-bit integer to identify each virtual circuit. When administrators create PVCs, they 
assign an identifier to each. When software on a host creates a new SVC, the local 
ATM switch assigns an identifier and informs the host. Unlike co~ectionless technolo- 

TAlthough the ATM standard uses the term vir?ual channel, we will follow common practice and call it a 
v i m 1  circuit. 

$The term signaling derives from telephone jargon. 
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gies, a connection-oriented system does not require each packet to carry either a source 
or destination address. Instead, a host places a circuit identifier in each outgoing pack- 
et, and the switch places a circuit identifier in each packet it delivers. 

18.6 Paths, Circuits, And Identifiers 

We said that a comection-oriented technology assigns a unique integer identifier to 
each circuit, and that a host uses the identifier when performing VO operations or when 
closing the circuit. However, connection-oriented systems do not assign each circuit a 
globally unique identifier. Instead, the identifier is analogous to an V0 descriptor that 
is assigned to a program by the operating system. Like an V0 descriptor, a circuit iden- 
tifier is a shorthand that a program uses in place of the full information that was used to 
create the circuit. Also like an VO descriptor, a circuit identifier only remains valid 
while the circuit is open. Furthermore, a circuit identifier is meaningful only across a 
single hop - the circuit identifiers obtained by hosts at the two ends of a given virtual 
circuit usually differ. For example, the sender may be using identifier 17 while the re- 
ceiver uses identifier 49; each switch along the path translates the circuit identifier in a 
packet as the packet flows from one host to the other. 

Technically, a circuit identifier used with the UNI interface consists of a 24-bit in- 
teger divided into two fields?. Figure 18.4 shows how ATM partitions the 24 bits into 
an 8-bit virtual path identifier (VPI) and a 16-bit virtual circuit identifier (VCZ). Often, 
the entire identifier is referred to as a VPVVCIpair. 

Figure 18.4 The 24-bit connection identifier used with UNI. The identifier is 
divided into virtual path and virtual circuit parts. 

VPI FIELD VCI FIELD 

The motivation for dividing a connection identifier into VPI and VCI fields is 
similar to the reasons for dividing an IP address into network and host fields. If a set of 
virtual circuits follows the same path, an administrator can arrange for all circuits in the 
set to use the same VPI. ATM hardware can then use the VPI to route traffic eficient- 
ly. Commercial carriers can also use the VPI for accounting - a carrier can charge a 
customer for a virtual path, and then allow the customer to decide how to multiplex 
multiple virtual circuits over the path. 

8 BITS 

?The circuit identifier used with NNI has a slightly different format and a different length. 

16 BITS 
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18.7 ATM Cell Transport 

At the lowest level, an ATM network uses fixed-size frames called cells to carry 
data. ATM requires all cells to be the same size because doing so makes it possible to 
build faster switching hardware and to handle voice as well as data. Each ATM cell is 
53 octets long, and consists of a 5-octet header followed by 48 octets of payload (i.e. 
data). Figure 18.5 shows the format of a cell header. 

I FLOW CONTROL VPI (FIRST 4 BITS) 

VPI (LAST 4 BITS) f VCI (FIRST 4 BITS) 

VCI (MIDDLE 8 BITS) 

I VCI (LAST 4 BITS) f PAYLOAD TYPE PRlO I 

I CYCLIC REDUNDANCY CHECK I 
Figure 185 The format of the five-octet UNI cell header used between a host 

and a switch. The diagram shows one octet per line; forty-eight 
octets of data follow the header. 

18.8 ATM Adaptation Layers 

Although ATM switches small cells at the lowest level, application programs that 
transfer data over ATM do not read or write cells. Instead, a computer interacts with 
ATM through an ATM Adaptation Layer, which is part of the ATM standard. The 
adaptation layer performs several functions, including detection and correction of errors 
such as lost or corrupted cells. Usually, fmware  that implements an ATM adaptation 
layer is located on a host interface along with hardware and fmware  that provide cell 
transmission and reception. Figure 18.6 illustrates the organization of a typical ATM 
interface, and shows how data passes from the computer's operating system through the 
interface board and into an ATM network. 
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DEVICE DRIVER 5 sofrware in 
t 

host computer 

host interface - 
board 

optical fiber 

I 1 

1 I 
ADAPTATION LAYER 

1 t 
CELL TRANSPORT 

1 t 
OPTICAL COMM. 

4 

Figure 18.6 The conceptual organization of ATM interface hardware and the 
flow of data through it. Software on a host interacts with an 
adaptation layer protocol to send and receive data; the adaptation 
layer converts to and from cells. 

v 

When establishing a connection, a host must spec@ which adaptation layer proto- 
col to use. Both ends of the connection must agree on the choice, and the adaptation 
layer cannot be changed once the connection has been established. To summarize: 

- 

Although ATM hardware uses small, jixed-size cells to transport data, 
a higher layer protocol called an ATM Adaptation Layer provides 
data transfer services for computers that use ATM. When a virtual 
circuit is created, both ends of the circuit must agree on which adup- 
tation layer protocol will be used. 
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18.9 ATM Adaptation Layer 5 

Computers use ATM Adaptation Layer 5 (AAL.5) to send data across an ATM net- 
work. Interestingly, although ATM uses small fmed-size cells at the lowest level, 
AAL5 presents an interface that accepts and delivers large, variable-length packets. 
Thus, the interface computers use to send data makes ATM appear much like a connec- 
tionless technology. In particular, AAL5 allows each packet to contain between 1 and 
65,535 octets of data. Figure 18.7 illustrates the packet format that AAL5 uses. 

Between 1 and 65,535 
octets of data 

&octet 
trailer 

Figure 18.7 (a) The basic packet format that AAL5 accepts and delivers, and 
(b) the fields in the 8-octet trailer that follows the data. 

&BIT 
UU 

Unlike most network frames that place control information in a header, -5 
places control information in an 8-octet trailer at the end of the packet. The AAL5 
trailer contains a 16-bit length field, a 32-bit cyclic redundancy check (CRC) used as a 
frame checksum, and two 8-bit fields labeled UU and CPZ that are currently unused?. 

Each AALS packet must be divided into cells for transport across an ATM net- 
work, and then must be recombined to form a packet before being delivered to the re- 
ceiving host. If the packet, including the 8-octet trailer, is an exact multiple of 48 oc- 
tets, the division will produce completely full cells. If the packet is not an exact multi- 
ple of 48 octets, the final cell will not be full. To accommodate arbitrary length pack- 
ets, AALS allows the final cell to contain between 0 and 40 octets of data, followed by 
zero padding, followed by the 8-octet trailer. In other words, AALS places the trailer in 
the last 8 octets of the final cell, where it can be found and extracted without knowing 
the length of the packet. 

tField UU can contain any value; field CPI must be set to zero. 

&BIT 
CPI 

16-BIT 
LENGTH 

32-BIT 
FRAME CHECKSUM 
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18.1 0 AAL5 Convergence, Segmentation, And Reassembly 

When an application sends data over an ATM connection using -5, the host 
delivers a block of data to the AAL5 interface. AAL5 generates a trailer, divides the in- 
formation into 48-octet pieces, and transfers each piece across the ATM network in a 
single cell. On the receiving end of the connection, AAL5 reassembles incoming cells 
into a packet, checks the CRC to ensure that all pieces arrived correctly, and passes the 
resulting block of data to the host software. The process of dividing a block of data 
into cells and regrouping them is known as ATM segmentation and reassemblyt (SAR). 

By separating the functions of segmentation and reassembly from cell transport, 
AAL5 follows the layering principle. The ATM cell transfer layer is classified as 
machine-to-machine because the layering principle applies from one machine to the next 
(e.g., between a host and a switch or between two switches). The AAL5 layer is classi- 
fied as end-to-end because the layering principle applies from the source to the destina- 
tion - AAL5 presents the receiving software with data in exactly the same size blocks 
as the application passed to AAL5 on the sending end. 

How does AAL5 on the receiving side know how many cells comprise a packet? 
The sending AAL5 uses the low-order bit of the PAYLOAD TYPE field of the ATM cell 
header to mark the final cell in a packet. One can think of it as an end-of-packet bit. 
Thus, the receiving AAL5 collects incoming cells until it finds one with the end-of- 
packet bit set. ATM standards use the term convergence to describe mechanisms that 
recognize the end of a packet. Although AAL5 uses a single bit in the cell header for 
convergence, other ATM adaptation layer protocols are free to use other convergence 
mechanisms. 

To summarize: 

A computer uses ATM Adaptation Layer 5 to transfer a large block of 
data over an ATM virtual circuit. On the sending host, AAL5 gen- 
erates a trailer, segments the block of data into cells, and transmits 
each cell over the virtual circuit. On the receiving host, AALS 
reassembles the cells to reproduce the original block of data, strips 
off the trailer, and delivers the block of data to the receiving host 
sofrware. A single bit in the cell header marks the final cell of a 
given data block 

18.1 1 Datagram Encapsulation And IP MTU Size 

We said that IP uses AAL5 to transfer datagrams across an ATM network. Before 
data can be sent, a virtual circuit (PVC or SVC) must be in place to the destination 
computer and both ends must agree to use AAL5 on the circuit. To transfer a datagram, 
the sender passes it to AAL5 along with the VPWCI identifying the circuit. AAL5 
generates a trailer, divides the datagram into cells, and transfers the cells across the net- 

tUse of the term reassembly suggests the strong similarity between AALS segmentation and IP fragmen- 
tation: both mechanisms divide a large block of data into smaller units for transfer. 
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work. At the receiving end, AAL5 reassembles the cells, checks the CRC to verify that 
no bits were lost or corrupted, extracts the datagram, and passes it to IP. 

In reality, AALS uses a 16-bit length field, making it possible to send 64K octets 
in a single packet. Despite the capabilities of AAL5, TCPm restricts the size of da- 
tagrams that can be sent over ATM. The standards impose a default of 9180 octets? per 
datagram. As with any network interface, when an outgoing datagram is larger than the 
network MTU, IP fragments the datagram, and passes each fragment to AAL5. Thus, 
AAL5 accepts, transfers, and delivers datagrams of 9180 octets or less. To summarize: 

When TCP/IP sends data across an ATM network, it transfers an en- 
tire datagram using ATM Adaptation Layer 5. Although AAL.5 can 
accept and transfer packets that contain up to 64K octets, the TCPnP 
standards specify a default MTU of 9180 octets. IP must fragment 
any datagram larger than 9180 octets before passing it to AALS. 

18.1 2 Packet Type And Multiplexing 

Observant readers will have noticed that the AAL5 trailer does not include a type 
field. Thus, an AAL5 frame is not self-identifying. As a result, the simplest form of 
encapsulation described above does not suffice if the two ends want to send more than 
one type of data across a single VC (e.g., packets other than IP). Two possibilities ex- 
ist: 

The two computers at the ends of a virtual circuit agree a priori that the cir- 
cuit will be used for a specific protocol (e.g., the circuit will only be used to 
send IP datagram). 
The two computers at the ends of a virtual circuit agree a priori that some 
octets of the data area will be reserved for use as a type field. 

The former scheme, in which the computers agree on the high-level protocol for a 
given circuit, has the advantage of not requiring additional information in a packet. For 
example, if the computers agree to transfer IP, a sender can pass each datagram directly 
to AAL5 to transfer; nothing needs to be sent besides the datagram and the AAL5 
trailer. The chief disadvantage of such a scheme lies in duplication of virtual circuits: a 
computer must create a separate virtual circuit for each high-level protocol. Because 
most carriers charge for each virtual circuit, customers try to avoid using multiple cir- 
cuits because it adds unnecessary cost. 

The latter scheme, in which two computers use a single virtual circuit for multiple 
protocols, has the advantage of allowing all traffic to travel over the same circuit, but 
the disadvantage of requiring each packet to contain octets that identlfy the protocol 
type. The scheme also has the disadvantage that packets from all protocols travel with 
the same delay and priority. 

tThe size 9180 was chosen to make ATM compatible with an older technology called Switched Multime- 
gabit Data Service (SMDS); a value other than 9180 can be used if both ends agree. 
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The TCPIIP standards spec@ that computers can choose between the two methods 
of using AALS. Both the sender and receiver must agree on how the circuit will be 
used; the agreement may involve manual configuration. Furthermore, the standards 
suggest that when computers choose to include type information in the packet, they 
should use a standard IEEE 802.2 Logical Link Control (LLC) header followed by a 
SubNetwork Attachment Point (SNAP) header. Figure 18.8 illustrates the LLCISNAP 
information prefured to a datagram before it is sent over an ATM virtual circuit. 

LLC ( AA. AA. 03) I OUI, (00) 

OUln (00.00) I TYPE (08.00) 

IP DATAGRAM 

Figure 18.8 The packet format used to send a datagram over AALS when 
multiplexing multiple protocols on a single virtual circuit. The 
I-octet LLCISNAP header identifies the contents as an IP da- 
tagram. 

As the figure shows, the LLC field consists of three octets that contain the hexade- 
cimal values AA.AA.03t. The SNAP header consists of five octets: three that contain 
an Organizationally Unique Identifier (OUI) and two for a type*. Field OUI identifies 
an organization that administers values in the TYPE field, and the TYPE field identifies 
the packet type. For an IP datagram, the OUI field contains 00.00.00 to identify the or- 
ganization responsible for Ethernet standards, and the TYPE field contains 08.00, the 
value used when encapsulating IP in an Ethernet frame. Software on the sending host 
must prefix the LLCISNAP header to each packet before sending it to AALS, and 
software on the receiving host must examine the header to determine how to handle the 
packet. 

18.13 IP Address Binding In An ATM Network 

We have seen that encapsulating a datagram for transmission across an ATM net- 
work is straightforward. By contrast, IP address binding in a Non-Broadcast Multiple- 
Access (NBUA) environment can be difficult. Like other network technologies, ATM 
assigns each attached computer a physical address that must be used when establishing 
a virtual circuit. On one hand, because an ATM physical address is larger than an IP 
address, an ATM physical address cannot be encoded within an IP address. Thus, IP 
cannot use static address binding for ATM networks. On the other hand, ATM 

?The notation represents each octet as a hexadecimal value separated by decimal points. 
$To avoid unnecessary fragmentation, the eight octets of an LLCISNAP header are ignored in the MTU 

computation (i.e., the effective MTU of an ATM connection that uses an LLCISNAP header is 9188). 
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hardware does not support broadcast. Thus, IP cannot use conventional ARP to bind 
addresses on ATM networks. 

ATM permanent virtual circuits further complicate address binding. Because a 
manager configures each permanent virtual circuit manually, a host only knows the 
circuit's VPWCI pair. Software on the host may not know the IP address nor the 
ATM hardware address of the remote endpoint. Thus, an IP address binding mechan- 
ism must provide for the identification of a remote computer connected over a PVC as 
well as the dynamic creation of SVCs to known destinations. 

Switched connection-oriented technologies further complicate address binding be- 
cause they require two levels of binding. First, when creating a virtual circuit over 
which datagrams will be sent, the IP address of the destination must be mapped to an 
ATM endpoint address. The endpoint address is used to create a virtual circuit. 
Second, when sending a datagram to a remote computer over an existing virtual circuit, 
the destination's IP address must be mapped to the VPWCI pair for the circuit. The 
second binding is used each time a datagram is sent over an ATM network; the first 
binding is necessary only when a host creates an SVC. 

18.14 Logical IP Subnet Concept 

Although no protocol has been proposed to solve the general case of address bind- 
ing for NBMA networks like ATM, a protocol has been devised for a restricted form. 
The restricted form arises when a group of computers uses an ATM network in place of 
a single (usually local) physical network. The group forms a Logical IP Subnet (LIS). 
Multiple logical IP subnets can be defined among a set of computers that all attach to 
the same ATM hardware network. For example, Figure 18.9 illustrates eight computers 
attached to an ATM network divided into two LIS. 

ATM NETWORK 

Figure 18.9 Eight computers attached to an ATM network participating in 
two Logical IP Subnets. Computers marked with a slash partici- 
pate in one LIS, while computers marked with a circle partici- 
pate in the other LIS. 
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As the figure shows, all computers attach to the same physical ATM network. 
Computers A, C, D, E, and F participate in one LIS, while computers B, F, G, and H 
participate in another. Each logical IP subnet functions like a separate LAN. The com- 
puters participating in an LIS establish virtual circuits among themselves to exchange 
datagramst. Because each LIS fomls a conceptually separate network, IP applies the 
standard rules for a physical network to each LIS. For example, all computers in an 
LIS share a single IP network prefix, and that prefix differs from the prefixes used by 
other logical subnets. Furthermore, although the computers in an LIS can choose a non- 
standard MTU, all computers must use the same MTU on all virtual circuits that 
comprise the LIS. Finally, despite the ATM hardware that provides potential connec- 
tivity, a host in one LIS is forbidden from communicating directly with a host in anoth- 
er LIS. Instead, all communication between logical subnets must proceed through a 
router just as communication between two physical Ethemets proceeds through a router. 
In Figure 18.9, for example, machine F represents an IP router because it participates in 
both logical subnets. 

To summarize: 

TCP/IP allows a subset of computers attached to an ATM network to 
operate like an independent LAN. Such a group is called a Logical IP 
Subnet (US); computers in an LIS share a single IP network prefix. 
A computer in an LIS can communicate directly with any other com- 
puter in the same LIS, but is required to use a router when communi- 
cating with a computer in another LIS. 

18.1 5 Connection Management 

Hosts must manage ATM virtual circuits carefully because creating a circuit takes 
time and, for commercial ATM services, can incur additional economic cost. Thus, the 
simplistic approach of creating a virtual circuit, sending one datagram, and then closing 
the circuit is too expensive. Instead, a host must maintain a record of open circuits so 
they can be reused. 

Circuit management occurs in the network interface software below IP. When a 
host needs to send a datagram, it uses conventional IP routing to find the appropriate 
next-hop address, N$, and passes it along with the datagram to the network interface. 
The network interface examines its table of open virtual circuits. If an open circuit ex- 
ists to N, the host uses AAL5 to send the datagram. Otherwise, before the host can 
send the datagram, it must locate a computer with IP address N, create a circuit, and add 
the circuit to its table. 

The concept of logical IP subnets constrains IP routing. In a properly configured 
routing table, the next-hop address for each destination must be a computer within the 
same logical subnet as the sender. To understand the constraint, remember that each 
LIS is designed to operate like a single LAN. The same constraint holds for a host at- 

tThe standard specifies the use of LLCISNAP encapsulation within an LIS. 
$As usual, a next-hop address is an IP address. 
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tached to a LAN, namely, each next-hop address in the routing table must be a router 
attached to the LAN. 

One of the reasons for dividing computers into logical subnets arises from 
hardware and software constraints. A host cannot maintain an arbitrarily large number 
of open virtual circuits at the same time because each circuit requires resources in the 
ATM hardware and in the operating system. Dividing computers into logical subnets 
limits the maximum number of simultaneously open circuits to the number of comput- 
ers in the LIS. 

18.16 Address Binding Within An LIS 

When a host creates a virtual circuit to a computer in its LIS, the host must speclfy 
an ATM hardware address for the destination. How can a host map a next-hop address 
into an appropriate ATM hardware address? The host cannot broadcast a request to all 
computers in the LIS because ATM does not offer hardware broadcast. Instead, it con- 
tacts a server to obtain the mapping. Communication between the host and server uses 
ATMARP, a variant of the ARP protocol described in Chapter 5. 

As with conventional ARP, a sender forms a request that includes the sender's IP 
and ATM hardware addresses as well as the IP address of a target for which the ATM 
hardware address is needed. The sender then transmits the request to the ATMARP 
server for the logical subnet. If the server knows the ATM hardware address, it sends 
an A T W  reply. Otherwise, the server sends a negative ATUARP reply. 

18.1 7 ATMARP Packet Format 

Figure 18.10 illustrates the format of an ATMARP packet. As the figure shows, 
ATMARP modifies the ARP packet format slightly. The major change involves addi- 
tional address length fields to accommodate ATM addresses. To appreciate the 
changes, one must understand that multiple address forms have been proposed for 
ATM, and that no single form appears to be the emerging standard. Telephone com- 
panies that offer public ATM networks use an &octet format where each address is an 
ISDN telephone number defined by ITU standard document E.164. By contrast, the 
ATM Forum? allows each computer attached to a private ATM network to be assigned 
a 20-octet Network Service Access Point (NSAP) address. Thus, a two-level hierarchical 
address may be needed that specifies an E.164 address for a remote site and an NSAP 
address of a host on a local switch at the site. 

To accommodate multiple address formats and a two-level hierarchy, an ATMARP 
packet contains two length fields for each ATM address as well as a length field for 
each protocol address. As Figure 18.10 shows, an ATMARP packet begins with fixed- 
size fields that specify address lengths. The first two fields follow the same format as 
conventional ARP. The field labeled HARDWARE TYPE contains the hexadecimal 

TThe ATM Forum is a consortium of industrial members that recommends standards for private ATM 
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value 0x0013 for ATM, and the field labeled PROTOCOL TYPE contains the hexade- 
cimal value 0x0800 for IP. 

Because the address format of the sender and target can differ, each ATM address 
requires a length field. Field SEND HLEN specifies the length of the sender's ATM ad- 
dress, and field SEND HLEN2 specifies the length of the sender's ATM subaddress. 
Fields TAR HLEN and TAR HLEN2 specify the lengths of the target's ATM address and 
subaddress. Finally, fields SEND PLEN and TAR PLEN speafy the lengths of the 
sender's and target's protocol addresses. 

Following the length fields in the header, an ATMARP packet contains six ad- 
dresses. The first three address fields contain the sender's ATM address, ATM subad- 
dress, and protocol address. The last three fields contain the target's ATM address, 
ATM subaddress, and protocol address. In the example in Figure 18.10, both the sender 
and target subaddress length fields contain zero, and the packet does not contain octets 
for subaddresses. 

1 HARDWARE TYPE (0x0013) 1 PROTOCOL TYPE (0x0800) 1 

I SENDER'S ATM ADDRESS (octets 0-3) I 

SEND HLEN (20) 

SEND PLEN (4) 

I- 
- 

SENDER'S ATM ADDRESS (octets 4-7) 

SENDER'S ATM ADDRESS (octets 8-1 1) 

SENDER'S ATM ADDRESS (octets 12-1 5) 

SENDER'S ATM ADDRESS (octets 16-1 9) 

* 

SEND HLEN2 (0) 

TAR HLEN (20) 

I SENDER'S PROTOCOL ADDRESS I 

OPERATION 

TAR HLEN2 (0) TAR PLEN (4) 

TARGET'S ATM ADDRESS (octets 0-3) 

TARGET'S ATM ADDRESS (octets 4-71 

I - TARGET'S ATM ADDRESS (octets 8-1 1) 

TARGET'S ATM ADDRESS (octets 12-15) 

TARGET'S ATM ADDRESS (octets 16-1 9) 

TARGET'S PROTOCOL ADDRESS 

Figure 18.10 The format of an ATMARP packet when used with 20-octet 
ATM addresses such as those recommended by the ATM 
Forum. 
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18.17.1 Format Of ATM Address Length Fields 

Because ATMARP is designed for use with either E.164 addresses or 20-octet 
NSAP addresses, fields that contain an ATM address length include a bit that specifies 
the address format. Figure 18.11 illustrates how ATMARP encodes the address type 
and length in an 8-bit field. 

Figure 18.11 The encoding of ATM address type and length in an 8-bit field. 
Bit I distinguishes the two types of ATM addresses. 

0 1 2 3 4 5 6 7 

A single bit encodes the type of an ATM address because only two forms are 
available. If bit 1 contains zero, the address is in the NSAP format recommended by 
the ATM Forum. If bit 1 contains one, the address is in the E.164 format recommended 
by the ITU. Because each ATM address length field in an ATMARP packet has the 
form shown in Figure 18.11, a single packet can contain multiple types of ATM ad- 
dresses. 

18.17.2 Operation Codes Used With The ATMARP Protocol 

I I I I I 

LENGTH OF ADDRESS IN OCTETS 
I I I I I 

0 

The packet format shown in Figure 18.10 is used to request an address binding, re- 
ply to a request, or request an inverse address binding. When a computer sends an AT- 
MARP packet, it must set the OPERATION field to specify the type of binding. The 
table in Figure 18.12 shows the values that can be used in the OPERATION field, and 
gives the meaning of each. The remainder of this section explains how the protocol 
works. 

TYPE 

Code Meaning 
1 ATMARP Request 
2 ATMARP Reply 
8 lnverse ATMARP Request 
9 lnverse ATMARP Reply 
10 ATMARP Negative Ack 

Figure 18.12 The values that can appear in the OPERATION field of an AT- 
MAW packet and their meanings. When possible, values have 
been chosen to agree with the operation codes used in conven- 
tional ARP. 
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18.18 Using ATMARP Packets To Determine An Address 

Performing address binding for connection-oriented hardware is slightly more com- 
plex than for connectionless hardware. Because ATM hardware supports two types of 
virtual circuits, two cases arise. First, we will consider the case of permanent virtual 
circuits. Second, we will consider the case of switched virtual circuits. 

18.1 8.1 Permanent Virtual Circuits 

To understand the problems PVCs introduce, recall how ATM hardware operates. 
A network administrator must configure each PVC; hosts themselves do not participate 
in PVC setup. In particular, a host begins operation with PVCs in place, and does not 
receive any information from the hardware about the address of the remote endpoint. 
Thus, unless address information has been configured into the hosts (e.g., stored on 
disk), the host does not know the IP address or ATM address of the computer to which 
a PVC connects. 

The Inverse ATMARP protocol (InATUARP) solves the problem of finding ad- 
dresses when using PVCs. To use the protocol, a computer must know each of the per- 
manent virtual circuits that have been configured. To determine the IP and ATM ad- 
dresses of the remote endpoint, a computer sends an Inverse ATMARP request packet 
with the OPERATION field set to 8. Whenever such a request amves over a PVC, the 
receiver generates an Inverse ATMARP reply with the OPERATION field set to 9. 
Both the request and the reply contain the sender's IP address and ATM address. Thus, 
a computer at each end of the connection learns the binding for the computer at the oth- 
er end. In summary, 

Two computers that communicate over a permanent virtual circuit use 
Inverse ATMARP to discover each others' IP and ATM addresses. 
One computer sends an Inverse ATMARP request, to which the other 
sends a reply. 

18.1 8.2 Switched Virtual Circuits 

Within an LIS, computers create switched virtual circuits on demand. When com- 
puter A needs to send a datagram to computer B and no circuit currently exists to B, A 
uses ATM signaling to create the necessary circuit. Thus, A begins with B's IP address, 
which must be mapped to an equivalent ATM address. We said that each LIS has an 
ATMARP server, and all computers in an LIS must be configured so they know how to 
reach the server (e.g., a computer can have a PVC to the server or can have the server's 
ATM address stored on disk). A server does not form connections to other computers; 
the server merely waits for computers in the LIS to contact it. To map address B to an 
ATM address, computer A must have a virtual circuit open to the ATMARP server for 
the LIS. Computer A forms an ATMARP request packet and sends it over the connec- 
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tion to the server. The OPERATION field in the packet contains I ,  and the target's pro- 
tocol address field contains B's IP address. 

An ATMARP server maintains a database of mappings from IP addresses to ATM 
addresses. If the server knows B's ATM address, the ATMARP protocol operates simi- 
lar to proxy ARP. The server forms an ATMARP reply by setting the OPERATION 
code to 2 and filling in the ATM address that corresponds to the target IP address. As 
in conventional ARP, the server exchanges sender and target entries before returning the 
reply to the computer that sent the request. 

If the server does not know the ATM address that corresponds to the target IP ad- 
dress in a request, ATMARP's behavior differs from conventional ARP. Instead of ig- 
noring the request, the server returns a negative acknowledgement (an ATMARP packet 
with an OPERATION field of 10). A negative acknowledgement distinguishes between 
addresses for which a server does not have a binding and a malfunctioning server. 
Thus, when a host sends a request to an ATMARP server, it determines one of three 
outcomes unambiguously. The host can learn the ATM address of the target, that the 
target is not currently available in the LIS, or that the server is not currently responding. 

18.19 Obtaining Entries For A Server Database 

An ATMARP server builds and maintains its database of bindings automatically. 
To do so, it uses Inverse ATMARP. Whenever a host or router first opens a virtual cir- 
cuit to an ATMARP server, the server immediately sends an Inverse ATMARP request 
packet?. The host or router must answer by sending an Inverse ATMARP reply packet. 
When it receives an Inverse ATMARP reply, the server extracts the sender's IP and 
ATM addresses, and stores the binding in its database. Thus, each computer in an LIS 
must establish a connection to the ATMARP server, even if the computer does not in- 
tend to look up bindings. 

Each host or router in an LIS must register its IP address and 
corresponding ATM address with the ATMARP server for the LIS. 
Registration occurs automatically whenever a computer establishes a 
virtual circuit to an ATMARP server because the server sends an In- 
verse ATMARP to which the computer must respond. 

18.20 Timing Out ATMARP Information In A Server 

Like the bindings in a conventional ARP cache, bindings obtained via ATMARP 
must be timed out and removed. How long should an entry persist in a server? Once a 
computer registers its binding with an ATMARP server, the server keeps the entry for a 
minimum of 20 minutes. After 20 minutes, the server examines the entry. If no circuit 
exists to the computer that sent the entry, the server deletes the entry$. If the computer 
that sent the entry has maintained an open virtual circuit, the server attempts to revali- 

+The circuit must use AALS with LLCISNAP type identification. 
f A  server does not automaticallv delete an entry when a circuit is closed: it waits for the timeout ~eriod. 
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date the entry. The server sends an Inverse ATMARP request and awaits a response. If 
the response verifies information in the entry, the server resets the timer and waits 
another 20 minutes. If the Inverse ATMARP response does not match the information 
in the entry, the server closes the circuit and deletes the entry. 

To help reduce traffic, the ATMARP standard permits an optimization. It allows a 
host to use a single virtual circuit for all communication with an ATMARP server. 
When the host sends an ATMARP request, the request contains the host's binding in 
the SENDER'S field. The server can extract the binding and use it to revalidate its 
stored information. Thus, if a host sends more than one ATMARP request every 20 
minutes, the server will not need to send the host an Inverse ATMARP request. 

18.21 Timing Out ATMARP Information In A Host Or Router 

A host or router must also use timers to invalidate information obtained from an 
ATMARP server. In particular, the standard specifies that a computer can keep a bind- 
ing obtained from the ATMARP server for at most 15 minutes. When 15 minutes ex- 
pire, the entry must be removed or revalidated. If an address binding expires and the 
host does not have an open virtual circuit to the destination, the host removes the entry 
from its ARP cache. If a host has an open virtual circuit to the destination, the host at- 
tempts to revalidate the address binding. Expiration of an address binding can delay 
traffic because: 

A host or router must stop sending data to any destination for which 
the address binding has expired until the binding can be revalidated. 

The method a host uses to revalidate a binding depends on the type of virtual cir- 
cuit being used. If the host can reach the destination over a PVC, the host sends an In- 
verse ATMARP request on the circuit and awaits a reply. If the host has an SVC open 
to the destination, the host sends an ATMARP request to the ATMARP server. 

18.22 IP Switching Technologies 

So far, we have described ATM as a connection-oriented network technology that 
IP uses to transfer datagram. However, engineers have also investigated a more funda- 
mental union of the two technologies. They began with the question: "can switching 
hardware be exploited to forward IP traffic at higher speeds?" The assumption under- 
lying the effort is that hardware will be able to switch more packets per second than to 
route them. If the assumption is correct, the question makes sense because router ven- 
dors are constantly trying to find ways to increase router perfomlance and scale. 

Ipsilon Corporation was one of the first companies to produce products that com- 
bined IP and hardware switches; they used ATM, called their technology IP switching, 
and called the devices they produced IP switches. Since Ipsilon, other companies have 
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produced a series of designs and names, including tag switching, layer 3 switching, and 
label switching. Several of the ideas have been folded into a standard endorsed by the 
IETF that is known as Multi-Protocol Label Switching (MPLS)?. Contributors to the 
open standard hope that it will allow products from multiple vendors to interoperate. 

18.23 Switch Operation 

How do IP switching technologies work? There are two general answers. Early 
technologies all assumed the presence of a conventional NBMA network (usually 
A T ' ) .  The goal was to optimize IP routing to send datagrams across the ATM fabric 
instead of other networks whenever possible. In addition to proposing ways to optimize 
routes, later efforts also proposed modifying the switching hardware to optimize it for 
IP traffic. In particular, two optimizations have been proposed. First, if switching 
hardware can be redesigned to either use large cells or to allow variable-length frames, 
header overhead will be reduced$. Second, if hardware can be built to parse IP headers 
and extract needed fields, an incoming datagram can be forwarded faster. 

Forwarding is at the heart of all label switching. There are three aspects. First, at 
the IP layer, a forwarding device must function as a conventional IP router to transfer 
datagrams between a local network and the switched fabric. Thus, the device must 
learn about remote destinations, and must map an IP destination address into a next-hop 
address. Second, at the network interface layer, a forwarding device must be able to 
create and manage connections through the switched fabric (i.e., by mapping IP ad- 
dresses to underlying hardware addresses and creating SVCs as needed). Third, a for- 
warding device must optimize paths through the switched fabric. 

18.24 Optimized IP Forwarding 

Optimized forwarding involves high-speed classification and shortcut paths. To 
understand shortcut paths, imagine three switches, S,, S2, and S3, and suppose that to 
reach a given destination the IP routing table in S, specifies forwarding to S,, which for- 
wards to S,, which delivers to the destination. Further suppose that all three devices are 
connected to the same fabric. If S, observes that many datagrams are being sent to the 
destination, it can optimize routing by bypassing S2 and setting up a shortcut path (i.e., a 
virtual circuit) directly to S3. Of course, many details need to be handled. For example, 
although our example involves only three devices, a real network may have many. 
After it learns the path a datagram will travel to its destination, S, must find the last hop 
along the path that is reachable through the switched network, translate the IP address 
of that hop to an underlying hardware address, and form a connection. Recognizing 
whether a given hop on the path connects to the same switching fabric and translating 
addresses are not easy; complex protocols are needed to pass the necessary information. 
To give IP the illusion that datagrams are following the routes specified by IP, either S, 
or S3 must agree to account for the bypassed router when decrementing the TTL field in 

TDespite having "multi-protocol" in the name, MPLS is focused almost exclusively on finding ways to 
put IP over an NBMA switched hardware platform. 

.$In the industry, ATh4 header overhead is known as the cell tux. 
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the datagram header. Furthermore, S, must continue to receive routing updates from S2 
so it can revert to the old path in case routes change. 

18.25 Classification, Flows, And Higher Layer Switching 

A classification scheme examines each incoming datagram and chooses a connec- 
tion over which the datagram should travel. Building a classification scheme in 
hardware further enhances the technology by allowing a switch to make the selection at 
high speed. Most of the proposed classification schemes use a two-level hierarchy. 
First, the switch classifies a datagram into one of many possible flows, and then the 
flow is mapped onto a given connection. One can think of the mapping mathematically 
as a pair of functions: 

f = c, ( datagram ) 

and 

where f identifies a particular flow, and vc identifies a connection. We will see below 
that separating the two functions provides flexibility in the possible mappings. 

In practice function c, does not examine the entire datagram. Instead, only header 
fields are used. Strict layer 3 classzjication restricts computation to fields in the IP 
header such as the source and destination IP addresses and type of service. Most ven- 
dors implement layer 4  classification^, and some offer layer 5 classification. In addi- 
tion to examining fields in the IP header, layer 4 classification schemes also examine 
protocol port numbers in the TCP or UDP header. Layer 5 schemes look further into 
the datagram and consider the application. 

The concept of flows is important in switching IP because it allows the switch to 
track activity. For example, imagine that as it processes datagrams, a switch makes a 
list of (source,destination) pairs and keeps a counter with each. It does not make sense 
for a switch to optimize all routes because some flows only contain a few packets (e.g., 
when someone pings a remote computer). The count of flow activity provides a meas- 
ure - when the count reaches a threshold, the switch begins to look for an optimized 
route. Layer 4 classification helps optimize flows because it allows the switch to know 
the approximate duration of a connection and whether traffic is caused by multiple TCP 
connections or a single connection. 

Flows are also an important tool to make switched schemes work well with TCP. 
If a switch begins using a shortcut on a path that TCP is using, the round-trip time 
changes and some segments arrive out of order, causing TCP to adjust its retransmission 
timer. Thus, a switch using layer 4 classification can map each TCP session to a dif- 
ferent flow, and then choose whether to map a flow to the original path or the shortcut. 
Most switching technologies employ hysteresis by retaining the original path for exist- 
ing TCP connections, but using a shortcut for new connections (i.e., moving existing 

tVendors use the term layer 4 switching to characterize products that implement layer 4 classification. 
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connections to the shortcut after a fixed amount of time has elapsed or if the connection 
is idle). 

18.26 Applicability Of Switching Technology 

Although many vendors are pushing products that incorporate switched IP, there 
are several reasons why the technology has not had more widespread acceptance. First, 
in many cases switching costs more than conventional routing, but does not offer much 
increase in performance. The difference is most significant in the local area environ- 
ment where inexpensive LANs, like Ethernet, have sufficient capacity and inexpensive 
routers work. In fact, computer scientists continue to find ways to improve IP forward- 
ing schemes, which means that traditional routers can process more datagrams per 
second without requiring an increase in hardware speed. Second, the availability of 
inexpensive higher-speed LANs, such as gigabit Ethernet, has made organizations 
unwilling to use more expensive connection-oriented technology for an entire organiza- 
tion. Third, although switching IP appears straightforward, the details make it complex. 
Consequently, the protocols are significantly more complex than other parts of IP, 
which makes them more difficult to build, install, configure, and manage. We conclude 
that although there may be advantages to switched IP, it will not replace all traditional 
routers. 

18.27 Summary 

IP can be used over connection-oriented technologies; we examined ATM as a 
specific example. ATM is a high-speed network technology in which a network con- 
sists of one or more switches interconnected to form a switching fabric. The resulting 
system is characterized as a Non-Broadcast Multiple-Access technology because it ap- 
pears to operate as a single, large network that provides communication between any 
two attached computers, but does not allow a single packet to be broadcast to all of 
them. 

Because ATM is connection-oriented, two computers must establish a virtual cir- 
cuit through the network before they can transfer data; a host can choose between a 
switched or permanent type of virtual circuit. Switched circuits are created on demand; 
permanent circuits require manual configuration. In either case, ATM assigns each 
open circuit an integer identifier. Each frame a host sends and each frame the network 
delivers contains a circuit identifier; a frame does not contain a source or destination ad- 
dress. 

Although the lowest levels of ATM use 53-octet cells to transfer information, IP 
always uses ATM Adaptation Layer 5 (AAL5). AAL5 accepts and delivers variable- 
size blocks of data, where each block can be up to 64K octets. To send an IP datagram 
across ATM, the sender must form a virtual circuit connection to the destination, speci- 
fy using AAL5 on the circuit, and pass each datagram to AAL5 as a single block of 
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data. AAL5 adds a trailer, divides the datagram and trailer into cells for transmission 
across the network, and then reassembles the datagram before passing it to the operating 
system on the destination computer. IP uses a default MTU of 9180, and AALS per- 
forms the segmentation into cells. 

A Logical IP Subnet (LIS) consists of a set of computers that use ATM in place of 
a LAN; the computers form virtual circuits among themselves over which they ex- 
change datagrams. Because ATM does not support broadcasting, computers in an LIS 
use a modified form of ARP known as ATMARP. An ATMARP server performs all 
address binding; each computer in the LIS must register with the server by supplying its 
IP address and ATM address. As with conventional ARP, a binding obtained from AT- 
MARP is aged. After the aging period, the binding must be revalidated or discarded. A 
related protocol, Inverse ATMARP, is used to discover the ATM and IP addresses of a 
remote computer c o ~ e c t e d  by a pernlanent virtual circuit. 

Switching hardware technology can be used with IP. An IP switch acts as a router, 
but also classifies IF' datagrams and sends them across the switched network when pos- 
sible. Layer 3 classification uses only the datagram header; layer 4 classification also 
examines the TCP or UDP header. MPLS is a new standard for switching IF' that is 
designed to allow systems from multiple vendors to interoperate. 

FOR FURTHER STUDY 

Newman et. al. [April 19981 describes IP switching. Laubach and Halpern [RFC 
22251 introduces the concept of Logical IP Subnet, defines the ATMARP protocol, and 
specifies the default MTU. Grossman and Heinanen [RFC 26841 describes the use of 
LLCISNAP headers when encapsulating IP in AALS. 

Partridge [I9941 describes gigabit networking in general, and the importance of 
cell switching in particular. De Prycker [I9931 considers many of the theoretical under- 
pinnings of ATM and discusses its relationship to telephone networks. 

EXERCISES 

18.1 If your organization has an ATM switch or ATM service, find the technical and econom- 
ic specifications, and then compare the cost of using ATM with the cost of another tech- 
nology such as Ethernet. 

18.2 A typical connection between a host and a private ATM switch operates at 155 Mbps. 
Consider the speed of the bus on your favorite computer. What percentage of the bus is 
required to keep an ATM interface busy? 

183 Many operating systems choose TCP buffer sizes to be multiples of 8K octets. If IP 
fragments datagrams for an MTU of 9180 octets, what size fragments result from a da- 
tagram that carries a TCP segment of 16K octets? of 24K octets? 
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Look at the definition of IPv6 described in Chapter 33. What new mechanism relates 
directly to ATM? 
ATM is a best-effort delivery system in which the hardware can discard cells if the net- 
work becomes congested. What is the probability of datagram loss if the probability of 
loss of a single cell is 11P and the datagram is 576 octets long? 1500 octets? 4500 oc- 
tets? 9180 octets? 
A typical remote login session using TCP generates datagram of 41 octets: 20 octets of 
IP header, 20 octets of TCP header, and 1 octet of data. How many ATM cells are re- 
quired to send such a datagram using the default IP encapsulation over AALS? 
How many cells, octets, and bits can be present on a fiber that connects to an ATM 
switch if the fiber is 3 meters long? 100 meters? 3000 meters? To find out, consider an 
ATM switch transmitting data at 155 Mbps. Each bit is a pulse of light that lasts 
ll(155 x lo6) second. Assume the pulse travels at the speed of light, calculate its length, 
and compare to the length of the fiber. 
A host can specify a two-level ATM address when requesting an SVC. What ATM net- 
work topologies are appropriate for a two-level addressing scheme? Characterize situa- 
tions for which additional levels of hierarchy are useful. 

An ATM network guarantees to deliver cells in order, but may drop cells if it becomes 
congested. Is it possible to modify TCP to take advantage of cell ordering to reduce pro- 
tocol overhead? Why or why not? 
Read about the LANE and MPOA standards that allow ATM to emulate an Ethernet or 
other local area network. What is the chief advantage of using ATM to emulate LANs? 
The chief disadvantage? 
A large organization that uses ATM to interconnect IP hosts must divide hosts into logi- 
cal IP subnets. Two extremes exist: the organization can place all hosts in one large 
LIS, or the organization can have many LIS (e.g., each pair of hosts forms an LIS). Ex- 
plain why neither extreme is desirable. 
How many ATM cells are required to transfer a single ATMARP packet when each 
ATM address and subaddress is 20 octets and each protocol address is 4 octets? 
ATM allows a host to establish multiple virtual circuits to a given destination. What is 
the major advantage of doing so? 
Measure the throughput and delay of an ATM switch when using TCP. If your operat- 
ing system permits, repeat the experiment with the TCP transmit buffer set to various 
sizes (if your system uses sockets, refer to the manual for details on how to set the 
buffer size). Do the results surprise you? 
IP does not have a mechanism to associate datagrams traveling across an ATM network 
with a specific ATM virtual circuit. Under what circumstances would such a mechanism 
be useful? 
A server does not immediately remove an entry from its cache when the host that sent 
the information closes its connection to the server. What is the chief advantage of such 
a design? What is the chief disadvantage? 
Is IP switching worthwhile for applications you run? To find out, monitor the traffic 
from your computer and find the average duration of TCP connections, the number of 
simultaneous connections, and the number of IP destinations you contact in a week. 

Read about MPLS. Should MPLS accommodate layer 2 forwarding (i.e., bridging) as 
well as optimized IP forwarding? Why or why not? 



Mobile IP 

19.1 Introduction 

Previous chapters describe the original IP addressing and routing schemes used 
with stationary computers. This chapter considers a recent extension of IP designed to 
allow portable computers to move from one network to another. 

19.2 Mobility, Routing, and Addressing 

In the broadest sense, the term mobile computing refers to a system that allows 
computers to move from one location to another. Mobility is often associated with 
wireless technologies that allow movement across long distances at high speed. How- 
ever, speed is not the central issue for IP. Instead, a challenge only arises when a host 
changes from one network to another. For example, a notebook computer attached to a 
wireless LAN can move around the range of the transmitter rapidly without affecting IP, 
but simply unplugging a desktop computer and plugging it into a different network re- 
quires reconfiguring IP. 

The IP addressing scheme, which was designed and optimized for a stationary en- 
vironment, makes mobility difficult. In particular, because a host's IP address includes 
a network prefn, moving the host to a new network means either: 

The host's address must change. 
Routers must propagate a host-specific route across the entire internet. 

Neither alternative works well. On one hand, changing an address is time-consuming, 
usually requires rebooting the computer, and breaks all existing transport-layer connec- 
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tions. In addition, if the host contacts a server that uses addresses to authenticate, an 
additional change to DNS may be required. On the other hand, a host-specific routing 
approach cannot scale because it requires space in routing tables proportional to the 
number of hosts, and because transmitting routes consumes excessive bandwidth. 

19.3 Mobile IP Characteristics 

The IETF devised a solution to the mobility problem that overcomes some of the 
limitations of the original IP addressing scheme. Officially named IP mobility support, 
it is popularly called mobile IP. The general characteristics include the following. 

Transparency. Mobility is transparent to applications and transport layer protocols 
as well as to routers not involved in the change. In particular, as long as they remain 
idle, all open TCP connections survive a change in network and are ready for further 
use. 

Interoperability with IPv4. A host using mobile IP can interoperate with stationary 
hosts that run conventional IPv4 software as well as with other mobile hosts. Further- 
more, no special addressing is required - the addresses assigned to mobile hosts do not 
differ from addresses assigned to fixed hosts. 

Scalability. The solution scales to large internets. In particular, it permits mobility 
across the global Internet. 

Security. Mobile IP provides security facilities that can be used to ensure all mes- 
sages are authenticated (i.e., to prevent an arbitrary computer from impersonating a 
mobile host). 

Macro mobility. Rather than attempting to handle rapid network transitions such 
as one encounters in a wireless cellular system, mobile IP focuses on the problem of 
long-duration moves. For example, mobile IP works well for a user who takes a port- 
able computer on a business trip, and leaves it attached to the new location for a week. 

19.4 Overview Of Mobile IP Operation 

The biggest challenge for mobility lies in allowing a host to retain its address 
without requiring routers to learn host-specific routes. Mobile IP solves the problem by 
allowing a single computer to hold two addresses simultaneously. The first address, 
which can be thought of as the computer's primary address, is permanent and fixed. It 
is the address applications and transport protocols use. The second address, which can 
be thought of as a secondary address, is temporary - it changes as the computer 
moves, and is valid only while the computer visits a given location. 

A mobile host obtains a primary address on its original, home network. After it 
moves to a foreign network and obtains a secondary address, the mobile must send the 
secondary address to an agent (usually a router) at home. The agent agrees to intercept 
datagrams sent to the mobile's primary address, and uses IP-in-IP encapsulation to tun- 
nel each datagram to the secondary address?. 

?Chapter 17 illustrates IF-in-IP encapsulation. 
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If the mobile moves again, it obtains a new secondary address, and infom~s the 
home agent of its new location. When the mobile returns home, it must contact the 
home agent to deregister, meaning that the agent will stop intercepting datagrams. 
Similarly, a mobile can choose to deregister at any time (e.g., when leaving a remote lo- 
cation). 

We said that mobile IP is designed for macroscopic mobility rather than high-speed 
movement. The reason should be clear: overhead. In particular, after it moves, a 
mobile must detect that it has moved, communicate across the foreign network to obtain 
a secondary address, and then communicate across the internet to its agent at home to 
arrange forwarding. The point is: 

Because it requires considerable overhead after each move, mobile ZP 
is intended for situations in which a host moves infrequently and 
remains at a given location for a relatively long period of time. 

19.5 Mobile Addressing Details 

A mobile's primary or home address is assigned and administered by the network 
administrator of the mobile's home network; there is no distinction between an address 
assigned to a stationary computer and a home address assigned to a mobile computer. 
Applications on a mobile computer always use the home address. 

Whenever it connects to a network other than its home, a mobile must obtain a 
temporary address. Known as a care of address, the temporary address is never known 
or used by applications. Instead, only IF' software on the mobile and agents on the 
home or foreign networks use the temporary address. A care-of address is administered 
like any other address on the foreign network, and a route to the care-of address is pro- 
pagated using conventional routing protocols. 

In practice, there are two types of care-of addresses; the type used by a mobile 
visiting a given network is determined by the network's administrator. The two types 
differ in the method by which the address is obtained and in the entity responsible for 
forwarding. The first fornl, which is known as a co-located care-of address, requires a 
mobile computer to handle aLl forwarding itself. In essence, a mobile that uses a co- 
located care-of address has software that uses two addresses simultaneously - applica- 
tions use the home address, while lower layer software uses the care-of address to re- 
ceive datagram. The chief advantage of a co-located address lies in its ability to work 
with existing internet infrastructure. Routers on the foreign network do not know 
whether a computer is mobile; care-of addresses are allocated to mobile computers by 
the same mechanisms used to allocate addresses to fmed computers (e.g., the DHCP 
protocol discussed in Chapter 23). The chief disadvantage of the co-located form arises 
from the extra software required - the mobile must contain facilities to obtain an ad- 
dress and to communicate with the home agent. 
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The second form, which is known as a foreign agent care-of address, requires an 
active participant on the remote network. The active entity, also a router, is called a 
foreign agent to distinguish it from the home agent on the mobile's home network. 
When using a foreign agent care-of address, a mobile must first discover the identity of 
an agent, and then contact the agent to obtain a care-of address. Surprisingly, a foreign 
agent does not need to assign the mobile a unique address. Instead, we will see that the 
agent can supply one of its IP addresses, and agree to forward datagrams to the mobile. 
Although assigning a unique address makes communication slightly easier, using an ex- 
isting address means that visiting mobiles do not consume IP addresses. 

19.6 Foreign Agent Discovery 

Known as agent discovery, the process of finding a foreign agent uses the ICMP 
router discovery mechanism. Recall from Chapter 9 that router discovery requires each 
router to periodically send an ICMP router advertisement message, and allows a host to 
send an ICMP router solicitation to prompt for an advertisement?. Agent discovery 
piggybacks additional information on router discovery messages to allow a foreign 
agent to advertise its presence or a mobile to solicit an advertisement. The additional 
information appended to each message is known as a mobility agent extension$. Mobil- 
ity extensions do not use a separate ICMP message type. Instead, a mobile host 
deduces that the extension is present when the datagram length specified in the IP 
header is greater than the length of the ICMP router discovery message. Figure 19.1 il- 
lustrates the extension format. 

TYPE (16) I LENGTH 1 SEQUENCE NUM 

CARE-OF ADDRESSES 

LIFETIME 

Figure 19.1 The format of a Mobility Agent Advertisement Extension mes- 
sage. This extension is appended to an ICMP router advertise- 
ment. 

CODE I RESERVED 

Each message begins with a 1-octet TYPE field followed by a 1-octet LENGTH 
field. The LENGTH field specifies the size of the extension message in octets, exclud- 
ing the TYPE and LENGTH octets. The LIFETIME field specifies the maximum 
amount of time in seconds that the agent is willing to accept registration requests, with 
all 1s indicating infinity. Field SEQUENCE NUM specifies a sequence number for the 
message to allow a recipient to determine when a message is lost. Each bit in the 
CODE field defines a specific feature of the agent as listed in Figure 19.2. 

t A  mobile that does not know an agent's IP address can multicast to the all agents group (224.0.0.11). 
$A mobility agent also appends a prefix extension to the message that specifies the IP prefu being used 

on the network; a mobile uses the prefix extension to determine when it has moved to a new network. 
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Bit 
0 

Meaning 
Registration with an agent is required; co-located 

care-of addressing is not permitted 
The agent is busy and is not accepting registrations 
Agent functions as a home agent 
Agent functions as a foreign agent 
Agent uses minimal encapsulation 
Agent uses GRE-style encapsulationt 
Agent supports header compression when communicating 

with mobile 
Unused (must be zero) 

Figure 19.2 Bits of the CODE field of a mobility agent advertisement. 

19.7 Agent Registration 

Before it can receive datagram at a foreign location, a mobile host must register. 
The registration procedure allows a host to: 

Register with an agent on the foreign network. 

Register directly with its home agent to request forwarding. 

Renew a registration that is due to expire. 

Deregister after returning home. 

If it obtains a co-located care-of address, a mobile perfomls all necessary registra- 
tion directly; the mobile can use the address to communicate with its home agent and 
register. If it obtains a care-of address from a foreign agent, however, a mobile cannot 
use the address to communicate directly with its home agent. Instead, the mobile must 
send registration requests to the foreign agent, which then contacts the mobile's home 
agent on its behalf. Similarly, the foreign agent must forward messages it receives that 
are destined for the mobile host. 

19.8 Registration Message Format 

All registration messages are sent via UDP. Agents listen to well-known port 434; 
requests may be sent from an arbitrary source port to destination port 434. An agent 
reverses the source and destination points, so a reply is sent from source port 434 to the 
port the requester used. 

A registration message begins with a set of fixed-size fields followed by variable- 
length extensions. Each request is required to contain a mobile-home authentication ex- 
tension that allows the home agent to verify the mobile's identity. Figure 19.3 illus- 
trates the message fomlat. 

tGRE, which stands for Generic Routing Encapsulation, refers to a generalized encapsulation scheme that 
allnurc an mhitmrv nrntwnl tn he ~nrmxulatcd.  TP-in-IP i s  nne narticnlar c a w  
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I IDENTIFICATION I 

0 8 16 31 

I EXTENSIONS. . . I 

TYPE (1 or 3) I FLAGS 

Figure 193 The format of a mobile IP registration message. 

LIFETIME 

The TYPE field specifies whether the message is a registration request ( I )  or a 
registration reply (3). The LIFETIME field specifies the number of seconds the regis- 
tration is valid (a zero requests immediate deregistration, and all 1s specifies an infinite 
lifetime). The HOME ADDRESS, HOME AGENT, and CARE-OF ADDRESS fields 
specify the two IP addresses of the mobile and the address of its home agent, and the 
IDENTIFICATION field contains a 64-bit number generated by the mobile that is used 
to match requests with incoming replies and to prevent the mobile from accepting old 
messages. Bits of the FLAGS field are used to specify forwarding details as listed in 
Figure 19.4. 

HOME ADDRESS 

Bit Meaning 
0 This is a simultaneous (additional) address 

rather than a replacement. 
1 Mobile requests home agent to tunnel a copy of 

each broadcast datagram 
2 Mobile is using a co-located care-of address and 

will decapsulate datagrams itself 
3 Mobile requests agent to use minimal encapsulation 
4 Mobile requests agent to use GRE encapsulation 
5 Mobile requests header compression 

6-7 Reserved (must be zero) 

Figure 19.4 The meaning of FLAGS bits in a mobile registration request. 

If it has a co-located care-of address, a mobile can send a registration request 
directly to its home agent. Otherwise, the mobile sends the request to a foreign agent, 
which then forwards the request to the home agent. In the latter case, both the foreign 
and home agents process the request, and both must approve. For example, either the 
home or foreign agents can limit the registration lifetime. 
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19.9 Communication With A Foreign Agent 

We said that a foreign agent can assign one of its IP addresses for use as a care-of 
address. Doing so causes a problem because it means a mobile will not have a unique 
address on the foreign network. The question then becomes: how can a foreign agent 
and a mobile host communicate over a network if the mobile does not have a valid IP 
address on the network? Communication requires relaxing the rules for IP addressing 
and using an alternative scheme for address binding. In particular, when a mobile host 
sends to a foreign agent, the mobile is allowed to use its home address as an IP source 
address. Furthermore, when a foreign agent sends a datagram to a mobile, the agent is 
allowed to use the mobile's home address as an IP destination address. 

Although the mobile's home address can be used, an agent is not allowed to ARP 
for the address (i.e., ARP is still restricted to IP addresses that are valid on the net- 
work). To perform address binding without ARP, an agent is required to record all in- 
formation about a mobile when a registration request arrives and to keep the infornla- 
tion during communication. In particular, an agent must record the mobile's hardware 
address. When it sends a datagram to the mobile, the agent consults its stored infornla- 
tion to determine the appropriate hardware address. Thus, although ARP is not used, 
the agent can send datagrams to a mobile via hardware unicast. We can summarize: 

If a mobile does not have a unique foreign address, a foreign agent 
must use the mobile's home address for communication. Instead of 
relying on ARP for address binding, the agent records the mobile's 
hardware address when a request arrives and uses the recorded infor- 
mation to supply the necessary binding. 

19.1 0 Datagram Transmission And Reception 

Once it has registered, a mobile host on a foreign network can communicate with 
an arbitrary computer. To do so, the mobile creates a datagram that has the computer's 
address in the destination field and the mobile's home address in the source field-1. The 
datagram follows the shortest path from the foreign network to the destination. Howev- 
er, a reply will not follow the shortest path directly to the mobile. Instead, the reply 
will travel to the mobile's home network. The home agent, which has learned the 
mobile's location from the registration, intercepts the datagram and uses IP-in-IP encap- 
sulation to tunnel the datagram to the care-of address. If a mobile has a co-located 
care-of address, the encapsulated datagram passes directly to the mobile, which dis- 
careds the outer datagram and then processes the inner datagram. If a mobile is using a 
foreign agent for communication, the care-of address on the outer datagram specifies the 
foreign agent. When it receives a datagram from a home agent, a foreign agent decap- 
sulates the datagram, consults its table of registered mobiles, and transmits the datagram 
across the local network to the appropriate mobile. To summarize: 

tThe foreign network and the ISP that connects it to the rest of the internet must agree to transmit da- 
tagrams with an arbitrary source address. 
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Because a mobile uses its home address as a source address when 
communicating with an arbitrary destination, each reply is forwarded 
to the mobile's home network, where an agent intercepts the da- 
tagram, encapsulates it in another datagram, and forwards it either 
directly to the mobile or to the foreign agent the mobile is using. 

19.1 1 The Two-Crossing Problem 

The description above highlights the major disadvantage of mobile IP: inefficient 
routing. Because a mobile uses its home address, a datagram sent to the mobile will be 
forwarded to the mobile's home network first and then to the mobile. The problem is 
especially severe because computer communication often exhibits spatial locality of 
reference, which means that a mobile visiting a foreign network will tend to communi- 
cate with computers on that network. To understand why mobile IP handles spatial lo- 
cality poorly, consider Figure 19.5. 

Home Site Foreign Site 

I 
PI destination fi 

home agent 
foreign agent 

-- A + mobile's original home - mobile 

Figure 19.5 A topology in which mobile IP routing is inefficient. When 
mobile M communicates with local destination D, datagrams 
from D travel across the internet to the mobile's home agent and 
then back to the mobile. 

In the figure, mobile M has moved from it's original home to a foreign network. 
We assume the mobile has registered with its home agent, router R,, and the home 
agent has agreed to forward datagrams. Now consider communication between the 
mobile and destination D, which is located at the same site as the mobile. Datagram 
from M to D travel through router R, and are then delivered to D. However, because 
datagrams sent from D to M contain M's home address, they follow a path through R, 
and across the internet to the mobile's home network. When the datagrams reach R, 
(the mobile's home agent), they are tunneled back across the internet to the foreign site 
(either directly to M or to a foreign agent). Because crossing an internet is much more 
expensive than local delivery, the situation described above is known as the two- 
crossing problem, and is sometimes called the 2X problemt. 

tIf destination D is not close to the mobile, a slightly less severe version of the problem occurs which is 
known as triangle forwarding or dog-leg forwarding. 
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Mobile IP does not guarantee to solve the 2X problem. However, some route op- 
timization is possible. In particular, if a site expects a visiting mobile to interact heavi- 
ly with local computers, the site can arrange to propagate a host-specific route for the 
mobile. To ensure correct routing, the host-specific route must be deleted when the 
mobile leaves. Of course, the problem remains whenever a mobile communicates with 
a destination outside the region where the host-specific route has been propagated. For 
example, suppose mobiles move frequently between two corporations in cities A and B. 
The network managers at the two sites can agree to propagate host-specific routes for all 
visiting mobiles, meaning that when a mobile communicates with other computers at 
the foreign site, traffic stays local to the site. However, because host-specific routes are 
limited to the two corporate sites, communication between the mobile and any other 
destination in the foreign city will result in replies being forwarded through the 
mobile's home agent. Thus, the 2X problem remains for any destination outside the 
corporation. 

We can summarize: 

Mobile IP introduces a routing inefficiency known as the 2X problem 
that occurs when a mobile visits a foreign network far from its home 
and then communicates with a computer near the foreign site. Each 
datagram sent to the mobile travels across the intemet to the mobile's 
home agent which then forwards the datagram back to the foreign 
site. Eliminating the problem requires propagating host-specific 
routes; the problem remains for any destination that does not receive 
the host-spec& route. 

19.12 Communication With Computers On the Home Network 

We said that when a mobile is visiting a foreign network, the mobile's home agent 
must intercept all datagrams sent to the mobile. Normally, the home agent is the router 
that connects the mobile's home network to the rest of the intemet. Thus, all datagrams 
that arrive for the host pass through the home agent. Before forwarding a datagram, the 
home agent examines its table of mobile hosts to determine whether the destination host 
is currently at home or visiting a foreign network. 

Although a home agent can easily intercept all datagrams that arrive for a mobile 
host from outside, there is one additional case that the agent must handle: datagrams 
that originate locally. In particular, consider what happens when a host on the mobile's 
home network sends a datagram to a mobile. Because IP specifies direct delivery over 
the local network, the sender will not forward the datagram to a router. Instead, the 
sender will ARP for the mobile's hardware address, encapsulate the datagram, and 
transmit it. 

If a mobile has moved to a foreign network, the home agent must intercept all da- 
tagrams, including those sent by local hosts. To guarantee that it can intercept da- 
tagrams from local hosts, the home agent uses proxy ARP. That is, a home agent must 
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listen for ARP requests that specify the mobile as a target, and must answer the requests 
by supplying its own hardware address. Proxy ARP is completely transparent to local 
computers - any local system that ARPs for a mobile's address will receive a reply, 
and will forward the datagram as usual. 

The use of proxy ARP also solves the problem of multiple connections. If a 
mobile's home network has multiple routers that connect to various parts of the internet, 
only one needs to function as a home agent for the mobile. The other routers remain 
unaware of mobility; they use ARP to resolve addresses as usual. Thus, because the 
home agent answers the ARP requests, other routers forward datagrams without distin- 
guishing between mobile and nonmobile hosts. 

19.13 Summary 

Mobile IP allows a computer to move from one network to another without chang- 
ing its IP address and without requiring all routers to propagate a host-specific route. 
When it moves from its original home network to a foreign network, a mobile computer 
must obtain an additional, temporary address known as a care-of address. Applications 
use the mobile's original, home address; the care-of address is only used by underlying 
network software to enable forwarding and delivery across the foreign network. 

Once it detects that it has moved, a mobile either obtains a co-located care-of ad- 
dress or discovers a foreign mobility agent and requests the agent to assign a care-of ad- 
dress. After obtaining a care-of address, the mobile registers with its home agent (either 
directly or indirectly through the foreign agent), and requests the agent to forward da- 
tagrams. 

Once registration is complete, a mobile can communicate with an arbitrary comput- 
er on the internet. Datagrams sent by the mobile are forwarded directly to the specified 
destination. However, each datagram sent back to the mobile follows a route to the 
mobile's home network where it is intercepted by the home agent, encapsulated in IP, 
and then tunneled to the mobile. 

FOR FURTHER STUDY 

Perkins [FWC 20021 describes IP Mobility Support and defines the details of mes- 
sages; an Internet draft describes version 2 [draft-ietf-mobileip-v2-OO.txt]. Perkins 
[RFC 20031, Perkins [FWC 20041, and Hanks et. al. {RFC 17011 describe the details of 
three IP-in-IP encapsulation schemes. Montenegro [RFC 23441 describes a reverse tun- 
neling scheme for mobile IP. Finally, Perkins and Johnson [draft-ietf-mobileip-optim- 
07.txtl considers route optimization for mobile IP. 
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EXERCISES 

Compare the encapsulation schemes in RFCs 2003 and 2004. What are the advantages 
and disadvantages of each? 

Read the mobile IF' specification carefully. How frequently must a router send a mobili- 
ty agent advertisement? Why? 

Consult the mobile IP specification. When a foreign agent forwards a registration re- 
quest to a mobile's home agent, which protocol ports are used? Why? 

The specification for mobile IP allows a single router to function as both a home agent 
for a network and a foreign agent that supports visitors on the network. What are the 
advantages and disadvantages of using a single router for both functions? 

The mobile IF' specification defines three conceptually separate forms of authentication: 
mobile to home agent, mobile to foreign agent, and foreign agent to home agent. What 
are the advantages of separating them? The disadvantages? 

Read the mobile IP specification to determine how a mobile host joins a multicast group. 
How are multicast datagrams routed to the mobile? What is the optimal scheme? 





Private Network 
Interconnection (NAT, VPN) 

20.1 Introduction 

Previous chapters describe an internet as a single-level abstraction that consists of 
networks interconnected by routers. This chapter considers an alternative - a two-level 
internet architecture in which each organization has a private internet and a central in- 
ternet interconnects them. 

The chapter examines technologies used with a two-level architecture. One solves 
the pragmatic problem of limited address space, and the other offers increased func- 
tionality in the form of privacy that prevents outsiders from viewing the data. 

20.2 Private And Hybrid Networks 

One of the major drawbacks of a single-level internet architecture is the lack of 
privacy. If an organization comprises multiple sites, the contents of datagrams that 
travel across the Internet between the sites can be viewed by outsiders because they pass 
across networks owned by other organizations. A two-level architecture distinguishes 
between internal and external datagrams (i-e., datagrams sent between two computers 
within an organization and datagrams sent between a computer in the organization and a 
computer in another organization). The goal is to keep internal datagrams private, 
while still allowing external communication. 

The easiest way to guarantee privacy among an organization's computers consists 
of building a completely isolated private internet, which is usually referred to as a 
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private network. That is, an organization builds its own TCP/IP internet separate from 
the global Internet. A private network uses routers to interconnect networks at each 
site, and leased digital circuits to interconnect the sites. All data remains private be- 
cause no outsiders have access to any part of a private network. Furthermore, because 
the private network is isolated from the global Internet, it can use arbitrary IP addresses. 

Of course, complete isolation is not always desirable. Thus, many organizations 
choose a hybrid network architecture that combines the advantages of private network- 
ing with the advantages of global Internet connectivity. That is, the organization uses 
globally valid IF' addresses and connects each site to the Internet. The advantage is that 
hosts in the organization can access the global Internet when needed, but can be assured 
of privacy when communicating internally. For example, consider the hybrid architec- 
ture illustrated by Figure 20.1 in which an organization has a private network that inter- 
connects two sites and each site has a connection to the Internet. 

Site 1 Site 2 

128.1 0.1 .O 192.5.48.0 

128.1 0.2.0 128.21 0.0.0 

Figure 20.1 An example of a hybrid network. In addition to a leased circuit 
that interconnects the two sites, each has a connection to the glo- 
bal Internet. 

In the figure, a leased circuit between routers R, and R, provides privacy for inter- 
site traffic. Thus, routing at each site is arranged to send traffic across the leased circuit 
rather than across the global Internet. 

20.3 A Virtual Private Network (VPN) 

The chief disadvantage of either a completely private network or a hybrid scheme 
arises from the high cost: each leased circuit (e.g., a T1 line) is expensive. Consequent- 
ly, many organizations seek lower-cost alternatives. One way to reduce costs arises 
from the use of alternative circuit technologies. For example, a common carrier may 
change less for a Frame Relay or ATM PVC than for a T-series circuit that has 
equivalent capacity. Another way to lower costs involves using fewer circuits. 
Minimum circuit cost is achieved by eliminating all circuits and passing data across the 
global Internet. 
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Using the global Internet as an interconnection among sites appears to eliminate 
the privacy offered by a completely private network. The question becomes: 

How can an organization that uses the global Internet to connect its 
sites keep its data private? 

The answer lies in a technology that allows an organization to configure a Virtual 
Private Network (VPN)?. A VPN is private in the same way as a private network - 
the technology guarantees that communication between any pair of computers in the 
VPN remains concealed from outsiders. A VPN is virtual because it does not use 
leased circuits to interconnect sites. Instead, a VPN uses the global Internet to pass 
traffic from one site to another. 

Two basic techniques make a VPN possible: tunneling and encryption. We have 
already encountered tunneling in Chapters 17 and 19. VPNs use the same basic idea - 
they define a tunnel across the global Internet between a router at one site and a router 
at another, and use IP-in-IP encapsulation to forward datagram across the tunnel. 

Despite using the same basic concept, a VPN tunnel differs dramatically from the 
tunnels described previously. In particular, to guarantee privacy, a VPN encrypts each 
outgoing datagram before encapsulating it in another datagram for transmission$. Fig- 
ure 20.2 illustrates the concept. 

ENCRYPTED INNER DATAGRAM 

Figure 20.2 Illustration of IP-in-IP encapsulation used with a VPN. To en- 
sure privacy, the inner datagram is encrypted before being sent. 

DATAGRAM 
HEADER 

As the figure shows, the entire inner datagram, including the header, is encrypted 
before being encapsulated. When a datagram arrives over a tunnel, the receiving router 
decrypts the data area to reproduce the inner datagram, which it then forwards. 
Although the outer datagram traverses arbitrary networks as it passes across the tunnel, 
outsiders cannot decode the contents because they do not have the encryption key. 
Furthermore, even the identity of the original source and destination are hidden because 
the header of the inner datagram is encrypted as well. Thus, only addresses in the outer 
datagram header are visible: the source address is the IP address of the router at one end 
of a tunnel, and the destination address is the IP address of the router at the other end of 
the tunnel. 

OUTERDATAGRAMDATAAREA 

tThe name is a slight misnomer because the technology actually provides a virtual private internet. 
$Chapter 32 considers IP security, and discusses the encapsulation used with IPsec. 
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To summarize: 

A Virtual Private Network sends data across the Internet, but encrypts 
intersite transmissions to guarantee privacy. 

20.4 VPN Addressing And Routing 

The easiest way to understand VPN addressing and routing is to think of each VPN 
tunnel as a replacement for a leased circuit in a private network. As in the private net- 
work case, a router contains explicit routes for destinations within the organization. 
However, instead of routing data across a leased lined, a VPN routes the data through a 
tunnel. For example Figure 20.3 shows the VPN equivalent of the private network ar- 
chitecture from Figure 20.1 along with a routing table for a router that handles tunnel- 
ing. 

Figure 20.3 A VPN that spans two sites and R,'s routing table. The tunnel 
from R, to R, is configured like a point-to-point leased circuit. 

Site 1 Site 2 

128.10.1 .O 192.5.48.0 

destination ned hop 

As an example of forwarding in a VPN, consider a datagram sent from a computer 
on network 128.10.2.0 to a computer on network 128.210.0.0. The sending host for- 
wards the datagram to R,, which forwards it to R,. According to the routing table in R,, 
the datagram must be sent across the tunnel to R,. Therefore, R, encrypts the datagram, 
encapsulates it in the data area of an outer datagram with destination R,. R, then for- 
ward the outer datagram through the local ISP and across the Internet. The datagram 
arrives at R,, which recognizes it as tunneled from R,. R, decrypts the data area to pro- 

128.21 0.0.0 128.10.2.0 

Routing table in R, 

128.10.1.0 

128.10.2.0 

192.5.48.0 

128.210.0.0 

default 

direct 

'32 
tunnel to R, 

tunnel to R, 

ISP's router 
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duce the original datagram, looks up the destination in its routing table, and forwards 
the datagram to R, for delivery. 

20.5 A VPN With Private Addresses 

A VPN offers an organization the same addressing options as a private network. If 
hosts in the VPN do not need general Internet connectivity, the VPN can be configured 
to use arbitrary IP addresses; if hosts need Internet access, a hybrid addressing scheme 
can be used. A minor difference is that when private addressing is used, one globally 
valid IP address is needed at each site for tunneling. Figure 20.4 illustrates the concept. 

@addre:' 

using subnet INTERNET using subnet 
10.1.0.0 10.2.0.0 

10.1 address 10.2 address 

Figure 20.4 Illustration of addressing for a VPN that interconnects two com- 
pletely private sites over the global Internet. Computers at each 
site use private addresses. 

As the figure shows, site 1 uses subnet 10.1.0.0116, while site 2 uses subnet 
10.2.0.0116. Only two globally valid addresses are needed. One is assigned to the con- 
nection from router R, to the Internet, and the other is assigned to the connection from 
R, to the Internet. Routing tables at the sites speclfy routes for private addresses; only 
the VPN tunneling software needs to know about or use the globally valid IP addresses. 

VPNs use the same addressing structure as a private network. Hosts in a complete- 
ly isolated VPN can use arbitrary addresses, but a hybrid architecture with valid IP ad- 
dresses must be employed to provide hosts with access to the global Internet. The ques- 
tion remains: "How can a site provide access to the global Internet without assigning 
each host a valid IP address?" There are two general solutions. 

Known as an application gateway approach, the first solution offers hosts access to 
Internet services without offering IP-level access. Each site has a multi-homed host 
connected to both the global Internet (with a globally valid IP address) and the internal 
network (using a private IP address). The multi-homed host runs a set of application 
programs, known as application gateways, that each handle one service. Hosts at the 
site do not send datagrams to the global Internet. Instead, they send each request to the 
appropriate application gateway on the multihomed host, which accesses the service on 
the Internet and then relays the information back across the internal network. For ex- 
ample, Chapter 27 describes an e-mail gateway that can relay e-mail messages between 
external hosts and internal hosts. 



394 Private Network Interconnection (NAT, VPN) Chap. 20 

The chief advantage of the application gateway approach lies in its ability to work 
without changes to the underlying infrastructure or addressing. The chief disadvantage 
arises from the lack of generality, which can be summarized: 

Each application gateway handles only one specijk service; multiple 
gateways are required for multiple services. 

Consequently, although they are useful in special circumstances, application gateways 
do not solve the problem in a general way. Thus, a second solution was invented. 

20.6 Network Address Translation (NAT) 

A technology has been created that solves the general problem of providing IP- 
level access between hosts at a site and the rest of the Internet, without requiring each 
host at the site to have a globally valid IP address. Known as Network Address Trans- 
lation (NAT), the technology requires a site to have a single connection to the global In- 
ternet and at least one globally valid IP address, G. Address G is assigned to a comput- 
er (a multi-homed host or a router) that connects the site to the Internet and runs NAT 
software. Informally, we refer to a computer that runs NAT software as a NAT box; all 
datagrams pass through the NAT box as they travel from the site out to the Internet or 
from the Internet into the site. 

NAT translates the addresses in both outgoing and incoming datagrams by replac- 
ing the source address in each outgoing datagram with G and replacing the destination 
address in each incoming datagram with the private address of the correct host. Thus, 
from the view of an external host, all datagram come from the NAT box and all 
responses return to the NAT box. From the view of internal hosts, the NAT box ap- 
pears to be a router that can reach the global Internet. 

The chief advantage of NAT arises from its combination of generality and tran- 
sparency. NAT is more general than application gateways because it allows an arbitrary 
internal host to access an arbitrary service on a computer in the global Internet. NAT is 
transparent because it allows an internal host to send and receive datagrams using a 
private (i.e., nomoutabie) address. 

To summarize: 

Nen~ork Address Translation technology provides transparent IP-level 
access to the Internet from a host with a private address. 
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20.7 NAT Translation Table Creation 

Our overview of NAT omits an important detail because it does not specify how 
NAT knows which internal host should receive a datagram that arrives from the Inter- 
net. In fact, NAT maintains a translation table that it uses to perform the mapping. 
Each entry in the table specifies two items: the IP address of a host on the Internet and 
the internal IP address of a host at the site. When an incoming datagram arrives from 
the Internet, NAT looks up the datagram's destination address in the translation table, 
extracts the corresponding address of an internal host, replaces the datagram's destina- 
tion address with the host's address, and forwards the datagram across the local network 
to the host?. 

The NAT translation table must be in place before a datagram arrives from the In- 
ternet. Otherwise, NAT has no way to identify the correct internal host to which the 
datagram should be forwarded. How and when is the table initialized? There are 
several possibilities: 

Manual initialization. A manager configures the translation table manually be- 
fore any communication occurs. 

Outgoing datagrams. The table is built as a side-effect of sending datagrams. 
When it receives a datagram from an internal host, NAT creates an entry in the 
translation table to record the address of the host and the address of the desti- 
nation. 

Incoming name lookups. The table is built as a side-effect of handing domain 
name lookups. When a host on the Internet looks up the domain name of an 
internal host to find its IP address$, the domain name software creates an entry 
in the NAT translation table, and then answers the request by sending address 
G. Thus, from outside the site, it appears that all host names at the site map to 
address G. 

Each initialization technique has advantages and disadvantages. Manual initializa- 
tion provides permanent mappings and allows IP datagrams to be sent in either direction 
at any time. Using an outgoing datagram to initialize the table has the advantage of be- 
ing automatic, but does not allow communication to be initiated from the outside. Us- 
ing incoming domain name lookups requires modifying domain name software. It ac- 
commodates communication initiated from outside the site, but only works if the sender 
performs a domain name lookup before sending datagrams. 

Most implementations of NAT use outgoing datagrams to initialize the table; the 
strategy is especially popular among ISPs. To understand why, consider a small ISP 
that serves dialup customers. Figure 20.5 illustrates the architecture. 

+Of course, whenever it replaces an address in a datagram header, NAT must recompute the header 
checksum. 

$Chapter 24 describes how the Domain Name System (DNS) operates. 
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hosts using 
dialup access 

F'igure 205 The use of NAT by a small ISP that serves dialup customers. 
NAT translation allows the ISP to assign a private address to 
each dialup customer. 

The ISP must assign an IP address to a customer whenever the customer dials in. 
NAT permits the ISP to assign private addresses (e.g., the first customer is assigned 
10.0.0.1, the second 10.0.0.2, and so on). When a customer sends a datagram to a desti- 
nation on the Internet, NAT uses the outgoing datagram to initialize its translation table. 

20.8 Multi-Address NAT 

So far, we have described a simplistic implementation of NAT that performs a 1- 
to-1 address mapping between an external address and an internal address. That is, a 
1-to-1 mapping permits at most one computer at the site to access a given machine on 
the global Internet at any time. In practice, more complex forms of NAT are used that 
allow multiple hosts at a site to access a given external address concurrently. 

One variation of NAT permits concurrency by retaining the 1-to-1 mapping, but al- 
lowing the NAT box to hold multiple Internet addresses. Known as multi-address NAT, 
the scheme assigns the NAT box a set of K globally valid addresses, G,, G,, ... G,. 
When the first internal host accesses a given destination, the NAT box chooses address 
G,, adds an entry to the translation table, and sends the datagram. If another host ini- 
tiates contact with the same destination, the NAT box chooses address G,, and so on. 
Thus, multi-address NAT allows up to K internal hosts to access a given destination 
concurrently. 

20.9 Port-Mapped NAT 

Another popular variant of NAT provides concurrency by translating TCP or UDP 
protocol port numbers as well as addresses. Sometimes called Network Address Port 
Translation (NAPT), the scheme expands the NAT translation table to include additional 
fields. Besides a pair of source and destination IP addresses, the table contains a pair of 
source and destination protocol port numbers and a protocol port number used by the 
NAT box. Figure 20.6 illustrates the contents of the table. 
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Private Private External External NAT Protocol 
Address Port Address Port Port Used 
10.0.0.5 21 023 128.1 0.1 9.20 80 14003 tcp 
10.0.0.1 386 128.1 0.1 9.20 80 14010 tcP 
10.0.2.6 26600 207.200.75.200 21 1401 2 tcP 
10.0.0.3 1274 128.21 0.1.5 80 14007 tcP 

Figure 20.6 An example of a translation table used by NAPT. The table in- 
cludes port numbers as well as IF' addresses. 

The table in the figure has enmes for four internal computers that are currently ac- 
cessing destinations on the global Internet. All communication is using TCP. Interest- 
ingly, the table shows two internal hosts, 10.0.0.5 and 10.0.0.1, both accessing protocol 
port 80 (a Web server) on computer 128.I0.19.20. In this case, it happens that the two 
source ports being used for the two connections differ. However, source port unique- 
ness cannot be guaranteed - it could turn out that two internal hosts happen to choose 
the same source port number. Thus, to avoid potential conflicts, NAT assigns a unique 
port number to each communication that is used on the Internet. Recall that TCP iden- 
tifies each connection with a Ctuple that represents the IF' address and protocol port 
number of each endpoint. The first two items in the table correspond to TCP connec- 
tions that the two internal hosts identify with the 4-tuples: 

However, the computer in the Internet that receives datagram after NAPT performs the 
translation identifies the same two connections with the 4-tuples: 

(G, 14003, 128.10.19.20, 80) 
( G, 1401 0, 128.1 0.19.20, 80) 

where G is the globally valid address of the NAT box. 
The primary advantage of NAPT lies in the generality it achieves with a single glo- 

bally valid IF' address; the primary disadvantage arises because it restricts communica- 
tion to TCP or UDP. As long as all communication uses TCP or UDP, NAPT allows 
an internal computer to access multiple external computers, and multiple internal com- 
puters to access the same external computer without interference. A port space of 16 
bits allows up to 216 pairs of applications to communicate at the same time. To sum- 
marize: 

Several variants of NAT exist, including the popular NAPT form that 
translates protocol port numbers as well as IP addresses. 
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20.10 Interaction Between NAT And ICMP 

Even straightforward changes to an IP address can cause unexpected side-effects in 
higher layer protocols. In particular, to maintain the illusion of transparency, NAT must 
handle ICMP. For example, suppose an internal host uses ping to test reachability of a 
destination on the Internet. The host expects to receive an ICMP echo reply for each 
ICMP echo request message it sends. Thus, NAT must forward incoming echo replies 
to the correct host. However, NAT does not forward all ICMP messages that arrive 
from the Internet. If routes in the NAT box are incorrect, for example, an ICMP 
redirect message must be processed locally. Thus, when an ICMP message arrives 
from the Internet, NAT must fust determine whether the message should be handled lo- 
cally or sent to an internal host. Before forwarding to an internal host, NAT translates 
the ICMP message. 

To understand the need for ICMP translation, consider an ICMP destination un- 
reachable message. The message contains the header from a datagram, D, that caused 
the error. Unfortunately, NAT translated addresses before sending D, so the source ad- 
dress is not the address the internal host used. Thus, before forwarding the message, 
NAT must open the ICMP message and translate the addresses in D so they appear in 
exactly the form that the internal host used. After making the change, NAT must 
recompute the checksum in D, the checksum in the ICMP header, and the checksum in 
the outer datagram header. 

20.1 1 Interaction Between NAT And Applications 

Although ICMP makes NAT complex, application protocols have a more serious 
effect. In general, NAT will not work with any application that sends IP addresses or 
protocol ports as data. For example, when two programs use the File Transfer Protocol 
(FTP) described in Chapter 26, they have a TCP connection between them. As part of 
the protocol, one program obtains a protocol port on the local machine, converts the 
number to ASCII, and sends the result across a TCP connection to another program. If 
the connection between the programs passes through NAPT from an internal host to a 
host on the Internet, the port number in the data stream must be changed to agree with 
the port number NAPT has selected instead of the port the internal host is using. In 
fact, if NAT fails to open the data stream and change the number, the protocol will fail. 
Implementations of NAT have been created that recognize popular protocols such as 
FTP and make the necessary change in the data stream. However, there exist applica- 
tions that cannot use NAT. To summarize: 

NAT affects ICMP and higher layer protocols; except for a few stan- 
dard applications like FTP, an application protocol that passes IP ad- 
dresses or protocol port numbers as data will not operate correctly 
across NAT. 
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Changing items in a data stream increases the complexity of NAPT in two ways. 
First, it means that NAFT must have detailed knowledge of each application that 
transfers such infom~ation. Second, if the port numbers are represented in ASCII, as is 
the case with FTP, changing the value can change the number of octets transferred. In- 
serting even one additional octet into a TCP connection is difficult because each octet in 
the stream has a sequence number. Because a sender does not know that additional data 
has been inserted, it continues to assign sequence numbers without the additional data. 
When it receives additional data, the receiver will generate acknowledgements that ac- 
count for the data. Thus, after it inserts additional data, NAT must translate the se- 
quence numbers in each outgoing segment and each incoming acknowledgement. 

20.1 2 Conceptual Address Domains 

We have described NAT as a technology that can be used to connect a private net- 
work to the global Internet. In fact, NAT can be used to interconnect any two address 
&mains. Thus, NAT can be used between two corporations that each have a private 
network using address 10.0.0.0. More important, NAT can be used at two levels: 
between a customer's private and an ISP's private address domains as well as between 
the ISP's address domain and the global Internet. Finally, NAT can be combined with 
VPN technology to form a hybrid architecture in which private addresses are used 
within the organization, and NAT is used to provide connectivity between each site and 
the global Internet. 

As an example of multiple levels of NAT, consider an individual who works at 
home from several computers which are connected to a LAN. The individual can as- 
sign private addresses to the computers at home, and use NAT between the home net- 
work and the corporate intranet. The corporation can also assign private addresses and 
use NAT between its intranet and the global Internet. 

20.13 Slirp And Masquerade 

Two implementations of Network Address Translation have become especially po- 
pular; both were designed for the Unix operating system. The slirp program, derived 
from 4.4 BSD, comes with program source code. It was designed for use in a dialup ar- 
chitecture like the one shown in Figure 20.5. Slirp combines PPP and NAT into a sin- 
gle program. It runs on a computer that has: a valid IP address, a permanent Internet 
connection, and one or more dialup modems. The chief advantage of slirp is that it can 
use an ordinary user account on a Unix system for general-purpose Internet access. A 
computer that has a private address dials in and runs slirp. Once slirp begins, the dialup 
line switches from ASCII commands to PPP. The dialup computer starts PPP and ob- 
tains access to the Internet (e.g., to access a Web site). 

Slirp implements NAFT - it uses protocol port numbers to demultiplex connec- 
tions, and can rewrite protocol port numbers as well as IP addresses. It is possible to 
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have multiple computers (e.g., computers on a LAN) accessing the Internet at the same 
time through a single occurrence of shrp running on a UNIX system. 

Another popular implementation of NAT has been designed for the Linux operat- 
ing system. Known as masquerade, the program implements NAPT. Unlike slirp, 
masquerade does not require computers to access it via dialup, nor does masquerade 
need a user to login to the UNM system before starting it. Instead, masquerade offers 
many options; it can be configured to operate like a router between two networks, and it 
handles most of the NAT variations discussed in this chapter, including the use of mul- 
tiple IP addresses. 

20.1 4 Summary 

Although a private network guarantees privacy, the cost can be high. Virtual 
Private Network (VPN) technology offers a lower cost alternative that allows an organi- 
zation to use the global Internet to interconnect multiple sites and use encryption to 
guarantee that intersite traffic remains private. Like a traditional private network, a 
VPN can either be completely isolated (in which case hosts are assigned private ad- 
dresses) or a hybrid architecture that allows hosts to communicate with destinations on 
the global Internet. 

Two technologies exist that provide communication between hosts in different ad- 
dress domains: application gateways and Network Address Translation (NAT). An ap- 
plication gateway acts like a proxy by receiving a request from a host in one domain, 
sending the request to a destination in another, and then returning the result to the origi- 
nal host. A separate application gateway must be installed for each service. 

Network Address Translation provides transparent IP-level access to the global In- 
ternet from a host that has a private address. NAT is especially popular among ISPs be- 
cause it allows customers to access arbitrary Internet services while using a private IP 
address. Applications that pass address or port information in the data stream will not 
work with NAT until NAT has been programmed to recognize the application and make 
the necessary changes in the data; most implementations of NAT only recognize a few 
(standard) services. 

FOR FURTHER STUDY 

Many router and software vendors sell Virtual Private Network technologies, usu- 
ally with a choice of encryption schemes and addressing architecture. Consult the ven- 
dors' literature for more information. 

Several versions of NAT are also available commercially. The charter of the IETF 
working group on NAT can be found at: 
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In addition, Srisuresh and Holdrege [RFC 26631 defines NAT temlinology, and the In- 
ternet Draft repository at 

contains several Internet Drafts on NAT. 
More details about the masquerade program can be found in the Linux documenta- 

tion. A resource page can be found at URL: 

More information on slirp can be found in the program documentation; a resource 
page for slirp can be found at: 

Under what circumstances will a VPN transfer substantially more packets than conven- 
tional IP when sending the same data across the Internet? Hint: think about encapsula- 
tion. 

Read the slirp document to find out about port redirection. Why is it needed? 

What are the potential problems when three address domains are connected by two NAT 
boxes? 

In the previous question, how many times will a destination address be translated? A 
source address? 

Consider an ICMP host unreachable message sent through two NAT boxes that intercon- 
nect three address domains. How many address translations will occur? How many 
translations of protocol port numbers will occur? 

Imagine that we decide to create a new Internet parallel to the existing Internet that allo- 
cates addresses from the same address space. Can NAT technology be used to connect 
the two arbitrarily large Internets that use the same address space? If so, explain how. 
If not, explain why not. 

Is NAT completely transparent to a host? To answer the question, try to find a sequence 
of packets that a host can transmit to determine whether it is located behind a NAT box. 

What are the advantages of combining NAT technology with VPN technology? The 
disadvantages? 

Obtain a copy of slirp and instrument it to measure perfomlance. Does slirp processing 
overhead ever delay datagram? Why or why not? 

Obtain NAT and configure it on a Linux system between a private address domain and 
the Internet. Which well-known services work correctly and which do not? 

Read about a variant of NAT called twice NAT that allows communication to be initiated 
from either side of the NAT box at any time. How does twice NAT ensure that transla- 
tions are consistent? If two instances of twice NAT are used to interconnect three ad- 
dress domains, is the result completely transparent to all hosts? 
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21 .I Introduction 

Early chapters present the details of TCPhP technology, including the protocols 
that provide basic services and the router architecture that provides needed routing in- 
formation. Now that we understand the basic technology, we can examine application 
programs that profit from the cooperative use of a TCPIIP internet. While the example 
applications are both practical and interesting, they do not comprise the main emphasis. 
Instead, focus rests on the patterns of interaction among the communicating application 
programs. The primary pattern of interaction among cooperating applications is known 
as the client-server paradigm?. Client-server interaction forms the basis of most net- 
work communication, and is fundamental because it helps us understand the foundation 
on which distributed algorithms are built. This chapter considers the relationship 
between client and server; later chapters illustrate the client-server pattern with further 
examples. 

21.2 The Client-Server Model 

The term server applies to any program that offers a service that can be reached 
over a network. A server accepts a request over the network, performs its service, and 
returns the result to the requester. For the simplest services, each request arrives in a 
single IP datagram and the server returns a response in another datagram. 

- - 

tMarketing literature sometimes substitutes the term application-server for client-server; the underlying 
scientific principle is unchanged. 
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An executing program becomes a client when it sends a request to a server and 
waits for a response. Because the client-server model is a convenient and natural exten- 
sion of interprocess communication on a single machine, it is easy to build programs 
that use the model to interact. 

Servers can perform simple or complex tasks. For example, a time-of-day server 
merely returns the current time whenever a client sends the server a packet. A web 
server receives requests from a browser to fetch a copy of a Web page; the server ob- 
tains a copy of the file for the page and returns it to the browser. 

Usually, servers are implemented as application programst. The advantage of im- 
plementing servers as application programs is that they can execute on any computing 
system that supports TCP/IP communication. Thus, the server for a particular service 
can execute on a timesharing system along with other programs, or it can execute on a 
personal computer. Multiple servers can offer the same service, and can execute on the 
same machine or on multiple machines. In fact, managers commonly replicate copies of 
a given server onto physically independent machines to increase reliability or improve 
performance. If a computer's primary purpose is support of a particular server program, 
the term "server" may be applied to the computer as well as to the server program. 
Thus, one hears statements such as "machine A is our file server." 

21.3 A Simple Example: UDP Echo Server 

The simplest form of client-server interaction uses unreliable datagram delivery to 
convey messages from a client to a server and back. Consider, for example, a UDP 
echo server. The mechanics are straightforward as Figure 21.1 shows. At the server 
site, a UDP echo server process begins by negotiating with its operating system for per- 
mission to use the UDP port ID reserved for the echo service, the UDP echo port. 
Once it has obtained permission, the echo server process enters an infiite loop that has 
three steps: (1) wait for a datagram to amve at the echo port, (2) reverse the source and 
destination addresses$ (including source and destination IP addresses as well as UDP 
port ids), and (3) return the datagram to its original sender. At some other site, a pro- 
gram becomes a UDP echo client when it allocates an unused UDP protocol port, sends 
a UDP message to the UDP echo server, and awaits the reply. The client expects to re- 
ceive back exactly the same data as it sent. 

The UDP echo service illustrates two important points that are generally true about 
client-server interaction. The first concerns the difference between the lifetime of 
servers and clients: 

A server starts execution before interaction begins and (usually) con- 
tinues to accept requests and send responses without ever terminating. 
A client is any program that makes a request and awaits a response; 
it (usually) terminates afer using a server a finite number of times. 

?Many operating systems refer to a running application program as a process, a user process, or a rask. 
$One of the exercises suggests considering this step in more detail. 
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Figure 21.1 UDP echo as an example of the client-server model. In (a) the 
client sends a request to the server at a known IP address and at 
a well-known UDP port, and in (b) the server returns a response. 
Clients use any UDP port that is available. 

- 
client 0 

The second point, which is more technical, concerns the use of reserved and non- 
reserved port identifiers: 

response sent to 
client's port 

A server waits for requests at a well-known port that has been 
reserved for the service it offers. A client allocates an arbitrary, 
unused nonreserved port for its communication. 

In a client-server interaction, only one of the two ports needs to be reserved. Assigning 
a unique port identifier to each service makes it easy to build both clients and servers. 

Who would use an echo service? It is not a service that the average user finds in- 
teresting. However, programmers who design, implement, measure, or modify network 
protocol software, or network managers who test routes and debug communication 
problems, often use echo servers in testing. For example, an echo service can be used 
to determine if it is possible to reach a remote machine. 
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21.4 Time And Date Service 

The echo server is extremely simple, and little code is required to implement either 
the server or client side (provided that the operating system offers a reasonable way to 
access the underlying UDP/IP protocols). Our second example, a time server, shows 
that even simple client-server interaction can provide useful services. The problem a 
time server solves is that of setting a computer's time-of-day clock. The time of day 
clock is a hardware device that maintains the current date and time, making it available 
to programs. Once set, the time of day clock keeps time as accurately as a wristwatch. 

Some systems solve the problem by asking a programmer to type in the time and 
date when the system boots. The system increments the clock periodically (e.g., every 
second). When an application program asks for the date or time, the system consults 
the internal clock and formats the time of day in human readable form. Client-server 
interaction can be used to set the system clock automatically when a machine boots. To 
do so, a manager configures one machine, typically the machine with the most accurate 
clock, to run a time-of-day server. When other machines boot, they contact the server 
to obtain the current time. 

21.4.1 Representation for the Date and Time 

How should an operating system maintain the date and time-of-day? One useful 
representation stores the time and date as the count of seconds since an epoch date. For 
example, the UMX operating system uses the zeroth second of January 1, 1970 as its 
epoch date. The TCPm protocols also define an epoch date and report times as 
seconds past the epoch. For TCPJIP, the epoch is defined to be the zeroth second of 
January 1, 1900 and the time is kept in a 32-bit integer, a representation that accommo- 
dates all dates in the near future. 

Keeping the date as the time in seconds since an epoch makes the representation 
compact and allows easy comparison. It ties together the date and time of day and 
makes it possible to measure time by incrementing a single binary integer. 

21.4.2 Local and Universal Time 

Given an epoch date and representation for the time, to what time zone does the 
count refer? When two systems communicate across large geographic distances, using 
the local time zone from one or the other becomes difficult; they must agree on a stan- 
dard time zone to keep values for date and time comparable. Thus, in addition to defin- 
ing a representation for the date and choosing an epoch, the TCPDP time server stan- 
dard specifies that all values are given with respect to a single time zone. Originally 
called Greenwich Mean Time, the time zone is now known as universal coordinated 
time or universal time. 

The interaction between a client and a server that offers time service works much 
like an echo server. At the server side, the server application obtains permission to use 
the reserved port assigned to time servers, waits for a UDP message directed to that 
port, and responds by sending a UDP message that contains the current time in a 32-bit 
integer. We can summarize: 
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Sending a datagram to a time server is equivalent to making a request 
for the current time; the server responds by returning a UDP message 
that contains the current time. 

21.5 The Complexity of Sewers 

In our examples so far, servers are fairly simple because they are sequential. That 
is, the server processes one request at a time. After accepting a request, the server 
forms a reply and sends it before going back to see if another request has arrived. We 
implicitly assume that the operating system will queue requests that arrive for a server 
while it is busy, and that the queue will not become too long because the server has 
only a trivial amount of work to do. 

In practice, servers are usually much more difficult to build than clients because 
they need to accommodate multiple concurrent requests, even if a single request takes 
considerable time to process. For example, consider a file transfer server responsible 
for copying a file to another machine on request. Typically, servers have two parts: a 
single master program that is responsible for accepting new requests, and a set of slaves 
that are responsible for handling individual requests. The master server performs the 
following five steps: 

Open port 
The master opens the well-known port at which it can be 
reached. 

Wait for client 
The master waits for a new client to send a request. 

Choose port 
If necessary, the master allocates a new local protocol port for 
this request and informs the client (we will see that this step is 
unnecessary with TCP and most uses of UDP). 

Start Slave 
The master starts an independent, concurrent slave to handle this 
request (e.g., in UNIX, it forks a copy of the server process). 
Note that the slave handles one request and then terminates - 
the slave does not wait for requests from other clients. 

Continue 
The master returns to the wait step and continues accepting new 
requests while the newly created slave handles the previous re- 
quest concurrently. 

Because the master starts a slave for each new request, processing proceeds con- 
currently. Thus, requests that require little time to complete can finish earlier than re- 
quests that take longer, independent of the order in which they are started. For exam- 
ple, suppose the first client that contacts a file server requests a large file transfer that 
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takes many minutes. If a second client contacts the server to request a transfer that 
takes only a few seconds, the second transfer can start and complete while the first 
transfer proceeds. 

In addition to the complexity that results because servers handle concurrent re- 
quests, complexity also arises because servers must enforce authorization and protection 
rules. Server programs usually need to execute with highest privilege because they 
must read system files, keep logs, and access protected data. The operating system will 
not restrict a server program if it attempts to access users' files. Thus, servers cannot 
blindly honor requests from other sites. Instead, each server takes responsibility for en- 
forcing the system access and protection policies. 

Finally, servers must protect themselves against malformed requests or against re- 
quests that will cause the server program itself to abort. Often, it is difficult to foresee 
potential problems. For example, one project at Purdue University designed a file 
server that allowed student operating systems to access files on a UNIX timesharing 
system. Students discovered that requesting the server to open a file named /dev/tty 
caused the server to abort because UNIX associates that name with the control terminal 
to which a program is attached. The server, created at system startup, had no such ter- 
minal. Once an abort occurred, no client could access files until a systems programmer 
restarted the server. 

A more serious example of server vulnerability became known in the fall of 1988 
when a student at Cornell University built a worm program that attacked computers on 
the global Internet. Once the worm started running on a machine, it searched the Inter- 
net for computers with servers that it knew how to exploit, and used the servers to 
create more copies of itself. In one of the attacks, the worm used a bug in the UNIX 
fingerd server. Because the server did not check incoming requests, the worm was able 
to send an illegal string of input that caused the server to overwrite parts of its internal 
data areas. The server, which executed with highest privilege, then misbehaved, allow- 
ing the worm to create copies of itself. 

We can summarize our discussion of servers: 

Servers are usually more dificult to build than clients because, 
although they can be implemented with application programs, servers 
must enforce all the access and protection policies of the computer 
system on which they run, and must protect themselves against all 
possible errors. 

21.6 RARP Server 

So far, all our examples of client-server interaction require the client to know the 
complete server address. The RARP protocol from Chapter 6 provides an example of 
client-server interaction with a slightly different twist. Recall that a machine can use 
RARP to find its IP address at startup. Instead of having the client communicate direct- 
ly with a server, RARP clients broadcast their requests. One or more machines execut- 
ing RARP server processes respond, each returning a packet that answers the query. 
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There are two significant differences between a RARP server and a UDP echo or 
time server. First, RARP packets travel across the physical network directly in 
hardware frames, not in IP datagrams. Thus, unlike the UDP echo server which allows 
a client to contact a server anywhere on an internet, the RARP server requires the client 
to be on the same physical network. Second, RARP cannot be implemented by an ap- 
plication program. Echo and time servers can be built as application programs because 
they use UDP. By contrast, a RARP server needs access to raw hardware packets. 

What are the alternatives to client-server interaction, and when might they be at- 
tractive? This section gives an answer to these questions. 

In the client-server model, programs usually act as clients when they need informa- 
tion, but it is sometimes important to minimize such interactions. The ARP protocol 
from Chapter 5 gives one example. It uses a modified form of client-server interaction 
to obtain physical address mappings. Machines that use ARP keep a cache of answers 
to improve the efficiency of later queries. Caching improves the performance of client- 
server interaction in cases where the recent history of queries is a good indicator of fu- 
ture use. 

Although caching improves performance, it does not change the essence of client- 
server interaction. The essence lies in our assumption that processing must be driven 
by demand. We have assumed that a program executes until it needs information and 
then acts as a client to obtain the needed information. Taking a demand-driven view of 
the world is natural and arises from experience. Caching helps alleviate the cost of ob- 
taining information by lowering the retrieval cost for all except the first process that 
makes a request. 

How can we lower the cost of information retrieval for the first request? In a dis- 
tributed system, it may be possible to have concurrent background activities that collect 
and propagate information before any particular program requests it, making retrieval 
costs low even for the initial request. More important, precollecting information can al- 
low a given system to continue executing even though other machines or the networks 
connecting them fail. 

Precollection is the basis for the 4BSD UNIX ruptime command. When invoked, 
ruptime reports the CPU load and time since system startup for each machine on the lo- 
cal network. A background program running on each machine uses UDP to broadcast 
information about the machine periodically. The same program also collects incoming 
information and places it in a file. Because machines propagate information continu- 
ously, each machine has a copy of the latest infornlation on hand; a client seeking infor- 
mation never needs to access the network. Instead, it reads the information from secon- 
dary storage and prints it in a readable form. 

The chief advantage of having information collected locally before the client needs 
it is speed. The ruptime command responds immediately when invoked without waiting 
for messages to traverse the network. A second benefit occurs because the client can 
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find out something about machines that are no longer operating. In particular, if a 
machine stops broadcasting information, the client can report the time elapsed since the 
last broadcast (i.e., it can report how long the machine has been off-line). 

Precollection has one major disadvantage: it uses processor time and network 
bandwidth even when no one cares about the data being collected. For example, the 
ruptime broadcast and collection continues running throughout the night, even if no one 
is logged in to read the information. If only a few machines connect to a given net- 
work, precollection cost is insignificant. It can be thought of as an innocuous back- 
ground activity. For networks with many hosts, however, the large volume of broadcast 
traffic generated by precollection makes it too expensive. In particular, the cost of read- 
ing and processing broadcast messages becomes high. Thus, precollection is not among 
the most popular alternatives to client-server. 

21.8 Summary 

Distributed programs require network communication. Such programs often fall 
into a pattern of use known as client-server interaction. A server process awaits a re- 
quest and performs action based on the request. The action usually includes sending a 
response. A client program formulates a request, sends it to a server, and then awaits a 
reply. 

We have seen examples of clients and servers and found that some clients send re- 
quests directly, while others broadcast requests. Broadcast is especially useful on a lo- 
cal network when a machine does not know the address of a server. 

We also noted that if servers use internet protocols like UDP, they can accept and 
respond to requests across an internet. If they communicate using physical frames and 
physical hardware addresses, they are restricted to a single physical network. 

Finally, we considered an alternative to the client-server paradigm that uses precol- 
lection of information to avoid delays. An example of precollection came from a 
machine status service. 

FOR FURTHER STUDY 

UDP echo service is defined in Postel [RFC 8621. The UNIX Programmer's 
Manual describes the ruptime command (also see the related description of who) .  
Feinler et. al. [I9851 specifies many standard server protocols not discussed here, in- 
cluding discard, character generation, day and time, active users, and quote of the day. 
The next chapters consider others. 



Exercises 

EXERCISES 

Build a UDP echo client that sends a datagram to a specified echo server, awaits a reply, 
and compares it to the original message. 

Carefully consider the manipulation of IP addresses in a UDP echo server. Under what 
conditions is it incorrect to create new IP addresses by reversing the source and destina- 
tion IP addresses? 

As we have seen, servers can be implemented by separate application programs or by 
building server code into the protocol software in an operating system. What are the ad- 
vantages and disadvantages of having an application program (user process) per server? 

Suppose you do not know the IP address of a local machine running a UDP echo server, 
but you know that it responds to requests sent to port 7. Is there an IP address you can 
use to reach it? 

Build a client for the UDP time service. 

Characterize situations in which a server can be located on a separate physical network 
from its client. Can a RARP server ever be located on a separate physical network from 
it clients? Why or why not? 

What is the chief disadvantage of having all machines broadcast their status periodically? 

Examine the format of data broadcast by the servers that implement the 4BSD UNIX 
mptime command. What information is available to the client in addition to machine 
status? 
What servers are running on computers at your site? If you do not have access to sys- 
tem configuration files that list the servers started for a given computer, see if your sys- 
tem has a command that prints a list of open TCP and UDP ports (e.g., the UNIX netstat 
command). 

Some servers allow a manager to gracefully shut them down or restart them. What is the 
advantage of graceful shutdown? 





The Socket Interface 

22.1 Introduction 

So far, we have concentrated on discussing the principles and concepts that under- 
lie the TCPAP protocols without specifying the interface between the application pro- 
grams and the protocol software. This chapter reviews one example of an Application 
Program Znter$ace (Am, the interface between application programs and TCP/IP proto- 
cols. There are two reasons for postponing the discussion of APIs. First, in principle 
we must distinguish between the interface and TCPm protocols because the standards 
do not specify exactly how application programs interact with protocol software. Thus, 
the interface architecture is not standardized; its design lies outside the scope of the pro- 
tocol suite. Second, in practice, it is inappropriate to tie the protocols to a particular 
API because no single interface architecture works well on all systems. In particular, 
because protocol software resides in a computer's operating system, interface details 
depend on the operating system. 

Despite the lack of a standard, reviewing an example will help us understand how 
programmers use TCPAP. Although the example we have chosen is from the BSD 
UNIX operating system, it has become, de facto, a standard that is widely accepted and 
used in many systems. In particular, it forms the basis for Microsoft's Windows Sock- 
ets? interface. The reader should keep in mind that our goal is merely to give one con- 
crete example, not to prescribe how APIs should be designed. The reader should also 
remember that the operations listed here are not part of the TCP/IP standards. 

tProgrammers often use the term WZNSOCK as a replacement for Windows Sockets. 
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22.2 The UNIX UO Paradigm And Network UO 

Developed in the late 1960s and early 1970s, UNIX was originally designed as a 
timesharing system for single processor computers. It is a process-oriented operating 
system in which each application program executes as a user level process. An applica- 
tion program interacts with the operating system by making system calls. From the 
programmer's point of view, system calls look and behave exactly like other procedure 
calls. They take arguments and return one or more results. Arguments can be values 
(e.g., an integer count) or pointers to objects in the application program (e.g., a buffer to 
be filled with characters). 

Derived from those in Multics and earlier systems, the UNIX input and output 
(YO) primitives follow a paradigm sometimes referred to as open-read-write-close. Be- 
fore a user process can perform V0 operations, it calls open to specify the file or device 
to be used and obtains permission. The call to open returns a small integerfile descrip- 
tort that the process uses when performing YO operations on the opened file or device. 
Once an object has been opened, the user process makes one or more calls to read or 
write to transfer data. Read transfers data into the user process; write transfers data 
from the user process to the file or device. Both read and write take three arguments 
that specify the file descriptor to use, the address of a buffer, and the number of bytes to 
transfer. After all transfer operations are complete, the user process calls close to in- 
form the operating system that it has finished using the object (the operating system au- 
tomatically closes all open descriptors if a process terminates without calling close). 

22.3 Adding Network UO to UNIX 

Originally, UNM designers cast all VO operations in the open-read-write-close 
paradigm described above. The scheme included VO for character-oriented devices like 
keyboards and block-oriented devices like disks and data files. An early implementa- 
tion of TCP/IP under UNIX also used the open-read-write-close paradigm with a special 
file name, /dev/tcp. 

The group adding network protocols to BSD UNIX decided that because network 
protocols are more complex than conventional VO devices, interaction between user 
processes and network protocols must be more complex than interactions between user 
processes and conventional V0 facilities. In particular, the protocol interface must al- 
low programmers to create both server code that awaits co~ect ions  passively as well as 
client code that forms co~ect ions  actively. Furthermore, application programs sending 
datagrams may wish to specify the destination address along with each datagram instead 
of binding destinations at the time they call open. To handle all these cases, the 
designers chose to abandon the traditional UNIX open-read-write-close paradigm, and 
added several new operating system calls as well as new library routines. Adding net- 
work protocols to UNIX increased the complexity of the 110 interface substantially. 

Further complexity arises in the UNIX protocol interface because designers at- 
tempted to build a general mechanism to accommodate many protocols. For example, 

?The term "fie descriptor" arises because in UNIX all devices are mapped into the file system name 
space. In most cases, VO operations on files and devices are indistinguishable. 
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the generality makes it possible for the operating system to include software for other 
protocol suites as well as TCP/IP, and to allow an application program to use one or 
more of them at a time. As a consequence, the application program cannot merely sup- 
ply a 32-bit address and expect the operating system to interpret it correctly. The appli- 
cation must explicitly specify that the 32-bit number represents an IP address. 

22.4 The Socket Abstraction 

The basis for network I/0 in the socket API centers on an abstraction known as the 
sockert. We think of a socket as a generalization of the UNIX file access mechanism 
that provides an endpoint for communication. As with file access, application programs 
request the operating system to create a socket when one is needed. The system returns 
a small integer that the application program uses to reference the newly created socket. 
The chief difference between file descriptors and socket descriptors is that the operating 
system binds a file descriptor to a specific file or device when the application calls 
open, but it can create sockets without binding them to specific destination addresses. 
The application can choose to supply a destination address each time it uses the socket 
(e.g., when sending datagrams), or it can choose to bind the destination address to the 
socket and avoid specifying the destination repeatedly (e.g., when making a TCP con- 
nection). 

Whenever it makes sense, sockets perform exactly like UNIX files or devices, so 
they can be used with traditional operations like read and write. For example, once an 
application program creates a socket and creates a TCP connection from the socket to a 
foreign destination, the program can use write to send a stream of data across the con- 
nection (the application program at the other end can use read to receive it). To make it 
possible to use primitives like read and write with both files and sockets, the operating 
system allocates socket descriptors and file descriptors from the same set of integers and 
makes sure that if a given integer has been allocated as a file descriptor, it will not also 
be allocated as a socket descriptor. 

22.5 Creating A Socket 

The socket function creates sockets on demand. It takes three integer arguments 
and returns an integer result: 

result = socket(pf, type, protocol) 

Argument pf specifies the protocol family to be used with the socket. That is, it speci- 
fies how to interpret addresses when they are supplied. Current families include the 
TCP/IP internet (PFJNET), Xerox Corporation PUP internet (PF-PUP), Apple Com- 
puter Incorporated AppleTalk network (PFAPPLETALK), and UNIX file system 
(PF-UNIX) as well as many others*. 

tFor now, we will describe sockets as part of the operating system as they are implemented in UNM; 
later sections describe how other operating systems use library routines to provide a socket API. 

$In UNM, application programs contain symbolic names like PF-ZNET; system files contain the defmi- 
tions that specify numeric values for each name. 



416 The Socket Interface Chap. 22 

Argument type specifies the type of communication desired. Possible types in- 
clude reliable stream delivery service (SOCK-STREAM) and comectionless datagram 
delivery service (SOCK-DGRAM), as well as a raw type (SOCK-RAW) that allows 
privileged programs to access low-level protocols or network interfaces. Two additional 
types were planned, but not implemented. 

Although the general approach of separating protocol families and types may seem 
sufficient to handle all cases easily, it does not. First, it may be that a given family of 
protocols does not support one or more of the possible service types. For example, the 
UNIX family has an interprocess communication mechanism called a pipe that uses a 
reliable stream delivery service, but has no mechanism for sequenced packet delivery. 
Thus, not all combinations of protocol family and service type make sense. Second, 
some protocol families have multiple protocols that support one type of service. For 
example, it may be that a single protocol family has two connectionless datagram 
delivery services. To accommodate multiple protocols within a family, the socket call 
has a third argument that can be used to select a specific protocol. To use the third ar- 
gument, the programmer must understand the protocol family well enough to know the 
type of service each protocol supplies. 

Because the designers tried to capture many of the conventional UNIX operations 
in their socket design, they needed a way to* simulate the lJNIX pipe mechanism. It is 
not necessary to understand the details of pipes; only one salient feature is important: 
pipes differ from standard network operations because the calling process creates both 
endpoints for the communication simultaneously. To accommodate pipes, the designers 
added a sockerpair function that takes the form: 

socketpair(pf, type, protocol, sarray) 

Socketpair has one more argument than the socket procedure, sarray. The additional ar- 
gument gives the address of a two-element integer array. Socketpair creates two sock- 
ets simultaneously and places the two socket descriptors in the two elements of sarray. 
Readers should understand that socketpair is not meaningful when applied to the 
TCPm protocol family (it has been included here merely to make our description of the 
interface complete). 

22.6 Socket Inheritance And Termination 

UNIX uses the fork and exec system calls to start new application programs. It is a 
two-step procedure. In the first step, fork creates a separate copy of the currently exe- 
cuting application program. In the second step, the new copy replaces itself with the 
desired application program. When a program calls fork, the newly created copy inher- 
its access to all open sockets just as it inherits access to all open files. When a program 
calls exec, the new application retains access to all open sockets. We will see that mas- 
ter servers use socket inheritance when they create slave servers to handle a specific 
connection. Internally, the operating system keeps a reference count associated with 
each socket, so it knows how many application programs (processes) have access to it. 
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Both the old and new processes have the same access rights to existing sockets, 
and both can access the sockets. Thus, it is the responsibility of the programmer to en- 
sure that the two processes use the shared socket meaningfully. 

When a process finishes using a socket it calls close. Close has the form: 

where argument socket specifies the descriptor of a socket to close. When a process ter- 
minates for any reason, the system closes all sockets that remain open. Internally, a call 
to close decrements the reference count for a socket and destroys the socket if the count 
reaches zero. 

22.7 Specifying A Local Address 

Initially, a socket is created without any association to local or destination ad- 
dresses. For the TCPAP protocols, this means no local protocol port number has been 
assigned and no destination port or IP address has been specified. In many cases, appli- 
cation programs do not care about the local address they use and are willing to allow 
the protocol software to choose one for them. However, server processes that operate at 
a well-known port must be able to speclfy that port to the system. Once a socket has 
been created, a server uses the bind function to establish a local address for it. Bind has 
the following form: 

bind(socket, localaddr, addrlen) 

Argument socket is the integer descriptor of the socket to be bound. Argument lo- 
caladdr is a structure that specifies the local address to which the socket should be 
bound, and argument addrlen is an integer that specifies the length of the address meas- 
ured in bytes. Instead of giving the address merely as a sequence of bytes, the 
designers chose to use a structure for addresses as Figure 22.1 illustrates. 

0 16 31  

ADDRESS FAMILY ADDRESS OCTETS 0-1 1 
I ADDRESS OCTETS 2-5 I 

ADDRESS OCTETS 6-9 

ADDRESS OCTETS 10-1 3 

Figure 22.1 The sockaddr structure used when passing a TCPJIP address to 
the socket interface. 
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The structure, generically named sockaddr, begins with a 16-bit ADDRESS FAMI- 
LY field that identifies the protocol suite to which the address belongs. It is followed 
by an address of up to I4 octets. When declared in C, the socket address structure is a 
union of structures for all possible address families. 

The value in the ADDRESS FAMILY field determines the format of the remaining 
address octets. For example, the value 2t in the ADDRESS FAMILY field means the 
remaining address octets contain a TCP/IF' address. Each protocol family defines how it 
will use octets in the address field. For TCP/IP addresses, the socket address is known 
as sockaddr-in. It includes both an IP address and a protocol port number (i.e., an in- 
ternet socket address structure can contain both an IP address and a protocol port at that 
address). Figure 22.2 shows the exact format of a TCP/IP socket address. 

I ADDRESS FAMILY (2) I PROTOCOL PORT 1 
I p IP ADDRESS 

UNUSED (ZERO) 

UNUSED (ZERO) * 

Figure 22.2 The format of a socket address structure (sockaddr-in) when 
used with a TCPJIP address. The structure includes both an IP 
address and a protocol port at that address. 

Although it is possible to specify arbitrary values in the address structure when cal- 
ling bind, not all possible bindings are valid. For example, the caller might request a 
local protocol port that is already in use by another program, or it might request an in- 
valid IP address. In such cases, the bind call fails and returns an error code. 

22.8 Connecting Sockets To Destination Addresses 

Initially, a socket is created in the unconnected state, which means that the socket 
is not associated with any foreign destination. The function connect binds a permanent 
destination to a socket, placing it in the connected state. An application program must 
call connect to establish a connection before it can transfer data through a reliable 
stream socket. Sockets used with connectionless datagram services need not be con- 
nected before they are used, but doing so makes it possible to transfer data without 
specifying the destination each time. 

The connect function has the form: 

connect(socket, destaddr, addrlen) 

TUNE uses the symbolic name PF-[NET to denote TCP/IP addresses. 
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Argument socket is the integer descriptor of the socket to connect. Argument destuddr 
is a socket address structure that specifies the destination address to which the socket 
should be bound. Argument uddrlen specifies the length of the destination address 
measured in bytes. 

The semantics of connect depend on the underlying protocols. Selecting the reli- 
able stream delivery service in the PF-INET family means choosing TCP. In such 
cases, connect builds a TCP connection with the destination and returns an error if it 
cannot. In the case of comectionless service, connect does nothing more than store the 
destination address locally. 

22.9 Sending Data Through A Socket 

Once an application program has established a socket, it can use the socket to 
transmit data. There are five possible functions from which to choose: send, sendto, 
sendmsg, write, and writev. Send, write, and writev only work with connected sockets 
because they do not allow the caller to specify a destination address. The differences 
between the three are minor. Write takes three arguments: 

write(socket, buffer, length) 

Argument socket contains an integer socket descriptor (write can also be used with other 
types of descriptors). Argument buffer contains the address of the data to be sent, and 
argument length specifies the number of bytes to send. The call to write blocks until 
the data can be transferred (e.g., it blocks if internal system buffers for the socket are 
full). Like most system calls, write returns an error code to the application calling it, 
allowing the programmer to know if the operation succeeded. 

The system call writev works like write except that it uses a "gather write" form, 
making it possible for the application program to write a message without copying the 
message into contiguous bytes of memory. Writev has the form: 

writev(socket, iovector, vectorlen) 

Argument iovector gives the address of an array of type iovec that contains a sequence 
of pointers to the blocks of bytes that form the message. As Figure 22.3 shows, a 
length accompanies each pointer. Argument vectorlen specifies the number of entries in 
iovector. 
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POINTER TO BLOCK, (32-bit address) 

LENGTH OF BLOCK, (32-bit integer) 
: 

POINTER TO BLOCK, (32-bit address) 

LENGTH OF BLOCK, (32-bit integer) 

Figure 22.3 The format of an iovector of type iovec used with writev and 
readv. 

The send function has the form: 

send(socket, message, length, flags) 

where argument socket specifies the socket to use, argument message gives the address 
of the data to be sent, argument length specifies the number of bytes to be sent, and ar- 
gument flags controls the transmission. One value for flags allows the sender to specify 
that the message should be sent out-of-band on sockets that support such a notion. For 
example, recall from Chapter 13 that out-of-band messages correspond to TCP's notion 
of urgent data. Another value forflags allows the caller to request that the message be 
sent without using local routing tables. The intention is to allow the caller to take con- 
trol of routing, making it possible to write network debugging software. Of course, not 
all sockets support all requests from arbitrary programs. Some requests require the pro- 
gram to have special privileges; others are simply not supported on all sockets. 

Functions sendto and sendmsg allow the caller to send a message through an un- 
comected socket because they both require the caller to specify a destination. Sendto, 
which takes the destination address as an argument, has the form: 

sendto(socket, message, length, flags, destaddr, addrlen) 

The first four arguments are exactly the same as those used with the send function. The 
final two arguments specify a destination address and give the length of that address. 
Argument destaddr specifies the destination address using the socknddr-in structure as 
defined in Figure 22.2. 

A programmer may choose to use function sendmsg in cases where the long list of 
arguments required for sendto makes the program inefficient or difficult to read. 
Sendmsg has the form: 

sendmsg(socket, messagestruct, flags) 

where argument messagestruct is a structure of the form illustrated in Figure 22.4. The 
structure contains information about the message to be sent, its length, the destination 
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address, and the address length. This call is especially useful because there is a 
corresponding input operation (described below) that produces a message structure in 
exactly the same fom~at. 

0 3 1  

POINTER TO SOCKETADDR 1 
r p -  SIZE OF SocKETADDR 

POINTER TO IOVEC LlST 

LENGTH OF IOVEC LlST 

POINTER TO ACCESS RIGHTS LlST 

LENGTH OF ACCESS RIGHTS LlST 

Figure 22.4 The fornlat of message structure messagestmt used by sendrnsg. 

22.10 Receiving Data Through A Socket 

Analogous to the five different output operations, the socket API offers five func- 
tions that a process can use to receive data through a socket: r e d ,  reudv, recv, 
recvfrom, and recvmsg. The conventional input operation, read, can only be used when 
the socket is connected. It has the form: 

read(descriptor, buffer, length) 

where descriptor gives the integer descriptor of a socket or file descriptor from which to 
read data, bufSer specifies the address in memory at which to store the data, and length 
specifies the maximum number of bytes to read. 

An alternative form, reudv, allows the caller to use a "scatter read" style of inter- 
face that places the incoming data in noncontiguous locations. Reudv has the form: 

readv(descriptor, iovector, vectorlen) 

Argument iovector gives the address of a structure of type iovec (see Figure 22.3) that 
contains a sequence of pointers to blocks of memory into which the incoming data 
should be stored. Argument vectorlen specifies the number of entries in iovector. 

In addition to the conventional input operations, there are three additional functions 
for network message input. Processes call recv to receive data from a connected socket. 
It has the form: 

recv(socket, buffer, length, flags) 
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Argument socket specifies a socket descriptor from which data should be received. Ar- 
gument buffer specifies the address in memory into which the message should be 
placed, and argument length specifies the length of the buffer area. Finally, argument 
flags allows the caller to control the reception. Among the possible values for theflags 
argument is one that allows the caller to look ahead by extracting a copy of the next in- 
coming message without removing the message from the socket. 

The function recvfrom allows the caller to specify input from an unconnected sock- 
et. It includes additional arguments that allow the caller to specify where to record the 
sender's address. The form is: 

recvfrom(socket, buffer, length, flags, fromaddr, addrlen) 

The two additional arguments, fromaddr and addrlen, are pointers to a socket address 
structure and an integer. The operating system uses fromaddr to record the address of 
the message sender and uses fromlen to record the length of the sender's address. No- 
tice that the output operation sendto, discussed above, takes an address in exactly the 
same form as recvfrom generates. Thus, sending replies is easy. 

The final function used for input, recvmsg, is analogous to the sendmsg output 
operation. Recvmsg operates like recvfrom, but requires fewer arguments. Its form is: 

recvmsg(socket, messagestruct, flags) 

where argument messagestruct gives the address of a structure that holds the address for 
an incoming message as well as locations for the sender's address. The structure pro- 
duced by recvmsg is exactly the same as the structure used by sendmsg, making them 
operate well as a pair. 

22.1 1 Obtaining Local And Remote Socket Addresses 

We said that newly created processes inherit the set of open sockets from the pro- 
cess that created them. Sometimes, a newly created process needs to determine the des- 
tination address to which a socket connects. A process may also wish to determine the 
local address of a socket. Two functions provide such information: getpeemume and 
getsockname (despite their names, both deal with what we think of as "addresses"). 

A process calls getpeemame to determine the address of the peer (i.e., the remote 
end) to which a socket connects. It has the form: 

getpeername(socket, destaddr, addrlen) 

Argument socket specifies the socket for which the address is desired. Argument des- 
taddr is a pointer to a structure of type sockaddr (see Figure 22.1) that will receive the 
socket address. Finally, argument addrlen is a pointer to an integer that will receive the 
length of the address. Getpeemume only works with connected sockets. 
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Function getsockname returns the local address associated with a socket. It has the 
form: 

getsockname(socket, localaddr, addrlen) 

As expected, argument socket specifies the socket for which the local address is desired. 
Argument localaddr is a pointer to a structure of type sockaddr that will contain the ad- 
dress, and argument addrlen is a pointer to an integer that will contain the length of the 
address. 

22.12 Obtaining And Setting Socket Options 

In addition to binding a socket to a local address or connecting it to a destination 
address, the need arises for a mechanism that permits application programs to control 
the socket. For example, when using protocols that use timeout and retransmission, the 
application program may want to obtain or set the timeout parameters. It may also want 
to control the allocation of buffer space, determine if the socket allows transmission of 
broadcast, or control processing of out-of-band data. Rather than add new functions for 
each new control operation, the designers decided to build a single mechanism. The 
mechanism has two operations: getsockopt and setsockopt. 

Function getsockopt allows the application to request information about the socket. 
A caller specifies the socket, the option of interest, and a location at which to store the 
requested information. The operating system examines its internal data structures for 
the socket and passes the requested information to the caller. The call has the form: 

getsockopt(socket, level, optionid, optionval, length) 

Argument socket specifies the socket for which information is needed. Argument level 
identifies whether the operation applies to the socket itself or to the underlying proto- 
cols being used. Argument optionid specifies a single option to which the request ap- 
plies. The pair of arguments optionval and length specify two pointers. The first gives 
the address of a buffer into which the system places the requested value, and the second 
gives the address of an integer into which the system places the length of the option 
value. 

Function setsockopt allows an application program to set a socket option using the 
set of values obtained with getsockopt. The caller specifies a socket for which the op- 
tion should be set, the option to be changed, and a value for the option. The call to set- 
sockopt has the form: 

setsockopt(socket, level, optionid, optionval, length) 

where the arguments are like those for getsockopt, except that the length argument con- 
tains the length of the option being passed to the system. The caller must supply a legal 
value for the option as well as a correct length for that value. Of course, not all options 
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apply to all sockets. The correctness and semantics of individual requests depend on 
the current state of the socket and the underlying protocols being used. 

22.13 Specifying A Queue Length For A Server 

One of the options that applies to sockets is used so frequently, a separate function 
has been dedicated to it. To understand how it arises, consider a server. The server 
creates a socket, binds it to a well-known protocol port, and waits for requests. If the 
server uses a reliable stream delivery, or if computing a response takes nontrivial 
amounts of time, it may happen that a new request arrives before the server finishes 
responding to an old request. To avoid having protocols reject or discard incoming re- 
quests, a server must tell the underlying protocol software that it wishes to have such 
requests enqueued until it has time to process them. 

The function listen allows servers to prepare a socket for incoming connections. In 
terms of the underlying protocols, listen puts the socket in a passive mode ready to ac- 
cept connections. When the server invokes listen, it also informs the operating system 
that the protocol software should enqueue multiple simultaneous requests that arrive at 
the socket. The form is: 

listen(socket, qlength) 

Argument socket gives the descriptor of a socket that should be prepared for use by a 
server, and argument qlength specifies the length of the request queue for that socket. 
After the call, the system will enqueue up to qlength requests for connections. If the 
queue is full when a request arrives, the operating system will refuse the c o ~ e c t i o n  by 
discarding the request. Listen applies only to sockets that have selected reliable stream 
delivery service. 

22.14 How A Server Accepts Connections 

As we have seen, a server process uses the functions socket, bind, and listen to 
create a socket, bind it to a well-known protocol port, and specify a queue length for 
connection requests. Note that the call to bind associates the socket with a well-known 
protocol port, but that the socket is not connected to a specific foreign destination. In 
fact, the foreign destination must specify a wildcard, allowing the socket to receive con- 
nection requests from an arbitrary client. 

Once a socket has been established, the server needs to wait for a connection. To 
do so, it uses function accept. A call to accept blocks until a connection request ar- 
rives. It has the form: 

newsock = accept(socket, addr, addrlen) 
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Argument socket specifies the descriptor of the socket on which to wait. Argument 
addr is a pointer to a structure of type sockaddr, and addrlen is a pointer to an integer. 
When a request anives, the system fills in argument addr with the address of the client 
that has placed the request and sets addrlen to the length of the address. Finally, the 
system creates a new socket that has its destination connected to the requesting client, 
and returns the new socket descriptor to the caller. The original socket still has a wild- 
card foreign destination, and it still remains open. Thus, the master server can continue 
to accept additional requests at the original socket. 

When a connection request arrives, the call to accept returns. The server can either 
handle requests iteratively or concurrently. In the iterative approach, the server handles 
the request itself, closes the new socket, and then calls accept to obtain the next connec- 
tion request. In the concurrent approach, after the call to accept returns, the master 
server creates a slave to handle the request (in UNIX terminology, it forks a child pro- 
cess to handle the request). The slave process inherits a copy of the new socket, so it 
can proceed to service the request. When it finishes, the slave closes the socket and ter- 
minates. The original (master) server process closes its copy of the new socket after 
starting the slave. It then calls accept to obtain the next connection request. 

The concurrent design for servers may seem confusing because multiple processes 
will be using the same local protocol port number. The key to understanding the 
mechanism lies in the way underlying protocols treat protocol ports. Recall that in TCP 
a pair of endpoints define a connection. Thus, it does not matter how many processes 
use a given local protocol port number as long as they connect to different destinations. 
In the case of a concurrent server, there is one process per client and one additional pro- 
cess that accepts connections. The socket the master server process uses has a wildcard 
for the foreign destination, allowing it to connect with an arbitrary foreign site. Each 
remaining process has a specific foreign destination. When a TCP segment anives, it 
will be sent to the socket connected to the segment's source. If no such socket exists, 
the segment will be sent to the socket that has a wildcard for its foreign destination. 
Furthermore, because the socket with a wildcard foreign destination does not have an 
open connection, it will only honor TCP segments that request a new connection. 

22.15 Servers That Handle Multiple Services 

The socket API provides another interesting possibility for server design because it 
allows a single process to wait for connections on multiple sockets. The system call 
that makes the design possible is called select, and it applies to I/O in general, not just 
to communication over sockets?. Select has the form: 

nready = select(ndesc, indesc, outdesc, excdesc, timeout) 

In general, a call to select blocks waiting for one of a set of file descriptors to be- 
come ready. Argument ndesc specifies how many descriptors should be examined (the 
descriptors checked are always 2 through ndesc-1). Argument indesc is a pointer to a 

tThe version of select in Windows Sockets applies only to socket descriptors. 
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bit mask that specifies the file descriptors to check for input, argument outdesc is a 
pointer to a bit mask that specifies the file descriptors to check for output, and argument 
excdesc is a pointer to a bit mask that specifies the file descriptors to check for excep- 
tion conditions. Finally, if argument timeout is nonzero, it is the address of an integer 
that specifies how long to wait for a connection before returning to the caller. A zero 
value for timeout forces the call to block until a descriptor becomes ready. Because the 
timeout argument contains the address of the timeout integer and not the integer itself, a 
process can request zero delay by passing the address of an integer that contains zero 
(i.e., a process can poll to see if VO is ready). 

A call to select returns the number of descriptors from the specified set that are 
ready for VO. It also changes the bit masks specified by indesc, outdesc, and excdesc to 
inform the application which of the selected file descriptors are ready. Thus, before cal- 
ling select, the caller must turn on those bits that correspond to descriptors to be 
checked. Following the call, all bits that remain set to I correspond to a ready file 
descriptor. 

To communicate over more than one socket at a time, a process first creates all the 
sockets it needs and then uses select to determine which of them becomes ready for I/0 
first. Once it finds a socket has become ready, the process uses the input or output pro- 
cedures defined above to communicate. 

22.16 Obtaining And Setting Host Names 

Most operating systems maintain an internal host name. For machines on the In- 
ternet, the internal name is usually chosen to be the domain name for the machine's 
main network interface. The gethostname function allows user processes to access the 
host name, and the sethostname function allows privileged processes to set the host 
name. Gethosrnuine has the form: 

gethostname(name, length) 

Argument name gives the address of an array of bytes where the name is to be stored, 
and argument length is an integer that specifies the length of the name array. To set the 
host name, a privileged process makes a call of the form: 

sethostname(name, length) 

Argument name gives the address of an array where the name is stored, and argument 
length is an integer that gives the length of the name array. 
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22.17 Obtaining And Setting The Internal Host Domain 

The operating system maintains a string that specifies the name domain to which a 
machine belongs. When a site obtains authority for part of the domain name space, it 
invents a string that identifies its piece of the space and uses that string as the name of 
the domain. For example, machines in the domain 

cs . purdue . edu 

have names taken from the Arthurian legend. Thus, one finds machines named merlin, 
arthur, guenevere, and lancelot. The domain itself has been named camelot, so the 
operating system on each host in the group must be informed that it resides in the 
camelot domain. To do so, a privileged process uses function setdomainname, which 
has the form: 

setdomainname(name, length) 

Argument name gives the address of an array of bytes that contains the name of a 
domain, and argument length is an integer that gives the length of the name. 

User processes call getdomainname to retrieve the name of the domain from the 
system. It has the form: 

where argument name specifies the address of an array where the name should be 
stored, and argument length is an integer that specifies the length of the array. 

22.1 8 Socket Library Calls 

In addition to the functions described above, the socket API offers a set of library 
routines that perform useful functions related to networking. Figure 22.5 illustrates the 
difference between system calls and library routines. System calls pass control to the 
computer's operating system, while library routines are like other procedures that the 
programmer binds into a program. 
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+ 
System Calls In 

Computer's Operating System 

Figure 22.5 The difference between library routines, which are bound into an 
application program, and system calls, which are part of the 
operating system. A program can call either; library routines 
can call other library routines or system calls. 

Many of the socket library routines provide database services that allow a process 
to determine the names of machines and network services, protocol port numbers, and 
other related information. For example, one set of library routines provides access to 
the database of network services. We think of entries in the services database as 3- 
tuples, where each 3-tuple contains the (human readable) name of a network service, the 
protocol that supports the service, and a protocol port number for the service. Library 
routines exist that allow a process to obtain information from an entry given any piece. 

The next sections examine groups of library routines, explaining their purposes and 
providing information about how they can be used. As we will see, the sets of library 
routines that provide access to a sequential database follow a pattern. Each set allows 
the application to: establish a connection to the database, obtain entries one at a time, 
and close the connection. The routines used for these three operations are named setX- 
en?, getXent, and endXent, where X is the name of the database. For example, the li- 
brary routines for the host database are named sethostent, gethostent, and endhostent. 
The sections that describe these routines summarize the calls without repeating the de- 
tails of their use. 

22.1 9 Network Byte Order Conversion Routines 

Recall that machines differ in the way they store integer quantities and that the 
TCPIIP protocols define a machine independent standard for byte order. The socket 
API provides four library functions that convert between the local machine byte order 
and the network standard byte order. To make programs portable, they must be written 
to call the conversion routines every time they copy an integer value from the local 
machine to a network packet, or when they copy a value from a network packet to the 
local machine. 
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All four conversion routines are functions that take a value as an argument and re- 
turn a new value with the bytes rearranged. For example, to convert a short (2-byte) in- 
teger from network byte order to the local host byte order, a programmer calls ntohs 
(network to host short). The format is: 

localshort = ntohs(netshort) 

Argument netshol-r is a 2-byte (16-bit) integer in network standard byte order and the 
result, localshort, is in local host byte order. 

The C programming language calls 4 byte (32 bit) integers longs. Function ntohl 
(network to host long) converts 4-byte longs from network standard byte order to local 
host byte order. Programs invoke ntohl as a function, supplying a long integer in net- 
work byte order as an argument: 

locallong = ntohl(net1ong) 

Two analogous functions allow the programmer to convert from local host byte 
order to network byte order. Function htons converts a 2-byte (short) integer in the 
host's local byte order to a 2-byte integer in network standard byte order. Programs in- 
voke htons as a function: 

netshort = htons(1ocalshort) 

The final conversion routine, htonl, converts long integers to network standard byte 
order. Like the others, htonl is a function: 

netlong = htonl(local1ong) 

It should be obvious that the conversion routines preserve the following mathemat- 
ical relationships: 

netshort = htons( ntohs(netshort) ) 

and 
localshort = ntohs( htons(1ocalshort) ) 

Similar relationships hold for the long integer conversion routines. 

22.20 IP Address Manipulation Routines 

Because many programs translate between 32-bit IP addresses and the correspond- 
ing dotted decimal notation, the socket library includes utility routines that perform the 
translation. Procedures i n e t - d r  and inet-nefwork both translate from dotted decimal 
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format to a 32-bit IP address in network byte order. Inet-addr forms a 32-bit host IP 
address; inet-network forms the network address with zeroes for the host part. They 
have the form: 

and 
address = inet-addr(string) 

address = inet-network(string) 

where argument string gives the address of an ASCII smng that contains the number 
expressed in dotted decimal format. The dotted decimal form can have 1 to 4 segments 
of digits separated by periods (dots). If all 4 appear, each corresponds to a single byte 
of the resulting 32-bit integer. If less than 4 appear, the last segment is expanded to fill 
remaining bytes. 

Procedure inet-ntoa performs the inverse of inet-addr by mapping a 32-bit integer 
to an ASCII string in dotted decimal format. It has the form: 

str = inet-ntoa(internetaddr) 

where argument internetaddr is a 32-bit IP address in network byte order, and str is the 
address of the resulting ASCII version. 

Often programs that manipulate IP addresses must combine a network address with 
the local address of a host on that network. Procedure inet-mkeaddr performs such a 
combination. It has the form: 

internetaddr = inet-makeaddr(net, local) 

Argument net is a 32-bit network IP address in host byte order, and argument local is 
the integer representing a local host address on that network, also in local host byte ord- 
er. 

Procedures inet-netof and inet-lnaof provide the inverse of inet-mkeaddr by 
separating the network and local portions of an IP address. They have the form: 

and 
net = inet-netof(internetaddr) 

local = inet-lnaof(internetaddr) 

where argument internetaddr is a 32-bit IP address in network byte order, and the 
results are returned in host byte order. 
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22.21 Accessing The Domain Name System? 

A set of five library procedures comprise the interface to the TCPIIP domain name 
system. Application programs that call these routines become clients of one domain 
name system, sending one or more servers requests and receiving responses. 

The general idea is that a program makes a query, sends it to a server, and awaits 
an answer. Because many options exist, the routines have only a few basic parameters 
and use a global structure, res, to hold others. For example, one field in res enables de- 
bugging messages while another controls whether the code uses UDP or TCP for 
queries. Most fields in res begin with reasonable defaults, so the routines can be used 
without changing res. 

A program calls res-init before using other procedures. The call takes no argu- 
ments: 

Res-init reads a file that contains information like the name of the machine that runs the 
domain name server and stores the results in global structure res. 

Procedure res-mkquery forms a domain name query and places it in a buffer in 
memory. The form of the call is: 

res-rnkquery(op, dname, class, type, data, datalen, newrr, buffer, buflen) 

The first seven arguments correspond directly to the fields of a domain name query. 
Argument op specifies the requested operation, dnarne gives the address of a character 
array that contains a domain name, class is an integer that gives the class of the query, 
type is an integer that gives the type of the query, data gives the address of an array of 
data to be included in the query, and datalen is an integer that gives the length of the 
data. In addition to the library procedures, the socket API provides application pro- 
grams with definitions of symbolic constants for important values. Thus, programmers 
can use the domain name system without understanding the details of the protocol. The 
last two arguments, bufler and buflen, specify the address of an area into which the 
query should be placed and the integer length of the buffer area, respectively. Finally, 
in the current implementation, argument newrr is unused. 

Once a program has formed a query, it calls res-send to send it to a name server 
and obtain a response. The form is: 

res-send(buffer, buflen, answer, anslen) 

Argument bu$er is a pointer to memory that holds the message to be sent (presumably, 
the application called procedure res-mkquery to form the message). Argument buflen is 
an integer that specifies the length. Argument answer gives the address in memory into 
which a response should be written, and integer argument anslen specifies the length of 
the answer area. 

tChapter 24 considers the Domain Name System in detail. 
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In addition to routines that make and send queries, the socket library contains two 
routines that translate domain names between conventional ASCII and the compressed 
format used in queries. Procedure dn-expand expands a compressed domain name into 
a full ASCII version. It has the form: 

dn-expand(msg, eom, compressed, full, fullen) 

Argument m g  gives the address of a domain name message that contains the name to 
be expanded, with eom specifying the end-of-message limit beyond which the expansion 
cannot go. Argument compressed is a pointer to the first byte of the compressed name. 
Argument full is a pointer to an array into which the expanded name should be written, 
and argumentfullen is an integer that specifies the length of the array. 

Generating a compressed name is more complex than expanding a compressed 
name because compression involves eliminating common suffixes. When compressing 
names, the client must keep a record of suffixes that have appeared previously. Pro- 
cedure dn-comp compresses a full domain name by comparing suffixes to a list of pre- 
viously used suffiies and eliminating the longest possible suffix. A call has the form: 

dn-comp(ful1, compressed, cmprlen, prevptrs, lastptr) 

Argumentfull gives the address of a full domain name. Argument compressed points to 
an array of bytes that will hold the compressed name, with argument cmprlen specifying 
the length of the array. The argument prevptrs is the address of an array of pointers to 
previously compressed suffixes, with lastptr pointing to the end of the array. Normally, 
dn-comp compresses the name and updates prevptrs if a new suffix has been used. 

Procedure dn-comp can also be used to translate a domain name from ASCII to the 
internal form without compression (i.e., without removing suffixes). To do so, a pro- 
cess invokes dn-comp with the prevptrs argument set to NULL (i.e., zero). 

22.22 Obtaining Information About Hosts 

Library procedures exist that allow a process to retrieve information about a host 
given either its domain name or its IP address. When used on a machine that has ac- 
cess to a domain name server, the library procedures make the process a client of the 
domain name system by sending a request to a server and waiting for a response. When 
used on systems that do not have access to the domain name system (e.g., a host not on 
the Internet), the routines obtain the desired information from a database kept on secon- 
dary storage. 

Function gethostbyname takes a domain name and returns a pointer to a structure 
of information for that host. A call takes the form: 

ptr = gethostbyname(namestr) 
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Argument namestr is a pointer to a character string that contains a domain name for the 
host. The value returned, ptr, points to a structure that contains the following informa- 
tion: the official host name, a list of aliases that have been registered for the host, the 
host address type (i.e., whether the address is an IP address), the address length, and a 
list of one or more addresses for the host. More details can be found in the UNIX 
Programmer's Manual. 

Function gethostbyaddr produces the same information as gethostbyname. The 
difference between the two is that gethostbyaddr accepts a host address as an argument: 

pt.  = gethostbyaddr(addr, len, type) 

Argument addr is a pointer to a sequence of bytes that contain a host address. Argu- 
ment len is an integer that gives the length of the address, and argument type is an in- 
teger that specifies the type of the address (e.g., that it is an IP address). 

As mentioned earlier, procedures sethostent, gethostent, and endhostent provide 
sequential access to the host database. 

22.23 Obtaining Information About Networks 

Hosts either use the domain name system or keep a simple database of networks in 
their internet. The socket library routines include five routines that allow a process to 
access the network database. Procedure getnetbyname obtains and formats the contents 
of an entry from the database given the domain name of a network. A call has the 
fomx 

ptr = gemetbyname(name) 

where argument name is a pointer to a string that contains the name of the network for 
which information is desired. The value returned is a pointer to a structure that contains 
fields for the official name of the network, a list of registered aliases, an integer address 
type, and a 32-bit network address (i.e., an IP address with the host portion set to zero). 

A process calls library routine getnetbyaddr when it needs to search for infornla- 
tion about a network given its address. The call has the form: 

ptr = getnetbyaddr(netaddr, addrtype) 

Argument netaddr is a 32-bit network address, and argument addrtype is an integer that 
specifies the type of netaddr. Procedures setnetent, getnetent, and endnetent provide 
sequential access to the network database. 
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22.24 Obtaining lnformation About Protocols 

Five library routines provide access to the database of protocols available on a 
machine. Each protocol has an official name, registered aliases, and an official protocol 
number. Procedure getprotobyname allows a caller to obtain information about a proto- 
col given its name: 

ptr = getprotobyname(name) 

Argument name is a pointer to an ASCII string that contains the name of the protocol 
for which information is desired. The function returns a pointer to a structure that has 
fields for the official protocol name, a list of aliases, and a unique integer value as- 
signed to the protocol. 

Procedure getprotobynumber allows a process to search for protocol information 
using the protocol number as a key: 

ptr = getprotobynumber(number) 

Finally, procedures getprotoent, setprotoent, and endprotoent provide sequential access 
to the protocol database. 

22.25 Obtaining lnformation About Network Services 

Recall from Chapters 12 and 13 that some UDP and TCP protocol port numbers 
are reserved for well-known services. For example, TCP port 43 is reserved for the 
whois service. Whois allows a client on one machine to contact a server on another and 
obtain information about a user that has an account on the server's machine. The entry 
for whois in the services database specifies the service name, whois, the protocol, TCP, 
and the protocol port number 43. Five library routines exist that obtain information 
about services and the protocol ports they use. 

Procedure getservbyname maps a named service onto a port number: 

ptr = getservbyname(name, proto) 

Argument name specifies the address of a string that contains the name of the desired 
service, and integer argument proto specifies the protocol with which the service is to 
be used. Typically, protocols are limited to TCP and UDP. The value returned is a 
pointer to a structure that contains fields for the name of the service, a list of aliases, an 
identification of the protocol with which the service is used, and an integer protocol 
port number assigned for that service. 

Procedure getservbyport allows the caller to obtain an entry from the services data- 
base given the port number assigned to it. A call has the form: 

ptr = getservbyport(port, proto) 
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char *argv[l; 
{ 

int s; /* socket descriptor 
k t  la; /* length of received data 
strud socl~&k-in sa; /* Internet socket addr. structure 
strud hosta~t *hp; /* result of host nmoe 1- 
strud Servent *sp; 
char m [mFsIZ+ll; - -; 
char *host; 

/* result of service 1- 
/* Wfer to read whois information 
/* pointer to rme of this ~ogram 

/* pointer to m t e  host nmoe 
char Sser; /* pointer to m t e  user name 

IwnanE = argv[OI; 
/* 
* Check that there are t w  armFnd line -ts 

*/ 
if(- != 3) { 

£print£ (stderr, "Usage: %s host -w, lImaln2) ; 
d t  (1) ; 

I 
host = argv[ll; 
user = argv[21; 
/* 
* mok up the specified h o s m  

*/ 
if((hp = gethosm(host)) = MJLL) { 

£printf (stderr, "%s: %s: no such host?\nm, nynarr~, host) ; 
d t  (1) ; 
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sa.sinmrt = sp-xgart; 

/* 
* Allocate an open socket 
*/ 
if ( (s = socket (Ip>h-adchrtype, S O M S O M m ,  0) ) < 0) { 

perrar("socketW); 
sdt (1) ; 

22.27 An Example Server 

The example server is only slightly more complex than the client. The server 
listens on the well-known "whois" port and returns the requested information in 
response to a request from any client. The information is taken from the UNIX pass- 
word file on the server's machine. 
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*hrogrann: wbissemer 
* 

~urpose: IMX m l i c a t i a n  program that acts as a server for 
* the %hoisn service an the locdl mchine. It listens 

an well-laxxm WIS port (43) and - me5 frcm 
clients. ?his program n x p i ~ ~ ~  super-user privilege to 

* Iun. 

* 

/* # of requests W're wi l l -  to cpleue */ 
/* ImXjRun bst nafE length W tolerate */ 

/* staI&& IMX azgumnt declarations */ 

/* socket descriptars */ 
/ * ~ p u p o s e ~ t e g e r  */ 
/* Internet socket structure */ 
/* result of host nam loolap3 */ 
/* pointer to n m ~  of this program */ 
/* result of Service loolap3 */ 

char localbost-+I];/* locdl host nin\e as character string */ 
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I 
/* 
* G e t  our UMl host infOm3tion 

*/ 
gethostrwre (localhost, MAXHXWm) ; 

i f ( (@ = g e t k s t A y n a ~ ( l ~ t ) )  = NJLL) { 

fpurintf (stderr, "k: cannot get l o d  host info?\n', nyname); 
e X i t ( 1 )  ; 

I 
/* 
* ~ t t h e ~ ~ ~ t r n n b e r a n d a r ~ i n f o  
into the sccbt strudure 

*/ 
sa.singort = sp->Sqart; 
-((char *)@-a&, (char *)&Sa.sin-addr, @-*lasgth); 
sa.sin-faanily = lgJ->h-addrtype; 

/* 
Allocate an cpm socket for irvXmirg ma 

*/ 
i f ( ( s  = s~cket(?p>h~ai&type, -, 0)) < 0) 

permr("sccbt9); 
exit (1) ; 

1 
/* 
*Binlthesockettotheservicepart 
*sowehearirvXmirgcxxnEmicns 
*/ 

if  (hird(s, &sa, sizeof sa) < 0) { 

permr('bind"); 
exit (1) ; 

I 
/* 
* s e t ~ ~ a w = W i l l f d L l b e h i r d  

*/ 
listen(s, BMKKG); 

/* 
* Go into an infinite locp wai* far n e ~  amnecticn~ 

*/ 
while(1) { 

i = sizeof isa; 
/* 
e  bar^ in mt 0 while d t i r g  for new cus-s 

*/ 
i f ( ( t  = accept(s, &isa, &i)) < 0) { 
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perrar("acC€ptV) ; 

exit (1) ; 

1 
*is (t) ; /* perform the actual W I S  Service */ 
close (t ) ; 

1 
1 
/* 
* G e t  the W I S  request fmm mmte host ard f o m t  a reply. 
*/ 

*is~sock) 
int sock; 

{ 

strud passwd 9; 
char M [mF'SIZ+11; 
int i; 

22.28 Summary 

Because TCPAP protocol software resides inside an operating system, the exact in- 
terface between an application program and TCP/IP protocols depends on the details of 
the operating system; it is not specified by the TCP/IP protocol standard. We examined 
the socket API, which was originally designed for BSD UNIX, but has become, de fac- 
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to, a standard used by vendors such as Microsoft. We saw that sockets adopted the 
UNIX open-read-write-close paradigm. To use TCP, a program must create a socket, 
bind addresses to it, accept incoming connections, and then communicate using the read 
or write primitives. Finally, when finished using a socket, the program must close it. 
In addition to the socket abstraction and system calls that operate on sockets, BSD 
UNIX includes library routines that help programmers create and manipulate IP ad- 
dresses, convert integers between the local machine format and network standard byte 
order, and search for information such as network addresses. 

The socket interface has become popular and is widely supported by many ven- 
dors. Vendors who do not offer socket facilities in their aperating systems often pro- 
vide a socket library that makes it possible for programmefs to write applications using 
socket calls even though the underlying operating system uses a different set of system 
calls. 

FOR FURTHER STUDY 

Detailed idomlation on the socket functions cad be found in the UNIX 
Programmer's Manual, where Section 2 contains a description of each UNIX system 
call and Section 3 contains a description of each library procedure. UNIX also supplies 
on-line copies of the manual pages via the man command. Leffler, McKusick, Karels, 
and Quarterman [I9891 explores the UNIX system in more detail. Hall et. al. [I9931 
contains the original standard for Windows Sockets, atrd Hall et. al. [I9961 describes 
version 2. 

Operating system vendors often provide libraries of procedures that emulate sock- 
ets on their systems. Consult vendors' programming manuals for details. Gilligan 
[RFC 21331 considers socket extensions for IPv6. 

Volume 3 of this text describes how client and server programs are structured and 
how they use the socket API. The BSD sockets version of Volume 3 contains example 
code for Unix; the Windows sockets version contains the same examples for Microsoft 
Windows. The TLI version of Volume 3 provides an introduction to the Transport 
Layer Interface, an alternative to sockets used in System V UNIX. 

22.1 Try running the sample whois client and server on your local system. 
22.2 Build a simple server that accepts multiple concurrent connections (to test it, have the 

process that handles a connection print a short message, delay a random time, print 
another message, and exit). 
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When is the listen call important? 
What procedures does your local system provide to access the domain name system? 
Devise a server that uses a single UNIX process, but handles multiple concurrent TCP 
connections. Hint: think of select boll in SYSTEM V). 
Read about the AT&T System V Transport Library Interface (TLI) and compare it to the 
socket interface. What are the major conceptual differences? 
Each operating system limits the number of sockets a given program can use at any time. 
How many sockets can a program create on your local system? 
The socketlfile descriptor mechanism and associated read and write operations can be 
considered a form of object-oriented design. Explain why. 
Consider an alternative interface design that provides an interface for every layer of pro- 
tocol software (e.g., the system allows an application program to send and receive raw 
packets without using IP, or to send and receive IP datagrams without using UDP or 
TCP). What are the advantages of having such an interface? The disadvantages? 
A client and server can both run on the same computer and use a TCP socket to com- 
municate. Explain how it is possible to build a client and server that can communicate 
on a single machine without learning the host's IP address. 
Experiment with the sample server in this chapter to see if you can generate TCP con- 
nections sufficiently fast to exceed the backlog the server specifies. Do you expect in- 
coming connection requests to exceed the backlog faster if the server operates on a com- 
puter that has I processor than on a computer that has 5 processors? Explain. 
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23.1 Introduction 

This chapter shows how the client-server paradigm is used for bootstrapping. Each 
computer attached to a TCP/IP internet needs to know its IP address before it can send 
or receive datagram. In addition, a computer needs other information such as the ad- 
dress of a router, the subnet mask to use, and the address of a name server. Chapter 6 
describes how a computer can use the RARP protocol at system startup to determine its 
IP address. This chapter discusses an alternative: two closely-related bootstrap proto- 
cols that each allows a host to determine its IP address without using RARP. Surpris- 
ingly, the client and server communicate using UDP, the User Datagram Protocol 
described in Chapter 12. 

What makes the bootstrapping procedure surprising is that UDP relies on IP to 
transfer messages, and it might seem impossible that a computer could use UDP to find 
an IP address to use when communicating. Examining the protocols will help us under- 
stand how a computer can use the special IP addresses mentioned in Chapter 4 and the 
flexibility of the UDP/IP transport mechanism. We will also see how a server assigns 
an IP address to a computer automatically. Such assignment is especially important in 
environments that permit temporary internet connections or where computers move 
from one network to another (e.g., an employee with a portable computer moves from 
one location in a company to another). 
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23.2 The Need For An Alternative To RARP 

Chapter 6 presents the problem diskless computers face during system startup. 
Such machines usually contain a startup program in nonvolatile storage (e.g., in ROM). 
To minimize cost and keep parts interchangeable, a vendor uses exactly the same pro- 
gram in all machines. Because computers with different IP addresses run the same boot 
program, the code cannot contain an IP address. Thus, a diskless machine must obtain 
its IP address from another source. In fact, a diskless computer needs to know much 
more than its IP address. Usually, the ROM only contains a small startup program, so 
the diskless computer must also obtain an initial memory image to execute. In addition, 
each diskless machine must determine the address of a file server on which it can store 
and retrieve data, and the address of the nearest IP router. 

The RARP protocol of Chapter 6 has three drawbacks. First, because RARP 
operates at a low level, using it requires direct access to the network hardware. Thus, it 
may be difficult or impossible for an application programmer to build a server. Second, 
although RARP requires a packet exchange between a client machine and a computer 
that answers its request, the reply contains only one small piece of information: the 
client's 4-octet IP address. This drawback is especially annoying on networks like an 
Ethernet that enforce a minimum packet size because additional information could be 
sent in the response at no additional cost. Third, because RAW uses a computer's 
hardware address to identify the machine, it cannot be used on networks that dynamical- 
ly assign hardware addresses. 

To overcome some of the drawbacks of RARP, researchers developed the 
BOOTstrap Protocol (BOOTP). Later, the Dynamic Host Configuration Protocol 
(DHCP) was developed as a successor to BOOTP. Because the two protocols are close- 
ly related, most of the description in this chapter applies to both. To simplify the text, 
we will describe BOOTP first, and then see how DHCP extends the functionality to 
provide dynamic address assignment. 

Because it uses UDP and IP, BOOTP can be implemented with an application pro- 
gram. Like RARP, BOOTP operates in the client-server paradigm and requires only a 
single packet exchange. However, BOOTP is more efficient than RARP because a sin- 
gle BOOTP message specifies many items needed at startup, including a computer's IP 
address, the address of a router, and the address of a server. BOOTP also includes a 
vendor-specific field in the reply that allows hardware vendors to send additional infor- 
mation used only for their computerst. 

23.3 Using IP To Determine An IP Address 

We said that BOOTP uses UDP to carry messages and that UDP messages are en- 
capsulated in IP datagrams for delivery. To understand how a computer can send 
BOOTP in an IP datagram before the computer learns its LP address, recall from 
Chapter 4 that there are several special-case IP addresses. In particular, when used as a 
destination address, the IP address consisting of all 1s (255.255.255.255) specifies limit- 

?As we will see, the term "vendor-specific" is a misnomer because the current specification also recom- 
mends using the vendor-specific area for general purpose information such as subnet masks; DHCP changes 
the name of the field to options. 
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ed broadcast. IP software can accept and broadcast datagrams that specify the limited 
broadcast address even before the software has discovered its local LP address informa- 
tion. The point is that: 

An application program can use the limited broadcast IP address to 
force IP to broadcast a datagram on the local network before IP has 
discovered the IP address of the local network or the machine's IP 
address. 

Suppose client machine A wants to use BOOTP to find bootstrap information (in- 
cluding its IP address) and suppose B is the server on the same physical net that will 
answer the request. Because A does not know B's IP address or the IP address of the 
network, it must broadcast its initial BOOTP request using the IP limited broadcast ad- 
dress. What about the reply? Can B send a directed reply? No, not usually. Although 
it may not be obvious, B may need to use the limited broadcast address for its reply, 
even though it knows A's IP address. To see why, consider what happens if an applica- 
tion program on B attempts to send a datagram using A's IP address. After routing the 
datagram, IP software on B will pass the datagram to the network interface software. 
The interface software must map the next hop IP address to a corresponding hardware 
address, presumably using ARP as described in Chapter 5. However, because A has not 
yet received the BOOTP reply, it does not recognize its IP address, so it cannot answer 
B's ARP request. Therefore, B has only two alternatives: either broadcast the reply or 
use information from the request packet to manually add an entry to its ARP cache. On 
systems that do not allow application programs to modify the ARP cache, broadcasting 
is the only solution. 

23.4 The BOOTP Retransmission Policy 

BOOTP places all responsibility for reliable communication on the client. We 
know that because UDP uses IP for delivery, messages can be delayed, lost, delivered 
out of order, or duplicated. Furthermore, because IP does not provide a checksum for 
data, the UDP datagram could arrive with some bits corrupted. To guard against corr- 
uption, BOOTP requires that UDP use checksums. It also specifies that requests and re- 
plies should be sent with the do not fragment bit set to accommodate clients that have 
too little memory to reassemble datagrams. BOOTP is also constructed to allow multi- 
ple replies; it accepts and processes the first. 

To handle datagram loss, BOOTP uses the conventional technique of timeout and 
retransmission. When the client transmits a request, it starts a timer. If no reply arrives 
before the timer expires, the client must retransmit the request. Of course, after a power 
failure all machines on a network will reboot simultaneously, possibly overrunning the 
BOOTP server(s) with requests. If all clients use exactly the same retransmission 
tirneout, many or all of them will attempt to retransmit simultaneously. To avoid the 
resulting collisions, the BOOTP specification recommends using a random delay. In 
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addition, the specification recommends starting with a random timeout value between 0 
and 4 seconds, and doubling the timer after each retransmission. After the timer 
reaches a large value, 60 seconds, the client does not increase the timer, but continues 
to use randomization. Doubling the timeout after each retransmission keeps BOOTP 
from adding excessive traffic to a congested network; the randomization helps avoid 
simultaneous transmissions. 

23.5 The BOOTP Message Format 

To keep an implementation as simple as possible, BOOTP messages have fixed- 
length fields, and replies have the same format as requests. Although we said that 
clients and servers are programs, the BOOTP protocol uses the terms loosely, referring 
to the machine that sends a BOOTP request as the client and any machine that sends a 
reply as a server. Figure 23.1 shows the BOOTP message format. 

0 8 16 24 31 

I 

I YOUR IP ADDRESS I 

TRANSACTION ID 

SERVER IP ADDRESS 

ROUTER IP ADDRESS 

OP 

SECONDS 

I CLIENT HARDWARE ADDRESS (16 OCTETS) I 

1 HLEN HTYPE 

UNUSED 

SERVER HOST NAME (64 OCTETS) 

HOPS 

- 
CLIENT IP ADDRESS 

I BOOT FILE NAME (128 OCTETS) I 
I VENDOR-SPECIFIC AREA (64 OCTETS) I 

Figure 23.1 The format of a BOOTP message. To keep implementations 
small enough to fit in ROM, all fields have fixed length. 
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Field OP specifies whether the message is a request ( I )  or a reply (2). As in ARP, 
fields HTYPE and HLEN specify the network hardware type and length of the hardware 
address (e.g., Ethernet has type I and address length 6)t. The client places 0 in the 
HOPS field. If it receives the request and decides to pass the request on to another 
machine (e.g., to allow bootstrapping across multiple routers), the BOOTP server incre- 
ments the HOPS count. The TRANSACTION ID field contains an integer that diskless 
machines use to match responses with requests. The SECONDS field reports the 
number of seconds since the client started to boot. 

The CLIENT IP ADDRESS field and all fields following it contain the most impor- 
tant information. To allow the greatest flexibility, clients fill in as much information as 
they know and leave remaining fields set to zero. For example, if a client knows the 
name or address of a specific server from which it wants information, it can fill in the 
SERVER IP ADDRESS or SERVER HOST NAME fields. I f  these fields are nonzero, 
only the server with matching nameladdress will answer the request; if they are zero, 
any server that receives the request will reply. 

BOOTP can be used from a client that already knows its IP address (e.g., to obtain 
boot file information). A client that knows its IP address places it in the CLIENT IP 
ADDRESS field; other clients use zero. If the client's IP address is zero in the request, 
a server returns the client's IP address in the YOUR IP ADDRESS field. 

23.6 The Two-step Bootstrap Procedure 

BOOTP uses a two-step bootstrap procedure. It does not provide clients with a 
memory image - it only provides the client with information needed to obtain an im- 
age. The client then uses a second protocol (e.g., TFTP from Chapter 26) to obtain the 
memory image. While the two-step procedure many seem unnecessary, it allows a 
clean separation of configuration and storage. A BOOTP server does not need to run 
on the same machine that stores memory images. In fact, the BOOTP server operates 
from a simple database that only knows the names of memory images. 

Keeping configuration separate from storage is important because it allows ad- 
ministrators to configure sets of machines so they act identically or independently. The 
BOOT FILE NAME field of a BOOTP message illustrates the concept. Suppose an ad- 
ministrator has several workstations with different hardware architectures, and suppose 
that when users boot one of the workstations, they either choose to run UNIX or a local 
operating system. Because the set of workstations includes multiple hardware architec- 
tures, no single memory image will operate on all machines. To accommodate such 
diversity, BOOTP allows the BOOT FILE NAME field in a request to contain a generic 
name like "unix," which means, "I want to boot the UNIX operating system for this 
machine." The BOOTP server consults its configuration database to map the generic 
name into a specific file name that contains the UNIX memory image appropriate for 
the client hardware, and returns the specific (i.e., fully qualified) name in its reply. Of 
course, the configuration database also allows completely automatic bootstrapping in 
which the client places zeros in the BOOT FILE NAME field, and BOOTP selects a 

tValues for the HTYPE field can be found in the latest Assigned Numbers RFC. 
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memory image for the machine. The advantage of the automatic approach is that it al- 
lows users to spec@ generic names that work on any machine; they do not need to 
remember specific file names or hardware architectures. 

23.7 Vendor-Specific Field 

The VENDOR-SPECIFIC AREA contains optional information to be passed from 
the server to the client. Although the syntax is intricate, it is not difficult. The first 
four octets of the field are called a magic cookie and define the format of remaining 
items; the standard format described here uses a magic cookie value of 99.130.83.99 
(dotted decimal notation). A list of items follows the cookie, where each item contains 
a one-octet type, an optional one-octet length, and a multi-octet valuet. The standard 
defines the following types that have predetermined, fmed length values: 

Item Item Value Contents 
T Y P ~  Code Length of Value 

Padding 0 - Zero - used only for padding 
Subnet Mask 1 4 Subnet mask for local net 
Time of Day 2 4 Time of day in universal time 
End 255 - End of item list 

Figure 23.2 Items in the vendor information. The length field must exist for 
types 1 and 2; it must not exist for types 0 and 255. 

Although a computer can obtain subnet mask information with an ICMP request, the 
standard now recommends that BOOTP servers supply the subnet mask in each reply to 
eliminate unnecessary ICMP messages. 

Additional items in the VENDOR-SPECIFIC AREA all use a TLV encoding - 
each item has a type octet, length octet, and a value. Figure 23.3 lists the possibilities. 

23.8 The Need For Dynamic Configuration 

BOOTP was designed for a relatively static environment in which each host has a 
permanent network connection. A manager creates a BOOTP configuration file that 
specifies a set of BOOTP parameters for each host. The file does not change frequently 
because the configuration usually remains stable. Typically, a configuration continues 
unchanged for weeks. 

With the advent of wireless networking and portable computers such as laptops and 
notebooks, it has become possible to move a computer from one location to another 
quickly and easily. BOOTP does not adapt to such situations because configuration in- 
formation cannot be changed quickly. BOOTP only provides a static mapping from a 
host identifier to parameters for the host. Furthermore, a manager must enter a set of 

?The format is an example of TLV encoding, which stands for Type Length Value. 
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Item Item Length Contents 
TY ~e Code Octet of Value 

Routers 
Time Server 
IENI 16 Server 
Domain Server 
Log Server 
Quote Server 
Lpr Servers 
Impress 
RLP Server 
Hostname 
Boot Size 
RESERVED 

IP addresses of N/4 routers 
IP addresses of N/4 time servers 
IP addresses of N/4 IENI 16 servers 
IP addresses of N/4 DNS servers 
IP addresses of N/4 log servers 
IP addresses of N/4 quote servers 
IP addresses of N/4 Ipr servers 
IP addresses of N/4 Impress servers 
IP addresses of N/4 RLP servers 
N bytes of client host name 
2-octet integer size of boot file 
Reserved for site specific use 

Figure 23.3 Types and contents of items in the VENDOR-SPECIFIC AREA of 
a BOOTP reply that have variable lengths. 

parameters for each host, and then store the information in a BOOTP server configura- 
tion file - BOOTP does not include a way to dynamically assign values to individual 
machines. In particular, a manager must assign each host an IP address, and must con- 
figure the server so it understands the mapping from host identifier to IP address. 

Static parameter assignment works well if computers remain at fixed locations and 
a manager has sufficient IP addresses to assign each computer a unique IP address. 
However, in cases where computers move frequently or the number of physical comput- 
ers exceeds the number of available IP host addresses, static assignment incurs exces- 
sive overhead. 

To understand how the number of computers can exceed the number of available 
IP addresses, consider a LAN in a college laboratory that has been assigned a I24 ad- 
dress that allows up to 254 hosts. Assume that because the laboratory only has seats for 
30 students, the college schedules labs at ten different times during the week to accom- 
modate up to 300 students. Further assume that each student canies a personal note- 
book computer that they use in the lab. At any given time, the net has at most 30 active 
computers. However, because the network address can accommodate at most 254 hosts, 
a manager cannot assign a unique address to each computer. Thus, although resources 
such as physical connections limit the number of simultaneous connections, the number 
of potential computers that can use the facility is high. Clearly, a system is inadequate 
if it requires a manager to change the server's configuration file before a new computer 
can be added to the network and begin to communicate; an automated mechanism is 
needed. 
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23.9 Dynamic Host Configuration 

To handle automated address assignment, the IETF has designed a new protocol. 
Known as the Dynamic Host Configuration Protocol (DHCP), the new protocol extends 
BOOTP in two ways. First, DHCP allows a computer to acquire all the configuration 
information it needs in a single message. For example, in addition to an IP address, a 
DHCP message can contain a subnet mask. Second, DHCP allows a computer to obtain 
an IP address quickly and dynamically. To use DHCP's dynamic address allocation 
mechanism, a manager must configure a DHCP server by supplying a set of IP ad- 
dresses. Whenever a new computer connects to the network, the new computer contacts 
the server and requests an address. The server chooses one of the addresses the 
manager specified, and allocates that address to the computer. 

To be completely general, DHCP allows three types of address assignment; a 
manager chooses how DHCP will respond for each network or for each host. Like 
BOOTP, DHCP allows manual configuration in which a manager can configure a 
specific address for a specific computer. DHCP also permits automatic configuration in 
which a manager allows a DHCP server to assign a permanent address when a computer 
first attaches to the network. Finally, DHCP permits completely dynamic configuration 
in which a server "loans" an address to a computer for a limited time. 

Like BOOTP, DHCP uses the identity of the client to decide how to proceed. 
When a client contacts a DHCP server, the client sends an identifier, usually the client's 
hardware address. The server uses the client's identifier and the network to which the 
client has connected to determine how to assign the client and 1P address. Thus, a 
manager has complete control over how addresses are assigned. A server can be con- 
figured to allocate addresses to specific computers statically (like BOOTP), while allow- 
ing other computers to obtain permanent or temporary addresses dynamically. 

23.10 Dynamic IP Address Assignment 

Dynamic address assignment is the most significant and novel aspect of DHCP. 
Unlike the static address assignment used in BOOTP, dynamic address assignment is 
not a one-to-one mapping, and the server does not need to know the identity of a client 
a priori. In particular, a DHCP server can be configured to permit an arbitrary comput- 
er to obtain an IP address and begin communicating. Thus, DHCP makes it possible to 
design systems that autoconfigure. After such a computer has been attached to a net- 
work, the computer uses DHCP to obtain an IP address, and then configures its TCPm 
software to use the address. Of course, autoconfiguration is subject to administrative 
restrictions - a manager decides whether each DHCP server allows autoconfiguration. 
To summarize: 

Because it allows a host to obtain all the parameters needed for com- 
munication without manual intervention, DHCP permits autoconfi- 
guration. Autoconfiguration is, of course, subject to administrative 
constraints. 
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To make autoconfiguration possible, a DHCP server begins with a set of IP ad- 
dresses that the network administrator gives the server to manage. The administrator 
specifies the rules by which the server operates. A DHCP client negotiates use of an 
address by exchanging messages with a server. In the exchange, the server provides an 
address for the client, and the client verifies that it accepts the address. Once a client 
has accepted an address, it can begin to use that address for communication. 

Unlike static address assignment, which pernlanently allocates each IP address to a 
specific host, dynamic address assignment is temporary. We say that a DHCP server 
leases an address to a client for a finite period of time. The server specifies the lease 
period when it allocates the address. During the lease period, the server will not lease 
the same address to another client. At the end of the lease period, however, the client 
must renew the lease or stop using the address. 

How long should a DHCP lease last? The optimal time for a lease depends on the 
particular network and the needs of a particular host. For example, to guarantee that ad- 
dresses can be recycled quickly, computers on a network used by students in a universi- 
ty laboratory might have a short lease period (e.g., one hour). By contrast, a corporate 
network might use a lease period of one day or one week. To accommodate all possible 
environments, DHCP does not specify a fixed constant for the lease period. Instead, the 
protocol allows a client to request a specific lease period, and allows a server to inform 
the client of the lease period it grants. Thus, a manager can decide how long each 
server should allocate an address to a client. In the extreme, DHCP reserves a value for 
infinity to permit a lease to last arbitrarily long like the permanent address assignments 
used in BOOTP. 

23.1 1 Obtaining Multiple Addresses 

A multi-homed computer connects to more than one network. When such a com- 
puter boots, it may need to obtain configuration information for each of its interfaces. 
Like a BOOTP message, a DHCP message only provides information about one inter- 
face. A computer with multiple interfaces must handle each interface separately. Thus, 
although we will describe DHCP as if a computer needs only one address, the reader 
must remember that each interface of a multi-homed computer may be at a different 
point in the protocol. 

Both BOOTP and DHCP use the notion of relay agent to permit a computer to 
contact a server on a nonlocal network. When a relay agent receives a broadcast re- 
quest from a client, it forwards the request to a server and then returns the reply from 
the server to the host. Relay agents can complicate multi-homed configuration because 
a server may receive multiple requests from the same computer. However, although 
both BOOTP and DHCP use the term client identifier, we assume that a multihomed 
client sends a value that identifies a particular interface (e.g., a unique hardware ad- 
dress). Thus, a server will always be able to distinguish among requests from a multi- 
homed host, even when the server receives such requests via a relay agent. 
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23.12 Address Acquisition States 

When it uses DHCP to obtain an IP address, a client is in one of six states. The 
state transition diagram in Figure 23.4 shows events and messages that cause a client to 
change state. 

When a client first boots, it enters the INITIALIZE state. To start acquiring an IP 
address, the client first contacts all DHCP servers in the local net. To do so, the client 
broadcasts a DHCPDISCOVER message and moves to the state labeled SELECT. Be- 
cause the protocol is an extension of BOOTP, the client sends the DHCPDISCOVER 
message in a UDP datagram with the destination port set to the BOOTP port (i.e., port 
67). All DHCP servers on the local net receive the message, and those servers that have 
been programmed to respond to the particular client send a DHCPOFFER message. 
Thus, a client may receive zero or more responses. 

While in state SELECT, the client collects DHCPOFFER responses from DHCP 
servers. Each offer contains configuration information for the client along with an IP 
address that the server is offering to lease to the client. The client must choose one of 
the responses ( e g ,  the first to arrive), and negotiate with the server for a lease. To do 
so, the client sends the server a DHCPREQUEST message, and enters the REQUEST 
state. To acknowledge receipt of the request and start the lease, the server responds by 
sending a DHCPACK. Arrival of the acknowledgement causes the client to move to the 
BOUND state, where the client proceeds to use the address. To summarize: 

To use DHCP, a host becomes a client by broadcasting a message to 
all servers on the local network. The host then collects offers from 
servers, selects one of the offers, and verifies acceptance with the 
server. 

23.13 Early Lease Termination 

We think of the BOUND state as the normal state of operation; a client typically 
remains in the BOUND state while it uses the IP address it has acquired. If a client has 
secondary storage (e.g., a local disk), the client can store the IP address it was assigned, 
and request the same address when it restarts again. In some cases, however, a client in 
the BOUND state may discover it no longer needs an IP address. For example, suppose 
a user attaches a portable computer to a network, uses DHCP to acquire an IP address, 
and then uses TCPm to read electronic mail. The user may not know how long read- 
ing mail will require, or the portable computer may allow the server to choose a lease 
period. In any case, DHCP specifies a minimum lease period of one hour. If after ob- 
taining an IP address, the user discovers that no e-mail messages are waiting to be read, 
the user may choose to shutdown the portable computer and move to another location. 

When it no longer needs a lease, DHCP allows a client to terminate a lease without 
waiting for the lease to expire. Such termination is helpful in cases where neither the 
client nor the server can determine an appropriate lease duration at the time the lease is 
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Host Boots \ 

PT DHCPNACK I \ DHCPNACK 

I DHCPOFFER 

Select m e r l  
DHCPREQUEST 

Lease Expires 

87.5% Expiration l 

Lease Reaches 
\ 50% Expiration / 

DHCPREQUEST 

1 
Cancel Leasel DHCPRELEASE 

Figure 23.4 The six main states of a DHCP client and transitions among 
them. Each label on a transition lists the incoming message or 
event that causes the transmission, followed by a slash and the 
message the client sends. 

granted because it allows a server to choose a reasonably long lease period. Early ter- 
mination is especially important if the number of IP addresses a server has available is 
much smaller than the number of computers that attach to the network. If each client 
terminates its lease as soon as the IP address is no longer needed, the server will be able 
to assign the address to another client. 

To terminate a lease early, a client sends a DHCPRELEASE message to the server. 
Releasing an address is a final action that prevents the client from using the address 
further. Thus, after transmitting the release message, the client must not send any other 
datagrams that use the address. In terms of the state transition diagram of Figure 23.4, 
a host that sends a DHCPRELEASE leaves the BOUND state, and must start at the INI- 
T W Z E  state again before it can use IP. 
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23.1 4 Lease Renewal States 

We said that when it acquires an address, a DHCP client moves to the BOUND 
state. Upon entering the BOUND state, the client sets three timers that control lease 
renewal, rebinding, and expiration. A DHCP server can specify explicit values for the 
timers when it allocates an address to the client; if the server does not specify timer 
values, the client uses defaults. The default value for the first timer is one-half of the 
total lease time. When the first timer expires, the client must attempt to renew its lease. 
To request a renewal, the client sends a DHCPREQUEST message to the server form 
which the lease was obtained. The client then moves to the RENEW state to await a 
response. The DHCPREQUEST contains the IP address the client is currently using, 
and asks the server to extend the lease on the address. As in the initial lease negotia- 
tion, a client can request a period for the extension, but the server ultimately controls 
the renewal. A server can respond to a client's renewal request in one of two ways: it 
can instruct the client to stop using the address or it can approve continued use. If it 
approves, the server sends a DHCPACK, which causes the client to return to the 
BOUND state and continue using the address. The DHCPACK can also contain new 
values for the client's timers. If a server disapproves of continued use, the server sends 
a DHCPNACK (negative acknowledgement), which causes the client to stop using the 
address immediately and return to the INITIALIZE state. 

After sending a DHCPREQUEST message that requests an extension on its lease, a 
client remains in state RENEW awaiting a response. If no response arrives, the server 
that granted the lease is either down or unreachable. To handle the situation, DHCP re- 
lies on a second timer, which was set when the client entered the BOUND state. The 
second timer expires after 87.5% of the lease period, and causes the client to move from 
state RENEW to state REBIND. When making the transition, the client assumes the old 
DHCP server is unavailable, and begins broadcasting a DHCPREQUEST message to 
any server on the local net. Any server configured to provide service to the client can 
respond positively (i.e., to extend the lease), or negatively (i.e. to deny further use of the 
IP address). If it receives a positive response, the client returns to the BOUND state, 
and resets the two timers. If it receives a negative response, the client must move to the 
INITIALIZE state, must immediately stop using the IP address, and must acquire a new 
IP address before it can continue to use IP. 

After moving to the REBIND state, a client will have asked the original server plus 
all servers on the local net for a lease extension. In the rare case that a client does not 
receive a response from any server before its third timer expires, the lease expires. The 
client must stop using the IP address, must move back to the INITlALlZE state, and be- 
gin acquiring a new address. 
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23.15 DHCP Message Format 

As Figure 23.5 illustrates, DHCP uses the BOOTP message format, but modifies 
the contents and meanings of some fields. 

TRANSACTION ID 

SECONDS I FLAGS 

0 8 16 24 31 

1 OP 

I-pp CLIENT IP ADDRESS 

HTYPE 

YOUR IP ADDRESS I 
I SERVER lP ADDRESS I 

I HLEN 

I ROUTER IP ADDRESS I 

HOPS 

CLIENT HARDWARE ADDRESS (16 OCTETS) 

SERVER HOST NAME (64 OCTETS) 

Figure 23.5 The format of a DHCP message, which is an extension of a 
BOOTP message. The options field is variable length; a client 
must be prepared to accept at least 312 octets of options. 

As the figure shows, most of the fields in a DHCP message are identical to fields 
in a BOOTP message. In fact, the two protocols are compatible; a DHCP server can be 
programmed to answer BOOTP requests. However, DHCP changes the meaning of two 
fields. First, DHCP interprets BOOTP's UNUSED field as a 16-bit FLAGS field. In 
fact, Figure 23.6 shows that only the high-order bit of the FLAGS field has been as- 
signed a meaning. 
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Figure 23.6 The format of the 16-bit FLAGS field in a DHCP message. The 
leftmost bit is interpreted as a broadcast request; all others bits 
must be set to zero. 

Because the DHCP request message contains the client's hardware address, a 
DHCP server normally sends its responses to the client using hardware unicast. A 
client sets the high-order bit in the FLAGS field to request that the server respond using 
hardware broadcast instead of hardware unicast. To understand why a client might 
choose a broadcast response, recall that while a client communicates with a DHCP 
server, it does not yet have an IP address. If a datagram arrives via hardware unicast 
and the destination address does not match the computer's address, IP can discard the 
datagram. However, IP is required to accept and handle any datagram sent to the IP 
broadcast address. To ensure IP software accepts and delivers DHCP messages that ar- 
rive before the machine's IP address has been configured, a DHCP client can request 
that the server send responses using IP broadcast. 

23.16 DHCP Options And Message Type 

Surprisingly, DHCP does not add new fixed fields to the BOOTP message format, 
nor does it change the meaning of most fields. For example, the OP field in a DHCP 
message contains the same values as the OP field in a BOOTP message: the message is 
either a boot request (1) or a boot reply (2). To encode information such as the lease 
duration, DHCP uses options. In particular, Figure 23.7 illustrates the DHCP message 
type option used to specify which DHCP message is being sent. 

The options field has the same format as the VENDOR SPECIFIC AREA, and 
DHCP honors all the vendor specific information items defined for BOOTP. As in 
BOOTP, each option consists of a 1-octet code field and a 1-octet length field followed 
by octets of data that comprise the option. As the figure shows, the option used to 
specify a DHCP message type consists of exactly three octets. The first octet contains 
the code 53, the second contains the length 1, and the third contains a value used to 
identify one of the possible DHCP messages. 
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TYPE FIELD Corresponding DHCP Message Type 

0 8 16 23 

1 DHCPDISCOVER 
2 DHCPOFFER 
3 DHCPREQUEST 
4 DHCPDECLINE 
5 DHCPACK 
6 DHCPNACK 
7 DHCPRELEASE 

CODE(53) 1 LENGTH (1) 

Figure 23.7 The format of a DHCP message type option us 

TYPE (1 - 7) 

wify the 
DHCP message being sent. The table lists possible values of the 
third octet and their meaning. 

23.1 7 Option Overload 

Fields SERVER HOST NAME and BOOT FILE NAME in the DHCP message 
header each occupy many octets. If a given message does not contain information in ei- 
ther of those fields, the space is wasted. To allow a DHCP server to use the two fields 
for other options, DHCP defines an Option Overload option. When present, the over- 
load option tells a receiver to ignore the usual meaning of the SERVER HOST NAME 
and BOOT FILE NAME fields, and look for options in the fields instead. 

23.18 DHCP And Domain Names? 

Although it can allocate an IP address to a computer on demand, DHCP does not 
completely automate all the procedures required to attach a permanent host to an inter- 
net. In particular, DHCP does not interact with the domain name system. Thus, the 
binding between a host name and the IP address DHCP assigns the host must be 
managed independently. 

What name should a host receive when it obtains an IP address from DHCP? Con- 
ceptually, there are three possibilities. First, the host does not receive a name. 
Although it is possible to run client software on a host without a name, using an un- 
named computer can be inconvenient. Second, the host is automatically assigned a 
name along with an IP address. This method is currently popular because names can be 
preallocated, and no change is required to the DNS. For example, a system administra- 
tor can configure the local domain name server to have a host name for each IP address 
DHCP manages. Once it has been installed in DNS, the name-to-address binding 

?Chapter 24 considers the Domain Name System in detail. 
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remains static. The chief disadvantage of a static binding is that the host receives a new 
name whenever it receives a new address (e.g., if a host moves from one physical net to 
another). Third, the host can be assigned a permanent name that remains unchanged. 
Keeping a permanent host name is convenient because the computer can always be 
reached via one name, independent of the computer's current location. 

Additional mechanisms are needed to support permanent host names. In particular, 
permanent host names require coordination between DHCP and DNS. A DNS server 
must change the name-to-address binding whenever a host receives an IP address, and 
must remove the binding when a lease expires. Although, an IETF working group is 
currently considering how DHCP should interact with the domain name system, there is 
currently no protocol for dynamic DNS update. Thus, until a dynamic update mechan- 
ism is developed, there is no protocoI that maintains permanent host names while allow- 
ing DHCP to change IP addresses. 

23.1 9 Summary 

The BOOTstrap Protocol, BOOTP, provides an alternative to RARP for a comput- 
er that needs to detennine its IP address. BOOTP is more general than RARP because 
it uses UDP, making it possible to extend bootstrapping across a router. BOOTP also 
allows a machine to determine a router address, a (file) server address, and the name of 
a program the computer should run. Finally, BOOTP allows administrators to establish 
a configuration database that maps a generic name, like "unix," into the fully qualified 
file name that contains a memory image appropriate for the client hardware. 

BOOTP is designed to be small and simple enough to reside in a bootstrap ROM. 
The client uses the limited broadcast address to communicate with the server, and takes 
responsibility for retransmitting requests if the server does not respond. Retransmission 
uses an exponential backoff policy similar to Ethernet to avoid congestion. 

Designed as a successor to BOOTP, the Dynamic Host Configuration Protocol 
(DHCP) extends BOOTP in several ways. Most important, DHCP permits a server to 
allocate IP addresses automatically or dynamically. Dynamic allocation is necessary for 
environments such as a wireless network where computers can attach and detach quick- 
ly. To use DHCP, a computer becomes a client. The computer broadcasts a request for 
DHCP servers, selects one of the offers it receives, and exchanges messages with the 
server to obtain a lease on the advertised IP address. 

When a client obtains an IF' address, the client starts three timers. After the first ti- 
mer expires, the client attempts to renew its lease. If a second timer expires before 
renewal completes, the client attempts to rebind its address from any server. If the final 
timer expires before a lease has been renewed, the client stops using the IP address and 
returns to the initial state to acquire a new address. A frnite state machine explains 
lease acquisition and renewal. 



For Further Study 

FOR FURTHER STUDY 

BOOTP is a standard protocc )1 in the TCP/LF' suite. Further details can be found in 
Croft and Gilmore [RFC 9511, which compares BOOTP to RARP and serves as the of- 
ficial standard. Reynolds [RFC 10841 tells how to interpret the vendor-specific area, 
and Braden [RFC 11231 recommends using the vendor-specific area to pass the subnet 
mask. 

Droms [RFC 21311 contains the specification for DHCP, including a detailed 
description of state transitions; another revision is expected soon. A related document, 
Alexander and Droms [RFC 21321, specifies the encoding of DHCP options and 
BOOTP vendor extensions. Finally, Droms [RFC 15341 discusses the interoperability 
of BOOTP and DHCP. 

EXERCISES 

BOOTP does not contain an explicit field for returning the time of day from the server 
to the client, but makes it part of the (optional) vendor-specific information. Should the 
time be included in the required fields? Why or why not? 

Argue that separation of configuration and storage of memory images is not good. (See 
RFC 951 for hints.) 

The BOOTP message format is inconsistent because it has two fields for client IP ad- 
dress and one for the name of the boot image. If the client leaves its IP address field 
empty, the server returns the client's IP address in the second field. If the client leaves 
the boot file name field empty, the server replaces it with an explicit name. Why? 

Read the standard to find out how clients and servers use the HOPS field. 

When a BOOTP client receives a reply via hardware broadcast, how does it know 
whether the reply is intended for another BOOTP client on the same physical net? 

When a machine obtains its subnet mask with BOOTP instead of ICMP, it places less 
load on other host computers. Explain. 

Read the standard to find out how a DHCP client and server can agree on a lease dura- 
tion without having synchronized clocks. 

Consider a host that has a disk and uses DHCP to obtain an IP address. If the host 
stores its address on disk along with the date the lease expires, and then reboots within 
the lease period, can it use the address? Why or why not? 

DHCP mandates a minimum address lease of one hour. Can you imagine a situation in 
which DHCP's minimum lease causes inconvenience? Explain. 

Read the RFC to find out how DHCP specifies renewal and rebinding timers. Should a 
server ever set one without the other? Why or why not? 

The state transition diagram does not show retransmission. Read the standard to find out 
how many times a client should retransmit a request. 
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23.12 Can DHCP guarantee that a client is not "spoofing" (i.e., can DHCP guarantee that it 
will not send configuration information for host A to host B)? Does the answer differ for 
BOOTP? Why or why not? 

23.13 DHCP specifies that a client must be prepared to handle at least 312 octets of options. 
How did the number 312 arise? 

23.14 Can a computer that uses DHCP to obtain an IP address operate a server? If so, how 
does a client reach the server? 



The Domain Name System 

24.1 Introduction 

The protocols described in earlier chapters use 32-bit integers called Internet Proto- 
col addresses (IP addresses) to identify machines. Although such addresses provide a 
convenient, compact representation for specifying the source and destination in packets 
sent across an internet, users prefer to assign machines pronounceable, easily remem- 
bered names. 

This chapter considers a scheme for assigning meaningful high-level names to a 
large set of machines, and discusses a mechanism that maps between high-level 
machine names and IP addresses. It considers both the translation from high-level 
names to IP addresses and the translation from IP addresses to high-level machine 
names. The naming scheme is interesting for two reasons. First, it has been used to as- @ 
sign machine names throughout the global Internet. Second, because it uses a geo- 
graphically distributed set of servers to map names to addresses, the implementation of c- 
the name mapping mechanism provides a large scale example of the client-server para- 
digm described in Chapter 21. 
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24.2 Names For Machines 

The earliest computer systems forced users to understand numeric addresses for ob- 
jects like system tables and peripheral devices. Timesharing systems advanced comput- 
ing by allowing users to invent meaningful symbolic names for both physical objects 
(e.g., peripheral devices) and abstract objects (e.g., files). A similar pattern has emerged 
in computer networking. Early systems supported point-to-point connections between 
computers and used low-level hardware addresses to specify machines. Internetworking 
introduced universal addressing as well as protocol software to map universal addresses 
into low-level hardware addresses. Because most computing environments contain mul- 
tiple machines, users need meaningful, symbolic names to identify them. 

Early machine names reflected the small environment in which they were chosen. 
It was quite common for a site with a handful of machines to choose names based on 
the machines' purposes. For example, machines often had names like research, produc- 
tion, accounting, and development. Users find such names preferable to cumbersome 
hardware addresses. 

Although the distinction between address and name is intuitively appealing, it is 
artificial. Any name is merely an identifier that consists of a sequence of characters 
chosen from a finite alphabet. Names are only useful if the system can efficiently map 
them to the object they denote. Thus, we think of an IP address as a low-level name, 
and we say that users prefer high-level names for machines. 

The form of high-level names is important because it determines how names are 
translated to low-level names or bound to objects, as well as how name assignments are 
authorized. When only a few machines interconnect, choosing names is easy, and any 
form will suffice. On the Internet, to which approximately one hundred million 
machines connect, choosing symbolic names becomes difficult. For example, when its 
main departmental computer was connected to the Internet in 1980, the Computer Sci- 
ence Department at Purdue University chose the name purdue to identify the connected 
machine. The list of potential conflicts contained only a few dozen names. By mid 
1986, the official list of hosts on the Internet contained 3100 officially registered names 
and 6500 official aliasest. Although the list was growing rapidly in the 1980s, most 
sites had additional machines (e.g., personal computers) that were not registered. 

24.3 Flat Namespace 

The original set of machine names used throughout the Internet formed a flat 
namespace in which each name consisted of a sequence of characters without any furth- 
er structure. In the original scheme, a central site, the Network Information Center 
(NZC), administered the namespace and determined whether a new name was appropri- 
ate (i.e., it prohibited obscene names or new names that conflicted with existing names). 

The chief advantage of a flat namespace is that names are convenient and short; the 
chief disadvantage is that a flat namespace cannot generalize to large sets of machines 
for both technical and administrative reasons. First. because names are drawn from a 

tBy 1990, more than 137,000 Internet hosts had names, and by 2000 the number exceeded 60 million. 
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single set of identifiers, the potential for conflict increases as the number of sites in- 
creases. Second, because authority for adding new names must rest at a single site, the 
administrative workload at that central site also increases with the number of sites. To 
understand the severity of the problem, imagine a rapidly growing internet with 
thousands of sites, each of which has hundreds of individual personal computers and 
workstations. Every time someone acquires and connects a new personal computer, its 
name must be approved by the central authority. Third, because the name-to-address 
bindings change frequently, the cost of maintaining correct copies of the entire list at 
each site is high and increases as the number of sites increases. Alternatively, if the 
name database resides at a single site, network traffic to that site increases with the 
number of sites. 

24.4 Hierarchical Names 

How can a naming system accommodate a large, rapidly expanding set of names 
without requiring a central site to administer it? The answer lies in dzntralizing $e 
naming mechanism by delegating authority for parts of the namespace and distributing 
rGponsibility f;lr the mapping between names and addresses. TCPIIP internets use such 
a scheme. Before examining the details of the TCPIIP scheme, we will consider the 
motivation and intuition behind it. 

The partitioning of a namespace must be defined in a way that supports efficient 
name mapping and guarantees autonomous control of name assignment. Optimizing 
only for efficient mapping can lead to solutions that retain a flat namespace and reduce 
traffic by dividing the names among multiple mapping machines. Optimizing only for 
administrative ease can lead to solutions that make delegation of authority easy but 
name mapping expensive or complex. 

To understand how the namespace should be divided, consider the internal struc- 
ture of large organizations. At the top, a chief executive has overall responsibility. Be- 
cause the chief executive cannot oversee everything, the organization may be partitioned 
into divisions, with an executive in charge of each division. The chief executive grants 
each division autonomy within specified limits. More to the point, the executive in 
charge of a particular division can hire or fire employees, assign offices, and delegate 
authority, without obtaining direct permission from the chief executive. 

Besides making it easy to delegate authority, the hierarchy of a large organization 
introduces autonomous operation. For example, when an office worker needs informa- 
tion like the telephone number of a new employee, he or she begins by asking local 
clerical workers (who may contact clerical workers in other divisions). The point is that 
although authority always passes down the corporate hierarchy, information can flow 
across the hierarchy from one office to another. 
- - 



464 The Domain Name System (DNS) Chap. 24 

24.5 Delegation Of Authority For Names 

A hierarchical naming scheme works like the management of a large organization. 
The namespace is partitioned at the top level, and authority for names in subdivisions is 
passed to designated agents. For example, one might choose to partition the namespace 
based on site name and to delegate to each site responsibility for maintaining names 
within its partition. The topmost level of the hierarchy divides the namespace and 
delegates authority for each division; it need not be bothered by changes within a divi- 
sion. 

The syntax of hierarchically assigned names often reflects the hierarchical delega- 
tion of authority used to assign them. As an example, consider a namespace with 
names of the form: 

local. site 

where site is the site name authorized by the central authority, local is the part of a 
name controlled by the site, and the period? (".") is a delimiter used to separate them. 
When the topmost authority approves adding a new site, X ,  it adds X to the list of valid 
sites and delegates to site X authority for all names that end in " .X ". 

24.6 Subset Authority 

In a hierarchical namespace, authority may be further subdivided at each level. In 
our example of partition by sites, the site itself may consist of several administrative 
groups, and the site authority may choose to subdivide its namespace among the groups. 
The idea is to keep subdividing the namespace until each subdivision is small enough to 
be manageable. 

Syntactically, subdividing the namespace introduces another partition of the name. 
For example, adding a group subdivision to names already partitioned by site produces 
the following name syntax: 

local. group. site 

Because the topmost level delegates authority, group names do not have to agree among 
all sites. A university site might choose group names like engineering, science, and 
arts, while a corporate site might choose group names like production, accounting, and 
personnel. 

The U.S. telephone system provides another example of a hierarchical naming syn- 
tax. The 10 digits of a phone number have been partitioned into a 3-digit area code, 3- 
digit exchange, and Cdigit subscriber number within the exchange. Each exchange has 
authority for assigning subscriber numbers within its piece of the namespace. Although 
it is possible to group arbitrary subscribers into exchanges and to group arbitrary ex- 
changes into area codes, the assignment of telephone numbers is not capricious; they are 
carefully chosen to make it easy to route phone calls across the telephone network. 

tIn domain names, the period delimiter is pronounced "dot." 
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The telephone example is important because it illustrates a key distinction between 
the hierarchical naming scheme used in a TCP/rP internet and other hierarchies: parti- 
tioning the set of machines owned by an organization along lines of authority does not 
necessarily imply partitioning by physical location. For example, it could be that at 
some university, a single building houses the mathematics department as well as the 
computer science department. It might even turn out that although the machines from 
these two groups fall under completely separate administrative domains, they connect to 
the same physical network. It also may happen that a single group owns machines on 
several physical networks. For these reasons, the TCP/IP naming scheme allows arbi- 
trary delegation of authority for the hierarchical namespace without regard to physical 
connections. The concept can be summarized: 

In a TCP/IP internet, hierarchical machine names are assigned ac- 
cording to the structure of organizations that obtain authority for 
parts of the namespace, not necessarily according to the structure of 

4 the physical network interconnections. 

Of course, at many sites the organizational hierarchy corresponds with the structure of 
physical network interconnections. At a large university, for example, most depart- 
ments have their own local area network. If the department is assigned part of the nam- 
ing hierarchy, all machines that have names in its part of the hierarchy will also connect 
to a single physical network. 

24.7 Internet Domain Names 

The mechanism that implements a machine name hierarchy for TCPm internets is 
called the Domain Name System (DNS). DNS has two, conceptually independent as- 
pects. The first is abstract: it specifies the name syntax and rules for delegating authori- 
ty over names. The second is concrete: it specifies the implementation of a distributed 
computing system that efficiently maps names to addresses. This section considers the 
name syntax, and later sections examine the implementation. 

The domain name system uses a hierarchical naming scheme known as domain 
names. As in our earlier examples, a domain name consists of a sequence of subnames 
separated by a delimiter character, the period. In our examples we said that individual 
sections of the name might represent sites or groups, but the domain system simply 
calls each section a label. Thus, the domain name 

cs .purdue . edu 

contains three labels: cs, purdue, and edu. Any suffix of a label in a domain name is 
also called a domain. In the above example the lowest level domain is cs .purdue. edzi, 
(the domain name for the Computer Science Department at Purdue University), the 
second level domain is purdue. edu (the domain name for Purdue University), and the 
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top-level domain is edu (the domain name for educational institutions). As the example 
shows, domain names are written with the local label first and the top domain last. As 
we will see, writing them in this order makes it possible to compress messages that con- 
tain multiple domain names. 

24.8 Official And Unofficial Internet Domain Names 

In theory, the domain name standard specifies an abstract hierarchical namespace 
with arbitrary values for labels. Because the domain system dictates only the form of 
names and not their actual values, it is possible for any group that builds an instance of 
the domain system to choose labels for all parts of its hierarchy. For example, a private 
company can establish a domain hierarchy in which the top-level labels specify cor- 
porate subsidiaries, the next level labels specify corporate divisions, and the lowest level 
labels specify departments. 

However, most users of the domain technology follow the hierarchical labels used 
by the official Internet domain system. There are two reasons. First, as we will see, the 
Internet scheme is both comprehensive and flexible. It can accommodate a wide variety 
of organizations, and allows each group to choose between geographical or organiza- 
tional naming hierarchies. Second, most sites follow the Internet scheme so they can at- 
tach their TCPIIP installations to the global Internet without changing names. Because 
the Internet naming scheme dominates almost all uses of the domain name system, ex- 
amples throughout the remainder of this chapter have labels taken from the Internet 
naming hierarchy. Readers should remember that, although they are most likely to en- 
counter these particular labels, the domain name system technology can be used with 
other labels if desired. 

The Internet authority has chosen to partition its top level into the domains listed 
in Figure 24. l t. 

Domain Name 
COM 
EDU 
GOV 
MIL 
NET 
ORG 
ARPA 
INT 
country code 

Meaning 
Commercial organizations 
Educational institutions (4-year) 
Government institutions 
Military groups 
Major network support centers 
Organizations other than those above 
Temporary ARPANET domain (obsolete) 
International organizations 
Each country (geographic scheme) 

Figure 24.1 The top-level Internet domains and their meanings. Although la- 
bels are shown in upper case, domain name system comparisons 
are insensitive to case, so EDU is equivalent to edu. 

fThe following additional toplevel domains have been proposed, but not formally adopted: FIRM, 
STORE, WEB, ARTS, REC, INFO, and NOM. 
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Conceptually, the top-level names permit two completely different naming hierar- 
chies: geographic and organizational. The geographic scheme divides the universe of 
machines by country. Machines in the United States fall under the top-level domain 
US; when a foreign country wants to register machines in the domain name system, the 
central authority assigns the country a new top-level domain with the country's interna- 
tional standard 2-letter identifier as its label. The authority for the US domain has 
chosen to divide it into one second-level domain per state. For example, the domain for 
the state of Virginia is 

As an alternative to the geographic hierarchy, the top-level domains also allow or- 
ganizations to be grouped by organizational type. When an organization wants to parti- 
cipate in the domain naming system, it chooses how it wishes to be registered and re- 
quests approval. The central authority reviews the application and assigns the organiza- 
tion a subdomain? under one of the existing top-level domains. For example, it is pos- 
sible for a university to register itself as a second-level domain under EDU (the usual 
practice), or to register itself under the state and country in which it is located. So far, 
few organizations have chosen the geographic hierarchy; most prefer to register under 
COM, EDU, MIL, or GOV. There are two reasons. First, geographic names are longer 
and therefore more difficult to type. Second, geographic names are much more difficult 
to discover or guess. For example, Purdue University is located in West Lafayette, In- 
diana. While a user could easily guess an organizational name, like purdue.edu, a geo- 
graphic name is often difficult to guess because it is usually an abbreviation, like 

m . us. laf. ' 
Another example may help clarify the relationship between the naming hierarchy 

and authority for names. A machine named xinu in the Computer Science Department 
at Purdue University has the official domain name 

xinu. cs .purdue . edu 

The machine name was approved and registered by the local network manager in the 
Computer Science Department. The department manager had previously obtained au- 
thority for the subdomain cs .purdue. edu from a university network authority, who had 
obtained permission to manage the subdomain purdue. edu from the Internet authority. 
The Internet authority retains control of the edu domain, so new universities can only be 
added with its permission. Similarly, the university network manager at Purdue Univer- 
sity retains authority for the purdue. edu subdomain, so new third-level domains may 
only be added with the manager's permission. 

Figure 24.2 illustrates a small part of the Internet domain name hierarchy. As the 
figure shows, Digital Equipment Corporation, a commercial organization, registered as 
dec . corn, Purdue University registered as purdue . edu, and the National Science Foun- 
dation, a government agency, registered as nsf.gov. In contrast, the Corporation for 
National Research Initiatives chose to register under the geographic hierarchy as 
cnri . reston. va . us$. 

?The standard does not define the term "subdomain." We have chosen to use it because its analogy to 
"subset" helps clarify the relationship among domains. 

$Interestingly, CNRI also registered using the name nri .  reston. va . us. 
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n - unnamed root 

cnri 0 
Figure 24.2 A small part of the Internet domain name hierarchy (tree). In 

practice, the tree. is broad and flat; most host entries appear by 
the fifth level. 

24.9 Named Items And Syntax Of Names 

The domain name system is quite general because it allows multiple naming hierar- 
chies to be embedded in one system. To allow clients to distinguish among multiple 
types of entries, each named item stored in the system is assigned a type that specifies 
whether it is the address of a machine, a mailbox, a user, and so on. When a client asks 
the domain system to resolve a name, it must specify the type of answer desired. For 
example, when an electronic mail application uses the domain system to resolve a 
name, it specifies that the answer should be the address of a mail exchanger. A remote 
login application specifies that it seeks a machine's IP address. It is important to under- 
stand the following: 

A given name may map to more than one item in the domain system. 
The client spec@es the type of object desired when resolving a name, 
and the server returns objects of that type. 

In addition to specifying the type of answer sought, the domain system allows the 
client to specify the protocol family to use. The domain system partitions the entire set 
of names by class, allowing a single database to store mappings for multiple protocol 
suites?. 

?In practice, few domain servers use multiple protocol suites. 
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The syntax of a name does not determine what type of object it names or the class 
of protocol suite. In particular, the number of labels in a name does not detem~ne 
whether the name refers to an individual object (machine) or a domain. Thus, in our 
example, it is possible to have a machine named 

gwen .purdue . edu 

even though 

cs . purdue . edu 

names a subdomain. We can summarize this important point: 

1 
One cannot distinguish the names of subdomains from the names of i 

individual objects or the type of an object using only the domain name 
I syntax. 

24.1 0 Mapping Domain Names To Addresses 

In addition to the - -- rules for name syntax and delegation of authority, the domain 
name scheme includes an efficient, reliable, general purpose, distributed system for 
mapping names t6 addresses. The systemjs diMbut& in th_technicd sense, meaning 
that a set of servers operating at multiple sites cooperatively solve the mapping prob- 
lem. It is efficient in the sense that most names can be mapped locally; only a few re- 
quire internet trafEc. It is general purpose because it is not restricted to machine names 
(although we will use that example for now). Finally, it is reliable in that no single 
machine failure will prevent the system from operating correctly. 

The domain mechanism for mapping names to addresses consists of independent, 
cooperative systems called name servers. A name server is a server that sup- 
plies name-to-address translation, mapping from domain names to IP addresses. Often, 
server software executes on a dedicated processor, and the machine itself is called the 
name server. The client software, called a name resolver, uses one or more name 
servers when translating a name. 

The easiest way to understand how domain servers work is to imagine them ar- 
ranged in a tree structure that corresponds to the naming hierarchy, as Figure 24.3 illus- 
trates. The root of the tree is a server that recognizes the top-level domains and knows 
which server resolves each domain. Given a name to resolve, the root can choose the 
correct server for that name. At the next level, a set of name servers each provide 
answers for one top-level domain (e.g., edu). A server at this level knows which 
servers can resolve each of the subdomains under its domain. At the third level of the 
tree, name servers provide answers for subdomains (e.g., purdue under edu). The con- 
ceptual tree continues with one server at each level for which a subdomain has been de- 
fined. 
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Links in the conceptual tree do not indicate physical network connections. Instead, 
they show which other name servers a given server knows and contacts. The servers 
themselves may be located at arbitrary locations on an internet. Thus, the tree of 
servers is an abstraction that uses an internet for communication. 

(7, Server 

Figure 243 The conceptual arrangement of domain name servers in a tree 
that corresponds to the naming hierarchy. In theory, each server 
knows the addresses of all lower-level servers for all sub- 
domains within the domain it handles. 

If servers in the domain system worked exactly as our simplistic model suggests, 
the relationship between connectivity and authorization would be quite simple. When 
authority was granted for a subdomain, the organization requesting it would need to es- 
tablish a domain name server for that subdomain and link it into the tree. 

In practice, the relationship between the naming hierarchy and the tree of servers is 
not as simple as our model implies. The tree of servers has few levels because a single 
physical server can contain all of the information for large parts of the naming hierar- 
chy. In particular, organizations often collect information from all of their subdomains 
into a single server. Figure 24.4 shows a more realistic organization of servers for the 
naming hierarchy of Figure 24.2. 

A root server contains information about the root and top-level domains, and each 
organization uses a single server for its names. Because the tree of servers is shallow, 
at most two servers need to be contacted to resolve a name like xinu. cs .purdue. edu: 
the root server and the server for domain purdue. edu (i.e., the root server knows which 
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server handles purdue . edu, and the entire domain infornlation for Purdue resides in one 
server). 

Figure 24.4 A realistic organization of servers for the naming hierarchy of 
Figure 24.2. Because the tree is broad and flat, few servers need 
to be contacted when resolving a name. 

24.1 1 Domain Name Resolution 

Although the conceptual tree makes understanding the relationship between servers 
easy, it hides several subtle details. Looking at the name resolution algorithm will help 
explain them. Conceptually, domain name resolution proceeds top-down, starting with 
the root name server and proceeding to servers located at the leaves of the tree. There 
are two ways to use the domain name system: by contacting name servers one at a time 
or asking the name server system to perform the complete translation. In either case, 
the client software forms a domain name query that contains the name to be resolved, a 
declaration of the class of the name, the type of answer desired, and a code that speci- 
fies whether the name server should translate the name completely. It sends the query 
to a name server for resolution. 

When a domain name server receives a query, it checks to see if the name lies in 
the subdomain for which it is an authority. If so, it translates the name to an address 

I 
according to its database, and appends an answer to the query before sending it back to 
the client. If the name server cannot resolve the name completely, it checks to see what 
type of interaction the client specified. If the client requested complete translation (re- 
cursive resolution, in domain name terminology), the server contacts a domain name 
server that can resolve the name and returns the answer to the client. If the client re- 
quested non-recursive resolution (iterative resolution), the name server cannot supply an 
answer. It generates a reply that specifies the name server the client should contact next 
to resolve the name. 
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How does a client find a name server at which to begin the search? How does a 
name server find other name servers that can answer questions when it cannot? The 
answers are simple. A client must know how to contact at least one name server. To 
ensure that a domain name server can reach others, the domain system requires that 
each server know the address of at least one root server?. In addition, a server may 
know the address of a server for the domain immediately above it (called the parent). 

Domain name servers use a well-known protocol port for all communication, so 
clients know how to communicate with a server once they know the IP address of the 
machine in which the server executes. There is no standard way for hosts to locate a 
machine in the local environment on which a name server runs; that is left to whoever 
designs the client software*. 

In some systems, the address of the machine that supplies domain name service is 
bound into application programs at compile time, while in others, the address is config- 
ured into the operating system at startup. In others, the administrator places the address 
of a server in a file on secondary storage. 

24.1 2 Efficient Translation 

Although it may seem natural to resolve queries by working down the tree of name 
servers, it can lead to inefficiencies for three reasons. First, most name resolution refers 
to local names, those found within the same subdivision of the namespace as the 
machine from which the request originates. Tracing a path through the hierarchy to 
contact the local authority would be inefficient. Second, if each name resolution always 
started by contacting the topmost level of the hierarchy, the machine at that point would 
become overloaded. Third, failure of machines at the topmost levels of the hierarchy 
would prevent name resolution, even if the local authority could resolve the name. The 
telephone number hierarchy mentioned earlier helps explain. Although telephone 
numbers are assigned hierarchically, they are resolved in a bottom-up fashion. Because 
the majority of telephone calls are local, they can be resolved by the local exchange 
without searching the hierarchy. Furthermore, calls within a given area code can be 
resolved without contacting sites outside the area code. When applied to domain 
names, these ideas lead to a two-step name resolution mechanism that preserves the ad- 
ministrative hierarchy but permits efficient translation. 

We have said that most queries to name servers refer to local names. In the two- 
step name resolution process, resolution begins with the local name server. If the local 
server cannot resolve a name, the query must then be sent to another server in the 
domain system. 

+For reliability, there are multiple servers for each node in the domain server tree; the root server is furth- 
er replicated to provide load balancing. 

$See BOOTPIDHCP in Chapter 23 for one possible approach. 
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24.13 Caching: The Key To Efficiency 

The cost of lookup for nonlocal names can be extremely high if resolvers send 
each query to the root server. Even if queries could go directly to the server that has 
authority for the name, name lookup can present a heavy load to an internet. Thus, to 
improve the overall performance of a name server system, it is necessary to lower the 
cost of lookup for nonlocal names. 

Internet name servers use name caching to optimize search costs. Each server 
maintains a cache of recently used names as well as a record of where the mapping in- 
formation for that name was obtained. When a client asks the server to resolve a name, 
the server f i s t  checks to see if it has authority for the name according to the standard 
procedure. If not, the server checks its cache to see if the name has been resolved re- 
cently. Servers report cached information to clients, but mark it as a nonauthoritative 
binding, and give the domain name of the server, S, from which they obtained the bind- 
ing. The local server also sends along additional information that tells the client the 
binding between S and an IP address. Therefore, clients receive answers quickly, but 
the information may be out-of-date. If efficiency is important, the client will choose to 
accept the nonauthoritative answer and proceed. If accuracy is important, the client will 
choose to contact the authority and verify that the binding between name and address is 
still valid. 

Caching works well in the domain name system because name to address bindings 
change infrequently. However, they do change. If servers cached information the first 
time it was requested and never changed it, entries in the cache could become incorrect. 
To keep the cache correct, servers time each entry and dispose of entries that exceed a 
reasonable time. When the server is asked for the information after it has removed the 
entry from the cache, it must go back to the authoritative source and obtain the binding 
again. More important, servers do not apply a single fixed tirneout to all entries, but al- 
low the authority for an entry to configure its timeout. Whenever an authority responds 
to a request, it includes a Time To Live (TTL) value in the response that specifies how 
long it guarantees the binding to remain. Thus, authorities can reduce network overhead 
by specifying long tirneouts for entries that they expect to remain unchanged, while im- 
proving correctness by specifying short timeouts for entries that they expect to change 
frequently. 

Caching is important in hosts as well as in local domain name servers. Many 
timesharing systems run a complex form of resolver code that attempts to provide even 
more efficiency than the server system. The host downloads the complete database of 
names and addresses from a local domain name server at startup, maintains its own 
cache of recently used names, and uses the server only when names are not found. Na- 
turally, a host that maintains a copy of the local server database must check with the 
server periodically to obtain new mappings, and the host must remove entries from its 
cache after they become invalid. However, most sites have little trouble maintaining 
consistency because domain names change so infrequently. 

Keeping a copy of the local server's database in each host has several advantages. 
Obviously, it makes name resolution on local hosts extremely fast because it means the 
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host can resolve names without any network activity. It also means that the local site 
has protection in case the local name server fails. Finally, it reduces the computational 
load on the name server, and makes it possible for a given server to supply names to 
more machines. 

24.14 Domain Server Message Format 

Looking at the details of messages exchanged between clients and domain name 
servers will help clarify how the system operates from the view of a typical application 
program. We assume that a user invokes an application program and supplies the name 
of a machine with which the application must communicate. Before it can use proto- 
cols like TCP or UDP to communicate with the specified machine, the application pro- 
gram must find the machine's IP address. It passes the domain name to a local resolver 
and requests an IP address. The local resolver checks its cache and returns the answer 
if one is present. If the local resolver does not have an answer, it formats a message 
and sends it to the server (i.e., it becomes a client). Although our example only in- 
volves one name, the message format allows a client to ask multiple questions in a sin- 
gle message. Each question consists of a domain name for which the client seeks an IP 
address, a specification of the query class (i.e., internet), and the type of object desired 
(e.g., address). The server responds by returning a similar message that contains 
answers to the questions for which the server has bindings. If the server cannot answer 
all questions, the response will contain information about other name servers that the 
client can contact to obtain the answers. 

Responses also contain information about the servers that are authorities for the re- 
plies and the IP addresses of those servers. Figure 24.5 shows the message format. As 
the figure shows, each message begins with a fixed header. The header contains a 
unique IDENT1F1CAT1ON field that the client uses to match responses to queries, and a 
PARAMETER field that specifies the operation requested and a response code. Figure 
24.6 gives the interpretation of bits in the PARAMETER field. 

The fields labeled NUMBER OF each give a count of entries in the corresponding 
sections that occur later in the message. For example, the field labeled NUMBER OF 
QUESTIONS gives the count of entries that appear in the QUESTION SECTION of the 
message. 

The QUESTION SECTION contains queries for which answers are desired. The 
client fills in only the question section; the server returns the questions and answers in 
its response. Each question consists of a QUERY DOMAIN NAME followed by QUERY 
TYPE and QUERY CLASS fields, as Figure 24.7 shows. 
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0 16 3: 

QUESTION SECTION 
... 

IDENTIFICATION 

NUMBER OF AUTHORITY 

ANSWER SECTION 
. . . 

AUTHORITY SECTION 
... 

PARAMETER 

NUMBER OF ADDITIONAL 

I ADDITIONAL INFORMATION SECTION 

Figure 24.5 Domain name server message format. The question, answer, au- 
thority, and additional information sections are variable length. 

Bit of PARAMETER field Meaning 
Operation: 

0 Query 
1 Response 

Query Type: 
0 Standard 
1 Inverse 
2 Completion 1 (now obsolete) 
3 Completion 2 (now obsolete) 

Set if answer authoritative 
Set if message truncated 
Set if recursion desired 
Set if recursion available 
Reserved 
Response Type: 

0 No error 
1 Format error in query 
2 Server failure 
3 Name does not exist 

Figure 24.6 The meaning of bits of the PARAMETER field in a domain name 
server message. Bits are numbered left to right starting at 0. 
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QUERY DOMAIN NAME 
... 

QUERY TYPE I QUERY CLASS 

Figure 24.7 The format of entries in the QUESTION SECTION of a domain 
name server message. The domain name is variable length. 
Clients fill in the questions; servers return them along with 
answers. 

Although the QUERY DOMAIN NAME field has variable length, we will see in the next 
section that the internal representation of domain names makes it possible for the re- 
ceiver to know the exact length. The QUERY TYPE encodes the type of the question 
(e.g., whether the question refers to a machine name or a mail address). The QUERY 
CLASS field allows domain names to be used for arbitrary objects because official Inter- 
net names are only one possible class. It should be noted that, although the diagram in 
Figure 24.5 follows our convention of showing formats in 32-bit multiples, the QUERY 
DOMAIN NAME field may contain an arbitrary number of octets. No padding is used. 
Therefore, messages to or from domain name servers may contain an odd number of oc- 
tets. 

In a domain name server message, each of the ANSWER SECTION, AUTHORITY 
SECTION, and ADDITIONAL INFORMATION SECTION consists of a set of resource 
records that describe domain names and mappings. Each resource record describes one 
name. Figure 24.8 shows the format. 

I RESOURCE DOMAIN NAME I 
TYPE I CLASS 

TIME TO LIVE 

RESOURCE DATA LENGTH 

I RESOURCE DATA I 
Figure 24.8 The format of resource records used in later sections of messages 

returned by domain name servers. 
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The RESOURCE DOMAIN NAME field contains the domain name to which this 
resource record refers. It may be an arbitrary length. The TYPE field specifies the type 
of the data included in the resource record; the CLASS field specifies the data's class. 
The TIME TO LIVE field contains a 32-bit integer that specifies the number of seconds 
information in this resource record can be cached. It is used by clients who have re- 
quested a name binding and may want to cache the results. The last two fields contain 
the results of the binding, with the RESOURCE DATA LENGTH field specifying the 
count of octets in the RESOURCE DATA field. 

24.1 5 Compressed Name Format 

When represented in a message, domain names are stored as a sequence of labels. 
Each label begins with an octet that specifies its length. Thus, the receiver reconstructs 
a domain name by repeatedly reading a 1-octet length, n, and then reading a label n oc- 
tets long. A length octet containing zero marks the end of the name. 

Domain name servers often return multiple answers to a query and, in many cases, 
suffixes of the domain overlap. To conserve space in the reply packet, the name servers 
compress names by storing only one copy of each domain name. When extracting a 
domain name from a message, the client software must check each segment of the name 
to see whether it consists of a literal string (in the format of a 1-octet count followed by 
the characters that make up the name) or a pointer to a literal string. When it en- 
counters a pointer, the client must follow the pointer to a new place in the message to 
find the remainder of the name. 

Pointers always occur at the beginning of segments and are encoded in the count 
byte. If the top two bits of the 8-bit segment count field are Is, the client must take the 
next 14 bits as an integer pointer. If the top two bits are zero, the next 6 bits specify 
the number of characters in the label that follow the count octet. 

24.1 6 Abbreviation Of Domain Names 

The telephone number hierarchy illustrates another useful feature of local resolu- 
tion, name abbreviation. Abbreviation provides a method of shortening names when 
the resolving process can supply part of the name automatically. Normally, a subscriber 
omits the area code when dialing a local telephone number. The resulting digits form 
an abbreviated name assumed to lie within the same area code as the subscriber's 
phone. Abbreviation also works well for machine names. Given a name like xyz, the 
resolving process can assume it lies in the same local authority as the machine on which 
it is being resolved. Thus, the resolver can supply missing parts of the name automati- 
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cally. For example, within the Computer Science Department at Purdue, the abbreviat- 
ed name 

is equivalent to the full domain name 

xinu. cs . purdue . edu 

Most client software implements abbreviations with a domain suffix list. The local net- 
work manager configures a list of possible suffixes to be appended to names during 
lookup. When a resolver encounters a name, it steps through the list, appending each 
suffix and trying to look up the resulting name. For example, the suffix list for the 
Computer Science Department at Purdue includes: 

. cs . purdue . edu 

. cc . purdue . edu 

. purdue . edu 
null 

Thus, local resolvers first append cs.purdue.edu onto the name xinu. If that lookup 
fails, they append cc.purdue.edu onto the name and look that up. The last suffix in 
the example list is the null suing, meaning that if all other lookups fail, the resolver will 
attempt to look up the name with no suffix. Managers can use the suffix list to make 
abbreviation convenient or to restrict application programs to local names. 

We said that the client takes responsibility for the expansion of such abbreviations, 
but it should be emphasized that such abbreviations are not part of the domain name 
system itself. The domain system only allows lookup of a fully specified domain name. 
As a consequence, programs that depend on abbreviations may not work correctly out- 
side the environment in whlch they were built. We can summarize: 

The domain name system only maps full domain names into ad- 
dresses; abbreviations are not part of the domain name system itselj 
but are introduced by client sofhvare to make local names convenient 
for users. 

24.1 7 Inverse Mappings 

We said that the domain name system can provide mappings other than machine 
name to 1P address. Inverse queries allow the client to ask a server to map "back- 
wards" by taking an answer and generating the question that would produce that 
answer. Of course, not all answers have a unique question. Even when they do, a 
server may not be able to provide it. Although inverse queries have been part of the 
domain system since it was first specified, they are generally not used because there is 
often no way to find the server that can resolve the query without searching the entire 
set of servers. 
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24.18 Pointer Queries 

One form of inverse mapping is so obviously needed that the domain system sup- 
ports a special domain and a special form of question called a pointer query to answer 
it. In a pointer query, the question presented to a domain name server specifies an IP 
address encoded as a printable string in the form of a domain name (i.e., a textual 
representation of digits separated by periods). A pointer query requests the name server 
to return the correct domain name for the machine with the specified IP address. 
Pointer queries are especially useful for diskless machines because they allow the sys- 
tem to obtain a high-level name given only an IP address. (We have already seen in 
Chapter 6 how a diskless machine can obtain its IP address.) 

Pointer queries are not difficult to generate. If we think of an IP address written in 
dotted-decimal form, it has the following format: 

To form a pointer query, the client rearranges the dotted decimal representation of the 
address into a string of the form: 

a'a'd. ccc . bbb . aaa . in-addr . arpa 

The new form is a name in the special in-addr. arpa domain?. Because the local name 
server may not be the authority for either the arpa domain or the in-addr. arpa domain, 
it may need to contact other name servers to complete the resolution. To make the 
resolution of pointer queries efficient, the Internet root domain servers maintain a data- 
base of valid IP addresses along with information about domain name servers that can 
resolve each address. 

24.19 Object Types And Resource Record Contents 

We have mentioned that the domain name system can be used for translating a 
domain name to a mail exchanger address as well as for translating a host name to an IP 
address. The domain system is quite general in that it can be used for arbitrary 
hierarchical names. For example, one might decide to store the names of available 
computational services along with a mapping from each name to the telephone number 
to call to find out about the corresponding service. Or one might store names of proto- 
col products along with a mapping to the names and addresses of vendors that offer 
such products. 

Recall that the system accommodates a variety of mappings by including a type in 
each resource record. When sending a request, a client must specify the type in its 
query*; servers specify the data type in all resource records they return. The type deter- 
mines the contents of the resource record according to the table in Figure 24.9 

tThe octets of the IF' address must be reversed when forming a domain name because IF' addresses have 
the most significant octets first while domain names have the least-significant octets first. 

$Queries can specify a few additional types (e.g., there is a query type that requests all resource records). 
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TY pe 
A 
CNAME 
HlNFO 
MlNFO 
MX 

NS 
PTR 
SOA 

TXT 

Meaning 
Host Address 
Canonical Name 
CPU & 0s 
Mailbox info 
Mail Exchanger 

Name Sewer 
Pointer 
Start of Authority 

Arbitrary text 

Contents 
32-bit IP address 
Canonical domain name for an alias 
Name of CPU and operating system 
Information about a mailbox or mail list 
16-bit preference and name of host that 

acts as mail exchanger for the domain 
Name of authoritative server for domain 
Domain name (like a symbolic link) 
Multiple fields that specify which 

parts of the naming hierarchy 
a server implements 

Uninterpreted string of ASCII text 

Figure 24.9 Domain name system resource record types. 

Most data is of type A, meaning that it consists of the name of a host attached to 
the Internet along with the host's IP address. The second most useful domain type, MX, 
is assigned to names used for electronic mail exchangers. It allows a site to speclfy 
multiple hosts that are each capable of accepting mail. When sending electronic mail, 
the user specifies an electronic mail address in the form user@domain-part. The mail 
system uses the domain name system to resolve domain-part with query type MX. The 
domain system returns a set of resource records that each contain a preference field and 
a host's domain name. The mail system steps through the set from highest preference 
to lowest (lower numbers mean higher preference). For each MX resource record, the 
mailer extracts the domain name and uses a type A query to resolve that name to an IP 
address. It then tries to contact the host and deliver mail. If the host is unavailable, the 
mailer will continue trying other hosts on the list. 

To make lookup efficient, a server always returns additional bindings that it knows 
in the ADDITIONAL INFORMATION SECTION of a response. In the case of M X  
records, a domain server can use the ADDITIONAL INFORMATION SECTION to return 
type A resource records for domain names reported in the ANSWER SECTION. Doing 
so substantially reduces the number of queries a mailer sends to its domain server. 

24.20 Obtaining Authority For A Subdomain 

Before an institution is granted authority for an official second-level domain, it 
must agree to operate a domain name server that meets Internet standards. Of course, a 
domain name server must obey the protocol standards that specify message formats and 
the rules for responding to requests. The server must also know the addresses of 
servers that handle each subdomain (if any exist) as well as the address of at least one 
root server. 
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In practice, the domain system is much more complex than we have outlined. In 
most cases, a single physical server can handle more than one part of the naming hierar- 
chy. For example, a single name server at Purdue University handles both the second- 
level domain purdue. edu as well as the geographic domain laf. in. us. A subtree of 
names managed by a given name server fornls a zone of authority. Another practical 
complication arises because servers must be able to handle many requests, even though 
some requests take a long time to resolve. Usually, servers support concurrent activity, 
allowing work to proceed on later requests while earlier ones are being processed. Han- 
dling requests concurrently is especially important when the server receives a recursive 
request that forces it to send the request on to another server for resolution. 

Server implementation is also complicated because the Internet authority requires 
that the information in every domain name server be replicated. Information must ap- 
pear in at least two servers that do not operate on the same computer. In practice, the 
requirements are quite stringent: the servers must have no single common point of 
failure. Avoiding common points of failure means that the two name servers cannot 
both attach to the same network; they cannot even obtain electrical power from the 
same source. Thus, to meet the requirements, a site must find at least one other site that 
agrees to operate a backup name server. Of course, at any point in the tree of servers, a 
server must know how to locate both the primary and backup name servers for sub- 
domains, and it must direct queries to a backup name server if the primary server is 
unavailable. 

24.21 Summary 

Hierarchical naming systems allow delegation of authority for names, making it 
possible to accommodate an arbitrarily large set of names without overwhelming a cen- 
tral site with administrative duties. Although name resolution is separate from delega- _-- 
tion of authority, it is possible to create hierarchical na&=Ystems in which resoiution 
is an efficient process that starts at the local server even tiough delegation of authority k 
aliafs flows from the top of the hierarchy downward. 

We examined the Internet domain name system (DNS) and saw that it offers a 
hierarchical naming scheme. DNS uses distributed lookup in which domain name 
servers map each domain name to an IP address or mail exchanger address. Clients be- 
gin by trying to resolve names locally. When the local server cannot resolve the name, 
the client must choose to work through the tree of name servers iteratively or request 
the local name server to do it recursively. Finally, we saw that the domain name sys- 
tem supports a variety of bindings including bindings from IP addresses to high-level 
names. 
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FOR FURTHER STUDY 

Mockapetris [RFC 10341 discusses Internet domain naming in general, giving the 
overall philosophy, while Mockapetris [RFC 10351 provides a protocol standard for the 
domain name system. Mockapetris [RFC 11011 discusses using the domain name sys- 
tem to encode network names and proposes extensions useful for other mappings. Pos- 
tel and Reynolds [RFC 9201 states the requirements that an Internet domain name server 
must meet. Stahl [RFC 10321 gives administrative guidelines for establishing a domain, 
and Lottor [RFC 10331 provides guidelines for operating a domain name server. East- 
lake P C  25351 presents security extensions. Partridge W C  9741 relates domain 
naming to electronic mail addressing. Finally, Lottor [RFC 12961 provides an interest- 
ing summary of Internet growth obtained by walking the domain name tree. 

EXERCISES 

Machine names should not be bound into the operating system at compile time. Explain 
why. 
Would you prefer to use a machine that obtained its name from a remote file or from a 
name server? Why? 
Why should each name server know the IF' address of its parent instead of the domain 
name of its parent? 
Devise a naming scheme that tolerates changes to the naming hierarchy. As an example, 
consider two large companies that each have an independent naming hierarchy, and s u p  
pose the companies merge. Can you arrange to have all previous names still work 
correctly? 
Read the standard and find out how the domain name system uses SOA records. 

The Internet domain name system can also accommodate mailbox names. Find out how. 
The standard suggests that when a program needs to find the domain name associated 
with an IF' address, it should send an inverse query to the local server first and use 
domain in-addr. arpa only if that fails. Why? 
How would you accommodate abbreviations in a domain naming scheme? As an exam- 
ple, show two sites that are both registered under .edu and a top level server. Explain 
how each site would treat each type of abbreviation. 
Obtain the official description of the domain name system and build a client program. 
Look up the name rnerlin.cs.purdue.edu. 

Extend the exercise above to include a pointer query. Try looking up the domain name 
for address 128.10.2.3. 
Find a copy of the program nslookup, and use it to look up the names in the two previ- 
ous exercises. 
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24.12 If we extended the domain name syntax to include a dot after the toplevel domain, 
names and abbreviations would be unambiguous. What are the advantages and disad- 
vantages of the extension? 

24.13 Read the RFCs on the domain name system. What are the maximum and minimum pos- 
sible values a DNS server can store in the TIME-TO-LNE field of a resource record? 

24.14 Should the domain name system permit partial match queries (i.e. a wildcard as part of a 
name)? Why or why not? 

24.15 The Computer Science Department at Purdue University chose to place the following 
type A resource record entry in its domain name server: 

Explain what will happen if a remote site tries to ping a machine with domain name 
localhost.cs.purdue.edu. 





Applications: Remote Login 
(TELNET, Rlogin) 

25.1 Introduction 

This chapter and the next five continue our exploration of internetworking by exa- 
\ mining high-level internet services and the protocols that support them. These services 

form an integral part of TCP/IP. They determine how users perceive an internet and 
demonstrate the power of the technology. 

We will learn that high-level services provide increased communication functional- 
ity, and allow users and programs to interact with automated services on remote 
machines and with remote users. We will see that high-level protocols are implemented 
with application programs, and will learn how they depend on the network level ser- 
vices described in previous chapters. This chapter begins by examining remote login. 

25.2 Remote Interactive Computing 

We have already seen how the client-server model can provide specific computa- 
tional services like a time-of-day service to multiple machines. Reliable stream proto- 
cols like TCP make possible interactive use of remote machines as well. For example, 
imagine building a server that provides a remote text editing service. To implement an 
editing service, we need a server that accepts requests to edit a file and a client to make 
such requests. To invoke the remote editor service, a user executes the client program. 
The client establishes a TCP connection to the server, and then begins sending keys- 
trokes to the server and reading output that the server sends back. 
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How can our imagined remote interactive editing service be generalized? The 
problem with using one server for each computational service is that machines quickly 
become swamped with server processes. We can eliminate most specialized servers and 
provide more generality by allowing the user to establish a login session on the remote 
machine and then execute commands. With a remote login facility, users have access to 
all the commands available on the remote system, and system designers need not pro- 
vide specialized servers. 

Of course, providing remote login may not be simple. Computer systems that are 
designed without considering networking expect login sessions only from a directly 
connected keyboard and display. On such a computer, adding a remote login server re- 
quires modifying the machine's operating system. Building interactive client software 
may also be difficult. Consider, for example, a system that assigns special meaning to 
some keystrokes. If the local system interprets Control< to mean "abort the currently 
executing command process," it may be impossible to pass Control< to the remote 
machine. If the client does pass Control-C to the remote site, it may be impossible to 
abort the local client process. 

Despite the technical difficulties, system programmers have managed to build re- 
mote login server software for most operating systems and to construct application pro- 
grams that act as clients. Often, the client software ovemdes the local interpretation of 
all keys except one, allowing a user to interact with the remote machine exactly as one 
would from a locally connected terminal. The single key exception provides a way for 
a user to escape to the local environment and control the client (e.g., to abort the client). 
In addition, some remote login protocols recognize a set of trusted hosts, permitting re- 
mote login from such hosts without verifying passwords, and others achieve security by 
encrypting all transmissions. 

25.3 TELNET Protocol 

The TCPlIP protocol suite includes a simple remote terminal protocol called TEL- 
NET that allows a user to log into a computer across an internet. TELNET establishes a 
TCP connection, and then passes keystrokes from the user's keyboard directly to the re- 
mote computer as if they had been typed on a keyboard attached to the remote machine. 
TELNET also carries output from the remote machine back to the user's screen. The 
service is called transparent because it gives the appearance that the user's keyboard 
and display attach directly to the remote machine. 

Although TELNET is not as sophisticated as some remote terminal protocols, it is 
widely available. Usually, TELNET client software allows the user to spec* a remote 
machine either by giving its domain name or IP address. Because it accepts IP ad- 
dresses, TELNET can be used with hosts even if a name-to-address binding cannot be 
established (e.g., when domain naming software is being debugged). 

TELNET offers three basic services. First, it defines a network virtual tenninal 
that provides a standard interface to remote systems. Client programs do not have to 
understand the details of all possible remote systems; they are built to use the standard 
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interface. Second, TELNET includes a mechanism that allows the client and server to 
negotiate options, and it provides a set of standard options (e.g., one of the options con- 
trols whether data passed across the connection uses the standard 7-bit ASCII character 
set or an 8-bit character set). Finally, TELNET treats both ends of the connection sym- 
metrically. In particular, TELNET does not force client input to come from a keyboard, 
nor does it force the client to display output on a screen. Thus, TELNET allows an ar- 
bitrary program to become a client. Furthermore, either end can negotiate options. 

Figure 25.1 illustrates how application programs implement a TELNET client and 
server. 

E L N E T  client s e h  client reads 
from terminal \ to server 

server receives 
from client 

TCPAP 
internet 

- server sends to 
pseudo terminal 

Figure 25.1 The path of data in a TELNET remote terminal session as it trav- 
els from the user's keyboard to the remote operating system. 
Adding a TELNET server to a timesharing system usually re- 
quires modifying the operating system. 

As the figure shows, when a user invokes TELNET, an application program on the 
user's machine becomes the client. The client establishes a TCP connection to the 
server over which they will communicate. Once the connection has been established, 
the client accepts keystrokes from the user's keyboard and sends them to the server, 
while it concurrently accepts characters that the server sends back and displays them on 
the user's screen. The server must accept a TCP connection from the client, and then 
relay data between the TCP connection and the local operating system. 

In practice, the server is more complex than the figure shows because it must han- 
dle multiple, concurrent connections. Usually, a master server process waits for new 
connections and creates a new slave to handle each connection. Thus, the 'TELNET 
server', shown in Figure 25.1, represents the slave that handles one particular connec- 
tion. The figure does not show the master server that listens for new requests, nor does 
it show the slaves handling other connections. 



488 Applications: Remote Login (TELNET, Rlogin) Chap. 25 

We use the term pseudo terrninalt to describe the operating system entry point that 
allows a running program like the TELNET server to transfer characters to the operating 
system as if they came from a keyboard. It is impossible to build a TELNET server un- 
less the operating system supplies such a facility. If the system supports a pseudo ter- 
minal abstraction, the TELNET server can be implemented with application programs. 
Each slave server connects a TCP stream from one client to a particular pseudo termi- 
nal. 

Arranging for the TELNET server to be an application level program has advan- 
tages and disadvantages. The most obvious advantage is that it makes modification and 
control of the server easier than if the code were embedded in the operating system. 
The obvious disadvantage is inefficiency. Each keystroke travels from the user's key- 
board through the operating system to the client program, from the client program back 
through the operating system and across the internet to the server machine. After reach- 
ing the destination machine, the data must travel up through the server's operating sys- 
tem to the server application program, and from the server application program back 
into the server's operating system at a pseudo terminal entry point. Finally, the remote 
operating system delivers the character to the application program the user is running. 
Meanwhile, output (including remote character echo if that option has been selected) 
travels back from the server to the client over the same path. 

Readers who understand operating systems will appreciate that for the implementa- 
tion shown in Figure 25.1, every keystroke requires computers to switch process context 
several times. In most systems, an additional context switch is required because the 
operating system on the server's machine must pass characters from the pseudo terminal 
back to another application program (e.g., a command interpreter). Although context 
switching is expensive, the scheme is practical because users do not type at high speed. 

25.4 Accommodating Heterogeneity 

To make TELNET interoperate between as many systems as possible, it must ac- 
commodate the details of heterogeneous computers and operating systems. For exam- 
ple, some systems require lines of text to be terminated by the ASCII carriage control 
character (CR). Others require the ASCII linefeed (LF) character. Still others require 
the two-character sequence of CR-LF. In addition, most interactive systems provide a 
way for a user to enter a key that interrupts a running program. However, the specific 
keystroke used to interrupt a program varies from system to system (e.g., some systems 
use Control<, while others use ESCAPE). 

To accommodate heterogeneity, TELNET defines how data and command se- 
quences are sent across the Internet. The definition is known as the network virtual ter- 
minal (NVT). As Figure 25.2 illustrates, the client software translates keystrokes and 
command sequences from the user's terminal into NVT format and sends them to the 
server. Server software translates incoming data and commands from NVT format into 
the format the remote system requires. For data returning, the remote server translates 
from the remote machine's format to NVT, and the local client translates from NVT to 
the local machine's format. 

tUNM calls the system entry point a pseudo fry because character-oriented devices are called ttys. 
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Client System format used NVT format used Server System format used 

user's 
keyboard 
& display 

Figure 25.2 Use of the Network Virtual Terminal (NVT) format by TELNET. 

The definition of NVT format is fairly straightforward. All communication in- 
volves 8-bit bytes. At startup, NVT uses the standard 7-bit USASCII representation for 
data and reserves bytes with the high order bit set for command sequences. The US- 
ASCII character set includes 95 characters that have "printable" graphics (e.g., letters, 
digits, and punctuation marks) as well as 33 "control" codes. All printable characters 
are assigned the same meaning as in the standard USASCII character set. The NVT 
standard defines interpretations for control characters as shown in Figure 25.3t. 

/ ' I  
Client 

ASCII 
Control Code 

NUL 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 

other control 

TCP connection across internet 

Decimal 
Value 

No operation (has no effect on output) 
Sound audibleJvisibIe signal (no motion) 
Move left one character position 
Move right to the next horizontal tab stop 
Move down (vertically) to the next line 
Move down to the next vertical tab stop 
Move to the top of the next page 
Move to the left margin on the current line 
No operation (has no effect on output) 

Figure 253  The TELNET NVT interpretation of USASCII control characters. 
TELNET does not specify the locations of tab stops. 

In addition to the control character interpretation in Figure 25.3, NVT defines the 
standard line termination to be a two-character sequence CR-LF. When a user presses 
the key that corresponds to end-of-line on the local terminal (e.g., ENTER or RETURN), 
the TELNET client must map it into CR-LF for transmission. The TELNET server 
translates CR-LF into the appropriate end-of-line character sequence for the remote 
machine. 

tThe NVT interpretation of control characters follows the usual ASCII interpretation. 
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25.5 Passing Commands That Control The Remote Side 

We said that most systems provide a mechanism that allows users to terminate a 
running program. Usually, the local operating system binds such mechanisms to a par- 
ticular key or keystroke sequence. For example, unless the user specifies otherwise, 
many UNIX systems reserve the character generated by CONTROL-C as the intermpt 
key. Depressing CONTROL-C causes UNIX to terminate the executing program; the 
program does not receive CONTROL-C as input. The system may reserve other charac- 
ters or character sequences for other control functions. 

TELNET NVT accommodates control functions by defining how they are passed 
from the client to the server. Conceptually, we think of NVT as accepting input from a 
keyboard that can generate more than 128 possible characters. We assume the user's 
keyboard has virtual (imaginary) keys that correspond to the functions typically used to 
control processing. For example, NVT defines a conceptual "intermpt" key that re- 
quests program termination. Figure 25.4 lists the control functions that NVT allows. 

Signal 
I P 
A0 
A n  
EC 
EL 
SYNCH 

BRK 

Meaning 
Interrupt Process (terminate running program) 
Abort Output (discard any buffered output) 
Are You There (test if server is responding) 
Erase Character (delete the previous character) 
Erase Line (delete the entire current line) 
Synchronize (clear data path until TCP urgent 

data point, but do interpret commands) 
Break (break key or attention signal) 

Figure 25.4 The control functions TELNET NVT recognizes. Conceptually, 
the client receives these from a user in addition to normal data, 
and passes them to the server's system where they must be inter- 
preted. 

In practice, most keyboards do not provide extra keys for commands. Instead, in- 
dividual operating systems or command interpreters have a variety of ways to generate 
them. We already mentioned the most common technique: binding an individual ASCII 
character to a control function so when the user presses the key, the operating system 
takes the appropriate action instead of accepting the character as input. The NVT 
designers chose to keep commands separate from the normal ASCII character set for 
two reasons. First, defining the control functions separately means TELNET has greater 
flexibility. It can transfer all possible ASCII character sequences between client and 
server as well as all possible control functions. Second, by separating signals from nor- 
mal data, NVT allows the client to specify signals unambiguously - there is never con- 
fusion about whether an input character should be treated as data or as a control func- 
tion. 



Sec. 25.5 Passing Commands That Control The Remote Side 49 1 

To pass control functions across the TCP connection, TELNET encodes them us- 
ing an escape sequence. An escape sequence uses a reserved octet to indicate that a 
control code octet follows. In TELNET, the reserved octet that starts an escape se- 
quence is known as the interpret as command (IAC) octet. Figure 25.5 lists the possible 
commands and the decimal encoding used for each. 

Decimal 
Command Encoding 
IAC 255 

DON'T 
DO 
WON'T 
WILL 
SB 
GA 
EL 
EC 
AYT 
A0 
IP 
BRK 
DMARK 

NOP 241 
SE 240 
EOR 239 

Meaning 
Interpret next octet as command (when the IAC 

octet appears as data, the sender doubles it 
and sends the 2octet sequence IAC-IAC) 

Denial of request to perform specified option 
Approval to allow specified option 
Refusal to perform specified option 
Agreement to perform specified option 
Start of option subnegotiation 
The "go ahead" signal 
The "erase line" signal 
The "erase character" signal 
The "are you there" signal 
The "abort output" signal 
The "interrupt process" signal 
The "break" signal 
The data stream portion of a SYNCH (always 

accompanied by TCP Urgent notification) 
No operation 
End of option subnegotiation 
End of record 

F i r e  25.5 TELNET commands and encoding for each. The codes only 
have meaning if preceded by an IAC character. When IAC oc- 
curs in the data. it is sent twice. 

As the figure shows, the signals generated by conceptual keys on an NVT key- 
board each have a corresponding command. For example, to request that the server in- 
terrupt the executing program, the client must send the 2-octet sequence IAC IP (255 
followed by 244). Additional commands allow the client and server to negotiate which 
options they will use and to synchronize communication. 
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25.6 Forcing The Server To Read A Control Function 

Sending control functions along with normal data is not always sufficient to 
guarantee the desired results. To see why, consider the situation under which a user 
might send the interrupt process control function to the server. Usually, such control is 
only needed when the program executing on the remote machine is misbehaving and the 
user wants the server to terminate the program. For example, the program might be ex- 
ecuting an endless loop without reading input or generating output. Unfortunately, if 
the application at the server's site stops reading input, operating system buffers will 
eventually fill and the server will be unable to write more data to the pseudo terminal. 
When this happens, the server must stop reading data from the TCP connection, causing 
its buffers to fill. Eventually, TCP on the server machine will begin advertising a zero 
window size, preventing data from flowing across the connection. 

If the user generates an interrupt control function when buffers are filled, the con- 
trol function will never reach the server. That is, the client can form the command se- 
quence IAC IP and write it to the TCP connection, but because TCP has stopped send- 
ing to the server's machine, the server will not read the control sequence. The point is: 

TELNET cannot rely on the conventional data stream alone to carry 
control sequences between client and server, because a misbehaving 
application that needs to be controlled might inadvertently block the 
data stream. 

To solve the problem, TELNET uses an out of band signal. TCP implements out 
of band signaling with the urgent data mechanism. Whenever it places a control func- 
tion in the data stream, TELNET also sends a SYNCH command. TELNET then ap- 
pends a reserved octet called the data mark, and causes TCP to signal the server by 
sending a segment with the URGENT DATA bit set. Segments carrying urgent data 
bypass flow control and reach the server immediately. In response to an urgent signal, 
the server reads and discards all data until it finds the data mark. The server returns to 
normal processing when it encounters the data mark. 

25.7 TELNET Options 

Our simple description of TELNET omits one of the most complex aspects: op- 
tions. In TELNET, options are negotiable, making it possible for the client and server 
to reconfigure their connection. For example, we said that usually the data stream 
passes 7-bit data and uses octets with the eighth bit set to pass control information like 
the Interrupt Process command. However, TELNET also provides an option that al- 
lows the client and server to pass 8-bit data (when passing 8-bit data, the reserved octet 
LAC must still be doubled if it appears in the data). The client and server must nego- 
tiate, and both must agree to pass 8-bit data before such transfers are possible. 
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The range of TELNET options is wide: some extend the capabilities in major ways 
while others deal with minor details. For example, the original protocol was designed 
for a half-duplex environment where it was necessary to tell the other end to "go 
ahead" before it would send more data. One of the options controls whether TELNET 
operates in half- or full-duplex mode. Another option allows the server on a remote 
machine to determine the user's terminal type. The terminal type is important for 
software that generates cursor positioning sequences (e.g., a full screen editor executing 
on a remote machine). 

Figure 25.6 lists several of the most commonly implemented TELNET options. 

Name 
Transmit Binary 
Echo 
Suppress-GA 

Status 

Timing-Mark 

Terminal-Type 

End-of-Record 
Linemode 

Code 
0 
1 
3 

RFC 
856 
857 
858 

Meaning 
Change transmission to &bit binary 
Allow one side to echo data it receives 
Suppress (no longer send) Go-ahead 

signal after data 
Request for status of a TELNET 

option from remote site 
Request timing mark be inserted 

in return stream to synchronize two 
ends of a connection 

Exchange information about the make 
and model of a terminal being used 
(allows programs to tailor output like 
cursor positioning sequences for the 
user's terminal) 

Terminate data sent with EOR code 
Use local editing and send complete 

lines instead of individual characters 

Figure 25.6 Commonly used TELNET options. 

25.8 TELNET Option Negotiation 

The way TELNET negotiates options is interesting. Because it sometimes makes 
sense for the server to initiate a particular option, the protocol is designed to allow ei- 
ther end to make a request. Thus, the protocol is said to be symmetric with respect to 
option processing. The receiving end either responds to a request with a positive accep- 
tance or a rejection. In TELNET terminology, the request is WILL X, meaning will you 
agree to let me use option X; and the response is either DO X or DON'T X, meaning I 
do agree to let you use option X or I don't agree to let you use option X .  The sym- 
metry arises because DO X requests that the receiving party begin using option X, and 
WILL X or WON'T X means I will start using option X or I won't start using it?. 

?To eliminate potential loops that arise when two sides each think the other's acknowledgement is a re- 
quest, the protocol specifies that no acknowledgement be given to a request for an option that is already in 
use. 
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Another interesting negotiation concept arises because both ends are required to 
run an unenhanced NVT implementation (i.e., one without any options turned on). If 
one side tries to negotiate an option that the other does not understand, the side receiv- 
ing the request can simply decline. Thus, it is possible to interoperate newer, more so- 
phisticated versions of TELNET clients and servers (i.e., software that understands more 
options) with older, less sophisticated versions. If both the client and server understand 
the new options, they may be able to improve interaction. If not, they will revert to a 
less efficient, but workable style. 

We can summarize: 

TELNET uses a symmetric option negotiation mechanism to allow 
clients and servers to reconfigure the parameters controlling their in- 
teraction. Because all TELNET sofiware understands a basic NVT 
protocol, clients and servers can interoperate even if one understands 
options another does not. 

25.9 Rlogin (BSD UNIX) 

Operating systems derived from BSD UNIX include a remote login service, rlogin, 
that supports trusted hosts. It allows system administrators to choose a set of machines 
over which login names and file access protections are shared and to establish 
equivalences among user logins. Users can control access to their accounts by authoriz- 
ing remote login based on remote host and remote user name. Thus, it is possible for a 
user to have login name X on one machine and Y on another, and still be able to re- 
motely login from one of the machines to the other without typing a password each 
time. 

Having automatic authorization makes remote login facilities useful for general 
purpose programs as well as human interaction. One variant of the rlogin command, 
rsh, invokes a command interpreter on the remote UNIX machine and passes the com- 
mand line arguments to the command interpreter, skipping the login step completely. 
The format of a command invocation using rsh is: 

rsh machine command 

on any of the machines in the Computer Science Department at F'urdue University exe- 
cutes the ps command on machine merlin, with UNIX's standard input and standard 
output connected across the network to the user's keyboard and display. The user sees 
the output as if he or she were logged into machine merlin. Because the user can ar- 
range to have rsh invoke remote commands without prompting for a password, it can be 
used in programs as well as from the keyboard. 
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Because protocols like rlogin understand both the local and remote computing en- 
vironments, they communicate better than general purpose remote login protocols like 
TELNET. For example, rlogin understands the UNIX notions of standard input, stan- 
dard output, and standard error, and uses TCP to connect them to the remote machine. 
Thus, it is possible to type 

and have output from the remote command redirected? into file filename. Rlogin also 
understands terminal control functions like flow control characters (typically Control-S 
and Control-Q). It arranges to stop output immediately without waiting for the delay 
required to send them across the network to the remote host. Finally, rlogin exports 
part of the user's environment to the remote machine, including information like the 
user's terminal type (i.e., the TERM variable). As a result, a remote login session ap- 
pears to behave almost exactly like a local login session. 

25.1 0 Summary 

Much of the rich functionality associated with TCPIIP results from a variety of 
high-level services supplied by application programs. The high-level remote login pro- 
tocols these programs use build on the basic services: unreliable datagram delivery and 
reliable stream transport. The services usually follow the client-server model in which 
servers operate at known protocol ports so clients know how to contact them. 

We reviewed two remote login systems: TELNET, the TCPIIP internet standard, 
and rlogin, a popular protocol used with systems derived from BSD UNIX. TELNET 
provides a basic service. It allows the client to pass commands such as interrupt pro- 
cess as well as data to the server. It also permits a client and server to negotiate many 
options. In contrast to TELNET, rlogin allows system managers and users more flexi- 
bility in establishing the equivalence of accounts on multiple machines, but it is not as 
widely available as TELNET. 

FOR FURTHER STUDY 

Many high-level protocols have been proposed, but only a few are in common use. 
Edge 119791 compares end-to-end protocols with the hop-by-hop approach. Saltzer, 
Reed, and Clark [I9841 argues for having the highest level protocols perform end-to-end 
acknowledgement and error detection. 

Postel [RFC 8541 contains the TELNET remote login protocol specification. It 
was preceded by over three dozen RFCs that discuss TELNET options, weaknesses, ex- 
periments, and proposed changes, including Postel [RFC 7641 that contains an earlier 
standard. Postel and Reynolds [RFC 8551 gives a specification for options and consid- 

tThe "greater than" symbol is the usual UNIX syntax for directing the output of a command into a file. 
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ers subnegotiation. A lengthy list of options can be found in RFCs 856, 857, 858, 859, 
860,861,884,885, 1041, 1091, 1096, 1097, 1184, 1372, 1416, and 1572. The program 
h3270 uses a TELNET-like mechanism to provide access to IBM computers running 
the VMICMS operating system [RFCs 1576, 1646 and 16471; Rekhter [RFC 10411 cov- 
ers the TELNET option that permits communication with IBM 3270 displays. 

EXERCISES 

Experiment with both TELNET and rlogin. What are the noticeable differences? 

Despite the large volume of notes written about TELNET, it can be argued that the pro- 
tocol is still not well-defined. Experiment with TELNET: use it to reach a machine, A, 
and invoke TELNET on A to reach a second machine, B. Does the combination of two 
TELNET connections handle line feed and carriage control characters properly? 

What is a remote procedure call? 

Folklore says that operating systems come and go while protocols last forever. Test this 
axiom by surveying your local computing site to see whether operating systems or com- 
munication protocols have changed more frequently. 

Build TELNET client software. 

Use a TELNET client to connect your keyboard and display to the TCP protocol port for 
echo or chargen on your local system to see what happens. 

Read the TELNET standard and find out how the SYNCH operation works. 

TELNET uses TCP's urgent data mechanism to force the remote operating system to 
respond to control functions quickly. Read the standard to find out which commands the 
remote server honors while scanning the input stream. 

How can the symmetric DODON'T - WILUWON'T option negotiation produce an 
endless loop of responses if the other party always acknowledges a request? 
RFC 854 (the TELNET protocol specification) contains exactly 854 lines of text. Do 
you think there is cosmic significance in this? 



Applications: File Transfer 
And Access (FTP, TFTP, 
NFS) 

26.1 Introduction 

This chapter continues our exploration of application protocols. It examines the 
file access and transfer protocols that are part of the TCPm protocol suite. It describes 
their design and shows an example of a typical user interface. We will learn that the 
most widely used file transfer protocol builds on TCP, covered in Chapter 13, and TEL- 
NET, described in the previous chapter. 

26.2 File Access And Transfer 

Many network systems provide computers with the ability to access files on remote 
machines. Designers have explored a variety of approaches to remote access; each ap- 
proach optimizes for a particular set of goals. For example, some designs use remote 
file access to lower overall cost. In such architectures, a single, centralizedfile server 
provides secondary storage for a set of inexpensive computers that have no local disk 
storage. For example, the diskless machines can be portable, hand-held devices used 
for chores such as inventory. Such machines communicate with a file server over a 
high-speed wireless network. 
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Some designs use remote storage to archive data. In such designs, users have con- 
ventional computers with local storage facilities and operate them as usual. Periodically 
the conventional computers send copies of files (or copies of entire disks) across a net- 
work to an archival facility, where they are stored in case of accidental loss. 

Finally, some designs emphasize the ability to share data across multiple programs, 
multiple users, or multiple sites. For example, an organization might choose to have a 
single on-line database of outstanding orders shared by all groups in the organization. 

26.3 On-line Shared Access 

File sharing comes in two distinct forms: on-line access and whole-file copying. 
Shared on-line access means allowing multiple programs to access a single file con- 
currently. Changes to the file take effect immediately and are available to all programs 
that access the file. Whole-file copying means that whenever a program wants to access 
a file, it obtains a local copy. Copying is often used for read-only data, but if the file 
must be modified, the program makes changes to the local copy and transfers a copy of 
the modified file back to the original site. 

Many users think that on-line data sharing can only be provided by a database sys- 
tem that operates as a server and allows users (clients) to contact it from remote sites. 
However, file sharing is usually more sophisticated and easier to use. For example, a 
file system that provides shared, on-line access for remote users does not necessarily re- 
quire a user to invoke a special client program as a database system does. Instead, the 
operating system provides access to remote, shared files exactly the same way it pro- 
vides access to local files. A user can execute any application program using a remote 
file as input or output. We say that the remote file is integrated with local files, and 
that the entire file system provides transparent access to shared files. 

The advantage of transparent access should be obvious: remote file access occurs 
with no visible changes to application programs. Users can access both local and re- 
mote files, allowing them to perform arbitrary computations on shared data. The disad- 
vantages are less obvious. Users may be surprised by the results. For example, consid- 
er an application program that uses both local and remote files. If the network or the 
remote machine is down, the application program may not work even though the user's 
machine is operating. Even if the remote machine is operating, it may be overloaded or 
the network may be congested, causing the application program to run slowly, or caus- 
ing communication protocols to report timeout conditions that the user does not expect. 
The application program seems unreliable. 

Despite its advantages, implementing integrated, transparent file access can be dif- 
ficult. In a heterogeneous environment, file names available on one computer may be 
impossible to map into the file namespace of another. Similarly, a remote file access 
mechanism must handle notions of ownership, authorization, and access protection, 
which do not transcend computer system boundaries. Finally, because file representa- 
tions and allowed operations vary from machine to machine, it may be difficult or im- 
possible to implement all operations on all files. 
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26.4 Sharing By File Transfer 

The alternative to integrated, transparent on-line access is file transfer. Accessing 
remote data with a transfer mechanism is a two-step process: the user first obtains a lo- 
cal copy of a file and then operates on the copy. Most transfer mechanisms operate out- 
side the local file system (i.e., they are not integrated). A user must invoke a special- 
purpose client program to transfer files. When invoking the client, the user specifies a 
remote computer on which the desired file resides and, possibly, an authorization need- 
ed to obtain access (e.g., an account or password). The client contacts a server on the 
remote machine and requests a copy of the file. Once the transfer is complete, the user 
terminates the client and uses application programs on the local system to read or modi- 
fy the local copy. One advantage of whole-file copying lies in the efficiency of opera- 
tions - once a program has obtained a copy of a remote file, it can manipulate the 
copy efticiently. Thus, many computations run faster with whole-file copying than with 
remote file access. 

As with on-line sharing, whole-file transfer between heterogeneous machines can 
be difficult. The client and server must agree on authorization, notions of file owner- 
ship and access protections, and data formats. The latter is especially important because 
it may make inverse translations impossible. To see why, consider copying between 
two machines, A and B, that use different representations for floating point numbers as 
well as different representations for text files. As most programmers realize, it may be 
impossible to convert from one machine's floating point fomlat to another's without 
losing precision. The same can happen with text files. Suppose system A stores text 
files as variable-length lines and system B pads text lines to a fmed length. Transfer- 
ring a file from A to B and back can add padding to every line, making the final copy 
different from the original. However, automatically removing padding from the ends of 
lines during the transfer back to A will also make the copy different from the original 
for any files that had padding on some lines. 

The exact details of differences in representation and the techniques to handle them 
depend on the computer systems involved. Furthermore, we have seen that not all 
representational differences can be accommodated - information can be lost when data 
must be translated from one representation to another. While it is not essential to learn 
about all possible representational differences, remembering that TCP/IP is designed for 
a heterogeneous environment will help explain some of the features of the TCP/IP fde 
transfer protocols. 

26.5 FTP: The Major TCPnP File Transfer Protocol 

File transfer is among the most frequently used TCP/IP applications, and it ac- 
counts for much network traffic. Standard file transfer protocols existed for the AR- 
PANET before TCP/IP became operational. These early versions of file transfer 
software evolved into a current standard known as the File Transfer Protocol (FTP). 
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26.6 FTP Features 

Given a reliable end-to-end transport protocol like TCP, file transfer might seem 
trivial. However, as the previous sections pointed out, the details of authorization, nam- 
ing, and representation among heterogeneous machines make the protocol complex. In 
addition, FTP offers many facilities beyond the transfer function itself. 

Interactive Access. Although FIT is designed to be used by programs, most im- 
plementations provide an interactive interface that allows humans to easily interact with 
remote servers. For example, a user can ask for a listing of all files in a directory on a 
remote machine. Also, the client usually responds to the input "help" by showing the 
user information about possible commands that can be invoked. 

Format (representation) Specification. FTP allows the client to specify the type 
and format of stored data. For example, the user can specify whether a file contains 
text or binary integers and whether text files use the ASCII or EBCDIC character sets. 

Authentication Control. FTP requires clients to authorize themselves by sending 
a login name and password to the server before requesting file transfers. The server re- 
fuses access to clients that cannot supply a valid login and password. 

26.7 FTP Process Model 

Like other servers, most FIT server implementations allow concurrent access by 
multiple clients. Clients use TCP to connect to a server. As described in Chapter 21, a 
single master server process awaits connections and creates a slave process to handle 
each connection. Unlike most servers, however, the slave process does not perform all 
the necessary computation. Instead, the slave accepts and handles the control connec- 
tion from the client, but uses an additional process or processes to handle a separate 
data transfer connection. The control connection carries commands that tell the server 
which file to transfer. The data transfer connection, which also uses TCP as the tran- 
sport protocol, carries all data transfers. 

Usually, both the client and server create a separate process to handle the data 
transfer. While the exact details of the process architecture depend on the operating 
systems used, Figure 26.1 illustrates the concept: 
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client data 
connection 

Figure 26.1 An FTP client and server with a TCP control connection between 
them and a separate TCP connection between their associated 
data transfer processes. 

As the figure shows, the client control process connects to the server control pro- 
cess using one TCP connection, while the associated data transfer processes use their 
own TCP connection. In general, the control processes and the control connection 
remain alive as long as the user keeps the FTP session active. However, FTP estab- 
lishes a new data transfer connection for each file transfer. In fact, many implementa- 
tions create a new pair of data transfer processes, as well as a new TCP connection, 
whenever the server needs to send information to the client. The idea can be surnmar- 
ized: 

Data transfer connections and the data transfer processes that use 
them can be created dynamically when needed, but the control con- 
nection persists throughout a session. Once the control connection 
disappears, the session is terminated and the software at both ends 
terminates all data transfer processes. 

Of course, client implementations that execute on a computer without operating 
system support for multiple processes may have a less complex structure. Such imple- 
mentations often sacrifice generality by using a single application program to perfom1 
both the data transfer and control functions. However, the protocol requires that such 
clients still use multiple TCP connections, one for control and the other(s) for data 
transfer. 
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26.8 TCP Port Number Assignment 

When a client forms an initial connection to a server, the client uses a random, lo- 
cally assigned, protocol port number, but contacts the server at a well-known port (21). 
As Chapter 21 points out, a server that uses only one protocol port can accept connec- 
tions from many clients because TCP uses both endpoints to identify a connection. The 
question arises, "When the control processes create a new TCP connection for a given 
data transfer, what protocol port numbers do they use?" Obviously, they cannot use the 
same pair of port numbers used in the control connection. Instead, the client obtains an 
unused port on its machine, which will be used for a TCP connection with the data 
transfer process on the server's machine. The data transfer process on the server 
machine uses the well-known port reserved for FTP data transfer (20). To ensure that a 
data transfer process on the server connects to the correct data transfer process on the 
client machine, the server side must not accept connections from an arbitrary process. 
Instead, when it issues the TCP active open request, a server specifies the port that will 
be used on the client machine as well as the local port. 

We can see why the protocol uses two connections - the client control process 
obtains a local port to be used in the file transfer, creates a transfer process on the client 
machine to listen at that port, communicates the port number to the server over the con- 
trol connection, and then waits for the server to establish a TCP connection to the port. 
In general: 

In addition to passing user commands to the server, FTP uses the 
control connection to allow client and server control processes to 
coordinate their use of dynamically assigned TCP protocol ports and 
the creation of data transfer processes that use those ports. 

What format should FTP use for data passing across the control connection? 
Although they could have invented a new specification, the designers of FTP did not. 
Instead, they allow FTP to use the TELNET network virtual terminal protocol described 
in Chapter 25. Unlike the full TELNET protocol, FTP does not allow option negotia- 
tion; it uses only the basic NVT definition. Thus, management of an FTP control con- 
nection is much simpler than management of a standard TELNET connection. Despite 
its limitations, using the TELNET definition instead of inventing a new one helps sim- 
plify FTP considerably. 

26.9 The User's View Of FTP 

Users view FTP as an interactive system. Once invoked, the client performs the 
following operations repeatedly: read a line of input, parse the line to extract a com- 
mand and its arguments, and execute the command with the specified arguments. For 
example, to initiate the version of FTP available under UNIX, the user invokes the fip 
command: 



Sec. 26.9 The User's View Of FI'P 

% ftp 

The local FTP client program begins and issues a prompt to the user. Following 
the prompt, the user can issue commands like help. 

ftp help 
Conmands m y  be abbreviated. Coar~nands are: 

! 

$ 
account 

append 
ascii 
bell 

bi==Y 
bye 
case 
cd 

caup 
close 

cr 
delete 

debug 
dir 
disconnect 
f o m  

get 
glob 
hash 
help 
lcd 
Is 

macdef 
delete 
dir 

wet 
mkdir 
mls 
mode 

mput 
=P 
ntrans 

open 
prompt 

Prow 
sendport 

Put 
pwd 
quit 
quote 
recv 
remotehelp 
rename 
reset 
rmdir 
runique 

send 
status 
struct 
sunique 
tenex 
trace 

type 
user 
verbose 
? 

To obtain more information about a given command the user types help command 
as in the following examples (output is shown in the formatftp produces): 

ftp> help 1s 
1s list contents of remote directory 
ftp> help cdup 

cdup change remote working directory to parent directory 
ftp> help glob 
glob toggle metacharacter expansion of local file names 
ftp> help bell 
bell beep when c-d completed 

To execute a command, the user types the command name: 

ftp> bell 
Bell mode on. 
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26.10 An Example Anonymous FTP Session 

While the access authorization facilities in ITP make it more secure, strict enforce- 
ment prohibits an arbitrary client from accessing any file until they obtain a login and 
password for the computer on which the server operates. To provide access to public 
files, many TCPIIP sites allow anonymous FTP. Anonymous FTP access means a 
client does not need an account or password. Instead, the user specifies login name 
anonymous and password guest. The server allows anonymous logins, but restricts ac- 
cess to only publicly available files?. 

Usually, users execute only a few FTP commands to establish a connection and ob- 
tain a file; few users have ever tried most commands. For example, suppose someone 
has placed an on-line copy of a text in file tcpbook.tar in the subdirectory pub/comer on 
machine jip.cs.purdue.edu. A user logged in at another site as usera could obtain a 
copy of the file by executing the following: 

% ftp ftp.cs.purdue.edu 
Connected to lucan.cs.purdue.edu. 
220 lucan.cs.purdue.edu FTP server (Version wu-2.4.2-VRl6(1) ready. 
Name (ftp.cs.purdue.edu:usera): anonymous 
331 Guest login ok, send e-mail address as password. 
Password: guest 
230 Guest login ok, access restrictions apply. 
ftp> get pub/comer/tcpbook.tar bookfile 
200 PORT cortunand okay. 
150 Opening ASCII mode data connection for tcpbook-tar (9895469 bytes) 
226 Transfer complete. 
9895469 bytes received in 22.76 seconds (4.3e+02 Kbytes/s) 
ftp> close 
221 Goodbye. 

ftp> quit 

In this example, the user specifies machineftp.cs.purdue.edu as an argument to the 
FTP command, so the client automatically opens a connection and prompts for authori- 
zation. The user invokes anonymous FTP by specifying login anonymous and password 
guest* (although our example shows the password that the user types, the ftp program 
does not display it on the user's screen). 

After typing a login and password, the user requests a copy of a file using the get 
command. In the example, the get command is followed by two arguments that specify 
the remote file name and a name for the local copy. The remote file name is 
pub/comer/tcpbook.tar and the local copy will be placed in boo@le. Once the transfer 
completes, the user types close to break the connection with the server, and types quit to 
leave the client. 

tIn many UNIX systems, the server restricts anonymous FTP by changing the file system root to a small, 
restricted directory (e.g., /usr/ftp). 

$In practice, the server emits additional messages that request the user to use an e-mail address instead of 
guest. 
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Intermingled with the commands the user types are infom~ational messages. FTP 
messages always begin with a 3-digit number followed by text. Most come from the 
server; other output comes from the local client. For example, the message that begins 
220 comes from the server and contains the domain name of the machine on which the 
server executes. The statistics that report the number of bytes received and the rate of 
transfer come from the client. In general: 

Control and error messages between the FTP client and server begin 
with a 3-digit number followed by text. The sofrware interprets the 
number; the text is meant for humans. 

The example session also illustrates a feature of FTP described earlier: the creation 
of new TCP connections for data transfer. Notice the PORT command in the output. 
The client PORT command reports that a new TCP port number has been obtained for 
use as a data connection. The client sends the port information to the server over the 
control connection; data transfer processes at both ends use the new port number when 
forming a connection. After the transfer completes, the data transfer processes at each 
end close the connection. 

26.1 1 TFTP 

Although FTP is the most general file transfer protocol in the TCPm suite, it is 
also the most complex and difficult to program. Many applications do not need the full 
functionality FTP offers, nor can they afford the complexity. For example, FTP re- 
quires clients and servers to manage multiple concurrent TCP connections, something 
that may be difficult or impossible on personal computers that do not have sophisticated 
operating systems. 

The TCP/IP suite contains a second file transfer protocol that provides inexpensive, 
unsophisticated service. Known as the Trivial File Transfer Protocol, or (TFTP), it is 
intended for applications that do not need complex interactions between the client and 
server. TFTP restricts operations to simple file transfers and does not provide authenti- 
cation. Because it is more restrictive, TFTP software is much smaller than FTP. 

Small size is important in many applications. For example, manufacturers of disk- 
less devices can encode TFTP in read-only memory (ROM) and use it to obtain an ini- 
tial memory image when the machine is powered on. The program in ROM is called 
the system bootstrapt. The advantage of using TFTP is that it allows bootstrapping 
code to use the same underlying TCPhP protocols that the operating system uses once it 
begins execution. Thus, it is possible for a computer to bootstrap from a server on 
another physical network. 

Unlike FTP, TFTP does not need a reliable stream transport service. It runs on top 
of UDP or any other unreliable packet delivery system, using timeout and retransmis- 
sion to ensure that data arrives. The sending side transmits a file in fixed size (512 
byte) blocks and awaits an acknowledgement for each block before sending the next. 
The receiver acknowledges each block upon receipt. 

TChapter 23 discusses the details of bootstrapping with DHCP. 
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The rules for TlTP are simple. The first packet sent requests a file transfer and es- 
tablishes the interaction between client and server - the packet specifies a file name 
and whether the file will be read (transferred to the client) or written (transferred to the 
server). Blocks of the file are numbered consecutively starting at 1. Each data packet 
contains a header that specifies the number of the block it carries, and each ack- 
nowledgement contains the number of the block being acknowledged. A block of less 
than 512 bytes signals the end of file. It is possible to send an error message either in 
the place of data or an acknowledgement; errors terminate the transfer. 

Figure 26.2 shows the format of the five TlTP packet types. The initial packet 
must use operation codes 1 or 2, specifying either a read request or a write request. 
The initial packet contains the name of the file as well as the access mode the client re- 
quests (read access or write access). 

2octet opcode n octets 1 octet n octets 1 octet 

READ REQ. (1) 

2octet opcode n octets 1 octet n octets 1 octet 

29ctet opcode 2 octets 

ACK (4) BLOCK # 

WRITE REQ. (2) 

Poctet opcode 2 octets up to 51 2 octets 
DATA (3) 

Figure 26.2 The five TFTP message types. Fields are not shown to scale be- 
cause some are variable length; an initial Zoctet operation code 
identifies the message format. 

FILENAME 

FILENAME 0 

2octet opcode 2 octets n octets 1 octet 

Once a read or write request has been made, the server uses the IP address and 
UDP protocol port number of the client to identify subsequent operations. Thus, neither 
data messages (the messages that carry blocks from the file) nor ack messages (the 
messages that acknowledge data blocks) need to specify the file name. The final mes- 
sage type illustrated in Figure 26.2 is used to report errors. Lost messages can be re- 
transmitted after a timeout, but most other errors simply cause termination of the in- 
teraction. 

MODE 0 

BLOCK # 

ERROR (5) 

0 

MODE 

DATA OCTETS ... 

0 

ERROR CODE ERROR MESSAGE 0 
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TFTP retransmission is unusual because it is symmetric. Each side implements a 
timeout and retransmission. If the side sending data times out, it retransmits the last 
data block. If the side responsible for acknowledgements times out, it retransmits the 
last acknowledgement. Having both sides participate in retransmission helps ensure that 
transfer will not fail after a single packet loss. 

While symmetric retransmission guarantees robustness, it can lead to excessive re- 
transmissions. The problem, known as the Sorcerer's Apprentice Bug, arises when an 
acknowledgement for data packet k is delayed, but not lost. The sender retransmits the 
data packet, which the receiver acknowledges. Both acknowledgements eventually ar- 
rive, and each triggers a transmission of data packet k + l .  The receiver will ack- 
nowledge both copies of data packet k+l, and the two acknowledgements will each 
cause the sender to transmit data packet k+2. The Sorcerer's Apprentice Bug can also 
start if the underlying internet duplicates packets. Once started, the cycle continues in- 
definitely with each data packet being transmitted exactly twice. 

Although TFTP contains little except the minimum needed for transfer, it does sup- 
port multiple file types. One interesting aspect of TFTP allows it to be integrated with 
electronic mail?. A client can specify to the server that it will send a file that should be 
treated as mail with the FILENAME field taken to be the name of a mailbox to which 
the server should deliver the message. 

26.12 NFS 

Initially developed by Sun Microsystems Incorporated, the Network File System 
(NFS) provides on-line shared file access that is transparent and integrated; many 
TCP/IP sites use NFS to interco~ect  their computers' file systems. From the user's 
perspective, NFS is almost invisible. A user can execute an arbitrary application pro- 
gram and use arbitrary files for input or output. The file names themselves do not show 
whether the files are local or remote. 

26.1 3 NFS Implementation 

Figure 26.3 illustrates how NFS is embedded in an operating system. When an ap- 
plication program executes, it calls the operating system to open a file, or to store and 
retrieve data in files. The file access mechanism accepts the request and aatomatically 
passes it to either the local file system software or to the NFS client, depending on 
whether the file is on the local disk or on a remote machine. When it receives a re- 
quest, the client software uses the NFS protocol to contact the appropriate server on a 
remote machine and perform the requested operation. When the remote server replies, 
the client software returns the results to the application program. 

tin practice, the use of TFTP as a mail transport is discouraged. Refer to Chapter 27 for details on elec- 
tronic mail. 
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6 Lnternet connection 

disk to NFS server 

Figure 26.3 NFS code in an operating system. When an application program 
requests a file operation, the operating system must pass the re- 
quest to the local file system or to the NFS client software. 

26.14 Remote Procedure Call (RPC) 

Instead of defining the NFS protocol from scratch, the designers chose to build 
three independent pieces: the NFS protocol itself, a general-purpose Remote Procedure 
Call (RPC) mechanism, and a general-purpose external Data Representation (XDR). 
Their intent was to separate the three to make it possible to use W C  and XDR in other 
software, including application programs as well as other protocols. 

From the programmer's point of view, NFS itself provides no new procedures that 
a program can call. Instead, once a manager has configured NFS, programs access re- 
mote files using exactly the same operations as they use for local files. However, both 
RPC and XDR provide mechanisms that programmers can use to build distributed pro- 
grams. For example, a programmer can divide a program into a client side and a server 
side that use RPC as the chief communication mechanism. On the client side, the pro- 
grammer designates some procedures as remote, forcing the compiler to incorporate 
RPC code into those procedures. On the server side, the programmer implements the 
desired procedures and uses other RPC facilities to declare them to be part of a server. 
When the executing client program calls one of the remote procedures, RPC automati- 
cally collects values for arguments, forms a message, sends the message to the remote 
server, awaits a response, and stores returned values in the designated arguments. In 
essence, communication with the remote server occurs automatically as a side-effect of 
a remote procedure call. The RPC mechanism hides all the details of protocols, making 
it possible for programmers who know little about the underlying communication proto- 
cols to write distributed programs. 
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A related tool, XDR, provides a way for programmers to pass data among hetero- 
geneous machines without writing procedures to convert among the hardware data 
representations. For example, not all computers represent 32-bit binary integers in the 
same format. Some store the most significant byte at the highest memory address, 
while others store the least significant byte at the highest address. Thus, if program- 
mers use a network merely to move the bytes of an integer from one machine to another 
without rearranging them, the value of the integer may change. XDR solves the prob- 
lem by defining a machine-independent representation. At one end of a communication 
channel, a program invokes XDR procedures to convert from the local hardware 
representation to the machine-independent representation. Once the data has been 
transferred to another machine, the receiving program invokes XDR routines to convert 
from the machine-independent representation to the machine's local representation. 

The chief advantage of XDR is that it automates much of the data conversion task. 
Programmers do not need to type XDR procedure calls manually. Instead, they provide 
the XDR compiler with the declaration statements from the program for which data 
must be transformed, and the compiler automatically generates a program with the need- 
ed XDR library calls. 

26.1 5 Summary 

Access to data on remote files takes two forms: whole-file copying and shared on- 
line access. The File Transfer Protocol, FTP, is the major file transfer protocol in the 
TCPIIP suite. FTP uses whole-file copying and provides the ability for users to list 
directories on the remote machine as well as transfer files in either direction. The Trivi- 
al File Transfer Protocol, TFTP, provides a small, simple alternative to FTP for applica- 
tions that need only file transfer. Because it is small enough to be contained in ROM, 
TFTP can be used for bootstrapping diskless machines. 

The Network File System (NFS) designed by Sun Microsystems Incorporated pro- 
vides on-line shared file access. It uses UDP for message transport and Sun's Remote 
Procedure Call (RPC) and external Data Representation (XDR) mechanisms. Because 
RPC and XDR are defined separately from NFS, programmers can use them to build 
distributed applications. 

FOR FURTHER STUDY 

Postel [RFC 9591 contains the F W  protocol standard; Horowitz and Lunt [RFC 
22281, Allrnan and Ostermann [RFC 25771, and Housley and Hoffman [RFC 25851 dis- 
cuss security extensions. Over three dozen RFCs comment on FTP, propose modifica- 
tions: or define new versions of the protocol. Among them, Lottor [RFC 9131 describes 
a Simple File Transfer Protocol. DeSchon and Braden [RFC 10681 shows how to use 
FTP third-party transfer for background file transfer. Allman and Ostermann [RFC 
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24281 considers FTP with IPv6 and NATs. The Trivial File Transfer Protocol described 
in this chapter comes from Sollins [RFC 7831; Finlayson [RFC 9061 describes TFTP's 
use in bootstrapping computer systems, and Malkin and Harkin [RFCs 2347 and 23481 
discuss options. 

Sun Microsystems has published three RFCs that define the Network File System 
and related protocols. RFC 1094 contains the standard for NFS, RFC 1057 defines 
RPC, and RFC 1014 specifies XDR. More details about RPC and NFS can be found in 
Volume 3 of this text. 

Why should file transport protocols compute a checksum on the file data they receive, 
even when using a reliable end-to-end stream transfer protocol like TCP? 

Find out whether FTF' computes a checksum for files it transfers. 

What happens in FTF' if the TCP connection being used for data transfer breaks, but the 
control connection does not? 

What is the chief advantage of using separate TCP connections for control and data 
transfer? (Hint: think of abnormal conditions.) 

Outline a method that uses TFI'P to bootstrap a diskless machine. Be careful. Exactly 
what IP addresses does it use at each step? 

Implement a TFTP client. 

Experiment with FI'P or an equivalent protocol to see how fast you can transfer a file 
between two reasonably large systems across a local area network. Try the experiment 
when the network is busy and when it is idle. Explain the result. 

Try FI'P from a machine to itself and then from the machine to another machine on the 
same local area network. Do the data transfer rates surprise you? 
Compare the rates of transfer for FTP and NFS on a local area network. Can you ex- 
plain the difference? 

Examine the RPC definition. Does it handle datagram loss? duplication? delay? corr- 
uption? 

Extend the previous question and consider NFS running over RPC. Will NFS work well 
across the global Internet? Why or why not? 

Under what circumstances is the XDR scheme inefficient? 

Consider translating floating point numbers from an internal form to an external form 
and back to an internal form. What are the tradeoffs in the choice of exponent and 
mantissa sizes in the external form? 

FI'P defaults to using ASCII mode (i.e. text mode) to transfer files. Is the default wise? 
Argue that the ascii mode default can be considered "harmful". 
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(SMTP, POP, /MAP, MIME) 

27.1 Introduction 

This chapter continues our exploration of internetworking by considering electronic 
mail service and the protocols that support it. The chapter describes how a mail system 
is organized, explains alias expansion, and shows how mail system software uses the 
client-server paradigm to transfer each message. 

27.2 Electronic Mail 

An electronic mail (e-mail) facility allows users to send memos across an internet. 
E-mail is one of the most widely used application services. Indeed, some users rely on 
e-mail for normal business activities. 

E-mail is also popular because it offers a fast, convenient method of transferring 
information. E-mail accommodates small notes or large voluminous memos with a sin- 
gle mechanism. It should not surprise you to learn that more users send files with elec- 
tronic mail than with file transfer protocols. 

Mail delivery is a new concept because it differs fundamentally from other uses of 
networks that we have discussed. In all our examples, network protocols send packets 
directly to destinations, using timeout and retransmission for individual segments if no 
acknowledgement returns. In the case of electronic mail, however, the system must 
provide for instances when the remote machine is temporarily unreachable (e.g., be- 
cause a network connection has failed). A sender does not want to wait for the remote 
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machine to respond before continuing work, nor does the user want the transfer to abort 
merely because the destination is temporarily unavailable. 

To handle delayed delivery, mail systems use a technique known as spooling. 
When the user sends a mail message, the system places a copy in its private storage 
(spool?) area along with identification of the sender, recipient, destination machine, and 
time of deposit. The system then initiates the transfer to the remote machine as a back- 
ground activity, allowing the sender to proceed with other computational activities. 
Figure 27.1 illustrates the concept. 

outgoing client TCP connection 
mail spool (background 

user 
inter- 

mail boxes 
. .  . . .  

incoming (to accept 
mail) for incoming mail mail 

Figure 27.1 Conceptual components of an electronic mail system. The user 
invokes a user interface to deposit or retrieve mail; all transfers 
occur in the background. 

The background mail transfer process becomes a client. It first uses the domain 
name system to map the destination machine name to an IP address, and then attempts 
to form a TCP connection to the mail server on the destination machine. If it succeeds, 
the transfer process passes a copy of the message to the remote server, which stores the 
copy in the remote system's spool area. Once the client and server agree that the copy 
has been accepted and stored, the client removes the local copy. If it cannot form a 
TCP connection or if the connection fails, the transfer process records the time delivery 
was attempted and terminates. The background transfer process sweeps through the 
spool area periodically, typically once every 30 minutes, checking for undelivered mail. 
Whenever it finds a message or whenever a user deposits new outgoing mail, the back- 
ground process attempts delivery. If it finds that a mail message cannot be delivered 
after an extended time (e.g., 3 days), the mail software returns the message to the 
sender. 

TA mail spool area is sometimes called a mail queue even though the term is technically inaccurate. 
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27.3 Mailbox Names And Aliases 

There are three important ideas hidden in our simplistic description of mail 
delivery. First, users specify recipients by giving pairs of strings that identify the mail 
destination machine name and a mailbox address on that machine. Second, the names 
used in such specifications are independent of other names assigned to machines. Usu- 
ally, a mailbox address is the same as a user's login id, and a destination machine name 
is the same as a machine's domain name, but that is not necessary. It is possible to as- 
sign a mailbox to a position of employment (e.g., the mailbox identifier deparzment- 
head can refer to whoever currently chairs the department). Also, because the domain 
name system includes a separate query type for mail destinations, it is possible to 
decouple mail destination names from the usual domain names assigned to machines. 
Thus, mail sent to a user at example.com may go to a different machine than a telnet 
connection to the same name. Third, our simplistic diagram fails to account for mail 
processing and mail forwarding, which include mail sent from one user to another on 
the same machine, and mail that arrives on a machine but which should be forwarded to 
another machine. 

27.4 Alias Expansion And Mail Forwarding 

Most systems provide mail forwarding software that includes a mail alias expan- 
sion mechanism. A mail forwarder allows the local site to map identifiers used in mail 
addresses to a set of one or more new mail addresses. Usually, after a user composes a 
message and names a recipient, the mail interface program consults the local aliases to 
replace the recipient with the mapped version before passing the message to the delivery 
system. Recipients for which no mapping has been specified remain unchanged. Simi- 
larly, the underlying mail system uses the mail aliases to map incoming recipient ad- 
dresses. 

Aliases increase mail system functionality and convenience substantially. In 
mathematical ternls, alias mappings can be many-one or one-many. For example, the 
alias system allows a single user to have multiple mail identifiers, including nicknames 
and positions, by mapping a set of identifiers to a single person. The system also al- 
lows a site to associate groups of recipients with a single identifier. Using aliases that 
map an identifier to a list of identifiers makes it possible to establish a mail exploder 
that accepts one incoming message and sends it to a large set of recipients. The set of 
recipients associated with an identifier is called an electronic mailing list. Not all the 
recipients on a list need to be local. Although it is uncommon, it is possible to have a 
mailing list at site, Q, with none of the recipients from the list located at Q. Expanding 
a mail alias into a large set of recipients is a popular technique used widely. Figure 
27.2 illustrates the components of a mail system that supports mail aliases and list ex- 
pansion. 
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Figure 27.2 An extension of the mail system in Figure 27.1 that supports mail 
aliases and forwarding. Both incoming and outgoing mail 
passes through the alias expansion mechanism. 

As Figure 27.2 shows, incoming and outgoing mail passes through the mail for- 
warder that expands aliases. Thus, if the alias database specifies that mail address x 
maps to replacement y, alias expansion will rewrite destination address x, changing it to 
y. The alias expansion program then determines whether y specifies a local or remote 
address, so it knows whether to place the message in the incoming mail queue or outgo- 
ing mail queue. 

Mail alias expansion can be dangerous. Suppose two sites establish conflicting 
aliases. For example, assume site A maps mail address x into mail address y at site B, 
while site B maps mail address y into address x at site A. A mail message sent to ad- 
dress x at site A could bounce forever between the two sites?. Similarly, if the manager 
at site A accidentally maps a user's login name at that site to an address at another site, 
the user will be unable to receive mail. The mail may go to another user or, if the alias 
specifies an illegal address, senders will receive error messages. 

27.5 The Relationship Of Internetworking And Mail 

Commercial services exist that can forward electronic mail among computers 
without using TCPAP and without having the computers connected to the global Inter- 
net. How do such systems differ from the mail system described here? There are two 
crucial differences. First, a TCPAP internet makes possible universal delivery service. 
Second, electronic mail systems built on TCPAP are inherently more reliable than those 

?In practice, most mail forwarders terminate. messages after the number of exchanges reaches a predeter- 
mined threshold. 



Sec. 27.5 The Relationship Of Internetworking And Mail 515 

built from arbitrary networks. The first idea is easy to understand. TCP/IP makes pos- 
sible universal mail delivery because it provides universal interconnection among 
machines. In essence, all machines attached to an internet behave as if attached to a 
single, vendor independent network. With the basic network services in place, devising 
a standard mail exchange protocol becomes easier. 

The second claim, that using TCPm makes mail delivery more reliable than other 
mechanisms, needs explanation. The key idea is that TCP provides end-to-end connec- 
tivity. That is, mail software on the sending machine acts as a client, contacting a 
server on the ultimate destination. Only after the client successfully transfers a mail 
message to the server does it remove the message from the local machine. Thus, direct, 
end-to-end delivery enforces the following principle: 

Mail systems that use end-to-end delivery can guarantee that each 
mail message remains in the sender's machine until it has been suc- 
cessfully copied to the recipient's machine. 

With such systems, the sender can always determine the exact status of a message by 
checking the local mail spool area. 

The alternative form of electronic mail delivery uses the application gateway ap- 
proach discussed in Chapter 20. The message is transferred through a series of mail 
gatewaysj-, sometimes called mail bridges, mail relays, or intermediate mail stops. In 
such systems, the sender's machine does not contact the recipient's machine directly. 
Instead, a complete mail message is sent from the original sender to the first gateway. 
The message is then forwarded to the second gateway, and so on. 

The main disadvantage of using mail gateways is that they introduce unreliability. 
Once it transfers a message to the first intermediate machine, the sender's computer dis- 
cards the local copy. Thus, while the message is in transit, neither the sender nor the 
recipient have a copy. Failures at intermediate machines may result in message loss 
without either the sender or recipient being informed. Message loss can also result if 
the mail gateways route mail incorrectly. Another disadvantage of mail gateways is that 
they introduce delay. A mail gateway can hold messages for minutes, hours, or even 
days if it cannot forward them on to the next machine. Neither the sender nor receiver 
can deternfine where a message has been delayed, why it has not arrived, or how long 
the delay will last. The important point is that the sender and recipient must depend on 
computers over which they may have no control. 

If mail gateways are less reliable than end-to-end delivery, why are they used? 
The chief advantage of mail gateways is interoperability. Mail gateways provide con- 
nections among standard TCP/IP mail systems and other mail systems, as well as 
between TCP/IP internets and networks that do not support Internet protocols. Suppose, 
for example, that company X has a large internal network and that employees use elec- 
tronic mail, but that the network software does not support TCP/IP. Although it may be 
infeasible to make the company's network part of the global Internet, it might be easy 
to place a mail gateway between the company's private network and the Internet, and to 
devise software that accepts mail messages from the local network and forwards them to 
the Internet. 

?Readers should not confuse the term mail gateway with the term IP gateway, discussed in Chapter 3. 



516 Applications: Electronic Mail (SMTP, POP, MAP, MIME) Chap. 27 

While the idea of mail gateways may seem somewhat awkward, electronic mail has 
become such an important tool that users who do not have Internet access depend on the 
gateways. Thus, although gateways service is not as reliable or convenient as end-to- 
end delivery, it can still be useful. 

27.6 TCPAP Standards For Electronic Mail Service 

Recall that the goal of the TCP/IP protocol effort is to provide for interoperability 
across the widest range of computer systems and networks. To extend the interoperabil- 
ity of electronic mail, TCP/IP divides its mail standards into two sets. One standard 
specifies the format for mail messages?. The other specifies the details of electronic 
mail exchange between two computers. Keeping the two standards for electronic mail 
separate makes it possible to build mail gateways that connect TCP/IP internets to some 
other vendor's mail delivery system, while still using the same message format for both. 

As anyone who has used electronic mail knows, each memo is divided into two 
parts: a header and a body, separated by a blank line. The TCP/IP standard for mail 
messages specifies the exact format of mail headers as well as the semantic interpreta- 
tion of each header field; it leaves the format of the body up to the sender. In particu- 
lar, the standard specifies that headers contain readable text, divided into lines that con- 
sist of a keyword followed by a colon followed by a value. Some keywords are re- 
quired, others are optional, and the rest are uninterpreted. For example, the header must 
contain a line that specifies the destination. The line begins To: and contains the elec- 
tronic mail address of the intended recipient on the remainder of the line. A line that 
begins From: contains the electronic mail address of the sender. Optionally, the sender 
may specify an address to which replies should be sent (i.e., to allow the sender to 
specify that replies should be sent to an address other than the sender's mailbox). If 
present, a line that begins Reply-to: specifies the address for replies. If no such line ex- 
ists, the recipient will use information on the From: line as the return address. 

The mail message format is chosen to make it easy to process and transport across 
heterogeneous machines. Keeping the mail header format straightforward allows it to 
be used on a wide range of systems. Restricting messages to readable text avoids the 
problems of selecting a standard binary representation and translating between the stan- 
dard representation and the local machine's representation. 

27.7 Electronic Mail Addresses 

A user familiar with electronic mail knows that mail address formats vary among 
e-mail systems. Thus, it can be difficult to determine a correct electronic mail address, 
or even to understand a sender's intentions. Within the global Internet, addresses have 
a simple, easy to remember form: 

local-part @ domain-name 

?Mail system experts refer to the mail message format as "822" because RFC 822 defines the standard. 
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where domain-name is the domain name of a mail destination? to which the mail should 
be delivered, and local-part is the address of a mailbox on that machine. For example, 
within the Internet, the author's electronic mail address is: 

comer @ purdue . edu 

However, mail gateways make addresses complex. Someone outside the Internet must 
either address the mail to the nearest mail gateway or have software that automatically 
does so. For example, when CSNET operated a mail gateway that connected between 
outside networks and the Internet, someone with access to the gateway might have used 
the following address to reach the author: 

comer %purdzle. edu @ relay. cs . net 

Once the mail reached machine relay .cs.net, the mail gateway software extracted 
local-part, changed the percent sign (%) into an at sign (@), and used the result as a 
destination address to forward the mail. 

The reason addresses become complex when they include non-Internet sites is that 
the mail address mapping function is local to each machine. Thus, some mail gateways 
require the local part to contain addresses of the form: 

user % domain-name 

while others require: 

user: domain-name 

and still others use completely different forms. More important, electronic mail systems 
do not usually agree on conventions for precedence or quoting, making it impossible for 
a user to guarantee how addresses will be interpreted. For example, consider the elec- 
tronic mail address: 

comer %purdue . edu @ relay. cs . net 

mentioned earlier. A site using the TCPiIP standard for mail would interpret the ad- 
dress to mean, "send the message to mail exchanger relay. c s .  net and let that mail ex- 
changer decide how to interpret comer %purdue . edu" (the local part). In essence, the 
site acts as if the address were parenthesized: 

( comer %purdue . edu ) @ ( relay. cs . net) 

At a site that uses % to separate user names from destination machines, the same ad- 
dress might mean, "send the mail to user comer at the site given by the remainder of 
the address." That is, such sites act as if the address were parenthesized: 

( comer) % (purdue . edu @ relay. cs . net ) 

tTechnically, the domain name specifies a mail exchanger, not a machine name. 
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We can summarize the problem: 

Because each mail gateway determines the exact details of how it in- 
terprets and maps electronic mail addresses, there is no standard for 
addresses that cross mail gateway boundaries to networks outside the 
Internet. 

27.8 Pseudo Domain Addresses 

To help solve the problem of multiple mail systems, each with its own e-mail ad- 
dress format, a site can use domain-style names for all e-mail addresses, even if the site 
does not use the domain name system. For example, a site that uses UUCP can imple- 
ment a pseudo-domain, uucp, that allows users to spec@ mail addresses of the form: 

uucp-style address @ uucp 

or a related form: 

user @ uucp-site . uucp 

The local mail forwarding software recognizes the special addresses and translates them 
to the address syntax required by the UUCP network software. From the user's per- 
spective, the advantage is clear: all electronic addresses have the same general format 
independent of the underlying communication network used to reach the recipient. Of 
course, such addresses only work where local mailers have been instructed to map them 
into appropriate forms and only when the appropriate transport mechanisms are avail- 
able. Furthermore, even though pseudo-domain mail addresses have the same form as 
domain names, they can only be used with electronic mail - one cannot use the 
domain name system to resolve a pseudo address into an underlying IP address. 

27.9 Simple Mail Transfer Protocol (SMTP) 

In addition to message formats, the TCP/IP protocol suite specifies a standard for 
the exchange of mail between machines. That is, the standard specifies the exact format 
of messages a client on one machine uses to transfer mail to a server on another. The 
standard transfer protocol is known as the Simple Mail Transfer Protocol (SMTP). As 
you might guess, SMTP is simpler than the earlier Mail Transfer Protocol, (MTP). The 
SMTP protocol focuses specifically on how the underlying mail delivery system passes 
messages across an internet from one machine to another. It does not specify how the 
mail system accepts mail from a user or how the user interface presents the user with 
incoming mail. Also, SMTP does not spec@ how mail is stored or how frequently the 
mail system attempts to send messages. 
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SMTP is surprisingly straightforward. Communication between a client and server 
consists of readable ASCII text. Although SMTP rigidly defines the command format, 
humans can easily read a transcript of interactions between a client and server. Initially, 
the client establishes a reliable stream connection to the server and waits for the server 
to send a 220 READY FOR MAIL message. (If the server is overloaded, it may delay 
sending the 220 message temporarily.) Upon receipt of the 220 message, the client 
sends a HELO? command. The end of a line marks the end of a command. The server 
responds by identifying itself. Once communication has been established, the sender 
can transmit one or more mail messages, terminate the connection, or request the server 
to exchange the roles of sender and receiver so messages can flow in the opposite direc- 
tion. The receiver must acknowledge each message. It can also abort the entire con- 
nection or abort the current message transfer. 

Mail transactions begin with a MAIL command that gives the sender identification 
as well as a FROM: field that contains the address to which errors should be reported. 
A recipient prepares its data structures to receive a new mail message, and replies to a 
MAIL command by sending the response 250. Response 250 means that all is well. 
The full response consists of the text 250 OK. As with other application protocols, pro- 
grams read the abbreviated commands and 3-digit numbers at the beginning of lines; 
the remaining text is intended to help humans debug mail software. 

After a successful MAIL command, the sender issues a series of RCPT commands 
that idenclfy recipients of the mail message. The receiver must acknowledge each 
RCPT command by sending 250 OK or by sending the error message 550 No such user 
here. 

After all RCPT commands have been acknowledged, the sender issues a DATA 
command. In essence, a DATA command informs the receiver that the sender is ready 
to transfer a complete mail message. The receiver responds with message 354 Start 
mail input and specifies the sequence of characters used to terminate the mail message. 
The termination sequence consists of 5 characters: carriage return, line feed, period, car- 
riage return, and line feed*. 

An example will clarify the SMTP exchange. Suppose user Smith at host 
Alpha.EDU sends a message to users Jones, Green, and Brown at host Beta.GOV. The 
SMTP client software on host Alpha.EDU contacts the SMTP server software on host 
Beta.GOV and begins the exchange shown in Figure 27.3. 

THELO is an abbreviation for "hello." 
SSMTP uses CR-LF to terminate a line, and forbids the body of a mail message to have a period on a 

line by itself. 
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S: 220 Beta.GOV Simple Mail Transfer Service Ready 
C: HELO Alpha.EDU 
S: 250 Beta.GOV 

C: MAIL FROM:<Smith@Alpha.EDU> 

S: 250 OK 

C: RCPT TO:<JonesBBeta.GOV> 
S: 250 OK 

C: RCPT TO:<Green@Beta.GOV> 
S: 550 No such user here 

C: RCPT TO:<Brown@Beta.GOV> 
S: 250 OK 

C: DATA 

S: 354 Start mail input; end with <CR><LF>.<CR><LF> 
C: ... sends body of mail message. .. 
C: ... continues for as many lines as message contains 
C: <CR><LF>.<CR><LF> 

S: 250 OK 

C: QUIT 
S: 221 Beta.GOV Service closing transmission channel 

Figure 273 Example of SMTP transfer from Alpha.EDU to Beta.GOV. 
Lines that begin with "C:" are transmitted by the client (Al- 
pha), while lines that begin "S:" are transmitted by the server. 
In the example, machine Beta.GOV does not recognize the in- 
tended recipient Green. 

In the example, the server rejects recipient Green because it does not recognize the 
name as a valid mail destination (i.e., it is neither a user nor a mailing list). The SMTP 
protocol does not specify the details of how a client handles such errors - the client 
must decide. Although clients can abort the delivery completely if an error occurs, 
most clients do not. Instead, they continue delivery to all valid recipients and then re- 
port problems to the original sender. Usually, the client reports errors using electronic 
mail. The error message contains a summary of the error as well as the header of the 
mail message that caused the problem. 

Once a client has finished sending all the mail messages it has for a particular des- 
tination, the client may issue the TURW command to turn the connection around. If it 
does, the receiver responds 250 OK and assumes control of the connection. With the 
roles reversed, the side that was originally a server sends back any waiting mail mes- 

?In practice, few mail servers use the TURN command. 
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sages. Whichever side controls the interaction can choose to terminate the session; to 
do so, it issues a QUIT command. The other side responds with command 221, which 
means it agrees to terminate. Both sides then close the TCP connection gracefully. 

SMTP is much more complex than we have outlined here. For example, if a user 
has moved, the server may know the user's new mailbox address. SMTP allows the 
server to inform the client about the new address so the client can use it in the future. 
When informing the client about a new address, the server may choose to forward the 
mail that triggered the message, or it may request that the client take the responsibility 
for forwarding. 

27.1 0 Mail Retrieval And Mailbox Manipulation Protocols 

The SMTP transfer scheme described above implies that a server must remain 
ready to accept e-mail at all times; the client attempts to send a message as soon as a 
user enters it. The scenario works well if the server runs on a computer that has a per- 
manent internet connection, but it does not work well for a computer that has intermit- 
tent connectivity. In particular, consider a user who only has dialup Internet access. It 
makes no sense for such a user to run a conventional e-mail server because the server 
will only be available while the user is dialed in - all other attempts to contact the 
server will fail, and e-mail sent to the user will remain undelivered. The question ar- 
ises, "how can a user without a permanent connection receive e-mail?" 

The answer to the question lies in a two-stage delivery process. In the first stage, 
each user is assigned a mailbox on a computer that has a permanent Internet connection. 
The computer runs a conventional SMTP server, which always remains ready to accept 
e-mail. In the second stage, the user forms a dialup connection, and then runs a proto- 
col that retrieves messages from the permanent mailbox. The protocol transfers the 
messages to the user's computer where they can be read. 

Two protocols exist that allow a remote user to retrieve mail from a permanent 
mailbox. The protocols have similar functionality: in addition to providing access, each 
protocol allows a user to manipulate the mailbox content (e.g., permanently delete a 
message). The next two sections describe the two protocols. 

27.1 0.1 Post Off ice Protocol 

The most popular protocol used to transfer e-mail messages from a permanent 
mailbox to a local computer is known as version 3 of the Post Ofice Protocol (POP3). 
The user invokes a POP3 client, which creates a TCP connection to a POP3 server on 
the mailbox computer. The user first sends a login and a password to authenticate the 
session. Once authentication has been accepted, the user client sends commands to re- 
trieve a copy of one or more messages and to delete the message from the permanent 
mailbox. The messages are stored and transferred as text files in 822 standard format. 

Note that the computer with the permanent mailbox must run two servers - an 
SMTP server accepts mail sent to a user and adds each incoming message to the user's 
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permanent mailbox, and a POP3 server allows a user to extract messages from the mail- 
box and delete them. To ensure correct operation, the two servers must coordinate use 
of the mailbox so that if a message arrives via SMTP while a user is extracting mes- 
sages via POP3, the mailbox is left in a valid state. 

27.10.2 Internet Message Access Protocol 

Version 4 of the Internet Message Access Protocol (IMAP4) is an alternative to 
POP3 that uses the same general paradigm. Like POP3, IMAP4 defines an abstraction 
known as a mailbox; mailboxes are located on the same computer as a server. Also like 
POP3, a user runs an MAP4 client that contacts the server to retrieve messages. Un- 
like POP3, however, MAP4 allows a user to dynamically create, delete, or rename 
mailboxes. 

MAP4 also provides extended functionality for message retrieval and processing. 
A user can obtain information about a message or examine header fields without retriev- 
ing the entire message. In addition, a user can search for a specified string and retrieve 
specified portions of a message. Partial retrieval is especially useful for slow-speed di- 
alup connections because it means a user does not need to download useless informa- 
tion. 

27.1 1 The MIME Extension For Non-ASCII Data 

The Multipurpose Internet Mail Extensions (MIME) were defined to allow 
transmission of non-ASCII data through e-mail. MIME does not change SMTP or 
POP3, nor does MIME replace them. Instead, MIME allows arbitrary data to be encod- 
ed in ASCII and then transmitted in a standard e-mail message. To accommodate arbi- 
trary data types and representations, each MIME message includes information that tells 
the recipient the type of the data and the encoding used. MIME information resides in 
the 822 mail header - the MIME header lines speclfy the version of MIME used, the 
type of the data being sent, and the encoding used to convert the data to ASCII. For 
example, Figure 27.4 illustrates a MIME message that contains a photograph in standard 
GIFt representation. The GIF image has been converted to a 7-bit ASCII representa- 
tion using the base64 encoding. 

Fran: bill@acollege.edu 
To : j ohn@example. can 
MIME-Version: 1.0 
Content-Type: image/gif 
Content-Transfer-Encoding: base64 

... data for the image ... 
Figure 27.4 An example MIME message. Lines in the header identify the 

type of the data as well as the encoding used. 

TGIF is the Graphics Interchange Format. 
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In the figure, the header line MIME-Version: declares that the message was com- 
posed using version 1.0 of the MIME protocol. The Content-Type: declaration specifies 
that the data is a GIF image, and the Content-Transfer-Encoding: header declares that 
base64 encoding was used to convert the image to ASCII. To view the image, a 
receiver's mail system must first convert from base64 encoding back to binary, and then 
run an application that displays a GIF image on the user's screen. 

The MIME standard specifies that a Content-Type declaration must contain two 
identifiers, a content type and a subtype, separated by a slash. In the example, image is 
the content type, and gifis the subtype. 

The standard defines seven basic content types, the valid subtypes for each, and 
transfer encodings. For example, although an image must be of subtype jpeg or gif, text 
cannot use either subtype. In addition to the standard types and subtypes, MIME per- 
mits a sender and receiver to define private content typest. Figure 27.5 lists the seven 
basic content types. 

Content Type 
text 
image 
audio 
video 
application 
multipart 

message 

Used When Data In the Message Is 
Textual (e.g. a document). 
A still photograph or computer-generated image 
A sound recording 
A video recording that includes motion 
Raw data for a program 
Multiple messages that each have a separate content 

type and encoding 
An entire e-mail message (e.g., a memo that has been 

forwarded) or an external reference to a 
message (e.g., an FTP sewer and file name) 

Figure 27.5 The seven basic types that can appear in a MIME Content-Type 
declaration and their meanings. 

27.12 MIME Multipart Messages 

The MIME multipart content type is useful because it adds considerable flexibility. 
The standard defines four possible subtypes for a multipart message; each provides im- 
portant functionality. Subtype mixed allows a single message to contain multiple, in- 
dependent submessages that each can have an independent type and encoding. Mixed 
multipart messages make it possible to include text, graphics, and audio in a single mes- 
sage, or to send a memo with additional data segments attached, similar to enclosures 
included with a business letter. Subtype altenzative allows a single message to include 
multiple representations of the same data. Alternative multipart messages are useful 
when sending a memo to many recipients who do not all use the same hardware and 
software system. For example, one can send a document as both plain ASCII text and 
in formatted form, allowing recipients who have computers with graphic capabilities to 

tTo avoid potential name conflicts, the standard requires that names chosen for private content types each 
begin with the string X- . 
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select the formatted form for viewing. Subtype parallel permits a single message to in- 
clude subparts that should be viewed together (e.g., video and audio subparts that must 
be played simultaneously). Finally, subtype digest permits a single message to contain 
a set of other messages (e.g., a collection of the e-mail messages from a discussion). 

Figure 27.6 illustrates one of the prime uses for multipart messages: an e-mail mes- 
sage can contain both a short text that explains the purpose of the message and other 
parts that contain nontextual information. In the figure, a note in the first part of the 
message explains that the second part contains a photographic image. 

From: bill@acollege.edu 
To : j ohn@example . com 
MIME-Version: 1.0 
Content-Type : Multipart /Mixed; Boundary=StartO£NextPart 

--StartOfNextPart 
John, 

Here is the photo of our research lab that I promised 
to send you. You can see the equipnent you donated. 

Thanks again, 
Bill 

--StartOrnextPart 
Content-Type: image/gif 
Content-Transfer-mcoding: base64 

... data for the image ... 
Figure 27.6 An example of a MIME mixed multipart message. Each part of 

the message can have an independent content type. 

The figure also illustrates a few details of MIME. For example, each header line 
can contain parameters of the form X =  Y after basic declarations. The keyword Boun- 
dary= following the multipart content type declaration in the header defines the string 
used to separate parts of the message. In the example, the sender has selected the string 
StartoflvextPart to serve as the boundary. Declarations of the content type and transfer 
encoding for a submessage, if included, immediately follow the boundary line. In the 
example, the second submessage is declared to be a GIF image. 

27.1 3 Summary 

Electronic mail is among the most widely available application services. Like 
most TCP/IF' services, it uses the client-server paradigm. The mail system buffers out- 
going and incoming messages, allowing the transfer from client and server to occur in 
background. 
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The TCP/IP protocol suite provides separate standards for mail message format and 
mail transfer. The mail message format, called 822, uses a blank line to separate a mes- 
sage header and the body. The Simple Mail Transfer Protocol (SMTP) defines how a 
mail system on one machine transfers mail to a server on another. Version 3 of the 
Post Office Protocol (POP3) specifies how a user can retrieve the contents of a mailbox; 
it allows a user to have a permanent mailbox on a computer with continuous Internet 
connectivity and to access the contents from a computer with intermittent connectivity. 

The Multipurpose Internet Mail Extensions (MIME) provides a mechanism that al- 
lows arbitrary data to be transferred using SMTP. MIME adds lines to the header of an 
e-mail message to define the type of the data and the encoding used. MIME'S mixed 
multipart type pernits a single message to contain multiple data types. 

FOR FURTHER STUDY 

The protocols described in this chapter are all specified in Internet RFCs. Postel 
[RFC 8211 describes the Simple Mail Transfer Protocol and gives many examples. The 
exact format of mail messages is given by Crocker [RFC 8221; many RFCs speclfy ad- 
ditions and changes. Freed and Borenstein [RFCs 2045, 2046, 2047, 2048 and 20491 
specify the standard for MIME, including the syntax of header declarations, the pro- 
cedure for creating new content types, the interpretation of content types, and the 
base64 encoding mentioned in this chapter. Partridge [RFC 9741 discusses the relation- 
ship between mail routing and the domain name system. Horton [RFC 9761 proposes a 
standard for the UNIX UUCP mail system. 

EXERCISES 

Some mail systems force the user to specify a sequence of machines through which the 
message should travel to reach its destination. The mail protocol in each machine mere- 
ly passes the message on to the next machine. List three disadvantages of such a 
scheme. 

Find out if your computing system allows you to invoke SMTP directly. 

Build an SMTP client and use it to deliver a mail message. 

See if you can send mail through a mail gateway and back to yourself. 

Make a list of mail address fornis that your site handles and write a set of rules for pars- 
ing them. 

Find out how the UNIX sendmail program can be used to implement a mail gateway. 

Find out how often your local mail system attempts delivery and how long it will contin- 
ue before giving up. 
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27.8 Many mail systems allow users to direct incoming mail to a program instead of storing it 
in a mailbox. Build a program that accepts your incoming mail, places your mail in a 
file, and then sends a reply to tell the sender you are on vacation. 

27.9 Read the SMTP standard carefully. Then use TELNET to comect to the SMTP port on 
a remote machine and ask the remote SMTP server to expand a mail alias. 

27.10 A user receives mail in which the To field specifies the string important-people. The 
mail was sent from a computer on which the alias important-people includes no valid 
mailbox identifiers. Read the SMTP specification carefully to see how such a situation 
is possible. 

27.11 POP3 separates message retrieval and deletion by allowing a user to retrieve and view a 
message without deleting it from the permanent mailbox. What are the advantages and 
disadvantages of such separation? 

27.12 Read about POP3. How does the TOP command operate, and why is it useful? 

27.13 Read the MIME standard carefully. What servers can be specified in a MIME external 
reference? 



Applications: World Wide 
Web (HTTP) 

28.1 Introduction 

This chapter continues the discussion of applications that use TCP/IP technology 
by focusing on the application that has had the most impact: the World Wide Web 
(WWW). After a brief overview of concepts, the chapter examines the primary protocol 
used to transfer a Web page from a server to a Web browser. The discussion covers 
caching as well as the basic transfer mechanism. 

28.2 Importance Of The Web 

During the early history of the Internet, FTP data transfers accounted for approxi- 
mately one third of Internet traflk, more than any other application. From its inception 
in the early 1990s, however, the Web had a much higher growth rate. By 1995, Web 
traffic overtook FTP to become the largest consumer of Internet backbone bandwidth, 
and has remained the leader ever since. By 2000, Web traffic completely overshadowed 
other applications. 

Although traffic is easy to measure and cite, the impact of the Web cannot be un- 
derstood from such statistics. More people know about and use the Web than any other 
Internet application. Most companies have Web sites and on-line catalogs; references to 
the Web appear in advertising. In fact, for many users, the Internet and the Web are in- 
distinguishable. 
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28.3 Architectural Components 

Conceptually, the Web consists of a large set of documents, called Web pages, that 
are accessible over the Internet. Each Web page is classified as a hypermedia docu- 
ment. The suffix media is used to indicate that a document can contain items other than 
text (e.g., graphics images); the prefix hyper is used because a document can contain 
selectable links that refer to other, related documents. 

Two main building blocks are used to implement the Web on top of the global In- 
ternet. A Web browser consists of an application program that a user invokes to access 
and display a Web page. The browser becomes a client that contacts the appropriate 
Web server to obtain a copy of the specified page. Because a given server can manage 
more than one Web page, a browser must speclfy the exact page when making a re- 
quest. 

The data representation standard used for a Web page depends on its contents. For 
example, standard graphics representations such as Graphics Interchange Format (GIF) 
or Joint Picture Encoding Group (JPEG) can be used for a page that contains a single 
graphics image. Pages that contain a mixture of text and other items are represented us- 
ing HyperText Markup Language (HTML). An HTML document consists of a file that 
contains text along with embedded commands, called tags, that give guidelines for 
display. A tag is enclosed in less-than and greater-than symbols; some tags come in 
pairs that apply to all items between the pair. For example, the two commands 
<CENTER> and </CENTER> cause items between them to be centered in the 
browser's window. 

28.4 Uniform Resource Locators 

Each Web page is assigned a unique name that is used to identify it. The name, 
which is called a Uniform Resource Locator (URL)1-, begins with a specification of the 
scheme used to access the item. In effect, the scheme specifies the transfer protocol; the 
format of the remainder of the URL depends on the scheme. For example, a URL that 
follows the http scheme has the following form$: 

http: I/ hostname [: port] /path [; parameters] [? query] 

where brackets denote an optional item. For now, it is sufficient to understand that the 
hostname string specifies the domain name or IP address of the computer on which the 
server for the item operates, :port is an optional protocol port number needed only in 
cases where the server does not use the well-known port (80), path is a string that iden- 
tifies one particular document on the server, ;parameters is an optional string that speci- 
fies additional parameters supplied by the client, and ?query is an optional string used 
when the browser sends a question. A user is unlikely to ever see or use the optional 
parts directly. Instead, URLs that a user enters contain only a hostname and path. For 
example, the URL: 

t A  URL is a specific type of the more general Uniform Resource Identifier (URI). 
$Some of the literature refers to the initial string, hrtp:, as a pragma. 
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http: //www.cs.purdue.edu/people/comer/ 

specifies the author's Web page. The server operates on computer www.cs.purdue.edu, 
and the document is named /people/comer/. 

The protocol standards distinguish between the absolute form of a URL illustrated 
above, and a relative form. A relative URL, which is seldom seen by a user, is only 
meaningful when the server has already been determined. Relative URLs are useful 
once communication has been established with a specific server. For example, when 
communicating with server www.cs.purdue.edu, only the string /people/comer/ is needed 
to specify the document named by the absolute URL above. We can summarize. 

Each Web page is assigned a unique identz3er known as a Uniform 
Resource Locator (URL). The absolute form of a URL contains a full 
speczjkation; a relative form that omits the address of the server is 
only useful when the server is implicitly known. 

28.5 An Example Document 

In principle, Web access is straightforward. All access originates with a URL - a 
user either enters a URL via the keyboard or selects an item which provides the browser 
with a URL. The browser parses the URL, extracts the information, and uses it to ob- 
tain a copy of the requested page. Because the fornlat of the URL depends on the 
scheme, the browser begins by extracting the scheme specification, and then uses the 
scheme to determine how to parse the rest of the URL. 

An example will illustrate how a URL is produced from a selectable link in a do- 
cument. In fact, a document contains a pair of values for each link: an item to be 
displayed on the screen and a URL to follow if the user selects the item. In HTML, the 
pair of tags ul> and d A >  are known as an anchor. The anchor defines a link; a URL 
is added to the first tag, and items to be displayed are placed between the two tags. The 
browser stores the URL internally, and follows it when the user selects the link. For 
example, the following HTML document contains a selectable link: 

When the document is displayed, a single line of text appears on the screen: 

The author of this text is Douglas Comer. 
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The browser underlines the phrase Douglas Comer to indicate that it corresponds 
to a selectable link. Internally, of course, the browser stores the URL from the <A> 
tag, which it follows when the user selects the link. 

28.6 Hypertext Transfer Protocol 

The protocol used for communication between a browser and a Web server or 
between intermediate machines and Web servers is known as the HyperText Transfer 
Protocol (HZTP). HTTP has the following set of characteristics: 

Application Level. H'ITP operates at the application level. It assumes 
a reliable, connection-oriented transport protocol such as TCP, but does not 
provide reliability or retransmission itself. 

Request/Response. Once a transport session has been established, one 
side (usually a browser) must send an H T T P  request to which the other side 
responds. 

Stateless. Each H'ITP request is self-contained; the server does not 
keep a history of previous requests or previous sessions. 

Bi-Directional Transfer. In most cases, a browser requests a Web 
page, and the server transfers a copy to the browser. HTTP also allows 
transfer from a browser to a server (e.g., when a user submits a so-called 
''form"). 

Capability Negotiation. H'ITP allows browsers and servers to nego- 
tiate details such as the character set to be used during transfers. A sender 
can specify the capabilities it offers and a receiver can specify the capabili- 
ties it accepts. 

Support For Caching. To improve response time, a browser caches a 
copy of each Web page it retrieves. If a user requests a page again, HTTP 
allows the browser to interrogate the server to determine whether the con- 
tents of the page has changed since the copy was cached. 

Support For Intermediaries. HTTP allows a machine along the path 
between a browser and a server to act as a proxy server that caches Web 
pages and answers a browser's request from its cache. 

28.7 HTTP GET Request 

In the simplest case, a browser contacts a Web server directly to obtain a page. 
The browser begins with a URL, extracts the hosmarne section, uses DNS to map the 
name into an equivalent IP address, and uses the IP address to form a TCP connection 
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to the server. Once the TCP connection is in place, the browser and Web server use 
HTTP to communicate; the browser sends a request to retrieve a specific page, and the 
server responds by sending a copy of the page. 

A browser sends an HTTP GET command to request a Web page from a server?. 
The request consists of a single line of text that begins with the keyword GET and is 
followed by a URL and an HTTP version number. For example, to retrieve the Web 
page in the example above from server www.cs.purdue.edu, a browser can send the fol- 
lowing request: 

GET http: llwww.cs.purdue.edu/people/comer/ HTTPl1.1 

Once a TCP connection is in place, there is no need to send an absolute URL - the 
following relative URL will retrieve the same page: 

GET /people/comer/ HTTPll.O 

The Hypertext Transfer Protocol (HZTP) is used between a browser 
and a Web server. The browser sends a GET request to which a 
server responds by sending the requested item. 

28.8 Error Messages 

How should a Web server respond when it receives an illegal request? In most 
cases, the request has been sent by a browser, and the browser will attempt to display 
whatever the server returns. Consequently, servers usually generate error messages in 
valid HTML. For example, one server generates the following error message: 

The browser uses the "head" of the document (i-e., the items between cHEAD> and 
</HEAD>) internally, and only shows the "body" to the user. The pair of tags d I 1 >  
and </HI> causes the browser to display Bad Request as a heading (i.e., large and 
bold), resulting in two lines of output on the user's screen: 

?The standard uses the object-oriented term method instead of commond. 
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Bad Request 
Your browser sent a request that this server could not understand. 

28.9 Persistent Connections And Lengths 

Early versions of HITP follow the same paradigm as FTP by using a new TCP 
connection for each data transfer. That is, a client opens a TCP connection and sends a 
GET request. The server transmits a copy of the requested item, and then closes the 
TCP connection. Until it encounters an end of$le condition, the client reads data from 
the TCP connection. Finally, the client closes its end of the connection. 

Version 1.1, which appeared as an RFC in June of 1999, changed the basic HTTP 
paradigm in a fundamental way. Instead of using a TCP connection for each transfer, 
version 1.1 adopts a persistent connection approach as the default. That is, once a 
client opens a TCP connection to a particular server, the client leaves the connection in 
place during multiple requests and responses. When either a client or server is ready to 
close the connection, it informs the other side, and the connection is closed. 

The chief advantage of persistent connections lies in reduced overhead - fewer 
TCP connections means lower response latency, less overhead on the underlying net- 
works, less memory used for buffers, and less CPU time used. A browser using a per- 
sistent connection can further optimize by pipelining requests (i.e., send requests back- 
to-back without waiting for a response). Pipelining is especially attractive in situations 
where multiple images must be retrieved for a given page, and the underlying internet 
has both high throughput and long delay. 

The chief disadvantage of using a persistent connection lies in the need to identify 
the beginning and end of each item sent over the connection. There are two possible 
techniques that handle the situation: either send a length followed by the item, or send a 
sentinel value after the item to mark the end. HTTP cannot reserve a sentinel value be- 
cause the items transmitted include graphics images that can contain arbitrary sequences 
of octets. Thus, to avoid ambiguity between sentinel values and data, H l T P  uses the 
approach of sending a length followed by an item of that size. 

28.10 Data Length And Program Output 

It may not be convenient or even possible for a server to know the length of an 
item before sending. To understand why, one must know that servers use the Common 
Gateway Interjace (CG4 mechanism that allows a computer program running on the 
server machine to create a Web page dynamically. When a request arrives that 
corresponds to one of the CGI-generated pages, the server runs the appropriate CGI pro- 
gram, and sends the output from the program back to the client as a response. Dynamic 
Web page generation allows the creation of information that is current (e.g., a list of the 
current scores in sporting events), but means that the server may not know the exact 
data size in advance. Furthermore, saving the data to a file before sending it is undesir- 
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able for two reasons: it uses resources at the server and delays transmission. Thus, to 
provide for dynamic Web pages, the HTTP standard specifies that if the server does not 
know the length of an item a priori, the server can inform the browser that it will close 
the connection after transmitting the item. To summarize: 

To allow a TCP connection to persist through multiple requests and 
responses, HTTP sends a length before each response. If it does not 
know the length, a server informs the client, sends the response, and 
then closes the connection. 

28.1 1 Length Encoding And Headers 

What representation does a server use to send length infom~ation? Interestingly, 
HTTP borrows the basic fomlat from e-mail, using 822 format and MIME Extensions?. 
Like a standard 822 message, each HTTP transmission contains a header, a blank line, 
and the item being sent. Furthermore, each line in the header contains a keyword, a 
colon, and information. Figure 28.2 lists a few of the possible headers and their mean- 
ing. 

Header Meaning 
Content-Length Size of item in octets 
Content-Type Type of the item 
Content-Encoding Encoding used for item 
Content-Language Language(s) used in item 

Figure 28.1 Examples of items that can appear in the header sent before an 
item. The Content-Type and Content-Encoding are taken directly 
from MIME. 

As an example, consider Figure 28.2 which shows a few of the headers that are 
used when a HTML document is transferred across a persistent TCP connection. 

Figure 28.2 An illustration of an HTTP transfer with header lines used to 
specify attributes, a blank line, and the document itself. A 
Content-Length header is required if the connection is persistent. 

? S e e  Chapter 27 for a discussion of e-mail, 822 format, and MIME. 
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In addition to the examples shown in the figure, HTTP includes a wide variety of 
headers that allow a browser and server to exchange meta information. For example, 
we said that if a server does not know the length of an item, the server closes the con- 
nection after sending the item. However, the server does not act without warning - the 
server informs the browser to expect a close. To do so, the server includes a Connec- 
tion header before the item in place of a Content-Length header: 

Connection: close 

When it receives a connection header, the browser knows that the server intends to 
close the connection after the transfer; the browser is forbidden from sending further re- 
quests. The next sections describe the purposes of other headers. 

28.1 2 Negotiation 

In addition to specifying details about an item being sent, HTI'P uses headers to 
permit a client and server to negotiate capabilities. The set of negotiable capabilities in- 
cludes a wide variety of characteristics about the connection (e.g., whether access is au- 
thenticated), representation (e.g., whether graphics images in jpeg format are acceptable 
or which types of compression can be used), content (e.g., whether text files must be in 
English), and control (e.g., the length of time a page remains valid). 

There are two basic types of negotiation: server-drivep and agent-driven (i.e., 
browser-driven). Server-driven negotiation beginswith a request from a browser. The 
request specifies a list of preferences along with the URL of the desired item. The 
server selects, from among the available representations, one that satisfies the browser's 
preferences. If multiple items satisfy the preferences, the server makes a "best guess." 
For example, if a document is stored in multiple languages and a request specifies a 
preference for English, the server will send the English version. 

Agent-driven negotiation simply means that a browser uses a two-step process to 
perform the selection. First, the browser sends a request to the server to ask what is 
available. The server returns a list of possibilities. The browser selects one of the pos- 
sibilities, and sends a second request to obtain the item. The disadvantage of agent- 
driven negotiation is that it requires &o server interactions; the advantage is that a 
browser retains complete control over th2choice. 

A browser uses an HTI'P Accept header to specify which media or representations 
are acceptable. The header lists namis of formats with a preference value assigned to 
each. For example, 

Accept: text/html, -/plain; -0.5, -/xilvi; M.8 

specifies that the browser is willing to accept the te.rtlhtml media type, but if that does 
not exist, the browser will accept textlx-dvi, and, if that does not exist, tedplain. The 
numeric values associated with the second and third entry can be thought of as a prefer- 
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ence level, where no value is equivalent to q = l ,  and a value of q=O means the type is 
unacceptable. For media types where "quality" is meaningful (e.g., audio), the value 
of q can be interpreted as a willingness to accept a given media type if it is the best 
available after other forms are reduced in quality by q percent. 

A variety of Accept headers exist that correspond to the Content headers described 
earlier. For example, a browser can send any of the following: 

to specify which encodings, character sets, and languages the browser is willing to ac- 
cept. 

To summarize: 

HTTP uses MIME-like headers to carry meta information. Both 
browsers and servers send headers that allow them to negotiate 
agreement on the document representation and encoding to be used. 

28.13 Conditional Requests 

H l T P  allows a sender to make a request conditional. That is, when a browser 
sends a request, it includes a header that qualifies conditions under which the request 
should be honored. If the specified condition is not met, the server does not return the 
requested item. Conditional requests allow a browser to optimize retrieval by avoiding 
unnecessary transfers. The If-Modified-Since request specifies one of the most straight- 
forward conditionals - it allows a browser to avoid transferring an item unless the item 
has been updated since a specified date. For example, a browser can include the 
header: 

If-Modified-Since: Sat, 01 Jan 2000 05:00:01 GMT 

with a GET request to avoid a transfer if the item is older than January 1, 2000. 

28.1 4 Support For Proxy Servers 

Proxy servers are an important part of the Web architecture because they provide 
an optimization that decreases latency and reduces the load on servers. However, prox- 
ies are not transparent - a browser must be configured to contact a local proxy instead 
of the original source, and the proxy must be configured to cache copies of Web pages. 
For example, a corporation in which many employees use the Internet may choose to 
have a proxy server. The corporation configures all its browsers to send requests to the 
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proxy. The f i s t  time a user in the corporation accesses a given Web page, the proxy 
must obtain a copy from the server that manages the page. The proxy places the copy 
in its cache, and returns the page as the response to the request. The next time a user 
accesses the same page, the proxy extracts the data from its cache without sending a re- 
quest across the Internet. Consequently, traffic from the site to the Internet is signifi- 
cantly reduced. 

To guarantee correctness, HTTP includes explicit support for proxy servers. The 
protocol specifies exactly how a proxy handles each request, how headers should be in- 
terpreted by proxies, how a browser negotiates with a proxy, and how a proxy nego- 
tiates with a server. Furthermore, several HlTP headers have been designed specifical- 
ly for use by proxies. For example, one header allows a proxy to authenticate itself to a 
server, and another allows each proxy that handles an item to record its identity so the 
ultimate recipient receives a list of all intermediate proxies. Finally, HTI'P allows a 
server to control how proxies handle each Web page. For example, a server can include 
the Mar-Forwards header in a response to limit the number of proxies that handle an 
item before it is delivered to a browser. If the server specifies a count of one, as in: 

Max-Forwards: 1 

at most one proxy can handle the item along the path from the server to the browser. A 
count of zero prohibits any proxy from handling the item. 

28.15 Caching 

The goal of caching is improved efficiency: a cache reduces both latency and net- 
work traffic by eliminating unnecessary transfers. The most obvious aspect of caching 
is storage: when a Web page is initially accessed, a copy is stored on disk, either by the 
browser, an intermediate proxy, or both. Subsequent requests for the same page can 
short-circuit the lookup process and retrieve a copy of the page from the cache instead 
of the server. 

The central question in all caching schemes concerns timing - how long should 
an item be kept in a cache? On one hand, keeping a cached copy too long results in the 
copy becoming stale, which means that changes to the original are not reflected in the 
cached copy. On the other hand, if the cached copy is not kept long enough, inefficien- 
cy results because the next request must go back to the server. 

HTTP allows a server to control caching in two ways. First, when it answers a re- 
quest for a page, a server can specify caching details, including whether the page can be 
cached at all, whether a proxy can cache the page, the community with which a cached 
copy can be shared, the time at which the cached copy must expire, and limits on 
transformations that can be applied to the copy. Second, HTTP allows a browser to 
force revalidation of a page. To do so, the browser sends a request for the page, and 
uses a header to specify that the maximum "age" (i.e., the time since a copy of the 
page was stored) cannot be greater than zero. No copy of the page in a cache can be 
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used to satisfy the request because the copy will have a nonzero age. Thus, only the 
original server will answer the request. Intermediate proxies along the way will receive 
a fresh copy for their cache as will the browser that issued the request. 

To summarize: 

Caching is key to the efficient operation of the Web. HTTP allows 
servers to control whether and how a page can be cached as well as 
its lifetime; a browser can force a request for a page to bypass caches 
and obtain a fresh copy from the server that owns the page. 

28.16 Summary 

The World Wide Web consists of hypermedia documents stored on a set of Web 
servers and accessed by browsers. Each document is assigned a URL that uniquely 
identifies it; the URL specifies the protocol used to retrieve the document, the location 
of the server, and the path to the document on that server. 

The HyperText Markup Language, HTML, allows a document to contain text 
along with embedded commands that control formatting. HTML also allows a docu- 
ment to contain links to other documents. 

A browser and server use the HyperText Transfer Protocol, HTTP, to communi- 
cate. HTTP is an application-level protocol with explicit support for negotiation, proxy 
servers, caching, and persistent connections. 

FOR FURTHER STUDY 

Bemers-Lee, et. al. [RFC 17681 defines URLs. A variety of RFCs contain propo- 
sals for extensions. Daniel and Mealling [RFC 21681 considers how to store URLs in 
the Domain Name System. 

Bemers-Lee and Connolly [RFC 18661 contains the standard for version 2 of 
HTML. Nebel and Masinter [RFC 18671 specifies HTML form upload, and Raggett 
[RFC 19421 gives the standard for tables in HTML. 

Fielding et. al. [RFC 26161 specifies version 1.1 of HTTP, which adds many 
features, including additional support for persistence and caching, to the previous ver- 
sion. Franks et. al. [RFC 26171 considers access authentication in HTTP. 
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EXERCISES 

Applications: World Wide Web OfITP) Chap. 28 

Read the standard for UR 
the end of a URL? 

Ss .  What does a pound sign (#) followed by a string mean at 

Extend the previous exercise. Is it legal to send the pound sign suffix on a URL to a 
Web server? Why or why not? 
How does a browser distinguish between a document that contains HTML and a docu- 
ment that contains arbitrary text? To find out, experiment by using a browser to read 
from a file. Does the browser use the name of the file or the contents to decide how to 
interpret the file? 

What is the purpose of an HTlT TRACE command? 

What is the difference between an H'ITP PUT command and an H'ITP POST command? 
When is each useful? 
When is an HTlT Keep-Alive header used? 

Can an arbitrary Web server function as a proxy? To find out, choose an arbitrary Web 
server and configure your browser to use it as a proxy. Do the results surprise you? 

Read about HTI'F"s must-revalidate cache control directive. Give an example of a Web 
page that would use such a directive. 

If a browser does not send an HTTP Content-Length header before a request, how does a 
server respond? 



Applications: Voice And 
Video Over IP (RTP) 

29.1 Introduction 

This chapter focuses on the transfer of real-time data such as voice and video over 
an IP network. In addition to discussing the protocols used to transport such data, the 
chapter considers two broader issues. First, it examines the question of how IP can be 
used to provide commercial telephone service. Second, it examines the question of how 
routers in an IP network can guarantee sufficient service to provide high-quality video 
and audio reproduction. 

Although it was designed and optimized to transport data, IP has successfully car- 
ried audio and video since its inception. In fact, researchers began to experiment with 
audio transmission across the ARPANET before the Internet was in place. By the 
1990s, commercial radio stations were sending audio across the Internet, and software 
was available that allowed an individual to send audio across the Internet or to the stan- 
dard telephone network. Commercial telephone companies also began using IP technol- 
ogy internally to carry voice. 

29.2 Audio Clips And Encoding Standards 

The simplest way to transfer audio across an IP network consists of digitizing an 
analog audio signal to produce a data file, using a conventional protocol to transfer the 
file, and then decoding the digital file to reproduce the original analog signal. Of 
course, the technique does not work well for interactive exchange because placing en- 
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coded audio in a file and transferring the file introduces a long delay. Thus, file transfer 
is typically used to send short audio recordings, which are known as audio clips. 

Special hardware is used to form high-quality digitized audio. Known as a 
coder/decoder (codec), the device can covert in either direction between an analog au- 
dio signal and an equivalent digital representation. The most common type of codec, a 
waveform coder, measures the amplitude of the input signal at regular intervals and con- 
verts each sample into a digital value (i.e., an integer)?. To decode, the codec takes a 
sequence of integers as input and recreates the continuous analog signal that matches 
the digital values. 

Several digital encoding standards exist, with the main tradeoff being between 
quality of reproduction and the size of digital representation. For example, the conven- 
tional telephone system uses the Pulse Code Modulation (PCM) standard that specifies 
taking an 8-bit sample every 125 p seconds (i.e., 8000 times per second). As a result, a 
digitized telephone call produces data at a rate of 64 Kbps. The PCM encoding pro- 
duces a surprising amount of output - storing a 128 second audio clip requires one 
megabyte of memory. 

There are three ways to reduce the amount of data generated by digital encoding: 
take fewer samples per second, use fewer bits to encode each sample, or use a digital 
compression scheme to reduce the size of the resulting output. Various systems exist 
that use one or more of the techniques, making it possible to find products that produce 
encoded audio at a rate of only 2.2 Kbps. However, each technique has disadvantages. 
The chief disadvantage of taking fewer samples or using fewer bits to encode a sample 
is lower quality audio - the system cannot reproduce as large a range of sounds. The 
chief disadvantage of compression is delay - digitized output must be held while it is 
compressed. Furthermore, because greater reduction in size requires more processing, 
the best compression either requires a fast CPU or introduces longer delay. Thus, 
compression is most useful when delay is unimportant ( e g ,  when the output from a 
codec is being stored in a file). 

29.3 Audio And Video Transmission And Reproduction 

Many audio and video applications are classified as real-time because they require 
timely transmission and delivery*. For example, an interactive telephone call is a real- 
time exchange because audio must be delivered without significant delay or users find 
the system unsatisfactory. Timely transfer means more than low delay because the 
resulting signal is unintelligible unless it is presented in exactly the same order as the 
original, and with exactly the same timing. Thus, if a sender takes a sample every 125 
p seconds, the receiver must convert digital values to analog at exactly the same rate. 

How can a network guarantee that the stream is delivered at exactly the same rate 
that the sender used? The conventional telephone system introduced one answer: an 
isochronous architecture. Isochronous design means that the entire system, including 
the digital circuits, must be engineered to deliver output with exactly the same timing as 
was used to generate input. Thus, an isochronous system that has multiple paths 
between any two points must be engineered so all paths have exactly the same delay. 

+An alternative known as a voice coder/decoder (vocodec) recognizes and encodes human speech rather 
than general waveforms. 

$Timeliness is more important than reliability; missing data is merely skipped. 
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An IP internet is not isochronous. We have already seen that datagrams can be du- 
plicated, delayed, or arrive out of order. Variance in delay is called jitter, and is espe- 
cially pervasive in IP networks. To allow meaningful transmission and reproduction of 
digitized signals across a network with IP semantics, additional protocol support is re- 
quired. To handle datagram duplication and out-of-order delivery, each transmission 
must contain a sequence number. To handle jitter, each transmission must contain a 
timestamp that tells the receiver at which time the data in the packet should be played 
back. Separating sequence and timing information allows a receiver to reconstruct the 
signal accurately independent of how the packets arrive. Such timing information is 
especially critical when a datagram is lost or if the sender stops encoding during periods 
of silence; it allows the receiver to pause during playback the amount of time specified 
by the timestamps. To summarize: 

Because an IP internet is not isochronous, additional protocol support 
is required when sending digitized real-time data. In addition to 
basic sequence information that allows detection of duplicate or reor- 
dered packets, each packet must carry a separate timestamp that tells 
the receiver the exact time at which the data in the packet should be 
played. 

29.4 Jitter And Playback Delay 

How can a receiver recreate a signal accurately if the network introduces jitter? 
The receiver must implement a playback buffer? as Figure 29.1 illustrates. 

items inserted at items extracted - d 
a variable rate at a fixed rate 

Figure 29.1 The conceptual organization of a playback buffer that compen- 
sates for jitter. The buffer holds K time units of data. 

When a session begins, the receiver delays playback and places incoming data in 
the buffer. When data in the buffer reaches a predetem6ned threshold, known as the 
playback point, output begins. The playback point, labeled K in the figure, is measured 
in time units of data to be played. Thus, playback begins when a receiver has accumu- 
lated K time unit's worth of data. 

As playback proceeds, datagrams continue to arrive. If there is no jitter, new data 
will arrive at exactly the same rate old data is being extracted and played, meaning the 
buffer will always contain exactly K time units of unplayed data. If a datagram experi- 

t A  playback buffer is also called a jitter buffer. 



542 Applications: Voice And Video Over IP (RTP) Chap. 29 

ences a small delay, playback is unaffected. The buffer size decreases steadily as data 
is extracted, and playback continues uninterrupted for K time units. When a delayed 
datagram arrives, the buffer is refilled. 

Of course, a playback buffer cannot compensate for datagram loss. In such cases, 
playback eventually reaches an unfiied position in the buffer, and output pauses for a 
time period corresponding to the missing data. Furthermore, the choice of K is a 
compromise between loss and delay?. If K is too small, a small amount of jitter causes 
the system to exhaust the playback buffer before the needed data arrives. If K is too 
large, the system remains immune to jitter, but the extra delay, when added to the 
transmission delay in the underlying network, may be noticeable to users. Despite the 
disadvantages, most applications that send real-time data across an IF' internet depend 
on playback buffering as the primary solution for jitter. 

29.5 Real-Time Transport Protocol (RTP) 

The protocol used to transmit digitized audio or video signals over an IP internet is 
known as the Real-Time Transport Protocol (RTP). Interestingly, RTP does not contain 
mechanisms that ensure timely delivery; such guarantees must be made by the underly- 
ing system. Instead, RTP provides two key facilities: a sequence number in each packet 
that allows a receiver to detect out-of-order delivery or loss, and a timestamp that al- 
lows a receiver to control playback. 

Because RTP is designed to carry a wide variety of real-time data, including both 
audio and video, RTP does not enforce a uniform interpretation of semantics. Instead, 
each packet begins with a fixed header; fields in the header specify how to interpret 
remaining header fields and how to interpret the payload. Figure 29.2 illustrates the 
format of RTP's fixed header. 

TIMESTAMP 
P 

SYNCHRONIZATION SOURCE IDENTIFIER 

0 1  3  8 16 31 

CONTRIBUTING SOURCE ID . . . 

M 

Figure 29.2 Illustration of the fixed header used with RTP. Each message 
begins with this header; the exact interpretation and additional 
header fields depend on the payload type, PTYPE. 

?Although network delay and jitter can be used to d e t e d e  a value for K dynamically, many playback 
buffering schemes use a constant. 

PTYPE SEQUENCE NUM 
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As the figure shows, each packet begins with a two-bit RTP version number in 
field VER; the current version is 2. The sixteen-bit SEQUENCE NUM field contains a 
sequence number for the packet. The first sequence number in a particular session is 
chosen at random. Some applications define an optional header extension to be placed 
between the fixed header and the payload. If the application type allows an extension, 
the X bit is used to specify whether the extension is present in the packet. The interpre- 
tation of most of the remaining fields in the header depends on the seven-bit PTYPE 
field that specifies the payload type. The P bit specifies whether zero padding follows 
the payload; it is used with encryption that requires data to be allocated in fixed-size 
blocks. Interpretation of the M ("marker") bit also depends on the application; it is 
used by applications that need to mark points in the data stream (e.g., the beginning of 
each frame when sending video). 

The payload type also affects the interpretation of the TIMESTAMP field. A times- 
tamp is a 32-bit value that gives the time at which the first octet of digitized data was 
sampled, with the initial timestamp for a session chosen at random. The standard speci- 
fies that the timestamp is incremented continuously, even during periods when no signal 
is detected and no values are sent, but it does not specify the exact granularity. Instead, 
the granularity is determined by the payload type, which means that each application 
can choose a clock granularity that allows a receiver to position items in the output with 
accuracy appropriate to the application. For example, if a stream of audio data is being 
transmitted over RTP, a logical timestamp granularity of one clock tick per sample is 
appropriate?. However, if video data is being transmitted, the timestamp granularity 
needs to be higher than one tick per frame to achieve smooth playback. In any case, the 
standard allows the timestamps in two packets to be identical, if the data in the two 
packets was sampled at the same time. 

29.6 Streams, Mixing, And Multicasting 

A key part of RTP is its support for translation (i.e., changing the encoding of a 
stream at an intermediate station) or mixing (i.e., receiving streams of data from multi- 
ple sources, combining them into a single stream, and sending the result). To under- 
stand the need for mixing, imagine that individuals at multiple sites participate in a 
conference call using IP. To minimize the number of RTP streams, the group can 
designate a mixer, and arrange for each site to establish an RTP session to the mixer. 
The mixer combines the audio streams (possibly by converting them back to analog and 
resampling the resulting signal), and sends the result as a single digital stream. 

Fields in the RTP header identify the sender and indicate whether mixing occurred. 
The field labeled SYNCHRONIZ4TION SOURCE IDENTIFIER specifies the source of a 
stream. Each source must choose a unique 32-bit identifier; the protocol includes a 
mechanism for resolving conflicts if they arise. When a mixer combines multiple 
streams, the mixer becomes the synchronization source for the new stream. Information 
about the original sources is not lost, however, because the mixer uses the variable-size 
CONTRIBUTING SOURCE ID field to provide the synchronization IDS of streams that 

tThe TIMESTAMP is sometimes referred to as a MEDIA TIMESTAMP to emphasize that its granularity 
depends on the type of signal being measured. 
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were mixed together. The four-bit CC field gives a count of contributing sources; a 
maximum of 15 sources can be listed. 

RTP is designed to work with IP multicasting, and mixing is especially attractive 
in a multicast environment. To understand why, imagine a teleconference that includes 
many participants. Unicasting requires a station to send a copy of each outgoing RTP 
packet to each participant. With multicasting, however, a station only needs to send 
one copy of the packet, which will be delivered to all participants. Furthermore, if mix- 
ing is used, all sources can unicast to a mixer, which combines them into a single 
stream before multicasting. Thus, the combination of mixing and multicast results in 
substantially fewer datagrams being delivered to each participating host. 

29.7 RTP Encapsulation 

Its name implies that RTP is a transport-level protocol. Indeed, if it functioned 
like a conventional transport protocol, RTP would require each message to be encapsu- 
lated directly in an IP datagram. In fact, RTP does not function like a transport proto- 
col; although it is allowed, direct encapsulation in IP does not occur in practice. In- 
stead, RTP runs over UDP, meaning that each RTP message is encapsulated in a UDP 
datagram. The chief advantage of using UDP is concurrency - a single computer can 
have multiple applications using RTP without interference. 

Unlike many of the application protocols we have seen, RTP does not use a 
reserved UDP port number. Instead, a port is allocated for use with each session, and 
the remote application must be informed about the port number. By convention, RTP 
chooses an even numbered UDP port; the following section explains that a companion 
protocol, RTCP, uses the next port number. 

29.8 RTP Control Protocol (RTCP) 

So far, our description of real-time transmission has focused on the protocol 
mechanisms that allow a receiver to reproduce content. However, another aspect of 
real-time transmission is equally important: monitoring of the underlying network dur- 
ing the session and providing out of band communication between the endpoints. Such 
a mechanism is especially important in cases where adaptive schemes are used. For ex- 
ample, an application might choose a lower-bandwidth encoding when the underlying 
network becomes congested, or a receiver might vary the size of its playback buffer 
when network delay or jitter changes. Finally, an out-of-band mechanism can be used 
to send information in parallel with the real-time data (e.g., captions to accompany a 
video stream). 

A companion protocol and integral part of RTP, known as the RTP Control Proto- 
col (RTCP), provides the needed control functionality. RTCP allows senders and re- 
ceivers to transmit a series of reports to one another that contain additional information 
about the data being transferred and the performance of the network. RTCP messages 
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are encapsulated in UDP for transmissiont, and are sent using a protocol number one 
greater than the port number of the RTP stream to which they pertain. 

29.9 RTCP Operation 

RTCP uses five basic message types to allow senders and receivers to exchange in- 
formation about a session. Figure 29.3 lists the types. 

Type Meaning 
200 Sender report 
201 Receiver report 
202 Source description message 
203 Bye message 
204 Application specific message 

Figure 293 The five RTCP message types. Each message begins with a 
fixed header that identifies the type. 

The bye and application speczjic messages are the most straightforward. A sender 
transmits a bye message when shutting down a stream. The application specific mes- 
sage type provides an extension of the basic facility to allow the application to define a 
message type. For example, an application that sends a closed caption to accompany a 
video stream might choose to define an RTCP message that supports closed captioning. 

Receivers periodically transmit receiver report messages that inform the source 
about conditions of reception. Receiver reports are important for two reasons. First, 
they allow all receivers participating in a session as well as a sender to learn about re- 
ception conditions of other receivers. Second, they allow receivers to adapt their rate of 
reporting to avoid using excessive bandwidth and overwhelming the sender. The adap- 
tive scheme guarantees that the total control traffic will remain less than 5% of the 
real-time data traffic, and that receiver reports generate less than 75% of the control 
traffic. Each receiver report identifies one or more synchronization sources, and con- 
tains a separate section for each. A section specifies the highest sequence number pack- 
et received from the source, the cumulative and percentage packet loss experienced, 
time since the last RTCP report arrived from the source, and the interarrival jitter. 

Senders periodically transmit a sender report message that provides an absolute 
timestamp. To understand the need for a timestamp, recall that RTP allows each stream 
to choose a granularity for its timestamp and that the first timestamp is chosen at ran- 
dom. The absolute timestamp in a sender report is essential because it provides the 
only mechanism a receiver has to synchronize multiple streams. In particular, because 
RTP requires a separate stream for each media type, the transmission of video and ac- 
companying audio requires two streams. The absolute timestamp information allows a 
receiver to play the two streams simultaneously. 

?Because some messages are short, the standard allows multiple RTCP messages to be combined into a 
single UDP datagram for transmission. 
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In addition to the periodic sender report messages, senders also transmit source 
description messages which provide general information about the user who owns or 
controls the source. Each message contains one section for each outgoing RTP stream; 
the contents are intended for humans to read. For example, the only required field con- 
sists of a canonical name for the stream owner, a character string in the form: 

user @ host 

where host is either the domain name of the computer or its IP address in dotted de- 
cimal form, and user is a login name. Optional fields in the source description contain 
further details such as the user's e-mail address (which may differ from the canonical 
name), telephone number, the geographic location of the site, the application program or 
tool used to create the stream, or other textual notes about the source. 

29.10 IP Telephony And Signaling 

One aspect of real-time transmission stands out as especially important: the use of 
IP as the foundation for telephone service. Known as IP telephony or voice over IP, the 
idea is endorsed by many telephone companies. The question arises, "what additional 
technologies are needed before IP can be used in place of the existing isochronous tele- 
phone system?" Although no simple answer exists, researchers are investigating three 
components. First, we have seen that a protocol like RTP is needed to transfer a digi- 
tized signal across an IP internet correctly. Second, a mechanism is needed to establish 
and terminate telephone calls. Third, researchers are exploring ways an IP internet can 
be made to function like an isochronous network. 

The telephone industry uses the term signaling to refer to the process of establish- 
ing a telephone call. Specifically, the signaling mechanism used in the conventional 
Public Switched Telephone Network (PSTN) is Signaling System 7 (SS7). SS7 performs 
call routing before any audio is sent. Given a phone number, it forms a circuit through 
the network, rings the designated telephone, and c o ~ e c t s  the circuit when the phone is 
answered. SS7 also handles details such as call forwarding and error conditions such as 
the destination phone being busy. 

Before IP can be used to make phone calls, signaling functionality must be avail- 
able. Furthermore, to enable adoption by the phone companies, IP telephony must be 
compatible with extant telephone standards - it must be possible for the IP telephony 
system to interoperate with the conventional phone system at all levels. Thus, it must 
be possible to translate between the signaling used with IP and SS7 just as it must be 
possible to translate between the voice encoding used with IP and standard PCM encod- 
ing. As a consequence, the two signaling mechanisms will have equivalent functionali- 
ty. 

The general approach to interoperability uses a gateway between the IP phone sys- 
tem and the conventional phone system. A call can be initiated on either side of the 
gateway. When a signaling request arrives, the gateway translates and forwards the re- 
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quest; the gateway must also translate and forward the response. Finally, after signaling 
is complete and a call has been established, the gateway must forward voice in both 
directions, translating from the encoding used on one side to the encoding used on the 
other. 

Two groups have proposed standards for IP telephony. The ITU has defined a 
suite of protocols known as H.323, and the IETF has proposed a signaling protocol 
known as the Session Initiation Protocol (SIP). The next sections summarize the two 
approaches. 

29.1 0.1 H.323 Standards 

The ITU originally created H.323 to allow the transmission of voice over local area 
network technologies. The standard has been extended to allow transmission of voice 
over IP internets, and telephone companies are expected to adopt it. H.323 is not a sin- 
gle protocol. Instead, it specifies how multiple protocols can be combined to form a - 
functional IP telephony system. For example, in addition to gateways, H.323 defines 
devices known as gatekeepers that each provide a contact point for telephones using IP. 
To obtain permission to place outgoing calls and enable the phone system to correctly 
route incoming calls, each IP telephone must register with a gatekeeper; H.323 includes 
the necessary protocols. 

In addition to specifying a protocol for the transmission of real-time voice and 
video, the H.323 framework allows participants to transfer data. Thus, a pair of users 
engaged in an audio-video conference can also share an on-screen whiteboard, send still 
images, or exchange copies of documents. 

H.323 relies on the four major protocols listed in Figure 29.4. 

Protocol Purpose 
H.225.0 Signaling used to establish a call 
H.245 Control and feedback during the call 
RTP Real-time data transfer (sequence and timing) 
T.120 Exchange of data associated with a call 

Figure 29.4 The protocols used by H.323 for IP telephony. 

Together, the suite of protocols covers all aspects of IP telephony, including phone 
registration, signaling, real-time data encoding and transfer (both voice and video), and 
control. 

Figure 29.5 illustrates relationships among the protocols that comprise H.323. As 
the figure shows, the entire suite ultimately depends on UDP and TCP running over IP. 
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Figure 29.5 Relationship among protocols that comprise the ITU's H.323 IP 
telephony standard. 

29.10.2 Session lnitiation Protocol (SIP) 

The IETF has proposed an alternative to H.323, called the Session lnitiation Proto- 
col (SIP), that only covers signaling; it does not recommend specific codecs nor does it 
require the use of RTP for real-time transfer. Thus, SIP does not supply all of H.323 
functionality. 

SIP uses client-server interaction, with servers being divided into two types. A 
user agent server runs in a SIP telephone. It is assigned an identifier (e.g., user @ site), 
and can receive incoming calls. The second type of server is intermediate (i.e., between 
two SIP telephones) and handles tasks such as call set up and call forwarding. An inter- 
mediate server functions as a proxy server that can forward an incoming call request to 
the next proxy server along the path to the called phone, or as a redirect server that tells 
a caller how to reach the destination. 

To provide information about a call, SIP relies on a companion protocol, the Ses- 
sion Description Protocol (SDP). SDP is especially important in a conference call, be- 
cause participants join and leave the call dynamically. SDP specifies details such as the 
media encoding, protocol port numbers, and multicast address. 

29.1 1 Resource Reservation And Quality Of Service 

The term Quality Of Service (QoS) refers to statistical performance guarantees that 
a network system can make regarding loss, delay, throughput, and jitter. An isochro- 
nous network that is engineered to meet strict performance bounds is said to provide 
QoS guarantees, while a packet switched network that uses best effort delivery is said to 
provide no QoS guarantee. Is guaranteed QoS needed for real-time transfer of voice 
and video over IP? If so, how should it be implemented? A major controversy sur- 
rounds the two questions. On one hand, engineers who designed the telephone system 
insist that toll-quality voice reproduction requires the underlying system to provide QoS 
guarantees about delay and loss for each phone call. On the other hand, engineers who 
designed IP insist that the Internet works reasonably well without QoS guarantees and 
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that adding per-flow QoS is infeasible because routers will make the system both ex- 
pensive and slow. 

The QoS controversy has produced many proposals, implementations, and experi- 
ments. Although it operates without QoS, the Internet is already used to send audio. 
Technologies like ATM that were derived from the telephone system model provide 
QoS guarantees for each individual connection. Finally, in Chapter 7 we learned that 
the E T F  adopted a conservative differentiated services approach that divides traffic into 
separate QoS classes. The differentiated services scheme sacrifices fine grain control 
for less complex forwarding. 

29.12 QoS, Utilization, And Capacity 

The debate over QoS is reminiscent of earlier debates on resource allocation such 
as those waged over operating system policies for memory allocation and processor 
scheduling. The central issue is utilization: when a network has sufficient resources for 
all traffic, QoS constraints are unnecessary; when traffic exceeds network capacity, no 
QoS system can satisfy all users' demands. That is, a network with 1% utilization does 
not need QoS, and a network with 101% utilization will fail under any QoS. In effect, 
proponents who argue for QoS mechanisms assert that complex QoS mechanisms 
achieve two goals. First, by dividing the existing resources among more users, they 
make the system more "fair". Second, by shaping the traffic from each user, they al- 
low the network to run at higher utilization without danger of collapse. 

One of the major arguments against complicated QoS mechanisms arises from im- 
provements in the perfomlance of underlying networks. Network capacity has increased 
dramatically. As long as rapid increases in capacity continue, QoS mechanisms merely 
represent unnecessary overhead. However, if demand rises more rapidly than capacity, 
QoS may become an economic issue - by associating higher prices with higher levels 
of service, ISPs can use cost to ration capacity. 

29.13 RSVP 

If QoS is needed, how can an IP network provide it? Before announcing the dif- 
ferentiated services solution, the E T F  worked on a scheme that can be used to provide 
QoS in an IP environment. The work produced a pair of protocols: the Resource Reser- 
Vation Protocol (RSVP) and the Common Open Policy Services (COPS) protocol. 

QoS cannot be added to IP at the application layer. Instead, the basic infrastruc- 
ture must change - routers must agree to reserve resources (e.g., bandwidth) for each 
flow between a pair of endpoints. There are two aspects. First, before data is sent, the 
endpoints must send a request that specifies the resources needed, and all routers along 
the path must agree to supply the resources; the procedure can be viewed as a form of 
signaling. Second, as datagrams traverse the flow, routers need to monitor and control 
traffic forwarding. Monitoring, sometimes called trafic policing, is needed to ensure 
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that the traffic sent on a flow does not exceed the specified bounds. Control of queue- 
ing and forwarding is needed for two reasons. The router must implement a queueing 
policy that meets the guaranteed bounds on delay, and the router must smooth packet 
bursts. The latter is sometimes referred to as traflc shaping, and is necessary because 
network traffic is often bursty. For example, a flow that specifies an average 
throughput of 1 Mbps may have 2 Mbps of traffic for a millisecond followed by no 
traffic for a millisecond. A router can reshape the burst by temporarily queueing in- 
coming datagrams and sending them at a steady rate of 1 Mbps. 

RSVP handles reservation requests and replies. It is not a routing protocol, nor 
does it enforce policies once a flow has been established. Instead, RSVP operates be- 
fore any data is sent. To initiate an end-toend flow, an endpoint first sends an RSVP 
path message to determine the path to the destination; the datagram carrying the mes- 
sage uses the router alert option to guarantee that routers examine the message. After it 
receives a reply to its path message, the endpoint sends a request message to reserve 
resources for the flow. The request specifies QoS bounds desired; each router that for- 
wards the request along to the destination must agree to reserve the resources the re- 
quest specifies. If any router along the path denies the request, the router uses RSVP to 
send a negative reply back to the source. If all systems along the path agree to honor 
the request, RSVP returns a positive reply. 

Each RSVP flow is simplex (i.e., unidirectional). If an application requires QoS 
guarantees in two directions, each endpoint must use RSVP to request a flow. Because 
RSVP uses existing routing, there is no guarantee that the two flows will pass through 
the same routers, nor does approval of a flow in one direction imply approval in the 
other. We can summarize: 

An endpoint uses RSVP to request a simplex flow through an ZP inter- 
net with specified QoS bounak. I f  routers along the path agree to 
honor the request, they approve it; otherwise, they deny it. I f  an ap- 
plication nee& QoS in two directions, each endpoint must use RSVP 
to request a separate flow. 

29.1 4 COPS 

When an RSVP request arrives, a router must evaluate two aspects: feasibility (i.e., 
whether the router has the resources necessary to satisfy the request) and policies (i.e., 
whether the request lies within policy constraints). Feasibility is a local decision - a 
router can decide how to manage the bandwidth, memory, and processing power that is 
available locally. However, policy enforcement requires global cooperation - alI 
routers must agree to the same set of policies. 

To implement global policies, the IETF architecture uses a two-level model, with 
client-server interaction between the levels. When a router receives a RSVP request, it 
becomes a client that consults a server known as a Policy Decision Point (PDP) to 
determine whether the request meets policy constraints. The PDP does not handle traff- 
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ic; it merely evaluates requests to see if they satisfy global policies. If a PDP approves 
a request, the router must operate as a Policy Enforcement Point PEP to ensure traffic 
does not exceed the approved policy. 

The COPS protocol defines the client-server interaction between a router and a 
PDP (or between a router and a local PDP if the organization has multiple levels of pol- 
icy servers). Although COPS defines its own message header, the underlying format 
shares many details with RSVP. In particular, COPS uses the same format as RSVP for 
individual items in a request message. Thus, when a router receives an RSVP request, 
it can extract items related to policy, place them in a COPS message, and send the 
result to a PDP. 

29.15 Summary 

Analog data such as audio can be encoded in digital form; the hardware to do so is 
known as a codec. The telephone standard for digital audio encoding, Pulse Code 
Modulation (PCM), produces digital values at 64 Kbps. 

RTP is used to transfer real-time data across an IP network. Each RTP message 
contains two key pieces of information: a sequence number that a receiver uses to place 
messages in order and detect lost datagrams and a media timestamp that a receiver uses 
to determine when to play the encoded values. An associated control protocol, RTCP, 
is used to supply information about sources and to allow a mixer to combine several 
streams. 

A debate continues over whether Quality of Service (QoS) guarantees are needed 
to provide real-time. Before announcing a differentiated services approach, the IETF 
designed a pair of protocols that can be used to provide per-flow QoS. Endpoints use 
RSVP to request a flow with specific QoS; intermediate routers either approve or deny 
the request. When an RSVP request arrives, a router uses the COPS protocol to contact 
a Policy Decision Point and verify that the request meets policy constraints. 

FOR FURTHER STUDY 

Schulzrinne et. al. 18891 gives the standard for RTP and RTCP. Perkins et. 
al. [RFC 21981 specifies the transmission of redundant audio data over RTP, and 
Schulzrime [RFC 18901 specifies the use of RTP with an audio-video conference. 
Schulzrinne, Rao, and Lanphier P C  23261 describes a related protocol used for 
streaming of real-time traffk. 

Zhang et. al. [RFC 22051 contains the specification for RSVP. Boyle et. al. 
[draft-rap-cops-06.txtI describes COPS. 
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EXERCISES 

Applications: Voice And Video Over IP (RTP) Chap. 29 

Read about the Real Time Streaming Protocol, RTSP. What are the major differences 
between RTSP and RTP? 
Argue that although bandwidth is often cited as an example of the facilities a QoS 
mechanism can guarantee, delay is a more fundamental resource. (Hint: which con- 
straint can be eased with sufficient money?) 
If an RTP message amves with a sequence number far greater than the sequence expect- 
ed, what does the protocol do? Why? 
Are sequence numbers necessary in RTP, or can a timestamp be used instead? Explain. 
Would you prefer an internet where QoS was required for all traffic? Why or why not? 

Measure the utilization on your connection to the Internet. If all traffic required QoS 
reservation, would service be better or worse? Explain. 



Applications: Internet 
Management (SNMP) 

30.1 Introduction 

In addition to protocols that provide network level services and application pro- 
grams that use those services, an internet needs software that allows managers to debug 
problems, control routing, and find computers that violate protocol standards. We refer 
to such activities as internet mnagement. This chapter considers the ideas behind 
TCP/IP internet management software, and describes an internet management protocol. 

30.2 The Level Of Management Protocols 

Originally, many wide area networks included management protocols as part of 
their link level protocols. If a packet switch began misbehaving, the network manager 
could instruct a neighboring packet switch to send it a special control packet. Control 
packets caused the receiver to suspend normal operation and respond to commands from 
the manager. The manager could interrogate the packet switch to identify problems, ex- 
amine or change routes, test one of the communication interfaces, or reboot the switch. 
Once managers repaired the problem, they could instruct the switch to resume normal 
operations. Because management tools were part of the lowest level protocol, managers 
were often able to control switches even if higher level protocols failed. 

Unlike a homogeneous wide area network, a TCPm intemet does not have a sin- 
gle link level protocol. Instead, the internet consists of multiple physical networks in- 
terco~ected by IP routers. As a result, intemet management differs from network 
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management. First, a single manager can control heterogeneous devices, including IP 
routers, bridges, modems, workstations, and printers. Second, the controlled entities 
may not share a common link level protocol. Third, the set of machines a manager con- 
trols may lie at arbitrary points in an internet. In particular, a manager may need to 
control one or more machines that do not attach to the same physical network as the 
manager's computer. Thus, it may not be possible for a manager to communicate with 
machines being controlled unless the management software uses protocols that provide 
end-to-end co~ect ivi ty across an internet. As a consequence, the internet management 
protocol used with TCP/IP operates above the transport level: 

In a TCP/IP internet, a manager needs to examine and control routers 
and other network devices. Because such devices attach to arbitrary 
networks, protocols for internet management operate at the applica- 
tion level and communicate using TCP/IP transport-level protocols. 

Designing internet management software to operate at the application level has 
several advantages. Because the protocols can be designed without regard to the under- 
lying network hardware, one set of protocols can be used for all networks. Because the 
protocols can be designed without regard to the hardware on the managed machine, the 
same protocols can be used for all managed devices. From a manager's point of view, 
having a single set of management protocols means uniformity - all routers respond to 
exactly the same set of commands. Furthermore, because the management software 
uses IP for communication, a manager can control the routers across an entire TCPJIP 
internet without having direct attachment to every physical network or router. 

Of course, building management software at the application level also has disad- 
vantages. Unless the operating system, IP software, and transport protocol software 
work correctly, the manager may not be able to contact a router that needs managing. 
For example, if a router's routing table becomes damaged, it may be impossible to 
correct the table or reboot the machine from a remote site. If the operating system on a 
router crashes, it will be impossible to reach the application program that implements 
the internet management protocols even if the router can still field hardware interrupts 
and route packets. 

30.3 Architectural Model 

Despite the potential disadvantages, having TCP/IP management software operate 
at the application level has worked well in practice. The most significant advantage of 
placing network management protocols at a high level becomes apparent when one con- 
siders a large internet, where a manager's computer does not need to attach directly to 
all physical networks that contain managed entities. Figure 30.1 shows an example of 
the architecture. 
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Figure 30.1 Example of network management. A manager invokes manage- 
ment client (MC) software that can contact management agent 
(MA) software that runs on devices throughout the internet. 

As the figure shows, client software usually runs on the manager's workstation. 
Each participating router or host? runs a server program. Technically, the server 
software is called a management agent or merely an agent. A manager invokes client 
software on the local host computer and specifies an agent with which it communicates. 
After the client contacts the agent, it sends queries to obtain information or it sends 
commands to change conditions in the router. Of course, not all devices in a large in- 
ternet fall under a single manager. Most managers only control devices at their local 
sites; a large site may have multiple managers. 

tRecall that the TCPlIP term host can refer to a device (e.g., a printer) or a conventional computer. 



556 Applications: Internet Management (SNMP) Chap. 30 

Internet management software uses an authentication mechanism to ensure only au- 
thorized managers can access or control a particular device. Some management proto- 
cols support multiple levels of authorization, allowing a manager specific privileges on 
each device. For example, a specific router could be configured to allow several 
managers to obtain information while only allowing a select subset of them to change 
information or control the router. 

30.4 Protocol Framework 

TCPIIP network management protocolsf divide the management problem into two 
parts and specify separate standards for each part. The first part concerns communica- 
tion of information. A protocol specifies how client software running on a manager's 
host communicates with an agent. The protocol defines the format and meaning of 
messages clients and servers exchange as well as the form of names and addresses. The 
second part concerns the data being managed. A protocol specifies which data items a 
managed device must keep as well as the name of each data item and the syntax used to 
express the name. 

30.4.1 A Standard Network Management Protocol 

The TCP/LP standard for network management is the Simple Network Management 
Protocol (SNMP). The protocol has evolved through three generations. Consequently, 
the current version is known as SNMPv3, and the predecessors are known as SNMPvl 
and SNMPv2. The changes have been minor - all three versions use the same general 
framework, and many features are backward compatible. 

In addition to specifying details such as the message format and the use of tran- 
sport protocols, the SNMP standard defines the set of operations and the meaning of 
each. We will see that the approach is minimalistic; a few operations provide all func- 
tionality. 

30.4.2 A Standard For Managed Information 

A device being managed must keep control and status information that the manager 
can access. For example, a router keeps statistics on the status of its network interfaces, 
incoming and outgoing packet traffic, dropped datagrams, and error messages generated; 
a modem keeps statistics about the number of characters sent and received, baud rate, 
and calls accepted. Although it allows a manager to access statistics, SNMP does not 
specify exactly which data can be accessed on which devices. Instead, a separate stan- 
dard specifies the details for each type of device. Known as a Management Information 
Base (MIB), the standard specifies the data items a managed device must keep, the 
operations allowed on each, and the meanings. For example, the MIB for IP specifies 
that the software must keep a count of all octets that arrive over each network interface 
and that network management software can only read the count. 

tTechnically, there is a distinction between internet management protocols and network management pro- 
tocols. Historically, however, TCP/IP internet management protocols are known as nefwork mnugement pro- 
tocols; we will follow the accepted terminology. 
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The MIB for TCP/IP divides management information into many categories. The 
choice of categories is important because identifiers used to specify items include a 
code for the category. Figure 30.2 lists a few examples. 

MIB category 
system 

interfaces 
at 
iP 

icmp 
tCP 
udp 
ospf 
bgp 

rmon 
rip-2 
dns 

Includes lnformation About 
The host or router operating system 
Individual network interfaces 
Address translation (e.g., ARP mappings) 
lnternet Protocol software 
lnternet Control Message Protocol software 
Transmission Control Protocol software 
User Datagram Protocol software 
Open Shortest Path First software 
Border Gateway Protocol software 
Remote network monitoring 
Routing lnformation Protocol software 
Domain Name System software 

Figure 30.2 Example categories of MIB information. The category is encod- 
ed in the identifier used to specify an object. 

Keeping the MIB definition independent of the network management protocol has 
advantages for both vendors and users. A vendor can include SNMP agent software in 
a product such as a router, with the guarantee that the software will continue to adhere 
to the standard after new MIB items are defined. A customer can use the same network 
management client software to manage multiple devices that have slightly different ver- 
sions of a MIB. Of course, a device that does not have new MIB items cannot provide 
the information in those items. However, because all managed devices use the same 
language for communication, they can all parse a query and either provide the requested 
information or send an error message explaining that they do not have the requested 
item. 

30.5 Examples of MIB Variables 

Versions 1 and 2 of SNMP each collected variables together in a single large MIB, 
with the entire set documented in a single RFC. After publication of the second genera- 
tion, MIB-11, the IETF took a different approach by allowing the publication of many 
individual MIB documents that each specify the variables for a specific type of device. 
As a result, more than 100 separate MIBs have been defined as part of the standards 
process; they specify more than 10,000 individual variables. For example, separate 
RFCs now exist that specify the MIB variables associated with devices such as: a 
hardware bridge, an unintermptible power supply, an ATM switch, and a dialup 
modem. In addition, many vendors have defined MIB variables for their specific 
hardware or software products. 
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Examining a few of the MIB data items associated with TCPm protocols will help 
clanfy the contents. Figure 30.3 lists example MIB variables along with their 
categories. 

MIB Variable Category Meaning 
sysU pTime system Time since last reboot 
ifNumber 
ifMtu 
ipDefaultTTL 
ipln Receives 
ipFowDatagrams 
ipOutNoRoutes 
ipReasmOKs 
ipFragOKs 
ipRoutingTable 
icmplnEchos 
tcpRtoMin 
tcpMaxConn 
tcplnsegs 
udplnDatagrams 

interfaces 
interfaces 

ip 
ip 
ip 
ip 
ip 
ip 
ip 

icmp 
t CP 
tCP 
tcp 
UdP 

Number of network interfaces 
MTU for a particular interface 
Value IP uses in time-to-live field 
Number of datagrams received 
Number of datagrams forwarded 
Number of routing failures 
Number of datagrams reassembled 
Number of datagrams fragmented 
IP Routing table 
Number of ICMP Echo Requests received 
Minimum retransmission time TCP allows 
Maximum TCP connections allowed 
Number of segments TCP has received 
Number of UDP datagrams received 

Figure 303 Examples of MIB variables along with their categories. 

Most of the items listed in Figure 30.3 are numeric - each value can be stored in 
a single integer. However, the MIB also defines more complex structures. For exarn- 
ple, the MIB variable ipRoutingTable refers to an entire routing table. Additional MIB 
variables define the contents of a routing table entry, and allow the network manage- 
ment protocols to reference an individual entry in the table, including the prefix, address 
mask, and next hop fields. Of course, MIB variables present only a logical definition of 
each data item - the internal data structures a router uses may differ from the MU3 de- 
finition. When a query arrives, software in the agent on the router is responsible for 
mapping between the MIB variable and the data structure the router uses to store the in- 
formation. 

30.6 The Structure Of Management Information 

In addition to the standards that speclfy MIB variables and their meanings, a 
separate standard specifies a set of rules used to define and identify MIB variables. The 
rules are known as the Structure of Management Information (SMZ) specification. To 
keep network management protocols simple, the SMI places restrictions on the types of 
variables allowed in the MIB, specifies the rules for naming those variables, and creates 
rules for defining variable types. For example, the SMI standard includes definitions of 
terms like IpAddress (defining it to be a Coctet string) and Counter (defining it to be an 
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integer in the range of 0 to 232 - l), and specifies that they are the terms used to define 
MIB variables. More important, the rules in the SMI describe how the MIB refers to 
tables of values (e.g., the IP routing table). 

30.7 Formal Definitions Using ASN.l 

The SMI standard specifies that all MIB variables must be defined and referenced 
using ISO's Abstract Syntax Notation 1 (ASN.11-). ASN.1 is a formal language that has 
two main features: a notation used in documents that humans read and a compact en- 
coded representation of the same inforn~ation used in communication protocols. In both 
cases, the precise, fornlal notation removes any possible ambiguities from both the 
representation and meaning. For example, instead of saying that a variable contains an 
integer value, a protocol designer who uses ASN.l must state the exact form and range 
of numeric values. Such precision is especially important when implementations in- 
clude heterogeneous computers that do not all use the same representations for data 
items. 

Besides keeping standards documents unambiguous, ASN.l also helps simplify the 
implementation of network management protocols and guarantees interoperability. It 
defines precisely how to encode both names and data items in a message. Thus, once 
the documentation of a MIB has been expressed using ASN. 1, the human readable form 
can be translated directly and mechanically into the encoded foml used in messages. In 
summary: 

The TCP/IP network management protocols use a fonnal notation 
called ASN.1 to &fine names and types for variables in the manage- 
ment information base. The precise notation makes the fonn and con- 
rents of variables unambiguous. 

30.8 Structure And Representation Of MIB Object Names 

We said that ASN.1 specifies how to represent both data items and names. How- 
ever, understanding the names used for MIB variables requires us to know about the 
underlying namespace. Names used for MIB variables are taken from the object identif- 
ier namespace administered by IS0  and ITU. The key idea behind the object identifier 
namespace is that it provides a namespace in which all possible objects can be designat- 
ed. The namespace is not restricted to variables used in network management - it in- 
cludes names for arbitrary objects (e.g., each international protocol standard document 
has a name). 

The object identifier namespace is absolute (global), meaning that names are struc- 
tured to make them globally unique. Like most namespaces that are large and absolute, 
the object identifier namespace is hierarchical. Authority for parts of the namespace is 
subdivided at each level, allowing individual groups to obtain authority to assign some 
of the names without consulting a central authority for each assignment$. 

tASN.1 is usually pronounced by reading the dot: "A-S-N dot 1". 
$Readers should recall from the Domain Name System discussion in Chapter 24 how authority for a 
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The root of the object identifier hierarchy is unnamed, but has three direct descen- 
dants managed by: ISO, ITU, and jointly by IS0  and ITU. The descendants are as- 
signed both short text strings and integers that identify them (the text strings are used 
by humans to understand object names; computer software uses the integers to form 
compact, encoded representations of the names). IS0  has allocated one subtree for use 
by other national or international standards organizations (including U.S. standards or- 
ganizations), and the U.S. National Institute for Standards and Technology? has allocat- 
ed a subtree for the U.S. Department of Defense. Finally, the IAB has petitioned the 
Department of Defense to allocate it a subtree in the namespace. Figure 30.4 illustrates 
pertinent parts of the object identifier hierarchy and shows the position of the node used 
by TCPhP network management protocols. 

Figure 30.4 Part of the hierarchical object identifier namespace used to name 
MIB variables. An object's name consists of the numeric labels 
along a path from the root to the object. 

TNIST was formerly the National Bureau of Standards. 
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The name of an object in the hierarchy is the sequence of numeric labels on the 
nodes along a path from the root to the object. The sequence is written with periods 
separating the individual components. For example, the name 1 .3 .6 .1 .2  denotes the 
node labeled mgmt, the Internet management subtree. The MIB has been assigned a 
node under the mgmt subtree with label mib and numeric value 1. Because all MIB 
variables fall under that node, they all have names beginning with the prefix 
1 .3 .6 .1 .2 .1 .  

Earlier we said that the MIB groups variables into categories. The exact meaning 
of the categories can now be explained: they are the subtrees of the mib node of the ob- 
ject identifier namespace. Figure 30.5 illustrates the idea by showing part of the nam- 
ing subtree under the mib node. 

label from the root to 
this point is 1  .3 .6  

Figure 30.5 Part of the object identifier namespace under the IAB mib node. 
Each subtree corresponds to one of the categories of ME3 vari- 
ables. 

Two examples will make the naming syntax clear. Figure 30.5 shows that the 
category labeled ip has been assigned the numeric value 4. Thus, the names of all MIB 
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variables corresponding to IP have an identifier that begins with the prefm 
1 . 3 . 6 . 1 . 2 . 1 . 4 .  If one wanted to write out the textual labels instead of the numeric 
representation, the name would be: 

iso . org . dod. internet. mgmt . mib . ip 

A MIB variable named ipInReceives has been assigned numeric identifier 3 under the ip 
node in the namespace, so its name is: 

iso . org . dod. internet. mgmt . mib . ip . ipInReceives 

and the corresponding numeric representation is: 

When network management protocols use names of MIB variables in messages, each 
name has a suffix appended. For simple variables, the suffix 0 refers to the instance of 
the variable with that name. So, when it appears in a message sent to a router, the 
numeric representation of iplnReceives is: 

which refers to the instance of ipInReceives on that router. Note that there is no way to 
guess the numeric value or suffix assigned to a variable. One must consult the pub- 
lished standards to find which numeric values have been assigned to each object type. 
Thus, programs that provide mappings between the textual form and underlying numeric 
values do so entirely by consulting tables of equivalences - there is no closed-form 
computation that performs the transformation. 

As a second, more complex example, consider the MIB variable ipAddrTable, 
which contains a list of the IP addresses for each network interface. The variable exists 
in the namespace as a subtree under ip, and has been assigned the numeric value 20. 
Therefore, a reference to it has the prefix: 

iso . org . dod . internet. mgmt . mib . ip . ipAddrTable 

with a numeric equivalent: 

1 . 3 . 6 . 1 . 2 . 1 . 4 . 2 0  

In programming language terms, we think of the IP address table as a one-dimensional 
array, where each element of the array consists of a structure (record) that contains five 
items: an IP address, the integer index of an interface corresponding to the entry, an IP 
subnet mask, an IP broadcast address, and an integer that specifies the maximum 
datagram size that the router will reassemble. Of course, it is unlikely that a router has 
such an array in memory. The router may keep this information in many variables or 
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may need to follow pointers to find it. However, the MIB provides a name for the array 
as if it existed, and allows network management software on individual routers to map 
table references into appropriate internal variables. The point is: 

Although they appear to specifi, details about data structures, MIB 
standards do not dictate the implementation. Instead, MIB definitions 
provide a uniform, virtual interface that managers use to access data; 
an agent must translate between the virtual items in a MIB and the 
intern1 implementation. 

Using ASN. 1 style notation, we can define ipAddrTable: 

ipAddrTable ::= SEQUENCE OF IpAddrEntry 

where SEQUENCE and OF are keywords that define an ipAddrTable to be a one- 
dimensional array of IpAddrEntrys. Each entry in the array is defined to consist of five 
fields (the definition assumes that IpAddress has already been defined). 

IpAddrEntry ::= SEQUENCE { 
ipAdEntAddr 

IpAddress, 
ipAdEntIflndex 

INTEGER, 
ipAdEntNetMask 

IpAddress, 
ipAdEntBcastAddr 

IpAddress, 
ip AdEntReasmMaxSize 

INTEGER (0..65535) 
1 

Further definitions must be given to assign numeric values to ipAddrEntry and to 
each item in the IpAddrEntry sequence. For example, the definition: 

ipAddrEntry { ipAddrTable 1 ) 

specifies that ipAddrEntry falls under ipAddrTable and has numeric value I. Similarly, 
the definition: 

ipAdEntNetMask { ipAddrEntry 3 ) 

assigns ipAdEntNetMask numeric value 3 under ipAddrEntry. 
We said that ipAddrTable was like a one-dimensional array. However, there is a 

significant difference in the way programmers use arrays and the way network manage- 
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ment software uses tables in the MIB. Programmers think of an array as a set of ele- 
ments that have an index used to select a specific element. For example, the program- 
mer might write xyz[3] to select the third element from array xyz. ASN.1 syntax does 
not use integer indices. Instead, MIB tables append a suffix onto the name to select a 
specific element in the table. For our example of an IP address table, the standard 
specifies that the suffix used to select an item consists of an IP address. Syntactically, 
the IP address (in dotted decimal notation) is concatenated onto the end of the object 
name to form the reference. Thus, to speclfy the network mask field in the IP address 
table entry corresponding to address 128.10.2.3, one uses the name: 

iso.org.dod. internet.mgmt.mib. ip. ipAddrTable. ipAddrEntry. ipAdEntNetMask. 128.10.2.3 

which, in numeric form, becomes: 

Although concatenating an index to the end of a name may seem awkward, it provides a 
powerful tool that allows clients to search tables without knowing the number of items 
or the type of data used as an index. The next section shows how network management 
protocols use this feature to step through a table one element at a time. 

30.9 Simple Network Management Protocol 

Network management protocols specify communication between the network 
management client program a manager invokes and a network management server pro- 
gram executing on a host or router. In addition to defining the form and meaning of 
messages exchanged and the representation of names and values in those messages, net- 
work management protocols also define administrative relationships among routers be- 
ing managed. That is, they provide for authentication of managers. 

One might expect network management protocols to contain a large number of 
commands. Some early protocols, for example, supported commands that allowed the 
manager to: reboot the system, add or delete routes, disable or enable a particular net- 
work interface, or remove cached address bindings. The main disadvantage of building 
management protocols around commands arises from the resulting complexity. The 
protocol requires a separate command for each operation on a data item. For example, 
the command to delete a routing table entry differs from the command to disable an in- 
terface. As a result, the protocol must change to accommodate new data items. 

SNMP takes an interesting alternative approach to network management. Instead 
of defining a large set of commands, SNMP casts all operations in a fetch-store para- 
digm?. Conceptually, SNMP contains only two commands that allow a manager to 
fetch a value from a data item or store a value into a data item. All other operations are 
defined as side-effects of these two operations. For example, although SNMP does not 

tThe fetch-store paradigm comes from a management protocol system known as HEMS. See Partridge 
and Trewitt [RFCs 1021, 1022, 1023, and 10241 for details. 
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have an explicit reboot operation, an equivalent operation can be defined by declaring a 
data item that gives the time until the next reboot and allowing the manager to assign 
the item a value (including zero). 

The chief advantages of using a fetch-store paradigm are stability, simplicity, and 
flexibility. SNMP is especially stable because its definition remains fixed, even though 
new data items are added to the MIB and new operations are defined as side-effects of 
storing into those items. SNMP is simple to implement, understand, and debug because 
it avoids the complexity of having special cases for each command. Finally, SNMP is 
especially flexible because it can accommodate arbitrary commands in an elegant frarne- 
work. 

From a manager's point of view, of course, SNMP remains hidden. The user inter- 
face to network management software can phrase operations as imperative commands 
(e.g., reboot). Thus, there is little visible difference between the way a manager uses 
SNMP and other network management protocols. In fact, vendors sell network manage- 
ment software that offers a graphical user interface. Such software displays diagrams of 
network connectivity, and uses a point-and-click style of interaction. 

As Figure 30.6 shows, SNMP offers more than the two operations we have 
described. 

Command 
get-request 
get-next-request 
get-bulk-request 
response 
set-request 
inform-request 
snmpv2-trap 
report 

Meaning 
Fetch a value from a specific variable 
Fetch a value without knowing its exact name 
Fetch a large volume of data (e.g., a table) 
A response to any of the above requests 
Store a value in a specific variable 
Reference to third-part data (e.g., for a proxy) 
Reply triggered by an event 
Undefined at present 

Figure 30.6 The set of possible SNMP operations. Get-next-request allows 
the manager to iterate through a table of items. 

Operations get-request and set-request provide the basic fetch and store operations; 
response provides the reply. SNMP specifies that operations must be atomic, meaning 
that if a single SNMP message specifies operations on multiple variables, the server ei- 
ther performs all operations or none of them. In particular, no assignments will be 
made if any of them are in error. The trap operation allows managers to program 
servers to send information when an event occurs. For example, an SNMP server can 
be programmed to send a manager a trap message whenever one of the attached net- 
works becomes unusable (i.e., an interface goes down). 
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30.9.1 Searching Tables Using Names 

We said that ASN.1 does not provide mechanisms for declaring arrays or indexing 
them in the usual sense. However, it is possible to denote individual elements of a table 
by appending a suffix to the object identifier for the table. Unfortunately, a client pro- 
gram may wish to examine entries in a table for which it does not know all valid suf- 
fixes. The get-next-request operation allows a client to iterate through a table without 
knowing how many items the table contains. The rules are quite simple. When sending 
a get-next-request, the client supplies a prefm of a valid object identifier, P. The agent 
examines the set of object identifiers for all variables it controls, and sends a response 
for the variable that occurs next in lexicographic order. That is, the agent must know 
the ASN.1 names of all variables and be able to select the first variable with object 
identifier greater than P. Because the ME3 uses suffmes to index a table, a client can 
send the prefvr of an object identifier corresponding to a table and receive the first ele- 
ment in the table. The client can send the name of the first element in a table and re- 
ceive the second, and so on. 

Consider an example search. Recall that the ipAddrTable uses IP addresses to 
identify entries in the table. A client that does not know which IP addresses are in the 
table on a given router cannot form a complete object identifier. However, the client 
can still use the get-next-request operation to search the table by sending the prefix: 

iso . org . dod. internet. mgmt . mib . ip . ipAddrTable . ipAddrEntry . ipAdEntNetMask 

which, in numeric form, is: 

1.3 .6 .1 .2 .1 .4 .20 .1 .3  

The server returns the network mask field of the first entry in ipAddrTable. The client 
uses the full object identifier returned by the server to request the next item in the table. 

30.10 SNMP Message Format 

Unlike most TCPhP protocols, SNMP messages do not have fixed fields. Instead, 
they use the standard ASN.1 encoding. Thus, a message can be difficult for humans to 
decode and understand. After examining the SNMP message definition in ASN.1 nota- 
tion, we will review the ASN.l encoding scheme briefly, and see an example of an en- 
coded SNMP message. 

Figure 30.7 shows how an SNMP message can be described with an ASN.l-style 
grammar. In general, each item in the grammar consists of a descriptive name followed 
by a declaration of the item's type. For example, an item such as 

msgversion INTEGER (0..2147483647) 

declares the name msgversion to be a nonnegative integer less than or equal to 
2147483647. 
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SNMPv3Message ::= 
SEQUENCE ( 

msgversion INTEGER (0..2147483647), 
-- note: version number 3 is used for SNMPv3 

msgGlobalData HeaderData, 
msgSecurityPararneters OCTET STRING, 
msgData ScopedPduData 

I 
Figure 30.7 The SNMP message format in ASN.l-style notation. Text fol- 

lowing two consecutive dashes is a comment. 

As the figure shows, each SNMP message consists of four main parts: an integer 
that identifies the protocol version, additional header data, a set of security parameters, 
and a data area that carries the payload. A precise definition must be supplied for each 
of the terms used. For example, Figure 30.8 illustrates how the contents of the Header- 
Data section can be specified. 

HeaderData ::= SEQUENCE { 
msgID INTEGER (0..2147483647), 

-- used to match responses with requests 
msgMaxSize INTEGER (484. .2 147483647), 

-- maximum size reply the sender can accept 
msgFlags OCTET STRING (SIZE(l)), 

-- Individual flag bits specify message characteristics 
-- bit 7 authorization used 
-- bit 6 privacy used 
-- bit 5 reportability (i.e., a response needed) 

msgSecurityMode1 INTEGER (1 ..2147483647) 
-- determines exact format of security parameters that follow 

I 

Figure 30.8 The definition of the HeaderData area in an SNMP message. 

The data area in an SNMP message is divided into protocol data units (PDUs). 
Each PDU consists of a request (sent by client) or a response (sent by an agent). 
SNMPv3 allows each PDU to be sent as plain text or to be encrypted for privacy. 
Thus, the grammar specifies a CHOICE. In programming language terminology, the 
concept is known as a discriminated union. 

ScopedPduData ::= CHOICE { 
plaintext ScopedPDU, 
encryptedPDU OCTET STRING -- encrypted ScopedPDU value 

I 
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An encrypted PDU begins with an identifier of the enginet that produced it. The 
engine ID is followed by the name of the context and the octets of the encrypted mes- 
sage. 

ScopedPDU ::= SEQUENCE { 
contextEngineID OCTET STRING, 
contextName OCTET STRING, 
data ANY -- e.g., a PDU as defined below 

I 

The item labeled data in the ScopedPDU definition has a type ANY because field 
contextName defines the exact details of the item. The SNMPv3 Message Processing 
Model (v3MP) specifies that the data must consist of one of the SNMP PDUs as Figure 
30.9 illustrates: 

PDU ::= 
CHOICE { 

get-request 
GetRequest-PDU, 

get-next-request 
GetNextRequest-PDU, 

get-bulk-request 
GetBulkRequest-PDU, 

response 
Response-PDU, 

set-request 
SetRequest-PDU, 

inform-request 
InforrnRequest-PDU, 

snmpV2-trap 
SNMPv2-Trap-PDU, 

report 
Report-PDU, 

1 
Figure 30.9 The ASN.l definitions of an SNMP PDU. The syntax for each 

request type must be specified further. 

The definition specifies that each protocol data unit consists of one of eight types. 
To complete the definition of an SNMP message, we must further specify the syntax of 
the eight individual types. For example, Figure 30.10 shows the definition of a get- 
request. 

tSNMF'v3 distinguishes between an application that uses the service SNMP supplies and an engine, 
which is the underlying software that transmits requests and receives responses. 
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GetRequest-PDU ::= [O] 
IMPLICIT SEQUENCE ( 

request-id 
Integer32, 

error-status 
INTEGER (0.. 18), 

error-index 
INTEGER (O..max-bindings), 

variable-bindings 
VarBindList 

1 

Figure 30.10 The ASN.l definition of a get-request message. Formally, the 
message is defined to be a GerRequest-PDU. 

Further definitions in the standard speclfy the remaining undefined terms. Both 
error-status and error-index are single octet integers which contain the value zero in a 
request. If an error occurs, the values sent in a response identify the cause of the error. 
Finally, VarBindList contains a list of object identifiers for which the client seeks 
values. In ASN.l terms, the definitions specify that VarBindList is a sequence of pairs 
of object name and value. ASN.l represents the pairs as a sequence of two items. 
Thus, in the simplest possible request, VarBindList is a sequence of two items: a name 
and a null. 

30.1 1 Example Encoded SNMP Message 

The encoded form of ASN.1 uses variable-length fields to represent items. In gen- 
eral, each field begins with a header that specifies the type of object and its length in 
bytes. For example, each SEQUENCE begins with an octet containing 30 (hexade- 
cimal); the next octet specifies the number of following octets that comprise the se- 
quence. 

Figure 30.1 1 contains an example SNMP message that illustrates how values are 
encoded into octets. The message is a get-request that specifies data item sysDescr 
(numeric object identifier 1.3.6.1.2.1.1.1 . 0). Because the example shows an actu- 
al message, it includes many details. In particular, the message contains a msgSecuri- 
tyParameters section which has not been discussed above. This particular message uses 
the UsmSecurityParameters form of security parameters. It should be possible, howev- 
er, to correlate other sections of the message with the definitions above. 
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04 01 04 
string len=l rrsgFl-M4 (bits man m t h ,  noPriv, mrtable) 

04 25 30 23 
string len=37 SBPUENZE len=35 -tvparanreters 

04 OC 00 00 00 63 00 00 00 
string len=12 I n E g A u t h a r i t a t i ~  . . . 
Al CO 93 8E 23 

is at IP ad3ress 192.147.142.35, port 161 

04 00 
string len=O I l l s g A U t h e n t i c a t i ~ t e r s  (Ixme) 
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02 01 00 
len=l error-status = noJhxr (0) 

05 00 
null 1-0 (no value specified) 

Figure 30.11 The encoded form of an SNMPV3 get-request for data item sys- 
Descr with octets shown in hexadecimal and a comment ex- 
plaining their meaning below. Related octets have been 
grouped onto lines; they are contiguous in the message. 

As Figure 30.1 1 shows, the message starts with a code for SEQUENCE which has 
a length of 103 octetst. The first item in the sequence is a 1-octet integer that specifies 
the protocol version; the value 3 indicates that this is an SNMPV3 message. Successive 
fields define a message ID and the maximum message size the sender can accept in a 
reply. Security information, including the name of the user (ComerBook) follows the 
message header. 

The GetRequest-PDU occupies the tail of the message. The sequence labeled 
ScopedPDU specifies a context in which to interpret the remainder of the message. The 
octet A 0  specifies the operation as a get-Request. Because the high-order bit is turned 
on, the interpretation of the octet is context specijk That is, the hexadecimal value A 0  
only specifies a GetRequest-PDU when used in context; it is not a universally reserved 
value. Following the request octet, the length octet specifies the request is 26 octets 
long. The request ID is 2 octets, but each of the error-status and error-index are one oc- 

tsequence items occur frequently in an SNMF' message because SNMP uses SEQUENCE instead of con- 
ventional programming language constructs like array or struct. 
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tet. Finally, the sequence of pairs contains one binding, a single object identifier bound 
to a null value. The identifier is encoded as expected except that the f i s t  two numeric 
labels are combined into a single octet. 

30.12 New Features In SNMPv3 

We said that version 3 of SNMP represents an evolution that follows and extends 
the basic framework of earlier versions. The primary changes arise in the areas of secu- 
rity and administration. The goals are twofold. First, SNMPv3 is designed to have 
both general and flexible security policies, making it possible for the interactions 
between a manager and managed devices to adhere to the security policies an organiza- 
tion specifies. Second, the system is designed to make administration of security easy. 

To achieve generality and flexibility, SNMPv3 includes facilities for several as- 
pects of security, and allows each to be configured independently. For example, v3 
supports message authentication to ensure that instructions originate from a valid 
manager, privacy to ensure that no one can read messages as they pass between a 
manager's station and a managed device, and authorization and view-based access con- 
trol to ensure that only authorized managers access particular items. To make the secu- 
rity system easy to configure or change, v3 allows remote configuration, meaning that 
an authorized manager can change the configuration of security items listed above 
without being physically present at the device. 

30.13 Summary 

Network management protocols allow a manager to monitor and control routers 
and hosts. A network management client program executing on the manager's worksta- 
tion contacts one or more servers, called agents, running on the devices to be controlled. 
Because an internet consists of heterogeneous machines and networks, TCP/lP manage- 
ment software executes as application programs and uses internet transport protocols 
(e.g., UDP) for communication between clients and servers. 

The standard TCP/IP network management protocol is SNMP, the Simple Network 
Management Protocol. SNMP defines a low-level management protocol that provides 
two conceptual operations: fetch a value from a variable or store a value into a variable. 
In SNMP, other operations occur as side-effects of changing values in variables. SNMP 
defines the format of messages that travel between a manager's computer and a 
managed entity. 

A set of companion standards to SNMP define the set of variables that a managed 
entity maintains. The set of variables comprise a Management Information Base (MIB). 
MIB variables are described using ASN.l, a formal language that provides a concise en- 
coded form as well as a precise human-readable notation for names and objects. ASN. 1 
uses a hierarchical namespace to guarantee that all MIB names are globally unique 
while still allowing subgroups to assign parts of the namespace. 



For Further Study 

FOR FURTHER STUDY 

Case et. al. [RFC 25701 presents an overview of SNMPv3, gives background and 
motivation, and discusses changes among the various versions. It also contains a sum- 
mary of RFCs related to v3, and explains which v2 standards still apply. Many other 
RFCs discuss individual aspects of the protocol. For example, Wijnen et. al. [RFC 
25751 presents the view-based access control model, and Case et. al. [RFC 25721 
discusses message handling. 

I S 0  w a y  87a] and [May 87b] contain the standard for ASN.l and specify the en- 
coding. McCloghrie et. al. [RFCs 2578, 2579, 25801 define the language used for MIB 
modules and provide definitions of data types. Case et. al. [RFC 19071 defines version 
2 of the MIB. 

An older proposal for a network management protocol called HEMS can be found 
in Trewitt and Partridge [RFCs 1021, 1022, 1023, and 10241. Davin, Case, Fedor, and 
Schoffstall [RFC 10281 specifies a predecessor to SNMP known as the Simple Gateway 
Monitoring Protocol (SGMP). 

EXERCISES 

Capture an SNMP packet with a network analyzer and decode the fields. 
Read the standard to find out how ASN.1 encodes the first two numeric values from an 
object identifier in a single octet. Why does it do so? 
Read the two standards and compare SNMPv2 to SNMFv3. Under what circumstances 
are the v2 security features valid? Invalid? 
Suppose the MIB designers need to define a variable that corresponds to a two- 
dimensional array. How can ASN.l notation accommodate references to such a vari- 
able? 
What are the advantages and disadvantages of defining globally unique ASN. 1 names for 
MIB variables? 
Consult the standards and match each item in Figure 30.1 1 with a corresponding defini- 
tion. 
If you have SNMP client code available, try using it to read MIB variables in a local 
router. What is the advantage of allowing arbitrary managers to read variables in all 
routers? The disadvantage? 
Read the MIB specification to find the definition of variable ipRoutingTable that 
corresponds to an IP routing table. Design a program that will use SNMP to contact 
multiple routers and see if any entries in their routing tables cause a routing loop. Exact- 
ly what ASN. 1 names should such a program generate? 
Consider the implementation of an SNMP agent. Does it make sense to arrange MIB 
variables in memory exactly the way SNMP describes them? Why or why not? 
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30.10 Argue that SNMP is a misnomer because SNMP is not "simple." 
30.11 Read about the IPsec security standard described in Chapter 32. If an organization uses 

IPsec, is the security in SNMPV3 also necessary? Why or why not? 
30.12 Does it make sense to use SNMP to manage all devices? Why or why not? (Hint: con- 

sider a simple hardware device such as a dialup modem.) 



Summary Of Protocol 
Dependencies 

31 .I Introduction 

TCP/IP has spawned more applications than we can discuss in a single textbook. 
In general, each defines its own application protocol and relies on TCP or UDP for 
end-to-end transport. In fact, any programmer who builds a distributed application us- 
ing TCP/IP defines an application-level protocol. 

Although it is not important to understand the details of all protocols, it is impor- 
tant to know which protocols exist and how they can be used. This chapter provides a 
brief summary of the relationships among fundamental protocols, and shows which are 
available for use by applications. 

31.2 Protocol Dependencies 

The chart in Figure 31.1 shows dependencies among the major protocols we have 
discussed. Each enclosed polygon corresponds to one protocol, and resides directly 
above protocols that it uses. For example, the mail protocol, SMTP, depends on TCP, 
which depends on IP. 
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Users 

TCP 

Application Programs 

FTP 

ASN.1- XDR 
BOOTP 

TELNET DNS . . . . . . . TFTP &DHCP RIP RTP RPC - 
. . . . . . . . . . . .  

I 

I UDP 

IP (plus ICMP and IGMP) 

I ARP, ATMARP, SLIP, PPP 1 
HARDWARE DEVICE DRIVERS AND MEDIA ACCESS PROTOCOLS 

Hardware 

Figure 31.1 Dependencies among major, higher level TCPm protocols. A 
protocol uses the protocols that lie directly below it. Applica- 
tion programs can use all protocols above IP. 

Several parts of the diagram need further explanation. The bottom layer represents 
all protocols that the hardware provides. This level includes all hardware control proto- 
cols (e.g., media access and logical link allocation). As we have throughout the text, 
we will assume that any packet transfer system can be included in this layer as long as 
IP can use it to transfer datagrams. Thus, if a system is configured to send datagrams 
through a tunnel, the entry to the tunnel is treated like a hardware interface, despite its 
software implementation. 

The second layer from the bottom lists link layer and address resolution protocols 
like SLIP, PPP, ARP, and ATMARP. Of course, not all networking technologies re- 
quire such protocols. ARP is used on connectionless broadcast networks such as Ether- 
net; ATMARP is used on non-broadcast multiple access networks such as ATM; and 
RARP is seldom used except for diskless machines. Other link layer or address binding 
protocols can occur at the same level, but none is currently popular. 
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The third layer from the bottom contains IP. It includes the required error and 
control message protocol, ICMP, and the optional multicast group management protocol 
IGMP. Note that IP is the only protocol that spans an entire layer. All lower-level pro- 
tocols deliver incoming information to IP, and all higher-level protocols must use IP to 
send outgoing datagrams. IP is shown with a direct dependency on the hardware layer 
because it needs to use the hardware link or access protocols to transmit datagrams after 
it uses ARP to bind addresses. 

TCP and UDP comprise the transport layer. Of course, new transport protocols 
have been suggested, but none has been widely adopted yet. 

The application layer illustrates the complex dependencies among the various ap- 
plication protocols. Recall, for example, that FTP uses the network virtual terminal de- 
finitions from TELNET to define communication on its control connection and TCP to 
form data connections. Also recall that HlTP uses syntax and content types from 
MIME. Thus, the diagram shows that FTP depends on both TELNET and TCP and that 
HTTP depends on both MIME and TCP. The domain name system (DNS) uses both 
UDP and TCP for commu~cation, so the diagram shows both dependencies. Sun's 
NFS depends on the external data representation (XDR) and remote procedure call 
(RPC) protocols. RPC appears twice because, like the domain name system, it can use 
either UDP or TCP. 

SNMP depends on Abstract Syntax Notation (ASN.l). Although SNMP can use 
either UDP or TCP, only dependence on UDP is shown because few implementations 
run over TCP. Because XDR, ASN.l, and MIME simply describe syntactic conven- 
tions and data representations, they do not use either TCP or UDP. Thus, although it 
shows that both SNMP and NFS depend on UDP, the diagram contains a dotted area 
below ASN.l and XDR to show that neither of them depends on UDP. A few details 
have been omitted in our diagram. For example, it could be argued that IP depends on 
BOOTPIDHCP or that many protocols depend on DNS because software that imple- 
ments such protocols requires name binding. 

31.3 The Hourglass Model 

Engineers describe Internet protocols as following an hourglass model. Because it 
lies at the heart of all cornmu~cation, IP forms the center of the hourglass. Of all the 
protocols we discussed, IP is the only protocol common to all applications - ultimately 
all internet communication involves IP datagrams. Thus, universal interoperability is 
achieved by making IP run over all possible network technologies. Figure 31.2 illus- 
trates the concept by showing the dependency among IP, applications, and underlying 
networks. 
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Figure 31.2 An illustration of the hourglass model. IP is at the center of the 
hourglass because all applications depend on IP and IP runs over 
all networks. 

31.4 Application Program Access 

Most systems restrict application programs from accessing lower-level protocols. 
That is, most systems only allow an application program to access TCP or UDP or to 
implement higher level protocols that use them (e.g., FTP). In fact, a system may 
choose to restrict access to transport protocols by allowing only privileged applications 
to open lower numbered TCP or UDP protocol ports. 

Although direct access from an application to IP is unusual, a few systems do pro- 
vide special purpose mechanisms that make it possible. For example, a mechanism 
known as a packet filter allows privileged programs to control frame demultiplexing. 
Using the packet filter primitives, an application program establishes the criteria used to 
capture packets (e.g., the application program can specify that it wishes to capture all 
packets with a given value in the type field of a frame). Once the operating system ac- 
cepts the filter command, it places all packets that match the specified type on a queue. 
The application program uses the packet filter mechanism to extract packets from the 
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queue. For such systems, the diagram in Figure 31.1 should be extended to show appli- 
cation access to lower layers. 

31.5 Summary 

Much of the rich functionality associated with the TCP/IP protocol suite results 
from a variety of high-level services supplied by application programs. The high-level 
protocols these programs use build on the basic transport services: unreliable datagram 
delivery and reliable stream transport. The applications usually follow the client-server 
model in which servers operate at known protocols ports so clients know how to contact 
them. 

The highest level of protocols provides user services like Web browsing, remote 
login, and file and mail transfer. The chief advantages of having an internet on which 
to build such services are that it provides universal connectivity and simplifies the ap- 
plication protocols. In particular, when used by two machines that attach to an internet, 
end-to-end transport protocols can guarantee that a client program on the source 
machine communicates directly with a server on the destination machine. Because ser- 
vices like electronic mail use the end-to-end transport connection, they do not need to 
rely on intermediate machines to forward (whole) messages. 

We have seen a variety of application level protocols and the complex dependen- 
cies among them. Although many application protocols have been defined, a few major 
applications such as Web browsing account for most packets on the Internet. 

FOR FURTHER STUDY 

One of the issues underlying protocol layering revolves around the optimal location 
of protocol functionality. Edge [I9791 compares end-to-end protocols with the hop-by- 
hop approach. Saltzer, Reed, and Clark [I9841 argues for having the highest level pro- 
tocols perform end-to-end acknowledgement and error detection. A series of papers by 
Mills [RFCs 956, 957, and 9581 proposes application protocols for clock synchroniza- 
tion, and report on experiments. 

31.1 It is possible to translate some application protocols into others. For example, it might 
be possible to build a program that accepts an FTP request, translates it to a TFTP re- 
quest, passes the result to a TFTP server to obtain a file, and translates the reply back to 
FTP for transmission to the original source. What are the advantages and disadvantages 
of such protocol translation? 
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Consider the translation described in the previous question. Which pairs of protocols in 
Figure 3 1.1 are amenable to such translations? 

Some application programs invoked by users may need access to IP without using TCP 
or UDP. Find examples of such programs. (Hint: think of ICMP.) 

Where do multicast protocols fit into the diagram in Figure 31.1? 

DNS allows access by both TCP and UDP. Find out whether your local operating sys- 
tem allows a single process to accept both TCP connections and UDP requests. 

Choose a complex application like the X window system, and find out which protocols it 
uses. 
Where does OSPF fit into the diagram in Figure 3 1. I ?  

The diagram in Figure 31.1 shows that FTP depends on TELNET. Does your local FTP 
client invoke the TELNET program, or does the FTP client contain a separate implemen- 
tation of the TELNET protocol? 

Redraw Figure 31.1 for a Web browser. Which protocols does it use? 



Internet Security And 
Fire wall Design (IPsec) 

32.1 Introduction 

Like the locks used to help keep tangible property secure, computers and data net- 
works need provisions that help keep information secure. Security in an internet en- 
vironment is both important and difficult. It is important because information has signi- 
ficant value - information can be bought and sold directly or used indirectly to create 
new products and services that yield high profits. Security in an internet is difficult be- 
cause security involves understanding when and how participating users, computers, ser- 
vices, and networks can trust one another as well as understanding the technical details 
of network hardware and protocols. Security is required on every computer and every 
protocol; a single weakness can compromise the security of an entire network. More 
important, because TCP/IP supports a wide diversity of users, services, and networks 
and because an internet can span many political and organizational boundaries, partici- 
pating individuals and organizations may not agree on a level of trust or policies for 
handling data. 

This chapter considers two fundamental techniques that form the basis for internet 
security: perimeter security and encryption. Perimeter security allows an organization 
to determine the services and networks it will make available to outsiders and the extent 
to which outsiders can use resources. Encryption handles most other aspects of securi- 
ty. We begin by reviewing a few basic concepts and teminology. 
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32.2 Protecting Resources 

The terms network security and information security refer in a broad sense to con- 
fidence that information and services available on a network cannot be accessed by 
unauthorized users. Security implies safety, including assurance of data integrity, free- 
dom from unauthorized access of computational resources, freedom from snooping or 
wiretapping, and freedom from disruption of service. Of course, just as no physical 
property is absolutely secure against crime, no network is completely secure. Organiza- 
tions make an effort to secure networks for the same reason they make an effort to 
secure buildings and offices: basic security measures can discourage crime by making it 
significantly more difficult. 

Providing security for information requires protecting both physical and abstract 
resources. Physical resources include passive storage devices such as disks and CD- 
ROMs as well as active devices such as users' computers. In a network environment, 
physical security extends to the cables, bridges, and routers that comprise the network 
infrastructure. Indeed, although physical security is seldom mentioned, it often plays an 
important role in an overall security plan. Obviously, physical security can prevent 
wiretapping. Good physical security can also eliminate sabotage (e.g., disabling a 
router to cause packets to be routed through an alternative, less secure path). 

Protecting an abstract resource such as information is usually more difficult than 
providing physical security because information is elusive. Information security encom- 
passes many aspects of protection: 

Data integrity. A secure system must protect information from unauthorized 
change. 

Data availability The system must guarantee that outsiders cannot prevent legiti- 
mate access to data (e.g., any outsider should not be able to block customers from 
accessing a Web site). 

Privacy or confidentiality. The system must prevent outsiders from making 
copies of data as it passes across a network or understanding the contents if 
copies are made. 

Authorization. Although physical security often classifies people and resources 
into broad categories, (e.g., all nonemployees are forbidden from using a particu- 
lar hallway), security for information usually needs to be more restrictive (e.g., 
some parts of an employee's record are available only to the personnel office, 
others are available only to the employee's boss, and others are available to the 
payroll office). 

Authentication. The system must allow two communicating entities to validate 
each other's identity. 

Replay avoidance. To prevent outsiders from capturing copies of packets and us- 
ing them later, the system must prevent a retransmitted copy of a packet from be- 
ing accepted. 
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32.3 Information Policy 

Before an organization can enforce network security, the organization must assess 
risks and develop a clear policy regarding information access and protection. The poli- 
cy specifies who will be granted access to each piece of information, the rules an indivi- 
dual must follow in disseminating the information to others, and a statement of how the 
organization will react to violations. 

An information policy begins with people because: 

Humans are usually the most susceptible point in any security scheme. 
A worker who is malicious, careless, or unaware of an organization's 
information policy can compromise the best security. 

32.4 Internet Security 

Internet security is difficult because datagram traveling from source to destination 
often pass across many intermediate networks and through routers that are not owned or 
controlled by either the sender or the recipient. Thus, because datagrams can be inter- 
cepted or compromised, the contents cannot be trusted. As an example, consider a 
server that attempts to use source authentication to verify that requests originated from 
valid customers. Source authentication requires the server to examine the source IP ad- 
dress on each incoming datagram, and only accept requests from computers on an au- 
thorized list. Source authentication is weak because it can be broken easily. In particu- 
lar, an intermediate router can watch traveling to and from the server, and record 
the IP address of a valid customer. Later the intermediate router can manufacture a re- 
quest that has the same source address (and intercept the reply). The point is: 

An authorization scheme that uses a remote machine's ZP address to 
authenticate its identity does not suffice in an unsecure internet. An 
imposter who gains control of an intermediate router can obtain ac- 
cess by impersonating an authorized client. 

Stronger authentication requires encryption. To encrypt a message, the sender ap- 
plies a mathematical function that rearranges the bits according to a key which is known 
only to the sender. The receiver uses another mathematical function to decrypt the mes- 
sage. Careful choices of an encryption algorithm, a key, and the contents of messages 
can make it virtually impossible for intermediate machines to decode messages or 
manufacture messages that are valid. 



584 Internet Security And Fiewall Design (IPsec) Chap. 32 

32.5 IP Security (IPsec) 

The IETF has devised a set of protocols that provide secure Internet communica- 
tion. Collectively known as IPsec (short for IP security), the protocols offer authentica- 
tion and privacy services at the IP layer, and can be used with both IPv4 and IPv6t. 
More important, instead of completely specifying the functionality or the encryption al- 
gorithm to be used, the IETF chose to make the system both flexible and extensible. 
For example, an application that employs IPsec can choose whether to use an authenti- 
cation facility that validates the sender or to use an encryption facility that also ensures 
the payload will remain confidential; the choices can be asymmetric (e.g., authentication 
in one direction but not the other). Furthermore, IPsec does not restrict the user to a 
specific encryption or authentication algorithm. Instead, IPsec provides a general 
framework that allows each pair of communicating endpoints to choose algorithms and 
parameters (e.g., key size). To guarantee interoperability, IPsec does include a set of 
encryption algorithms that all implementations must recognize. The point is: 

IPsec is not a single security protocol. Instead, IPsec provides a set 
of security algorithms plus a general framework that allows a pair of 
communicating entities to use whichever algorithms provide security 
appropriate for the communication. 

32.6 IPsec Authentication Header 

Instead of changing the basic datagram header or creating an IP option, IPsec uses 
a separate Authentication Header (AH) to carry authentication information. Figure 32.1 
illustrates the most straightforward use of an authentication header with Pv4. 

HEADER HEADER 

lhr4 
HEADER 

Figure 32.1 Illustration of (a) an IPV4 datagram, and (b) the same datagram 
after an Psec authentication header has been added. The new 
header is inserted immediately after the P header. 

TCP 
HEADER 

TCP 
HEADER 

?The examples in this chapter focus on IPv4; Chapter 33 describes Ihr6 in detail and illustrates how IP- 
sec headers appear in IPv6 datagrams. 

TCP 
DATA 

TCP 
DATA 

(b) 
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As the figure shows, IPsec inserts the authentication header immediately after the 
original IP header, but before the transport header. Furthermore, the PROTOCOL field 
in the IP header is changed to value 51 to indicate the presence of an authentication 
header. 

If IPsec modifies the PROTOCOL field in the IP header, how does a receiver 
determine the type of information carried in the datagram? The authentication header 
has a NEXT HEADER field that specifies the type - IPsec records the original PRO- 
TOCOL value in the NEXT HEADER field. When a datagram arrives, the receiver uses 
security information from the authentication header to verify the sender, and uses the 
NEXT HEADER value to further demultiplex the datagram. Figure 32.2 illustrates the 
header format. 

NEXT HEADER I PAYLOAD LEN I RESERVED I 
SECURITY PARAMETERS INDEX I 

I SEQUENCE NUMBER I 

I AUTHENTICATION DATA (VARIABLE) I 
Figure 32.2 The Psec authentication header format. The field labeled NEXT 

HEADER records the original value of the P PROTOCOL field. 

Interestingly, the PAYLOAD LEN field does not speclfy the size of the data area in 
the datagram. Instead, it specifies the length of the authentication header. Remaining 
fields are used to ensure security. Field SEQUENCE NUMBER contains a unique se- 
quence number for each packet sent; the number starts at zero when a particular security 
algorithm is selected and increases monotonically. The SECURITY PARAMETERS IN- 
DEX field specifies the security scheme used, and the AUTHENTICATION DATA field 
contains data for the selected security scheme. 

32.7 Security Association 

To understand the reason for using a security parameters index, observe that a 
security scheme defines details that provide many possible variations. For example, the 
security scheme includes an authentication algorithm, a key (or keys) that the algorithm 
uses, a lifetime over which the key will remain valid, a lifetime over which the destina- 
tion agrees to use the algorithm, and a list of source addresses that are authorized to use 
the scheme. Further observe that the information cannot fit into the header. 

To save space in the header, IPsec arranges for each receiver to collect all the de- 
tails about a security scheme into an abstraction known as a secun'ty association (SA). 
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Each SA is given a number, known as a security parameters index, through which 
it is identified. Before a sender can use IPsec to communicate with a receiver, the 
sender must know the index value for a particular SA. The sender then places the value 
in the field SECURITY PARAMETERS INDEX of each outgoing datagram. 

Index values are not globally specified. Instead, each destination creates as many 
SAs as it needs, and assigns an index value to each. The destination can specify a life- 
time for each SA, and can reuse index values once an SA becomes invalid. Conse- 
quently, the index cannot be interpreted without consulting the destination (e.g., the in- 
dex 1 can have entirely different meanings to two destinations). To summarize: 

A destination uses the security parameters index to ident~fy the securi- 
t y  association for a packet. The values are not global; a combination 
of destination address and security parameters index is needed to 
identih an SA. 

32.8 IPsec Encapsulating Security Payload 

To handle privacy as well as authentication, IPsec uses an Encapsulating Security 
Payload (ESP), which is more complex than an authentication header. A value 50 in 
the PROTOCOL field of the datagram informs a receiver that the datagram carries ESP. 
Figure 32.3 illustrates the conceptual organization. 

I <  authenticated - 1  

lPv4 
HEADER 

I 

I 4  encrypted * 

(a) 

TCP 
HEADER 

Figure 323 (a) A datagram, and (b) the same datagram using IPsec Encapsu- 
lating Security Payload. In practice, encryption means that 
fields are not easily identifiable. 

TCP 
DATA 

As the figure shows, ESP adds three additional areas to the datagram. The ESP 
HEADER immediately follows the IP header and precedes the encrypted payload. The 
ESP TRAILER is encrypted along with the payload; a variable-size ESP AUTH field fol- 
lows the encrypted section. 

ESP 
AUTH 

(b) 

lPv4 
HEADER 

ESP 
HEADER 

ESP 
TRAILER 

TCP 
HEADER 

TCP 
DATA 
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ESP uses many of the same items found in the authentication header, but rear- 
ranges their order. For example, the ESP HEADER consists of 8 octets that idenhfy the 
security parameters index and a sequence number. 

0 16 31 

SECURITY PARAMETERS INDEX 1 
I SEQUENCE NUMBER I 

The ESP TRAILER consists of optional padding, a padding length field, PAD 
LENGTH, and a NEXT HEADER field that is followed by a variable amount of authen- 
tication data. 

0 16 24 31 

I 0 - 255 OCTETS OF PADDING I PAD LENGTH 1 NEXT HEADER I 
ESP AUTHENTICATION DATA (VARIABLE) . . . 

Padding is optional; it may be present for three reasons. First, some decryption al- 
gorithms require zeroes following an encrypted message. Second, note that the NEXT 
HEADER field is shown right-justified within a Coctet field. The alignment is impor- 
tant because IPsec requires the authentication data that follows the trailer to be aligned 
at the start of a 4-octet boundary. Thus, padding may be needed to ensure alignment. 
Third, some sites may choose to add random amounts of padding to each datagram so 
eavesdroppers at intermediate points along the path cannot use the size of a datagram to 
guess its purpose. 

32.9 Authentication And Mutable Header Fields 

The IPsec authentication mechanism is designed to ensure that an arriving da- 
tagram is identical to the datagram sent by the source. However, such a guarantee is 
impossible to make. To understand why, recall that IP is a machine-to-machine layer, 
meaning that the layering principle only applies across one hop. In particular, each in- 
termediate router decrements the time-to-live field and recomputes the checksum. 

IPsec uses the tern mutable fields to refer to IP header fields that are changed in 
transit. To prevent such changes causing authentication errors, IPsec specifically omits 
such fields from the authentication computation. Thus, when a datagram arrives, IPsec 
only authenticates immutable fields (e.g., the source address and protocol type). 
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32.10 lPsec Tunneling 

Recall from Chapter 20 that VPN technology uses encryption along with IP-in-IP 
tunneling to keep inter-site transfers private. IPsec is specifically designed to accom- 
modate an encrypted tunnel. In particular, the standard defines tunneled versions of 
both the authentication header and the encapsulating security payload. Figure 32.4 il- 
lustrates the layout of datagrams in tunneling mode. 

I -  aurhenticated + 
I< encrypted + 

OUTER IP 
HEADER 

Figure 32.4 Illustration of IPsec tunneling mode for (a) authentication and (b) 
encapsulating security payload. The entire inner datagram is 
protected. 

AUTHENTICATION 
HEADER 

OUTER IP 
HEADER - 

32.1 1 Required Security Algorithms 

INNER IP DATAGRAM 
(INCLUDING IP HEADER) 

IPsec defines a minimal set of algorithms that are mandatory (i.e., that all imple- 
mentations must supply). In each case, the standard defines specific uses. Figure 32.5 
lists the required algorithms. 

ESP 
HEADER 

Authentication 

HMAC with MD5 RFC 2403 
HMAC with SHA-1 RFC 2404 

INNER IP DATAGRAM 
(INCLUDING IP HEADER) 

Encapsulating Security Payload 

DES in CBC mode RFC 2405 
HMAC with MD5 RFC 2403 
HMAC with SHA-1 RFC 2404 
Null Authentication 
Null Encryption 

ESP 
TRAILER 

Figure 32.5 The security algorithms that are mandatory for IPsec. 
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32.1 2 Secure Sockets 

By the mid 1990s when it became evident that security was important for Internet 
commerce, several groups proposed security mechanisms for use with the Web. 
Although not formally adopted by the IETF, one of the proposals has become a de facto 
standard. 

Known as the Secure Sockets Layer (SSL), the technology was originally developed 
by Netscape, Inc. As the name implies, SSL resides at the same layer as the socket 
API. When a client uses SSL to contact a server, the SSL protocol allows each side to 
authenticate itself to the other. The two sides then negotiate to select an encryption al- 
gorithm that they both support. Finally, SSL allows the two sides to establish an en- 
crypted connection (i.e., a connection that uses the chosen encryption algorithm to 
guarantee privacy). 

32.13 Firewalls And Internet Access 

Mechanisms that control internet access handle the problem of screening a particu- 
lar network or an organization from unwanted communication. Such mechanisms can 
help prevent outsiders from: obtaining information, changing information, or disrupting 
communication on an organization's intranet. Successful access control requires a care- 
ful combination of restrictions on network topology, intemlediate information staging, 
and packet filters. 

A single technique known as an intemetjirewallt, has emerged as the basis for in- 
ternet access control. An organization places a firewall at its connection to external net- 
works (e.g., the global Internet). A firewall partitions an internet into two regions, re- 
ferred to infom~ally as the inside and outside. 

32.14 Multiple Connections And Weakest Links 

Although concept seems simple, details complicate firewall construction. First, an 
organization's intranet can have multiple external connections. The organization must 
form a securiq perimeter by installing a fuewall at each external connection. To 
guarantee that the perimeter is effective, all fuewalls must be configured to use exactly 
the same access restrictions. Otherwise, it may be possible to circumvent the restric- 
tions imposed by one firewall by entering the organization's internet through another$. 

We can summarize: 

An organization that has multiple ex teml  connections must install a 
jirewall on each ex teml  connection and must coordinate all 
jirewalls. Failure to restrict access identically on all firewalls can 
leave the organization vulnerable. 

+The termfirewall is derived from building architecture in which a firewall is a thick, fireproof partition 
that makes a section of a building impenetrable to fire. 

$The well-known idea that security is only as strong as the weakest point has been termed the weakest 
link uxiorn in reference to the adage that a chain is only as strong as its weakest link. 
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32.1 5 Firewall Implementation 

How should a firewall be implemented? In theory, a fxewall simply blocks all 
unauthorized communication between computers in the organization and computers out- 
side the organization. In practice, the details depend on the network technology, the 
capacity of the connection, the traffic load, and the organization's policies. Thus, no 
single solution works for all organizations; building an effective, customized firewall 
can be difficult. 

To operate at network speeds, a fxewall must have hardware and software optim- 
ized for the task. Fortunately, most commercial routers include a high-speed filtering 
mechanism that can be used to perform much of the necessary work. A manager can 
configure the filter in a router to request that the router block specified datagrams. As 
we discuss the details of filter mechanisms, we will see how filters form the basic build- 
ing blocks of a fuewall. Later we will see how filters can be used in conjunction with 
another mechanism to provide communication that is safe, but flexible. 

32.1 6 Packet-Level Filters 

Many commercial routers offer a mechanism that augments normal routing and 
permits a manager to further control packet processing. Informally called a packet 
filter, the mechanism requires the manager to specify how the router should dispose of 
each datagram. For example, the manager might choose to filter (i.e. block) all da- 
tagrams that come from a particular source or those used by a particular application, 
while choosing to route other datagrarns to their destination. 

The term packet filter arises because the filtering mechanism does not keep a 
record of interaction or a history of previous datagrams. Instead, the filter considers 
each datagram separately. When a datagram first arrives, the router passes the datagram 
through its packet filter before performing any other processing. If the filter rejects the 
datagram, the router drops it immediately. 

Because TCPDP does not dictate a standard for packet filters, each router vendor is 
free to choose the capabilities of their packet filter as well as the interface a manager 
uses to configure the filter. Some routers pennit a manager to configure separate filter 
actions for each interface, while others have a single configuration for all interfaces. 
Usually, when specifying datagrams that the filter should block, a manager can list any 
combination of source IP address, destination IP address, protocol, source protocol port 
number, and destination protocol port number. For example, Figure 32.6 illustrates a 
filter specification. 

In the example, the manager has chosen to block incoming datagrams destined for 
a few well-known services and to block one case of outgoing datagrams. The filter 
blocks all outgoing datagrarns that originate from any host address matching the 16-bit 
prefix of 128.5.0.0 that are destined for a remote e-mail server (TCP port 25). The filter 
also blocks incoming datagrarns destined for FTP (TCP port 21), TELNET (TCP port 
23), WHOIS (UDP port 43), TFTP (UDP port 69), or FINGER (TCP port 79). 
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Figure 32.6 A router with two interfaces and an example datagram filter 
specification. A router that includes a packet filter forms the 
basic building block of a fmwall. 

32.17 Security And Packet Filter Specification 

Although the example filter configuration in Figure 32.6 specifies a small list of 
services that should be blocked, such an approach does not work well for an effective 
firewall. There are three reasons. Fist, the number of well-known ports is large and 
growing rapidly. Thus, listing each service requires a manager to update the list con- 
tinually; an error of omission can leave the fuewall vulnerable. Second, much of the 
traffic on an internet does not travel to or from a well-known port. In addition to pro- 
grammers who can choose port numbers for their private client-server applications, ser- 
vices like Remote Procedure Call (RPC) assign ports dynamically. Third, listing ports 
of well-known services leaves the firewall vulnerable to tunneling. Tunneling can cir- 
cumvent security if a host or router on the inside agrees to accept encapsulated da- 
tagrams from an outsider, remove one layer of encapsulation, and forward the datagram 
on to the service that would otherwise be restricted by the fuewall. 

How can a firewall use a packet filter effectively? The answer lies in reversing the 
idea of a filter: instead of specifying the datagrams that should be filtered, a firewall 
should be configured to block all datagrams except those destined for specific networks, 
hosts, and protocol ports for which external communication has been approved. Thus, a 
manager begins with the assumption that communication is not allowed, and then must 
examine the organization's information policy carefully before enabling any port. In 
fact, many packet filters allow a manager to spec@ a set of datagrams to admit instead 
of a set of datagrams to block. We can summarize: 
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To be effective, a firewall that uses datagram filtering should restrict 
access to all ZP sources, ZP destinations, protocols, and protocol ports 
except those computers, networks, and services the organization expli- 
citly decides to make available externally. A packet filter that allows 
a manager to specify which datagrams to admit instead of which da- 
tagrarns to block can make such restrictions easy to speczfy. 

32.1 8 The Consequence Of Restricted Access For Clients 

A blanket prohibition on datagrams arriving for an unknown protocol port seems to 
solve many potential security problems by preventing outsiders from accessing arbitrary 
servers in the organization. Such a firewall has an interesting consequence: it also 
prevents an arbitrary computer inside the firewall from becoming a client that accesses a 
service outside the firewall. To understand why, recall that although each server 
operates at a well-known port, a client does not. When a client program begins execu- 
tion, it requests the operating system to select a protocol port number that is neither 
among the well-known ports nor currently in use on the client's computer. When it at- 
tempts to communicate with a server outside the organization, a client will generate one 
or more datagrams and send them to the server. Each outgoing datagram has the 
client's protocol port as the source port and the server's well-known protocol port as the 
destination port. The firewall will not block such datagrams as they leave. When it 
generates a response, the server reverses the protocol ports. The client's port becomes 
the destination port and the server's port becomes the source port. When the datagram 
carrying the response reaches the firewall, however, it will be blocked because the desti- 
nation port is not approved. Thus, we can see an important idea: 

If an organization's firewall restricts incoming datagrams except for 
ports that correspond to services the organization makes available 
externally, an arbitrary application inside the organization cannot be- 
come a client of a server outside the organization. 

32.19 Proxy Access Through A Firewall 

Of course, not all organizations configure their firewalls to block all datagrams 
destined for unknown protocol ports. In cases where a secure fuewall is needed to 
prevent unwanted access, however, users on the inside need a safe mechanism that pro- 
vides access to services outside. That mechanism forms the second major piece of 
fuewall architecture. 

In general, an organization can only provide safe access to outside services through 
a secure computer. Instead of trying to make all computer systems in the organization 
secure (a daunting task), an organization usually associates one secure computer with 
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each f~ewall ,  and installs a set of application gateways on that computer. Because the 
computer must be strongly fortified to serve as a secure communication channel, it is 
often called a bastion host. Figure 32.7 illustrates the concept. 

Bastion Host 

P- 
] manually enabled 

bypass 

INTRANET 
(INSIDE) 

Figure 32.7 The conceptual organization of a bastion host embedded in a 
firewall. The bastion host provides secure access to outside ser- 
vices without requiring an organization to admit datagram with 
arbitrary destinations. 

As the figure shows, the firewall has two conceptual barriers. The outer barrier 
blocks all incoming traffic except (1) datagrams destined for services on the bastion 
host that the organization chooses to make available externally, and (2) datagrams des- 
tined for clients on the bastion host. The inner barrier blocks incoming traffic except 
datagram that originate on the bastion host. Most firewalls also include a manual 
bypass that enables managers to temporarily pass some or all traffic between a host in- 
side the organization and a host outside (e.g., for testing or debugging the network). 

To understand how a bastion host operates, consider Web access. Because the 
fuewall prevents the user's computer from receiving incoming datagram, the user can- 
not use a browser for direct access. Instead, the organization arranges a proxy server on 
the bastion host. Inside the organization, each browser is configured to use the proxy. 
Whenever a user selects a link or enters a URL, their browser contacts the proxy. The 
proxy contacts the server, obtains the specified page, and then delivers it internally. 

32.20 The Details Of Firewall Architecture 

Now that we understand the basic fuewall concept, the implementation should ap- 
pear straightforward. Conceptually, each of the baniers shown in Figure 32.7 requires a 
router that has a packet filter?. Networks interconnect the routers and a bastion host. 
For example, an organization that connects to the global Internet might choose to imple- 
ment a firewall as Figure 32.8 shows. 

?Some organizations use a one-amzedfirewall configuration in which a single physical router implements 
all the functionality. 
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Connection to 
global Internet 

bastion host H 

Figure 32.8 A firewall implemented with two routers and a bastion host. One 
of the routers has a connection to the rest of the Internet. 

As the figure shows, router R, implements the outer barrier; it filters all traffic ex- 
cept datagrams destined for the bastion host, H. Router R, implements the inner barrier 
that isolates the rest of the corporate intranet from outsiders; it blocks all incoming da- 
tagrams except those that originate on the bastion host. 

Of course, the safety of an entire fuewall depends on the safety of the bastion host. 
If an intruder can gain access to the computer system running on the bastion host, they 
will gain access to the entire inside internet. Moreover, an intruder can exploit security 
flaws in either the operating system on the bastion host or the network applications it 
runs. Thus, managers must be particularly careful when choosing and configuring 
software for a bastion host. In summary: 

Although a bastion host is essential for communication through a 
firewall, the security of the firewall depends on the safety of the bas- 
tion host. An intruder who exploits a securityflaw in the bastion host 
operating system can gain access to hosts inside the firewall. 

32.21 Stub Network 

It may seem that Figure 32.8 contains a superfluous network that connects the two 
routers and the bastion host. Such a network is often called a stub network because it is 
small (i.e., stubby). The question arises, "Is the stub network necessary or could a site 
place the bastion host on one of its production networks?" The answer depends on the 
traffic expected from the outside. The stub network isolates the organization from in- 
coming datagram traffic. In particular, because router R, admits all datagrams destined 
for the bastion host, an outsider can send an arbitrary number of such datagrams across 
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the stub network. If an external connection is slow relative to the capacity of a stub 
network, a separate physical wire may be unnecessary. However, a stub network is usu- 
ally an inexpensive way for an organization to protect itself against disruption of service 
on an internal production network. 

32.22 An Alternative Firewall Implementation 

The fuewall implementation in Figure 32.8 works well for an organization that has 
a single serial connection to the rest of the global Internet. Some sites have a different 
interconnection topology. For example, suppose a company has three or four large cus- 
tomers who each need to deposit or extract large volumes of information. The company 
wishes to have a single fmwall, but allow connections to multiple sitest. Figure 32.9 
illustrates one possible fuewall architecture that accommodates multiple external con- 
nections. 

bastion host - 
Figure 32.9 An alternative fuewall architecture that permits multiple external 

connections through a single fmwall. Using one firewall for 
multiple connections can reduce the cost. 

As the figure shows, the alternative architecture extends a firewall by providing an 
outer network at which external connections terminate. Router R, acts as in Figure 32.8 
to protect the site by restricting incoming datagrams to those sent from the bastion host. 
Routers R, through R, each connect one external site to the fmwall. 

To understand why fuewalls with multiple connections often use a router per con- 
nection, recall that all sites mistrust one another. That is, the organization running the 
firewall does not trust any of the external organizations completely, and none of the 
external organizations trust one another completely. The packet filter in a router on a 
given external connection can be configured to restrict traffic on that particular connec- 
tion. As a result, the owner of the firewall can guarantee that although all external con- 
nections share a single, common network, no datagram from one external connection 
will pass to another. Thus, the organization running the fuewall can assure customers 
that it is safe to connect. To summarize: 

?A single fuewall can be less expensive and easier to administrate than a separate f ~ e w a l l  per connection. 
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When multiple external sites connect through a single firewall, an ar- 
chitecture that has a router per external connection can prevent 
unwanted packet Pow from one external site to another. 

32.23 Monitoring And Logging 

Monitoring is one of the most important aspects of a firewall design. The network 
manager responsible for a firewall needs to be aware of attempts to bypass security. 
Unless a firewall reports incidents, a manager may be unaware of problems. 

Monitoring can be active or passive. In active monitoring, a firewall notifies a 
manager whenever an incident occurs. The chief advantage of active monitoring is 
speed - a manager finds out about a potential problem immediately. The chief disad- 
vantage is that active monitors often produce so much information that a manager can- 
not comprehend it or notice problems. Thus, most managers prefer passive monitoring, 
or a combination of passive monitoring with a few high-risk incidents also reported by 
an active monitor. 

In passive monitoring, a firewall logs a record of each incident in a file on disk. A 
passive monitor usually records information about normal traffic (e.g., simple statistics) 
as well as datagrams that are filtered. A manager can access the log at any time; most 
managers use a computer program. The chief advantage of passive monitoring arises 
from its record of events - a manager can consult the log to observe trends and when a 
security problem does occur, review the history of events that led to the problem. More 
important, a manager can analyze the log periodically (e.g., daily) to determine whether 
attempts to access the organization increase or decrease over time. 

32.24 Summary 

Security problems arise because an internet can c o ~ e c t  organizations that do not 
have mutual trust. Several technologies are available to help ensure that information 
remains secure when being sent across an internet. IPsec allows a user to choose 
between two basic schemes: one that provides authentication of the datagram and one 
that provides authentication plus privacy. IPsec modifies a datagram either by inserting 
an Authentication Header or by using an Encapsulating Security Payload, which inserts 
a header and trailer and encrypts the data being sent. IPsec provides a general frame- 
work that allows each pair of communicating entities to choose an encryption algorithm. 
Because security is often used with tunneling (e.g., in a VPN), IPsec defines a secure 
tunnel mode. 

The firewall mechanism is used to control internet access. An organization places 
a firewall at each external connection to guarantee that the organization's intranet 
remains free from unauthorized traffic. A firewall consists of two barriers and a secure 
computer called a bastion host. Each barrier uses a packet filter to restrict datagram 
traffk. The bastion host offers externally-visible servers, and runs proxy servers that al- 
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low users to access outside servers. The filters are configured according to the 
organization's information policy. Usually, the fuewall blocks all datagrams arriving 
from external sources except those datagrams destined for the bastion host. 

A firewall can be implemented in one of several ways; the choice depends on de- 
tails such as the number of external connections. In many cases, each barrier in a 
firewall is implemented with a router that contains a packet filter. A firewall can also 
use a stub network to keep external traffic off an organization's production networks. 

FOR FURTHER STUDY 

In the mid 1990s, the IETF announced a major emphasis on security, and required 
each working group to consider the security implications of its designs. Consequently, 
many RFCs address issues of internet security and propose policies, procedures, and 
mechanisms. Kent and Atkinson [RFC 24011 defines the IPsec architecture. Kent and 
Atkinson [RFC 24021 specifies the IPsec authentication header, and [RFC 24061 speci- 
fies the encapsulating security payload. 

Many RFCs describe security for particular application protocols. For example, 
Wijnen et. al. [RFC 25751 presents the view-based security and Blurnenthal and Wijnen 
[RFC 25741 presents a user-based security model, both are intended for use with 
SNMPv3. 

Cheswick and Bellovin [I9941 discusses firewalls and other topics related to the 
secure operation of TCP/IF' internets. Kohl and Neuman [RFC 15101 describes the ker- 
beros authentication service, and Borman [RFC 141 11 discusses how kerberos can be 
used to authenticate TELNET. 

EXERCISES 

Many sites that use a bastion host arrange for software to scan all incoming files before 
admitting them to the organization. Why do organizations scan files? 
Read the description of a packet filter for a commercially available router. What 
features does it offer? 
Collect a log of all tr&c entering your site. Analyze the log to determine the percen- 
tage of traffic that arrives from or is destined to a well-known protocol port. Do the 
results surprise you? 

If encryption software is available on your computer, measure the time required to en- 
crypt a 10 Mbyte file, transfer it to another computer, and decrypt it. Compare the result 
to the time required for the transfer if no encryption is used. 

Survey users at your site to determine if they send sensitive information in e-mail. Are 
users aware that SMTP transfers messages in ASCII, and that anyone watching network 
traffic can see the contents of an e-mail message? 
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32.6 Survey employees at your site to find out how many use modems and personal comput- 
ers to import or export information. Ask if they understand the organization's informa- 
tion policy. 

32.7 Can a fuewall be used with other protocol suites such as AppleTalk or Netware? Why 
or why not? 

32.8 Can a firewall be combined with NAT? What are the consequences? 
32.9 The military only releases information to those who "need to know." Will such a 

scheme work for all information in your organization? Why or why not? 
32.10 Give two reasons why the group of people who administer an organization's security 

policies should be separate from the group of people who administer the organization's 
computer and network systems. 

32.11 Some organizations use fuewalls to isolate groups of users internally. Give examples of 
ways that internal firewalls can improve network performance and examples of ways 
internal firewalls can degrade network performance. 

32.12 If your organization uses IPsec, find out which algorithms are being used. What is the 
key size? 



The Future Of TCP/IP 

33.1 Introduction 

Evolution of TCP/IP technology is intertwined with evolution of the global Internet 
for several reasons. First, the Internet is the largest installed TCPhP internet, so many 
problems related to scale arise in the Internet before they surface in other TCPIIP inter- 
nets. Second, funding for TCP/IP research and engineering comes from companies and 
government agencies that use the operational Internet, so they tend to fund projects that 
impact the Internet. Third, because most researchers use the global Internet daily, they 
have immediate motivation to solve problems that will improve service and extend 
functionality. 

With millions of users at tens of thousands of sites around the world depending on 
the global Internet as part of their daily work environment, it might appear that the In- 
ternet is a completely stable production facility. We have passed the early stage of 
development in which every user was also an expert, and entered a stage in which few 
users understand the technology. Despite appearances, however, neither the Internet nor 
the TCPhP protocol suite is static. Groups discover new ways to use the technology. 
Researchers solve new networking problems, and engineers improve the underlying 
mechanisms. In short, the technology continues to evolve. 

The purpose of this chapter is to consider the ongoing evolutionary process and ex- 
amine one of the most significant engineering efforts: a proposed revision of IP. When 
the proposal is adopted by vendors, it will have a major impact on TCP/TP and the glo- 
bal Internet. 
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33.2 Why Change? 

The basic TCPKP technology has worked well for over two decades. Why should 
it change? In a broad sense, the motivation revising the protocols arises from changes 
in underlying technologies and uses. 

New Computer And Communication Technologies. Computer and network 
hardware continues to evolve. As new technologies emerge, they are incorporat- 
ed into the Internet. 

New Applications. As programmers invent new ways to use TCPAP, additional 
protocol support is needed. For example, the emphasis on IP telephony has led 
to investigations of protocols for real-time data delivery. 

Increases In Size And Load. The global Internet has experienced many years of 
sustained exponential growth, doubling in size every nine months or faster. In 
1999, on the average, a new host appeared on the Internet every two seconds. 
Traffic has also increased rapidly as animated graphics and video proliferate. 

33.3 New Policies 

As it expands into new countries, the Internet changes in a fundamental way: it 
gains new administrative authorities. Changes in authority produce changes in adrninis- 
trative policies, and mandate new mechanisms to enforce those policies. As we have 
seen, both the architecture of the connected Internet and the protocols it uses are evolv- 
ing away from a centralized core model. Evolution continues as more national back- 
bone networks attach, producing increasingly complex policies regulating interaction. 
When multiple corporations interconnect private TCP/IP internets, they face similar 
problems as they try to define policies for interaction and then develop mechanisms to 
enforce those policies. Thus, many of the research and engineering efforts surrounding 
TCPnP continue to focus on finding ways to accommodate new administrative groups. 

33.4 Motivation For Changing IPv4 

Version 4 of the Internet Protocol (IPv4) provides the basic communication 
mechanism of the TCPnP suite and the global Internet; it has remained almost un- 
changed since its inception in the late 1970st. The longevity of version 4 shows that 
the design is flexible and powerful. Since the time IPv4 was designed, processor per- 
formance has increased over two orders of magnitude, typical memory sizes have in- 
creased by over a factor of 100, network bandwidth of the Internet backbone has risen 
by a factor of 7000, LAN technologies have emerged, and the number of hosts on the 

?Versions I through 3 were never formally assigned, and version number 5 was assigned to the ST proto- 
col. 
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Internet has risen from a handful to over 56 million. Furthermore, because the changes 
did not occur simultaneously, adapting to them has been a continual process. 

Despite its sound design, IPv4 must be replaced soon. Chapter 10 describes the 
main motivation for updating IP: the imminent address space limitations. When IP was 
designed, a 32-bit address space was more than sufficient. Only a handful of organiza- 
tions used a LAN; fewer had a corporate WAN. Now, however, most medium-sized 
corporations have multiple LANs, and most large corporations have a corporate WAN. 
Consequently, even with careful assignment and NAT technology, the current 32-bit IP 
address space cannot accommodate projected growth of the global Internet beyond the 
year 2020. 

Although the need for a larger address space is the most immediate motivation, 
other factors contributed to the new design. In particular, to make IP better suited to 
real-time applications, thought was given to supporting systems that associate a da- 
tagram with a preassigned resource reservation. To make electronic commerce safer, 
the next version of IP is designed to include support for security features such as au- 
thentication. 

33.5 The Road To A New Version Of IP 

It took many years for the IETF to formulate a new version of IP. Because the 
IETF produces open standards, it invited the entire community to participate in the pro- 
cess. Computer manufacturers, hardware and software vendors, users, managers, pro- 
grammers, telephone companies, and the cable television industry all specified their re- 
quirements for the next version of IP, and all commented on specific proposals. 

Many designs were proposed to serve a particular purpose or a particular commun- 
ity. One of the major proposals would have made IP more sophisticated at the cost of 
increased complexity and processing overhead. Another design proposed using a 
modification of the OSI CLNS protocol. A third major design proposed retaining most 
of the ideas in IP, but making simple extensions to accommodate larger addresses. The 
design, known as SIP? (Simple IP), became the basis for an extended proposal that in- 
cluded ideas from other proposals. The extended version was named Simple IP Plus 
(SIPP), and eventually emerged as the design selected as a basis for the next IP. 

Choosing a new version of IP was not easy. The popularity of the Internet means 
that the market for IP products around the world is staggering. Many groups see the 
economic opportunity, and hope that the new version of IP will help them gain an edge 
over the competition. In addition, personalities have been involved - some individuals 
hold strong technical opinions; others see active participation as a path to a promotion. 
Consequently, the discussions generated heated arguments. 

tThe acronym SIP now refers to the Session Initiation Protocol which is used for signaling (e.g., for IF' 
telephony). 
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33.6 The Name Of The Next IP 

The IETF decided to assign the revision of IP version number 6 and to name it 
IPv6-t to distinguish it from the current IPv4. The choice to skip version number 5 
arose after a series of mistakes and misunderstandings. In one mistake, the IAB caused 
widespread confusion by inadvertently publishing a policy statement that referred to the 
next version of IP as IP version 7. In a misunderstanding, an experimental protocol 
known as the Stream Protocol (ST) was assigned version number 5. The assignment 
led some to conclude that ST had been selected as the replacement for IP. In the end, 
the IETF chose 6 because doing so eliminated confusion. 

33.7 Features Of IPv6 

The proposed IPv6 protocol retains many of the features that contributed to the 
success of IPv4. In fact, the designers have characterized IPv6 as being basically the 
same as IPv4 with a few modifications. For example, rPv6 still supports connectionless 
delivery (i.e., each datagram is routed independently), allows the sender to choose the 
size of a datagram, and requires the sender to specify the maximum number of hops a 
datagram can make before being terminated. As we will see, IPv6 also retains most of 
the concepts provided by IPv4 options, including facilities for fragmentation and source 
routing. 

Despite many conceptual similarities, IPv6 changes most of the protocol details. 
For example, IPv6 uses larger addresses, and adds a few new features. More important, 
IPv6 completely revises the datagram format by replacing IPv4's variable-length options 
field by a series of fixed-format headers. We will examine details after considering ma- 
jor changes and the underlying motivation for each. 

The changes introduced by IPv6 can be grouped into seven categories: 

Larger Addresses. The new address size is the most noticeable 
change. IPv6 quadruples the size of an IPv4 address from 32 bits 
to 128 bits. The IPv6 address space is so large that it cannot be ex- 
hausted in the foreseeable future. 

Extended Address Hierarchy. IPv6 uses the larger address space to 
create additional levels of addressing hierarchy. In particular, P v 6  
can define a hierarchy of ISPs as well as a hierarchical structure 
within a given site. 

Flexible Header Format. IPv6 uses an entirely new and incompati- 
ble datagram format. Unlike the IPv4 fixed-format header, IPv6 
defines a set of optional headers. 

Improved Options. Like IPv4, IPv6 allows a datagram to include 
optional control information. IPv6 includes new options that pro- 
vide additional facilities not available in IPv4. 

?Some documents refer to the effort as "IP - The Next Generation," IPng. 
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Provision For Protocol Extension. Perhaps the most significant 
change in IPv6 is a move away from a protocol that fully specifies 
all details to a protocol that can permit additional features. The ex- 
tension capability has the potential to allow the IETF to adapt the 
protocol to changes in underlying network hardware or to new ap- 
plications. 

Support For Autoconfiguration And Renumbering. IPv6 provides 
facilities that allow computers on an isolated network to assign 
themselves addresses and begin communicating without depending 
on a router or manual configuration. The protocol also includes a 
facility that permits a manager to renumber networks dynamically. 

Support For Resource Allocation. IPv6 has two facilities that per- 
mit preallocation of network resources: a flow abstraction and a 
differentiated service specification. The latter will use the same ap- 
proach as IPv4's differentiated services. 

33.8 General Form Of An IPv6 Datagram 

IPv6 completely changes the datagram format. As Figure 33.1 shows, an IPv6 da- 
tagram has a fixed-size base header followed by zero or more extension headers, fol- 
lowed by data. 

Header Header 1 
Extension I Header N I DATA. . . 

Figure 33.1 The general form of an IPv6 datagram with multiple headers. 
Only the base header is required; extension headers are optional. 

33.9 IPv6 Base Header Format 

Interestingly, although it must accommodate larger addresses, an IPv6 base header 
contains less information than an IPv4 datagram header. Options and some of the fixed 
fields that appear in an IPV4 datagram header have been moved to extension headers in 
IPv6. In general, the changes in the datagram header reflect changes in the protocol: 

Alignment has been changed from 32-bit to 64-bit multiples. 
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The header length field has been eliminated, and the datagram 
length field has been replaced by a PAYLOAD LENGTH field. 

The size of source and destination address fields has been increased 
to 16 octets each. 

Fragmentation information has been moved out of fmed fields in 
the base header into an extension header. 

The TIME-TO-LIVE field has been replaced by a HOP LIMIT field. 

The SERVICE TYPE is renamed to be a TRAFFIC CLASS field, 
and extended with a FLOW LABEL field. 

The PROTOCOL field has been replaced by a field that specifies 
the type of the next header. 

Figure 33.2 shows the contents and format of an IPv6 base header. Several fields 
in an IPv6 base header correspond directly to fields in an IPv4 header. As in IPv4 the 
initial 4-bit VERS field specifies the version of the protocol; VERS always contains 6 in 
an IPv6 datagram. As in IPv4, the SOURCE ADDRESS and DESTINATION ADDRESS 
fields specify the addresses of the sender and intended recipient. In IPv6, however, 
each address requires 16 octets. The HOP LIMIT field corresponds to the IPv4 TIME- 
TO-LIVE field. Unlike IPv4, which interprets a time-to-live as a combination of hop- 
count and maximum time, IPV6 interprets the value as giving a strict bound on the max- 
imum number of hops a datagram can make before being discarded. 

I VERS I TRAFFIC CLASS I FLOW LABEL I 
I PAYLOAD LENGTH I NEXTHEADER I HOP LIMIT I 

SOURCE ADDRESS 

- - 
- DESTINATION ADDRESS - 
- - 

Figure 33.2 The format of the 40-octet IPv6 base header. Each 1-6 da- 
tagram begins with a base header. 
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IPv6 handles datagram length specifications in a new way. First, because the size 
of the base header is fixed at 40 octets, the base header does not include a field for the 
header length. Second, IPv6 replaces IPv4's datagram length field by a 16-bit PAY- 
LOAD LENGTH field that specifies the number of octets carried in the datagram ex- 
cluding the header itself. Thus, an IPV6 datagram can contain 64K octets of data. 

Two fields in the base header are used in making forwarding decisions. The IPv4 
SERVICE CLASS field has been renamed TRAFFIC CLASS. In addition, a new 
mechanism in IPv6 supports resource reservation and allows a router to associate each 
datagram with a given resource allocation. The underlying abstraction, a flow, consists 
of a path through an internet along which intermediate routers guarantee a specific qual- 
ity of service. Field FLOW LABEL in the base header contains information that routers 
use to associate a datagram with a specific flow and priority. For example, two applica- 
tions that need to send video can establish a flow on which the delay and bandwidth is 
guaranteed. Alternatively, a network provider may require a subscriber to specify the 
quality of service desired, and then use a flow to limit the traffic a specific computer or 
a specific application sends. Note that flows can also be used within a given organiza- 
tion to manage network resources and ensure that all applications receive a fair share. 
A router uses the combination of datagram source address and flow identifier when as- 
sociating a datagram with a specific flow. To summarize: 

Each IPv6 datagram begins with a 40-octet base header that includes 
$elds for the source and destination addresses, the maximum hop lim- 
it, the trafic class, the flow label, and the type of the next header. 
Thus, an IPv6 datagram must contain at least 40 octets in addition to 
the data. 

33.1 0 IPv6 Extension Headers 

The paradigm of a fixed base header followed by a set of optional extension 
headers was chosen as a compromise between generality and efficiency. To be totally 
general, IPv6 needs to include mechanisms to support functions such as fragmentation, 
source routing, and authentication. However, choosing to allocate fixed fields in the da- 
tagram header for all mechanisms is inefficient because most datagrams do not use all 
mechanisms; the large IPv6 address size exacerbates the inefficiency. For example, 
when sending a datagram across a single local area network, a header that contains 
empty address fields can occupy a substantial fraction of each frame. More important, 
the designers realize that no one can predict which facilities will be needed. 

The IPV6 extension header paradigm works similar to IPv4 options - a sender can 
choose which extension headers to include in a given datagram and which to omit. 
Thus, extension headers provide maximum flexibility. We can summarize: 
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IPv6 extension headers are similar to IPv4 options. Each datagram 
includes extension headers for only those facilities that the datagram 
uses. 

33.1 1 Parsing An IPv6 Datagram 

Each of the base and extension headers contains a NEXT HEADER field. Software 
on intermediate routers and at the final destination that process a datagram use the 
values in the NEXT HEADER fields to parse the datagram. Extracting all header infor- 
mation from an IPv6 datagram requires a sequential search through the headers. For ex- 
ample, Figure 33.3 shows the NEXT HEADER fields of three datagrams that contain 
zero, one, and two extension headers. 

I Base Header Route Header 
NEXT=ROUTE I NEXT=TCP 

I TCP Segment I 

Base Header 
NEXT=TCP 

Figure 333 Three datagrams with (a) only a base header, (b) a base header 
and one extension, and (c) a base header plus two extensions. 
The NEXT HEADER field in each header specifies the type of 
the following header. 

TCP Segment 

Of course, parsing an IPv6 datagram that only has a base header and data is as effi- 
cient as parsing an IPv4 datagram. Furthermore, intermediate routers only need to ex- 
amine the hop-by-hop extension header; only endpoints process other extension headers. 
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33.1 2 IPv6 Fragmentation And Reassembly 

As in IPv4, IPv6 arranges for the ultimate destination to perfornl datagram 
reassembly. However, the designers chose to make changes that avoid fragmentation by 
routers. Recall that IPv4 requires an intermediate router to fragment any datagram that 
is too large for the MTU of the network over which it must travel. In IPv6, fragmenta- 
tion is end-toend; no fragmentation needs to occur in intermediate routers. The source, 
which is responsible for fragmentation, has two choices: it can either use the guaranteed 
minimum MTU of 1280 octets or perform Path MTU Discovery to identify the minimum 
MTU along the path to the destination. In either case, the source fragments the da- 
tagram so that each fragment is less than the expected path MTU. 

The IPv6 base header does not contain fields analogous to the fields used for frag- 
mentation in an IPv4 header. Instead, when fragmentation is needed, the source inserts 
a small extension header after the base header in each fragment. Figure 33.4 shows the 
contents of a Fragment Extension Header. 

NEXT HEADER 1 RESERVED I FRAG. OFFSET 1 RS IM 
DATAGRAM IDENTIFICATION 

Figure 33.4 The fomlat of a Fragment Extension Header. 

IPv6 retains the basic IPv4 fragmentation functionality. Each fragment must be a 
multiple of 8 octets, the single bit in the M field marks the last fragment like the IPv4 
MORE FRAGMENTS bit, and the DATAGRAM IDENTIFICATION field carries a 
unique ID that the receiver uses to group fragments?. Finally, field RS is currently 
reserved; the two bits are set to zero on transmission and ignored by the receiver. 

33.1 3 The Consequence Of End-To-End Fragmentation 

The motivation for using end-to-end fragmentation lies in its ability to reduce over- 
head in routers and permit each router to handle more datagrams per unit time. Indeed, 
the CPU overhead required for IPv4 fragmentation can be significant - in a conven- 
tional router, the CPU can reach 100% utilization if the router fragments many or all of 
the datagrams it receives. However, end-to-end fragmentation has an important conse- 
quence: it alters the fundamental IPv4 assumption that routes change dynamically. 

To understand the consequence of end-to-end fragmentation, recall that IPv4 is 
designed to permit routes to change at any time. For example, if a network or router 
fails, traffic can be routed along a different path. The chief advantage of such a system 
is flexibility - traffic can be routed along an alternate path without disrupting service 
and without informing the source or destination. In IPv6 however, routes cannot be 

tIPv6 expands the IF'v4 IDENTIFICATION field to 32 bits to accommodate higher speed networks. 
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changed as easily because a change in a route can also change the path MTU. If the 
path MTU along a new route is less than the path MTU along the original route, either 
an intermediate router must fragment the datagram or the original source must be in- 
formed. The problem can be summarized: 

An internet protocol that uses end-to-end fragmentation requires a 
sender to discover the path MTU to each destination, and to fragment 
any outgoing datagram that is larger than the path MTU. End-to-end 
fragmentation does not accommodate route changes. 

To solve the problem of route changes that affect the path MTU, IPv6 includes a 
new ICMP error message. When a router discovers that fragmentation is needed, it 
sends the message back to the source. When it receives such a message, the source per- 
forms another path MTU discovery to determine the new minimum MTU, and then 
fragments datagrams according to the new value. 

33.14 IPv6 Source Routing 

I h 6  retains the ability for a sender to specify a loose source route. Unlike IPv4, 
in which source routing is provided by options, IPv6 uses a separate extension header. 
As Figure 33.5 shows, the first four fields of the Routing Header are fixed. Field 
ROUTING TYPE specifies the type of routing information; the only type that has been 
defined, type 0, corresponds to loose source routing. The TYPE-SPECIFIC DATA field 
contains a list of addresses of routers through which the datagram must pass. Field 
SEG LEFT specifies the total number of addresses that remain in the list. Finally field 
HDR EXT LEN specifies the size of the Routing Header. 

0 8 16 24 31 

I NEXT HEADER I HDR EXT LEN 1 ROUTING TYPE I SEG LEFT I 

TYPE-SPECIFIC DATA 

Figure 33.5 The format of an IPv6 Routing Header. Only type 0 (loose 
source route) is currently defined. 
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33.15 IPv6 Options 

It may seem that IPv6 extension headers completely replace IPv4 options. Howev- 
er, the designers propose two additional extension headers to accommodate rniscellane- 
ous information not included in other extension headers. The additional headers are a 
Hop By Hop Extension Header and an End To End Extension Header. As the names 
imply, the two headers separate the set of options that should be examined at each hop 
from the set that are only interpreted at the destination. 

Although each of the two option headers has a unique type code, both headers use 
the format illustrated in Figure 33.6. 

ONE OR MORE OPTIONS 

Figure 33.6 The format of an IPv6 option extension header. Both the hop- 
by-hop and end-to-end option headers use the same fom~at; the 
NEXT HEADER field of the previous header distinguishes 
between the two types. 

As usual, field NEXT HEADER gives the type of the header that follows. Because 
an option header does not have fixed size, the field labeled HEADER LEN specifies the 
total length of the header. The area labeled ONE OR MORE OPTIONS represents a se- 
quence of individual options. Figure 33.7 illustrates how each individual option is en- 
coded with a type, length, and value?; options are not aligned or padded. 

Figure 33.7 Encoding of an individual option in an IPv6 option extension 
header. Each option consists of a one-octet type and a one-octet 
length followed by zero or more octets of data for the option. 

0 8 16 

As the figure shows, IPv6 options follow the same form as IPv4 options. Each op- 
tion begins with a one-octet TYPE field followed by a one-octet LENGTH field. If the 
option requires additional data, octets that comprise the VALUE follow the LENGTH. 

tIn the literature, an encoding of type, length, and value is sometimes called a TLV encoding. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  TYPE LENGTH 



610 The Future Of TCPm (IPv6) Chap. 33 

The two high-order bits of each option TYPE field specify how a host or router 
should dispose of the datagram if it does not understand the option: 

Bits In Type Meaning 
00 Skip this option 
01 Discard datagram; do not send ICMP message 
10 Discard datagram; send ICMP message to source 
11 Discard datagram; send ICMP for non-multicast 

In addition, the third bit in the TYPE field specifies whether the option can change 
in transit. Having such information is important for authentication - the contents of an 
option that can change in transit are treated as zeroes for purposes of authentication. 

33.1 6 Size Of The IPv6 Address Space 

In IPv6 each address occupies 16 octets, four times the size of an IPv4 address. 
The large address space guarantees that IPv6 can tolerate any reasonable address assign- 
ment scheme. In fact, if the designers decide to change the addressing scheme later, the 
address space is sufficiently large to accommodate a reassignment. 

It is difficult to comprehend the size of the IPv6 address space. One way to look 
at it relates the magnitude to the size of the population: the address space is so large 
that every person on the planet can have sufficient addresses to have their own internet 
as large as the current Internet. A second way to think of IPv6 addressing relates it to 
the physical space available: the earth's surface has approximately 5.1 x 10' square ki- 
lometers, meaning that there are over addresses per square meter of the earth's sur- 
face. Another way to understand the size relates it to address exhaustion. For example, 
consider how long it would take to assign all possible addresses. A 16-octet integer can 
hold 2'28 values. Thus, the address space is greater than 3.4 x 10". If addresses are as- 
signed at the rate of one million addresses every microsecond, it would take over 1020 
years to assign all possible addresses. 

33.17 IPv6 Colon Hexadecimal Notation 

Although it solves the problem of having insufficient capacity, the large address 
size poses an interesting new problem: humans who maintain internets must read, enter, 
and manipulate such addresses. Obviously, binary notation is untenable. However, the 
dotted decimal notation used for IPv4 does not make such addresses sufficiently com- 
pact either. To understand why, consider an example 128-bit number expressed in dot- 
ted decimal notation: 
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To help make address slightly more compact and easier to enter, the IPv6 designers 
propose using colon hexadecimal notation (abbreviated colon hex) in which the value of 
each 16-bit quantity is represented in hexadecimal separated by colons. For example, 
when the value shown above in dotted decimal notation has been translated to colon hex 
nqtation and printed using the same spacing, it becomes: 

Colon hex notation has the obvious advantage of requiring fewer digits and fewer 
separator characters than dotted decimal. In addition, colon hex notation includes two 
techniques that make it extremely useful. First, colon hex notation allows zero 
compression in which a string of repeated zeros is replaced by a pair of colons. For ex- 
ample, the address: 

FF05:0:0:0:0:0:0:B3 

can be written: 

To ensure that zero compression produces an unambiguous interpretation, the pro- 
posal specifies that it can be applied only once in any address. Zero compression is 
especially useful when used with the proposed address assignment scheme because 
many addresses will contain contiguous strings of zeros. Second, colon hex notation in- 
corporates dotted decimal suffies; we will see that such combinations are intended to 
be used during the transition from IPv4 to IPv6. For example, the following string is 
valid colon hex notation: 

Note that although the numbers separated by colons each specify the value of a 
16-bit quantity, numbers in the dotted decimal portion each specify the value of one oc- 
tet. Of course, zero compression can be used with the number above to produce an 
equivalent colon hex string that looks quite similar to an IPv4 address: 

Finally, IPv6 extends CIDR-like notation by allowing an address to be followed by 
a slash and an integer that specifies a number of bits. For example, 

specifies the first 60 bits of the address or 12ABOOOOOOOOCD3 in hexadecimal. 
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33.18 Three Basic IPv6 Address Types 

Like IPv4, IPv6 associates an address with a specific network connection, not with 
a specific computer. Thus, address assignments are similar to IPv4: an IPv6 router has 
two or more addresses, and an IPv6 host with one network connection needs only one 
address. IPv6 also retains (and extends) the IPv4 address hierarchy in which a physical 
network is assigned a prefix. However, to make address assignment and modification 
easier, IPv6 permits multiple prefixes to be assigned to a given network, and allows a 
computer to have multiple, simultaneous addresses assigned to a given interface. 

In addition to permitting multiple, simultaneous addresses per network connection, 
IPv6 expands, and in some cases unifies, IPv4 special addresses. In general, a destina- 
tion address on a datagram falls into one of three categories: 

Unicast The destination address specifies a single computer (host 
or router); the datagram should be routed to the destination 
along a shortest path. 

Anycast The destination is a set of computers, possibly at different 
locations, that all share a single address; the datagram 
should be routed along a shortest path and delivered to ex- 
actly one member of the group (i.e., the closest member)?. 

Multicast The destination is a set of computers, possibly at multiple 
locations. One copy of the datagram will be delivered to 
each member of the group using hardware multicast or 
broadcast if viable. 

33.19 The Duality Of Broadcast And Multicast 

IPv6 does not use the terms broadcast or directed broadcast to refer to delivery to 
all computers on a physical network or to a logical IP subnet. Instead, it uses the term 
multicast, and treats broadcast as a special form of multicast. The choice may seem odd 
to anyone who understands network hardware because more hardware technologies sup- 
port broadcast than support multicast. In fact, a hardware engineer is likely to view 
multicasting as a restricted form of broadcasting - the hardware sends a multicast 
packet to all computers on the network exactly like a broadcast packet, and the interface 
hardware on each computer filters all multicast packets except those that software has 
instructed the interface hardware to accept. 

In theory, the choice between multicast and limited forms of broadcast is irrelevant 
because one can be simulated with the other. That is, broadcasting and multicasting are 
duals of one another that provide the same functionality. To understand why, consider 
how to simulate one with the other. If broadcast is available, a packet can be delivered 
to a group by sending it to all machines and arranging for software on each computer to 
decide whether to accept or discard the incoming packet. If multicast is available, a 

?Anycast addresses were formerly known as cluster addresses. 
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packet can be delivered to all machines by arranging for all machines to listen to one 
multicast group similar to the all hosts group discussed in Chapter 17. 

33.20 An Engineering Choice And Simulated Broadcast 

Knowing that broadcasting and multicasting are theoretical duals of one another 
does not help choose between them. To see why the designers of IPv6 chose multicast- 
ing as the central abstraction instead of broadcasting, consider applications instead of 
looking at the underlying hardware. An application either needs to communicate with a 
single application or with a group of applications. Direct communication is handled 
best via unicast; group communication is handled best by multicast or broadcast. To 
provide the most flexibility, group membership should not be determined by network 
connections, because group members can reside at arbitrary locations. Using broadcast 
for all group communication does not scale to handle an internet as large as the global 
Internet. 

Not surprisingly, the designers pre-define some multicast addresses that can be 
used in place of an IPv4 network broadcast address. Thus, in addition to its own uni- 
cast address, each router is required to accept packets addressed to the A11 Routers mul- 
ticast groups for its local environment. 

33.21 Proposed IPv6 Address Space Assignment 

The question of how to partition the IPv6 address space has generated much dis- 
cussion. There are two central issues: how to manage address assignment and how to 
map an address to a route. The first issue focuses on the practical problem of devising 
a hierarchy of authority. Unlike the current Internet, which uses a two-level hierarchy 
of network prefix (assigned by the Internet authority) and host suffix (assigned by the 
organization), the large address space in IPv6 permits a multi-level hierarchy or multi- 
ple hierarchies. The second issue focuses on computational efficiency. Independent of 
the hierarchy of authority that assigns addresses, a router must examine each datagram 
and choose a path to the destination. To keep the cost of high-speed routers low, the 
processing time required to choose a path must be kept small. 

As Figure 33.8 shows, the designers of IPv6 propose assigning address classes in a 
way similar to the scheme used for Pv4.  Although the first 8 bits of an address are 
sufficient to identify its type, the address space is not partitioned into sections of equal 
size. 
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Binary Prefix Type Of Address Part Of Address Space 
Resewed (IPv4 compatibility) 
Unassigned 
NSAP Addresses 
IPX Addresses 
Unassigned 
Unassigned 
Unassigned 
Aggregatable Global Unicast 
Unassigned 
Unassigned 
Unassigned 
Unassigned 
Unassigned 
Unassigned 
Unassigned 
Unassigned 
Unassigned 
Unassigned 
Link-Local Unicast Addresses 
Site-Local Unicast Addresses 
Multicast Addresses 

Figure 33.8 The proposed division of IPV6 addresses into types, which are 
analogous to Pv4 classes. As in IPV4, the prefix of an address 
determines its address type. 

As the figure shows, only 15% of the address space has been assigned at present. 
The IETF will use the remaining portions as demand grows. Despite the sparse assign- 
ment, addresses have been chosen to make processing more efficient. For example, the 
high-order octet of an address distinguishes between multicast (all 1 bits) and unicast (a 
mixture of 0's and 1's). 

33.22 Embedded IPv4 Addresses And Transition 

Although the prefm 0000 0000 is labeled Resewed in the figure, the designers plan 
to use a small fraction of addresses in that section to encode IPv4 addresses. In particu- 
lar, any address that begins with 80 zero bits followed by 16 bits of all ones or 16 bits 
of all zeros contains an Wv4 address in the low-order 32 bits. The value of the 16-bit 
field indicates whether the node also has a conventional IPv6 unicast address. Figure 
33.9 illustrates the two forms. 
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1-80 zero bits-116 bi tsl -32 bi ts- I  

1 0000 . . . . . . . . . . . . . . . . . .  W O O  I 0000 I lPv4 Address 1 
0000. . . . . . . . . . . . . . . . .  .WOO 1 FFFF I IPv4 Address 

Figure 33.9 The encoding of an IPv4 address in an IPv6 address. The 16-bit 
field contains 0000 if the node also has a conventional IPv6 ad- 
dress, and FFFF if it does not. 

The encoding will be needed during a transition from IPv4 to IPv6 for two reasons. 
First, a computer may choose to upgrade from IPv4 to IPv6 software before it has been 
assigned a valid IPv6 address. Second, a computer running IPv6 software may need to 
communicate with a computer that runs only IPv4 software. 

Having a way to encode an IPv4 address in an IPv6 address does not solve the 
problem of making the two version interoperate. In addition to address encoding, trans- 
lation is needed. To use a translator, an IPv6 computer generates a datagram that con- 
tains the IPv6 encoding of the IPv4 destination address. The IPv6 computer sends the 
datagram to a translator, which uses IPv4 to communicate with the destination. When 
the translator receives a reply from the destination, it translates the IPv4 datagram to 
IPv6 and sends it back to the IPv6 source. 

It may seem that translating protocol addresses could fail because higher layer pro- 
tocols verify address integrity. In particular, TCP and UDP, use a pseudo header in 
their checksum computation. The pseudo header includes both the source and destina- 
tion protocol addresses, so changing such addresses could affect the computation. How- 
ever, the designers planned carefully to allow TCP or UDP on an IPv4 machine to com- 
municate with the corresponding transport protocol on an IPv6 machine. To avoid 
checksum mismatch, the IPv6 encoding of an IPv4 address has been chosen so that the 
16-bit 1's complement checksum for both an IPv4 address and the IPv6 encoding of the 
address are identical. The point is: 

In addition to choosing technical details of a new Internet Protocol, 
the IETF work on IPv6 has focused on finding a way to transition 
from the current protocol to the new protocol. In particular, the 
current proposal for IPv6 allows one to encode an IPv4 address in- 
side an IPv6 address such that address translation does not change 
the pseudo header checksum. 
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33.23 Unspecified And Loopback Addresses 

As in IPv4, a few IPv6 addresses have been assigned special meaning. For exam- 
ple, the all 0's address: 

is an unspecified address which cannot be assigned to any computer or used as a desti- 
nation. It is only used as a source address during bootstrap by a computer that has not 
yet learned its address. 

Like IPv4, IPv6 also has a loopback address that is used for testing software. The 
IPv6 loopback address is: 

Any datagram sent to the loopback address will be delivered to the local machine; it 
must never be used as a destination address on an outgoing datagram. 

33.24 Unicast Address Hierarchy 

One of the most important changes between IPv4 and IPv6 arises from the alloca- 
tion strategy used for unicast addresses and the resulting address hierarchy. Recall that 
the original IPv4 addressing scheme used a two-level hierarchy in which an address is 
divided into a globally unique prefix and a suffi .  IPv6 extends the concept by adopt- 
ing an address hierarchy with three conceptual levels as Figure 33.10 illustrates. 

Level Purpose 
1 Globally-known public topology 
2 Individual site 
3 Individual network interface 

Figure 33.10 The three conceptual levels of the Pv6  unicast address hierar- 
chy. In practice, an address has additional structure. 

The two lowest levels of the conceptual hierarchy are easiest to understand because 
they correspond to identifiable entities. The lowest level corresponds to a single attach- 
ment between a computer and a network. The middle level of the hierarchy 
corresponds to a set of computers and networks located at a site, which implies both 
contiguous physical co~ect ivi ty and a single organization that owns and operates the 
equipment. We will see that the addressing scheme accommodates both large and small 
sites, and allows a site to have complex internal structure. 
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To provide flexibility, the top level of the hierarchy, which is labeled public topol- 
ogy, is not precisely defined. In general, one can think of the public topology as a 
"section" of the global Internet that is available for public access. Two types of public 
topology are envisioned. The first type corresponds to a major Internet Service Provid- 
er (ISP) that provides long-haul service to customers, which are known as subscribers. 
The second type, which is called an exchange, is a newly envisioned organization. Ac- 
cording to the designers, exchanges will provide two functions. First, an exchange will 
operate like a NAP to intercomect major ISPs and pass traffic among them. Second, 
unlike current NAPS, exchanges will also service individual subscribers, which means 
that the exchange will assign the subscriber an address. The chief advantage of an ad- 
dress assigned by an exchange is that the address will not specify an ISP. Thus, a sub- 
scriber will be free to move from one ISP to another. 

33.25 Aggregatable Global Unicast Address Structure 

Authority for IPv6 address assignment flows down the hierarchy. Each top-level 
organization (e.g., an ISP or exchange) is assigned a unique prefm. When an organiza- 
tion becomes a subscriber of a top-level ISP, the organization is assigned a unique 
number for its site. Finally, a manager must assign a number to each network comec- 
tion. To make routing efficient, successive sets of bits in the address are reserved for 
each assignment. Figure 33.1 1 illustrates the format, which is known as a aggregatable 
global unicast address format. 

top , , site +. third 
level level level 

. , 

Figure 33.11 The division of an IPV6 aggregatable global unicast address into 
separate fields along with an indication of how those fields 
correspond to the three-level hierarchy. 

The 3-bit field labeled P in the figure corresponds to the fonnat prefi, which is 
001 for an aggregatable global unicast address. The &bit RES field is reserved for the 
future and contains zeroes. Remaining fields in the address are arranged to make rout- 
ing efficient. In particular, fields that correspond to the highest level of the hierarchy 
are grouped together to comprise the most significant bits of the address. Field TLA ID 
contains an identifier used for Top-Level Aggregation (i.e., a unique identifier assigned 
to the ISP or exchange that owns the address). The owner of the address uses field 
N U  to provide Next-Level Aggregation (e.g., to identify a particular subscriber). 

TLA 
ID 

SLA 
ID INTERFACE ID RES NLA 

ID 
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The 16-bit field labeled SLA ID (Site-Level Aggregation) is available for a specific 
site to use. The designers envision it being used much like an IPv4 subnet field. Thus, 
a site with only a few networks can choose to treat the field as a network identifier, and 
a site that has many networks can use the field to partition networks into groups which 
can then be arranged in a hierarchy. To create a one-level hierarchy at the site, the or- 
ganization must use a prefm to identify the group and a suffvr to identify a particular 
network in the group. As with IPv4 subnetting, the division into groups improves rout- 
ing efficiency because a routing table only contains routes to each of the other groups 
rather than to each individual network. 

33.26 Interface Identifiers 

As Figure 33.1 1 shows, the low-order 64 bits of an IPv6 aggregatable unicast ad- 
dress identifies a specific network interface. Unlike IPv4, however, the IPV6 suffix was 
chosen to be large enough to accommodate a direct encoding of the interface hardware 
address. Encoding a hardware address in an IP address has two consequences. First, 
IPv6 does not use ARP to resolve an IP address to a hardware address. Instead, IPv6 
uses a neighbor discovery protocol available with a new version of ICMP (ICMPV6) to 
allow a node to determine which computers are its directly c o ~ e c t e d  neighbors. 
Second, to guarantee interoperability, all computers must use the same encoding for a 
hardware address. Consequently, the IPv6 standards specify exactly how to encode 
various forms of hardware address. In the simplest case, the hardware address is placed 
directly in the IPv6 address; some formats use more complex transformations. 

Two example encodings will help clarify the concept. For example, IEEE defines 
a standard 64-bit globally unique address format known as EUI-64. The only change 
needed when encoding an EUI-64 address in an IPv6 address consists of inverting bit 6 
in the high-order octet of the address, which indicates whether the address is known to 
be globally unique. 

A more complex change is required for a conventional 48-bit Ethernet address. 
Figure 33.12 illustrates the encoding. As the figure shows, bits from the original ad- 
dress are not contiguous in the encoded form. Instead, 16 bits with hexadecimal value 
OXFFFE are inserted in the middle. In addition, bit 6, which indicates whether the ad- 
dress has global scope, is changed from 0 to 1. Remaining bits of the address, includ- 
ing the group bit (labeled g), the ID of the company that manufactured the interface (la- 
beled c), and the manufacturer's extension are copied as shown. 
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0 8 24 47 

cccccOgccccccccccccccc man. ext. 

cccccclgccccccccccccccc 111111111111110 man. ext. - 
Figure 33.12 (a) The format of a 48-bit IEEE 802 address used with Ethernet, 

with bits labeled c specifying the company that manufactured 
the interface and bits in the man. ex?. field specifying an exten- 
sion the manufacturer chose to uniquely identify the unit, and 
(b) the encoding of the address in the low order 64 bits of an 
Pv6 unicast address. 

33.27 Additional Hierarchy 

Although the unicast address format in Figure 33.1 1 implies a strict hierarchy, 
many additional levels are possible. For example, bits of the NLA ID can be used to 
create a hierarchy of providers. Similarly, the 16-bit SLA ID can be divided to create a 
hierarchy within an organization. The large number of bits provides more flexibility 
than IPv4 subnetting. An organization can choose to divide into a two-level hierarchy 
of areas and assign subnets within each area. Alternatively, an organization can choose 
a three-level hierarchy of areas, subareas, and subnets within each subarea. 

33.28 Local Addresses 

In addition to the global unicast addresses described above, IPv6 includes prefixes 
for unicast addresses that have local scope. As Figure 33.8 shows, the standard defines 
two types: a link-local address is restricted to a single network, and a site-local address 
is restricted to a single site. Routers honor the scoping rules; they do not forward da- 
tagrams containing locally-scoped addresses outside the specified scope. 

Local addresses solve two problems. Link-local addresses provide communication 
across a single physical network without danger of the datagram being forwarded across 
the internet. For example, when it performs neighbor discovery, an IPv6 node uses a 
link-local address. The scope rules specify that only computers on the same physical 
network as the sender will receive neighbor discovery messages. Similarly, computers 
co~ec ted  to an isolated network (i.e., a network that does not have routers attached) 
can use link-local addresses to communicate. 
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Unlike a datagram containing link-local addresses, routers can forward datagrams 
containing site-local addresses throughout an entire organization. However, routers are 
prohibited from forwarding such datagrams to the global Internet. Thus, site-local ad- 
dresses correspond to what IPv4 calls private or nonroutable addresses. An organiza- 
tion can assign and use site-local addresses throughout its private intranet without ob- 
taining and assigning globally unique prefixes. 

33.29 Autoconfiguration And Renumbering 

IPv6 is designed to support serverless autoconfigurationt that allows computers to 
communicate without requiring a manager to specify an address. Two facilities dis- 
cussed above make autoconfiguration possible and efficient: link-local addressing and 
embedded interface identifiers. To begin, a computer generates a link-local address by 
combining the link-local prefix: 

with 54 zero bits and its &bit interface identifier. 
Once it verifies that the link-local address is unique, a computer uses the address to 

send a router solicitation that requests additional information from a router. If a router 
is present on the network, the router responds by sending a router advertisement to in- 
form the computer about prefmes that can be used for site-local or global addresses. 
When a router advertisement arrives, the computer makes the sender its default router. 
Finally, a flag in the advertisement tells the computer whether to rely on autoconfigura- 
tion or to use a conventional managed configuration (i.e., DHCP). 

To facilitate network renumbering, IPv6 allows routers to limit the time a comput- 
er can retain a prefix. To do so, a router advertisement specifies two time values for 
each prefix: a valid lifetime and a preferred lifetime. A host must listen for additional 
router advertisements. When the preferred lifetime of a prefix expires, the prefm 
remains valid, but the host must use another prefix for all communication when possi- 
ble. When the valid lifetime expires, the host must stop using the prefix, even if exist- 
ing communication is in progress. 

33.30 Summary 

The IETF has defined a next generation of the Internet Protocol which is known as 
IPv6 because it has been assigned version number 6. IPv6 retains many of the basic 
concepts from the current protocol, IPv4 but changes most details. Like IPv4, IPv6 
provides a connectionless, best-effort datagram delivery service. However, the IPv6 da- 
tagram format differs from the IPv4 format, and IPv6 provides new features such as au- 
thentication and support for flow-labeling. 

IPv6 organizes each datagram as a series of headers followed by data. A datagram 
always begins with a 40-octet base header, which contains source and destination ad- 

tServerless autoconfiguration is also called stateless autoconfiguration. 



Sec. 33.30 Summary 62 1 

dresses, a traffic class, and a flow identifier. The base header may be followed by zero 
or more extension headers, followed by data. Extension headers are optional - IPv6 
uses them to hold much of the information IPv4 encodes in options. 

An IPv6 address is 128 bits long, making the address space so large that the space 
cannot be exhausted in the foreseeable future. IPv6 uses address prefixes to determine 
the location and interpretation of remaining address fields. In addition to traditional un- 
icast and multicast addresses, IPv6 also defines anycast addresses. A single anycast ad- 
dress can be assigned to a set of computers; a datagram sent to the address is delivered 
to exactly one computer in the set (i.e., the computer closest to the source). 

IPv6 supports autoconfiguration and renumbering. Each host on an isolated net- 
work generates a unique link-local address which it uses for cornrnunication. The host 
also uses the link-local address to discover routers and obtain site-local and global pre- 
fur information. To facilitate renumbering, all prefixes are assigned a lifetime; a host 
must use a new prefix if the lifetime on an existing prefix expires. 

FOR FURTHER STUDY 

Many RFCs have appeared that contain information pertinent to IPv6. Deering and 
Hinden [RFC 24601 specifies the basic protocol. Thomson and Narten [RFC 24621 
describes stateless address autoconfiguration. Narten, Nordrnark, and Simpson [RFC 
24611 discusses neighbor discovery. Conta and Deering [RFC 24631 specifies ICMPv6 
as a companion to IPv6. Crawford [RFC 24641 describes encapsulation of IPv6 for 
transmission over Ethernet networks. 

Many RFCs focus on IPv6 addressing. Hinden and Deering [RFC 23731 describes 
the basic addressing architecture including the meanings of prefixes. Hinden, O'Dell, 
and Deering [RFC 23741 considers the aggregatable global unicast address format. Hin- 
den and Deering [RFC 23751 specifies multicast address assignments. Johnson and 
Deering [RFC 25261 describes reserved anycast addresses. Information about the 64-bit 
EUI format can be found in: 

EXERCISES 

33.1 The current standard for IPv6 has no header checksum. What are the advantages and 
disadvantages of this approach? 

33.2 How should extension headers be ordered to minimize processing time? 

33.3 Although IPv6 addresses are assigned hierarchically, a router does not need to parse an 
address completely to select a route. Devise an algorithm and data structure for efficient 
routing. (Hint: consider a longest-match approach.) 
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Argue that 128-bit addresses are larger than needed, and that 96 bits provides sufficient 
capacity. 
Assume your organization intends to adopt IPv6. Devise an address scheme the organi- 
zation will use to assign each host an address. Did you choose a hierarchical assignment 
within your organization? Why or why not? 
What is the chief advantage of encoding an Ethernet address in an IPv6 address? The 
chief disadvantage? 
Consider a host that forms a link-local address by encoding its 48-bit Ethernet address 
with the standard link-local prefix. Is the resulting address guaranteed to be unique on 
the network? Why or why not? 
In the previous exercise, does the standard specify that the host must use the Neighbor 
Discovery Protocol to verify that the address is unique? Why or why not? 
If you were asked to choose sizes for the toplevel, next-level, and site ID fields of an 
IPv6 unicast address, how large would you make each? Why? 
Read about the IPv6 authentication and security headers. Why are two headers pro- 
posed? 
How does the IPv6 minimum MTU of 1280 affect its flexibility? 



Appendix 1 

A Guide To RFCs 

Introduction 

Most of the written information about TCPm and the connected Internet, includ- 
ing its architecture, protocols, and history, can be found in a series of reports known as 
Request For Comments or RFCs. An informal, loosely coordinated set of notes, RFCs 
are unusually rich in information and color. Before we consider the more serious as- 
pects of RFCs, it is fitting that we take a few minutes to pay attention to the colorful 
side. A good place to begin is with Cerf's poem 'Twas the Night Before Start-up (RFC 
9 6 Q  a humorous parody that describes some of the problems encountered when start- 
ing a new network. Knowing not to take itself too seriously has pervaded the Internet 
effort. Anyone who can remember both their first Internet meeting, filled with network- 
ing jargon, and Lewis Carroll's Jabberwocky, filled with strangely twisted English, will 
know exactly why D. L. Covill put them together in ARPAWOCKY (RFC 527). 

Other RFCs seem equally frivolous. Interspersed amid the descriptions of ideas 
that would turn out to dramatically change networking, we find notes like RFC 416, 
written in early November, 1972: The ARC System will be Unavailable for Use During 
Thanksgiving Week. It says exactly what you think it says. Or consider Crispin's 
tongue-in-cheek humor found in RFC 748, which describes the TELNET Randomly- 
Lose Option (a proposed option for TELNET that makes it randomly drop characters). 
In fact, any RFC dated April 1 should be considered a joke. If such items do not seem 
insignificant, think about the seventy-five RFCs listed as never issued. All were as- 
signed a number and had an author, but none ever saw the light of day. The holes in 
the numbering scheme remain, preserved as little reminders of ideas that vaporized or 
work that remains incomplete. 
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Even after the silly, lighthearted, and useless RFCs have been removed, the 
remaining documents do not conform to most standards for scientific writing. Unlike 
scholarly scientific journals that concentrate on identifying papers of important archival 
interest, screening them carefully, and filing them for posterity, RFCs provide a record 
of ongoing conversations among the principals involved in designing, building, measur- 
ing, and using the global Internet. The reader understands at once that RFCs include 
the thoughts of researchers on the leading edge of technological innovation, not the stu- 
died opinions of scholars who have completely mastered a subject. The authors are not 
always sure of the consequences of their proposals, or even of the contents, but they 
clearly realize the issues are too complex to understand without cornrnuni.ty discussion. 
For example, RFC 1173 purports to document the "oral traditions" (which is an oxy- 
moron because it became part of the written tradition once the RFC was published). 

Despite the inconsistencies in RFCs that sometimes make them difficult for be- 
ginners to understand, the RFC mechanism has evolved and now works extremely well. 
Because RFCs are available electronically, information is propagated to the community 
quickly. Because they span a broad range of interests, practitioners as well as designers 
contribute. Because they record informal conversations, RFCs capture discussions and 
not merely final conclusions. Even the disagreements and contradictory proposals are 
useful in showing what the designers considered before settling on a given protocol 
(and readers interested in the history of a particular idea or protocol can use RFCs to 
follow it from its inception to its current state). 

Importance Of Host And Gateway Requirements Documents 

Unlike most RFCs, which concentrate on a single idea or protocol, three special 
RFCs cover a broad range of protocols. The special documents are entitled Require- 
ments for Internet Routers and Requirements for Internet Hosts (parts 1 and 2). 

The requirements documents, published after many years of experience with the 
TCP/IP protocols, are considered a major revision to the protocol standards. In essence, 
requirement documents each review many protocols. They point out known weaknesses 
or ambiguities in the RFCs that define the protocols, state conventions that have been 
adopted by vendors, document problems that occur in practice, and list solutions to 
those problems that have been accumulated through experience. The RFCs for indivi- 
dual protocols have not been updated to include changes and updates from the require- 
ments documents. Thus, readers must be careful to always consult the requirements do- 
cuments when studying a particular protocol. 

RFC Numerology 

RFCs cover a surprisingly large range of sizes, with the average size being 47504.5 
bytes. The largest, RFC 1166 (Internet numbers), contains 566778 bytes, while the 
smallest consists of a 27-byte text file: 
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A few interesting coincidences have occurred. For example, the ASCLI text file for 
RFC 41 contains exactly 41 lines of text, and the ASCII text file for RFC 854, exactly 
854 lines. RFC 1996 has a number that matches the year in which it was published. 
However, the number for no other RFC will match the year of publication. 

The quantity of RFCs published per year varies widely. Figure Al. l  illustrates 
how the rate has changed over time. The surge of work in the 1970s represents an ini- 
tial period of building; the high rate of publication in the 1990s has resulted from com- 
mercialization. 

Figure A l . l  The number of RFCs published per year. 
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How To Obtain An RFC Over The Internet 

RFCs are available electronically from many repositories around the world. Check 
with your local network administrator to find the site nearest you or begin with the fol- 
lowing URL: 

Browsing Through RFCs 

There are several indexes that can help one browse through RFCs. IS1 publishes 
an index of all RFCs in chronological order. Readers often need to know which RFC 
contains the latest version of an official Internet protocol or which protocols are official 
and which are unofficial. To accommodate such needs, the IAB periodically publishes 
an RFC entitled INTERNET OFFICIAL PROTOCOL STANDARDS, which provides a 
list of all protocols that have been adopted as TCP/IP standards, along with the number 
of the most recent RFC or RFCs describing each protocol. RFC 1602, The Internet 
Standards Process - Revision 2, describes the Internet standardization process and de- 
fines the meaning of the terms proposed standard, draft standard, Internet standard, re- 
quired, recommended, and historic. 

Despite the available indexes, browsing through RFCs can be difficult, especially 
when the reader is searching for information pertinent to a given topic, which may be 
spread across RFCs published in many years. Browsing is particularly difficult because 
titles do not provide sufficient identification of the content. (How could one guess from 
the title Leaving Well Enough Alone that the RFC pertains to FTP?) Finally, having 
multiple RFCs with a single title (e.g., Internet Numbers) can be confusing because the 
reader cannot easily tell whether a document is out-of-date without checking the ar- 
chive. 

RFCs Arranged By Topic 

The final section of this appendix provides help in finding information in RFCs be- 
cause it contains a list of the first 2728 RFCs arranged by topic. Readers can find an 
earlier topical index in RFC 1000, which also includes an annotated chronological list- 
ing of the first 1000 RFCs. Although long, RFC 1000 is highly recommended as a 
source of authoritative and valuable critique - its introduction is especially fascinating. 
Recalling the origin of RFCs along with the origin of the ARPANET, the introduction 
captures the spirit of adventure and energy that still characterizes the Internet. 
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RFCs Organized By Major Category And Subtopic 

1. Administrative 
la. Assigned Internet Numbers (official values used by protocols) 

1700, 1340, 1166, 1117, 1062, 1060, 1020, 1010,997,990,960,943,923,900, 870, 
820,790,776,770,762,758,755,750,739,717,604,503,433, 349,322,317,204, 
179, 175, 167 

1 b. Official IAB Standards and Other Lists of Protocols 
2500, 2400, 2300, 2200,2000, 1920, 1880, 1800, 1780, 1720, 1610, 1600, 1540, 
1500, 1410, 1360, 1280, 1250, 1200, 1140, 1130, 1100, 1083, 1011,991,961,944, 
924,901,880, 840,694,661,617,582,580,552 
774,766 

Ic. Meeting Notes and Minutes 
2316 -Report of the IAB Security Architecture Workshop 
2130 -The Report of the IAB Character Set Workshop held 29 February - 1 March, 

1996 
1862 -Report of the IAB Workshop on Internet Information Infrastructure, October 

12-14, 1994 
1636 -Report of IAB Workshop on Security in the Internet Architecture - February 

8-10, 1994 
1588 -White Pages Meeting Report 
1210 -Network and infrastructure user requirements for transatlantic research 

collaboration: Brussels, July 16-18, and Washington July 24-25, 1990 
1152 -Workshop report: Internet research steering group workshop on very-high- 

speed networks 
1077 -Critical issues in high bandwidth networking 
1019 -Report of the Workshop on Environments for Computational Mathematics 
1017 -Network requirements for scientific research: Internet task force on scientific 

computing 
910, 807 - Multimedia mail meeting notes 
898 - Gateway special interest group meeting notes 
808, 805,469 - Summary of computer mail services meeting held at BBN on 10 

January 1979 
585 - ARPANET users interest working group meeting 
549, 396, 282, 253 - Minutes of Network Graphics Group meeting, 15-17 July 1973 
371 - Demonstration at International Computer Communications Conference 
327 - Data and File Transfer workshop notes 
3 16 - ARPA Network Data Management Working Group 
164, 131, 108, 101, 82,77,63, 37, 21 - Minutes of Network Working Group 

meeting, 5/16 through 511917 1 
Id. Meeting Announcements and Group Overviews 

1160, 1120 - Internet Activities Board 
828 - Data communications: IFIP's international "network of experts 
63 1 - International meeting on minicomputers and data communication: Call for 

papers 
584 - Charter for ARPANET Users Interest Working Group 
537 - Announcement of NGG meeting July 16-17 
526 - Technical meeting: Digital image processing software systems 
504 - Distributed resources workshop announcement 
483 - Cancellation of the resource notebook framework meeting 
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474, 314, 246, 232, 134 - Announcement of NGWG meeting: Call for papers 
471 - Workshop on multi-site executive programs 
461 - Telnet Protocol meeting announcement 
457 - TIPUG 
456 - Memorandum: Date change of mail meeting 
454 - File Transfer Protocol - meeting announcement and a new proposed 

document 
453 - Meeting announcement to discuss a network mail system 
374 - IMP System Announcement 
359 - Status of the Release of the New IMP System (2600) 
343, 331 - IMP System change notification 
324 - RJE Protocol meeting 
323 - Formation of Network Measurement Group (NMG) 
320 - Workshop on Hard Copy Line Printers 
309 - Data and File Transfer Workshop Announcement 
299 - Information Management System 
295 - Report of the Protocol Workshop, 12 October 1971 
291, 188, 173 - Data Management Meeting Announcement 
245, 234, 207, 140, 116, 99, 87, 85, 75,43, 35 - Reservations for Network Group 

meeting 
222 - Subject: System programmer's workshop 
212 - NWG meeting on network usage 
157 - Invitation to the Second Symposium on Problems in the Optimization of Data 

Communications Systems 
149 - Best Laid Plans 
130 - Response to RFC 1 1 1: Pressure from the chairman 
11 1 - Pressure from the Chairman 
48 - Possible protocol plateau 
46 - ARPA Network protocol notes 

le. Distribution Lists 
402, 363, 329, 303, 300, 21 1, 168, 155 - ARPA Network Mailing Lists 
69 - Distribution List Change for MIT 
52 - Updated distribution list 

I f .  Policies Documents 
2717 -Registration Procedures for URL Scheme Names 
2506 -Media Feature Tag Registration Procedure 
2489 -Procedure for Defining New DHCP Options 
2418, 1603 - IETF Working Group Guidelines and Procedures 
2282, 2027 - IAB and IESG Selection, Confirmation, and Recall Process: Operation 

of the Nominating and Recall Committees 
2278 -1ANA Charset Registration Procedures 
2277 -1ETF Policy on Character Sets and Languages 
2146, 1816, 181 1 - US Government Internet Domain Names 
2135 -Internet Society By-Laws 
2050 -Internet Registry IF' Allocation Guidelines 
2042 -Registering New BGP Attribute Types 
2014 -1RTF Research Group Guidelines and Procedures 
1956 -Registration in the MIL Domain 
1930 Guidelines for creation, selection, and registration of an Autonomous System 

(AS) 
1875 -UNINETT PCA Policy Statements 
137 1 -Choosing a Common IGP for the IP Internet 
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1124 -Policy issues in interconnecting networks 
1087 -Ethics and the Internet 
1052 -1AB recommendations for the development of Internet network management 

standards 
1039 -DoD statement on Open Systems Interconnection protocols 
980 - Protocol document order information 
952, 810, 608 - DoD Internet host table specification 
945 - DoD statement on the NRC report 
902 - ARPA Internet Protocol policy 
849 - Suggestions for improved host table distribution 
678 - Standard file fornlats 
602 - "The stockings were hung by the chimney with care" 
115 - Some Network Information Center policies on handling documents 
53 - Official protocol mechanism 

1 g. Request for Comments Administrative 
2648 -A URN Namespace for IETF Documents 
2629 -Writing I-Ds and RFCs using XML 
2499, 2399, 2299, 2199,2099, 1999, 1899, 1799, 1699, 1599, 1499, 1399, 1299, 

999, 899,800, 699,598, 200, 170, 160, 100, 84 - Request for Comments - 
Summary 

2434 -Guidelines for Writing an IANA Considerations Section in RFCs 
2360 -Guide for Internet Standards Writers 
2223, 1543, 11 11 - Instructions to RFC Authors 
21 19 -Key words for use in RFCs to Indicate Requirement Levels 
18 18 -Best Current Practices 
1796 -Not All RFCs are Standards 
13 11 -Introduction to the STD Notes 
1150 -FYI on FYI: Introduction to the FYI Notes 
1000 -Request For Comments reference guide 
825 - Request for comments on Requests For Comments 
629 - Scenario for using the Network Journal 
628 - Status of RFC numbers and a note on pre-assigned journal numbers 

1 h. Other 
2691 -A Memorandum of Understanding for an ICANN Protocol Support 

Organization 
2690 -A Proposal for an MOU-Based ICANN Protocol Support Organization 
2436 -Collaboration between ISOChETF and ITU-T 
2339, 1790 - An Agreement Between the Internet Society, the IETF, and Sun 

Microsystems, Inc 
2134 -Articles of Incorporation of Internet Society 
2053 -The AM (Amlenia) Domain 
203 1 -1ETF-ISOC relationship 
2028 -The Organizations Involved in the IETF Standards Process 
2026, 1871, 1602, 13 10 - The Internet Standards Process -- Revision 3 
1988 -Conditional Grant of Rights to Specific Hewlett-Packard Patents In 

Conjunction With the Internet Engineering Task Force's Internet-Standard 
Network Management Framework 

1984 -1AB and IESG Statement on Cryptographic Technology and the Internet 
1917 -An Appeal to the Internet Community to Return Unused IP Networks 

(Prefixes) to the IANA 
1822 -A Grant of Rights to Use a Specific IBM patent with Photuris 
1718, 1539, 1391 - The Tao of IETF - A Guide for New Attendees of the Internet 

Engineering Task Force 
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1690 -Introducing the Internet Engineering and Planning Group (IEPG) 
1689 -A Status Report on Networked Information Retrieval: Tools and Groups 
1640 -The Process for Organization of Internet Standards Working Group 

(POISED) 
1601, 1358 - Charter of the Internet Architecture Board (IAB) 
1527 -What Should We Plan Given the Dilemma of the Network? 
1481 -1AB Recommendation for an Intermediate Strategy to Address the Issue of 

Scaling 
1401 -Correspondence between the M3 and DISA on the use of DNS 
1396 -The Process for Organization of Internet Standards Working Group 

(POISED) 
1380 -1ESG Deliberations on Routing and Addressing 
1297 -NOC Internal Integrated Trouble Ticket System Functional Specification 

Wishlist ("NOC TT REQUIREMENTS") 
1287 -Towards the Future Internet Architecture 
1272 -Internet Accounting: Background 
1261 -Transition of Nic Services 
1174 -1AB recommended policy on distributing internet identifier assignment and 

IAB recommended policy change to internet "connected" status 
637 - Change of network address for SU-DSL 
634 - Change in network address for Haskins Lab 
616 - Latest network maps 
609 - Statement of upcoming move of NIC/NLS service 
590 - MULTICS address change 
588 - London node is now up 
551 - NYU, ANL, and LBL Joining the Net 
544 - Locating on-line documentation at SRI-ARC 
543 - Network journal submission and delivery 
5 18 - ARPANET accounts 
5 11 - Enterprise phone service to NIC from ARPANET sites 
5 10 - Request for network mailbox addresses 
440 - Scheduled network software maintenance 
432 - Network logical map 
423, 389 - UCLA Campus Computing Network Liaison Staff for ARPANET 
421 - Software Consulting Service for Network Users 
419 - To: Network liaisons and station agents 
416 - ARC System Will Be Unavailable for Use During Thanksgiving Week 
405 - Correction to RFC 404 
404 - Host Address Changes Involving Rand and IS1 
403 - Desirability of a network 1108 service 
386 - Letter to TIP users-2 
384 - Official site idents for organizations in the ARPA Network 
381 - Three aids to improved network operation 
365 - Letter to All TIP Users 
356 - ARPA Network Control Center 
334 - Network Use on May 8 
305 - Unknown Host Numbers 
301 - BBN IMP (#5) and NCC Schedule March 4, 1971 
289 - What we hope is an official list of host names 
276 - NIC course 
249 - Coordination of equipment and supplies purchase 
223 - Network Information Center schedule for network users 
185 - NIC distribution of manuals and handbooks 
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154 - Exposition Style 
136 - Host accounting and administrative procedures 
118 - Recommendations for facility documentation 
95 - Distribution of NWGIRFC's through the NIC 
16 - M.1.T 

2. Requirements Documents and Major Protocol Revisions 
2a. Host Requirements 

1127 -Perspective on the Host Requirements RFCs 
1123 -Requirements for Internet hosts - application and support 
1122 -Requirements for Internet hosts - communication layers 

2b. Gateway Requirements 
2644 -Changing the Default for Directed Broadcasts in Routers 
1812, 1009 - Requirements for IP Version 4 Routers 

3. Network Interface Level (Also see Section 8) 
3a. Address Binding (ARP, RARP) 

2390, 1293 - Inverse Address Resolution Protocol 
1931 -Dynamic RARP Extensions for Automatic Network Address Acquisition 
1868 -ARP Extension - UNARP 
1433 -Directed ARP 
1329 -Thoughts on Address Resolution for Dual MAC FDDI Networks 
1027 -Using ARP to implement transparent subnet gateways 
925 - Multi-LAN address resolution 
903 - Reverse Address Resolution Protocol 
826 - Ethernet Address Resolution Protocol: Or converting network protocol 

addresses to 48.bit Ethernet address for transmission on Ethernet hardware 

3b. Internet Protocol over another network (encapsulation) 
2728 -The Transmission of IP Over the Vertical Blanking Interval of a Television 

Signal 
2625 -IP and ARP over Fibre Channel 
2176 -IPV4 over MAPOS Version 1 
2143 -Encapsulating IP with the Small Computer System Interface 
2067, 1374 - IP over HIPPI 
2004, 2003, 1853 - Minimal Encapsulation within IP 
1390, 1188, 1103 - Transmission of IP and ARP over FDDI Networks 
1241 -Scheme for an internet encapsulation protocol: Version 1 
1226 -Internet protocol encapsulation of AX.25 frames 
1221, 907 - Host Access Protocol (HAP) specification: Version 2 
1209 -Transmission of IP datagram over the SMDS Service 
1201, 105 1 - Transmitting IP traffic over ARCNET networks 
1088 -Standard for the transmission of IP datagrams over NetBIOS networks 
1055 -Nonstandard for transmission of IP datagrams over serial lines: SLIP 
1044 -Internet Protocol on Network System's HYPERchannel: Protocol 

specification 
1042 -Standard for the transmission of IP datagrams over IEEE 802 networks 
948 - Two methods for the transmission of IP datagrams over IEEE 802.3 networks 
895 - Standard for the transmission of IP datagrams over experimental Ethernet 

networks 
894 - Standard for the transmission of IP datagrams over Ethernet networks 
893 - Trailer encapsulations 
877 - Standard for the transmission of IP datagrams over public data networks 
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3c. Nonbroadcast Multiple Access Networks (ATM, IP Switching, MPLS) 
2702 -Requirements for Traffic Engineering Over MPLS 
2684 -Multiprotocol Encapsulation over ATM Adaptation Layer 5 
2682 -Performance Issues in VC-Merge Capable ATM LSRs 
2643 -Cabletron's SecureFast VLAN Operational Model 
2642 Zabletron's VLS Protocol Specification 
2641 Xabletron's VlanHello Protocol Specification Version 4 
2603 -ILMI-Based Server Discovery for NHRP 
2602 -ILMI-Based Server Discovery for MARS 
2601 -ILMI-Based Server Discovery for ATMARP 
2583 -Guidelines for Next Hop Client (NHC) Developers 
2520 -NHRP with Mobile NHCs 
2443 -A Distributed MARS Service Using SCSP 
2383 S T 2 +  over ATM Protocol Specification - UNI 3.1 Version 
2340 -Nortel's Virtual Network Switching (VNS) Overview 
2337 -1ntra-LIS IP multicast among routers over ATM using Sparse Mode PIM 
2336 -Classical IP to NHRP Transition 
2335 -A Distributed NHRP Service Using SCSP 
2334 -Server Cache Synchronization Protocol (SCSP) 
2333 -NHRP Protocol Applicability Statement 
2332 -NBMA Next Hop Resolution Protocol (NHRP) 
233 1 -ATM Signalling Support for IP over ATM - UNI Signalling 4.0 Update 
2297, 1987 - Ipsilon's General Switch Management Protocol Specification Version 

2.0 
2269 -Using the MARS Model in non-ATM NBMA Networks 
2226 -1P Broadcast over ATM Networks 
2225, 1577 - Classical IP and ARP over ATM 
2191 -VENUS - Very Extensive Non-Unicast Service 
2 170 -Application REQuested IP over ATM (AREQUIPA) 
2149 -Multicast Server Architectures for MARS-based ATM multicasting 
2129 -Toshiba7s Flow Attribute Notification Protocol (FANP) Specification 
2124 Zabletron's Light-weight Flow Admission Protocol Specification Version 1.0 
2121 -Issues affecting MARS Cluster Size 
2105 -Cisco Systems' Tag Switching Architecture Overview 
2098 -Toshiba's Router Architecture Extensions for ATM : Overview 
2022 -Support for Multicast over UNI 3.013.1 based ATM Networks 
1954 -Transmission of Flow Labelled IPv4 on ATM Data Links Ipsilon Version 1.0 
1953 -1psilon Flow Management Protocol Specification for IPv4 Version 1.0 
1932 -IP over ATM: A Framework Document 
1755 -ATM Signaling Support for IP over ATM 
1754 -IP over ATM Working Group's Recommendations for the ATM Forum's 

Multiprotocol BOF Version 1 
1735 -NBMA Address Resolution Protocol (NARP) 
1626 -Default IP MTU for use over ATM AAL5 
1483 -Multiprotocol Encapsulation over ATM Adaptation Layer 5 

3d. Other 
2469 -A Caution On The Canonical Ordering Of Link-Layer Addresses 
2427, 1490, 1294 - Multiprotocol Interconnect over Frame Relay 
2341 -Cisco Layer Two Forwarding (Protocol) "L2F 
2175 -MAPOS 16 - Multiple Access Protocol over SONETISDH with 16 Bit 

Addressing 
2174 -A MAPOS version 1 Extension - Switch-Switch Protocol 
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2173 -A MAPOS version 1 Extension - Node Switch Protocol 
2172 -MAPOS Version 1 Assigned Numbers 
2171 -MAPOS - Multiple Access Protocol over SONET/SDH Version 1 
1326 -Mutual Encapsulation Considered Dangerous 

4. lnternet Level 
4a. lnternet Protocol (IP) 

2 1 13 -IP Router Alert Option 
1624, 1141 - Computation of the Internet Checksum via Incremental Update 
1 191, 1063 - Path MTU discovery 
1071 -Computing the Internet checksum 
1025 -TCP and IP bake off 
815 - IP datagram reassembly algorithms 
791, 760 - Internet Protocol 
781 - Specification of the Internet Protocol (IP) timestamp option 

4b. lnternet Control Message Protocol (ICMP) 
2521 -1CMP Security Failures Messages 
1788 -1CMP Domain Name Messages 
1256 -1CMP Router Discovery Messages 
101 8 -Some comments on SQuID 
1016 -Something a host could do with source quench: The Source Quench 

Introduced Delay (SQUID) 
792, 777 - Internet Control Message Protocol 

4c. Multicast (IGMP) 
2588 -IP Multicast and Fiewalls 
2502 -Limitations of Internet Protocol Suite for Distributed Simulation the Large 

Multicast Environment 
2365 -Administratively Scoped IP Multicast 
2357 -1ETF Criteria for Evaluating Reliable Multicast Transport and Application 

Protocols 
2236 -Internet Group Management Protocol, Version 2 
1768 -Host Group Extensions for CLNP Multicasting 
1469 -1P Multicast over Token-Ring Local Area Networks 
1458 -Requirements for Multicast Protocols 
1301 -Multicast Transport Protocol 
11 12, 1054,988,966 - Host extensions for IP multicasting 

4d. Routing and Gateway Algorithms (BGP, GGP, RIP, OSPF) 
27 15 -Interoperability Rules for Multicast Routing Protocols 
2676 -QoS Routing Mechanisms and OSPF Extensions 
2650 -Using RPSL in Practice 
2622,2280 - Routing Policy Specification Language (RPSL 
25 19 -A Framework for Inter-Domain Route Aggregation 
2453, 1723, 1388 - RIP Version 2 
2439 -BGP Route Flap Damping 
2385 -Protection of BGP Sessions via the TCP MD5 Signature Option 
2370 -The OSPF Opaque LSA Option 
2362, 21 17 - Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol 

Specification 
2338 -Virtual Router Redundancy Protocol 
2329 4 S P F  Standardization Report 
2328,2178, 1583, 1247, 1131 - OSPF Version 2 
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2283 -Multiprotocol Extensions for BGP-4 
2281 Z i s c o  Hot Standby Router Protocol (HSRP) 
2270 -Using a Dedicated AS for Sites Homed to a Single Provider 
2260 -Scalable Support for Multi-homed Multi-provider Connectivity 
2201, 2189 - Core Based Trees (CBT) Multicast Routing Architecture 
2154 -0SPF with Digital Signatures 
2103 -Mobility Support for Nimrod : Challenges and Solution Approaches 
2102 -Multicast Support for Nimrod : Requirements and Solution Approaches 
2092 -Protocol Analysis for Triggered RIP 
209 1 -Triggered Extensions to RIP to Support Demand Circuits 
2082 -RIP-2 MD5 Authentication 
2009 -GPS-Based Addressing and Routing 
1998 -An Application of the BGP Community Attribute in Multi-home Routing 
1997 -BGP Communities Attribute 
1992 -The Nimrod Routing Architecture 
1966 -BGP Route Reflection An alternative to full mesh IBGP 
1965 -Autonomous System Confederations for BGP 
1923 - D l  Applicability Statement for Historic Status 
1863 -A BGPIIDRP Route Server alternative to a full mesh routing 
1817 -CIDR and Classful Routing 
1793 -Extending OSPF to Support Demand Circuits 
1787 -Routing in a Multi-provider Internet 
1786 -Representation of IP Routing Policies in a Routing Registry (ripe-81++) 
1774 -BGP-4 Protocol Analysis 
1773, 1656 - Experience with the BGP-4 protocol 
1772, 1655, 1268, 1164 - Application of the Border Gateway Protocol in the Internet 
1771, 1654, 1267, 1163 - A Border Gateway Protocol 4 (BGP4) 
1765 -0SPF Database Overflow 
1745 -BGP4/IDRP for IP---OSPF Interaction 
1722 -RIP Version 2 Protocol Applicability Statement 
1721, 1387 - RIP Version 2 Protocol Analysis 
1702, 1701 - Generic Routing Encapsulation over IPv4 networks 
1587 -The OSPF NSSA Option 
1586 -Guidelines for Running OSPF Over Frame Relay Networks 
1585 -MOSPF: Analysis and Experience 
1584 -Multicast Extensions to OSPF 
1582 -Extensions to RIP to Support Demand Circuits 
1581 -Protocol Analysis for Extensions to RIP to Support Demand Circuits 
1520 -Exchanging Routing Information Across Provider Boundaries in the CIDR 

Environment 
1519, 1338 - Classless Inter-Domain Routing (CIDR): an Address Assignment and 

Aggregation Strategy 
1517 -Applicability Statement for the Implementation of Classless Inter-Domain 

Routing (CIDR) 
1504 -Appletalk Update-Based Routing Protocol: Enhanced Appletalk Routing 
1482 -Aggregation Support in the NSFNET Policy-Based Routing Database 
1479 -Inter-Domain Policy Routing Protocol Specification: Version 1 
1478 -An Architecture for Inter-Domain Policy Routing 
1477 -IDPR as a Proposed Standard 
1465 -Routing Coordination for X.400 MHS Services Within a Multi Protocol / 

Multi Network Environment Table Format V3 for Static Routing 
1403, 1364 - BGP OSPF Interaction 
1397 -Default Route Advertisement In BGP2 and BGP3 Version of The Border 

Gateway Protocol 
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1383 -An Experiment in DNS Based IP Routing 
1370 -Applicability Statement for OSPF 
1322 -A Unified Approach to Inter-Domain Routing 
1266 -Experience with the BGP Protocol 
1265 -BGP Protocol Analysis 
1264 -Internet Engineering Task Force Internet Routing Protocol Standardization 

Criteria 
1254 -Gateway Congestion Control Survey 
1246 -Experience with the OSPF Protocol 
1245 -0SPF Protocol Analysis 
1222 -Advancing the NSFNET routing architecture 
1195 -Use of OSI IS-IS for routing in TCP/IP and dual environments 
1142 4 S I  IS-IS Intra-domain Routing Protocol 
1136 -Administrative Domains and Routing Domains: A model for routing in the 

Internet 
1133 -Routing between the NSFNET and the DDN 
1126 -Goals and functional requirements for inter-autonomous system routing 
1125 -Policy requirements for inter Administrative Domain routing 
1105 -Border Gateway Protocol (BGP) 
1104 -Models of policy based routing 
1102 -Policy routing in Internet protocols 
1093 -NSFNET routing architecture 
1092 -EGP and policy based routing in the new NSFNET backbone 
1075 -Distance Vector Multicast Routing Protocol 
1074 -NSFNET backbone SPF based Interior Gateway Protocol 
1058 -Routing Information Protocol 
1046 -Queuing algorithm to provide type-of-service for IP links 
985 - Requirements for Internet gateways - draft 
975 - Autonomous confederations 
970 - On packet switches with infinite storage 
91 1 - EGP Gateway under Berkeley UNIX 4.2 
904, 890, 888, 827 - Exterior Gateway Protocol formal specification 
875 - Gateways, architectures, and heffalumps 
823 - DARPA Internet gateway 

4e. IP: The Next Generation (IPng, IPv6) 
271 1 -IPv6 Router Alert Option 
2710 -Multicast Listener Discovery (MLD) for IPv6 
2675,2147 - IPv6 Jumbograms 
2590 -Transmission of IPv6 Packets over Frame Relay 
2553, 2133 - Basic Socket Interface Extensions for IPv6 
2546 -6Bone Routing Practice 
2545 -Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing 
2529 -Transmission of IPv6 over IPv4 Domains without Explicit Tunnels 
2526 -Reserved IPv6 Subnet Anycast Addresses 
2497 -Transmission of IPv6 Packets over ARCnet Networks 
2492 -IPv6 over ATM Networks 
2491 -IPv6 over Non-Broadcast Multiple Access (NBMA) networks 
2473 -Generic Packet Tunneling in IPv6 Specification 
2472, 2023 - IP Version 6 over PPP 
247 1, 1897 - IPv6 Testing Address Allocation 
2470 -Transmission of IPv6 Packets over Token Ring Networks 
2467,2019 - Transmission of IPv6 Packets over FDDI Networks 
2466, 2465 - Management Information Base for IP Version 6: ICMPv6 Group 
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2464, 1972 - Transmission of IPv6 Packets over Ethernet Networks 
2463, 1885 - Internet Control Message Protocol (ICMPv6) for the Internet Protocol 

Version 6 (IPv6) Specification 
2462, 1971 - IPv6 Stateless Address Autoconfiguration 
2461, 1970 - Neighbor Discovery for IP Version 6 (IPv6) 
2460, 1883 - Internet Protocol, Version 6 (IPv6) Specification 
2454 -IP Version 6 Management Information Base for the User Datagram Protocol 
2452 -IP Version 6 Management Information Base for the Transmission Control 

Protocol 
2450 -Proposed TLA and NLA Assignment Rule 
2375 -IPv6 Multicast Address Assignments 
2374, 2073 - An IPv6 Aggregatable Global Unicast Address Format 
2373, 1884 - IP Version 6 Addressing Architecture 
2292 -Advanced Sockets API for IPv6 
2185 -Routing Aspects of IPv6 Transition 
2081 -RIPng Protocol Applicability Statement 
2080 -RIPng for IPv6 
198 1 -Path MTU Discovery for IP version 6 
1955 -New Scheme for Internet Routing and Addressing (ENCAPS) for IPNG 
1933 -Transition Mechanisms for IPv6 Hosts and Routers 
1888 -OSI NSAPs and IPv6 
1887 -An Architecture for IPv6 Unicast Address Allocation 
1886 -DNS Extensions to support IP version 6 
1881 -1Pv6 Address Allocation Management 
1809 -Using the Flow Label Field in IPv6 
1753 -1Png Technical Requirements Of the Nimrod Routing and Addressing 

Architecture 
1752 -The Recommendation for the IP Next Generation Protocol 
1726 -Technical Criteria for Choosing IP The Next Generation (Png) 
17 19 -A Direction for IPng 
17 10 -Simple Internet Protocol Plus White Paper 
1707 -CATNIP: Common Architecture for the Internet 
1705 -Six Virtual Inches to the Left: The Problem with IPng 
1688 -1Png Mobility Considerations 
1687 -A Large Corporate User's View of IPng 
1686 -IPng Requirements: A Cable Television Industry Viewpoint 
1683 -Multiprotocol Interoperability In IPng 
1682 -1Png BSD Host Implementation Analysis 
1680 -1Png Support for ATM Services 
1679 -HPN Working Group Input to the IPng Requirements Solicitation 
1678 -1Png Requirements of Large Corporate Networks 
1677 -Tactical Radio Frequency Communication Requirements for IPng 
1676 -1NFN Requirements for an IPng 
1675 -Security Concerns for P n g  
1674 -A Cellular Industry View of IPng 
1673 -Electric Power Research Institute Comments on IPng 
1672 -Accounting Requirements for IPng 
1671 -IPng White Paper on Transition and Other Considerations 
1670 -Input to IPng Engineering Considerations 
1669 -Market Viability as a IPng Criteria 
1668 -Unified Routing Requirements for IPng 
1667 -Modeling and Simulation Requirements for IPng 
1622 -Pip Header Processing 
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162 1 -Pip Near-term Architecture 
1550 -1P: Next Generation (IPng) White Paper Solicitation 
1526 -Assignment of System Identifiers for TUBAJCLNP Hosts 
1475 -TP/IX: The Next Internet 
1454 -Comparison of Proposals for Next Version of IP 
1385 -EIP: The Extended Internet Protocol 
1375 -Suggestion for New Classes of IP Addresses 
1365 -An IP Address Extension Proposal 
1347 -TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for 

Internet Addressing and Routing 
1335 -A Two-Tier Address Structure for the Internet: A Solution to the Problem of 

Address Space Exhaustion 
4f. IP Address Allocation and Network Numbering 

2391 -Load Sharing using IP Network Address Translation (LSNAT) 
2101 -1Pv4 Address Behaviour Today 
2072 -Router Renumbering Guide 
2071 -Network Renumbering Overview: Why would I want it and what is it 

anyway? 
2036 -Observations on the use of Components of the Class A Address Space within 

the Internet 
2008 -Implications of Various Address Allocation Policies for Internet Routing 
19 18, 1597 - Address Allocation for Private Internets 
1916 -Enterprise Renumbering: Experience and Information Solicitation 
1900 -Renumbering Needs Work 
1879, 1797 - Class A Subnet Experiment Results and Recommendations 
1878, 1860 - Variable Length Subnet Table For IPv4 
1814 -Unique Addresses are Good 
1744 4bservation.s on the Management of the Internet Address Space 
1715 -The H Ratio for Address Assignment Efficiency 
1681 -On Many Addresses per Host 
1627 -Network 10 Considered Harmful (Some Practices Shouldn't be Codified) 
1466, 1366 - Guidelines for Management of IP Address Space 
12 19 -On the assignment of subnet numbers 
950 - Internet Standard Subnetting Procedure 
940,936, 932, 917 - Toward an Internet standard scheme for subnetting 

49. Network Isolation (VPN, Firewall, NAT) 
2694 -DNS extensions to Network Address Translators (DNS-ALG) 
2685 -Virtual Private Networks Identifier 
2663 -1P Network Address Translator (NAT) Terminology and Considerations 
2647 -Benchmarking Terminology for Firewall Performance 
2637 -Point-to-Point Tunneling Protocol 
2547 -BGP/MPLS VPNs 
1961 -GSS-API Authentication Method for SOCKS Version 5 
1929, 1928 - Usernarne/Password Authentication for SOCKS V5 
1858 -Security Considerations for IP Fragment Filtering 
163 1 -The IP Network Address Translator (NAT) 

4h. Other 
2698 -A Two Rate Three Color Marker 
2697 -A Single Rate Three Color Marker 
2638 -A Two-bit Differentiated Services Architecture for the Internet 
2598 -An Expedited Forwarding PHI3 
2597 -Assured Forwarding PHB Group 
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2508 -Compressing IPAJDPIRTP Headers for Low-Speed Serial Links 
2507 -IP Header Compression 
2481 -A Proposal to add Explicit Congestion Notification (ECN) to IP 
2475 -An Architecture for Differentiated Service 
2474, 1349 - Definition of the Differentiated Services Field (DS Field) in the IPv4 

and IPv6 Headers 
2395 -IP Payload Compression Using LZS 
2394 -IP Payload Compression Using DEFLATE 
2393 -IP Payload Compression Protocol (IPComp) 
2075 -IP Echo Host Service 
1946 -Native ATM Support for ST2+ 
1940 -Source Demand Routing: Packet Format and Forwarding Specification 

(Version 1) 
1937 -"LocaURemote" Forwarding Decision in Switched Data Link Subnetworks 
1936 -Implementing the Internet Checksum in Hardware 
1919 -Classical versus Transparent IP Proxies 
1819, 1190 - Internet Stream Protocol Version 2 (ST2) Protocol Specification - 

Version ST2+ 
1770 -IPv4 Option for Sender Directed Multi-Destination Delivery 
1716 -Towards Requirements for IP Routers 
1620 -Internet Architecture Extensions for Shared Media 
1560 -The MultiProtocol Internet 
1518 -An Architecture for IP Address Allocation with CIDR 
1476 -RAP: Internet Route Access Protocol 
1467, 1367 - Status of CIDR Deployment in the Internet 
1393 -Traceroute Using an IP Option 
1363 -A Proposed Flow Specification 
986 - Guidelines for the use of Internet-IP addresses in the IS0 Connectionless- 

Mode Network Protocol 
98 1 - Experimental multiple-path routing algorithm 
963 - Some problems with the specification of the Military Standard Internet 

Protocol 
947 - Multi-network broadcasting within the Internet 
922, 919 - Broadcasting Internet datagrams in the presence of subnets 
871 - Perspective on the ARPANET reference model 
831 - Backup access to the European side of SATNET 
817 - Modularity and efficiency in protocol implementation 
816 - Fault isolation and recovery 
814 - Name, addresses, ports, and routes 
796 - Address mappings 
795 - Service mappings 
730 - Extensible field addressing 

5. Host Level 
5a. User Datagram Protocol (UDP) 

768 - User Datagram Protocol 
5b. Transmission Control Protocol (TCP) 

2582 -The NewReno Modification to TCP's Fast Recovery Algorithm 
2581,2001 - TCP Congestion Control 
2525 -Known TCP Implementation Problems 
2488 -Enhancing TCP Over Satellite Channels using Standard Mechanisms 
2416 -When TCP Starts Up With Four Packets Into Only Three Buffers 
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2415 -Simulation Studies of Increased Initial TCP Window Size 
2414 -Increasing TCP's Initial Window 
2398 -Some Testing Tools for TCP Implementors 
2140 -TCP Control Block Interdependence 
2018 -TCP Selective Acknowledgement Options 
1693 -An Extension to TCP : Partial Order Service 
1644 -T/TCP -- TCP Extensions for Transactions Functional Specification 
1379 -Extending TCP for Transactions -- Concepts 
1337 -TIME-WAIT Assassination Hazards in TCP 
1323, 1185 - TCP Extensions for High Performance 
1263 -TCP Extensions Considered Harmful 
1146, 1145 - TCP alternate checksum options 
1144 -Compressing TCPm headers for low-speed serial links 
11 10 -Problem with the TCP big window option 
1106 -TCP big window and NAK options 
1078 -TCP port service Multiplexer (TCPMUX) 
1072 -TCP extensions for long-delay paths 
964 - Some problems with the specification of the Military Standard Transmission 

Control Protocol 
962 - TCP-4 prime 
896 - Congestion control in IP/TCP internetworks 
889 - Internet delay experiments 
879 - TCP maximum segment size and related topics 
872 - TCP-on-a-LAN 
813 - Window and Acknowledgement Strategy in TCP 
794 - Pre-emption 
793, 761, 675 - Transmission Control Protocol 
721 - Out-of-Band Control Signals in a Host-to-Host Protocol 
700 - Protocol experiment 

5c. Point-to-Point Protocols (PPP) 
2701 -Nortel Networks Multi-link Multi-node PPP Bundle Discovery Protocol 
2687 -PPP in a Real-time Oriented HDLC-like Framing 
2686 -The Multi-Class Extension to Multi-Link PPP 
26 15, 16 19 - PPP over SONETISDH 
2516 -Method for Transmitting PPP Over Ethernet (PPPoE) 
2509 -IP Header Compression over PPP 
2484 -PPP LCP Internationalization Configuration Option 
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Graphics Data Stream 

94 - Some thoughts on Network Graphics 
6h. Data Management 

304 - Data management system proposal for the ARPA network 
195 - Data computers-data descriptions and access language 
194 - The Data Reconfiguration Service -- Compilerhterpreter Implementation 

Notes 
166 - Data Reconfiguration Service: An implementation specification 
144 - Data sharing on computer networks 
138 - Status report on proposed Data Reconfiguration Service 
83 - Language-machine for data reconfiguration 

6i. Remote Job Entry (NETRJE, NETRJS) 
740,599,589,325, 189,88 - NETWS Protocol 
725 - RJE protocol for a resource sharing network 
499 - Harvard's network WE 
490 - Surrogate RJS for UCLA-CCN 
477,436 - Remote Job Service at UCSB 
407 - Remote Job Entry Protocol 
368 - Comments on "Proposed Remote Job Entry Protocol" 
360 - Proposed Remote Job Entry Protocol 
338 - EBCDICIASCII Mapping for Network WE 
307 - Using network Remote Job Entry 
283 - NETRTT: Remote Job Service Protocol for TIPS 
105 - Network Specifications for Remote Job Entry and Remote Job Output 

Retrieval at UCSB 
6j. Remote Procedure Call (RPC) 

2695 -Authentication Mechanisms for ONC RPC 
2203 -RPCSEC-GSS Protocol Specification 
1833 -Binding Protocols for ONC RPC Version 2 
183 1 -RPC: Remote Procedure Call Protocol Specification Version 2 
1057 -RPC: Remote Procedure Call Protocol specification: Version 2 
1050 -RPC: Remote Procedure Call Protocol specification 

6k. Time and Date (NTP) 
2030, 1769, 1361 - Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 

and OSI 
1708 -NTP PICS PROFORMA - For the Network Time Protocol Version 3 
1589 -A Kernel Model for Precision Timekeeping 
1305, 11 19, 1059 - Network Time Protocol (Version 3) Specification, 

Implementation 
1165 -Network Time Protocol (NTP) over the OSI Remote Operations Service 
1129 -Internet time synchronization: The Network Time Protocol 
1128 -Measured performance of the Network Time Protocol in the Internet system 
958,957,956 - Network Time Protocol (NTP) 
868 - Time Protocol 
867 - Daytime Protocol 
778 - DCNET Internet Clock Service 
738 - Time server 
685 - Response time in cross network debugging 
34 - Some Brief Preliminary Notes on the Augmentation Research Center Clock 
32 - Connecting M.1.T 
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28 - Time Standards 
61. Presentation and Representation (XDR, Character Encoding, HTML, 
XML) 

2706 -ECML v 1: Field Names for E-Commerce 
2659 Security Extensions For HTML 
2482 -Language Tagging in Unicode Plain Text 
2413 -Dublin Core Metadata for Resource Discovery 
2376 -XML Media Types 
2346 -Making Postscript and PDF International 
23 19 -Ukrainian Character Set KOI8-U 
2279,2044 - UTF-8, a transformation format of IS0  10646 
2237 -Japanese Character Encoding for Internet Messages 
2183 -Communicating Presentation Information in Internet Messages: The Content- 

Disposition Header Field 
2070 -Internationalization of the Hypertext Markup Language 
1980 -A Proposed Extension to HTML : Client-Side Image Maps 
1952 -GZIP file format specification version 4.3 
195 1 -DEFLATE Compressed Data Format Specification version 1.3 
1950 -ZLB Compressed Data Format Specification version 3.3 
1947 -Greek Character Encoding for Electronic Mail Messages 
1942 -HTML Tables 
1922 -Chinese Character Encoding for Internet Messages 
1874 -SGML Media Types 
1867 -Form-based File Upload in HTML 
1866 -Hypertext Markup Language - 2.0 
1843 -HZ - A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and 

ASCII characters 
1842 -ASCII Printable Characters-Based Chinese Character Encoding for Internet 

Messages 
1832 -XDR: External Data Representation Standard 
18 15 -Character Sets ISO- 10646 and ISO- 10646-J- 1 
1766 -Tags for the Identification of Languages 
1557 -Korean Character Encoding for Internet Messages 
1555 -Hebrew Character Encoding for Internet Messages 
1554 -1SO-2022-JP-2: Multilingual Extension of ISO-2022-JP 
1489 -Registration of a Cyrillic Character Set 
1468 -Japanese Character Encoding for Internet Messages 
1456 -Conventions for Encoding the Vietnamese Language VISCII: VIetnamese 

Standard Code for Information Interchange VIQR: VIetnamese Quoted- 
Readable Specification 

1278 -A string encoding of Presentation Address 
1197 -Using ODA for translating multimedia information 
1014 -XDR: External Data Representation standard 
1003 -Issues in defining an equations representation standard 

6m. Network Management (SNMP, CMOT, RMON) 
2593 -Script MIB Extensibility Protocol Version 1.0 
2580, 1904, 1444 - Conformance Statements for SMIv2 
2579, 1903, 1443 - Textual Conventions for SMIv2 
2578, 1902, 1442 - Structure of Management Information Version 2 (SMIv2) 
2575, 2275, 2265 - View-based Access Control Model (VACM) for the Simple 

Network Management Protocol (SNMP) 
2574, 2274, 2264 - User-based Security Model (USM) for version 3 of the Simple 

Network Management Protocol (SNMPV~) 
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2573, 2273, 2263 - SNMP Applications 
2572, 2272, 2262 - Message Processing and Dispatching for the Simple Network 

Management Protocol (SNMP) 
2571, 2271, 2261 - An Architecture for Describing SNMP Management Frameworks 
2570 -Introduction to Version 3 of the Internet-standard Network Management 

Framework 
2493 -Textual Conventions for MIB Modules Using Performance History Based on 

15 Minute Intervals 
2438 -Advancement of MIB specifications on the IETF Standards Track 
2257 -Agent Extensibility (AgentX) Protocol Version 1 
2107 -Ascend Tunnel Management Protocol - ATMP 
2089 -V2ToV1 Mapping SNMPv2 onto SNMPvl within a bi-lingual SNMP agent 
2039 -Applicability of Standards Track MIBs to Management of World Wide Web 

Servers 
1910 -User-based Security Model for SNMPv2 
1909 -An Administrative Infrastructure for SNMPv2 
1908, 1452 - Coexistence between Version 1 and Version 2 of the Internet-standard 

Network Management Framework 
1906, 1449 - Transport Mappings for Version 2 of the Simple Network Management 

Protocol (SNMPV2) 
1905, 1448 - Protocol Operations for Version 2 of the Simple Network Management 

Protocol (SNMPv2) 
1901 -Introduction to Community-based SNMPv2 
1856 -The Opstat Client-Server Model for Statistics Retrieval 
1592, 1228 - Simple Network Management Protocol Distributed Protocol Interface 

Version 2.0 
1503 -Algorithms for Automating Administration in SNMPv2 Managers 
1446 -Security Protocols for version 2 of the Simple Network Management Protocol 

(SNMPv2) 
1445 -Administrative Model for version 2 of the Simple Network Management 

Protocol (SNMPv2) 
1441 -Introduction to version 2 of the Internet-standard Network Management 

Framework 
1420, 1298 - SNMP over IPX 
1419 -SNMP over AppleTalk 
1418, 1283, 1161 - SNMP over OSI 
1369 -Implementation Notes and Experience for the Internet Ethernet MIB 
1352 -SNMP Security Protocols 
135 1 -SNMP Administrative Model 
1346 -Resource Allocation, Control, and Accounting for the Use of Network 

Resources 
1303 -A Convention for Describing SNMP-based Agents 
1270 -SNMP Communications Services 
1239 -Reassignment of experimental MIBs to standard MIBs 
1224 -Techniques for managing asynchronously generated alerts 
1215 -Convention for defining traps for use with the SNMP 
1212 -Concise MIE3 definitions 
1189, 1095 - Common Management Information Services and Protocols for the 

Internet (CMOT and CMIP) 
1187 -Bulk Table Retrieval with the SNMP 
1157, 1098, 1067 - Simple Network Management Protocol (SNMP) 
1155, 1065 - Structure and identification of management information for TCPAP- 

based internets 
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1109 -Report of the second Ad Hoc Network Management Review Group 
1089 -SNMP over Ethernet 
1076 -HEMS monitoring and control language 
1028 -Simple Gateway Monitoring Protocol 
1024 -HEMS variable definitions 
1023 -HEMS monitoring and control language 
1022 -High-level Entity Management Protocol (HEMP) 
1021 -High-level Entity Management System (HEMS) 

6n. Management Information Base Definitions (MIB) 
2720, 2064 - Traffic Flow Measurement: Meter MIB 
2677 -Definitions of Managed Objects for the NBMA Next Hop Resolution 

Protocol (NHRP) 
2674 -Definitions of Managed Objects for Bridges with Traffic Classes, Multicast 

Filtering and Virtual LAN Extensions 
2670 -Radio Frequency (RF) Interface Management Information Base for 

MCNSIDOCSIS compliant RF interfaces 
2669 -DOCSIS Cable Device MIB Cable Device Management Information Base for 

DOCSIS compliant Cable Modems and Cable Modem Termination Systems 
2668,2239 - Definitions of Managed Objects for IEEE 802.3 Medium Attachment 

Units (MAUs) 
2667 -IP Tunnel MIB 
2666 -Definitions of Object Identifiers for Identifying Ethernet Chip Sets 
2665, 2358, 1650 - Definitions of Managed Objects for the Ethernet-like Interface 

Types 
2662 -Definitions of Managed Objects for the ADSL Lines 
262 1 -RADIUS Accounting Server MIB 
2620 -RADIUS Accounting Client MIB 
2619 -RADIUS Authentication Server MIB 
2618 -RADIUS Authentication Client MIB 
2613 -Remote Network Monitoring MIB Extensions for Switched Networks Version 

1 .o 
2605, 1567 - Directory Server Monitoring MIB 
2594 -Definitions of Managed Objects for WWW Services 
2592 -Definitions of Managed Objects for the Delegation of Management Script 
2591 -Definitions of Managed Objects for Scheduling Management Operations 
2584 -Definitions of Managed Objects for APPN/HPR in IF' Networks 
2564 -Application Management MIB 
2562 -Definitions of Protocol and Managed Objects for TN3270E Response Time 

Collection Using SMIv2 (TN3270E-RT-MIB) 
2561 -Base Definitions of Managed Objects for TN3270E Using SMIv2 
2558, 1595 - Definitions of Managed Objects for the SONETISDH Interface Type 
2515, 1695 - Definitions of Managed Objects for ATM Management 
2514 -Definitions of Textual Conventions and OBJECT-IDENTITIES for ATM 

Management 
2513 -Managed Objects for Controlling the Collection and Storage of Accounting 

Information for Connection-Oriented Networks 
25 12 -Accounting Information for ATM Networks 
2496, 1407, 1233 - Definitions of Managed Object for the DS3E3 Interface Type 
2495, 1406, 1232 - Definitions of Managed Objects for the DS1, El ,  DS2 and E2 

Interface Types 
2494 -Definitions of Managed Objects for the DSO and DSO Bundle Interface Type 
2457 -Definitions of Managed Objects for Extended Border Node 
2456 -Definitions of Managed Objects for APPN TRAPS 



Sec. 6 Application Level 655 

2455,2155 - Definitions of Managed Objects for APPN 
2417,2366 - Definitions of Managed Objects for Multicast over UNI 3.013.1 based 

ATM Networks 
2320 -Definitions of Managed Objects for Classical IP and ARP Over ATM Using 

SMIv2 (IPOA-MIB) 
2287 -Definitions of System-Level Managed Objects for Applications 
2266 -Definitions of Managed Objects for IEEE 802.12 Repeater Devices 
2249, 1566 - Mail Monitoring MIB 
2248, 1565 - Network Services Monitoring MIB 
2238 -Definitions of Managed Objects for HPR using SMIv2 
2233, 1573, 1229 - The Interfaces Group MIB using SMIv2 
2232 -Definitions of Managed Objects for DLUR using SMIv2 
2214 -Integrated Services Management Information Base Guaranteed Service 

Extensions using SMIv2 
2213 -Integrated Services Management Information Base using SMIv2 
2128 -Dial Control Management Information Base using SMIv2 
2127 -1SDN Management Information Base using SMIv2 
21 15, 13 15 - Management Information Base for Frame Relay DTEs Using SMIv2 
2108, 1516, 1368 - Definitions of Managed Objects for IEEE 802.3 Repeater 

Devices using SMIv2 
2096, 1354 - IP Forwarding Table MIB 
2074 -Remote Network Monitoring MIB Protocol Identifiers 
2063 -T*c Flow Measurement: Architecture 
2051 -Definitions of Managed Objects for APPC using SMIv2 
2037 -Entity MIB using SMIv2 
2024 -Definitions of Managed Objects for Data Link Switching using SMIv2 
2021 -Remote Network Monitoring Management Information Base Version 2 using 

SMIv2 
2020 -IEEE 802.12 Interface MIB 
2013 -SNMPv2 Management Information Base for the User Datagram Protocol 

using SMIv2 
2012 -SNMPv2 Management Information Base for the Transmission Control 

Protocol using SMIv2 
201 1 -SNMPV2 Management Information Base for the Internet Protocol using 

SMIv2 
2006 -The Definitions of Managed Objects for IP Mobility Support using SMIv2 
1907, 1450 - Management Information Base for Version 2 of the Simple Network 

Management Protocol (SNMPv2) 
1850, 1253, 1252, 1248 - OSPF Version 2 Management Information Base 
1792 -TCP/IPX Connection Mib Specification 
1759 -Printer MIB 
1757, 1271 - Remote Network Monitoring Management Infornlation Base 
1749 -1EEE 802.5 Station Source Routing MIB using SMIv2 
1748, 1743, 123 1 - IEEE 802.5 MIB using SMIv2 
1747 -Definitions of Managed Objects for SNA Data Link Control (SDLC) using 

SMIv2 
1742, 1243 - AppleTalk Management Information Base 11 
1724, 1389 - RIP Version 2 MIB Extension 
1697 -Relational Database Management System (RDBMS) Management 

Information Base (MIB) using SMIv2 
1696 -Modem Management Information Base (MIB) using SMIv2 
1694, 1304 - Definitions of Managed Objects for SMDS Interfaces using SMIv2 
1666 -Definitions of Managed Objects for SNA NAUs using SMIv2 
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1665 -Definitions of Managed Objects for SNA NAUs using SMIv2 
1660, 1318 - Definitions of Managed Objects for Parallel-printer-like Hardware 

Devices using SMIv2 
1659, 1317 - Definitions of Managed Objects for RS-232-like Hardware Devices 

using SMIv2 
1658, 1316 - Definitions of Managed Objects for Character S t r ew  Devices using 

SMIv2 
1657 -Definitions of Managed Objects for the Fourth Version of the Border 

Gateway Protocol (BGP-4) using SMIv2 
1643, 1623, 1398, 1284 - Definitions of Managed Objects for the Ethernet-like 

Interface Types 
1628 -UPS Management Information Base 
16 12 -DNS Resolver MIB Extensions 
16 1 1 -DNS Server MIB Extensions 
1604, 1596 - Definitions of Managed Objects for Frame Relay Service 
1593 -SNA APPN Node MIB 
1559, 1289 - DECnet Phase IV MIB Extensions 
1525, 1493, 1286 - Definitions of Managed Objects for Source Routing Bridges 
15 15 -Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units 

(MAUS) 
1514 -Host Resources MIB 
15 13 -Token Ring Extensions to the Remote Network Monitoring MIB 
15 12, 1285 - FDDI Management Information Base 
1474 -The Definitions of Managed Objects for the Bridge Network Control Protocol 

of the Point-to-Point Protocol 
1473 -The Definitions of Managed Objects for the IP Network Control Protocol of 

the Point-to-Point Protocol 
1472 -The Definitions of Managed Objects for the Security Protocols of the Point- 

to-Point Protocol 
1471 -The Definitions of Managed Objects for the Link Control Protocol of the 

Point-to-Point Protocol 
1461 -SNMP MIB extension for Multiprotocol Interconnect over X.25 
1451 -Manager-to-Manager Management Information Base 
1447 -Party MIB for version 2 of the Simple Network Management Protocol 

(SNMPV2) 
1414 -Identification MIB 
1382 S N M P  MIB Extension for the X.25 Packet Layer 
1381 S N M P  MIB Extension for X.25 LAPB 
1353 -Definitions of Managed Objects for Administration of SNMP Parties 
1269 -Definitions of Managed Objects for the Border Gateway Protocol: Version 3 
1230 -1EEE 802.4 Token Bus MIB 
1227 -SNMP MUX protocol and MIB 
1214 -0SI internet management: Management Information Base 
1213, 1158, 1156, 1066 - Management Information Base for Network Management 

of TCPhP-based intemets:MIB-II 

60. Directory Services (X.500, LDAP, Whitepages) 
2714 -Schema for Representing CORBA Object References in an LDAP Directory 
2713 -Schema for Representing Java(tm) Objects in an LDAP Directory 
2696 -LDAP Control Extension for Simple Paged Results Manipulation 
2657 -LDAPV2 Client vs the Index Mesh 
2649 -An LDAP Control and Schema for Holding Operation Signatures 
2596 -Use of Language Codes in LDAP 
2589 -Lightweight Directory Access Protocol (v3): Extensions for Dynamic 

Directory Services 
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2587 -Internet X.509 Public Key Infrastructure LDAPv2 Schema 
2585 -Internet X.509 Public Key Infrastructure Operational Protocols: FTP and 

H'ITP 
2560 -X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - 

OCSP 
2559 -Internet X.509 Public Key Infrastructure Operational Protocols - LDAPv2 
2528 -Internet X.509 Public Key Infrastructure Representation of Key Exchange 

Algorithm (KEA) Keys in Internet X.509 Public Key Infrastructure 
Certificates 

2527 -Internet X.509 Public Key Infrastructure Certificate Policy and Certification 
Practices Framework 

25 11 -Internet X.509 Certificate Request Message Format 
25 10 -Internet X.509 Public Key Infrastructure Certificate Management Protocols 
2459 -Internet X.509 Public Key Infrastructure Certificate and CRL Profile 
2377 -Naming Plan for Internet Directory-Enabled Applications 
2307 -An Approach for Using LDAP as a Network Information Service 
2294, 1836 - Representing the O R  Address hierarchy in the X.500 Directory 

Information Tree 
2293, 1837 - Representing Tables and Subtrees in the X.500 Directory 
2256 -A Summary of the X.500(96) User Schema for use with LDAPv3 
2255 -The LDAP URL Format 
2254, 1960, 1558 - The String Representation of LDAP Search Filters 
2253 -Lightweight Directory Access Protocol (v3): UTF-8 String Representation of 

Distinguished Names 
2252 -Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions 
2251 -Lightweight Directory Access Protocol (v3) 
2247 -Using Domains in LDAFVX.500 Distinguished Names 
2218 -A Common Schema for the Internet White Pages Service 
2148 -Deployment of the Internet White Pages Service 
2120 -Managing the X.500 Root Naming Context 
21 16, 1632, 1292 - X.500 Implementations Catalog-96 
2079 -Definition of an X.500 Amibute Type and an Object Class to Hold Uniform 

Resource Identifiers (URIs) 
1959 -An LDAP URL Fonnat 
1943 -Building an X.500 Directory Service in the US 
1823 -The LDAP Application Program Interface 
1804 -Schema Publishing in X.500 Directory 
1803 -Recommendations for an X.500 Production Directory Service 
1802 -Introducing Project Long Bud: Internet Pilot Project for the Deployment of 

X.500 Directory Information in Support of X.400 Routing 
1801 -MHS use of the X.500 Directory to support MHS Routing 
1798 -Connection-less Lightweight X.500 Directory Access Protocol 
1781, 1484 - Using the OSI Directory to Achieve User Friendly Naming 
1779, 1485 - A String Representation of Distinguished Names 
1778, 1488 - The String Representation of Standard Attribute Syntaxes 
1777, 1487 - Lightweight Directory Access Protocol 
1684 -Introduction to White Pages Services based on X.500 
1617, 1384 - Naming and Structuring Guidelines for X.500 Directory Pilots 
1609 -Charting Networks in the X.500 Directory 
1608 -Representing IP Information in the X.500 Directory 
1564 -DSA Metrics (OSI-DS 34 (v3)) 
1562 -Naming Guidelines for the AARNet X.500 Directory Service 
1491 -A Survey of Advanced Usages of X.500 
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1431 -DUA Metrics (OSI-DS 33 (v2)) 
1430 -A Strategic Plan for Deploying an Internet X.500 Directory Service 
1373 -Portable DUAs 
1309 -Technical Overview of Directory Services Using the X.500 Protocol 
1308 -Executive Introduction to Directory Services Using the X.500 Protocol 
1279 -X.500 and Domains 
1277 -Encoding Network Addresses to Support Operation over Non-OSI Lower 

Layers 
1276 -Replication and Distributed Operations extensions to provide an Internet 

Directory using X.500 
1275 -Replication Requirements to provide an Internet Directory using X.500 
1274 -The COSINE and Internet X.500 Schema 
1255, 1218 - A Naming Scheme for c=US 
1249 -DIXIE Protocol Specification 
1202 -Directory Assistance service 
1107 -Plan for Internet directory services 

6p. Information Services (HlTP, Gopher, WAS) 
2718 Guidelines for new URL Schemes 
2660 -The Secure HyperText Transfer Protocol 
2656 -Registration Procedures for SOIF Template Types 
2655 -CIP Index Object Format for SOIF Objects 
2654 -A Tagged Index Object for use in the Common Indexing Protocol 
2653 -CIP Transport Protocols 
2652 -MIME Object Definitions for the Common Indexing Protocol (CIP) 
265 1 -The Architecture of the Common Indexing Protocol (CIP) 
2617,2069 - HTTP Authentication: Basic and Digest Access Authentication 
2616, 2068 - Hypertext Transfer Protocol -- H'ITPII. 1 
261 1 -URN Namespace Definition Mechanisms 
25 18 -HTTP Extensions for Distributed Authoring -- WEBDAV 
2483 -URI Resolution Services Necessary for URN Resolution 
2397 -The "data" URL scheme 
2396 -Uniform Resource Identifiers (URI): Generic Syntax 
2392, 21 11 - Content-ID and Message-ID Uniform Resource Locators 
2388 -Returning Values from Forms: multipart/form-data 
2378 -The CCSO Nameserver (Ph) Architecture 
2369 -The Use of URLs as Meta-Syntax for Core Mail List Commands and their 

Transport through Message Header Fields 
2368 -The mailto URL scheme 
2345 -Domain Names and Company Name Retrieval 
2310 -The Safe Response Header Field 
2296 -H'ITP Remote Variant Selection Algorithm -- RVSAll.0 
2295 -Transparent Content Negotiation in HTTP 
2291 -Requirements for a Distributed Authoring and Versioning Protocol for the 

World Wide Web 
2288 -Using Existing Bibliographic Identifiers as Uniform Resource Names 
2276 -Architectural Principles of Uniform Resource Name Resolution 
2259, 2258 - Simple Nomenclator Query Protocol (SNQP) 
2227 -Simple Hit-Metering and Usage-Limiting for HTTP 
2187, 2186 - Application of Internet Cache Protocol (ICP), version 2 
2169 -A Trivial Convention for using HTTP in URN Resolution 
2168 -Resolution of Uniform Resource Identifiers using the Domain Name System 
2167, 17 14 - Referral Whois (RWhois) Protocol V1.5 
2 145 -Use and Interpretation of HTTP Version Numbers 
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2141 -URN Syntax 
2 122 -VEMMI URL Specification 
2109 -HTTP State Management Mechanism 
2084 -Considerations for Web Transaction Security 
2056 -Unifom~ Resource Locators for 239.50 
1945 -Hypertext Transfer Protocol -- ~ 1 1 . 0  
1914 -How to Interact with a Whois++ Mesh 
19 13 -Architecture of the Whoisu Index Service 
1835 -Architecture of the WHOIS++ service 
1834 -Whois and Network Information Lookup Service, Whois++ 
1808 -Relative Uniform Resource Locators 
1738 -Uniform Resource Locators (URL) 
1737 -Functional Requirements for Uniform Resource Names 
1736 -Functional Recommendations for Internet Resource Locators 
1729 -Using the 239.50 Information Retrieval Protocol 
1728 -Resource Transponders 
1727 -A Vision of an Integrated Internet Information Service 
1630 -Universal Resource Identifiers in WWW A Unifying Syntax for the 

Expression of Names and Addresses of Objects on the Network as used in the 
World-Wide Web 

1625 -WAIS over 239.50-1988 
1614 -Network Access to Multimedia Information 
1436 -The Internet Gopher Protocol (a distributed document search and retrieval 

protocol) 
954,812 - NICNAME/WHOIS 

6q. Bootstrap and Configuration Protocols (BOOTP, DHCP) 
2563 -DHCP Option to Disable Stateless Auto-Configuration in IPv4 Clients 
2485 -DHCP Option for The Open Group's User Authentication Protocol 
2242 -Netwarem Domain Name and Information 
2241 -DHCP Options for Novel1 Directory Services 
2132, 1533, 1497, 1395, 1084, 1048 - DHCP Options and BOOTP Vendor 

Extensions 
2131, 1541, 1531 - Dynamic Host Configuration Protocol 
1542, 1532 - Clarifications and Extensions for the Bootstrap Protocol 
1534 -Interoperation Between DHCP and BOOTP 
95 1 - Bootstrap Protocol 

6r. Real-Time Multimedia and Quality of Sewice (RSVP, RTP) 
27 19 -Framework Architecture for Signaling Transport 
2705 -Media Gateway Control Protocol (MGCP) Version 1.0 
2689 -Integrated Services Mappings for Low Speed Networks 
2688 -Integrated Services Mappings for Low Speed Networks 
2658 -RTP Payload Format for PureVoice(tm) Audio 
2543 -SIP: Session Initiation Protocol 
2490 -A Simulation Model for IP Multicast with RSVP 
2458 -Toward the PSTNAntemet Inter-Networking--Re-PINT Implementations 
2448 -AT&T's Error Resilient Video Transmission Technique 
2435, 2035 - RTP Payload Format for JPEG-compressed Video 
243 1 -RTP Payload Format for BT.656 Video Encoding 
2430 -A Provider Architecture for Differentiated Services and Traffic Engineering 

(PASTE) 
2429 -RTP Payload Format for the 1998 Version of ITU-T Rec 
2423, 2422, 2421, 191 1 - VPIM Voice Message MIME Sub-type Registration 
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2386 -A Framework for QoS-based Routing in the Internet 
2382 -A Framework for Integrated Services and RSVP over ATM 
238 1 -1nteroperation of Controlled-Load Service and Guaranteed Service with ATM 
2380 -RSVP over ATM Implementation Requirements 
2379 -RSVP over ATM Implementation Guidelines 
2361 -WAVE and AVI Codec Registries 
2354 -Options for Repair of Streaming Media 
2343 -RTP Payload Format for Bundled MPEG 
2327 -SDP: Session Description Protocol 
2326 -Real Time Streaming Protocol (RTSP) 
2250, 2038 - RTP Payload Format for MPEGllMPEG2 Video 
2216 -Network Element Service Specification Template 
2215 General Characterization Parameters for Integrated Service Network Elements 
22 12 -Specification of Guaranteed Quality of Service 
221 1 -Specification of the Controlled-Load Network Element Service 
2210 -The Use of RSVP with IETF Integrated Services 
2209 -Resource ReSerVation Protocol (RSVP) -- Version 1 Message Processing 

Rules 
2208 -Resource ReSerVation Protocol (RSVP) -- Version 1 Applicability Statement 

Some Guidelines on Deployment 
2207 -RSVP Extensions for IPSEC Data Flows 
2206 -RSVP Management Information Base using SMIv2 
2205 -Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification 
2198 -RTP Payload for Redundant Audio Data 
2190 -RTP Payload Format for H.263 Video Streams 
2032 -RTP Payload Format for H.261 Video Streams 
2029 -RTP Payload Format of Sun's CellB Video Encoding 
1890 -RTP Profile for Audio and Video Conferences with Minimal Control 
1889 -RTP: A Transport Protocol for Real-Time Applications 
1821 -Integration of Real-time Services in an IP-ATM Network Architecture 
1789 -INETPhone: Telephone Services and Servers on Internet 
1257 -Isochronous applications do not require jitter-controlled networks 
1193 Client  requirements for real-time communication services 
741 - Specifications for the Network Voice Protocol (NVP) 

6s. Other 
2703 -Protocol-independent Content Negotiation Framework 
2614 -An API for Service Location 
2610 -DHCP Options for Service Location Protocol 
2609 -Service Templates and Service: Schemes 
2608, 2165 - Service Location Protocol, Version 2 
2552 -Architecture for the Information Brokerage in the ACTS Project GAIA 
2533 -A Syntax for Describing Media Feature Sets 
2447, 2446, 2445 - icalendar Message-Based Interoperability Protocol (iMIP) 
2244 -ACAP -- Application Configuration Access Protocol 
2229 -A Dictionary Server Protocol 
2 188 -AT&T/Neda' s Efficient Short Remote Operations (ESRO) Protocol 

Specification Version 1.2 
201 6 -Uniform Resource Agents (URAs) 
1861, 1645, 1568 - Simple Network Paging Protocol - Version 3 -Two-way 

Enhanced 
1756 -Remote Write Protocol - Version 1.0 
1703, 1569 - Principles of Operation for the TF'C.INT Subdomain: Radio Paging -- 

Technical Procedures 
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1692 -Transport Multiplexing Protocol (TMux) 
1530 -Principles of Operation for the TPC.INT Subdomain: General Principles and 

Policy 
1492 -An Access Control Protocol, Sometimes Called TACACS 
1459 -Internet Relay Chat Protocol 
1429 -Listserv Distribute Protocol 
1413, 93 1, 912 - Identification Protocol 
1307 -Dynamically Switched Link Control Protocol 
1288, 1196, 1194,742 - The Finger User Information Protocol 
1179 -Line printer daemon protocol 
978 - Voice File Interchange Protocol (VFIP) 
909 - Loader Debugger Protocol 
891 - DCN local-network protocols 
887 - Resource Location Protocol 
866 - Active users 
865 - Quote of the Day Protocol 
864 - Character Generator Protocol 
863, 348 - Discard Protocol 
862, 347 - Echo Protocol 
767 - Structured format for transmission of multi-media documents 
759 - Internet Message Protocol 
734 - SUPDUP Protocol 
666 - Specification of the Unified User-Level Protocol 
621 - NIC user directories at SRI ARC 
569 - NETED: A Common Editor for the ARPA Network 
470 - Change in socket for TIP news facility 
45 1 - Tentative proposal for a Unified User Level Protocol 
109 - Level III Server Protocol for the Lincoln Laboratory NIC 360167 Host 
98,79 - Logger Protocol Proposal 
29 - Response to RFC 28 

7. Program Documentation 
1761 -Snoop Version 2 Packet Capture File Format 
496 - TNLS quick reference card is available 
494 - Availability of MIX and MIXAL in the Network 
488 - NLS classes at network sites 
485 - MIX and MIXAL at UCSB 
431 - Update on SMFS Login and Logout 
41 1 - New MULTICS Network Software Features 
409 - Tenex interface to UCSB's Simple-Minded File System 
399 - SMFS Login and Logout 
390 - TSO Scenario 
382 - Mathematical Software on the ARPA Network 
379 - Using TSO at CCN 
373 - Arbitrary Character Sets 
350 - User Accounts for UCSB On-Line System 
345 - Interest in Mixed Integer Programming (MPSX on NIC 360191 at CCN) 
321 - CBI Networking Activity at MITRE 
31 1 - New Console Attachments to the USCB Host 
25 1 - Weather data 
217 - Specifications changes for OLS, RJERJOR, and SMFS 
174 - UCLA - Computer Science Graphics Overview 
122 - Network specifications for UCSB's Simple-Minded File System 
12 1 - Network on-line operators 
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120 - Network PL1 subprograms 
119 - Network Fortran subprograms 
74 - Specifications for network use of the UCSB On-Line System 

8. Network Specific (also see Section 3) 
8a. ARPANET 

1005, 878, 851, 802 - ARPANET AHP-E Host Access Protocol (enhanced AHIP) 
852 - ARPANET short blocking feature 
789 - Vulnerabilities of network control protocols: An example 
745 - JANUS interface specifications 
716 - Interim Revision to Appendix F of BBN 1822 
704 - IMPIHost and HostfIMP Protocol change 
696 - Comments on the IMPMost and HostfIMP Protocol changes 
695 - Official change in Host-Host Protocol 
692 - Comments on IMPMost Protocol changes (RFCs 687 and 690) 
690 - Comments on the proposed Host/IMP Protocol changes 
687 - IMPIHost and Host/IMP Protocol changes 
667 - BBN host ports 
660 - Some changes to the IMP and the IMPMost interface 
642 - Ready line philosophy and implementation 
638,633 - IMPmP preventive maintenance schedule 
632 - Throughput degradations for single packet messages 
627 - ASCII text file of hostnames 
626 - On a possible lockup condition in IMP subnet due to message sequencing 
625 - On-line hostnames service 
623 - Comments on on-line host name service 
622 - Scheduling IMPRP down time 
620 - Request for monitor host table updates 
619 - Mean round-trip times in the ARPANET 
613 - Network connectivity: A response to RFC 603 
61 1 - Two changes to the IMPIHost Protocol to improve userlnetwork 

communications 
606 - Host names on-line 
594 - Speedup of Host-IMP interface 
591 - Addition to the Very Distant Host specifications 
568, 567 - Response to RFC 567 - cross country network bandwidth 
548 - Hosts using the IMP Going Down message 
547 - Change to the Very Distant Host specification 
533 - Message-ID numbers 
528 - Software checksumming in the IMP and network reliability 
521 - Restricted use of IMP DDT 
508 - Real-time data transmission on the ARPANET 
476, 434 - IMPRIP memory retrofit schedule (rev 2) 
449,442 - Current flow-control scheme for IMPSYS 
447,445 - IMPRIP memory retrofit schedule 
417 - Link usage violation 
410 - Removal of the 30-Second Delay When Hosts Come Up 
406 - Scheduled IMP Software Releases 
395 - Switch Settings on IMPS and TIPS 
394 - Two Proposed Changes to the IMP-Host Protocol 
369 - Evaluation of ARPANET services January-March, 1972 
335 - New Interface - IMP1360 
312 - Proposed Change in IMP-to-Host Protocol 
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297 - TIP Message Buffers 
280 - A Draft of Host Names 
274 - Establishing a local guide for network usage 
273,237 - More on standard host names 
271 - IMP System change notifications 
270 - Correction to BBN Report No 
263 - "Very Distant" Host interface 
254 - Scenarios for using ARPANET computers 
247 - Proffered set of standard host names 
241 - Connecting computers to MLC ports 
239 - Host mnemonics proposed in RFC 226 (NIC 7625) 
236 - Standard host names 
233 - Standardization of host call letters 
230 - Toward reliable operation of minicomputer-based terminals on a TIP 
229 - Standard host names 
228 - Clarification 
226 - Standardization of host mnemonics 
218 - Changing the IMP status reporting facility 
213 - IMP System change notification 
209 - HostAMP interface documentation 
208 - Address tables 
73,67 - Response to NWG/RFC 67 
71 - Reallocation in Case of Input Error 
70 - Note on Padding 
64 - Getting rid of marking 
41 - IMP-IMP Teletype Communication 
25 - No High Link Numbers 
19 - Two protocol suggestions to reduce congestion at swap bound nodes 
17 - Some questions re: Host-IMP Protocol 
12 - IMP-Host interface flow diagrams 
7 - Host-IMP interface 
6 - Conversation with Bob Kahn 

8b. Host Front End Protocols 
929,928,705,647 - Proposed Host-Front End Protocol 

8c. ARPANET NCP (Obsolete Predecessor of TCPAP) 
801 - NCP/TCP transition plan 
773 - Comments on NCP/TCP mail service transition strategy 
714 - Host-Host Protocol for an ARPANET-Type Network 
689 - Tenex NCP finite state machine for connections 
663 - Lost message detection and recovery protocol 
636 - TIPRenex reliability improvements 
635 - Assessment of ARPANET protocols 
534, 516, 512 - Lost message detection 
492,467 - Response to RFC 467 
489 - Comment on resynchronization of connection status proposal 
425 - "But my NCP costs $500 a day" 
2 10 - Improvement of Flow Control 
176 - Comments on "Byte size for connections" 
165 - Proffered official Initial Connection Protocol 
147 - Definition of a socket 
142 - Time-out Mechanism in the Host-Host Protocol 
132, 124, 107, 102 - Typographical Error in RFC 107 
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129 - Request for comments on socket name structure 
128 - Bytes 
117 - Some comments on the official protocol 
72 - Proposed Moratorium on Changes to Network Protocol 
68 - Comments on Memory Allocation Control Commands: CEASE, ALL, GVB, 

RET, and RFNM 
65 - Comments on HostIHost Protocol document #1 
60 - Simplified NCP Protocol 
59 - Flow Control - Fixed Versus Demand Allocation 
58 - Logical Message Synchronization 
57, 54 - Thoughts and Reflections on NWGIRFC 54 
56 - Third Level Protocol: Logger Protocol 
55 - Prototypical implementation of the NCP 
50,49,47,45,44,40, 39,38,36,33 - Comments on the Meyer Proposal 
42 - Message Data Types 
23 - Transmission of Multiple Control Messages 
22 - Host-host control message formats 
18 - IMP-IMP and HOST-HOST Control Links 
15 - Network subsystem for time sharing hosts 
11 - Implementation of the Host-Host software procedures in GORDO 
9, 1 - Host software 
8 - Functional specifications for the ARPA Network 
5 - Decode Encode Language (DEL) 
2 - Host software 

8d. ARPANET Initial Connection Protocol 
202 - Possible Deadlock in ICP 
197 - Initial Connection Protocol - Reviewed 
16 1 - Solution to the race condition in the ICP 
151, 148, 143, 127, 123 - Comments on a proffered official ICP: RFCs 123, 127 
150 - Use of P C  Facilities: A Working Paper 
145 - Initial Connection Protocol Control Commands 
93 - Initial Connection Protocol 
80 - Protocols and Data Formats 
66 - NIC - third level ideas and other noise 

8e. USENET 
1036 Standard for interchange of USENET messages 
850 - Standard for interchange of USENET messages 

8f. Other 
1553 -Compressing IPX Headers Over WAN Media (CIPX) 
1132 -Standard for the transmission of 802.2 packets over IF'X networks 
935 - Reliable link layer protocols 
916 - Reliable Asynchronous Transfer Protocol (RATP) 
914 - Thinwire protocol for connecting personal computers to the Internet 
824 - CRONUS Virtual Local Network 

9. Measurement 
9a. General 

2724 -RTFM: New Attributes for Traffic Flow Measurement 
2723 -SRL: A Language for Describing Traffic Flows and Specifying Actions for 

Flow Groups 
2722 -Traffic Flow Measurement: Architecture 
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2721 -RTFM: Applicability Statement 
2681 -A Round-trip Delay Metric for IPPM 
2680 -A One-way Packet Loss Metric for IPPM 
2679 -A One-way Delay Metric for IPPM 
2678, 2498 - IPPM Metrics for Measuring Connectivity 
2544, 1944 - Benchmarking Methodology for Network Interconnect Devices 
2432 -Terminology for IP Multicast Benchmarking 
2330 -Framework for IP Perfomxime Metrics 
2285 -Benchmarking Terminology for LAN Switching Devices 
1857, 1404 - A Model for Common Operational Statistics 
1273 -Measurement Study of Changes in Service-Level Reachability in the Global 

TCP/IP Internet: Goals, Experimental Design, Implementation, and Policy 
Considerations 

1262 -Guidelines for Internet Measurement Activities 
557 - Revelations in network host measurements 
546 - Tenex load averages for July 1973 
462 - Responding to user needs 
415 - Tenex bandwidth 
392 - Measurement of host costs for transmitting network data 
352 - TIP Site Information Form 
308 - ARPANET host availability data 
286 - Network Library Information System 
214, 193 - Network checkpoint 
198 - Site Certification - Lincoln Labs 360167 
182 - Compilation of list of relevant site reports 
180 - File system questionnaire 
156 - Status of the Illinois site: Response to RFC 116 
153 - SRI ARC-NIC status 
152 - SRI Artificial Intelligence status report 
126 - Graphics Facilities at Arnes Research Center 
112 - UserlServer Site Protocol: Network host questionnaire responses 
106 - UserlServer Site Protocol Network Host Questionnaire 
104 - Link 191 

9b. Surveys 
971 - Survey of data representation standards 
876 - Survey of SMTP implementations 
848 - Who provides the "little" TCP services? 
847 - Summary of Smallberg surveys 
846, 845,843,842, 839,838, 837, 836,835, 834, 833, 832 - Who talks TCP? - 

survey of 22 February 1983 
844 - Who talks ICMP, too? - Survey of 18 February 1983 
787 - Connectionless data transmission surveyltutorial 
565 - Storing network survey data at the datacomputer 
545 - Of what quality be. the UCSB resources evaluators? 
530 - Report on the Survey project 
523 - SURVEY is in operation again 
5 19 - Resource evaluation 
5 14 - Network make-work 
464 - Resource notebook framework 
460 - NCP survey 
459 - Network questionnaires 
450 - MULTICS sampling timeout change 
446 - Proposal to consider a network program resource notebook 
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96 - An Interactive Network Experiment to Study Modes of Access the Network 
Information Center 

90 - CCN as a Network Service Center 
8 1 - Request for Reference Information 
78 - NCP Status Report: UCSB/Rand 

9c. Statistics 
1030 -On testing the NETBLT Protocol over divers networks 
996 - Statistics server 
618 - Few observations on NCP statistics 
612,601,586,579,566,556,538,522,509,497,482,455,443,422,413,400, 391, 

378 - Traffic statistics (December 1973) 
603,597, 376, 370,367, 366, 362,353,344,342,332,330, 326,319,315, 306, 298, 

293, 288, 287, 267, 266 - Response to RFC 597: Host status 
550 - NIC NCP experiment 
388 - NCP statistics 
255, 252, 240, 235 - Status of network hosts 

10. Privacy, Security and Authentication 
10a. General 

2716 -PPP EAP TLS Authentication Protocol 
2712 -Addition of Kerberos Cipher Suites to Transport Layer Security (TLS) 
2704 -The KeyNote Trust-Management System Version 2 
2693 -SPKI Certificate Theory 
2692 -SPKI Requirements 
2630 -Cryptographic Message Syntax 
2628 -Simple Cryptographic Program Interface (Crypto API) 
2627 -Key Management for Multicast: Issues and Architectures 
2538 -Storing Certificates in the Domain Name System (DNS) 
2537 -RSA/MD5 KEYS and SIGs in the Domain Name System (DNS) 
2536 -DSA KEYS and SIGs in the Domain Name System (DNS) 
2523,2522 - Photuris: Extended Schemes and Attributes 
2504 -Users' Security Handbook 
2479 -Independent Data Unit Protection Generic Security Service Application 

Program Interface (IDUP-GSS-API) 
2478,2078, 1508 - The Simple and Protected GSS-API Negotiation Mechanism 
2444 -The One-Time-Password SASL Mechanism 
2440 -OpenPGP Message Format 
2437, 2313 - PKCS #1: RSA Cryptography Specifications Version 2.0 
2367 -PF-KEY Key Management API, Version 2 
23 15 -PKCS 7: Cryptographic Message Syntax Version 1.5 
23 14 -PKCS 10: Certification Request Syntax Version 1.5 
2289, 2243, 1938 - A One-Time Password System 
2267 -Network Ingress Filtering: Defeating Denial of Service Attacks which employ 

IP Source Address Spoofing 
2246 -The TLS Protocol Version 1.0 
2245 -Anonymous SASL Mechanism 
2222 -Simple Authentication and Security Layer (SASL) 
2196, 1244 - Site Security Handbook 
2179 -Network Security For Trade Shows 
2094 -Group Key Management Protocol (GKMP) Architecture 
2093 -Group Key Management Protocol (GKMP) Specification 
2025 -The Simple Public-Key GSS-API Mechanism (SPKM) 
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1991 -PGP Message Exchange Formats 
1964 -The Kerberos Version 5 GSS-API Mechanism 
1949 -Scalable Multicast Key Distribution 
1948 -Defending Against Sequence Number Attacks 
1898 XyberCash Credit Card Protocol Version 0.8 
1824 -The Exponential Security System TESS: An Identity-Based Cryptographic 

Protocol for Authenticated Key-Exchange (E.1.S.S.-Report 199514) 
1805 -Location-Independent DatalSoftware Integrity Protocol 
1760 -The SKEY One-Time Password System 
175 1 -A Convention for Human-Readable 128-bit Keys 
1750 -Randomness Recommendations for Security 
1704 -On Internet Authentication 
15 1 1 -Common Authentication Technology Overview 
15 10 -The Kerberos Network Authentication Service (V5) 
1509 -Generic Security Service API : C-bindings 
1507 -DASS - Distributed Authentication Security Service 
1457 -Security Label Framework for the Internet 
1455 -Physical Link Security Type of Service 
1424 -Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification 

and Related Services 
1423, 11 15 - Privacy Enhancement for Internet Electronic Mail: Part 111: 

Algorithms, Modes, and Identifiers 
1422, 11 14 - Privacy Enhancement for Internet Electronic Mail: Part II: Certificate- 

Based Key Management 
1421, 11 13,989 - Privacy Enhancement for Internet Electronic Mail: Part I: 

Message Encryption and Authentication Procedures 
1355 -Privacy and Accuracy Issues in Network Information Center Databases 
128 1 -Guidelines for the Secure Operation of the Internet 
1170 -Public key standards and licenses 
1 135 -Hehinthiasis of the Internet 
1108 -US Department of Defense Security Options for the Internet Protocol 
1040 -Privacy enhancement for Internet electronic mail: Part I: Message 

encipherment and authentication procedures 
1038 -Draft revised IP security option 
1004 -Distributed-protocol authentication scheme 
972 - Password Generator Protocol 

lob. Encryption, Authentication and Key Exchange Algorithms 
263 1 -Diffie-Hellman Key Agreement Method 
2612 -The CAST-256 Encryption Algorithm 
2286 -Test Cases for HMAC-RIPEMD160 and HMAC-RIPEMD128 
2268 -A Description of the RC2(r) Encryption Algorithm 
2202 -Test Cases for HMAC-MD5 and HMAC-SHA- 1 
2144 -The CAST-128 Encryption Algorithm 
2040 -The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms 
18 10 -Report on MD5 Performance 
1321 -The MD5 Message-Digest Algorithm 
1320, 1 186 - The MD4 Message-Digest Algorithm 
1319 -The MD2 Message-Digest Algorithm 

10c. IP Security Protocol (IPSec) 
2709 -Security Model with Tunnebmode IPsec for NAT Domains 
2451 -The ESP CBC-Mode Cipher Algorithms 
2412 -The OAKLEY Key Determination Protocol 
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241 1 -1P Security Document Roadmap 
2410 -The NULL Encryption Algorithm and Its Use With IPsec 
2409 -The Internet Key Exchange (IKE) 
2408 -Internet Security Association and Key Management Protocol (ISAKMP) 
2407 -The Internet IP Security Domain of Interpretation for ISAKMP 
2406, 1827 - IP Encapsulating Security Payload (ESP) 
2405 -The ESP DES-CBC Cipher Algorithm With Explicit IV 
2404 -The Use of HMAC-SHA-1-96 within ESP and AH 
2403 -The Use of HMAC-MD5-96 within ESP and AH 
2402, 1826 - IP Authentication Header 
2401, 1825 - Security Architecture for the Internet Protocol 
2104 -HMAC: Keyed-Hashing for Message Authentication 
2085 -HMAC-MD5 IP Authentication with Replay Prevention 
1852 -1P Authentication using Keyed SHA 
1851 -The ESP Triple DES Transform 
1829 -The ESP DES-CBC Transform 
1828 -IP Authentication using Keyed MD5 

11. Network Experience and Demonstrations 
2123 -Traffic Flow Measurement: Experiences with NeTraMet 
1435 -1ESG Advice from Experience with Path MTU Discovery 
1306 -Experiences Supporting By-Request Circuit-Switched T3 Networks 
967 - All victims together 
573 - Data and file transfer: Some measurement results 
525 - MIT-MATHLAB meets UCSB-OLS -an example of resource sharing 
439 - PARRY encounters the DOCTOR 
420 - CCA ICCC weather demo 
372 - Notes on a Conversation with Bob Kahn on the ICCC 
364 - Serving remote users on the ARPANET 
302 - Exercising The ARPANET 
231 - Service center standards for remote usage: A user's view 
227 - Data transfer rates (Rand/UCLA) 
113 - Network activity report: UCSB Rand 
89 - Some historic moments in networking 
4 - Network timetable 

12. Site Documentation 
30, 27, 24, 10, 3 - Documentation Conventions 

13. Protocol Standards By Other Groups Of Interest To The 
Internet 

13a. ANSI 
183 - EBCDIC codes and their mapping to ASCII 
20 - ASCII format for network interchange 

13b. NRC 
942 - Transport protocols for Department of Defense data networks 
939 - Executive summary of the NRC report on transport protocols for Department 

of Defense data networks 

13c. IS0 
1698 -Octet Sequences for Upper-Layer OSI to Support Basic Communications 

Applications 
1629. 1237 - Guidelines for OSI NSAP Allocation in the Internet 
1575; 1139 - An Echo Function for CLNP (IS0 8473) 
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1574 -Essential Tools for the OSI Internet 
1561 -Use of IS0 CLNP in TUBA Environments 
1330 -Recommendations for the Phase I Deployment of OSI Directory Services 

(X.500) and OSI Message Handling Services (X.400) within the ESNET 
Community 

1238, 1162 - CLNS MIB for use with Connectionless Network Protocol (IS0 8473) 
and End System to Intermediate System (IS0 9542) 

1223 -OSI CLNS and LLCl protocols on Network Systems HYPERchamel 
1008 -Implementation guide for the IS0  Transport Protocol 
1007 -Military supplement to the IS0  Transport Protocol 
995 - End System to Intermediate System Routing Exchange Protocol for use in 

conjunction with IS0  8473 
994 - Final text of DIS 8473, Protocol for Providing the Connectionless-mode 

Network Service 
982 - Guidelines for the specification of the structure of the Domain Specific Part 

(DSP) of the IS0  standard NSAP address 
941 - Addendum to the network service definition covering network layer 

addressing 
926 - Protocol for providing the co~ectionless mode network services 
905 - IS0  Transport Protocol specification IS0  DP 8073 
892 - IS0  Transport Protocol specification 
873 - Illusion of vendor support 

14. Interoperability With Other Applications And Protocols 
14a. Protocol Translation and Bridges 

1086 -1SO-TPO bridge between TCP and X.25 
1029 -More fault tolerant approach to address resolution for a Multi-LAN system of 

Ethernets 

14b. Tunneling and Layering 
2661 -Layer Two Tunneling Protocol "L2TP" 
2556 -OSI connectionless transport services on top of UDP Applicability Statement 

for Historic Status 
2353 -APPN/HPR in IP Networks APPN Implementers' Workshop Closed Pages 

Document 
2166 -APPN Irnplementer's Workshop Closed Pages Document DLSw v2.0 

Enhancements 
2126, 1859, 1006 - IS0  Transport Service on top of TCP (ITOT) 
21 14, 2106 - Data Link Switching Client Access Protocol 
1795, 1434 - Data Link Switching: Switch-to-Switch Protocol AIW DLSw RIG: 

DLSw Closed Pages, DLSw Standard Version 1 
1791 -TCP And UDP Over IPX Networks With Fixed Path MTU 
1634, 1551, 1362 - Novel1 IPX Over Various WAN Media (IPXWAN) 
1613 -cisco Systems X.25 over TCP (XOT) 
1538 -Advanced SNA/IP : A Simple SNA Transport Protocol 
1356 -Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode 
1240 -OSI connectionless transport services on top of UDP: Version 1 
1234 -Tunneling IPX traffic through IP networks 
1085 -IS0 presentation services on top of TCP/IP based internets 
1070 -Use of the Internet as a subnetwork for experimentation with the OSI network 

layer 
983 - IS0  transport arrives on top of the TCP 



670 A Guide To RFCs Appendix 1 

14c. Mapping of Names, Addresses, and Identifiers 
1439 -The Uniqueness of Unique Identifiers 
1236 -1P to X.121 address mapping for DDN 
1069 -Guidelines for the use of Internet-IP addresses in the IS0  Connectionless- 

Mode Network Protocol 

15. Miscellaneous 
15a. General 

2664, 1594, 1325, 1206, 1 177 - FYI on Questions and Answers - Answers to 
Commonly Asked "New Internet User" Questions 

2636, 2604 - Wireless Device Configuration (OTASPIOTAPA) via ACAP 
2635 -DON'T SPEW A Set of Guidelines for Mass Unsolicited Mailings and 

Postings (spam*) 
2626 -The Internet and the Millennium Problem (Year 2000) 
2555 -30 Years of RFCs 
2468 -I REMEMBER IANA 
2441 -Working with Jon, Tribute delivered at UCLA, October 30, 1998 
2351 -Mapping of Airline Reservation, Ticketing, and Messaging Traffic over IP 
2350 -Expectations for Computer Security Incident Response 
2309 -Recommendations on Queue Management and Congestion Avoidance in the 

Internet 
2235 -Hobbes' Internet Timeline 
2234 -Augmented BNF for Syntax Specifications: ABNF 
215 1, 1739 - A Primer On Internet and TCPhP Tools and Utilities 
2150 -Humanities and Arts: Sharing Center Stage on the Internet 
2057 -Source Directed Access Control on the Internet 
1983, 1392 - Internet Users' Glossary 
1958 -Architectural Principles of the Internet 
1941, 1578 - Frequently Asked Questions for Schools 
1935 -What is the Internet, Anyway? 
1865 -ED1 Meets the Internet Frequently Asked Questions about Electronic Data 

Interchange (EDI) on the Internet 
1855 -Netiquette Guidelines 
1775 -To Be "On" the Internet 
1758, 1417, 1295 - NADF Standing Documents: A Brief Overview 
1746 -Ways to Define User Expectations 
1709 -K-12 Internetworking Guidelines 
1691 -The Document Architecture for the Cornell Digital Library 
1633 -Integrated Services in the Internet Architecture: an Overview 
1580 -Guide to Network Resource Tools 
1501 -OW2 User Group 
1498 4 x 1  the Naming and Binding of Network Destinations 
1470, 1147 - FYI on a Network Management Tool Catalog: Tools for Monitoring 

and Debugging TCPnP Internets and Interconnected Devices 
1462 -FYI on "What is the Internet?" 
1453 -A Comment on Packet Video Remote Conferencing and the 

Transport/Network Layers 
1432 -Recent Internet Books 
1402, 1290 - There's Gold in them thar Networks! or Searching for Treasure in all 

the Wrong Places 
1400 -Transition and Modernization of the Internet Registration Service 
1359 -Connecting to the Internet - What Connecting Institutions Should Anticipate 
1345 -Character Mnemonics and Character Sets 
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1336, 1251 - Who's Who in the Internet: Biographies of IAB, IESG and IRSG 
Members 

1324 -A Discussion on Computer Network Conferencing 
1302 -Building a Network Information Services Infrastructure 
1300 -Remembrances of Things Past 
1296 -Internet Growth (198 1- 199 1)  
129 1 -Mid-Level Networks Potential Technical Services 
1259 -Building the open road: The NREN as test-bed for the national public 

network 
1242 -Benchmarking tem6nology for network interconnection devices 
1208 -Glossary of networking terms 
1207 -FYI on Questions and Answers: Answers to commonly asked "experienced 

Internet user" questions 
1199, 1099 - Request for Comments Summary Notes: 1100-1 199 
1192 -Commercialization of the Internet summary report 
1 18 1 -RIPE Terms of Reference 
1 180 -TCP/IP tutorial 
1178 -Choosing a name for your computer 
1173 -Responsibilities of host and network managers: A summary of the "oral 

tradition" of the Internet 
1169 -Explaining the role of GOSIP 
1167 -Thoughts on the National Research and Education Network 
1 1  18 -Hitchhikers guide to the Internet 
1015 -Implementation plan for interagency research Internet 
992 - On communication support for fault tolerant process groups 
874 - Critique of X.25 
531 - Feast or famine? A response to two recent RFC's about network information 
473 - MIX and MIXAL? 
472 - Illinois' reply to Maxwell's request for graphics infom~ation (NIC 14925) 
429 - Character Generator Process 
408 - NETBANK 
361 - Deamon Processes on Host 106 
3 13 - Computer based instruction 
256 - IMPSYS change notification 
225 - RandIUCSB network graphics experiment 
219 - User's view of the datacomputer 
187 - Network1440 Protocol Concept 
169 - Computer networks 
146 - Views on issues relevant to data sharing on computer networks 
13 - Zero Text Length EOF Message 

15b. Bibliographies 
2007 -Catalogue of Network Training Materials 
1463 -FYI on Introducing the Internet-- A Short Bibliography of Introductory 

Internetworking Readings 
1175 -FYI on where to start: A bibliography of internetworking information 
1012 -Bibliography of Request For Comments 1 through 999 
829 - Packet satellite technology reference sources 
290 - Computer networks and data sharing: A bibliography 
243 - Network and data sharing bibliography 

15c. Humorous RFCs 
2551 -The Roman Standards Process -- Revision III 
2550 -YlOK and Beyond 
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2549 -1P over Avian Carriers with Quality of Service 
2325 -Definitions of Managed Objects for Drip-Type Heated Beverage Hardware 

Devices using SMIv2 
2324 -Hyper Text Coffee Pot Control Protocol (HTCPCPIl .O) 
2323 -1ETF Identification and Security Guidelines 
2322 -Management of IP numbers by peg-dhcp 
2321 -RITA -- The Reliable Internetwork Troubleshooting Agent 
2100 -The Naming of Hosts 
1927 -Suggested Additional MIME Types for Associating Documents 
1926 -An Experimental Encapsulation of IP Datagram on Top of ATM 
1925 -The Twelve Networking Truths 
1924 -A Compact Representation of IPv6 Addresses 
1882 -The 12-Days of Technology Before Christmas 
1776 -The Address is the Message 
1607 -A VIEW FROM THE 21ST CENTURY 
1606 -A Historical Perspective On The Usage Of IP Version 9 
1605 -SONET to Sonnet Translation 
1438 -Internet Engineering Task Force Statements Of Boredom (SOBS) 
1437 -The Extension of MIME Content-Types to a New Medium 
13 13 -Today's Programming for KRFC AM 13 13 Internet Talk Radio 
1217 -Memo from the Consortium for Slow Commotion Research (CSCR) 
1216 -Gigabit network economics and paradigm shifts 
1149 -Standard for the transmission of IP datagrams on avian carriers 
1 12 1 -Act one - the poems 
1097 -Telnet subliminal-message option 
968 - Twas the night before start-up 
748 - Telnet randomly-lose option 
527 - ARPAWOCKY 

16. Unissued 
2727, 2726, 2725,2708,2707, 2700, 2699, 2600, 2599,2576, 1849, 1840, 1839, 
1260, 1182, 1061, 853,723,715,711,710,709,693,682,676,673,670,668,665, 
664, 650, 649, 648, 646, 641, 639, 605, 583, 575, 572, 564, 558, 554, 541, 540, 536, 
517, 507, 502, 484, 481, 465, 444, 428, 427, 424, 397, 383, 380, 375, 358, 341, 337, 
284, 279, 277, 275, 272, 262, 261, 260, 259, 258, 257, 248, 244, 220, 201, 159, 92, 
26, 14 



Appendix 2 

Glossary Of Internetworking 
Terms And Abbreviations 

TCPhP Terminology 

Like most large enterprises, TCP/IP has a language all its own. A curious blend of 
networking jargon, protocol names, and abbreviations, the language is both difficult to 
learn and difficult to remember. To outsiders, discussions among the cognoscenti sound 
like meaningless babble laced with acronyms at every possible opportunity. Even after 
a moderate amount of exposure, readers may find that specific terms are =cult to 
understand. The problem is compounded because some terminology is loosely defined 
and because the sheer volume is overwhelming. 

This glossary helps solve the problem by providing short definitions for terms used 
throughout the Internet. It is not intended as a tutorial for beginners. Instead, we focus 
on providing a concise reference to make it easy for those who are generally 
knowledgeable about networking to look up the meaning of specific terms or acronyms 
quickly. Readers will find it substantially more useful as a reference after they have 
studied the text than before. 
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A Glossary of Terms and Abbreviations 
In Alphabetical Order 

1011 00 hardware 
Applied to any Ethernet hardware that can operate at either 10 Mbps or 100 Mbps. 

1 0Base2 
The technical name for the original thick Ethernet. 

1 0Base5 
The technical name for thin Ethernet. 

1OBaseT 
The technical name for twisted pair Ethernet operating at 10 Mbps. 

1 WBase-T 
The technical name for twisted pair Ethernet operating at 100 Mbps. The term 
IOOBase-TX is more specific. 

1 000 Base-T 
The technical name for twisted pair Ethernet operating at 1000 Mbps ( 1  Gbps). 

127.0.0.1 
The IF' loopback address used for testing. Packets sent to this address are processed 
by the local protocol software without ever being sent across a network. 

W Problem 
An inefficient routing situation caused by mobile IF' in which a datagram crosses the 
global Internet twice when traveling from a computer to a mobile that is visiting a 
nearby network. 

576 
The minimum datagram size all hosts and routers must handle. 

802.3 
The IEEE standard for Ethernet. 

822 
The TCPIIP standard format for electronic mail messages. Mail experts often refer 
to "822 messages." The name comes from RFC 822 that contains the specification. 
822 format was previously known as 733 format. 

91 80 
The default MTU size for sending IP datagrams over an ATM network. 

AAL 
(ATM Adaptation Layer) Part of the ATM protocols. Several adaptation layers ex- 
ist; AAL5 is used for data. 
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ABR 
Either Available Bit Rate, an ATM designation for service that does not guarantee a 
rate, or Area Border Router, an OSPF designation for a router that communicates 
with another area. 

ACK 
Abbreviation for acknowledgement. 

ACK implosion 
A reference to a problem that can occur with a reliable multicast protocol in which 
many acknowledgements (ACKs) go back to the source. Most reliable multicast 
schemes use designated routers to aggregate ACKs. 

acknowledgement 
A response sent by a receiver to indicate successful reception of information. Ack- 
nowledgements may be implemented at any level including the physical level (using 
voltage on one or more wires to coordinate transfer), at the link level (to indicate 
successful transmission across a single hardware link), or at higher levels (e.g., to al- 
low an application program at the final destination to respond to an application pro- 
gram at the source). 

acknowledgement aggregator 
Used in a reliable multicast scheme to avoid the ACK implosion problem. 

active open 
The operation that a client performs to establish a TCP connection with a server at a 
known address. 

adaptive retransmission 
The scheme TCP uses to make the retransmission timer track the mean round-trip 
time. 

address 
An integer value used to identify a particular computer that must appear in each 
packet sent to the computer. 

address binding 
The translation of a higher-layer address into an equivalent lower-layer address (e.g., 
translation of a computer's IP address to the computer's Ethernet address). 

address mask 
A synonym for subnet mask. 

address resolution 
Conversion of a protocol address into a corresponding physical address (e.g., 
conversion of an IP address into an Ethernet address). Depending on the underlying 
network, resolution may require broadcasting on a local network. See ARP. 

administrative scoping 
A scheme for limiting the propagation of multicast datagrams. Some addresses are 
reserved for use within a site or within an organization. 
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ADSL 
(Asymmetric Digital Subscriber Line) A popular DSL variant. 

Advanced Networks and Services 
The company that owned and operated the Internet backbone in 1995. 

agent 
In network management, an agent is the server software that runs on a host or router 
being managed. 

AH 
(Authentication Header) A header used by IPsec to guarantee the authenticity of a 
datagram's source. 

all routers group 
The well-known IP multicast group that includes all routers on the local network. 

all systems group 
The well-known IP multicast group that includes all hosts and routers on the local 
network. 

anonymous FTP 
An FTP session that uses login name anonymous to access public files. A server 
that permits anonymous FTP often allows the password guest. 

anonymous network 
A synonym for unnumbered network. 

ANS 
Abbreviation for Advanced Networks and Services. 

ANSI 
(American National Standards Institute) A group that defines U.S. standards for the 
information processing industry. ANSI participates in defining network protocol 
standards. 

ANSNET 
The Wide Area Network that formed the Internet backbone until 1995. 

anycast 
An address form introduced with IPv6 in which a datagram sent to the address can 
be routed to any of a set of computers. An anycast address is called a cluster ad- 
dress. 

API 
(Application Program Interface) The specification of the operations an application 
program must invoke to communicate over a network. The socket API is the most 
popular for internet communication. 

application gateway 
An application program that connects two or more heterogeneous systems and 
translates among them. E-mail gateways are especially popular. 
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application-server paradigm 
A synonym for client-server paradigm. 

area 
In OSPF, a group of routers that exchange routing information. 

area manager 
A person in charge of an IETF area. The set of area managers form the IESG. 

ARP 
(Address Resolution Protocol) The TCP/IF' protocol used to dynamically bind a 
high-level IP Address to a low-level physical hardware address. ARP is used across 
a single physical network and is limited to networks that support hardware broad- 
cast. 

ARPA 
(Advanced Research Projects Agency) The government agency that funded the AR- 
PANET, and later, the global Internet. The group within ARPA with responsibility 
for the ARPANET was IPTO (Information Processing Techniques Ofice), later 
called ISTO (Information Systems Technology w e e ) .  ARPA was named DARPA 
for many years. 

ARPANET 
A pioneering long haul network funded by ARPA (later DARPA) and built by BBN. 
It served from 1969 through 1990 as the basis for early networking research and as a 
central backbone during development of the Internet. The ARPANET consisted of 
individual packet switching nodes interconnected by leased lines. 

ARQ 
(Automatic Repeat reQuest) Any protocol that uses positive and negative ack- 
nowledgements with retransmission techniques to ensure reliability. The sender au- 
tomatically repeats the request if it does not receive an answer. 

AS 
(Autonomous System) A collection of routers and networks that fall under one ad- 
ministrative entity and cooperate closely to propagate network reachability (and 
routing) information among themselves using an interior gateway protocol of their 
choice. Routers within an autonomous system have a high degree of trust. Before 
two autonomous systems can communicate, one router in each system sends reacha- 
bility information to a router in the other. 

ASN.l 
(Abstract Syntax Notation. 1 )  The IS0  presentation standard protocol used by 
SNMP to represent messages. 

Assigned Numbers 
The RFC document that specifies (usually numeric) values used by TCPAP proto- 
cols. 
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ATM 
(Asynchrotwzu Transfer Mode) A ~o~ec t ion -~ r i en t ed  network technology that uses 
small, fixed-size cells at the lowest layer. ATM has the potential advantage of being 
able to support voice, video, and data with a single underlying technology. 

ATM Adaptation Layer (AAL) 
One of several protocols defined for ATM that specifies how an application sends 
and receives information over an ATM network. Data transmissions use AALS. 

ATMARP 
The protocol a host uses for address resolution when sending IP over an ATM net- 
work. 

AUI 
(Attachment Unit Interjime) The connector used for thick-wire Ethernet. 

authority zone 
A part of the domain name hierarchy in which a single name server is the authority. 

backbone network 
Any network that forms the central interconnect for an internet. A national back- 
bone is a WAN; a corporate backbone can be a LAN. 

base64 
An encoding used with MIME to send non-textual data such as a binary file through 
e-mail. 

base header 
In the proposed IPng, the required header found at the beginning of each datagram. 

baseband 
Characteristic of any network technology like Ethernet that uses a single carrier fre- 
quency and requires all stations attached to the network to participate in every 
transmission. Compare to broadband. 

bastion host 
A secure computer that forms part of a security firewall and runs applications that 
communicate with computers outside an organization. 

baud 
Literally, the number of times per second the signal can change on a transmission 
line. Commonly, the transmission line uses only two signal states (e.g., two vol- 
tages), making the baud rate equal to the number of bits per second that can be 
transferred. The underlying transmission technique may use some of the bandwidth, 
so it may not be the case that users experience data transfers at the line's specified 
bit rate. For example, because asynchronous lines require 10 bit-times to send an 
8-bit character, a 9600 baud asynchronous transmission line can only send 960 char- 
acters per second. 
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BCP 
(Best Current Practice) A label given to a subset of RFCs that contain recommenda- 
tions from the IETF about the use, configuration, or deployment of internet techno- 
logies. 

Bellman-Ford 
A synonym for distance-vector. 

Berkeley broadcast 
A reference to a nonstandard IP broadcast address that uses all zeros in the host por- 
tion instead of all ones. The name arises because the technique was introduced and 
propagated in Berkeley's BSD UNIX. 

besteffort delivery 
Characteristic of network technologies that do not provide reliability at link levels. 
IP works well over best-effort delivery hardware because IP does not assume that 
the underlying network provides reliability. The UDP protocol provides best-effort 
delivery service to application programs. 

BGP 
(Border Gateway Protocol) The major exterior gateway protocol used in the Inter- 
net. Four major versions of BGP have appeared, with BGP-4 being the current. 

big endian 
A format for storage or transmission of binary data in which the most-significant 
byte (bit) comes first. The TCPIIP standard network byte order is big endian. Com- 
pare to little endian. 

binary exponential backoff 
A technique used to control network contention or congestion quickly. A sender 
doubles the amount of time it waits between each successive attempt to use the net- 
work. 

BISYNC 
(BInary SYNchronous Communication) An early, low-level protocol developed by 
IBM and used to transmit data across a synchronous communication link. Unlike 
most modem link level protocols, BISYNC is byte-oriented, meaning that it uses 
special characters to mark the beginning and end of frames. BISYNC is often called 
BSC, especially in commercial products. 

BNC 
The style of connector used with thin-wire Ethernet. 

BOOTP 
Abbreviation for BOOTstrap Protocol, a protocol a host uses to obtain stamp infor- 
mation, including its IP address, from a server. 

bps 
(bits per second) A measure of the rate of data transmission. 
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bridge 
A computer that c o ~ e c t s  two or more networks and forwards packets among them. 
Bridges operate at the physical network level. For example, an Ethernet bridge con- 
nects two physical Ethernet cables, and forwards from one cable to the other exactly 
the packets that are not local. Bridges differs from repeaters because bridges store 
and forward complete packets, while repeaters forward all electrical signals. Bridges 
differ from routers because bridges use physical addresses, while routers use IP ad- 
dresses. 

broadband 
Characteristic of any network technology that multiplexes multiple, independent net- 
work carriers onto a single cable (usually using frequency division multiplexing). 
For example, a single 50 Mbps broadband cable can be divided into five 10 Mbps 
carriers, with each treated as an independent Ethernet. The advantage of broadband 
is less cable; the disadvantage is higher cost for equipment at connections. Compare 
to baseband. 

broadcast 
A packet delivery system that delivers a copy of a given packet to all hosts that at- 
tach to it is said to broadcast the packet. Broadcast may be implemented with 
hardware (e.g., as in Ethernet) or with software (e.g., IP broadcasting in the presence 
of subnets). 

broadcast and prune 
A technique used in data-driven multicast forwarding in which routers forward each 
datagram to each network until they learn that the network has no group members. 

brouter 
(Bridging ROUTER) A device that operates as a bridge for some protocols and as a 
router for others (e.g., a brouter can bridge DECNET protocols and route IP). 

BSC 
(Binary Synchronous Communication) See BISYNC. 

BSD UNIX 
(Berkeley Software Distribution UNIX) The version of UNIX released by U.C. 
Berkeley or one of the commercial systems derived from it. BSD UNIX was the 
first to include TCP/IP protocols. 

care-of address 
A temporary IP address used by a mobile while visiting a foreign network. 

category 5 cable 
A standard for wiring that is used with twisted pair Ethernet. 

CBT 
(Core Based Trees) A demand-driven multicast routing protocol that builds shared 
forwarding trees. 
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CClRN 
(Coordinating Committee for Intercontinental Research Networking) An internation- 
al group that helps coordinate international cooperation on internetworking research 
and development. 

CClrr 
(Consultative Committee on International Telephony and Telegraphy) The former 
name of International Telecommunications Union. 

CDDl 
(Copper Distributed Data Interface) An adaptation of the FDDI network technology 
for use over copper wires. 

cell 
A small, fixed-size packet. The fixed size makes hardware optimization possible. 
Cells are often associated with ATM networks in which a cell contains 48 octets of 
data and 5 octets of header. 

cell tax 
A reference to the 10% header overhead imposed by ATM. 

CGI 
(Common Gateway Interface) A technology a server uses to create a Web page 
dynamically when the request arrives. 

checksum 
A small, integer value computed from a sequence of octets by treating them as in- 
tegers and computing the sum. A checksum is used to detect errors that result when 
the sequence of octets is transmitted from one machine to another. Typically, proto- 
col software computes a checksum and appends it to a packet when transmitting. 
Upon reception, the protocol software verifies the contents of the packet by recom- 
puting the checksum and comparing to the value sent. Many TCP/IP protocols use a 
16-bit checksum computed with one's complement arithmetic, with all integer fields 
in the packet stored in network byte order. 

ClDR 
(Classless Inter-Domain Routing) The standard that specifies the details of both 
classless addressing and an associated routing scheme. 

CL 
See connectionless service. 

class of address 
The category of an IP address. The class of an address determines the location of 
the boundary between network prefix and host suffix. 

classful addressing 
The original IPv4 addressing scheme in which host addresses were divided into 
three classes: A, B, and C. 
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classless addressing 
An extension of the original IPv4 addressing scheme that ignores the original class 
boundaries. Classless addressing was motivated by the problem of address space 
exhaustion. 

client-server 
The model of interaction in a distributed system in which a program at one site 
sends a request to a program at another site and awaits a response. The requesting 
program is called a client; the program satisfying the request is called the server. It 
is usually easier to build client software than server software. 

closed window 
A situation in TCP where a receiver has sent a window advertisement of zero be- 
cause no additional buffer space is available. The sending TCP cannot transmit ad- 
ditional data until the receiver opens the window. 

cluster address 
The term originally used for anycast address. 

CO 
See connection-oriented service. 

codec 
(coder/decoder) A hardware device used to convert between an analog audio signal 
and a stream of digital values. 

congestion 
A situation in which traffic (temporarily) exceeds the capacity of networks or 
routers. TCP includes a congestion control mechanism that allows it to back off 
when the internet becomes congested. 

connection 
An abstraction provided by protocol software. TCP provides a connection from an 
application on one computer to an application on another. 

connectionoriented service 
Characteristic of the service offered by any technology that requires communicating 
entities to establish a connection before sending data. TCP provides connection- 
oriented service as does ATM hardware. 

connectionless service 
Characteristic of any packet delivery service that treats each packet or datagram as a 
separate entity and allows communicating entities to transmit data before establish- 
ing communication. Each packet carries a destination address to identa the intend- 
ed recipient. Most network hardware, the Internet Protocol (IP), and the User Da- 
tagram Protocol (UDP) provide connectionless service. 

COPS 
(Common Open Policy Service) A protocol used with RSVP to venfy whether a re- 
quest meets policy constraints. 
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core architecture 
Characteristic of an internet architecture that has a central routing system surrounded 
by local routing systems. The original Internet had a single backbone network, and 
used a core architecture. As ISPs developed backbone systems, the Internet moved 
away from a single core. 

count to infinity 
A popular synonym for the slow convergence problem. 

CRC 
(Cyclic Redundancy Code) A small, integer value computed from a sequence of oc- 
tets used to detect errors that result when the sequence of octets is transmitted from 
one machine to another. Typically, packet switching network hardware computes a 
CRC and appends it to a packet when transmitting. Upon reception, the hardware 
verifies the contents of the packet by recomputing the CRC and comparing it to the 
value sent. Although more expensive to compute, a CRC detects more errors than a 
checksum that uses additive methods. 

CR-LF 
(Carriage Return - Line Feed) A two-character sequence used to terminate text lines 
in application-layer protocols such as TELNET and SMTP. 

CSMAlCD 
(Carrier Sense Multiple Access with Collision Detection) A characteristic of network 
hardware that operates by allowing multiple stations to contend for access to a 
transmission medium by listening to see if the medium is idle, and a mechanism that 
allows the hardware to detect when two stations simultaneously attempt transmis- 
sion. Ethernet uses CSMAICD. 

CSUIDSU 
(Channel Service Unit/Data Service Unit) An electronic device that connects a 
computer or router to a digital circuit leased by the telephone company. Although 
the device fills two rolls, it usually consists of a single physical piece of hardware. 

cumulative acknowledgement 
An alternative to the selective acknowledgements used by TCP. A cumulative ack- 
nowledgement reports all data that has been received successfully rather than each 
piece of data that arrives. 

DARPA 
(Defense Advanced Research Projects Agency) Former name of ARPA. 

data-driven multicast 
A scheme for multicast forwarding that uses the broadcast and prune approach. See 
demand-driven multicast. 

datagram 
See IP datagram. 



684 Glossary of Internetworking Terms and Abbreviations Appendix 2 

DCE 
(Data Communications Equipment) Term ITU protocol standards apply to switching 
equipment that forms a packet switched network to distinguish it from the comput- 
ers or terminals that connect to the network. Also see DTE. 

DDCMP 
(Digital Data Communication Message Protocol) The link level protocol used in the 
original NSFNET backbone. 

DDN 
(Defense Data Network) The part of the Internet associated with U.S. military sites. 

default route 
A single entry in a list of routes that covers all destinations which are not included 
explicitly. The routing tables in most routers and hosts contain an entry for a de- 
fault route. 

delay 
One of the two primary measures of a network. Delay refers to the difference 
between the time a bit of data is injected into a network and the time the bit exits. 

delayed acknowledgement 
A heuristic employed by a receiving TCP to avoid silly window syndrome. 

demand-driven multicast 
A scheme for multicast forwarding that requires a router to join a shared forwarding 
tree before deliverying packets. See data-driven multicast. 

demultiplex 
To separate from a common input into several outputs. Demultiplexing occurs at 
many levels. Hardware demultiplexes signals from a transmission line based on 
time or carrier frequency to allow multiple, simultaneous transmissions across a sin- 
gle physical cable. IP software demultiplexes incoming datagram, sending each to 
the appropriate high-level protocol module or application program. See multiplex. 

DHCP 
(Dynamic Host Conjguration Protocol) A protocol that a host uses to obtain all 
necessary configuration information including an IP address. DHCP is popular with 
ISPs because it allows a host to obtain a temporary IP address. 

DiffServe 
(Dlfferentiated Services) A scheme adopted to replace the original IP type of service. 
DiffServe provides up to 64 possible types of service (e.g., priorities); each datagram 
carries a field in the header that specifies the type of service it desires. 

directed broadcast address 
An IP address that specifies "all hosts" on a specific network. A single copy of a 
directed broadcast is routed to the specified network where it is broadcast to all 
machines on that network. 
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distance-vector 
A class of routing update protocols that use a distributed shortest path algorithm 
(SPF) in which each participating router sends its neighbors a list of networks it can 
reach and the distance to each network. 

DNS 
(Domain Name System) The on-line distributed database system used to map 
human-readable machine names into IP addresses. DNS servers throughout the con- 
nected Internet implement a hierarchical narnespace that allows sites freedom in as- 
signing machine names and addresses. DNS also supports separate mappings 
between mail destinations and IP addresses. 

domain 
A part of the DNS naming hierarchy. Syntactically, a domain name consists of a se- 
quence of names (labels) separated by periods (dots). 

dotted decimal notation 
A syntactic fonn used to represent 32-bit binary integers that consists of four 8-bit 
numbers written in base 10 with periods (dots) separating them. Many TCPIIP ap- 
plication programs accept dotted decimal notation in place of destination machine 
names. 

dotted hex notation 
A syntactic form used to represent binary values that consists of hexadecimal values 
for each 8-bit quantity with dots separating them. 

dotted quad notation 
A syntactic form used to represent binary values that consists of hexadecimal values 
for each 16-bit quantity with dots separating them. 

DS3 
A telephony classification of speed for leased lines equivalent to approximately 45 
Mbps. 

DSL 
(Digital Subscriber Line) A set of technologies used to provide high-speed data ser- 
vice over the copper wires that connect between telephone offices, local residences 
or businesses. 

DTE 
(Data Terminal Equipment) Tern1 ITU protocol standards apply to computers andor 
terminals to distinguish them from the packet switching network to which they con- 
nect. Also see DCE. 

DVMRP 
(Distance Vector Multicast Routing Protocol) A protocol used to propagate multi- 
cast routes. 

E.164 
An address format specified by ITU and used with ATM. 
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EACK 
(Extended ACKnowledgement) Synonym for SACK. 

echo request and reply 
A type of message that is used to test network connectivity. The ping program uses 
ICMP echo request and reply messages. 

EGP 
(Exterior Gateway Protocol) A term applied to any protocol used by a router in one 
autonomous system to advertise network reachability to a router in another auto- 
nomous system. BGP-4 is currently the most widely used exterior gateway proto- 
col. 

EIA 
(Electronics Industry Association) A standards organization for the electronics in- 
dustry. Known for RS232C and RS422 standards that speclfy the electrical charac- 
teristics of interconnections between terminals and computers or between two com- 
puters. 

encapsulation 
The technique used by layered protocols in which a lower level protocol accepts a 
message from a higher level protocol and places it in the data portion of the low- 
level frame. Encapsulation means that datagrams traveling across a physical net- 
work have a sequence of headers in which the first header comes from the physical 
network frame, the next from the Internet Protocol (IP), the next from the transport 
protocol, and so on. 

end-to-end 
Characteristic of any mechanism that operates only on the original source and final 
destination. Applications and transport protocols like TCP are classified as end-to- 
end. 

epoch date 
A point in history chosen as the date from which time is measured. TCP/IF' uses 
January 1, 1900, Universal Time (formerly called Greenwich Mean Time) as its 
epoch date. When TCP/IP programs exchange date or time of day they express time 
as the number of seconds past the epoch date. 

ESP 
(Encapsulating Security Payload) A packet format used by IPsec to send encrypted 
information. 

Ethernet 
A popular local area network technology invented at the Xerox Corporation Palo 
Alto Research Center. An Ethernet is a passive coaxial cable; the intercomections 
contain all active components. Ethernet is a best-effort delivery system that uses 
CSMNCD technology. Xerox Corporation, Digital Equipment Corporation, and In- 
tel Corporation developed and published the standard for 10 Mbps Ethernet. Origi- 
nally, Ethernet used a coaxial cable. Later versions use a smaller coaxial cable 
(thinnet) or twisted pair cable (10Base-T). 
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Ethernet meltdown 
An event that causes saturation or near saturation on an Ethernet. It usually results 
from illegal or rnisrouted packets, and typically lasts only a short time. 

EUI-64 
A 64-bit IEEE layer-2 addressing standard. 

exponential backoff 
See binary exponential backoff. 

extension header 
Any of the optional IPV6 headers that follows the base header. 

external Data Representation 
See XDR. 

extra hop problem 
A routing problem in which a datagram takes an extra, unnecessary trip across a net- 
work. The problem can be difficult to detect because communication appears to 
work. 

fair queueing 
A well-known technique for controlling congestion in routers. Called "fair" be- 
cause it restricts every host to an equal share of router bandwidth. Fair queueing is 
not completely satisfactory because it does not distinguish between small and large 
hosts or between hosts with a few active connections and those with many. 

Fast Ethernet 
A popular tern1 for 100Base-T Ethernet. 

FCCSET 
(Federal Coordinating Council for Science, Engineering, and Technology) A 
govemment group noted for its report that called for high-speed computing and 
high-speed networking research. 

FDDI 
(Fiber Distribution Data Interface) A token ring network technology based on fiber 
optics. FDDI specifies a 100 Mbps data rate using 1300 nanometer light 
wavelength, and limits networks to approximately 200 km in length, with repeaters 
every 2 km or less. 

FDM 
(Frequency Division Multiplexing) The method of passing multiple, independent sig- 
nals across a single medium by assigning each a unique carrier frequency. 
Hardware to combine signals is called a multiplexor; hardware to separate them is 
called a demultiplexor. Also see TDM. 

file server 
A process running on a computer that provides access to files on that computer to 
programs running on remote machines. The term is often applied loosely to com- 
puters that run file server programs. 
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FIN 
A special TCP segment used to close a connection. Each side must send a FIN. 

firewall 
A configuration of routers and networks placed between an organization's internal 
internet and a connection to an external internet to provide security. 

five-layer reference model 
The protocol layering model used by TCPAP. Although originally controversial, the 
success of TCP/IP has led to wide acceptance. 

fixed-length subnetting 
A subnet address assignment scheme in which all physical nets in an organization 
use the same mask. The alternative is variable-length subnetting. 

flat namespace 
Characteristic of any naming in which object names are selected from a single set of 
strings (e.g., street names in a typical city). Flat naming contrasts with hierarchical 
naming in which names are divided into subsections that correspond to the hierarchy 
of authority that administers them. 

flow 
A general term used to characterize a sequence of packets sent from a source to a 
destination. Some technologies define a separate flow for each pair of cornrnunicat- 
ing applications, while others define a single flow to include all packets between a 
pair of hosts. 

flow control 
Control of the rate at which hosts or routers inject packets into a network or internet, 
usually to avoid congestion. 

Ford-Fulkerson algorithm 
A synonym for the distance-vector algorithm that refers to the researchers who 
discovered it. 

forwarding 
The process of accepting an incoming packet, looking up a next hop in a routing 
table, and sending the packet on to the next hop. IP routers perform datagram for- 
warding. 

fragment extension header 
An optional header used by IPv6 to mark a datagram as a fragment. 

fragmentation 
The process of dividing an IP datagram into smaller pieces when they must travel 
across a network that cannot handle the original datagram size. Each fragment has 
the same format as a datagram; fields in the IP header specify whether a datagram is 
a fragment, and if so, the offset of the fragment in the original datagram. IP 
software at the receiving end must reassemble fragments to produce the original da- 
tagram. 
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frame 
Literally, a packet as it is transmitted across a serial line. The term derives from 
character oriented protocols that added special start-of-frame and end-of-frame char- 
acters when transmitting packets. We use the tern throughout this book to refer to 
the objects that physical networks transmit. 

Frame Relay 
The name of a connection-oriented network technology that is offered by telephone 
companies. 

FTP 
(File Transfer Protocol) The TCP/IP standard, high-level protocol for transferring 
files from one machine to another. FTP uses TCP. 

full duplex 
Characteristic of a technology that allows simultaneous transfer of data in two direc- 
tions. TCP provides full duplex connections. 

FYI 
(For Your Information) A subset of the RFCs that contain tutorials or general infor- 
mation about topics related to TCP/IP or the connected Internet. 

gated 
(GATEway Daemon) A program run on a router that uses an IGP to collect routing 
information from within one autonomous system and EGP to advertise the infornla- 
tion to another autonomous system. 

gateway 
Any mechanism that connects two or more heterogeneous systems and translates 
among them. Originally, researchers used the term IP gateway for dedicated com- 
puters that route IF' datagrams; vendors have adopted the tern IP router. 

gateway requirements 
See router requirements. 

Gbps 
(Giga Bits Per Second) A measure of the rate of data transmission equal to 230 bits 
per second. Also see Kbps, Mbps, and baud. 

GGP 
(Gateway to Gateway Protocol) The protocol originally used by core gateways to 
exchange routing infornlation. GGP is now obsolete. 

gopher 
An early menu-driven information service used in the Internet. 

GOSlP 
(Government Open Systems Interconnection Profile) A U.S. government procure- 
ment document that specified agencies may use OSI protocols in new networks after 
August 1991. Although GOSIP was originally thought to eliminate the use of 
TCP/IP on government internets, clarifications have specified that government agen- 
cies can continue to use TCP/IP. 
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graceful shutdown 
A protocol mechanism that allows two communicating parties to agree to terminate 
communication without confusion even if underlying packets are lost, delayed, or 
duplicated. TCP uses a 3-way handshake to guarantee graceful termination. 

graft 
An operation in which a multicast router joins a shared forwarding tree; the opposite 
of prune. 

GRE 
(Generic Routing Encapsulation) A scheme for encapsulating information in IP that 
includes IP-in-IP as one possibility. 

H.323 
An ITU recommendation for a suite of protocols used for IP telephony. 

half duplex 
Characteristic of a technology that only permits data transmission in one direction at 
a time. Compare tofill duplex. 

hardware address 
The low-level addresses used by physical networks. Synonyms include physical ad- 
dress and MAC address. Each type of network hardware has its own addressing 
scheme (e.g., an Ethernet address is 48 bits). 

header 
Information at the beginning of a packet or message that describes the contents and 
specifies a destination. 

HELLO 
A protocol used on the original NSFNET backbone. Although obsolete, Hello is in- 
teresting because it uses delay as the routing metric and chooses a path with 
minimum delay. 

HELO 
The command on the initial exchange of the SMTP protocol. 

hierarchical addressing 
An addressing scheme in which an address can be subdivided into parts that each 
identify successively finer granularity. IP addresses use a two-level hierarchy in 
which the first part of the address identifies a network and the second part identifies 
a particular host on that network. Routers use the network portion to forward a da- 
tagram until the datagram reaches a router that can deliver it directly. Subnetting in- 
troduces additional levels of hierarchical routing. 

historic 
An IETF classification used to discourage the use of a protocol. In essence, a pro- 
gram that is declared historic is obsolete. 

hold down 
A short fixed time period following a change to a routing table during which no 
further changes are accepted. Hold down helps avoid routing loops. 
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hop count 
A measure of distance between two points in an internet. A hop count of n means 
that n routers separate the source and destination. 

hop limit 
The IPv6 name for the datagram header field that IPv4 calls time to live. The hop 
limit, which prevents datagrams from following a routing loop forever, is decre- 
mented by each router along the path. 

host 
Any end-user computer system that connects to a network. Hosts include devices 
such as printers, small notebook computers, as well as large supercomputers. Com- 
pare to router. 

host requirements 
A long document that contains revisions and updates of many TCP/IF' protocols. 
The host requirements document is published in a pair of RFCs. See router require- 
ments. 

host-specific route 
An entry in a routing table that refers to a single host computer as opposed to routes 
that refer to a network, an IP subnet, or a default. 

HTML 
(HyperTexr Markup Language) The standard document format used for Web pages. 

HTTP 
(Hypertext Transfer Protocol) The protocol used to transfer Web documents from a 
server to a browser. 

hub 
An inexpensive electronic device to which multiple computers attach, usually using 
twisted pair wiring, to send and receive packets. A hub operates at layer 2 by repli- 
cating signals. Ethernet hubs are especially popular. 

IAB 
(Internet Architecture Board) A small group of people who set policy and direction 
for TCPnP and the global Internet. The IAB was formerly known as the Internet 
Activities Board. See IETF. 

I AC 
(Interpret As Command) An escape used by TELNET to distinguish commands from 
normal data. 

IANA 
(Internet Assigned Number Authority) Essentially one individual (Jon Postel), IANA 
was originally responsible for assigning IP addresses and the constants used in 
TCP/IF' protocols. Replaced by ICANN in 1999. 

ICANN 
(Internet Corporation For Assigned Names and Numbers) The organization that 
took over the IANA duties after Postel's death. 
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ICCB 
(Internet Control and Configuration Board) A predecessor to the IAB. 

ICMP 
(Internet Control Message Protocol) An integral part of the Internet Protocol (IP) 
that handles error and control messages. Specifically, routers and hosts use ICMP to 
send reports of problems about datagrams back to the original source that sent the 
datagram. ICMP also includes an echo requestlreply used to test whether a destina- 
tion is reachable and responding. 

ICMPv6 
(Internet Control Message Protocol version 6) The version of ICMP that has been 
defined for use with IPv6. 

IEN 
(Internet Engineering Notes) A series of notes developed in parallel to RFCs. 
Although the series is obsolete, some IENs contain early discussion of TCPW and 
the Internet not found in RFCs. 

IESG 
(Internet Engineering Steering Group) A committee consisting of the IETF chairper- 
son and the area managers. The IESG coordinates activities among the IETF work- 
ing groups. 

IETF 
(Internet Engineering Task Force) A group of people under the IAB who work on 
the design and engineering of TCPJIP and the global Internet. The IETF is divided 
into areas, which each has an independent manager. Areas are further divided into 
working groups. 

IGMP 
(Internet Group Management Protocol) A protocol that hosts use to keep local 
routers apprised of their membership in multicast groups. When all hosts leave a 
group, routers no longer forward datagrams that arrive for the group. 

IGP 
(Interior Gateway Protocol) The generic term applied to any protocol used to pro- 
pagate network reachability and routing information within an autonomous system. 
Although there is no single standard IGP, RIP is among the most popular. 

IMP 
(Inter&ace Message Processor) The original term for packet switches in the AR- 
PANET; now loosely applied to a switch in any packet network. 

InATMARP 
(Inverse ATM ARP) Part of the address resolution protocol needed for non-broadcast 
multiple access networks such as ATM. 

indirect delivery 
Delivery of a datagram through a router as opposed to a direct transmission from the 
source host to the destination host. 
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INOC 
(Internet Network Operations Center) Originally, a group of people at BBN that 
monitored and controlled the Internet core gateway system. Now applied to any 
group that monitors an internet. 

inter-autonomous system routing 
Also known as exterior routing. BGP-4 is currently the most popular protocol for 
exterior routing. 

International Organization for Standardization 
See 1.50. 

International Telecommunications Union (ITU) 
An international organization that sets standards for interconnection of telephone 
equipment. It defined the standards for X.25 network protocols. (Note: in Europe, 
PTTs offer both voice telephone services and X.25 network services). 

internet 
Physically, a collection of packet switching networks interconnected by routers 
along with TCPIIP protocols that allow them to function logically as a single, large, 
virtual network. When written in upper case, Internet refers specifically to the glo- 
bal Internet. 

lnternet 
The collection of networks and routers that spans over 200 countries, and uses 
TCP/IP protocols to form a single, cooperative virtual network. 

lnternet address 
See IP address. 

lnternet Draft 
A draft document generated by the IETF; if approved, the document will become an 
RFC. 

lnternet Protocol 
See IP. 

lnternet Society 
The non-profit organization established to foster interest in the Internet. The Inter- 
net Society is the host organization of the IAB. 

lnternet worm 
A program designed to travel across the Internet and replicate itself endlessly. 
When a student released the Internet worm, it made the Internet and many attached 
computers useless for hours. 

interoperability 
The ability of software and hardware on multiple machines from multiple vendors to 
communicate meaningfully. This term best describes the goal of internetworking, 
namely, to define an abstract, hardware independent networking environment that 
makes it possible to build distributed computations that interact at the network tran- 
sport level without knowing the details of underlying technologies. 
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lntranet 
A private corporate network consisting of hosts, routers, and networks that use 
TCPm technology. An intranet may or may not connect to the global Internet. 

IP 
(Internet Protocol) The TCP/IP standard protocol that defines the IP datagram as the 
unit of information passed across an internet and provides the basis for connection- 
less, best-effort packet delivery service. IP includes the ICMP control and error 
message protocol as an integral part. The entire protocol suite is often referred to as 
TCP/IP because TCP and IP are the two fundamental protocols. 

IP address 
A 32-bit address assigned to each host that participates in a TCPm internet. IP ad- 
dresses are the abstraction of physical hardware addresses just as an internet is an 
abstraction of physical networks. To make routing efficient, each IP address is di- 
vided into a network portion and a host portion. 

IP datagram 
The basic unit of information passed across a TCPm internet. An IP datagram is to 
an internet as a hardware packet is to a physical network - each datagram contains 
a source and destination address along with data. 

IP gateway 
A synonym for IP router. 

IP-in-IP 
The encapsulation of one IP datagram inside another for transmission through a tun- 
nel. IP in IP is often used to send multicast datagrams across the Internet. 

IP multicast 
An addressing and forwarding scheme that allows transmission of IP datagrams to a 
subset of hosts. The Internet currently does not have extensive facilities for routing 
IP multicast. 

IP router 
A device that connects two or more (possibly heterogeneous) networks and passes 
IP traffic between them. As the name implies, a router looks up the datagram's des- 
tination address in a routing table to choose a next hop. 

IP switching 
Originally a high-speed IP forwarding technology developed by Ipsilon Corporation, 
now generally used in reference to any of several similar technologies. 

IP telephony 
A telephone system that uses IP to transport digitized voice. 

lPng 
(Internet Protocol - the Next Generation) A term applied to all the activities sur- 
rounding the specification and standardization of the next version of IP. Also see 
IPv6. 
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lPsec 
(IP SECurity) A security standard that allows the sender to choose to authenticate or 
encrypt a datagram. IPsec can be used with either IPv4 or IPv6. 

IPv4 
(Internet Protocol version 4) .  The official name of the current version of IP. 

lhr6 
(Internet Protocol version 6). The name of the next version of IP. Also see IPng. 

IRSG 
(Internet Research Steering Group) The group of people who head the IRW. 

IRTF 
(Internet Research Task Force) A group of people working on research problems re- 
lated to TCP/IP and the c o ~ e c t e d  Internet. The lRTF is not as active as the IETF. 

ISDN 
(Integrated Services Digital Nerwork) The name of the digital network service that 
telephone carriers provide. 

IS0 
(International Organization for Standardization) An international body that drafts, 
discusses, proposes, and specifies standards for network protocols. IS0  is best 
know for its 7-layer reference model that describes the conceptual organization of 
protocols. Although it has proposed a suite of protocols for Open System Intercon- 
nection, the OSI protocols have not been widely accepted in the commercial market. 

ISOC 
Abbreviation for Internet Society. 

isochronous 
Characteristic of a network system that does not introduce jitter. The conventional 
telephone system is isochronous. 

ISODE 
(IS0 Development Environment) Software that provides an IS0  transport level pro- 
tocol interface on top of TCP/IP. ISODE was designed to allow researchers to ex- 
periment with ISO's higher-level OSI protocols without requiring an internet that 
supports the lower levels of the OSI suite. 

ISP 
(Internet Service Provider) Any organization that sells Internet access, either per- 
manent connectivity or dialup access. 

ITU 
Abbreviation for the International Telecommunication Union, a standards organiza- 
tion. 

jitter 
A technical term used to describe unwanted variance in delay caused when one 
packet in a sequence must be delayed more than another. The typical cause of jitter 
is other traffic on a network. 



696 Glossary of Internetworking Terms and Abbreviations Appendix 2 

Karn's Algorithm 
An algorithm that allows transport protocols to distinguish between valid and invalid 
round-trip time samples, and thus improve round-trip estimations. 

Kbps 
(Kilo Bits Per Second) A measure of the rate of data transmission equal to 2'' bits 
per second. Also see Gbps, Mbps, and baud. 

keepalive 
A small message sent periodically between two communicating entities to ensure 
that network connectivity remains intact and that both sides are still responding. 
BGP uses keepalives. 

LAN 
(Local Area Network) Any physical network technology designed to span short dis- 
tances (up to a few thousand meters). Usually, LANs operate at tens of megabits 
per second through several gigabits per second. Examples include Ethernet and 
FDDI. See MAN and WAN. 

layer 1 
A reference to the hardware interface layer of communication. The name is derived 
from the IS0  7-layer reference model. Layer 1 specifications refer to physical con- 
nections, including connector configuration and voltages on wires. (Sometimes 
called level 1 .) 

layer 2 
In the IS0  7-layer model, a reference to link level communication (e.g., frame for- 
mat). In the TCP/IP 5-layer model, layer 2 refers to physical frame format and ad- 
dressing. Thus, a layer 2 address is a MAC address (e.g., an Ethernet address). 

layer 3 
In the IS0  7-layer model, a reference to the network layer. In the TCP/IP 5-layer 
model, a reference to the internet layer (IP and the IP datagram format). Thus, an IP 
address is a layer 3 address. 

leaf 
A graph-theoretic term for a router or a network at the "edge" of an internet. 

link-local address 
An address used with IPv6 that has significance only on a single network. 

link state routing 
One of two approaches used by routing protocols in which routers broadcast status 
messages and use Dijkstra's SPF algorithm to compute shortest paths. See distance 
vector routing. 

link status routing 
A synonym for link state routing. 
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LIS 
(Logical ZP Subnet) A group of computers connected via ATM that use ATM as an 
isolated local network. A computer in one LIS cannot send a datagram directly to a 
computer in another LIS. 

little endian 
A format for storage or transmission of binary data in which the least-significant 
byte (bit) comes first. See big endian. 

LLC 
(Logical Link Control) One of the fields in an NSAP header. 

logical subnet 
An abbreviation of Logical IP Subnet (LIS). 

long haul network 
Older term for wide area network (WAN). 

longest-prefix matching 
The technique used by IF' routers when searching a routing table. Among all entries 
that match the destination address, a router picks the one that has the longest subnet 
mask. 

loopback address 
A network address used for testing which causes outgoing data to be processed by 
the local protocol software without sending packets. IF' uses 127.0.0.0 as the loop- 
back prefix. 

LSR 
(Loose Source Route) An IF' option that contains a list of router addresses that the 
datagram must visit in order. Unlike a strict source route, a loose source route al- 
lows the datagram to pass through additional routers not on the list. See SSR. 

MABR 
(Multicast Area Border Router) The MOSPF tern1 for a multicast router that ex- 
changes routing information with another area. 

MAC 
(Media Access Control) A general reference to the low-level hardware protocols 
used to access a particular network. The term MAC address is often used as a 
synonym for physical address. 

mail bridge 
Informal term used as a synonym for a mail gateway. 

mail exchanger 
A computer that accepts e-mail; some mail exchangers forward the mail to other 
computers. DNS has a separate address type for mail exchangers. 
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mail exploder 
Part of an electronic mail system that accepts a piece of mail and a list of addresses 
as input and sends a copy of the message to each address on the list. Most electron- 
ic mail systems incorporate a mail exploder to allow users to define mailing lists lo- 
cally. 

mail gateway 
A machine that connects to two or more electronic mail systems (especially dissimi- 
lar mail systems on two different networks) and transfers mail messages among 
them. Mail gateways usually capture an entire mail message, reformat it according 
to the rules of the destination mail system, and then forward the message. 

MAN 
(Metropolitan Area Network) Any physical network technology that operates at high 
speeds (usually hundreds of megabits per second through several gigabits per 
second) over distances sufficient for a metropolitan area. See LAN and WAN. 

Management Information Base 
See MIB. 

martians 
Humorous term applied to packets that turn up unexpectedly on the wrong network, 
often because of incorrect routing tables. 

mask 
See subnet mask. 

maximum transfer unit 
See MTU. 

MBONE 
(Multicast BackBONE). A cooperative agreement among sites to forward multicast 
datagrams across the Internet by use of IP tunneling. 

Mbps 
(Millions of Bits Per Second) A measure of the rate of data transmission equal to 220 
bits per second. Also see Gbps, Kbps, and baud. 

MIB 
(Management Information Base) The set of variables (database) that a system run- 
ning an SNMP agent maintains. Managers can fetch or store into these variables. 

MILNET 
(MILitary NETwork) Originally part of the ARPANET, MILNET was partitioned in 
1984. 

MIME 
(Multipurpose Internet Mail Extensions) A standard used to encode data such as im- 
ages as printable ASCII text for transmission through e-mail. 
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mobile IP 
A technology developed by the IETF to permit a computer to travel to a new site 
while retaining its original IP address. The computer contacts a server to obtain a 
second, temporary address, and then arranges for all datagrams to be forwarded to it. 

Mosaic 
An early Web browser program. 

MOSPF 
(Multicast Open Shortest Path First) Multicast Extensions to the OSPF routing pro- 
tocol. 

MPLS 
(Multi-Protocol Label Switching) A technology that uses high speed switching 
hardware to carry IP datagrams. MPLS is descended from IP switching and label 
switching. 

mrouted 
(Multicast ROUTE Daemon) A program used with a protocol stack that supports IP 
multicast to establish multicast routing. 

MSL 
(Maximum Segment Lifetime) The longest time a datagram can survive in the Inter- 
net. Protocols use the MSL to guarantee a bound on the time duplicate packets can 
survive. 

MSS 
(Maximum Segment Size) A term used with TCP. The MSS is the largest amount of 
data that can be transmitted in one segment. Sender and receiver negotiate max- 
imum segment size at connection startup. 

MTU 
(Maximum Transfr Unit or Maximum Transmission Unit) The largest amount of 
data that can be transferred across a given physical network. The MTU is deter- 
mined by the network hardware. 

multi-homed host 
A host using TCPJIP that has connections to two or more physical networks. 

multicast 
A technique that allows copies of a single packet to be passed to a selected subset of 
all possible destinations. Some hardware (e.g., Ethernet) supports multicast by al- 
lowing a network interface to belong to one or more multicast groups. IP supports 
an internet multicast facility. 

multiplex 
To combine data from several sources into a single stream in such a way that it can 
be separated again later. Multiplexing occurs at many levels. See demultiplex. 

multiplicative decrease 
A technique used by TCP to reduce transmission when congestion occurs. TCP de- 
creases the size of the effective window by half each time a segment is lost. 
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NACK 
(Negative Acknowledgement) A response from the recipient of data to the sender of 
that data to indicate that the transmission was unsuccessful (e.g., that the data was 
corrupted by transmission errors). Usually, a NACK triggers retransmission of the 
lost data. 

Nagle algorithm 
A self-clocking heuristic that clumps outgoing data to improve throughput and avoid 
silly window syndrome. 

NAK 
Synonym for NACK. 

name resolution 
The process of mapping a name into a corresponding address. The domain name 
system provides a mechanism for naming computers in which programs use remote 
name servers to resolve a machine name into an IF' address. 

NAP 
(Network Access Point) One of several physical locations where ISPs interconnect 
their networks. A NAP also includes a route server that supplies each ISP with 
reachability information from the routing arbiter system. In addition to NAPS, many 
ISPs now have private peering arrangements. 

NAT 
(Network Address Translation) A technology that allows hosts with private ad- 
dresses to communicate with an outside network such as the global Internet. 

NBMA 
(Non-Broadcast Multi-Access). A characteristic of a network that connects multiple 
computers but does not supply hardware-level broadcast. ATM is the prime exam- 
ple of a NBMA network. 

Net 10 address 
A general reference to a nonroutable address (i.e., one that is reserved for use in an 
intranet and not used on the global Internet). The prefix 10.0.0.0 was formerly as- 
signed to ARPANET; it was designated as a nonroutable address when the AR- 
PANET ceased operation. 

Net BlOS 
(Network Basic Input Output System) NetBIOS is the standard interface to networks 
on IBM PC and compatible personal computers. TCP/IP includes guidelines that 
describe how to map NetBIOS operations into equivalent TCPlIP operations. 

network byte order 
The TCPDP standard for transmission of integers that specifies the most significant 
byte appears first (big endian). Sending machines are required to translate from the 
local integer representation to network byte order, and receiving machines are re- 
quired to translate from network byte order to the local machine representation. 
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network management 
See MIB and SNMP. 

Next Header 
A field used in IPv6 to specify the type of the item that follows. 

NFS 
(Network File System) A protocol originally developed by SUN Microsystems, In- 
corporated that uses IP to allow a set of cooperating computers to access each 
other's file systems as if they were local. 

NIC 
(Network Interface Card) A hardware device that plugs into the bus on a computer 
and connects the computer to a network. 

NIST 
(National Institute of Standards and Technology) Formerly, the National Bureau of 
Standards. NIST is one standards organization within the US that establishes stan- 
dards for network protocols. 

NLA 
(Next Level Aggregation) In IPv6 addressing, the third most significant set of bits in 
a unicast address. Also see TLA. 

NOC 
(Network Operations Center) Originally, the organization at BBN that monitored 
and controlled several networks that formed part of the global Internet. Now, used 
for any organization that manages a network. 

nonroutable address 
Any address that uses one of the network prefures which are reserved for use in in- 
tranets. Routers in the global Internet will report an error if a datagram containing a 
nonroutable address accidentally reaches them. See net-10 address. 

NSAP 
(Network Service Access Point) An address format that can be encoded in 20 octets. 
The ATM Forum recommends using NSAP addresses. 

NSF 
(National Science Foundation) A U.S. government agency that funded some of the 
research and development of the Internet. 

NSFNET 
(National Science Foundation NETwork) Used to describe the Internet backbone in 
the U.S., which is supported by NSF. 

NVT 
(Network Virtual Terminal) The character-oriented protocol used by TELNET. 

OC series standards 
A series of standards for the transmission of data over optical fiber. For example, 
the popular 0C3 standard has a bit rate of approximately 155 million bits per 
second. 
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octet 
An &bit unit of data. Although engineers frequently use the term byte as a 
synonym for octet, a byte can be smaller or larger than 8 bits. 

one-armed router 
An IP router that understands two addressing domains, but only has one physical 
network connection. One-armed routers are typically used to add security or address 
translation rather than to forward packets between networks. Also called a one- 
armed firewall. 

OSI 
(Open Systems Interconnection) A reference to protocols developed by IS0 as a 
competitor for TCPAP. They are not widely deployed or supported. 

OSPF 
(Open Shortest Path First) A link state routing protocol design by the IETF. 

OUI 
(Organizationally Unique Identifier) Part of an address assigned to an organization 
that manufactures network hardware; the organization assigns a unique address to 
each device by using its OUI plus a suffm number. 

out of band data 
Data sent outside the normal delivery path, often used to carry abnormal or error in- 
dicators. TCP has an urgent data facility for sending out-of-band data. 

packet 
Used loosely to refer to any small block of data sent across a packet switching net- 
work. 

packet filter 
A mechanism in a router that can be configured to reject some types of packets and 
admit others. Packet filters are used to create a security fuewall. 

path MTU 
The minimum MTU along a path from the source to destination, which specifies the 
largest datagram that can be sent along the path without fragmentation. The stan- 
dard recommends that IP use Path MTU Discovery. 

PCM 
(Pulse Code Modulation) A standard for voice encoding used in digital telephony 
that produces 8000 &bit samples per second. 

PDN 
(Public Data Network) A network service offered by a common carrier. 

PDU 
(Packet Data Unit) An IS0 term used for either packet or message. 

peering arrangement 
An cooperative agreement between two ISPs to exchange both reachability informa- 
tion and data packets. In addition to peering at NAPS, large ISPs often have private 
peering arrangements. 
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PEM 
(Privacy Enchanced Mail) A protocol for encrypting e-mail to prevent others from 
reading messages as they travel across an internet. 

perimeter security 
A network security mechanism that places a firewall at each connection between a 
site and outside networks. 

physical address 
A synonym for MAC address or hardware address. 

PIM-DM 
(Protocol Independent Multicast Dense Mode) A data-driven multicast routing pro- 
tocol similar to DVMRP. 

PIM-SM 
(Protocol Independent Multicast Sparse Mode) A demand-driven multicast routing 
protocol that extends the ideas in CBT. 

PING 
(Packet InterNet Groper) The name of a program used with TCP/IP internets to test 
reachability of destinations by sending them an ICMP echo request and waiting for a 
reply. The term is now used like a verb as in, "please ping host A to see if it is 
alive." 

playback point 
The minimum amount of data required in a jitter buffer before playback can begin. 

point-to-point network 
Any network technology such as a serial line that connects exactly two machines. 
Point-to-point networks do not require attached computers to have a hardware ad- 
dress. 

poison reverse 
A heuristic used by distance-vector protocols such as RIP to avoid routing loops. 
When a route disappears, instead of simply removing the route from its advertise- 
ment, a router advertises that the destination is no longer reachable. 

POP 
(Post Ofice Protocol) The protocol used to access and extract e-mail from a mail- 
box. 

Port 
See protocol port. 

positive acknowledgement 
Synonym for acknowledgement. 

POTS 
(Plain OM Telephone Service) A reference to the standard voice telephone system. 
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PPP 
(Point to Point Protocol) A protocol for framing IP when sending across a serial 
line. Also see SLIP. 

promiscuous ARP 
See proxy ARP. 

promiscuous mode 
A feature of network interface hardware that allows a computer to receive all pack- 
ets on the network. 

protocol 
A formal description of message formats and the rules two or more machines must 
follow to exchange those messages. Protocols can describe low-level details of 
machine to machine interfaces (e.g., the order in which the bits from a byte are sent 
across a wire), or high-level exchanges between application programs (e.g., the way 
in which two programs transfer a file across an internet). Most protocols include 
both intuitive descriptions of the expected interactions as well as more formal 
specifications using finite state machine models. 

protocol port 
The abstraction that TCP/IP transport protocols use to distinguish among multiple 
destinations within a given host computer. TCP/IP protocols identify ports using 
small positive integers. Usually, the operating system allows an application program 
to specify which port it wants to use. Some ports are reserved for standard services 
(e.g., electronic mail). 

provider prefix 
An addressing scheme in which an ISP owns a prefix of an address and assigns each 
customer addresses that begin with the prefix. IPV6 offers provider prefur address- 
ing. 

provisioned service 
A service that is configured manually. 

proxy 
Any device or system that acts in place of another (e.g., a proxy Web server acts in 
place of another Web server). 

proxy ARP 
The technique in which one machine, usually a router, answers ARP requests intend- 
ed for another by supplying its own physical address. By pretending to be another 
machine, the router accepts responsibility for forwarding packets. The purpose of 
proxy ARP is to allow a site to use a single IP network address with multiple physi- 
cal networks. 

prune 
An operation in which a multicast router removes itself from a shared forwarding 
tree; the opposite of gruff. 
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pseudo header 
Source and destination IP address information sent in the IP header, but included in 
a TCP or UDP checksum. 

PSN 
(Packet Switching Node) The formal name of ARPANET packet switches that re- 
placed the original term IMP. 

PSTN 
(Public Switched Telephone Network) The standard voice telephone system. 

public key encryption 
An encryption technique that generates encryption keys in pairs. One of the pair 
must be kept secret, and one is published. 

PUP 
(Parc Universal Packet) In the internet system developed by Xerox Corporation, a 
PUP is the fundamental unit of transfer, like an IP datagram is in a TCP/IP internet. 
The name was derived from the name of the laboratory at which the Xerox internet 
was developed, the Palo Alto Research Center (PAW). 

push 
The operation an application performs on a TCP connection to force data to be sent 
immediately. A bit in the segment header marks pushed data. 

PVC 
(Permanent Virtual Circuit) The type of virtual circuit established by an administra- 
tor rather than by software in a computer. Unlike an SVC, a PVC lasts a long time 
(e.g., weeks or months). 

QoS 
(Quality of Service) Bounds on the loss, delay, jitter, and minimum throughput that 
a network guarantees to deliver. Some proponents argue that QoS is necessary for 
real-time traffic. 

RA 
See routing arbiter. 

RARP 
(Reverse Address Resolution Protocol) A protocol that can be used at startup to find 
an IP address. Although once popular, most computers now use BOOTP or DHCP 
instead. 

RDP 
(Reliable Datagram Protocol) A protocol that provides reliable datagram service on 
top of the standard unreliable datagram service that IP provides. RDP is not among 
the most widely implemented TCP/IP protocols. 

reachability 
A network is "reachable" from a given host if a datagram can be sent from the host 
to a destination on the network. Exterior routing protocols exchange reachability in- 
formation. 



706 Glossary of Internetworking Terms and Abbreviations Appendix 2 

reassembly 
The process of collecting all the fragments of an IP datagram and using them to 
create a copy of the original datagram. The ultimate destination performs reassem- 
bly. 

RED 
(Random Early Discard) A technique routers use instead of tail-drop when their 
queue overflows to improve TCP performance. As the queue fills, the router begins 
discarding datagrams at random. 

redirect 
An ICMP message sent from a router to a host on a local network to instruct the 
host to change a route. 

reference model 
A description of how layered protocols fit together. TCPAP uses a 5-layer reference 
model; earlier protocols used the IS0  7-layer reference model. 

regional network 
A network that covers a medium-size geographical area such as a few cities or a 
state. 

reliable multicast 
A multicast delivery system that guarantees reliable transfer to every member. 

reliable transfer 
Characteristic of a mechanism that guarantees to deliver data without loss, without 
corruption, without duplication, and in the same order as it was sent, or to inform 
the sender that delivery is impossible. 

repeater 
A hardware device that extends a LAN. A repeater copies electrical signals from 
one physical network to another. No longer popular. 

replay 
An error situation in which packets from a previous session are erroneously accepted 
as part of a later session. Protocols that do not prevent replay are not secure. 

reserved address 
A synonym for nonroutable address. 

reset 
A segment sent by TCP to report an error. 

resolution 
See address resolution 

RFC 
(Request For Comments) The name of a series of notes that contain surveys, meas- 
urements, ideas, techniques, and observations, as well as proposed and accepted 
TCPnP protocol standards. RFCs are available on-line. 
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RIP 
(Routing Information Protocol) A protocol used to propagate routing information in- 
side an autonomous system. RIP derives from an earlier protocol of the same name 
developed at Xerox. 

RJE 
(Remote Job Entry) A service that allows submission of a (batch) job from a remote 
site. 

rlogin 
(Remote LOGIN) The remote login protocol developed for UNIX by Berkeley. Rlo- 
gin offers essentially the same service as TELNET. 

ROADS 
(Running Out of ADdress Space) A reference to the possible exhaustion of the IPv4 
address space. 

round trip time 
The total time required to traverse a network from a source computer to a destina- 
tion and back to the source. TCP uses round trip times to compute a retransmission 
timer. 

route 
In general, a route is the path that network traffic takes from its source to its destina- 
tion. In a TCPJIP internet, each IP datagram is routed independently; routes can 
change dynamically. 

route aggregation 
The technique used by routing protocols to combine multiple destinations that have 
the same next hop into a single entry. A default route provides the highest degree of 
aggregation. 

route server 
A server that operates at a NAP and uses BGP to communicate reachability informa- 
tion from the routing arbiter database. 

routed 
(Route Daemon) A program devised for UNIX that implements the RIP protocol. 
Pronounced "route-d." 

router 
A special purpose, dedicated computer that attaches to two or more networks and 
forwards packets from one to the other. In particular, an IP router forwards IP da- 
tagrams among the networks to which it connects. A router uses the destination ad- 
dress on a datagram to choose a next-hop to which it forwards the datagram. 
Researchers originally used the term gateway. 

router alert 
An IP option that causes each intermediate router to examine a datagram even if the 
datagram is not destined to the router. 
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router requirements 
A document that contains updates to TCP/IP protocols used in routers. See host re- 
quirements. 

routing arbiter 
A replicated, authenticated database that contains all possible routes in the Internet. 
Each ISP that connects to a NAP uses BGP to communicate with a route server to 
obtain information. 

routing loop 
An error condition in which a cycle of routers each has the next router in the cycle 
as the shortest path to a given destination. 

RP 
(Rendezvous Point) The router used as a target for a join request in a demand-driven 
multicast scheme. 

RPB 
(Reverse Path Broadcast) A synonym for RPF. 

RPC 
(Remote Procedure Call) A technology in which a program invokes services across 
a network by making modified procedure calls. The NFS protocol uses a specific 
type of RPC. 

RPF 
(Reverse Path Forwarding) A technique used to propagate broadcast packets that en- 
sures there are no routing loops. IF' uses reverse path forwarding to propagate sub- 
net broadcast and multicast datagrams. 

RPM 
(Reverse Path Multicast) A general approach to multicasting that uses the TRPB al- 
gorithm. 

RS 
See route server. 

RS232 
A standard by EIA that specifies the electrical characteristics of slow speed intercon- 
nections between terminals and computers or between two computers. Although the 
standard commonly used is RS232C, most people refer to it as RS232. 

RST 
(ReSeT) A common abbreviation for a TCP reset segment. 

RSVP 
(Resource Reservation Protocol) The protocol that allows an endpoint to request a 
flow with specific QoS; routers along the path to the destination must agree before 
they approve the request. 

RTCP 
(RTP Control Protocol) The companion protocol to RTP used to control a session. 
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RTO 
(Round trip Time-out) The delay used before retransmission. TCP computes RTO 
as a function of the current round trip time and variance. 

RTP 
(Real-time Transport Protocol) The primary protocol used to transfer real-time data 
such as voice and video over IP. 

R l T  
(Round Trip Time) A measure of delay between two hosts. The round trip time con- 
sists of the total time taken for a single packet or datagram to leave one machine, 
reach the other, and return. In most packet switching networks, delays vary as a 
result of congestion. Thus, a measure of round trip time is an average, which can 
have high standard deviation. 

SA 
(Security Association) Used with IPsec to denote a binding between a set of security 
parameters and an identifier carried in a datagram header. A host chooses SA bind- 
ings; they are not globally standardized. See SPI. 

SACK 
(Selective ACKnowledgement) An acknowledgement mechanism used with sliding 
window protocols that allows the receiver to acknowledge packets received out of 
order, but within the current sliding window. Also called extended acknowledge- 
ment. Compare to the cumulative acknowledgement scheme used by TCP. 

SAR 
(Segmentation And Reassembly) The process of dividing a message into cells, send- 
ing them across an ATM network, and reforming the original message. AAL5 per- 
forms SAR when sending IP across an ATM network. 

segment 
The unit of transfer sent from TCP on one machine to TCP on another. Each seg- 
ment contains part of a stream of bytes being sent between the machines as well as 
additional fields that identlfy the current position in the stream and a checksum to 
ensure validity of received data. 

selective acknowledgement 
See SACK. 

self clocking 
Characteristic of any system that operates periodically without requiring an external 
clock (e.g., uses the arrival of a packet to trigger an action). 

self-healing 
Characteristic of a mechanism that overcomes failure automatically. A dual FDDI 
ring is self-healing because it can accommodate failure of a station or a link. 

self-identifying frame 
Any network frame or packet that includes a field to identify the type of the data be- 
ing carried. Ethernet uses self-identifying frames, but ATM does not. 
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server 
A running program that supplies service to clients over a network. Examples in- 
clude providing access to files or to World Wide Web pages. 

seven-layer reference model 
See ISO. 

SGMP 
(Simple Gateway Monitoring Protocol) A predecessor of SNMP. 

shared tree 
A forwarding scheme used by demand-driven multicast routing protocols. A shared 
tree is an alternative to a shortest path tree. 

shortest path routing 
Routing in which datagrams are directed over the shortest path; all routing protocols 
try to compute shortest paths. Also see SPF. 

shortest path tree 
The multicast forwarding tree that is optimal from a given source to all members of 
the group. A shortest path trees is an alternative to a shared tree. 

signaling 
A telephony term that refers to protocols which establish a circuit. 

silly window syndrome 
A condition that can arise in TCP in which the receiver repeatedly advertises a small 
window and the sender repeatedly sends a small segment to fill it. The resulting 
transmission of small segments makes inefficient use of network bandwidth. 

SIP 
(Session Initiation Protocol) A protocol devised by the EFT for signaling in IP 
telephony. (Note: SIP was formerly used to refer to Simple IP, a protocol that 
served as the basis for IPv6.) 

SlPP 
(SIP Plus) An extension of Simple IP that was proposed for IPv6. See IPv6. 

site-local address 
An address used with IPv6 that has significance only at a single site. 

sliding window 
Characteristic of protocols that allow a sender to transmit more than one packet of 
data before receiving an acknowledgement. After receiving an acknowledgement for 
the first packet sent, the sender "slides" the packet window and sends another. The 
number of outstanding packets or bytes is known as the window size; increasing the 
window size improves throughput. 

SLIP 
(Serial Line IP) A framing protocol used to send IP across a serial line. SLIP is po- 
pular when sending IP over dialup phone lines. See PPP. 
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slow convergence 
A problem in distance-vector protocols in which two or more routers form a routing 
loop that persists until the routing protocols increment the distance to infinity. 

slow-start 
A congestion avoidance scheme in TCP in which TCP increases its window size as 
ACKs arrive. The term is a slight misnomer because slow-start achieves high 
throughput by using exponential increases. 

SMDS 
(Switched Multimegabit Data Service) A connectionless packet service developed by 
regional telephone companies. 

SMI 
(Structure of Management Information) Rules that describe the form of MIB vari- 
ables. 

SMTP 
(Simple Mail Transfer Protocol) The TCPDP standard protocol for transferring elec- 
tronic mail messages from one machine to another. SMTP specifies how two mail 
systems interact and the format of control messages they exchange to transfer mail. 

SNA 
(System Network Architecture) The name applied to an architecture and a class of 
network products offered by IBM Corporation. SNA does not interoperate with 
TCPIIP. 

SNAP 
(SubNetwork Attachment Point) An IEEE standard for a small header that is added 
to data when sending across a network that does not have self-identifying frames. 
The SNAP header specifies the type of the data. 

SNMP 
(Simple Network Management Protocol) A protocol used to manage devices such as 
hosts, routers, and printers. A specific version is denoted with a suffix (e.g., 
SNMPv3). Also see MIB. 

SOA 
(Start Of Authority) A keyword used with DNS to denote the beginning of the 
records for which a particular server is the authority. Other records in the server are 
reported as non-authoritative answers. 

socket API 
The set of procedures an application uses to communicate over a TCPIIP network. 
The name is derived from an abstraction offered by the Unix operating system. 

soft state 
A technique in which a receiver times out information rather than depending on the 
sender to maintain it. Soft state works well when the sender and receiver become 
disconnected. 
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source quench 
A congestion control technique in which a machine experiencing congestion sends a 
message back to the source of the packets requesting that the source stop transmit- 
ting. In a TCP/IP internet, routers send an ICMP source quench message when a 
datagram overruns the input queue. 

source route 
A route that is determined by the source. In IP, a source route consists of a list of 
routers a datagram should visit; the route is specified as an IP option. Source rout- 
ing is most often used for debugging. See LSR and SSR. 

source tree 
A synonym for shortest path tree. 

SPF 
(Shortest Path First) A class of routing update protocols that uses Dijkstra's algo- 
rithm to compute shortest paths. See link state routing. 

SPI 
(Security Parameters Index) The identifier IPsec uses to specify the Security Associ- 
ation that should be used to process a datagram. 

split horizon update 
A heuristic used by distance-vector protocols such as RIP to avoid routing loops. 
Routes are not advertised over the interface from which they were learned. 

SS7 
(Signaling System 7) The conventional telephone system standard used for signaling. 

SSL 
(Secure Sockets Layer) A de facto standard for secure communication created by 
Netscape, Inc. SSL was an Internet Draft, but did not become an RFC. 

SSR 
(Strict Source Route) An IP option that contains a list of router addresses that the 
datagram must visit in order. See LSR. 

standard byte order 
See network byte order. 

STD 
(STanDard) The designation used to classify a particular FWC as describing a stan- 
dard protocol. 

store-and-fotward 
The paradigm used by IP routers in which an incoming datagram is stored in 
memory until it can be forwarded on toward its destination. 
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subnet addressing 
An extension of the IP addressing scheme that allows a site to use a single IP net- 
work address for multiple physical networks. Outside of the site using subnet ad- 
dressing, routing continues as usual by dividing the destination address into a net- 
work portion and a local portion. Routers and hosts inside a site using subnet ad- 
dressing interpret the local portion of the address by dividing it into a physical net- 
work portion and a host portion. 

subnet mask 
A bit mask used to select the bits from an IP address that correspond to the subnet. 
Each mask is 32 bits long, with one bits in the portion that identifies a network and 
zero bits in the portion that identifies a host. 

SubNetwork Attachment Point 
See SNAP. 

supernet addressing 
Another name for CIDR. 

SVC 
(Switched Virtual Circuit) The type of virtual circuit established dynamically and 
temGnated when no longer needed; usually software in a computer requests an SVC. 
Unlike a PVC, an SVC can have a short duration. 

SWS 
See silly window syndrome. 

SYN 
(SYNchronizing segment) The first segment sent by the TCP protocol, it is used to 
synchronize the two ends of a connection in preparation for opening a connection. 

T3 
The telephony designation for a protocol used over DS3-speed lines. The term is 
often used (incorrectly) as a synonym for DS3. 

tail drop 
A policy routers use to manage queue overflow which simply discards all datagrams 
that arrive after the queue is full. More harmful to TCP throughput than RED. 

TCP 
(Transmission Control Protocol) The TCP/IP standard transport level protocol that 
provides the reliable, full duplex, stream service on which many application proto- 
cols depend. TCP allows a process on one machine to send a stream of data to a 
process on another. TCP is connection-oriented in the sense that before transmitting 
data, participants must establish a connection. All data travels in TCP segments, 
which each travel across the Internet in an IP datagram. The entire protocol suite is 
often referred to as TCP/IP because TCP and IP are the two fundamental protocols. 

TCPAP Internet Protocol Suite 
The official name of the TCP/IP protocols. 
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TDM 
(Time Division Multiplexing) A technique used to multiplex multiple signals onto a 
single hardware transmission channel by allowing each signal to use the channel for 
a short time before going on to the next one. Also see FDM. 

TDMA 
(Time Division Multiple Access) A method of network access in which time is divid- 
ed into slots and each node on the network is assigned one of the slots. Because all 
nodes using TDMA must synchronize exactly (even though the network introduces 
propagation delays between them), TDMA technologies are difficult to design and 
the equipment is expensive. 

TELNET 
The TCPIrP standard protocol for remote terminal service. TELNET allows a user 
at one site to interact with a remote timesharing system at another site as if the 
user's keyboard and display connected directly to the remote machine. 

TFTP 
(Trivial File Transfer Protocol) The TCPIIP standard protocol for file transfer with 
minimal capability and minimal overhead. TFTP depends only on the unreliable, 
connectionless datagram delivery service (UDP), so it is designed for use on a local 
network. 

thicknet 
Used to refer to the original thick coaxial cable used with 10Base5 Ethernet. See 
thinner, lOBase2, and 10Base-T. 

thinnet 
Used to refer to the thinner, more flexible coaxial cable used with 10Base2 Ethernet. 
See thicknet, lOBase5, and 1OBase-T. 

three-way handshake 
The 3-segment exchange TCP uses to reliably start or gracefully terminate a connec- 
tion. 

TLA 
(Top Level Aggregation) In IPv6 addressing, the second most significant set of bits 
in a unicast address. Also see NLA. 

TLI 
(Transport Layer Znte$ace) An alternative to the socket interface defined for System 
v UNIX. 

TLV encoding 
Any representation format that encodes each item with three fields: a type, a length, 
and a value. IP options often use TLV encoding. 

tn3270 
A version of TELNET for use with IBM 3270 terminals. 
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token ring 
When used in the generic sense, a type of network technology that controls media 
access by passing a distinguished packet, called a token, from machine to machine. 
A computer can only transmit a packet when holding the token. When used in a 
specific sense, it refers to the token ring network hardware produced by IBM. 

TOS 
(Type Of Service) A reference to the original interpretation of the field in an IPV4 
header that allows the sender to specify the type of service desired. Now replaced 
by DzfJServe. 

TP-4 
A protocol designed by IS0  to be similar to TCP. 

traceroute 
A program that prints the path to a destination. Traceroute sends a sequence of da- 
tagrams with the Time-To-Live set to 1, 2, etc., and uses the ICMP TIME EX- 
CEEDED messages that are returned to determine routers along the path. 

traffic class 
A reference to a set of services available in the DifJServe interpretation. 

traffic policing 
A reference to mechanisms used with systems that guarantee QoS. Incoming traffic 
is measured, and any traffic that exceeds the agreed bounds is discarded. 

traffic shaping 
A reference to mechanisms used with systems that guarantee QoS. Incoming traffic 
is placed in a buffer and clocked out at a fixed rate. 

trailer encapsulation 
A nonconventional method of encapsulating IF' datagrams for transmission in which 
the "header" information is placed at the end of the packet. Trailers have been 
used with Ethernet to aid in aligning data on page boundaries. ATM's AAL5 uses 
trailers. 

transceiver 
A device that connects a host interface to a local area network (e.g., Ethernet). Eth- 
ernet transceivers contain analog electronics that apply signals to the cable and sense 
collisions. 

triggered updates 
A heuristic used with distance-vector protocols such as RIP. When a routing table 
changes, the router sends updates immediately without waiting for the next cycle. 

TRPB 
(Truncated Reverse Path Broadcast) A technique used in data-driven multicasting to 
forward multicast datagrams. See broadcast and prune. 

TRPF 
(Truncated Reverse Path Forwarding) A synonym for TRPB. 
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TTL 
(Time To Live) A technique used in best-effort delivery systems to avoid endlessly 
looping packets. For example, each IP datagram is assigned an integer time to live 
when it is created. Each router decrements the time to live field when the datagram 
amves, and a router discards any datagram if the time to live counter reaches zero. 

tunneling 
A technique in which a packet is encapsulated in a high-level protocol and passed 
across a transport system. The MBONE tunnels each IP multicast datagram inside a 
conventional IP datagram; a VPN uses tunneling to pass encrypted datagrams 
between sites. See IP-in-IP. 

twisted pair Ethernet 
The 10Base-T Ethernet wiring scheme that uses twisted pair wires from each com- 
puter to a hub. See thicknet and thinnet. 

type of service routing 
A routing scheme in which the choice of path depends on the characteristics of the 
underlying network technology as well as the shortest path to the destination. 

UART 
(Universal Asynchronous Receiver and Transmitter) An electronic device consisting 
of a single chip that can send or receive characters on asynchronous serial cornrnuni- 
cation lines that use RS232. UARTs are flexible because they have control lines 
that allow the designer to select parameters like transmission speed, parity, number 
of stop bits, and modem control. UARTs appear in terminals, modems, and on the 
U0 boards in computers that connect the computer to tenninal(s). 

UCBCAST 
See Berkeley broadcast. 

UDP 
(User Datagram Protocol) The protocol that allows an application program on one 
machine to send a datagram to an application program on another. UDP uses the In- 
ternet Protocol (IP) to deliver datagrams. Conceptually, the important difference 
between UDP datagram and IP datagrams is that UDP includes a protocol port 
number, allowing the sender to distinguish among multiple application programs on 
a given remote machine. 

unicast 
A method of addressing and routing in which a packet is delivered to a single desti- 
nation. Most IP datagrams are sent via unicast. See multicast. 

universal time 
The international standard time reference that was formerly called Greenwich Mean 
Time. It is also called universal coordinated time. 

unnumbered network 
A technique for conserving IP network prefixes that leaves a point to point connec- 
tion between two routers unnumbered. 
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unreliable delivery 
Characteristic of a mechanism that does not guarantee to deliver data without loss, 
corruption, duplication, or in the same order as it was sent. IP is unreliable. 

urgent data 
The method used in TCP to send data out of band. A receiver processes urgent data 
immediately upon receipt. 

URI 
(Unifonil Resource Identifier) A generic term used to refer to a URN or a URL. 

URL 
(Uniform Resource Locator) A string that gives the location of a piece of informa- 
tion. The string begins with a protocol type (e.g., FTP) followed by the identifica- 
tion of specific information (e.g., the domain name of a server and the path name to 
a file on that server). 

URN 
(Uniform Resource Name) A string that gives the location of a piece of information. 
Unlike a URL, a URN is guaranteed to persist over long periods of time. 

UUCP 
(Unix to Unix Copy Program) An application program developed in the mid 1970s 
for version 7 UNIX that allows one UNIX timesharing system to copy files to or 
from another UNIX timesharing system over a single (usually dialup) link. Because 
UUCP is the basis for electronic mail transfer in UNIX, the tern1 is often used loose- 
ly to refer to UNIX mail transfer. 

variable-length subnetting 
A subnet address assignment scheme in which each physical net in an organization 
can have a different mask. The alternative is jixed-length subnetting. 

vBNS 
(very high speed Backbone Network Service) The 155 Mbps backbone network that 
was deployed in 1995 and is now used for networking research. 

VC 
(Virtual Circuit) A path through a network from one application to another that is 
used to send data. The VC, established either by protocol software or manually, 
provides the illusion of a "comection". Although the concept is the same, ATM 
expands the term to Virtual Channel. 

vector-distance 
Now called distance-vector. 

very high speed Backbone Network Service 
See vBNS. 

virtual circuit 
The basic abstraction provided by a connection-oriented protocol like TCP. Once a 
virtual circuit has been created, it stays in effect until explicitly shut down. 
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VLSM 
(Variable Length Subnet Mask) A subnet mask used with variable length subnetting. 

VPI IVCI 
(Virtual Path Identij?er plus Virtual Circuit Identifier) A connection identifier used 
by ATM; each connection a host opens is assigned a unique VPWCI. 

VPN 
(Virtual Private Network) A technology that connects two or more separate sites 
over the Internet, but allows them to function as if they were a single, private net- 
work. W N  software guarantees that although packets travel across the Internet, the 
contents remains private. 

WAN 
(Wide Area Network) Any physical network technology that spans large geographic 
distances. Also called long-haul networks, WANs have significantly higher delays 
and higher costs than networks that operate over shorter distances. See LAN and 
MAN. 

well-known port 
Any of a set of protocol port numbers preassigned for specific uses by transport lev- 
el protocols (ie., TCP and UDP). Each server listens at a well-known port, so 
clients can locate it. 

window 
See sliding window. 

window advertisement 
A value used by TCP to allow a receiver to tell a sender the size of an available 
buffer. 

Windows Sockets Interface 
A variant of the socket API developed by Microsoft. Often called WINSOCK. 

working group 
A group of people in the IETF working on a particular protocol or design issue. 

World Wide Web 
The large hypermedia service available on the Internet that allows a user to browse 
information. 

WWW 
See World Wide Web. 

X 
See X- Window System. 

X.25 
An older protocol standardized by the ITU which was popular in Europe before 
TCPrn. 
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X25NET 
(X.25 NETwork) A service offered by CSNET that passed IP traffic between a sub- 
scriber site and the Internet using X.25. 

X.400 
The ITU protocol for electronic mail. 

XDR 
(external Data Representation) The standard for a machine-independent data 
representation. To use XDR, a sender translates from the local machine representa- 
tion to the standard external representation and a receiver translates from the exter- 
nal representation to the local machine representation. 

X-Window System 
A software system developed at MIT for presenting and managing output on bit- 
mapped displays. Each window consists of a rectangular region of the display that 
contains textual or graphical output from one remote program. A special program 
called a window manager allows the user to create, move, overlap, and destroy win- 
dows. 

zero window 
See closed window. 

zone of authority 
Term used in the domain name system to refer to the group of names for which a 
given name server is an authority. Each zone must be supplied by two name servers 
that have no common point of failure. 
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