

Foreword

Preface

Chapter 1 Introduction And Overview

The Motivation For Internetworking 1
The TCPIIP Internet 2
Internet Services 3
History And Scope Of The Internet 6
The Internet Architecture Board 8
The IAB Reorganization 9
The Internet Society 1 1
Internet Request For Comments 11
Internet Protocols And Standardization
Future Growth And Technology 12
Organization Of The Text 13
Summary 14

xxiii

xxvii

1

Chapter 2 Review Of Underlying Network Technologies

2.1 Introduction 17
2.2 Two Approaches To Network Communication 18
2.3 Wide Area And Local Area Networks 19
2.4 Ethernet Technology 20
2.5 Fiber Distributed Data Interconnect (FDDI) 33
2.6 Asynchronous Transfer Mode 37
2.7 WAN Technologies: ARPANET 38
2.8 National Science Foundation Networking 40

viii Contents

2.9 ANSNET 44
2.10 A Very High Speed Backbone (vBNS) 45
2.11 Other Technologies Over Which TCPIIP Has Been Used 46
2.12 Summary And Conclusion 50

Chapter 3 Internetworking Concept And Architectural Model

Introduction 53
Application-Level Interconnection 53
Network-Level Interconnection 54
Properties Of The Internet 55
Internet Architecture 56
Interconnection Through IP Routers 56
The User's View 58
All Networks Are Equal 58
The Unanswered Questions 59
Summary 60

Chapter 4 Classful Internet Addresses

Introduction 63
Universal Identifiers 63
The Original Classful Addressing Scheme 64
Addresses Specify Network Connections 65
Network And Directed Broadcast Addresses 65
Limited Broadcast 66
Interpreting Zero To Mean "This" 67
Subnet And Supernet Extensions 67
IP Multicast Addresses 68
Weaknesses In Internet Addressing 68
Dotted Decimal Notation 69
Loopback Address 70
Summary Of Special Address Conventions 70
Internet Addressing Authority 7 1
Reserved Address Prefixes 72
An Example 72
Network Byte Order 74
Summary 75

Contents ix

Chapter 5 Mapping lnternet Addresses To Physical Addresses (ARP) 77

Introduction 77
The Address Resolution Problem 77
Two Types Of Physical Addresses 78
Resolution Through Direct Mapping 78
Resolution Through Dynamic Binding 79
The Address Resolution Cache 80
ARP Cache Timeout 8 1
ARP Refinements 82
Relationship Of ARP To Other Protocols 82
ARP Implementation 82
ARP Encapsulation And Identification 84
ARP Protocol Format 84
Summary 86

Chapter 6 Determining An Internet Address At Startup (RARP) 89

6.1 Introduction 89
6.2 Reverse Address Resolution Protocol (RARP) 90
6.3 Timing RARP Transactions 92
6.4 Primary And Backup RARP Servers 92
6.5 Summary 93

Chapter 7 Internet Protocol: Connectionless Datagram Delivery 95

7.1 Introduction 95
7.2 A Virtual Network 95
7.3 Internet Architecture And Philosophy 96
7.4 The Conceptual Service Organization 96
7.5 Connectionless Delivery System 97
7.6 Purpose Of The Internet Protocol 97
7.7 The Internet Datagram 97
7.8 Internet Datagram Options 107
7.9 Summary 113

Chapter 8 internet Protocol: Routing IP Datagrams

8.1 Introduction 1 15
8.2 Routing In An Internet 115
8.3 Direct And Indirect Delivery 117

Contents

Table-Driven IP Routing 119
Next-Hop Routing 119
Default Routes 121
Host-Specific Routes 12 1
The IP Routing Algorithm 121
Routing With 1P Addresses 122
Handling Incoming Datagram 124
Establishing Routing Tables 125
Summary 125

Chapter 9 Internet Protocol: Error And Control Messages (ICMP) 129

Introduction 129
The Internet Control Message Protocol 129
Error Reporting vs. Error Correction 130
ICMP Message Delivery 13 1
lCMP Message Format 132
Testing Destination Reachability And Status (Ping) 133
Echo Request And Reply Message Format 134
Reports Of Unreachable Destinations 134
Congestion And Datagram Flow Control 136
Source Quench Format 136
Route Change Requests From Routers 137
Detecting Circular Or Excessively Long Routes 139
Reporting Other Problems 140
Clock Synchronization And Transit Time Estimation 140
Information Request And Reply Messages 142
Obtaining A Subnet Mask 142
Router Discovery 143
Router Solicitation 144
Summary 145

Chapter 10 Classless And Subnet Address Extensions (CIDR) 147

Introduction 147
Review Of Relevant Facts 147
Minimizing Network Numbers 148
Transparent Routers 149
Proxy ARP 150
Subnet Addressing 152
Flexibility In Subnet Address Assignment 154
Variable-Length Subnets 155

Contents

10.9 lmplementation Of Subnets With Masks 156
10.10 Subnet Mask Representation 157
10.1 1 Routing In The Presence Of Subnets 158
10.12 The Subnet Routing Algorithm 159
10.13 A Unified Routing Algorithm 160
10.14 Maintenance Of Subnet Masks 161
10.15 Broadcasting To Subnets 161
10.16 Anonymous Point-To-Point Networks 162
10.1 7 Classless Addressing (Supernetting) 164
10.18 The Effect Of Supernetting On Routing 165
10.19 ClDR Address Blocks And Bit Masks 165
10.20 Address Blocks And CIDR Notation 166
10.21 A Classless Addressing Example 167
10.22 Data Structures And Algorithms For Classless Lookup 167
10.23 Longest-Match Routing And Mixtures Of Route Types 170
10.24 CIDR Blocks Reserved For Private Networks 172
10.25 Summary 173

Chapter 11 Protocol Layering

11 .I Introduction 177
1 I .2 The Need For Multiple Protocols 177
11.3 The Conceptual Layers Of Protocol So@are 178
11.4 Functionality Of The Layers 18 1
11.5 X.25 And Its Relation To The IS0 Model 182
11.6 Differences Between IS0 And Internet Layering 185
11.7 The Protocol Layering Principle 187
11.8 Layering In The Presence Of Network Substructure 189
11.9 Two Important Boundaries In The TCPIIP Model 19 1
11 .lo The Disadvantage Of Layering 192
11 .I 1 The Basic Idea Behind Multiplexing And Demultiplexing 192
11.12 Summary 194

Chapter 12 User Datagram Protocol (UDP)

12.1 Introduction 197
12.2 IdentifLing The Ultimate Destination 197
12.3 The User Datagram Protocol 198
12.4 Format Of UDP Messages 199
12.5 UDP Pseudo-Header 200
12.6 UDP Encapsulation And Protocol Layering 201
12.7 Layering And The UDP Checksum Computation 203

xii

12.8 UDP Multiplexing, Demultiplexing, And Ports 203
12.9 Reserved And Available UDP Port Numbers 204
12.10 Summary 206

Chapter 13 Reliable Stream Transport Service (TCP)

13.1 Introduction 209
13.2 The Need For Stream Delivery 209
13.3 Properties Of The Reliable Delivery Service 210
13.4 Providing Reliability 2 1 1
13.5 The Idea Behind Sliding Windows 21 3
13.6 The Transmission Control Protocol 2 15
13.7 Ports, Connections, And Endpoints 216
13.8 Passive And Active Opens 21 8
13.9 Segments, Streams, And Sequence Numbers 219
13.10 Variable Window Size And Flow Control 220
13.11 TCP Segment Format 221
13.12 Out Of Band Data 222
13.13 Maximum Segment Size Option 223
13.14 TCP Checksum Computation 224
13.15 Acknowledgements And Retransmission 225
13.16 Timeout And Retransmission 226
13.17 Accurate Measurement Of Round Trip Samples 228
13.18 Karn's Algorithm And Timer Backoff 229
13.19 Responding To High Variance In Delay 230
13.20 Response To Congestion 232
13.21 Congestion, Tail Drop, And TCP 234
13.22 Random Early Discard (RED) 235
13.23 Establishing A TCP Connection 237
13.24 Initial Sequence Numbers 239
13.25 Closing a TCP Connection 239
13.26 TCP Connection Reset 241
13.27 TCP State Machine 241
13.28 Forcing Data Delivery 243
13.29 Reserved TCP Port Numbers 243
13.30 TCP Performance 243
13.31 Silly Window Syndrome And Small Packets 245
13.32 Avoiding Silly Window Syndrome 246
13.33 Summary 249

Contents

Chapter 14 Routing: Cores, Peers, And Algorithms

14.1 Introduction 253
14.2 The Origin Of Routing Tables 254
14.3 Routing With Partial Information 255
14.4 Original Internet Architecture And Cores 256
14.5 Core Routers 257
14.6 Beyond The Core Architecture To Peer Backbones 260
14.7 Automatic Route Propagation 262
14.8 Distance Vector (Bellman-Ford) Routing 262
14.9 Gateway-To-Gateway Protocol (GGP) 264
14.10 Distance Factoring 265
14.11 Reliability And Routing Protocols 265
14.12 Link-State (SPF) Routing 266
14.13 Summury 267

Chapter 15 Routing: Exterior Gateway Protocols And Autonomous 269
Systems (BGP)

15.1 Introduction 269
15.2 Adding Complexity To The Architectural Model 269
15.3 Determining A Practical Limit On Group Size 270
15.4 A Fundamental Idea: Extra Hops 271
15.5 Hidden Networks 273
15.6 Autonomous System Concept 274
15.7 From A Core To Independent Autonomous Systems 275
15.8 An Exterior Gateway Protocol 276
15.9 BGP Characteristics 277
15.10 BGP Functionality And Message Types 278
15.11 BGP Message Header 278
15.12 BGP OPEN Message 279
15.13 BGP UPDATE Message 280
15.14 Compressed Mask-Address Pairs 28 1
15.15 BGP Path Attributes 282
15.16 BGP KEEPALNE Message 283
15.1 7 Information From The Receiver's Perspective 284
15.18 The Key Restriction Of Exterior Gateway Protocols 285
15.19 The Internet Routing Arbiter System 287
15.20 BGP NOTIFICATION Message 288
15.21 Decentralization Of Internet Architecture 289
15.22 Summary 290

xiv Contents

Chapter 16 Routing: In An Autonomous System (RIP, OSPF, HELLO) 293

Introduction 293
Static Vs. Dynamic Interior Routes 293
Routing Information Protocol (RIP) 296
The Hello Protocol 305
Delay Metrics And Oscillation 305
Combining RIP, Hello, And BGP 307
Inter-Autonomous System Routing 307
Gated: Inter-Autonomous System Communication 308
The Open SPF Protocol (OSPF) 308
Routing With Partial Information 3 15
Summary 315

Chapter 17 Internet Multicasting

17.1 Introduction 3 19
17.2 Hardware Broadcast 3 19
17.3 Hardware Origins Of Multicast 320
17.4 Ethernet Multicast 32 1
17.5 IP Multicast 321
17.6 The Conceptual Pieces 322
17.7 IP Multicast Addresses 323
17.8 Multicast Address Semantics 325
17.9 Mapping IP Multicast To Ethernet Multicast 325
17.10 Hosts And Multicast Delivery 326
17.11 Multicast Scope 326
17.12 Extending Host Software To Handle Multicasting 327
17.13 Internet Group Management Protocol 328
17.14 IGMP Implementation 328
17.15 Group Membership State Transitions 329
17.16 IGMP Message Format 331
17.1 7 Multicast Forwarding And Routing Information 332
17.18 Basic Multicast Routing Paradigms 334
17.1 9 Consequences Of TRPF 335
17.20 Multicast Trees 337
17.21 The Essence Of Multicast Routing 338
17.22 Reverse Path Multicasting 338
17.23 Distance Vector Multicast Routing Protocol 339
17.24 The Mrouted Program 340
17.25 Alternative Protocols 343
17.26 Core Based Trees (CBT) 343
17.27 Protocol Independent Multicast (PIM) 344

Contents

17.28 Multicast Extensions To OSPF (MOSPF) 347
17.29 Reliable Multicast And ACK Implosions 347
17.30 Summary 349

Chapter 18 TCPnP Over ATM Networks

18.1 Introduction 353
18.2 ATM Hardware 354
18.3 Large ATM Networks 354
18.4 The Logical View Of An ATM Network 355
18.5 The Two ATM Connection Paradigms 356
18.6 Paths, Circuits, And Identifiers 357
18.7 ATM Cell Transport 358
18.8 ATM Adaptation Layers 358
18.9 ATM Adaptation Layer 5 360
18.10 AALS Convergence, Segmentation, And Reassembly 361
18.11 Datagram Encapsulation And IP MTU Size 361
18.12 Packet Type And Multiplexing 362
18.13 IP Address Binding In An ATM Network 363
18.14 Logical IP Subnet Concept 364
18.15 Connection Management 365
18.16 Address Binding Within An WS 366
18.1 7 ATMARP Packet Format 366
18.18 Using ATMARP Packets To Determine An Address 369
18.19 Obtaining Entries For A Server Database 370
18.20 Timing Out ATMARP Information In A Server 370
18.21 Timing Out ATMARP Information In A Host Or Router 371
18.22 1P Switching Technologies 371
18.23 Switch Operation 372
18.24 Optimized IP Forwarding 372
18.25 Classification, Flows, And Higher Layer Switching 373
18.26 Applicability Of Switching Technology 374
18.27 Summary 374

Chapter 19 Mobile lP

19.1 Introduction 377
19.2 Mobility, Routing, and Addressing 377
19.3 Mobile IP Characteristics 378
19.4 Overview Of Mobile IP Operation 378
19.5 Mobile Addressing Details 379
19.6 Foreign Agent Discovery 380

19.7 Agent Registration 38 1
19.8 Registration Message Format 38 1
19.9 Communication With A Foreign Agent 383
19.10 Datagram Transmission And Reception 383
19.11 The Two-Crossing Problem 384
19.12 Communication With Computers On the Home Network 385
19.13 Summary 386

Chapter 20 Private Network Interconnection (NAT, VPN)

20.1 Introduction 389
20.2 Private And Hybrid Networks 389
20.3 A Virtual Private Network (VPN) 390
20.4 VPN Addressing And Routing 392
20.5 A VPN With Private Addresses 393
20.6 Network Address Translation (NAT) 394
20.7 NAT Translation Table Creation 395
20.8 Multi-Address NAT 396
20.9 Port-Mapped NAT 396
20.10 Interaction Between NAT And ICMP 398
20.1 1 Interaction Between NAT And Applications 398
20.12 Conceptual Address Domains 399
20.13 Slirp And Masquerade 399
20.14 Summary 400

Chapter 21 Client-Server Model Of Interaction

Introduction 403
The Client-Server Model 403
A Simple Example: UDP Echo Server 404
Time And Date Service 406
The Complexity of Servers 407
RARP Server 408
Alternatives To The Client-Server Model 409
Summary 410

Chapter 22 The Socket Interface

22.1 Introduction 41 3
22.2 The UNIX NO Paradigm And Network 110 414
22.3 Adding Network 110 to UNIX 414

Contents xvii

22.4 The Socket Abstraction 41 5
22.5 Creating A Socket 415
22.6 Socket Inheritance And Termination 416
22.7 Specifying A Local Address 41 7
22.8 Connecting Sockets To Destination Addresses 4 18
22.9 Sending Data Through A Socket 419
22.1 0 Receiving Data Through A Socket 421
22.11 Obtaining Local And Remote Socket Addresses 422
22.12 Obtaining And Setting Socket Options 423
22.13 Specifying A Queue Length For A Server 424
22.14 How A Server Accepts Connections 424
22.15 Servers That Handle Multiple Services 425
22.16 Obtaining And Setting Host Names 426
22.1 7 Obtaining And Setting The Internal Host Domain 427
22.1 8 Socket Library Calls 427
22.19 Network Byte Order Conversion Routines 428
22.20 IP Address Manipulation Routines 429
22.21 Accessing The Domain Name System 431
22.22 Obtaining Information About Hosts 432
22.23 Obtaining Information About Networks 433
22.24 Obtaining Information About Protocols 434
22.25 Obtaining Information About Network Services 434
22.26 An Example Client 435
22.27 An Example Server 437
22.28 Summary 440

Chapter 23 Bootstrap And Autoconfiguration (BOOTP, DHCP) 443

Introduction 443
The Need For An Alternative To RARP 444
Using IP To Determine An IP Address 444
The BOOTP Retransmission Policy 445
The BOOTP Message Format 446
The Two-step Bootstrap Procedure 447
Vendor-Specific Field 448
The Need For Dynamic Configuration 448
Dynamic Host Configuration 450
Dynamic IP Address Assignment 450
Obtaining Multiple Addresses 45 1
Address Acquisition States 452
Early Lease Termination 452
Lease Renewal States 454
DHCP Message Format 455

xviii Contents

23.16 DHCP Options And Message Type 456
23.1 7 Option Overload 457
23.18 DHCP And Domain Names 457
23.19 Summary 458

Chapter 24 The Domain Name System (DNS)

24.1 Introduction 461
24.2 Names For Machines 462
24.3 Flat Namespace 462
24.4 Hierarchical Names 463
24.5 Delegation Of Authority For Names 464
24.6 Subset Authority 464
24.7 Internet Domain Names 465
24.8 Oficial And Unoficial Internet Domain Names 466
24.9 Named Items And Syntax Of Names 468
24.10 Mapping Domain Names To Addresses 469
24.1 1 Domain Name Resolution 471
24.1 2 Eficient Translation 472
24.13 Caching: The Key To Eficiency 473
24.14 Domain Server Message Format 474
24.15 Compressed Name Format 477
24.16 Abbreviation Of Domain Names 477
24.1 7 Inverse Mappings 478
24.18 Pointer Queries 479
24.19 Object Types And Resource Record Contents 479
24.20 Obtaining Authority For A Subdomain 480
24.21 Summary 481

Chapter 25 Applications: Remote Login (TELNET, Rlogin)

Introduction 485
Remote Interactive Computing 485
TELNET Protocol 486
Accommodating Heterogeneity 488
Passing Commands That Control The Remote Side 490
Forcing The Server To Read A Control Function 492
TELNET Options 492
TELNET Option Negotiation 493
Rlogin (BSD UNlX) 494
Summary 495

Contents xix

Chapter 26 Applications: File Transfer And Access (FTP, TFTP, NFS) 497

Introduction 497
File Access And Transfer 497
On-line Shared Access 498
Sharing By File Transfer 499
FTP: The Major TCPIIP File Transfer Protocol 499
FTP Features 500
FTP Process Model 500
TCP Port Number Assignment 502
The User's View Of FTP 502
An Example Anonymous FTP Session 504
TFTP 505
NFS 507
NFS Implementation 507
Remote Procedure Call (RPC) 508
Summary 509

Chapter 27 Applications: Electronic Mail (SMTP, POP, IMAP, MIME) 511

27.1 Introduction 5 1 1
27.2 Electronic Mail 5 1 1
27.3 Mailbox Names And Aliases 5 13
27.4 Alias Expansion And Mail Forwarding 5 13
27.5 The Relationship Of Internetworking And Mail 514
27.6 TCPIIP Standards For Electronic Mail Service 5 16
27.7 Electronic Mail Addresses 5 16
27.8 Pseudo Domain Addresses 5 18
27.9 Simple Mail Transfer Protocol (SMTP) 518
27.10 Mail Retrieval And Mailbox Manipulation Protocols
27.1 1 The MIME Extension For Non-ASCII Data 522
27.12 MIME Multipart Messages 523
27.13 Summary 524

Chapter 28 Applications: World Wide Web (HTTP)

28.1 Introduction 527
28.2 Importance Of The Web 527
28.3 Architectural Components 528
28.4 Uniform Resource Locators 528
28.5 An Example Document 529
28.6 Hypertext Transfer Protocol 530

28.7 HTTP GET Request 530
28.8 Error Messages 53 1
28.9 Persistent Connections And Lengths 532
28.10 Data Length And Program Output 532
28.11 Length Encoding And Headers 533
28.12 Negotiation 534
28.13 Conditional Requests 535
28.14 Support For Proxy Servers 535
28.15 Caching 536
28.16 Summary 537

Chapter 29 Applications: Voice And Video Over IP (RTP)

Introduction 539
Audio Clips And Encoding Standards 539
Audio And Video Transmission And Reproduction 540
Jitter And Playback Delay 541
Real-Time Transport Protocol (RTP) 542
Streams, Mixing, And Multicasting 543
RTP Encapsulation 544
RTP Control Protocol (RTCP) 544
RTCP Operation 545
IP Telephony And Signaling 546
Resource Reservation And Quality Of Service 548
QoS, Utilization, And Capacity 549
RSVP 549
COPS 550
Summary 551

Chapter 30 Applications: Internet Management (SNMP)

Introduction 553
The Level Of Management Protocols 553
Architectural Model 554
Protocol Framework 556
Examples of MlB Variables 557
The Structure Of Management Information 558
Formal Definitions Using ASN.1 559
Structure And Representation Of MIB Object Names 559
Simple Network Management Protocol 564
SNMP Message Format 566
Example Encoded SNMP Message 569

Contents

30.12 New Features In SNMPv3 572
30.13 Summary 572

Chapter 31 Summary Of Protocol Dependencies

31.1 Introduction 575
31.2 Protocol Dependencies 575
31.3 The Hourglass Model 577
31.4 Application Program Access 578
31.5 Summary 579

Chapter 32 Internet Security And Firewall Design (IPsec)

32.1 Introduction 58 1
32.2 Protecting Resources 582
32.3 Information Policy 583
32.4 Internet Security 583
32.5 IP Security (IPsec) 584
32.6 IPsec Authentication Header 5 84
32.7 Security Association 585
32.8 IPsec Encapsulating Security Payload 586
32.9 Authentication And Mutable Header Fields 587
32.10 ZPsec Tunneling 588
32.11 Required Security Algorithms 588
32.12 Secure Sockets 589
32.13 Firewalls And Internet Access 589
32.14 Multiple Connections And Weakest Links 589
32.15 Firewall Implementation 590
32.16 Packet-Level Filters 590
32.1 7 Security And Packet Filter Specification 591
32.18 The Consequence Of Restricted Access For Clients 592
32.19 Proxy Access Through A Firewall 592
32.20 The Details Of Firewall Architecture 593
32.21 Stub Network 594
32.22 An Alternative Firewall Implementation 595
32.23 Monitoring And Logging 596
32.24 Summary 596

xxii

Chapter 33 The Future Of TCPnP (IPv6)

Contents

599

33.1 Introduction 599
33.2 Why Change? 600
33.3 New Policies 600
33.4 Motivation For Changing IPv4 600
33.5 The Road To A New Version Of IP 601
33.6 The Name Of The Next IP 602
33.7 Features Of IPv6 602
33.8 General Form Of An IPv6 Datagram 603
33.9 IPv6 Base Header Format 603
33.10 IPv6 Extension Headers 605
33.11 Parsing An IPv6 Datagram 606
33.12 IPv6 Fragmentation And Reassembly 607
33.13 The Consequence Of End-To-End Fragmentation 607
33.14 IPv6 Source Routing 608
33.15 IPv6 Options 609
33.16 Size Of The IPv6 Address Space 610
33.1 7 IPv6 Colon Hexadecimal Notation 6 10
33.18 Three Basic IPv6 Address Types 61 2
33.19 The Duality Of Broadcast And Multicast 612
33.20 An Engineering Choice And Simulated Broadcast 613
33.21 Proposed IPv6 Address Space Assignment 613
33.22 Embedded IPv4 Addresses And Transition 614
33.23 Unspecified And Loopback Addresses 616
33.24 Unicast Address Hierarchy 61 6
33.25 Aggregatable Global Unicast Address Structure 617
33.26 Intelfoce Identifiers 6 18
33.2 7 Additional Hierarchy 6 19
33.28 Local Addresses 6 19
33.29 Autoconfiguration And Renumbering 620
33.30 Summary 620

Appendix 1 A Guide To RFCs 623

Appendix 2 Glossary Of Internetworking Terms And Abbreviations 673

Bibliography 721

Index 729

Foreword

This is the fourth edition of a landmark book, the book that signaled the coming of
age of the Internet. Development of the protocols for the Internet started around 1974,
and they had been in limited but real use starting in the early 80's, but as of 1987,
there was still no good introduction to how they worked or how to code them. The
standards documents for TCP, IP and the other protocols existed, of course, but the true
truth - the collection of knowledge and wisdom necessary to implement a protocol
stack and actually expect it to work - that was a mystery, known only to a small band
of the initiated. That was not a good thing, and the initiated knew it. But it takes a lot
of effort to pull all the right stuff together and write it down. We waited, knowing that
a good book explaining TCP/IP would be an important step towards the broad accep-
tance of our protocols.

And Doug wrote the book.

We told jokes, waiting for the book. We looked to see how many books there
were in mature fields, and speculated that the number of books was a metric of success.
I actually went and looked to see how many books there were on "how to build a com-
piler" (a post-mature field by now, perhaps - time to count the books again). The
compiler community was well off, and even "how to build a database" was available.
But nothing on "how to build a TCP/IP." And then we got our book.

Of course, knowing that back then this was a landmark book is not enough to
make you buy it. Collectors might want to find the f i s t edition, but that gives the true
truth as of 12 years ago, a long time in Internet years. And that is why this is the fourth
edition. A lot has changed over that time. We have learned a lot more, the field has
grown up, whole new protocols have emerged, and Doug has rewritten the book three
times. That is a measure both of how much and how fast the field changes, and how
much work must go into keeping this book current. It has all the new stuff, and our
best current knowledge about all the old stuff.

Other things have changed in 12 years. Not only has the Internet grown up, but
some of our heroes have grown old, and some have died. The foreword to the first edi-
tion was written by Jon Postel, one of the true Internet pioneers, who died in the fall of
1998. Below, we have reprinted the foreword he wrote for the first edition. Much is
the same, but much has changed. This is still a very readable book both for details on
TCP/IP and for an introduction to communications protocols in general. But in 1987,
Jon wrote "Computer communication systems and networks are currently separated and

xxiv Foreword

fragmented. The goal of interconnection and internetworking, to have a single powerful
computer communication network, is fundamental to the design of TCP/IP." Only 12
years ago networks were fragmented; today the Internet unites the world. And T C P D
is still the glue, at the core of the Internet, that makes all this work. And this is still the
book to read to learn about it.

David Clark
Massachusetts Institute of Technology

December, 1999

Foreword To The First Edition
By The Late Jon Postel

In this book Professor Douglas Comer has provided a long sought overview and
introduction to TCP/IP. There have been many requests for "the" article, report, or
book to read to get started on understanding the TCP/IP protocols. At last, this book
satisfies those requests. Writing an introduction to TCP/IP for the uninitiated is a very
difficult task. While combining the explanation of the general principles of computer
communication with the specific examples from the TCP/IP protocol suite, Doug Comer
has provided a very readable book.

While this book is specifically about the TCPm protocol suite, it is a good book
for learning about computer communications protocols in general. The principles of ar-
chitecture, layering, multiplexing, encapsulation, addressing and address mapping, rout-
ing, and naming are quite similar in any protocol suite, though, of course, different in
detail (See Chapters 3, 10, 17, and 18)t. Computer communication protocols do not do
anything themselves. Like operating systems, they are in the service of applications
processes. Processes are the active elements that request communication and are the ul-
timate senders and receivers of the data transmitted. The various layers of protocols are
like the various layers in a computer operating system, especially the file system.
Understanding protocol architecture is like understanding operating system architecture.
In this book Doug Comer has taken the "bottom up" approach - starting with the
physical networks and moving up in levels of abstraction to the applications.

Since application processes are the active elements using the communication sup-
ported by the protocols, TCP/IP is an "interprocess communication" (PC) mechanism.
While there are several experiments in progress with operating system style message
passing and procedure call types of IPC based on IP, the focus in this book is on more
traditional applications that use the UDP datagram or TCP logical connection forms of
IPC (See Chapters 11, 12, 17, 18, and 19).

One of the key ideas inherent in TCP/IP and in the title of this book is "internet-
working." The power of a communication system is directly related to the number of
entities in that system. The telephone network is very useful because (nearly) all of the

+Editor's note: chapter numbers have changed since the first edition.

xxvi Foreword To The Fit Edition

telephones are in (as it appears to the users) one network. Computer communication
systems and networks are currently separated and fragmented. The goal of interconnec-
tion and internetworking, to have a single powerful computer communication network,
is fundamental to the design of TCPIIP. Essential to internetworking is addressing (See
Chapters 4, 5, and 6), and a universal protocol - the Internet Protocol (See Chapters 7,
8, and 9).

To have an internetwork the individual networks must be connected. The connect-
ing devices are called gateways. Further, these gateways must have some procedures
for forwarding data from one network to the next. The data is in the form of IP da-
tagrams and the destination is specified by an IP address, but the gateway must make a
routing decision based on the IP address and what it knows about the connectivity of
the networks making up the Internet. The procedures for distributing-the current con-
nectivity information to the gateways are called routing algorithms, and these are
currently the subject of much study and development (See Chapters 13, 14, 15, and 16).

Like all communication systems, the TCP/IP protocol suite is an unfinished sys-
tem. It is evolving to meet changing requirements and new opportunities. Thus, this
book is, in a sense, a snapshot of TCP/IP circa 1987. And, as Doug Comer points out,
there are many loose ends (See Chapter 20).

Most chapters end with a few pointers to material "for further study." Many of
these refer to memos of the RFC series of notes. This series of notes is the result of a
policy of making the working ideas and the protocol specifications developed by the
TCP/IP research and development community widely available. This availability of the
basic and detailed information about these protocols, and the availability of the early
implementations of them, has had much to do with their current widespread use. This
commitment to public documentation at this level of detail is unusual for a research ef-
fort, and has had significant benefits for the development of computer communication
(See Appendix 3).

This book brings together information about the various parts of the TCP/IP archi-
tecture and protocols and makes it accessible. Its publication is a very significant rnile-
stone in the evolution of computer communications.

Jon Postel,
Internet Protocol Designer and
Deputy Internet Architect

December, 1987

The explosive growth of the Internet continues. When the third edition of this
book was written five years ago, the Internet connected 4.8 million computers, up from
5,000 when the first edition was published. The Internet now reaches over 56 million
computers, meaning that the 1995 Internet was only about 8% of its current size. Dur-
ing the early 1990s, those of us who were involved with the Internet marveled at how
large an obscure research project had become. Now, it pervades almost every aspect of
society.

T C P D has accommodated change well. The basic technology has survived nearly
two decades of exponential growth and the associated increases in traffic. The proto-
cols have worked over new high-speed network technologies, and the design has han-
dled applications that could not be imagined in the original design. Of course, the en-
tire protocol suite has not remained static. New protocols have been deployed, and new
techniques have been developed to adapt existing protocols to new network technolo-
gies.

This edition contains updated information throughout the text as well as new ma-
terial that describes technical advances and changes. For example, because classless ad-
dressing has become widely deployed, the description of IP forwarding examines tech-
niques for classless lookup. In addition, the chapters on IP describe the Differentiated
Services (DiffServe) scheme for classes of service as well as path MTU discovery and
anonymous networks. The chapter on TCP describes Random Early Drop (RED). The
chapter on exterior routing has been updated to use BGP as the primary example. The
descriptions of protocols such as RIP, IGMP, SNMP, and IPv6 have been revised to in-
corporate new versions and recent changes. Finally, the chapter on security discusses
IPsec.

Four new chapters contain detailed infornlation about significant developments.
Chapter 19 describes mobile IP - a technology that allows a computer to move from
one network to another without changing its IP address. Chapter 20 considers two tech-
nologies used to interconnect private intranets and the global Internet: Virtual Private
Network (VPN) and Network Address Translation (NAT). Each solves a slightly dif-
ferent problem; both are widely deployed. Chapter 28 covers the HTML and I-ITTP
protocols that form the basis for the most significant Internet application: the world
wide web. Chapter 29 focuses on an exciting new area: sending real-time data such as

xxviii Preface

voice and video over an IP network. The chapter examines the RTP protocol that al-
lows a receiver to coordinate and play such data as well as the RSVP and COPS proto-
cols that can be used to provide resource reservation, and describes the H.323 suite of
protocols used for IP telephony.

The fourth edition retains the same general contents and overall organization as the
third edition. The entire text focuses on the concept of internetworking in general and
the TCP/IP internet technology in particular. Internetworking is a powerful abstraction
that allows us to deal with the complexity of multiple underlying communication tech-
nologies. It hides the details of network hardware and provides a high level communi-
cation environment. The text reviews both the architecture of network interconnections
and the principles underlying protocols that make such interconnected networks function
as a single, unified communication system. It also shows how an internet communica-
tion system can be used for distributed computation.

After reading this book, you will understand how it is possible to interconnect mul-
tiple physical networks into a coordinated system, how internet protocols operate in that
environment, and how application programs use the resulting system. As a specific ex-
ample, you will learn the details of the global TCP/IP Internet, including the architec-
ture of its router system and the application protocols it supports. In addition, you will
understand some of the limitations of the internet approach.

Designed as both a college text and as a professional reference, the book is written
at an advanced undergraduate or graduate level. For professionals, the book provides a
comprehensive introduction to the T C P D technology and the architecture of the Inter-
net. Although it is not intended to replace protocol standards, the book is an excellent
starting point for learning about internetworking because it provides a uniform overview
that emphasizes principles. Moreover, it gives the reader perspective that can be ex-
tremely difficult to obtain from individual protocol documents.

When used in the classroom, the text provides more than sufficient material for a
single semester network course at either the undergraduate or graduate level. Such a
course can be extended to a two-semester sequence if accompanied by programming
projects and readings from the literature. For undergraduate courses, many of the de-
tails are unnecessary. Students should be expected to grasp the basic concepts
described in the text, and they should be able to describe or use them. At the graduate
level, students should be expected to use the material as a basis for further exploration.
They should understand the details well enough to answer exercises or solve problems
that require them to explore extensions and subtleties. Many of the exercises suggest
such subtleties; solving them often requires students to read protocol standards and ap-
ply creative energy to comprehend consequences.

At all levels, hands-on experience sharpens the concepts and helps students gain
intuition. Thus, I encourage instructors to invent projects that force students to use In-
ternet services and protocols. The semester project in my graduate Internetworking
course at Purdue requires students to build an IP router. We supply hardware and the
source code for an operating system, including device drivers for network interfaces;
students build a working router that interconnects three networks with different MTUs.
The course is extremely rigorous, students work in teams, and the results have been im-

Preface xxix

pressive (many industries recruit graduates from the course). Although such experimen-
tation is safest when the instructional laboratory network is isolated from production
computing facilities, we have found that students exhibit the most enthusiasm, and
benefit the most, when they have access to a functional TCP/IP internet.

The book is organized into four main parts. Chapters 1 and 2 foml an introduction
that provides an overview and discusses existing network technologies. In particular,
Chapter 2 reviews physical network hardware. The intention is to provide basic intui-
tion about what is possible, not to spend inordinate time on hardware details. Chapters
3-13 describe the TCP/IP Internet from the viewpoint of a single host, showing the pro-
tocols a host contains and how they operate. They cover the basics of Internet address-
ing and routing as well as the notion of protocol layering. Chapters 14-20 and 32
describe the architecture of an internet when viewed globally. They explore routing ar-
chitecture and the protocols routers use to exchange routing information. Finally,
Chapters 21-31 discuss application level services available in the Internet. They present
the client-server model of interaction, and give several examples of client and server
software.

The chapters have been organized bottom up. They begin with an overview of
hardware and continue to build new functionality on top of it. This view will appeal to
anyone who has developed Internet software because it follows the same pattern one
uses in implementation. The concept of layering does not appear until Chapter 1 1 . The
discussion of layering emphasizes the distinction between conceptual layers of func-
tionality and the reality of layered protocol software in which multiple objects appear at
each layer.

A modest background is required to understand the material. The reader is expect-
ed to have a basic understanding of computer systems, and to be familiar with data
structures like stacks, queues, and trees. Readers need basic intuition about the organi-
zation of computer software into an operating system that supports concurrent prograrn-
ming and application programs that users invoke to perform computation. Readers do
not need sophisticated mathematics, nor do they need to know infom~ation theory or
theorems from data communications; the book describes the physical network as a black
box around which an internetwork can be built. It states design principles clearly, and
discusses motivations and consequences.

I thank all the people who have contributed to versions of this book. Michael
Evangelista provided extensive assistance with this edition, including classifying RFCs.
Jeff Case provided the SNMPv3 example. John Lin and Dennis Totin commented on
some of the new chapters. Jin Zhang, Kechiun He, and Sara Steinbrueck proofread
parts of the text. Special thanks go to my wife and partner, Chris, whose careful editing
made many improvements throughout.

Douglas E. Comer

January, 2000

What Others Have Said About The Fourth
Edition Of Internetworking With TCPIIP

"This is the book I go to for clear explanantions of the basic principles and la-
test developments in TCPAP technologies. It's a 'must have' reference for
networking professionals. "

Dr. Ralph Droms
Professor at Bucknell University

"When the Nobel committee turns its attention to the Internet, Doug gets the
prize for literature. This is an updated classic that is the best way to master
Internet technology. "

Dr. Paul V. Mockapetris
Inventor of the Domain Name System

"The best-written TCPAP book I have ever read. Dr. Comer explains complex
ideas clearly, with excellent diagrams and explanations."

Dr. John Lin,
Bell Laboratories

"Comer continues to prove himself the Baedeker of the Internet Protocols with
this fine 4th edition."

Dr. Vinton Cerf
Senior Vice president, MCI WorldCom

"There are many TCP/IP books on the shelves today, but Doug Comer's 'Inter-
networking with TCPAP' is the one that comes off the shelf for accessible and
authoritative answers to questions about Internet technology."

Dr. Lyman Chapin,
Chief Scientist, BBN Technologies

Other Books In the Internetworking Series
from Douglas Comer and Prentice Hall

Internetworking With TCP/IP Volume 11: Design, Implementation, and
Internals (with David Stevens), 3rd edition: 1999, ISBN 0-13-973843-6

Volume I1 continues the discussion of Volume I by using code from a running im-
plementation of TCP/IP to illustrate all the details. The text shows, for example, how
TCP's slow start algorithm interacts with the Partridge-Kam exponential retransmission
backoff algorithm and how routing updates interact with datagram forwarding.

Internetworking With TCP/IP Volume 111: Client-Server Programming
and Applications (with David Stevens)

BSD Socket Version, 2nd edition: 1996, ISBN 0-13-260969-X
AT&T TLI Version: 1994, ISBN 0-13-474230-3
Windows Sockets Version: 19!l7, ISBN 0-13-848714-6

Volume III describes the fundamental concept of client-server computing used to
build all distributed computing systems. The text discusses various server designs as
well as the tools and techniques used to build clients and servers, including Remote
Procedure Call (RPC). It contains examples of running programs that illustrate each of
the designs and tools. Three versions of Volume 111 are available for the socket API
(Unix), the TLI API (AT&T System V), and the Windows Sockets API (Microsoft).

Computer Networks And Internets (with a CD-ROM by Ralph Droms), 2nd
edition: 1999, ISBN 0-13-083617-6

A broad introduction to data communication, networking, internetworking, and
client-server applications, Computer Networks And Internets examines the hardware and
software components that make up computer networks, from the lowest levels through
applications. The text covers transmission and modems, LANs and LAN extensions,
access technologies, WANs, protocols (including TCPAP), and network applications.
The CD-ROM features animations and data sets.

The Internet Book: Everything you need to know about computer network-
ing and how the Internet works, 2nd edition: 1997, ISBN 0-13-890161-9, paperback

A gentle introduction to networking and the Internet, The Internet Book does not
assume the reader has a technical background. It explains the Internet, how it works,
and services available in general terms, without focusing on a particular computer or a
particular brand of software. Ideal for someone who wants to become Internet and
computer networking literate, The Internet Book explains the terminology as well as the
concepts; an extensive glossary of terms and abbreviations is included.

To order, visit the Prentice Hall Web page at www.prenhall.com/
or contact your local bookstore or Prentice Hall representative.

In North America, call 1-515-284-6751, or send a FAX to 1-515-284-6719.

Introduction And Overview

1 .I The Motivation For Internetworking

Internet communication has become a fundamental part of life. The World Wide
Web contains information about such diverse subjects as atmospheric conditions, crop
production, stock prices, and airline traffic. Groups establish electronic mailing lists so
they can share information of common interest. Professional colleagues exchange busi-
ness correspondence electronically, and relatives exchange personal greetings.

Unfortunately, most network technologies are designed for a specific purpose.
Each enterprise chooses hardware technology appropriate for specific communication
needs and budget. More important, it is impossible to engineer a universal network
from a single network technology because no single network suffices for all uses. Some
groups need high-speed networks to connect computers in a single building. Low-cost
technologies that fill the need cannot span large geographic distances. Other groups set-
tle for a slower speed network that connects machines thousands of miles apart.

For over two decades, a new technology has evolved that makes it possible to in-
terconnect many disparate physical networks and make them function as a coordinated
unit. The technology, called internetworking, accommodates multiple, diverse underly-
ing hardware technologies by providing a way to interconnect heterogeneous networks
and a set of communication conventions that makes them interoperate. The internet
technology hides the details of network hardware, and permits computers to communi-
cate independent of their physical network connections.

The internet technology described in this book is an example of open system inter-
connection. It is called open because, unlike proprietary communication systems avail-
able from one specific vendor, the specifications are publicly available. Thus, anyone
can build the software needed to communicate across an internet. More important, the
entire technology has been designed to foster communication among machines with

2 Introduction And Overview Chap. 1

diverse hardware architectures, to use almost any packet switched network hardware, to
accommodate a wide variety of applications, and to accommodate multiple computer
operating systems.

To appreciate internet technology, think of how it has changed business. In addi-
tion to high-speed communication among employees in the office environment, net-
working technologies provide instant feedback among the production side of the busi-
ness, sales and marketing, and customers. As a result, the speed with which business
can plan, implement, assess, and retool has increased; the change is dramatic.

1.2 The TCPAP Internet

U.S. government agencies realized the importance and potential of internet technol-
ogy many years ago, and have funded research that has made possible a global Internet.
This book discusses principles and ideas underlying the internet technology that has
resulted from research funded by the Advanced Research Projects Agency (ARPA)j-.
The ARPA technology includes a set of network standards that specify the details of
how computers communicate, as well as a set of conventions for interconnecting net-
works and routing traffic. Officially named the TCPm Internet Protocol Suite and
commonly referred to as TCPAP (after the names of its two main standards), it can be
used to communicate across any set of interconnected networks. For example, some
corporations use TCPlIP to interconnect all networks within their corporation, even
though the corporation has no connection to outside networks. Other groups use
TCP/IP for communication among geographically distant sites.

Although the TCP/IP technology is noteworthy by itself, it is especially interesting
because its viability has been demonstrated on a large scale. It forms the base technolo-
gy for the global Internet that connects over 170 million individuals in homes, schools,
corporations, and government labs in virtually all populated countries. In the U S , The
National Science Foundation (NSF), the Department of Energy (DOE), the Department
of Defense (DOD), the Health and Human Services Agency (HHS), and the National
Aeronautics and Space Administration (NASA) have all participated in funding the Inter-
net, and use TCPILP to connect many of their research sites. Known as the ARPANSF
Internet, the TCP/IP Internet, the global Internet, or just the Internee, the resulting
communication system allows subscribers to share information with anyone around the
world as easily as they share it with someone in the next room. An outstanding suc-
cess, the Internet demonstrates the viability of the TCP/IP technology and shows how it
can accommodate a wide variety of underlying network technologies.

Most of the material in this book applies to any internet that uses TCPm, but
some chapters refer specifically to the global Internet. Readers interested only in the
technology should be careful to watch for the distinction between the Internet architec-
ture as it exists and general TCPlIP internets as they might exist. It would be a mis-
take, however, to ignore all sections of the text that describe the global Internet -
many corporate networks are already more complex than the global Internet of a dozen

tAt various times, ARPA was called the Defense Advanced Research Projects Agency (DARPA).
$We will follow the usual convention of capitalizing Internet when referring specifically to the global

Internet, and use lower case to refer to private internets that use TCPm technology.

Sec. 1.2 The TCPlIP Internet 3

years ago, and many of the problems they face have already been solved in the global
Internet.

1.3 lnternet Services

One cannot appreciate the technical details underlying TCPm without understand-
ing the services it provides. This section reviews internet services briefly, highlighting
the services most users access, and leaves to later chapters the discussion of how com-
puters connect to a TCPDP internet and how the functionality is implemented.

Much of our discussion of services will focus on standards called protocols. Proto-
cols like TCP and IP provide the syntactic and semantic rules for communication. They
contain the details of message formats, describe how a computer responds when a mes-
sage arrives, and specify how a computer handles errors or other abnornlal conditions.
Most important, they allow us to discuss computer communication independent of any
particular vendor's network hardware. In a sense, protocols are to communication what
algorithms are to computation. An algorithm allows one to specify or understand a
computation without knowing the details of a particular CPU instruction set. Similarly,
a communication protocol allows one to specify or understand data communication
without depending on detailed knowledge of a particular vendor's network hardware.

Hiding the low-level details of communication helps improve productivity in
several ways. First, because programmers deal with higher-level protocol abstractions,
they do not need to learn or remember as many details about a given hardware confi-
guration. Thus, they can create new programs quickly. Second, because programs built
using higher-level abstractions are not restricted to a particular computer architecture or
a particular network hardware, they do not need to be changed when computers or net-
works are replaced or reconfigured. Third, because application programs built using
higher-level protocols are independent of the underlying hardware, they can provide
direct communication between an arbitrary pair of computers. Programmers do not
need to build a special version of application software for each type of computer or
each type of network. Instead, software built to use protocols is general-purpose; the
same code can be compiled and run on an arbitrary computer.

We will see that the details of each service available on the Internet are given by a
separate protocol. The next sections refer to protocols that specify some of the
application-level services as well as those used to define network-level services. Later
chapters explain each of these protocols in detail.

1.3.1 Application Level lnternet Services

From the user's point of view, the Internet appears to consist of a set of application
programs that use the underlying network to carry out useful communication tasks. We
use the tern1 interoperability to refer to the ability of diverse computing systems to
cooperate in solving computational problems. Internet application programs exhibit a
high degree of interoperability. Most users that access the Internet do so merely by run-

4 Introduction And Overview Chap. 1

ning application programs without understanding the types of computers being accessed,
the TCP/IP technology, the structure of the underlying internet, or even the path the
data travels to its destination; they rely on the application programs and the underlying
network software to handle such details. Only programmers who write network applica-
tion programs need to view a TCP/IP internet as a network and need to understand
some of the technology.

The most popular and widespread Internet application services include:

World Wide Web. The Web allows users to view documents that contain text and
graphics, and to follow hypermedia links from one document to another. The
Web grew to become the largest source of traffic on the global Internet between
1994 and 1995, and continues to dominate. Some service providers estimate that
the Web now accounts for 80% of their Internet traffic.

Electronic mail (e-mail). Electronic mail allows a user to compose a memo and
send a copy to individuals or groups. Another part of the mail application allows
users to read memos that they have received. A recent innovation allows users to
include "attachments" with a mail message that consist of arbitrary files. Elec-
tronic mail has been so successful that many Internet users depend on it for most
correspondence. One reason for the popularity of Internet e-mail arises from a
careful design: the protocol makes delivery reliable. Not only does the mail sys-
tem on the sender's computer contact the mail system on the receiver's computer
directly, but the protocol specifies that a message cannot be deleted by the sender
until the receiver has successfully placed a copy on permanent storage.

File transfer. The file transfer application allows users to send or receive a copy
of a data file. File transfer is one of the oldest, and still among the most heavily
used application services in the Internet. Although small files can now be at-
tached to an e-mail message, the file transfer service is still needed to handle arbi-
trarily large files. The system provides a way to check for authorized users, or
even to prevent all access. Like mail, file transfer across a TCPAP internet is reli-
able because the two machines involved communicate directly, without relying on
intermediate machines to make copies of the file along the way.

Remote login. Remote login allows a user sitting at one computer to connect to a
remote machine and establish an interactive login session. The remote login
makes it appear that a window on the user's screen connects directly to the remote
machine by sending each keystroke from the user's keyboard to the remote
machine and displaying each character the remote computer prints in the user's
window. When the remote login session terminates, the application returns the
user to the local system.

We will return to these and other applications in later chapters to examine them in more
detail. We will see exactly how they use the underlying TCPAP protocols, and why
having standards for application protocols has helped ensure that they are widespread.

Sec. 1.3 Internet Services 5

1.3.2 Network-Level Internet Services

A programmer who creates application programs that use TCP/IP protocols has an
entirely different view of an internet than a user who merely executes applications like
electronic mail. At the network level, an internet provides two broad types of service
that all application programs use. While it is unimportant at this time to understand the
details of these services, they cannot be omitted from any overview of T C P m

Connectionless Packet Delivery Service. This service, explained in detail
throughout the text, forms the basis for all other internet services. Connectionless
delivery is an abstraction of the service that most packet-switching networks offer.
It means simply that a TCPAP internet routes small messages from one computer
to another based on address information camed in the message. Because the con-
nectionless service routes each packet separately, it does not guarantee reliable,
in-order delivery. Because it usually maps directly onto the underlying hardware,
the connectionless service is extremely efficient. More important, having connec-
tionless packet delivery as the basis for all internet services makes the TCPLP
protocols adaptable to a wide range of network hardware.

Reliable Stream Transport Service. Most applications need much more than
packet delivery because they require the communication software to recover au-
tomatically from transmission errors, lost packets, or failures of intermediate
switches along the path between sender and receiver. The reliable transport ser-
vice handles such problems. It allows an application on one computer to establish
a "connection" with an application on another computer, and then to send a large
volume of data across the connection as if it were a permanent, direct hardware
connection. Underneath, of course, the communication protocols divide the
stream of data into small messages and send them, one at a time, waiting for the
receiver to acknowledge reception.

Many networks provide basic services similar to those outlined above, so one
might wonder what distinguishes TCP/IP services from others. The primary distin-
guishing features are:

Network Technology Independence. Although TCPm is based on conventional
packet switching technology, it is independent of any particular vendor's
hardware. The global Internet includes a variety of network technologies ranging
from networks designed to operate within a single building to those designed to
span large distances. TCPm protocols define the unit of data transmission, called
a datagram, and specify how to transmit datagrams on a particular network.

Universal Interconnection. A TCP/IP internet allows any pair of computers to
which it attaches to communicate. Each computer is assigned an address that is
universally recognized throughout the internet. Every datagram carries the ad-
dresses of its source and destination. Intermediate switching computers use the
destination address to make routing decisions.

Introduction And Overview Chap. 1

End-to-End Acknowledgements. The TCP/IP internet protocols provide ack-
nowledgements between the original source and ultimate destination instead of
between successive machines along the path, even if the source and destination do
not connect to a common physical network.

Application Protocol Standarch. In addition to the basic transport-level services
(like reliable stream connections), the TCP/IP protocols include standards for
many common applications including electronic mail, file transfer, and remote lo-
gin. Thus, when designing application programs that use TCPIIP, programmers
often find that existing software provides the communication services they need.

Later chapters will discuss the details of the services provided to the programmer as
well as many of the application protocol standards.

1.4 History And Scope Of The Internet

Part of what makes the TCP/IP technology so exciting is its universal adoption as
well as the size and growth rate of the global Internet. ARPA began working toward an
internet technology in the mid 1970s, with the architecture and protocols taking their
current form around 1977-79. At that time, ARPA was known as the primary funding
agency for packet-switched network research and had pioneered many ideas in packet-
switching with its well-known ARPANET. The ARPANET used conventional point-to-
point leased line interconnection, but ARPA had also funded exploration of packet-
switching over radio networks and satellite communication channels. Indeed, the grow-
ing diversity of network hardware technologies helped force ARPA to study network in-
terconnection, and pushed internetworking forward.

The availability of research funding from ARPA caught the attention and imagina-
tion of several research groups, especially those researchers who had previous experi-
ence using packet switching on the ARPANET. ARPA scheduled informal meetings of
researchers to share ideas and discuss results of experiments. Informally, the group was
known as the Internet Research Group. By 1979, so many researchers were involved in
the TCPLP effort that ARPA created an informal committee to coordinate and guide the
design of the protocols and architecture of the emerging Internet. Called the Internet
Control and Configuration Board (ICCB), the group met regularly until 1983, when it
was reorganized.

The global Internet began around 1980 when ARPA started converting machines
attached to its research networks to the new TCP/IP protocols. The ARPANET, already
in place, quickly became the backbone of the new Internet and was used for many of
the early experiments with TCPLP. The transition to Internet technology became com-
plete in January 1983 when the Office of the Secretary of Defense mandated that all
computers connected to long-haul networks use TCPLP. At the same time, the Defense
Communication Agency (DCA) split the ARPANET into two separate networks, one for
further research and one for military communication. The research part retained the
name ARPANET; the military part, which was somewhat larger, became known as the
military network, MILNET.

Sec. 1.4 History And Scope Of The Internet 7

To encourage university researchers to adopt and use the new protocols, ARPA
made an implementation available at low cost. At that time, most university computer
science departments were running a version of the UNIX operating system available in
the University of California's Berkeley Sofnyare Distribution, commonly called Berke-
ley UNIX or BSD UNIX. By funding Bolt Beranek and Newman, Incorporated (BBN) to
implement its TCP/IP protocols for use with UNIX and funding Berkeley to integrate
the protocols with its software distribution, ARPA was able to reach over 90% of
university computer science departments. The new protocol software came at a particu-
larly significant time because many departments were just acquiring second or third
computers and connecting them together with local area networks. The departments
needed communication protocols.

The Berkeley software distribution became popular because it offered more than
basic TCP/IP protocols. In addition to standard TCPm application programs, Berkeley
offered a set of utilities for network services that resembled the UNIX services used on
a single machine. The chief advantage of the Berkeley utilities lies in their similarity to
standard UNIX. For example, an experienced UNIX user can quickly learn how to use
Berkeley's remote file copy utility (rcp) because it behaves exactly like the UNIX file
copy utility except that it allows users to copy files to or from remote machines.

Besides a set of utility programs, Berkeley UNIX provided a new operating system
abstraction known as a socket that allowed application programs to access communica-
tion protocols. A generalization of the UNIX mechanism for 110, the socket has options
for several types of network protocols in addition to TCPIIP. Its design has been debat-
ed since its introduction, and many operating systems researchers have proposed alter-
natives. Independent of its overall merits, however, the introduction of the socket
abstraction was important because it allowed programmers to use TCPIIP protocols with
little effort. Thus, it encouraged researchers to experiment with TCPm.

The success of the TCP/IP technology and the Internet among computer science
researchers led other groups to adopt it. Realizing that network communication would
soon be a crucial part of scientific research, the National Science Foundation (NSF)
took an active role in expanding the TCPAP Internet to reach as many scientists as pos-
sible. In the late 1970s, NSF funded a project known as the Computer Science NET-
work (CSNET), which had as its goal connecting all computer scientists. Starting in
1985, NSF began a program to establish access networks centered around its six super-
computer centers. In 1986 it expanded networking efforts by funding a new wide area
backbone network, called the NSFNET?, that eventually reached all its supercomputer
centers and tied them to the ARPANET. Finally, in 1986 NSF provided seed money
for many regional networks, each of which now connects major scientific research insti-
tutions in a given area. All the NSF-funded networks use TCP/IP protocols, and all are
part of the global Internet.

Within seven years of its inception, the Internet had grown to span hundreds of in-
dividual networks located throughout the United States and Europe. It connected nearly
20,000 computers at universities, government, and corporate research laboratories. Both
the size and the use of the Internet continued to grow much faster than anticipated. By

?The tern1 NSFNET is sometimes used loosely to mean all NSF-funded networking activities, but we will
use it to refer to the backbone. The next chapter gives more details about the technology.

8 Introduction And Overview Chap. 1

late 1987, it was estimated that the growth had reached 15% per month. By 2000, the
global Internet reached over 50 million computers in 209 countries.

Early adoption of TCP/IP protocols and growth of the Internet has not been limited
to government-funded projects. Major computer corporations connected to the Internet
as did many other large corporations including: oil companies, the auto industry, elec-
tronics firms, pharmaceutical companies, and telecommunications carriers. Medium and
small companies began connecting in the 1990s. In addition, many companies have
used the TCP/IP protocols on their internal corporate internets even though they choose
not to be part of the global Internet.

Rapid expansion introduced problems of scale unanticipated in the original design
and motivated researchers to find techniques for managing large, distributed resources.
In the original design, for example, the names and addresses of all computers attached
to the Internet were kept in a single file that was edited by hand and then distributed to
every site on the Internet. By the mid 1980s, it became apparent that a central database
would not suffice. First, because computers were being added to the Internet at an in-
creasing rate, requests to update the file would soon exceed the personnel available to
process them. Second, even if a correct central f i e existed, network capacity was insuf-
ficient to allow either frequent distribution to every site or on-line access by each site.

New protocols were developed and a naming system was put in place across the
global Internet that allows any user to resolve the name of a remote machine automati-
cally. Known as the Domain Name System (DNS), the mechanism relies on machines
called name servers to answer queries about names. No single machine contains the en-
tire domain name database. Instead, data is distributed among a set of machines that
use TCP/IP protocols to communicate among themselves when answering a query.

1.5 The lnternet Architecture Board

Because the TCP/IP internet protocol suite did not arise from a specific vendor or
from a recognized professional society, it is natural to ask, "who sets the technical
direction and decides when protocols become standard?" The answer is a group known
as the Internet Architecture Board (IABI-). The IAB provides the focus and coordina-
tion for much of the research and development underlying the TCP/IP protocols, and
guides the evolution of the Internet. It decides which protocols are a required part of
the TCPIIP suite and sets official policies.

Formed in 1983 when ARPA reorganized the Internet Control and Configuration
Board, the IAB inherited much of its charter from the earlier group. Its initial goals
were to encourage the exchange of ideas among the principals involved in research re-
lated to TCP/IP and the Internet, and to keep researchers focused on common objec-
tives. Through the first six years, the IAB evolved from an ARPA-specific research
group into an autonomous organization. During these years, each member of the IAB
chaired an Internet Task Force charged with investigating a problem or set of issues
deemed to be important. The IAB consisted of approximately ten task forces, with
charters ranging from one that investigated how the traffic load from various applica-

+IAB originally stood for Internet Activities Board.

Sec. 1.5 The Internet Architecture Board 9

tions affects the Internet to one that handled short tern1 Internet engineering problems.
The TAB met several times each year to hear status reports from each task force, review
and revise technical directions, discuss policies, and exchange information with
representatives from agencies like ARPA and NSF, who funded Internet operations and
research.

The chairman of the IAB had the title Internet Architect and was responsible for
suggesting technical directions and coordinating the activities of the various task forces.
The IAB chairman established new task forces on the advice of the IAB and also
represented the IAB to others.

Newcomers to TCP/IP are sometimes surprised to learn that the IAB did not
manage a large budget; although it set direction, it did not fund most of the research and
engineering it envisioned. Instead, volunteers performed much of the work. Members
of the IAB were each responsible for recruiting volunteers to serve on their task forces,
for calling and running task force meetings, and for reporting progress to the IAB. Usu-
ally, volunteers came from the research community or from commercial organizations
that produced or used TCP/IP. Active researchers participated in Internet task force ac-
tivities for two reasons. On one hand, serving on a task force provided opportunities to
learn about new research problems. On the other hand, because new ideas and problem
solutions designed and tested by task forces often became part of the TCP/IP Internet
technology, members realized that their work had a direct, positive influence on the
field.

1.6 The IAB Reorganization

By the summer of 1989, both the TCP/IP technology and the Internet had grown
beyond the initial research project into production facilities on which thousands of peo-
ple depended for daily business. It was no longer possible to introduce new ideas by
changing a few installations overnight. To a large extent, the literally hundreds of com-
mercial companies that offer TCP/IP products determined whether products would in-
teroperate by deciding when to incorporate changes in their software. Researchers who
drafted specifications and tested new ideas in laboratories could no longer expect instant
acceptance and use of the ideas. It was ironic that the researchers who designed and
watched TCPm develop found themselves overcome by the commercial success of
their brainchild. In short, TCP/IP became a successful, production technology and the
market place began to dominate its evolution.

To reflect the political and commercial realities of both TCPIIP and the Internet,
the IAB was reorganized in the summer of 1989. The chairmanship changed.
Researchers were moved from the IAB itself to a subsidiary group and a new IAB
board was constituted to include representatives from the wider community.

Figure 1.1 illustrates the IAB organization and the relationship of subgroups.

Introduction And Overview Chap. 1

research groups working groups

Figure 1.1 The structure of the IAB after the 1989 reorganization.

As Figure 1.1 shows, in addition to the board itself, the IAB organization con-
tained two major groups: the Internet Research Task Force (IRTF) and the Internet En-
gineering Task Force (IETF).

As its name implies, the IETF concentrates on short-term or medium-term en-
gineering problems. The IETF existed in the original IAB structure, and its success
provided part of the motivation for reorganization. Unlike most IAB task forces, which
were limited to a few individuals who focused on one specific issue, the IETF was large
- before the reorganization, it had grown to include dozens of active members who
worked on many problems concurrently. It was divided into over 20 working groups,
each focusing on a specific problem. Working groups held individual meetings to for-
mulate problem solutions. In addition, the entire IETF met regularly to hear reports
from working groups and discuss proposed changes or additions to the TCPtIP technol-
ogy. Usually held three times annually, full IETF meetings attracted hundreds of parti-
cipants and spectators. The IETF had become too large for the chairman to manage.

Because the IETF was known throughout the Internet, and because its meetings
were widely recognized and attended, the reorganized IAB structure retains the IETF,
but splits it into approximately ten areas, each with its own manager. The IETF chair-
man and the area managers comprise the Internet Engineering Steering Group (IESG),
the individuals responsible for coordinating the efforts of IETF working groups. The
name "IETF" now refers to the entire body, including the chairman, area managers,
and all members of working groups.

Sec. 1.6 The IAB Reorganization 11

Created during the reorganization, the Internet Research Task Force is the research
counterpart to the IETF. The IRTF coordinates research activities related to TCPIIP
protocols or internet architecture in general. Like the IETF, the IRTF has a small
group, called the Internet Research Steering Group (IRSG), that sets priorities and coor-
dinates research activities. Unlike the IETF, the IRTF is currently a much smaller and
less active organization. In fact, most of the research is being done within the IETF.

1.7 The lnternet Society

In 1992, as the Internet moved away from its U.S. government roots, a society was
formed to encourage participation in the Internet. Called the Intenzet Society (ISOQ,
the group is an international organization inspired by the National Geographic Society.
The host for the IAB, the Internet Society continues to help people join and use the In-
ternet around the world.

1.8 Internet Request For Comments

We have said that no vendor owns the TCPBP technology nor does any profession-
al society or standards body. Thus, the documentation of protocols, standards, and poli-
cies cannot be obtained from a vendor. Instead, the documentation is placed in on-line
repositories and made available at no charge.

Documentation of work on the Internet, proposals for new or revised protocols, and
TCPnP protocol standards all appear in a series of technical reports called Internet Re-
quests For Comments, or RFCs. RFCs can be short or long, can cover broad concepts
or details, and can be standards or merely proposals for new protocols?. While RFCs
are not refereed in the same way as academic research papers, they are edited. For
many years, a single individual, Jon Postel$, served as RFC editor. The task of editing
RFCs now falls to area managers of the IETF; the IESG as a whole approves new
RFCs.

Finally, a few reports pertinent to the Internet were published in an earlier, parallel
series of reports called Internet Engineering Notes, or IENs. Although the IEN series is
no longer active, not all IENs appear in the RFC series. There are references to RFCs
(and still a few to IENs) throughout the text.

The RFC series is numbered sequentially in the chronological order RFCs are writ-
ten. Each new or revised RFC is assigned a new number, so readers must be careful to
obtain the highest numbered version of a document; an RFC index is available to help
identify the correct version.

To make document retrieval quicker, many sites around the world store copies of
RFCs and make them available to the community. One can obtain RFCs by postal
mail, by electronic mail, or directly across the Internet using a fde transfer program. In
addition, preliminary versions of RFC documents, which are known as Internet drafts,

-

?Appendix I contains an introduction to RFCs that examines the diversity of RFCs, including jokes that
have appeared.

$Jon passed away in the fall of 1998. He was one of the pioneers who made significant contributions to
TCP/IP and the Internet. Those of us who knew him feel the loss deeply.

12 Introduction And Overview Chap. 1

are also available. Ask a local network expert how to obtain RFCs or Internet drafts at
your site, or refer to Appendix I for further instructions on how to retrieve them.

1.9 lnternet Protocols And Standardization

Readers familiar with data communication networks realize that a myriad of com-
munication protocol standards exist. Many of them precede the Internet, so the question
arises, "Why did the Internet designers invent new protocols when so many internation-
al standards already existed?" The answer is complex, but follows a simple maxim:

Use existing protocol standards whenever such standards apply; in-
vent new protocols only when existing standards are insufficient, and
be prepared to use new standards when they become available and
provide equivalent functionalio.

So, despite appearances to the contrary, the TCPm Internet Protocol Suite was not
intended to ignore or avoid extant standards. It came about merely because none of the
existing protocols satisfied the need for an interoperable internetworking communication
system.

1.1 0 Future Growth And Technology

Both the TCPIIP technology and the Internet continue to evolve. New protocols
are being proposed, old ones are being revised. NSF added considerable complexity to
the system by introducing a backbone network, regional networks, and hundreds of
campus networks. Other groups around the world continue to connect to the Internet as
well. The most significant change comes not from added network connections, howev-
er, but from additional traffic. As new users connect to the Internet and new applica-
tions appear, traffic patterns change. When physicists, chemists, and biologists began to
use the Internet, they exchanged files of data collected from experiments. Files of
scientific data were large compared to electronic mail messages. As the Internet be-
came popular and users began to browse information using services like the World Wide
Web, traffic patterns increased again.

To accommodate growth in traffic, the capacity of the NSFNET backbone was in-
creased three times. The final version, known as ANSNET after the company that sup-
plied it, had a capacity approximately 840 times larger than the original. Since 1995,
companies known as Internet Service Providers (ISPs) have each built their own back-
bone network, many of which have significantly more capacity than the last
government-funded backbone. At the current time, it is difficult to foresee an end to the
need for more capacity.

Sec. 1.10 Future Growth And Technology 13

Growth in demands for networking is not unexpected. The computer industry has
enjoyed a continual demand for increased processing power and larger data storage for
many years. Users have only begun to understand how to use networks. In the future
we can expect continual increases in the demand for communications. Soon, for exam-
ple, TCPnP technologies will be used for telephone and video services as well as data
services. Thus, higher-capacity communication technologies will be needed to accom-
modate the growth.

Figure 1.2 summarizes expansion of the Internet and illustrates an important com-
ponent of growth: much of the change in complexity has arisen because multiple groups
now manage various parts of the whole. Because the technology was developed when a
single person at ARPA had control of all aspects of the Internet, the designs of many
subsystems depended on centralized management and control. As the Internet grew,
responsibility and control were divided among multiple organizations. In particular, as
the Internet became global, the operation and management needed to span multiple
countries. Much of the effort since the early 1990s has been directed toward finding
ways to extend the design to accommodate decentralized management.

number of number of number of number of
networks computers users managers

Figure 1.2 Growth of the connected Internet. In addition to traffic increases
that result from increased size, the Internet faces complexity that
results from decentralized management of both development and
operations.

1 .I 1 Organization Of The Text

The material on TCPAP has been written in three volumes. This volume presents
the TCPIIP technology, applications that use it, and the architecture of the global Inter-
net in more detail. It discusses the fundamentals of protocols like TCP and IP, and
shows how they fit together in an internet. In addition to giving details, the text
highlights the general principles underlying network protocols, and explains why the
TCPLP protocols adapt easily to so many underlying physical network technologies.
Volume I1 discusses in depth the internal details of the TCPm protocols and shows
how they are implemented. It presents code from a working system to illustrate how
the individual protocols work together, and contains details useful to people responsible

14 Introduction And Overview Chap. 1

for building a corporate internet. Volume 111 shows how distributed applications use
TCP/IP for communication. It focuses on the client-server paradigm, the basis for all
distributed programming. It discusses the interface between programs and protocols?,
and shows how client and server programs are organized. In addition, Volume 111
describes the remote procedure concept, middleware, and shows how programmers use
tools to build client and server software.

So far, we have talked about the TCPm technology and the Internet in general
terms, summarizing the services provided and the history of their development. The
next chapter provides a brief summary of the type of network hardware used throughout
the Internet. Its purpose is not to illuminate nuances of a particular vendor's hardware,
but to focus on the features of each technology that are of primary importance to an in-
ternet architect. Later chapters delve into the protocols and the Internet, fulfilling three
purposes: they explore general concepts and review the Internet architectural model,
they examine the details of TCP/IP protocols, and they look at standards for high-level
services like electronic mail and electronic file transfer. Chapters 3 through 14 review
fundamental principles and describe the network protocol software found in any
machine that uses TCP/IP. Later chapters describe services that span multiple
machines, including the propagation of routing information, name resolution, and appli-
cations like electronic mail.

Two appendices follow the main text. The first appendix contains a guide to
RFCs. It expands on the description of RFCs found in this chapter, and gives examples
of information that can be found in RFCs. It describes in detail how to obtain RFCs by
electronic mail, postal mail, and file transfer. Finally, because the standard RFC index
comes in chronological order, the appendix presents a list of RFCs organized by topic
to make it easier for beginners to find RFCs pertinent to a given subject.

The second appendix contains an alphabetical list of terms and abbreviations used
throughout the literature and the text. Because beginners often find the new terminolo-
gy overwhelming and difficult to remember, they are encouraged to use the alphabetical
list instead of scanning back through the text.

1.1 2 Summary

An internet consists of a set of connected networks that act as a coordinated whole.
The chief advantage of an internet is that it provides universal interconnection while al-
lowing individual groups to use whatever network hardware is best suited to their needs.
We will examine principles underlying internet communication in general and the de-
tails of one internet protocol suite in particular. We will also discuss how internet pro-
tocols are used in an internet. Our example technology, called T C P m after its two
main protocols, was developed by the Advanced Research Projects Agency. It provides
the basis for the global Internet, a large, operational internet that connects universities,
corporations, and government departments in many countries around the world. The
global Internet is expanding rapidly.

Wolume III is available in three versions: one that uses the Unix socket interface interface in examples, a
second that uses the Transport Layer Interface (TLI), and a third that uses the Windows Sockets Interface de-
fined by Microsoft.

For Further Study

FOR FURTHER STUDY

Cerf s A History Of The ARPANET [I9891 and History of the Internet Activities
Board [RFC 11601 provide fascinating reading and point the reader to early research pa-
pers on TCP/IP and internetworking. Denning [Nov-Dec 19891 provides a different per-
spective on the history of the ARPANET. Jennings et. al. [I9861 discusses the impor-
tance of computer networking for scientists. Denning [Sept-Oct 19891 also points out
the importance of internetworking and gives one possible scenario for a world-wide In-
ternet. The U.S. Federal Coordinating Committee for Science, Engineering and Tech-
nology [FCCSm suggested networking should be a national priority.

The IETF (iegorg) publishes minutes from its regular meetings. The Internet So-
ciety (www.isoc.org) produces newsletters that discuss the penetration of the Internet in
countries around the world. The World Wide Web Consortium (w3c.org) produces pro-
tocols and standards for Web technologies. Finally, the reader is encouraged to
remember that the TCPhP protocol suite and the Internet continue to evolve; new infor-
mation can be found in RFCs and at conferences such as the annual ACM SIGCOMM
Symposium and NETWORLD+INTEROP events held around the world.

EXERCISES

1.1 Explore*application programs at your site that use TCP/IP.
1.2 Plot the growth of TCP/IP technology and Internet access at your organization. How many

computers, users, and networks were connected each year?
13 TCPm products account for several billion dollars per year in gross revenue. Read trade

publications to find a list of vendors offering such products.

Re view Of Underlying
Network Technologies

2.1 Introduction

It is important to understand that the Internet is not a new kind of physical net-
work. It is, instead, a method of interconnecting physical networks and a set of conven-
tions for using networks that allow the computers they reach to interact. While network
hardware plays only a minor role in the overall design, understanding the internet tech-
nology requires one to distinguish between the low-level mechanisms provided by the
hardware itself and the higher-level facilities that the TCPAP protocol software pro-
vides. It is also important to understand how the interfaces supplied by underlying
packet-switched technology affect our choice of high-level abstractions.

This chapter introduces basic packet-switching concepts and temunology, and then
reviews some of the underlying network hardware technologies that have been used in
TCPAP internets. Later chapters describe how these networks are interconnected and
how the TCPAP protocols accommodate vast differences in the hardware. While the list
presented here is certainly not comprehensive, it clearly demonstrates the variety among
physical networks over which TCPAP operates. The reader can safely skip many of the
technical details, but should try to grasp the idea of packet switching and try to imagine
building a homogeneous communication system using such heterogeneous hardware.
Most important, the reader should look closely at the details of the physical address
schemes the various technologies use; later chapters will discuss in detail how high-
level protocols use physical addresses.

18 Review Of Underlying Network Technologies Chap. 2

2.2 Two Approaches To Network Communication

Whether they provide connections between one computer and another or between a
terminal and a computer, communication networks can be divided into two basic types:
connection-oriented (sometimes called circuit-switched) and connectionless (sometimes
called packet-switched?). Connection-oriented networks operate by forming a dedicated
connection or circuit between two points. The U.S. telephone system uses a
connection-oriented technology - a telephone call establishes a connection from the
originating phone through the local switching office, across trunk lines, to a remote
switching office, and finally to the destination telephone. While a connection is in
place, the phone equipment samples the microphone repeatedly, encodes the samples di-
gitally, and transmits them across the connection to the receiver. The sender is
guaranteed that the samples can be delivered and reproduced because the connection
provides a guaranteed data path of 64 Kbps (thousand bits per second), the rate needed
to send digitized voice. The advantage of connection-oriented networking lies in its
guaranteed capacity: once a circuit is established, no other network activity will de-
crease the capacity of that circuit. One disadvantage of connection-oriented technology
arises from cost: circuit costs are fixed, independent of use. For example, one pays a
fixed rate for a phone call, even when the two parties do not talk.

Connectionless networks, the type often used to connect computers, take an entire-
ly different approach. In a connectionless network, data to be transferred across a net-
work is divided into small pieces called packets that are multiplexed onto high capacity
intermachine connections. A packet, which usually contains only a few hundred bytes
of data, carries identification that enables the network hardware to know how to send it
to the specified destination. For example, a large file to be transmitted between two
machines must be broken into many packets that are sent across the network one at a
time. The network hardware delivers the packets to the specified destination, where
software reassembles them into a single file again. The chief advantage of packet-
switching is that multiple communications among computers can proceed concurrently,
with intermachine connections shared by all pairs of computers that are communicating.
The disadvantage, of course, is that as activity increases, a given pair of communicating
computers receives less of the network capacity. That is, whenever a packet switched
network becomes overloaded, computers using the network must wait before they can
send additional packets.

Despite the potential drawback of not being able to guarantee network capacity,
connectionless networks have become extremely popular. The motivations for adopting
packet switching are cost and performance. Because multiple computers can share the
network bandwidth, fewer connections are required and cost is kept low. Because en-
gineers have been able to build high speed network hardware, capacity is not usually a
problem. So many computer interconnections use connectionless networks that,
throughout the remainder of this text, we will assume the term network refers to a con-
nectionless network unless otherwise stated.

+In fact, it is possible to build hybrid hardware technologies; for our purposes, only the difference in
functionality is important.

Sec. 2.3 Wide Area And Local Area Networks

2.3 Wide Area And Local Area Networks

Data networks that span large geographical distances (e.g., the continental U.S.) are
fundamentally different from those that span short distances (e.g., a single room). To
help characterize the differences in capacity and intended use, packet switched technolo-
gies are often divided into two broad categories: wide area networks (WANs) and Local
Area Networks (LANs). The two categories do not have formal definitions. Instead,
vendors apply the terms loosely to help customers distinguish among technologies.

WAN technologies, sometimes called long had networks, provide communication
over long distances. Most WAN technologies do not limit the distance spanned; a
WAN can allow the endpoints of a communication to be arbitrarily far apart. For ex-
ample, a WAN can span a continent or can join computers across an ocean. Usually,
WANs operate at slower speeds than LANs, and have much greater delay between con-
nections. TypicaI speeds for a WAN range from 1.5 Mbps to 155 Mbps (million bits
per second). Delays across a WAN can vary from a few milliseconds to several tenths
of a secondf.

LAN technologies provide the highest speed connections among computers, but sa-
crifice the ability to span long distances. For example, a typical LAN spans a small
area like a single building or a small campus, and operates between 10 Mbps and 2
Gbps (billion bits per second). Because LAN technologies cover short distances, they

- offer lower delays than WANs. The delay across a LAN can be as short as a few tenths
of a millisecond or as long as 10 milliseconds.

We have already stated the general tradeoff between speed and distance: technolo-
gies that provide higher speed communication operate over shorter distances. There are
other differences among the technologies as well. In LAN technologies, each computer
usually contains a device known as a Network Inter&ace Card (NIC) that connects the
machine directly to the network. The network itself need not contain much intelligence;
it can depend on electronic interface devices in the attached computers to generate and
receive the complex electrical signals. In WAN technologies, a network usually con-
sists of a series of complex computers called packet switches interconnected by long-
distance communication lines. The size of the network can be extended by adding a
new switch and another communication line. Attaching a user's computer to a WAN
means connecting it to one of the packet switches. Each switch along a path in the
WAN introduces delay when it receives a packet and forwards it to the next switch.
Thus, the larger the WAN becomes the longer it takes to route traffic across it.

This book discusses software that hides the technological differences among net-
works and makes interconnection independent of the underlying hardware. To appreci-
ate design choices in the software, it is necessary to understand how it relates to net-
work hardware. The next sections present examples of network technologies that have
been used in the Internet, showing some of the differences among them. Later chapters
show how the TCP/IP software isolates such differences and makes the communication
system independent of the underlying hardware technology.

TSuch long delays result from WANs that communicate by sending signals to a satellite orbiting the
earth.

20 Review Of Underlying Network Technologies Chap. 2

2.3.1 Network Hardware Addresses

Each network hardware technology defines an addressing mechanism that comput-
ers use to specify the destination for a packet. Every computer attached to a network is
assigned a unique address, usually an integer. A packet sent across a network includes
a destination address field that contains the address of the intended recipient. The des-
tination address appears in the same location in all packets, making it possible for the
network hardware to examine the destination address easily. A sender must know the
address of the intended recipient, and must place the recipient's address in the destina-
tion address field of a packet before transmitting the packet.

Each hardware technology specifies how computers are assigned addresses. The
hardware specifies, for example, the number of bits in the address as well as the loca-
tion of the destination address field in a packet. Although some technologies use com-
patible addressing schemes, many do not. This chapter contains a few examples of
hardware addressing schemes; later chapters explain how TCP/IP accommodates diverse
hardware addressing schemes.

2.4 Ethernet Technology

Ethemet is the name given to a popular packet-switched LAN technology invented
at Xerox PARC in the early 1970s. Xerox Corporation, Intel Corporation, and Digital
Equipment Corporation standardized Ethernet in 1978; IEEE released a compatible ver-
sion of the standard using the standard number 802.3. Ethernet has become the most
popular LAN technology; it now appears in virtually all corporate networks as well as
many small installations. Because Ethernet is so popular, many variants exist.
Although the original wiring scheme has been superceded, understanding the original
design helps clarify the intent and some of the design decisions. Thus, we will discuss
the original design fist , and then cover variants.

Formally known as IOBase.5, the original Ethernet design uses a coaxial cable as
Figure 2.1 illustrates.

1R INCH I
OUTER INSULATING JACKET

BRAIDED METAL SHIELD

POLYETHYLENE FlLLER

CENTER WIRE

Figure 2.1 A cross-section of the coaxial cable used in the original Ethernet.

Called the ether, the cable itself is completely passive; all the active electronic
components needed to make the network function are associated with the computers at-
tached to the network. Each Ethemet cable is about 112 inch in diameter and up to 500

Sec. 2.4 Ethernet Technology 21

meters long. A resistor is added between the center wire and shield at each end to
prevent reflection of electrical signals.

The connection between a computer and the original Ethernet coaxial cable re-
quires a hardware device called a transceiver. Physically, the connection between a
transceiver and the inner wire of an Ethernet cable enters through a small hole in the
outer layers of the cable as Figure 2.2 illustrates. Technicians often use the term tap to
describe such connections. Usually, small metal pins mounted in the transceiver go
through the hole and provide electrical contacts to the center wire and the braided
shield. Some manufacturers' connectors require that the cable be cut and a "T" insert-
ed.

CENTER WIRE

METAL SHIELD

-gJ--& . '7; INTERFACE

Figure 2.2 (a) A cutaway view of an Ethernet cable showing the details of
electrical connections between a transceiver and the cable, and (b)
the schematic diagram of an Ethernet with many computers con-
nected.

Each connection to an original Ethernet uses two major electronic components. A
transceiver connects to the center wire and braided shield on the cable, sensing and
sending signals on the ether. A host interface card or host adapter plugs into the
computer's bus (e.g., to a motherboard) and connects to the transceiver.

A transceiver is a small piece of hardware usually found physically adjacent to the
ether. In addition to the analog hardware that senses and controls electrical signals on
the ether, a transceiver contains digital circuitry that allows it to communicate with a di-
gital computer. The transceiver senses when the ether is in use and translates analog
electrical signals on the ether to (and from) digital fornl. A cable called the Attachment
Unit Interface (AUZ) cable connects the transceiver to an adapter board in a host com-

22 Review Of Underlying Network Technologies Chap. 2

puter. Informally called a transceiver cable, the AUI cable contains many wires. The
wires cany the electrical power needed to operate the transceiver, the signals that con-
trol the transceiver operation, and the contents of the packets being sent or received.
Figure 2.3 illustrates how the components form a connection between a bus in a com-
puter system and an Ethernet cable.

ETHERNET

HOST INTERFACE
AUI CABLE ON ADAPTER BOARD

Figure 2.3 The two main electronic components that form a connection
between a computer's bus and an Ethernet in the original scheme.
The AUI cable that connects the host interface to the transceiver
carry power and signals to control transceiver operation as well as
packets being transmitted or received.

Each host interface controls the operation of one transceiver according to instruc-
tions it receives from the computer software. To the operating system software, the in-
terface appears to be an input/output device that accepts basic data transfer instructions
from the computer, controls the transceiver to cany them out, interrupts when the task
has been completed, and reports status information. Although a transceiver is a simple
hardware device, the host interface can be complex (e.g., some interfaces contain a mi-
croprocessor used to control transfers between the computer memory and the ether).

In practice, organizations that use the original Ethernet wiring in a conventional of-
fice environment run the Ethernet cable along the ceiling in each hall, and arrange for a
connection from each office to attach to the cable. Figure 2.4 illustrates the resulting
physical wiring scheme.

Sec. 2.4 Ethernet Technology

ETHERNET CABLE (USUALLY IN CEILING)

A TRANSCEIVERS

I AUI CABLE

COMPUTER A COMPUTER B

Figure 2.4 The physical connection of two computers to an Ethernet using the
original wiring scheme. In an office environment, the Ethernet
cable is usually placed in the hallway ceiling; each office has an
AUI cable that connects a computer in the office to a transceiver
attached to the Ethernet cable.

2.4.1 Thin-Wire Ethernet

Several components of the original Ethernet technology have undesirable proper-
ties. For example, because a transceiver contains electronic components, it has a non-
trivial cost. Furthermore, because transceivers are located with the cable and not with
computers, locating or replacing them is difficult. The coaxial cable that fornls the eth-
er is difficult to install. In particular, to provide maximum protection against electrical
interference from devices like electric motors, the cable contains heavy shielding that
makes it difficult to bend. Finally, the AUI cable is also thick and difficult to bend.

To reduce costs for environments like offices that do not contain much electrical
interference, engineers developed an alternative Ethernet wiring scheme. Fornlally
known as lOBase2 and usually called thin-wire E t h e m t or thinnett, the alternative
coaxial cable is thinner, less expensive, and more flexible. However, thin-wire Ethernet

tTo contrast it with thin-wire, the original Ethernet cable became known as thick Ethernet, or thicknet.

24 Review Of Underlying Network Technologies Chap. 2

has some disadvantages. Because it does not provide as much protection from electrical
interference, thin-wire Ethernet cannot be placed adjacent to powerful electrical equip-
ment like that found in a factory. Furthermore, thin-wire Ethernet covers somewhat
shorter distances and supports fewer computer connections per network than thick Eth-
ernet.

When designing thin-wire Ethernet, engineers replaced costly transceiver hardware
with special high-speed digital circuits, and provided a direct connection from a com-
puter to the network. Thus, in a thin-wire scheme, a computer contains both the host
interface and the circuitry that connects to the cable. Manufacturers of small computers
and workstations find thin-wire Ethernet an especially attractive scheme because they
can integrate Ethernet hardware into single board computers and mount connectors
directly on the back of the computer.

Because a thin-wire Ethernet connects directly from one computer to another, the
wiring scheme works well when many computers occupy a single room. The thin-wire
cable runs directly from one computer to the next. To add a new computer, one only
needs to link it into the chain. Figure 2.5 illustrates the connections used with thin-wire
Ethernet.

THINNET CABLE

COMPUTER A COMPUTER B

Figure 2.5 The physical connection of two computers using the thinnet wiring
scheme. The ether passes directly from one computer to another;
no external transceiver hardware is required.

Thin-wire Ethernets were designed to be easy to connect and disconnect. Thin-
wire uses BNC connectors, which do not require tools to attach a computer to the cable.
Thus, a user can connect a computer to a thin-wire Ethernet without the aid of a techni-
cian. Of course, allowing users to manipulate the ether has disadvantages: if a user
disconnects the ether, it prevents all machines on the ether from communicating. In
many situations, however, the advantages outweigh the disadvantages.

Sec. 2.4 Ethernet Technology

2.4.2 Twisted Pair Ethernet

Advances in technology have made it possible to build Ethernets that do not need
the electrical shielding of a coaxial cable. Called twisted pair Ethernet, the technology
allows a computer to access an Ethernet using conventional unshielded copper wires
similar to the wires used to connect telephones?. The advantages of using twisted pair
wiring are that it further reduces costs and protects other computers on the network
from a user who disconnects a single computer. In some cases, a twisted pair technolo-
gy can make it possible for an organization to use Ethernet over existing wiring; in oth-
ers, the needed wiring (called category 5 cable) is cheaper and easier to install than
coaxial cable.

Fonnally known as 1OBase-T, the first twisted pair Ethernet operated at 10 Mbps,
exactly like thick or thin Ethernet. A set of eight wires (four pairs) is used to connect
each computer to an Ethernet hub as Figure 2.6 shows.

HUB

COMPUTER A COMPUTER B

Figure 2.6 An illustration of Ethernet using twisted pair wiring. Each com-
puter connects to a hub over four pairs of wire.

The hub is an electronic device that simulates the signals on an Ethernet cable.
Physically, a hub consists of a small box that usually resides in a wiring closet; a con-
nection between a hub and a computer must be less than 100 meters long. A hub re-
quires power, and can allow authorized personnel to monitor and control its operation

?The term twisted pair arises because conventional telephone wiring uses the technique of twisting the
wires to avoid interference.

26 Review Of Underlying Network Technologies Chap. 2

over the network. To the host interface in a computer, a connection to a hub appears to
operate the same way as a connection to a transceiver. That is, an Ethernet hub pro-
vides the same communication capability as a thick or thin Ethernet; hubs merely offer
an alternative wiring scheme.

2.4.3 Ethernet Capacity

Although the wiring scheme evolved from the original thick cable to thin cable and
finally to twisted pair, much of the original Ethernet design remained the same. In par-
ticular, the initial twisted pair Ethernet design operates at the same rate as the original
thick Ethernet, which means that data can be transmitted at 10 million bits per second.
Although a computer can generate data at Ethernet speed, raw network speed should not
be thought of as the rate at which two computers can exchange data. Instead, network
speed should be thought of as a measure of total traffic capacity. Think of a network as
a highway connecting multiple cities, and think of packets as cars on the highway.
High bandwidth makes it possible to carry heavy traffic loads, while low bandwidth
means the highway cannot carry as much traffic. A 10 Mbps Ethernet, for example, can
handle a few computers that generate heavy loads, or many computers that generate
light loads.

In the late 1970s when Ethernet was standardized, a LAN operating at 10 Mbps
had more than sufficient capacity for many computers because the available CPU
speeds and network interface hardware prohibited a given computer from transmitting
data rapidly. By the mid 1990s, however, CPU speeds had increased dramatically as
had the use of networks. Consequently, an Ethernet operating at 10 Mbps did not have
sufficient capacity to act as a central corporate backbone for even a moderate sized cor-
poration - Ethernet had become a bottleneck.

2.4.4 Fast Ethernet

To overcome the throughput limitation of Ethernet, engineers designed a new ver-
sion of Ethernet that operates an order of magnitude faster. Known formally as
l0OBase-T, the technology is usually called Fast Ethernet. As the formal name implies,
Fast Ethernet uses category 5 twisted pair wiring, the same wiring used for 10Base-T.
However, through clever use of the wires, Fast Ethernet allows a station to transmit or
receive data at 100 Mbps.

To understand the significance of the increase in capacity, it is important to under-
stand two facts. First, although computers have become faster, few computer systems
can transmit data at a sustained rate of 100 Mbps. Second, the 100Base-T standard did
not change other parts of the Ethernet standard. In particular, the maximum packet size
remains the same as for 10Base-T. These two facts imply that Fast Ethernet is not op-
timized to provide the highest possible throughput between a pair of computers. In-
stead, the design is optimized to allow more stations and more total traffic.

Sec. 2.4 Uhernet Technology

2.4.5 1011 00 Ethernet

Soon after the invention of Fast Ethernet, manufacturers began to build devices
that could accept either a 10 or 100 Mbps connection. The technology, which is known
as dual-speed Ethernet or I0/100 Ethernet, is available for computer interfaces as well
as for hubs. In essence, all 100Base-T hardware interjects extra signals, making it pos-
sible for the hardware at one end of a cable to know which hardware type is connected
to the other end. In fact, as long as all eight wires connect to the FU-45 connector, the
cabling and connectors used with 10Base-T are compatible with the cable and connec-
tors used for 100Base-T.

Although 101100 hardware is slightly more expensive than 10Base-T hardware, it
has become extremely popular. Dual speed devices are especially helpful during a tran-
sition from 10 Mbps technology to 100 Mbps technology. For example, consider a
computer that has a 101100 interface card. If the computer is connected to a 10Base-T
hub, the hardware in the card will automatically detect the speed and communicate at 10
Mbps. If the same computer is then unplugged from the 10Base-T hub and connected
to a 100Base-T hub, the hardware will automatically detect the new speed and begin
transmitting at 100 Mbps. The transition in speed is completely automatic: neither the
software nor the hardware needs to be reconfigured.

2.4.6 Gigabit Ethernet

By the late 1990s, as the market share of 100Base-T Ethemet began to grow, it be-
came obvious that there was a demand for even higher capacity Ethernet. Consequent-
ly, engineers extended the Ethernet technology to a bit rate of 1 Gbps (gigabits per
second). Known as IOOOBase-T, the high throughput rate makes the technology ex-
tremely attractive for use in corporate backbone networks, where traffic from many
computers passes through the network. The high data rate does have a slight disadvan-
tage - it makes gigabit Ethernet more susceptible to electrical interference. Conse-
quently, wiring that operates well with 10Base-T or even 100Base-T may not work well
with 1000Base-T.

Like Fast Ethernet, the design of gigabit Ethernet was optimized for total
throughput. The original packet format and maximum packet size were retained, mak-
ing packets used on 10Base-T, 100Base-T and 1000Base-T networks interchangeable.
Consequently, it is possible to collect traffic from ten 100Base-T Ethernets, each run-
ning at full speed, and pass the traffic across a single 1000Base-T network.

2.4.7 Properties of an Ethernet

Ethernet was designed to be a shared bus technology that supports broadcast, uses
best-effort delivery semantics, and has distributed access control. The topology is
called a shared bus because all stations connect to a single, shared communication
channel; it is called a broudcast technology because all stations receive every transmis-
sion, making it possible to transmit a packet to all stations at the same time. The

28 Review Of Underlying Network Technologies Chap. 2

method used to direct packets from one station to just one other station or a subset of
all stations will be discussed later. For now, it is enough to understand that the lowest
level hardware does not distinguish among transmissions - a hub passes all packets to
each host interface, which chooses packets the computer should receive and filters out
all others. Ethernet is called a best-effort delivery mechanism because the hardware
provides no information to the sender about whether the packet was delivered. For ex-
ample, if the destination machine happens to be powered down, packets sent to it will
be lost, and the sender will not be notified. We will see later how the TCPnP protocols
accommodate best-effort delivery hardware.

Ethernet access control is distributed because, unlike some network technologies,
Ethernet has no central authority to grant access. The Ethernet access scheme is called
Carrier Sense Multiple Access with Collision Detect (CSMAKD). It is CSMA because
multiple machines can access an Ethernet simultaneously and each machine determines
whether the network is idle by sensing whether a carrier wave is present. When a host
interface 'has a packet to transmit, it listens to see if a message is being transmitted (i.e.,
performs carrier sensing). When no transmission is sensed, the host interface starts
transmitting. Each transmission is limited in duration because there is a maximum
packet size. Furthermore, the hardware must observe a minimum idle time between
transmissions, which means that no single pair of communicating machines can use the
network without giving other machines an opportunity for access.

2.4.8 Collision Detection And Recovery

When a station begins transmission, the signal does not reach all parts of the net-
work simultaneously. Instead it travels along copper wires at approximately 70% of the
speed of light. Thus, it is possible for two transceivers to both sense that the network is
idle and begin transmission simultaneously. When the two electrical signals cross they
become scrambled, meaning that neither remains meaningful. Such incidents are called
collisions.

The Ethernet handles collisions in an ingenious fashion. Each station monitors the
cable while it is transmitting to see if a foreign signal interferes with its transmission.
Technically, the monitoring is called collision detection (CD), making the Ethernet a
CSMAJCD network. When a collision is detected, the host interface aborts transmis-
sion, waits for activity to subside, and tries again. Care must be taken or the network
could wind up with all stations busily attempting to transmit and every transmission
producing a collision. To help avoid such situations, Ethernet uses a binary exponential
backoff policy where a sender delays a random time after the first collision, doubles the
range if a second attempt to transmit also produces a collision, quadruples the range if a
third attempt results in a collision, and so on. The motivation for exponential backoff is
that in the unlikely event many stations attempt to transmit simultaneously, a severe
traffic jam could occur. In such a jam, there is a high probability two stations will
choose random backoffs that are close together. Thus, the probability of another colli-
sion is high. By doubling the range of the random delay, the exponential backoff stra-
tegy quickly spreads the stations' attempts to retransmit over a reasonably long period
of time, making the probability of further collisions extremely small.

Sec. 2.4 Ethernet Technology

2.4.9 Ethernet Hardware Addresses

Ethernet defines a 48-bit addressing scheme. Each computer attached to an Ether-
net network is assigned a unique 48-bit number known as its Ethernet address. To as-
sign an address, Ethernet hardware manufacturers purchase blocks of Ethernet ad-
dresses? and assign them in sequence as they manufacture Ethernet interface hardware.
Thus, no two hardware interfaces have the same Ethernet address.

Usually, the Ethernet address is fixed in machine readable form on the host inter-
face hardware. Because each Ethernet address belongs to a hardware device, they are
sometimes called hardware addresses, physical addresses, media access (MAC) ad-
dresses, or layer 2 addresses. Note the following important property of Ethernet physi-
cal addresses:

Physical addresses are associated with the Ethernet integace
hardware; moving the hardware integace to a new machine or re-
placing a hardware integace that has failed changes the machine's
physical address.

Knowing that Ethernet physical addresses can change will make it clear why higher lev-
els of the network software are designed to accommodate such changes.

The host interface hardware examines packets and determines the packets that
should be sent to the host. Recall that each interface receives a copy of every packet
that passes through a hub - even those addressed to other machines. The host inter-
face uses the destination address field in a packet as a filter. The interface ignores those
packets that are addressed to other machines, and passes to the host only those packets
addressed to it. The addressing mechanism and hardware filter are needed to prevent a
computer from being overwhelmed with incoming data. Although the computer's cen-
tral processor could perfornl the check, doing so in the host interface keeps traffic on
the Ethernet from slowing down processing on all computers.

A 48-bit Ethernet address can do more than specify a single destination computer.
An address can be one of three types:

The physical address of one network interface (a unicast address)
The network broadcast address
A multicast address

By convention, the broadcast address (all 1s) is reserved for sending to all stations
simultaneously. Multicast addresses provide a limited f o m ~ of broadcast in which a
subset of the computers on a network agree to listen to a given multicast address. The
set of participating computers is called a multicast group. To join a multicast group, a
computer must instruct its host interface to accept the group's multicast address. The
advantage of multicasting lies in the ability to limit broadcasts: every computer in a
multicast group can be reached with a single packet transmission, but computers that
choose not to participate in a particular multicast group do not receive packets sent to
the group.

tThe Institute for Electrical and Electronic Engineers (IEEE) manages the Ethernet address space and as-
signs addresses as needed.

30 Review Of Underlying Network Technologies Chap. 2

To accommodate broadcast and multicast addressing, Ethernet interface hardware
must recognize more than its physical address. A computer interface usually accepts at
least two kinds of packets: those addressed to the interface's physical (i.e., unicast) ad-
dress and those addressed to the network broadcast address. Some interfaces can be
programmed to recognize multicast addresses or even alternate physical addresses.
When a computer boots, the operating system initializes the Ethernet interface hardware,
giving it a set of addresses to recognize. The interface then examines the destination
address field in each packet, passing on to the computer only those transmissions desig-
nated for one of the specified addresses.

2.4.1 0 Ethernet Frame Format

Ethernet should be thought of as a link-level connection among machines. Thus, it
makes sense to view the data transmitted as a frame?. Ethernet frames are of variable
length, with no frame smaller than 64 octets* or larger than 1518 octets (header, data,
and CRC). As in all packet-switched networks, each Ethernet frame contains a field
that contains the address of its destination. Figure 2.7 shows that the Ethernet frame
format contains the physical source address as well as the destination address.

Destination Source Frame
Preamble Address Address T v ~ e Frame Data CRC

Figure 2.7 The format of a frame (packet) as it travels across an Ethernet pre-
ceded by a preamble. Fields are not drawn to scale.

-.

In addition to identifying the source and destination, each frame transmitted across
the Ethernet contains a preamble, type field, data field, and Cyclic Redundancy Check
(CRC). The preamble consists of 64 bits of alternating 0s and I s to help receiving in-
terfaces synchronize. The 32-bit CRC helps the interface detect transmission errors: the
sender computes the CRC as a function of the data in the frame, and the receiver
recomputes the CRC to verify that the packet has been received intact.

The frame type field contains a 16-bit integer that identifies the type of the data be-
ing carried in the frame. From the Internet point of view, the frame type field is essen-
tial because it means Ethernet frames are self-identzfying. When a frame arrives at a
given machine, the operating system uses the frame type to determine which protocol
software module should process the frame. The chief advantages of self-identifying
frames are that they allow multiple protocols to be used together on a single computer
and they allow multiple protocols to be intermixed on the same physical network
without interference. For example, one could have an application program on a com-
puter using Internet protocols while another application on the same computer uses a lo-
cal experimental protocol. The operating system examines the type field of each aniv-

8 octets

+The termframe derives from communication over serial lines in which the sender "frames" the data by
adding special characters before and after the transmitted data.

$Technically, the term byte refers to a hardwaredependent character size; networking professionals use
the term octet, because it refers to an 8-bit quantity on all computers.

6 octets 4 octets 6 octets 2 octets 46-1 500 octets

Sec. 2.4 Ethernet Technology 31

ing frame to decide how to process the contents. We will see that the TCPDP protocols
use self-identifying Ethernet frames to distinguish among several protocols.

2.4.1 1 Extending An Ethernet With Repeaters

Although the original Ethernet cable had a maximum length, a network could be
extended in two ways: using repeaters and bridges. An electronic device called a re-
peater operates on analog electrical signals. Like a hub in a twisted pair Ethernet, a re-
peater relays all electrical signals from one cable to another. Specifically, in the origi-
nal thick Ethernet wiring scheme, a repeater can be placed between a pair of coaxial ca-
bles to double the total length. However, to preserve the CSMNCD timing, the Ether-
net standard restricts the use of repeaters - at most two repeaters can be placed
between any two machines. Figure 2.8 shows a typical use of repeaters in an office
building. A single cable runs vertically up the building, and a repeater attaches the
backbone to an additional cable on each floor. Computers attach to the cables on each
floor.

2.4.12 Extending An Ethernet With Bridges

Connecting two Ethernets with a bridge is superior to connecting them with a re-
peater or hub because bridges operate on packets rather than electrical signals. In par-
ticular, a bridge does not replicate noise, errors, or malformed frames; the bridge must
receive a completely valid frame from one segment before the bridge will accept and
transmit it on the other segment. Furthemlore, each connection between a bridge and
an Ethernet network follows the CSMNCD rules, so collisions and propagation delays
on one segment remain isolated from those on the other. As a result, an (almost) arbi-
trary number of Ethernets can be connected together with bridges. The important point
is:

Bridges hide the details of interconnection: a set of bridged segments
acts like a single Ethernet.

Bridged networks are classified as transparent because a computer does not know
how many bridges connect segments of the network. The computer uses exactly the
same hardware, frame fom~at, and procedures to communicate with a computer across a
bridge as it uses to communicate with a computer on the local segment.

Most bridges do much more than replicate frames from one wire to another: they
make intelligent decisions about which frames to forward. Such bridges are called
adaptive or learning bridges. An adaptive bridge consists of a computer with two Eth-
ernet interfaces. The software in an adaptive bridge keeps two address lists, one for
each interface. When a frame arrives from Ethernet E,, the adaptive bridge adds the
48-bit Ethernet source address to the list associated with E,. Similarly, when a frame

Review Of Underlying Network Technologies Chap. 2

u
REPEATER

FLOOR 3

FLOOR 2

FLOOR 1

Figure 2.8 Repeaters used to join Ethernet cables in a building. At most two
repeaters can be placed between a pair of communicating
machines.

arrives from Ethernet E,, the bridge adds the source address to the list associated with
E,. Thus, over time the adaptive bridge will learn which machines lie on E, and which
lie on E,.

After recording the source address of a frame, the adaptive bridge uses the destina-
tion address to determine whether to forward the frame. If the address list shows that
the destination lies on the Ethernet from which the frame arrived, the bridge does not
forward the frame. If the destination is not in the address list (i.e., the destination is a
broadcast or multicast address or the bridge has not yet learned the location of the desti-
nation), the bridge forwards the frame to the other Ethernet.

The advantages of adaptive bridges should be obvious. Because the bridge uses
addresses found in normal traffic, it is completely automatic - humans need not con-
figure the bridge with specific addresses. Because it does not forward traffic unneces-
sarily, a bridge helps improve the performance of an overloaded network by isolating
traffic on specific segments. Bridges work exceptionally well if a network can be divid-
ed physically into two segments that each contain a set of computers that communicate
frequently (e.g., each segment contains a set of workstations along with a server, and
the workstations direct most of their traffic to the server). To summarize:

Sec. 2.4 Ethemet Technology

An adaptive Ethernet bridge connects two Ethernet segments, for-
warding frames from one to the other. It uses source addresses to
learn which machines lie on which Ethernet segment, and it combines
information learned with destination addresses to eliminate forward-
ing when unnecessary.

From the TCPIIP point of view, bridged Ethernets are merely another form of physical
network connection. The important point is:

Because the connection among physical cables provided by bridges
and repeaters is transparent to machines using the Ethernet, we think
of multiple Ethernet segments connected by bridges and repeaters as a
single physical network system.

Most commercial bridges are much more sophisticated and robust than our descrip-
tion indicates. When first powered up, they check for other bridges and learn the topol-
ogy of the network. They use a distributed spanning-tree algorithm to decide how to
forward frames. In particular, the bridges decide how to propagate broadcast packets so
only one copy of a broadcast frame is delivered to each wire. Without such an algo-
rithm, Ethemets and bridges connected in a cycle would produce catastrophic results be-
cause they would forward broadcast packets in both directions simultaneously.

2.5 Fiber Distributed Data Interconnect (FDDI)

FDDI is another popular local area networking technology that provides a data rate
of 100 Mbps (i.e., the same data rate as Fast Ethemet). Unlike Ethernet and other LAN
technologies that use copper cables to carry electrical signals, FDDI is designed to use
optical fiber. Data is encoded in pulses of light?.

Optical fiber has two advantages over copper wire. First, because electrical noise
does not interfere with an optical connection, the fiber can lie adjacent to powerful
electrical devices. Second, because optical fibers use light, the amount of data that can
be sent per unit time is much higher than cables that carry electrical signals.

It might seem that glass fibers would be difficult to install and would break if bent.
However, an optical cable is surprisingly flexible. The glass fiber itself has an extreme-
ly small diameter, and the cable includes a plastic jacket that protects the fiber from
breaking. Such a cable cannot bend at a ninety degree angle, but it can bend in an arc
with a diameter of a few inches. Thus, installation is not difficult.

tA related technology known as Copper Distributed Data Interface (CDDI) works like FDDI, but uses
copper cables to carry signals.

34 Review Of Underlying Network Technologies Chap. 2

2.5.1 Properties Of An FDDI Network

An FDDI network is a 100 Mbps shared token passing ring technology with a
self-healing capability. An FDDI network is shared because multiple computers con-
nect to a given network and take turns sending packets. FDDI is known as a ring be-
cause the network forms a cycle that starts at one computer, passes through all others
computers, and ends back at the source. FDDI is a token passing ring (or simply a to-
ken ring) technology because it uses token passing to control transmission. When the
network is idle, a special, reserved frame called a token circulates around the ring from
station to station. When a station has a packet to send, it waits for the token to arrive,
sends its packet, and then passes the token to the next station. The circulating token
guarantees fairness: it ensures that all stations have an opportunity to send a packet be-
fore any station sends a second packet. -

Perhaps the most interesting property of an FDDI lies in its ability to detect and
correct problems. The network is called self-healing because the hardware can automat-
ically accommodate a failure.

2.5.2 Dual Counter-Rotating Rings

To provide automatic recovery from failures, FDDI hardware uses two independent
rings that both connect to each computer. Figure 2.9 illustrates the topology.

FDDI RING NETWORK l i t 1

Figure 2.9 An FDDI network with optical fibers interconnecting six comput-
ers. Arrows show the direction of traffic on the fibers and
through the attached computers.

FDDI rings are called counter rotating because traffic passes in the opposite direc-
tion on each ring. The reason for using a counter rotating scheme will become clear
when we consider how FDDI handles failures.

Unless an error has occurred, an FDDI hardware does not need both rings. In fact,
an FDDI interface behaves like any token passing network interface until an error oc-
curs. The interface examines all packets that circulate around the ring, comparing the

Sec. 2.5 Fiber Distributed Data Interconnect (FDDI) 35

destination address in each packet to the computer's address. The interface keeps a
copy of any packet destined for the local computer, but also forwards the packet around
the ring.

When a computer needs to transmit a packet, it waits for the token to arrive, tem-
porarily stops forwarding bits, and sends its packet. After sending one packet, the inter-
face transmits the token, and begins forwarding bits again. Even if a station has more
than one packet ready to be sent when it receives the token, the station only sends one
packet before passing the token.

FDDI hardware becomes more interesting when a hardware error occurs. When an
interface detects that it cannot communicate with the adjacent computer, the interface
uses the backup ring to bypass the failure. For example, Figure 2.10 shows an FDDI
ring in which an interface has failed, and the two adjacent interfaces have eliminated it
from the ring.

STATION IMPLEMENTING
LOOPBACK

STATION THAT
HAS FAILED

.

FDDI RING NETWORK fi

Figure 2.10 An FDDI ring after a failure. When FDDI hardware detects such
a failure, it uses the second ring to bypass the failure and allows
remaining stations to communicate.

The purpose of the second ring and the reason data flows in the opposite direction
should now be clear: a failure can mean that the fiber has been disconnected (e.g., ac-
cidentally cut). If the fiber from both rings follows the same physical path, chances are
high that the second fiber may have been disconnected as well. FDDI hardware au-
tomatically uses the counter rotating ring to form a closed loop in the direction that is
still working. Doing so permits the other computers to continue communication despite
the failure.

36 Review Of Underlying Network Technologies Chap. 2

When FDDI hardware detects a failure on the network, it automati-
cally loops data across the backup ring to permit communication
among remaining stations.

2.5.3 FDDI Frame Format

FDDI standards specify the exact format of frames used on the network. The table
in Figure 2.1 1 lists fields in an FDDI frame.

Field

PA
SD
FC
DA
SA
RI
DATA
FCS
ED
FS

Length in
4-bit units
4 or more

2
2

4or 12
4or 12
0 to 60
0 or more

8
1

3 or more

Contents

Preamble
Start Delimiter
Frame Control
Destination Address
Source Address
Routing Information
Data
Frame Check Sequence
End Delimiter
Frame Status

Figure 2.11 The format of frames used by FDDI, with fields measured in 4-
bit units called symbols. The maximum frame length is 9000
symbols.

Like other technologies, each computer attached to an FDDI network is assigned
an address, and each frame contains a destination address field. However, to make
FDDI more flexible and to provide a standard way to interconnect two FDDI rings, the
designers allowed more than one frame format. For example, the destination address
field is either 4 or 12 symbols long, where a symbol is a 4-bit unit. The frame also in-
cludes a field used for routing. The sender can use the routing field to specify that a
frame must be sent first to a connection point and then on to a destination on an at-
tached ring.

One of the advantages of FDDI arises from its large frame size. Because a frame
can contain 9000 4-bit symbols, the total frame can be 4500 octets long. Because
header information occupies at most a few hundred octets, a single frame can carry 4K
octets of user data. For applications that transfer large volumes of data (e.g., file
transfer), the large frame size means less overhead and consequently high throughput.

Sec. 2.6 Asynchronous Transfer Mode 37

2.6 Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) is the name given to a connection-oriented
networking technology that is intended for use in both local area and wide area net-
works. ATM is designed to permit extremely high speed data switching; the fastest
ATM hardware can switch data at gigabit speeds?. Of course, such high speeds require
complex, state-of-the-art hardware. As a result, ATM networks are more expensive
than other technologies.

To achieve high transfer speeds, an ATM network uses special-purpose hardware
and software techniques. First, an ATM network consists of one or more high-speed
switches that each connect to computers and to other ATM switches. Second, ATM
uses optical fibers for connections, including connections from a user's computer to an
ATM switch. Optical fibers provide a higher transfer rate than copper wires; typically,
the connection between a user's computer and an ATM switch operates at 155 Mbps.
Third, the lowest layers of an ATM network use fixed-size frames called cells. Because
each cell is exactly the same size, ATM switch hardware can process cells quickly.

2.6.1 ATM Cell Size

Surprisingly, each ATM cell is only 53 octets long. The cell contains 5 octets of
header followed by 48 octets of data. Later chapters will show, however, that when us-
ing ATM to send IP traffic, the 53 octet size is irrelevant - an ATM network accepts
and delivers much larger packets.

2.6.2 Connection-Oriented Networking

ATM differs from the packet-switching networks described earlier because it offers
connection-oriented service. Before a computer connected to an ATM switch can send
cells, a connection must be established manually or the host must first interact with the
switch to specify a destination. The interaction is analogous to placing a telephone
call$. The requesting computer specifies the remote computer's address, and waits for
the ATM switch to find a path through the network and establish a connection. If the
remote computer rejects the request, does not respond, or the ATM switches between
the sender and receiver cannot currently establish a path, the request to establish com-
munication fails.

Once a connection succeeds, the local ATM switch chooses an identifier for the
connection, and passes the connection identifier to the computer along with a message
that informs the computer of success. The computer uses the connection identifier
when sending or receiving cells.

When it finishes using a connection, the computer again communicates with the
ATM switch to request that the connection be broken. The switch then disconnects the
two computers. Disconnection is equivalent to hanging up a telephone at the end of a
telephone call; after a disconnection, the computers cannot communicate until they es-

tMost computers cannot generate or absorb data at gigabit rates; ATM networks operate at gigabit speed
to handle the MIC from many computers.

$Because ATM was designed to carry voice as well as data, there is a strong relationship between an
ATM network and a telephone system.

38 Review Of Underlying Network Technologies Chap. 2

tablish a new connection. Furthermore, identifiers used for a connection can be recy-
cled; once a disconnection occurs, the switch can reuse the connection identifier for a
new connection.

2.7 WAN Technologies: ARPANET

We will see that wide area networks have important consequences for internet ad-
dressing and routing. The technologies discussed in the remainder of this chapter were
selected because they figure prominently in both the history of the Internet and later ex-
amples in the text.

One of the oldest wide area technologies, the ARPANET, was funded by ARPA,
the Advanced Research Projects Agency. ARPA awarded a contract for the develop-
ment of the ARPANET to Bolt, Beranek and Newman of Cambridge, MA in the fall of
1968. By September 1969, the first pieces of the ARPANET were in place.

The ARPANET served as a testbed for much of the research in packet-switching.
In addition to its use for network research, researchers in several universities, military
bases, and government labs regularly used the ARPANET to exchange files and elec-
tronic mail and to provide remote login among their sites. In 1975, control of the net-
work was transferred from ARPA to the U.S. Defense Communications Agency (DCA).
The DCA made the ARPANET part of the Defense Data Network @DN), a program
that provides multiple networks as part of a world-wide communication system for the
Department of Defense.

In 1983, the Department of Defense partitioned the ARPANET into two connected
networks, leaving the ARPANET for experimental research and forming the MILNET
for military use. MILNET was restricted to unclassified data because it was not con-
sidered secure. Although under normal circumstances, both ARPANET and MILNET
agreed to pass traffic to each other, controls were established that allowed them to be
disconnected?. Because the ARPANET and MILNET used the same hardware technol-
ogy, our description of the technical details apply to both. In fact, the technology was
also available commercially and was used by several corporations to establish private
packet switching networks.

Because the ARPANET was already in place and used d i l y by many of the
researchers who developed the Internet architecture, it had a profound effect on their
work. They came to think of the ARPANET as a dependable wide area backbone
around which the Internet could be built. The influence of a single, central wide area
backbone is still painfully obvious in some of the Internet protocols that we will discuss
later, and has prevented the Internet from accommodating additional backbone networks
gracefully.

Physically, the ARPANET consisted of approximately 50 BBN Corporation C30
and C300 minicomputers, called Packet Switching Nodes or PSNs$ scattered across the
continental U.S. and western Europe; MILNET contained approximately 160 PSNs, in-
cluding 34 in Europe and 18 in the Pacific and Far East. One PSN resided at each site
participating in the network and was dedicated to the task of switching packets; it could

tPerhaps the best known example of disconnection occurred in November 1988 when a worm program
attacked the Internet and replicated itself as quickly as possible.

.$PSNs were initially called Inregace Message Processors or IMPS; some publications still use the term
IMP as a synonym for packet switch.

Sec. 2.7 WAN Technologies: ARPANET 39

not be used for general-purpose computation. Indeed, each PSN was considered to be
part of the ARPANET, and was owned and controlled by the Network Operations
Center (NOC) located at BBN in Cambridge, Massachusetts.

Point-to-point data circuits leased from common carriers connected the PSNs to-
gether to form a network. For example, leased data circuits connected the ARPANET
PSN at Purdue University to the ARPANET PSNs at Camegie Mellon and at the
University of Wisconsin. Initially, most of the leased data circuits in the ARPANET
operated at 56 Kbps, a speed considered fast in 1968 but extremely slow by current
standards. Remember to think of the network speed as a measure of capacity rather
than a measure of the time it takes to deliver packets. As more computers used the AR-
PANET, capacity was increased to accommodate the load. For example, during the fi-
nal year the ARPANET existed, many of the cross-country links operated over
megabit-speed channels.

The idea of having no single point of failure in a system is common in military ap-
plications because reliability is important. When building the ARPANET, ARPA decid-
ed to follow the military requirements for reliability, so they mandated that each PSN
had to have at least two leased line connections to other PSNs, and the software had to
automatically adapt to failures and choose alternate routes. As a result, the ARPANET
continued to operate even if one of its data circuits failed.

In addition to connections for leased data circuits, each ARPANET PSN had up to
22 ports that connected it to user computers, called hosts. Originally, each computer
that accessed the ARPANET connected directly to one of the ports on a PSN. Nornlal-
ly, host connections were formed with a special-purpose interface board that plugged
into the computer's YO bus.

The original PSN port hardware used a complex protocol for transfemng data
across the ARPANET. Known as 1822, after the number of a technical report that
described it, the protocol permitted a host to send a packet across the ARPANET to a
specified destination PSN and a specified port on that PSN. Perfomung the transfer
was complicated, however, because 1822 offered reliable, flow-controlled delivery. To
prevent a given host from saturating the net, 1822 limited the number of packets that
could be in transit. To guarantee that each packet arrived at its destination, 1822 forced
the sender to await a Ready For Next Message (RFNM) signal from the PSN before
transmitting each packet. The RFNM acted as an acknowledgement. It included a
buffer reservation scheme that required the sender to reserve a buffer at the destination
PSN before sending a packet.

Although there are many aspects not discussed here, the key idea is that underneath
all the detail, the ARPANET was merely a transfer mechanism. When a computer con-
nected to one port sent a packet to another port, the data delivered was exactly the data
sent. Because the ARPANET did not provide a network-specific frame header, packets
sent across it did not have a fixed field to specify packet type. Thus, unlike some net-
work technologies, the ARPANET did not deliver self-identifying packets. In sum-
mary:

40 Review Of Underlying Network Technologies Chap. 2

Networks such as the ARPANET or an ATM network do not have
self-identifying frames. The attached computers must agree on the for-
mat and contents of packets sent or received to a specific destination.

Unfortunately, 1822 was never an industry standard. Because few vendors
manufactured 1822 interface boards, it became difficult to connect new machines to the
ARPANET. To solve the problem, ARPA later revised the PSN interface to use the
X.25 standard?. The first version of an X.25 PSN implementation used only the data
transfer part of the X.25 standard (known as HDLCILAPB), but later versions made it
possible to use all of X.25 when connecting to a PSN (i.e., ARPANET appeared to be
an X.25 network).

Internally, of course, the ARPANET used its own set of protocols that were invisi-
ble to users. For example, there was a special protocol that allowed one PSN to request
status from another, a protocol that PSNs used to send packets among themselves, and
one that allowed PSNs to exchange information about link status and optimal routes.

Because the ARPANET was originally built as a single, independent network to be
used for research, its protocols and addressing structure were designed without much
thought given to expansion. By the mid 1970's, it became apparent no single network
would solve all communication problems, and ARPA began to investigate satellite and
packet radio network technologies. This experience with a variety of network technolo-
gies led to the concept of an internetwork.

2.7.1 ARPANET Addressing

While the details of ARPANET addressing are unimportant, they illustrate an alter-
native way in which wide area networks form physical addresses. Unlike the $at ad-
dress schemes used by LAN technologies, wide area networks usually embed informa-
tion in the address that helps the network route packets to their destination efficiently.
In the ARPANET technology, each packet switch is assigned a unique integer, P, and
each host port on the switch is numbered from 0 to N-I. Conceptually, a destination
address consists of a pair of small integers, (P, N). In practice, the hardware uses a sin-
gle, large integer address, with some bits of the address used to represent N and others
used to represent P.

2.8 National Science Foundation Networking

Realizing that data communication would soon be crucial to scientific research, in
1987 the National Science Foundation established a Division of Network and Communi-
cations Research and Infrastructure to help ensure that requisite network communica-
tions will be available for U.S. scientists and engineers. Although the division funds
basic research in networking, its emphasis so far has been concentrated on providing
seed funds to build extensions to the Internet.

tX.25 was standardized by the Consultative Committee on International Telephone and Telegraph
(C C I W , which later became the Telecommunication Section of the Inremrional Telecommunication Union
(ITu).

Sec. 2.8 National Science Foundation Networking 4 1

NSF's Internet extensions introduced a three-level hierarchy consisting of a U.S.
backbone, a set of "mid-level" or "regional" networks that each span a small geo-
graphic area, and a set of "campus" or "access" networks. In the NSF model, mid-
level networks attach to the backbone and campus networks attach to the mid-level nets.
Each researcher had a connection from their computer to the local campus network.
They used that single connection to communicate with local researchers' computers
across the local campus net, and with other researchers further away. The campus net-
work routed traffic across local nets to one of the mid-level networks, which routed it
across the backbone as needed.

2.8.1 The Original NSFNET Backbone

Of all the NSF-funded networks, the NSFNET backbone has the most interesting
history and used the most interesting technology. The backbone evolved in four major
steps; it increased in size and capacity at the time the ARPANET declined until it be-
came the dominant backbone in the Internet. The first version was built quickly, as a
temporary measure. One early justification for the backbone was to provide scientists
with access to NSF supercomputers. As a result, the first backbone consisted of six Di-
gital Equipment Corporation LSI-ll microcomputers located at the existing NSF super-
computer centers. Geographically, the backbone spanned the continental United States
from Princeton, NJ to San Diego, CA, using 56 Kbps leased lines as Figure 2.12 shows.

At each site, the LSI-11 microcomputer ran software affectionately known as fuzz-
ball? code. Developed by Dave Mills, each fuzzball accessed computers at the local
supercomputer center using a conventional Ethernet interface; it accessed leased lines
leading to fuzzballs at other supercomputer centers using conventional link-level proto-
cols over leased serial lines. Fuzzballs contained tables with addresses of possible des-
tinations and used those tables to direct each incoming packet toward its destination.

The primary connection between the original NSFNET backbone and the rest of
the Internet was located at Carnegie Mellon, which had both an NSFNET backbone
node and an ARPANET PSN. When a user, connected to NSFNET, sent traffic to a
site on the ARPANET, the packets would travel across the NSFNET to CMU where the
fuzzball would route them onto the ARPANET via a local Ethernet. Similarly, the
fuzzball understood that packets destined for NSFNET sites should be accepted from
the Ethernet and sent across the NSF backbone to the appropriate site.

?The exact origin of the term "fuzzball" is unclear.

42 Review Of Underlying Network Technologies Chap. 2

Figure 2.12 Circuits in the original NSFNET backbone with sites in (1) San
Diego, CA; (2) Boulder, CO; (3) Champaign, IL; (4) Pittsburgh,
PA; (5) Ithaca, NY; and (6) Princeton, NJ.

2.8.2 The Second NSFNET Backbone 1988-1 989

Although users were excited about the possibilities of computer communication,
the transmission and switching capacities of the original backbone were too small to
provide adequate service. Within months after its inception, the backbone became over-
loaded and its inventor worked to engineer quick solutions for the most pressing prob-
lems, while NSF began the arduous process of planning for a second backbone.

In 1987, NSF issued a request for proposals from groups that were interested in es-
tablishing and operating a new, higher-speed backbone. Proposals were submitted in
August of 1987 and evaluated that fall. On November 24, 1987 NSF announced it had
selected a proposal submitted by a partnership of: MERIT Inc., the statewide computer
network run out of the University of Michigan in Ann Arbor; IBM Corporation; and
MCI Incorporated. The partners proposed to build a second backbone network, estab-
lish a network operation and control center in Ann Arbor, and have the system opera-
tional by the following summer. Because NSF had funded the creation of several new
mid-level networks, the proposed backbone was designed to serve more sites than the
original. Each additional site would provide a connection between the backbone and
one of the NSF mid-level networks.

Sec. 2.8 National Science Foundation Networking 43

The easiest way to envision the division of labor among the three groups is to as-
sume that MERIT was in charge of planning, establishing, and operating the network
center. IBM contributed machines and manpower from its research labs to help MERIT
develop, configure, and test needed hardware and software. MCI, a long-distance car-
rier, provided the communication bandwidth using the optical fiber already in place for
its voice network. Of course, in practice there was close cooperation between all
groups, including joint study projects and representatives from IBM and MCI in the
project management.

By the middle of the summer of 1988, the hardware was in place and NSFNET be-
gan to use the second backbone. Shortly thereafter, the original backbone was shut
down and disconnected. Figure 2.13 shows the logical topology of the second back-
bone after it was installed in 1988.

g NSF Mid-level network
0 NSF supercomputer center -
@ both

Figure 2.13 Logical circuits in the second NSFNET backbone from summer
1988 to summer 1989.

The technology chosen for the second NSFNET backbone was interesting. In
essence, the backbone was a wide area network composed of packet routers intercon-
nected by communication lines. As with the original backbone, the packet switch at
each site connected to the site's local Ethernet as well as to communication lines lead-
ing to other sites.

44 Review Of Underlying Network Technologies Chap. 2

2.8.3 NSFNET Backbone 1989-1 990

After measuring traffic on the second NSFNET backbone for a year, the operations
center reconfigured the network by adding some circuits and deleting others. In addi-
tion, they increased the speed of circuits to DS-1 (1.544 Mbps). Figure 2.14 shows the
revised connection topology, which provided redundant connections to all sites.

@ NSF Mid-level network
0 NSF supercomputer center
@ both - v

Figure 2.14 Circuits in the second NSFNET backbone from summer 1989 to
1990.

2.9 ANSNET

By 1991, NSF and other U.S. government agencies began to realize that the Inter-
net was growing beyond its original academic and scientific domain. Companies
around the world began to connect to the Internet, and nonresearch uses increased rapid-
ly. Traffic on NSFNET had grown to almost one billion packets per day, and the 1.5
Mbps capacity was becoming insufficient for several of the circuits. A higher capacity
backbone was needed. As a result, the U.S. government began a policy of cornmerciali-
zation and privatization. NSF decided to move the backbone to a private company and
to charge institutions for connections.

Responding to the new government policy in December of 1991, IBM, MERIT,
and MCI formed a not-for-profit company named Advanced Networks and Services
(ANS). ANS proposed to build a new, higher speed Internet backbone. Unlike previous

Sec. 2.9 ANSNET 45

wide area networks used in the Internet which had all been owned by the U.S. govern-
ment, ANS would own the new backbone. By 1993, ANS had installed a new network
that replaced NSFNET. Called ANSNET, the backbone consisted of data circuits operat-
ing at 45 Mbpst, giving it approximately 30 times more capacity than the previous
NSFNET backbone. Figure 2.15 shows major circuits in ANSNET and a few of the
sites connected in 1994. Each point of presence represents a location to which many
sites connect.

Figure 2.15 Circuits in ANSNET, the backbone of the U.S. Internet starting
in 1993. Each circuit operates at 45 Mbps.

2.1 0 A Very High Speed Backbone (vBNS)

In 1995, NSF awarded MCI a contract to build a backbone operating at 155 Mbps
(OC3 speed) to replace ANSNET. Called the vely high speed Backbone Network Ser-
vice (vBNS), the new backbone offered a substantial increase in capacity, and required
higher speed processors to route packets.

2.10.1 Commercial Internet Backbones

Since 1995, the Internet has become increasingly commercial, with the percentage
of funding from the U.S. government steadily decreasing. Although vBNS still exists, it
is now devoted to networking research. In its place, commercial companies have creat-
ed large privately-funded backbones that carry Internet traffic. For example, public car-

tTelecommunication camers use the term DS3 to denote a circuit that operates at 45 Mbps; the term is
often confused with T3, which denotes a specific encoding used over a circuit operating at DS3 speed.

46 Review Of Underlying Network Technologies Chap. 2

riers like AT&T and MCI have each created large, high-capacity backbone networks
used to cany Internet traffic from their customers. As discussed later, commercial
backbones are interconnected through peering arrangements, making it possible for a
customer of one company to send packets to a customer of another.

2.11 Other Technologies Over Which TCPIIP Has Been Used

One of the major strengths of TCPIIP lies in the variety of physical networking
technologies over which it can be used. We have already discussed several widely used
technologies, including local area and wide area networks. This section briefly reviews
others that help illustrate an important principle:

Much of the success of the T C P m protocols lies in their ability to ac-
commodate almost any underlying communication technology.

2.1 1.1 X25NET And Tunnels

In 1980, NSF formed the Computer Science NETwork (CSNET) organization to
help provide Internet services to industry and small schools. CSNET used several tech-
nologies to connect its subscribers to the Internet, including one called X25NET. Origi-
nally developed at Purdue University, X25NET ran TCPOP protocols over Public Data
Networks (PDNs). The motivation for building such a network arose from the econom-
ics of telecommunications: although leased serial lines were expensive, common carriers
had begun to offer public packet-switched services. X25NET was designed to allow a
site to use its connection to a public packet-switched service to send and receive Inter-
net traffic.

Readers who know about public packet-switched networks may find X25NET
strange because public services use the CCITT X.25 protocols exclusively while the In-
ternet uses TCP/IP protocols. Unlike most packet switching hardware, X.25 protocols
use a connection-oriented paradigm; like ATM, they were designed to provide
comection-oriented service to individual applications. Thus, the use of X.25 to tran-
sport TCPILP traffic foreshadowed the ways TCP/IP would later be transferred across
ATM.

We have already stated that many underlying technologies can be used to cany In-
ternet traffic, and X25NET illustrates how TCPW has been adapted to use high level
facilities. The technique, sometimes called tunneling, simply means that TCPIIP treats
a complex network system with its own protocols like any other hardware delivery sys-
tem. To send TCPnP traffic through an X.25 tunnel, a computer forms an X.25 connec-
tion and then sends TCPnP packets as if they were data. The X.25 system carries the
packets along its connection and delivers them to another X.25 endpoint, where they
must be picked up and forwarded on to their ultimate destination. Because tunneling
treats IP packets like data, the tunnel does not provide for self-identifying frames.

Sec. 2.1 1 Other Technologies Over Which TCP/IP Has Been Used 47

Thus, tunneling only works when both ends of the X.25 connection agree a priori that
they will exchange IP packets (or agree on a format for encoding type information
along with each packet).

Its connection-oriented interface makes X.25 even more unusual. Unlike connec-
tionless networks, connection-oriented systems use a virtual circuit (VC) abstraction.
Before data can be sent, switches in the network must set up a VC (i.e., a "path")
between the sender and the receiver. We said that the Internet protocols were optimized
to run over a connectionless packet delivery system, which means that extra effort is re-
quired to run them over a connection-oriented network.

In theory, a single connection suffices for a tunnel through a connection-oriented
network - after a pair of computers has established a VC, that pair can exchange
TCP/IP traffic. In practice, however, the design of the protocols used on the
connection-oriented system can make a single connection inefficient. For example, be-
cause X.25 protocols limit the number of packets that can be sent on a connection be-
fore an acknowledgement is received, such networks exhibit substantially better
throughput when data is sent across multiple connections simultaneously. Thus, instead
of opening a single connection to a given destination, X25NET improved performance
by arranging for a sender to open multiple VCs and distribute traffic among them. A
receiver must accept packets arriving on all connections, and combine them together
again.

Tunneling across a high-level network such as X.25 requires mapping between the
addresses used by the internet and addresses used by the network. For example, consid-
er the addressing scheme used by X.25 networks, which is given in a related standard
known as X.121. Physical addresses each consist of a 14-digit number, with 10 digits
assigned by the vendor that supplies the X.25 network service. Resembling telephone
numbers, one popular vendor's assignment includes an area code based on geographic
location. The addressing scheme is not surprising because it comes from an organiza-
tion that determines international telephone standards. There is no mathematical rela-
tionship between such addresses and the addresses used by TCP/IP. Thus, a computer
that tunnels TCP/IP data across an X.25 network must maintain a table of mappings
between internet addresses and X.25 network addresses. Chapter 5 discusses the ad-
dress mapping problem in detail and gives an alternative to using fixed tables. Chapter
18 shows that exactly the same problem arises for ATM networks, which use yet anoth-
er alternative.

Because public X.25 networks operated independently of the Internet, a point of
contact was needed between the two. Both ARPA and CSNET operated dedicated
machines that provided the interconnection between X.25 and the ARPANET. The pri-
mary interconnection was known as the VAN gateway. The VAN agreed to accept X.25
connections and route each datagram that arrived over such a connection to its destina-
tion.

X25NET was significant because it illustrated the flexibility and adaptability of the
TCP/IP protocols. In particular, it showed that tunneling makes it possible to use an ex-
tremely wide range of complex network technologies in an internet.

48 Review Of Underlying Network Technologies Chap. 2

2.1 1.2 Point-To-Point Networks

We said that Wide Area Networks are usually composed of dedicated packet
switches interconnected by data circuits leased from a telephone company. Phone com-
panies originally designed such circuits to carry digitized voice calls; only later did their
use in data networks become important. Consequently, the data rates of available cir-
cuits are not powers of ten. Instead, they have been chosen to carry multiples of 64
Kbps because a digitized voice call uses an encoding known as Pulse Code Modulation
(PCM), which produces 8000 samples per second, where each sample is 8 bits.

The table in Figure 2.16 lists a few common data rates used in North America and
Europe.

Name Bit Rate Voice Circuits Location
- 0.064 Mbps 1
T I 1.544 Mbps 24 North America
T2 6.312 Mbps 96 North America
T3 44.736 Mbps 672 North America
E l 2.048 Mbps 30 Europe
E2 8.448 Mbps 120 Europe
E3 34.368 Mbps 480 Europe

Figure 2.16 Example data rates available on digital circuits leased from a
telephone company. The rates were chosen to encode multiple
voice calls.

Higher rate digital circuits are also available. In addition to standards that specify
the transmission of high data rates over copper, the phone companies have developed
standards for transmission of the same rates over optical fiber. The table in Figure 2.17
contains examples. Of course, circuits that operate at such high data rates are consider-
ably more expensive than circuits that operate at lower rates.

Standard Name Optical Name Bit Rate Voice Circuits
STS-1 OC-1 51.840 Mbps 81 0
STS-3 OC-3 155.520 Mbps 2430
STS-12 OC-12 622.080 Mbps 9720
STS-24 OC-24 1,244.1 60 Mbps 19440
STS-48 OC-48 2,488.320 Mbps 38880

Figure 2.17 Example data rates of high-capacity circuits that can be leased
from phone companies. Optical fiber is used to achieve such
high rates over long distances.

Sec. 2.11 Other Technologies Over Which TCPAP Has Been Used 49

From TCPhP's point of view, any communication system that connects exactly
two computers is known as a point-to-point network. Thus, a leased data circuit
between two computers is an example of a point-to-point network. Of course, using the
term "network" to describe a connection between two computers stretches the concept.
However, we will learn that viewing a connection as a network helps maintain con-
sistency. For now, we only need to note that a point-to-point network differs from con-
ventional networks in one significant way: because only two computers attach, no
hardware addresses are used. When we discuss internet address binding, the lack of
hardware addresses will make point-to-point networks an exception.

Another interesting use of TCPhP pioneered by CSNET involves running TCPAP
protocols over the dial-up voice network (i.e., the telephone system). CSNET member
sites that used the Internet infrequently could not justify the cost of a leased line con-
nection. For such sites, CSNET developed a dial-up IF' system that worked as expected:
whenever a connection was needed, software at the member's site used a modem to
form a connection to the CSNET hub over the voice telephone network. A computer at
the hub answered the phone call and, after obtaining valid authorization, began to for-
ward traffic between the site and other computers on the Internet. Dialing introduced a
delay after the first packet was sent. However, for automated services like electronic
mail, the delay was unnoticeable.

Dialup internet access provides another example of a point-to-point network. From
the TCP/IP view, dialing a telephone call is equivalent to running a wire. Once the call
has been answered by a modem on the other end, there is a connection from one com-
puter directly to another, and the connection stays in place as long as needed.

2.1 1.4 Other Token Ring Technologies

FDDI is not the first token ring network technology; token ring products have ex-
isted for nearly twenty years. For example, IBM produces a popular token ring LAN
technology. Early versions of the IBM token ring operated at 4 Mbps; later versions
operate at 16 Mbps. Like other token ring systems, an IBM token ring network consists
of a loop that attaches to all computers. A station must wait for a token before
transmitting, and sends the token along after transferring a packet.

An older token ring technology designed by Proteon Corporation employs a novel
hardware addressing scheme that will be used in a later chapter to illustrate one of the
ways TCP/IP uses hardware addresses. Called a proNET network, the technology per-
mits customers to choose a hardware address for each computer. Unlike an Ethernet, in
which each interface board contains a unique address assigned by the manufacturer, a
proNET interface board contains eight switches that must be set before the interface is
installed in a computer. The switches form a number in binary between 0 and 255, in-
clusive. A given proNET network could have at most 254 computers attached because
address 255 was reserved for broadcast and address 0 was not used. When first instal-

50 Review Of Underlying Network Technologies Chap. 2

ling a proNET network, a network administrator chose a unique address for each com-
puter. Typically, addresses were assigned sequentially, starting with 1.

A technology that permits customers to assign hardware addresses has advantages
and disadvantages. The chief disadvantage arises from the potential for problems that
occur if a network administrator accidentally assigns the same address to two comput-
ers. The chief advantage arises from ease of maintenance: if an interface board fails, it
can be replaced without changing the computer's hardware address.

2.1 1.5 Wireless Network Technologies

One of the most interesting ARPA experiments in packet switching resulted in a
packet radio technology that uses broadcast radio waves to carry packets. Designed for
a military environment in which stations might be mobile, packet radio includes
hardware and software that allow sites to find other sites, establish point-to-point com-
munication, and then use the point-to-point cornmunication to carry packets. Because
sites change geographic location and may move out of cornmunication range, the sys-
tem must constantly monitor connectivity and recompute routes to reflect changes in to-
pology. An operational packet radio system was built and used to demonstrate TCPJIP
communication between a remote packet radio site and other sites on the Internet.

In recent years, a wide variety of wireless networking equipment has become avail-
able commercially. Wireless L A N use spread spectrum techniques such as direct
sequencing or frequency hopping to provide data connections among a set of computers
inside a building. The transmitters and antennas for such equipment are small and
lightweight. The equipment can be attached to a portable notebook computer, making it
convenient to move around an area such as an office building while remaining in com-
munication.

Wireless broadband technology, originally developed as an alternative to cable
television, is being used to transmit data. Known as Multichannel Multipoint Distribu-
tion System (MMDS), the scheme has sufficient capacity to provide data rates as fast as
those offered by the popular Digital Subscriber Line (DSL) technologies that deliver
high data rates over copper telephone wires.

Cellular technology, which was originally designed for voice networks, has also
been adapted to carry data. The chief advantage of a cellular system is the speed with
which it allows users to move. Because the technology was designed to maintain voice
communication even if a user travels by car, the underlying hardware can easily main-
tain contact with a mobile unit while transferring a stream of packets.

2.1 2 Summary And Conclusion

We have reviewed several network hardware technologies used by the TCPIIP pro-
tocols, ranging from inexpensive Local Area Network technologies like Ethernet and
FDDI to expensive Wide Area Network technologies that use leased digital circuits to
provide backbones. We have also seen that it is possible to run the TCP/IP protocols

Sec. 2.12 Summary And Conclusion 51

over other general-purpose network protocols using a technique called tunneling. While
the details of specific network technologies are not important, a general idea has em-
erged:

The TCPLP protocols are extremely flexible; almost any underlying
technology can be used to transfer TCPAP trafic.

FOR FURTHER STUDY

Early computer communication systems employed point-to-point interconnection,
often using general-purpose serial line hardware that McNamara [I9821 describes.
Metcalf and Boggs [I9761 introduces the Ethernet with a 3 Mbps prototype version.
Digital et. al. [I9801 specifies the original 10 Mbps Ethernet standard, with IEEE stan-
dard 802.3 reported in Nelson [1983]. Shoch, Dalal, and Redell [I9821 provides an his-
torical perspective of the Ethernet evolution. Related work on the ALOHA network is
reported in Abramson [1970], with a survey of technologies given by Cotton [1979].

Token passing ring technology is proposed in Farmer and Newhall [1969]. Miller
and Thompson [1982], as well as Andrews and Shultz [1982], provide summaries.
Another alternative, the slotted ring network, is proposed by Pierce [1972]. For a com-
parison of technologies, see Rosenthal [1982].

For more infom~ation on the ARPANET see Cerf [1989] and BBN [1981]. The
ideas behind X25NET are summarized in Comer and Korb [1983]; Lanzillo and Par-
tridge [January 19891 describes dial-up IP. De Prycker [I9931 describes Asynchronous
Transfer Mode and its use for wide area services. Partridge [I9941 surveys many giga-
bit technologies, including ATM, and describes the internal structure of high speed
switches.

EXERCISES

2.1 Find out which network technologies your site uses.

2.2 What is the maximum size packet that can be sent on a high-speed network like Network
System Corporation's Hyperchannel?

2 3 If your site uses Ethernet hub technology, find out how many connections can be attached
to a single hub. If your site has multiple hubs (e.g., one on each floor of a building), find
out how the hubs communicate.

2.4 What are the advantages and disadvantages of tunneling?

2 5 Read the Ethernet standard to find exact details of the inter-packet gap and preamble size.
What is the maximum steady-state rate at which Ethernet can transport data?

52 Review Of Underlying Network Technologies Chap. 2

2.6 What characteristic of a satellite communication channel is most desirable? Least desir-
able?

2.7 Find a lower bound on the time it takes to transfer a 5 megabyte file across a network that
operates at: 28.8 Kbps, 1.54 Mbps, 10 Mbps, 100 Mbps, and 2.4 Gbps.

2 8 Does the processor, disk, and internal bus on your computer operate fast enough to send
data from a disk file at 2 gigabits per second?

Internetworking Concept
And Architectural Model

3.1 Introduction

So far we have looked at the low-level details of transmission across individual
data networks, the foundation on which all computer communication is built. This
chapter makes a giant conceptual leap by describing a scheme that allows us to collect
the diverse network technologies into a coordinated whole. The primary goal is a sys-
tem that hides the details of underlying network hardware while providing universal
communication services. The primary result is a high-level abstraction that provides the
framework for all design decisions. Succeeding chapters show how we use this abstrac-
tion to build the necessary layers of internet communication software and how the
software hides the underlying physical transport mechanisms. Later chapters also show
how applications use the resulting communication system.

3.2 Application-Level Interconnection

Designers have taken two different approaches to hiding network details, using ap-
plication programs to handle heterogeneity or hiding details in the operating system.
Early heterogeneous network interconnections provided uniformity through application-
level programs called application gateways. In such systems, an application-level pro-
gram, executing on each computer in the network, understands the details of the net-
work connections for that computer, and interoperates across those connections with ap-
plication programs on other computers. For example, some electronic mail systems

54 Internetworking Concept And Architectural Model Chap. 3

consist of mail programs that are each configured to forward a memo to a mail program
on the next computer. The path from source to destination may involve many different
networks, but that does not matter as long as the mail systems on all the machines
cooperate by forwarding each message.

Using application programs to hide network details may seem natural at first, but
such an approach results in limited, cumbersome communication. Adding new func-
tionality to the system means building a new application program for each computer.
Adding new network hardware means modifying existing programs (or creating new
programs) for each possible application. On a given computer, each application pro-
gram must understand the network connections for the computer, resulting in duplica-
tion of code.

Users who are experienced with networking understand that once the interconnec-
tions grow to hundreds or thousands of networks, no one can possibly build all the
necessary application programs. Furthermore, success of the step-at-a-time communica-
tion scheme requires correctness of all application programs executing along the path.
When an intermediate program fails, the source and destination remain unable to detect
or control the problem. Thus, systems that use intermediate applications programs can-
not guarantee reliable communication.

3.3 Network-Level Interconnection

The alternative to providing interconnection with application-level programs is a
system based on network-level interconnection. A network-level interconnection pro-
vides a mechanism that delivers small packets of data from their original source to their
ultimate destination without using intermediate application programs. Switching small
units of data instead of files or large messages has several advantages. First, the
scheme maps directly onto the underlying network hardware, making it extremely effi-
cient. Second, network-level interconnection separates data communication activities
from application programs, permitting intermediate computers to handle network traffic
without understanding the applications that are sending or receiving it. Third, using
network connections keeps the entire system flexible, making it possible to build gen-
eral purpose communication facilities. Fourth, the scheme allows network managers to
add new network technologies by modifying or adding a single piece of new network
level software, while application programs remain unchanged.

The key to designing universal network-level interconnection can be found in an
abstract communication system concept known as internetworking. The internetwork,
or internet, concept is an extremely powerful one. It detaches the notions of communi-
cation from the details of network technologies and hides low-level details from the
user. More important, it drives all software design decisions and explains how to han-
dle physical addresses and routes. After reviewing basic motivations for internetwork-
ing, we will consider the properties of an internet in more detail.

We begin with two fundamental observations about the design of communication
systems:

Sec. 3.3 Network-Level Interconnection

No single network hardware technology can satisfy all constraints.
Users desire universal interconnection.

The first observation is an economic as well as technical one. Inexpensive Local Area
Networks that provide high speed communication only cover short distances; wide area
networks that span long distances cannot supply local communication cheaply. Because
no single network technology satisfies all needs, we are forced to consider multiple
underlying hardware technologies.

The second observation is self-evident. Ultimately, users would like to be able to
communicate between any two points. In particular, we desire a communication system
that is not constrained by the boundaries of physical networks.

The goal is to build a unified, cooperative interconnection of networks that sup-
ports a universal communication service. Within each network, computers will use
underlying technology-dependent communication facilities like those described in
Chapter 2. New software, inserted between the technology-dependent communication
mechanisms and application programs, will hide the low-level details and make the col-
lection of networks appear to be a single large network. Such an interconnection
scheme is called an internetwork or internet.

The idea of building an internet follows a standard pattern of system design:
researchers imagine a high-level computing facility and work from available computing
technology, adding layers of software until they have a system that efficiently imple-
ments the imagined high-level facility. The next section shows the first step of the
design process by defining the goal more precisely.

3.4 Properties Of The Internet

The notion of universal service is important, but it alone does not capture all the
ideas we have in mind for a unified internet because there can be many implementations
of universal services. In our design, we want to hide the underlying internet architec-
ture from the user. That is, we do not want to require users or application programs to
understand the details of hardware interconnections to use the internet. We also do not
want to mandate a network interconnection topology. In particular, adding a new net-
work to the internet should not mean connecting to a centralized switching point, nor
should it mean adding direct physical connections between the new network and all ex-
isting networks. We want to be able to send data across intermediate networks even
though they are not directly connected to the source or destination computers. We want
all computers in the internet to share a universal set of machine identifiers (which can
be thought of as names or addresses).

Our notion of a unified internet also includes the idea of network independence in
the user interface. That is, we want the set of operations used to establish cornrnunica-
tion or to transfer data to remain independent of the underlying network technologies
and the destination computer. Certainly, a user should not have to understand the net-
work interconnection topology when creating or using application programs that com-
municate.

56 Internetworking Concept And Architectural Model Chap. 3

3.5 Internet Architecture

We have seen how computers connect to individual networks. The question arises,
"How are networks interconnected to form an internetwork?" The answer has two
parts. Physically, two networks can only be connected by a computer that attaches to
both of them. A physical attachment does not provide the interconnection we have in
mind, however, because such a connection does not guarantee that the computer will
cooperate with other machines that wish to communicate. To have a viable internet, we
need special computers that are willing to transfer packets from one network to another.
Computers that interconnect two networks and pass packets from one to the other are
called internet gateways or internet routersf.

Consider an example consisting of two physical networks shown in Figure 3.1. In
the figure, router R connects to both network I and network 2. For R to act as a router,
it must capture packets on network 1 that are bound for machines on network 2 and
transfer them. Similarly, R must capture packets on network 2 that are destined for
machines on network I and transfer them.

Figure 3.1 Two physical networks interconnected by R, a router (IP gateway).

In the figure, clouds are used to denote physical networks because the exact
hardware is unimportant. Each network can be a LAN or a WAN, and each may have
many computers attached or a few computers attached.

3.6 Interconnection Through IP Routers

Although it illustrates the basic connection strategy, Figure 3.1 is quite simplistic.
In an actual internet that includes many networks and routers, each router needs to
know about the topology of the internet beyond the networks to which it connects. For
example, Figure 3.2 shows three networks i n t e r c o ~ e c t d by two routers.

tThe original literature used the term IP gateway. However, vendors have adopted the term IP router -
the two terms are used interchangeably throughout this text.

Sec. 3.6 Interconnection Through IP Routers

Figure 3.2 Three networks interconnected by two routers.

In this example, router R, must transfer from network I to network 2 all packets des-
tined for computers on either network 2 or network 3. For a large internet composed of
many networks, the router's task of making decisions about where to send packets be-
comes more complex.

The idea of a router seems simple, but it is important because it provides a way to
interconnect networks, not just computers. In fact, we have already discovered the prin-
ciple of interconnection used throughout an internet:

In a TCPBP internet, special computers called IP routers or IP gate-
ways provide interconnections among physical networks.

You might suspect that routers, which must each know how to forward packets to-
ward their destination, are large machines with enough primary or secondary memory to
hold information about every computer in the internet to which they attach. In fact,
routers used with TCPAP internets are usually small computers. They often have little
disk storage and modest main memories. The trick to building a small internet router
lies in the following concept:

Routers use the destination network, not the destination computer,
when forwarding a packet.

If packet forwarding is based on networks, the amount of information that a router
needs to keep is proportional to the number of networks in the internet, not the number
of computers.

Because routers play a key role in internet communication, we will return to them
in later chapters and discuss the details of how they operate and how they learn about
routes. For now, we will assume that it is possible and practical to have correct routes
for all networks in each router in the internet. We will also assume that only routers
provide connections between physical networks in an internet.

Internetworking Concept And Architectural Model Chap. 3

3.7 The User's View

Remember that TCPAP is designed to provide a universal interconnection among
computers independent of the particular networks to which they attach. Thus, we want
a user to view an internet as a single, virtual network to which all machines connect
despite their physical connections. Figure 3.3a shows how thinking of an internet in-
stead of constituent networks simplifies the details and makes it easy for the user to
conceptualize communication. In addition to routers that interconnect physical net-
works, software is needed on each computer to allow application programs to use an in-
ternet as if it were a single, physical network.

The advantage of providing interconnection at the network level now becomes
clear. Because application programs that communicate over the internet do not know
the details of underlying connections, they can be run without change on any computer.
Because the details of each machine's physical network connections are hidden in the
internet software, only the internet software needs to change when new physical connec-
tions are added or existing connections are removed. In fact, it is possible to optimize
the internal structure of the internet by altering physical connections while application
programs are executing.

A second advantage of having communication at the network level is more subtle:
users do not have to understand, remember, or specify how networks connect or what
traffic they carry. Application programs can be written that communicate independent
of underlying physical connectivity. In fact, network managers are free to change inte-
rior parts of the underlying internet architecture without changing application software
in most of the computers attached to the internet (of course, network software must be
reconfigured when a computer moves to a new network).

As Figure 3.3b shows, routers do not provide direct connections among all pairs of
networks. It may be necessary for traffic traveling from one computer to another to
pass through several routers as the traffic crosses intermediate networks. Thus, net-
works participating in an internet are analogous to highways in the U.S. interstate sys-
tem: each net agrees to handle transit traffic in exchange for the right to send traffic
throughout the internet. Typical users are unaffected and unaware of extra traffic on
their local network.

3.8 All Networks Are Equal

Chapter 2 reviewed examples of the network hardware used to build TCPW inter-
nets, and illustrated the great diversity of technologies. We have described an internet
as a collection of cooperative, interconnected networks. It is now important to under-
stand a fundamental concept: from the internet point of view, any communication sys-
tem capable of transferring packets counts as a single network, independent of its delay
and throughput characteristics, maximum packet size, or geographic scale. In particular,
Figure 3.3b uses the same small cloud shape to depict each physical network because
TCPIIP treats them equally despite their differences. The point is:

Sec. 3.8 All Networks Are Equal 59

The TCPLP internet protocols treat all networks equally. A Local
Area Network like an Ethernet, a Wide Area Network used as a back-
bone, or a point-to-point link between two computers each count as
one network

Readers unaccustomed to internet architecture may find it difficult to accept such a
simplistic view of networks. In essence, TCPAP defines an abstraction of "network
that hides the details of physical networks; we will learn that such abstractions help
make TCPIIP extremely powerful.

internet internet

Figure 33 (a) The user's view of a TCPlIP internet in which each computer
appears to attach to a single large network, and (b) the structure
of physical networks and routers that provide interconnection.

3.9 The Unanswered Questions

Our sketch of internets leaves many unanswered questions. For example, you
might wonder about the exact form of internet addresses assigned to computers or how
such addresses relate to the Ethernet, FDDI, or ATM physical hardware addresses
described in Chapter 2. The next three chapters confront these questions. They
describe the format of P addresses and illustrate how software on a computer maps ,

between internet addresses and physical addresses. You might also want to know exact-
ly what a packet looks like when it travels through an internet, or what happens when
packets arrive too fast for some computer or router to handle. Chapter 7 answers these

60 Internetworking Concept And Architectural Model Chap. 3

questions. Finally, you might wonder how multiple application programs executing
concurrently on a single computer can send and receive packets to multiple destinations
without becoming entangled in each other's transmissions or how internet routers leam
about routes. All of these questions will be answered as well.

Although it may seem vague now, the direction we are following will let us leam
about both the structure and use of internet protocol software. We will examine each
part, looking at the concepts and principles as well as technical details. We began by
describing the physical communication layer on which an internet is built. Each of the
following chapters will explore one part of the internet software, until we understand
how all the pieces fit together.

3.10 Summary

An internet is more than a collection of networks interconnected by computers. In-
ternetworking implies that the interconnected systems agree to conventions that allow
each computer to communicate with every other computer. In particular, an internet
will allow two computers to communicate even if the communication path between
them passes across a network to which neither connects directly. Such cooperation is
only possible when computers agree on a set of universal identifiers and a set of pro-
cedures for moving data to its final destination.

In an internet, interconnections among networks are formed by computers called IP
routers, or IP gateways, that attach to two or more networks. A router forwards packets
between networks by receiving them from one network and sending them to another.

FOR FURTHER STUDY

Our model of an internetwork comes from Cerf and Cain [I9831 and Cerf and
Kahn [1974], which describe an internet as a set of networks interconnected by routers
and sketch an internet protocol similar to that eventually developed for the TCP/IP pro-
tocol suite. More information on the connected Internet architecture can be found in
Postel [1980]; Postel, Sunshine, and Chen [1981]; and in Hinden, Haverty, and Sheltzer
[1983]. Shoch [I9781 presents issues in internetwork naming and addressing. Boggs et.
al. [I9801 describes the internet developed at Xerox PARC, an alternative to the TCPlIP
internet we will examine. Cheriton [I9831 describes internetworking as it relates to the
V-system.

Exercises

EXERCISES

What processors have been used as routers in the c o ~ e c t e d Internet? Does the size and
speed of early router hardware surprise you? Why?
Approximately how many networks comprise the internet at your site? Approximately how
many routers?
Consider the internal structure of the example internet shown in Figure 3.3b. Which
routers are most crucial? Why?
Changing the information in a router can be tricky because it is impossible to change all
routers simultaneously. Investigate algorithms that guarantee to either install a change on a
set of computers or install it on none.
In an internet, routers periodically exchange information from their routing tables, making
it possible for a new router to appear and begin routing packets. Investigate the algorithms
used to exchange routing information.
Compare the organization of a TCPlIP internet to the style of internet designed by Xerox
Corporation.

Classful Internet Addresses

4.1 Introduction

The previous chapter defines a TCPm internet as a virtual network built by inter-
connecting physical networks with routers. This chapter discusses addressing, an essen-
tial ingredient that helps TCPm software hide physical network details and makes the
resulting internet appear to be a single, uniform entity.

4.2 Universal Identifiers

A communication system is said to supply universal communication service if it al-
lows any host computer to communicate with any other host. To make our communica-
tion system universal, it needs a globally accepted method of identifying each computer
that attaches to it.

Often, host identifiers are classified as names, addresses, or routes. Shoch [I9781
suggests that a name identifies what an object is, an address identifies where it is, and a
route tells how to get there?. Although these definitions are intuitive, they can be
misleading. Names, addresses, and routes really refer to successively lower level
representations of host identifiers. In general, people usually prefer pronounceable
names to identify machines, while software works more efficiently with compact
representations of identifiers that we think of as addresses. Either could have been
chosen as the TCP/IP universal host identifiers. The decision was made to standardize
on compact, binary addresses that make computations such as the selection of a route
efficient. For now, we will discuss only binary addresses, postponing until later the
questions of how to map between binary addresses and pronounceable names, and how
to use addresses for routing.

tAn identifier that specifies where an object can be found is also called a locator.

64 Classful Internet Addresses Chap. 4

4.3 The Original Classful Addressing Scheme

Think of an internet as a large network like any other physical network. The
difference, of course, is that the internet is a virtual structure, imagined by its designers,
and implemented entirely in software. Thus, the designers are free to choose packet for-
mats and sizes, addresses, delivery techniques, and so on; nothing is dictated by
hardware. For addresses, the designers of TCP/IP chose a scheme analogous to physical
network addressing in which each host on the internet is assigned a 32-bit integer ad-
dress called its internet address or IP address. The clever part of internet addressing is
that the integers are carefully chosen to make routing efficient. Specifically, an IP ad-
dress encodes the identification of the network to which a host attaches as well as the
identification of a unique host on that network. We can summarize:

Each host on a TCPLP internet is assigned a unique 32-bit internet
address that is used in all communication with that host.

The details of IP addresses help clarify the abstract ideas. For now, we give a sim-
plified view and expand it later. In the simplest case, each host attached to an internet
is assigned a 32-bit universal identifier as its internet address. A prefix of an IP address
identifies a network. That is, the IP addresses in all hosts on a given network share a
common prefix.

Conceptually, each address is a pair (netid, hostid), where netid identifies a net-
work, and hostid identifies a host on that network. In practice, however, the partition
into prefix and suffix is not uniform throughout the entire internet because the designers
did not specify a single boundary. In the original addressing scheme, which is known
as classful, each IP address had one of the first three forms shown in Figure 4. lt .

Class A 101 netid hostid I

class B F101 netid hostid I
C I ~ S S C [111101 netid I hostid

C I ~ S S D 111111101 multicast address I
CIassE F1111111 reserved for future use

Figure 4.1 The five forms of Internet (IP) addresses used with the original
classful addressing scheme. The three primary classes, A, B and
C, can be distinguished by the first three bits.

+The fourth form, reserved for internet multicasting, will be described later; for now, we will restrict our
comments to the fonns that specify addresses of individual objects.

Sec. 4.3 The Original Classful Addressing Scheme 65

In the classful addressing scheme, each address is said to be self-identifying be-
cause the boundary between prefn and suffix can be computed from the address alone,
without reference to external information. In particular, the class of an address can be
determined from the three high-order bits, with two bits being sufficient to distinguish
among the three primary classes. Class A addresses, used for the handful of networks
that have more than 216 (i.e., 65,536) hosts, devote 7 bits to netid and 24 bits to hostid.
Class B addresses, used for intern~ediate size networks that have between 28 (i.e., 256)
and 216 hosts, allocate 14 bits to the netid and 16 bits to the hostid. Finally, class C ad-
dresses, used for networks that have less than 28 hosts, allocate 21 bits to the netid and
only 8 bits to the hostid. Note that the IP address was originally defined in such a way
that it was possible to extract the hostid or netid portions quickly. Efficiency was espe-
cially important for routers, which use the netid portion of an address when deciding
where to send a packet. We will return to the discussion of efficient route lookup after
examining recent changes and extensions to the addressing scheme.

4.4 Addresses Specify Network Connections

To simplify the discussion, we said that an internet address identifies a host, but
that is not strictly accurate. Consider a router that attaches to two physical networks.
How can we assign a single IP address if the address encodes a network identifier as
well as a host identifier? In fact, we cannot. When conventional computers have two
or more physical connections they are called multi-homed hosts. Multi-homed hosts
and routers require multiple IP addresses. Each address corresponds to one of the
machine's network connections. Looking at multi-homed hosts leads to the following
important idea:

Because IP addresses encode both a network and a host on that net-
work, they do not specify an individual computer, but a connection to
a network.

Thus, a router connecting n networks has n distinct IP addresses, one for each network
connection.

4.5 Network And Directed Broadcast Addresses

We have already cited the major advantage of encoding network inforn~ation in in-
ternet addresses: it makes efficient routing possible. Another advantage is that internet
addresses can refer to networks as well as hosts. By convention, hostid 0 is never as-
signed to an individual host. Instead, an IP address with hostid portion equal to zero is
used to refer to the network itself. In summary:

Classful Internet Addresses Chap. 4

Internet addresses can be used to refer to networks as well as indivi-
dual hosts. By convention, an address that has all bits of the hostid
equal to 0 is reserved to refer to the network.

Another significant advantage of the internet addressing scheme is that it includes a
directed broadcast address that refers to all hosts on the network. According to the
standard, any address with the hostid consisting of all Is is reserved for directed broad-

' cast?. When a packet is sent to such an address, a single copy of the packet is
transferred across the internet from the source. Routers along the path use the netid
portion of the address when choosing a path; they do not look at the host portion. Once
the packet reaches a router attached to the final network, that router examines the host
portion of the address to determine how to deliver the packet. If it finds all Is, the
router broadcasts the packet to all hosts on the network.

On many network technologies (e.g., Ethernet), broadcasting is as efficient as uni-
cast transmission; on others, broadcasting is supported by the network software, but re-
quires substantially more delay than single transmission. Some network hardware does
not support broadcast at all. Thus, having an IP directed broadcast address does not
guarantee the availability or efficiency of broadcast delivery. In summary,

ZP addresses can be used to specify a directed broadcast in which a
packet is sent to all computers on a network; such addresses map to
hardware broadcast, if available. By convention, a directed broad-
cast address has a valid netid and has a hostid with all bits set to I.

4.6 Limited Broadcast

The broadcast address we just described is known as directed because it contains
both a valid network ID and the broadcast hostid. A directed broadcast address can be
interpreted unambiguously at any point in an internet because it uniquely identifies the
target network in addition to specifying broadcast on that network. Directed broadcast
addresses provide a powerful (and somewhat dangerous) mechanism that allows a re-
mote system to send a single packet that will be broadcast on the specified network.

From an addressing point of view, the chief disadvantage of directed broadcast is
that it requires knowledge of the network address. Another form of broadcast address,
called a limited broadcast address or local network broadcast address, provides a
broadcast address for the local network independent of the assigned IP address. The lo-
cal broadcast address consists of thirty-two I s (hence, it is sometimes called the "all
Is" broadcast address). A host may use the limited broadcast address as part of a start-
up procedure before it learns its IP address or the IP address prefm for the local net-
work. Once the host learns the correct IP address for the local network, however, it
should use directed broadcast.

?Unfortunately, an early release of TCPm code that accompanied Berkeley UNIX incorrectly used all
zeroes for broadcast. Because the error stilt survives, TCPm software often includes an option that allows a
site to use all zeroes for directed broadcast.

Sec. 4.6 Limited Broadcast 67

As a general rule, TCP/IP protocols restrict broadcasting to the smallest possible
set of machines. We will see how this rule affects multiple networks that share ad-
dresses in the chapter on subnet addressing.

4.7 Interpreting Zero To Mean "This"

We have seen that a field consisting of 1s can be interpreted to mean "all," as in
"all hosts" on a network. In general, internet software interprets fields consisting of 0s
to mean "this." The interpretation appears throughout the literature. Thus, an IP ad-
dress with hostid 0 refers to "this" host, and an internet address with network ID 0
refers to "this" network. Of course, it is only meaningful to use such an address in a
context where it can be interpreted unambiguously. For example, if a machine receives
a packet in which the netid portion of the destination address is 0 and the hostid portion
of the destination address matches its address, the receiver interprets the netid field to
mean "this" network (i.e., the network over which the packet arrived).

Using netid 0 is especially important in those cases where a host wants to com-
municate over a network but does not yet know the network IP address. The host uses
network ID 0 temporarily, and other hosts on the network interpret the address as mean-
ing "this" network. In most cases, replies will have the network address fully speci-
fied, allowing the original sender to record it for future use. Chapters 9 and 23 will dis-
cuss in detail mechanisms a host can use to determine the network ID of the local net-
work.

4.8 Subnet And Supernet Extensions

The addressing scheme described so far requires a unique network prefix for each
physical network. Although that was, indeed, the original plan, it did not last long. In
the 1980s as Local Area Network technologies became increasingly popular, it became
apparent that requiring a unique prefix for each physical network would exhaust the ad-
dress space quickly. Consequently, an addressing extension was developed to conserve
network prefixes. Known as subnet addressing, the scheme allows multiple physical
networks to share a prefix.

In the 1990s, a second extension was devised that ignored the classful hierarchy
and allowed the division between prefix and suffm to occur at an arbitrary point.
Called classless addressing or supernetting, the scheme allows more complete utiliza-
tion of the address space.

Chapter 10 will consider details of the subnet and supernet addressing extensions.
For now, it is only important to know that the addressing scheme has been extended,
and that the original classful scheme described in this chapter is no longer the most
widely used.

Classful Internet Addresses Chap. 4

4.9 IP Multicast Addresses

In addition to unicast delivery, in which a packet is delivered to a single computer,
and broadcast delivery, in which a packet is delivered to all computers on a given net-
work, the IP addressing scheme supports a special form of multipoint delivery known as
multicasting, in which a packet is delivered to a specific subset of hosts. IP multicast-
ing is especially useful for networks where the hardware technology supports multicast
delivery. Chapter 17 discusses multicast addressing and delivery in detail. For now, it
is sufficient to understand that Class D addresses are reserved for multicasting.

4.10 Weaknesses In Internet Addressing

Encoding network information in an internet address does have some disadvan-
tages. The most obvious disadvantage is that addresses refer to network connections,
not to the host computer:

If a host computer moves from one network to another, its IP address
mist change.

To understand the consequences, consider a traveler who wishes to disconnect his or her
personal computer, carry it along on a trip, and reconnect it to the Internet after reach-
ing the destination. The personal computer cannot be assigned a permanent IP address
because an IP address identifies the network to which the machine attaches. Chapter 19
shows how the IP addressing scheme makes mobility a complex problem.

Another weakness of the classful addressing scheme is that when any class C net-
work grows to more than 255 hosts, it must have its address changed to a class B ad-
dress. While this may seem like a minor problem, changing network addresses can be
incredibly time-consuming and difficult to debug. Because most software is not
designed to handle multiple addresses for the same physical network, administrators
cannot plan a smooth transition in which they introduce new addresses slowly. Instead,
they must abruptly stop using one network address, change the addresses of all
machines, and then resume communication using the new network address.

The most important flaw in the internet addressing scheme will not become fully
apparent until we examine routing. However, its importance warrants a brief introduc-
tion here. We have suggested that routing will be based on internet addresses, with the
netid portion of an address used to make routing decisions. Consider a host with two
connections to the internet. We know that such a host must have more than one IP ad-
dress. The following is true:

Because routing uses the network portion of the IP address, the path
taken by packets traveling to a host with multiple IP addresses
depends on the address used.

Sec. 4.10 Weaknesses In Internet Addressing 69

The implications are surprising. Humans think of each host as a single entity and want
to use a single name. They are often surprised to find that they must learn more than
one name and even more surprised to find that packets sent using multiple names can
behave differently.

Another surprising consequence of the internet addressing scheme is that merely
knowing one IP address for a destination may not be sufficient; it may be impossible to
reach the destination using that address. Consider the example internet shown in Figure
4.2. In the figure, two hosts, A and B, both attach to network 1, and usually communi-
cate directly using that network. Thus, users on host A should normally refer to host B
using IP address I,. An alternate path from A to B exists through router R, and is used
whenever A sends packets to IP address I, (B's address on network 2). Now suppose
B's connection to network 1 fails, but the machine itself remains running (e.g., a wire
breaks between B and network 1). Users on A who specify IP address I, cannot reach
B, although users who specify address I, can. These problems with naming and ad-
dressing will arise again in later chapters when we consider routing and name binding.

NETWORK 1

NETWORK 2 1 Is

Figure 4.2 An example internet with a multi-homed host, B, that demon-
strates a disadvantage of the IP addressing scheme. If interface I3

becomes disconnected, A must use address Is to reach B, sending
packets through router R.

4.1 1 Dotted Decimal Notation

When communicated to humans, either in technical documents or through applica-
tion programs, IP addresses are written as four decimal integers separated by decimal
points, where each integer gives the value of one octet of the IP address?. Thus, the
32-bit internet address

10000000 00001010 00000010 00011110

is written

128.10.2.30

tDotted decimal notation is sometimes called doned quad notation.

70 Classful Internet Addresses Chap. 4

We will use dotted decimal notation when expressing IP addresses throughout the
remainder of this text. Indeed, most TCPJIP software that displays or requires a human
to enter an IP address uses dotted decimal notation. For example, the UNIX netstat
command, which displays information about routes and connections, and application
programs such as telnet and ftp all use dotted decimal notation when accepting or
displaying IP addresses. Thus, when classful addressing is used, it is helpful to under-
stand the relationship between IP address classes and dotted decimal numbers. The
table in Figure 4.3 summarizes the range of values for each class.

Class Lowest Address Highest Address
A 1 .O.O.O 126.0 .0 .0

Figure 4 3 The range of dotted decimal values that correspond to each IP ad-
dress class. Some values are reserved for special purposes.

4.12 Loopback Address

The table in Figure 4.3 shows that not all possible addresses have been assigned to
classes. In particular, the network prefix 127.0.0.0, a value from the class A range, is
reserved for loopback, and is intended for use in testing TCPm and for inter-process
communication on the local computer. When any program uses the loopback address as
a destination, the protocol software in the computer processes the data without sending
traffic across any network. The literature explicitly states that a packet sent to a net-
work 127 address should never appear on any network. Furthermore, a host or router
should never propagate routing or reachability information for network number 127; it
is not a network address.

4.13 Summary Of Special Address Conventions

In practice, IP uses only a few combinations of 0s ("this") or 1s ("all"). Figure
4.4 lists the possibilities.

Sec. 4.13 Summary Of Special Address Conventions

I all 0s

I
--

all I s

all 0s

I net I all 1s I

host

1 127 1 anything (often 1) 1

This host

Host on this net

Limited broadcast (local net)2

Directed broadcast for net

Loopback

Notes: I Allowed only at system startup and is
never a valid destination address.

Never a valid source address.
Should never appear on a network.

Figure 4.4 Special forms of IP addresses, including valid combinations of 0s
("this"), 1s ("all"). The length of the net portion of a directed
broadcast depends on the network address class.

As the notes in the figure mention, using all 0s for the network is only allowed
during the bootstrap procedure. Doing so allows a machine to communicate temporari-
ly. Once the machine learns its correct network and IP address, it must not use network
prefix 0.

4.14 lnternet Addressing Authority

Each network address prefix used within a given TCPAP internet must be unique.
An organization that uses TCPDP technology to build a completely private internet (i.e.,
one that is not connected to the global Internet) can assign address prefixes without con-
sidering the assignments made by other organizations. However, an organization that
connects to the global Internet must not use address prefixes assigned to another organi-
zation. To ensure that the network portion of an address is unique in the global inter-
net, all Internet addresses are assigned by a central authority. Originally, the Internet
Assigned Number Authority (IANA) had control over numbers assigned, and set the poli-
cy. From the time the Internet began until the fall of 1998, a single individual, Jon Pos-
tel, ran the IANA and assigned addresses. h late 1998, after Jon's untimely death, a
new organization was created to handle address assignment. Named the Internet Cor-
poration For Assigned Names and Numbers (ICANN), the organization sets policy and
assigns values for names and other constants used in protocols as well as addresses.

72 Classful Internet Addresses Chap. 4

In the original classful scheme, the Internet authority chose an address appropriate
to the size of the network. A class C number was assigned to a network with a small
number of attached computers (less than 255); class B numbers were reserved for larger
networks. Finally, a network needed to have more than 65,535 hosts before it could ob-
tain a class A number. The address space was skewed because most networks are
small, fewer are of medium size, and only a handful are gigantic.

Most organizations never interact with the central authority directly. Instead, to
connect its networks to the global Internet, an organization usually contracts with a lo-
cal Internet Service Provider (ISP). In addition to providing a connection between the
organization and the rest of the Internet, an ISP obtains a valid address prefix for each
of the customer's networks. Many local ISPs are, in fact, customers of larger ISPs -
when a customer requests an address prefix, the local ISP merely obtains a prefix from
a larger ISP. Thus, only the largest ISPs need to contact ICANN.

Note that the central authority only assigns the network portion of an address; once
an organization obtains a prefx for a network, the organization can choose how to as-
sign a unique suffix to each host on the network without contacting the central authori-
ty. Furthermore, remember that it is only essential for the central authority to assign IP
addresses for networks that are (or will be) attached to the global Internet.

4.1 5 Reserved Address Prefixes

We said that as long as it never connects to the outside world, an individual cor-
poration has responsibility for assigning unique network addresses within its TCP/IP in-
ternet. Indeed, many corporate groups that use TCP/IP protocols do assign internet ad-
dresses on their own. For example, the network address 9.0.0.0 has been assigned to
IBM Corporation, and address 12.0.0.0 has been assigned to AT&T. If an organization
decides to use TCPIIP protocols on two of their networks with no connections to the
global Internet, the organization can choose to assign addresses 9.0.0.0 and 12.0.0.0 to
their local networks.

Experience has shown, however, that it is unwise to create a private internet using
the same network addresses as the global Internet because most sites eventually connect
to the Internet and doing so may cause problems when trying to exchange software with
other sites. To avoid addressing conflicts between addresses used on private internets
and addresses used on the global Internet, the IETF reserved several address prefixes,
and recommends using them on private internets. Because the set of reserved prefixes
includes both classful and classless values, they are described in Chapter 10.

4.16 An Example

To clarify the IP addressing scheme, consider an example of two networks in the
Computer Science Department at Purdue University as they were connected to the Inter-
net in the mid-1980s. Figure 4.5 shows the network addresses, and illustrates how
routers interconnect the networks.

Sec. 4.16 An Example 73

routers
ETHERNET
128.1 0.0.0

Figure 4.5 The logical connection of two networks to the Internet backbone.
Each network has been assigned an IP address.

The example shows three networks and the network numbers they have been as-
signed: the ARPANET (10.0.0.0), an Ethernet (128.10.0.0), and a token ring network
(192.5.48.0). According to the table in Figure 4.3, the addresses have classes A, B, and
C, respectively.

Figure 4.6 shows the same networks with host computers attached and Internet ad-
dresses assigned to each network connection.

ETHERNET 128.1 0.0.0

(multi-homed

192.5.48.3

GLATISANT TALIESYN
(router)

192.5.48.6 10.0.0.37

To ARPANET

Figure 4.6 Example IP address assignment for routers and hosts attached to
the three networks in the previous figure.

74 Classful Internet Addresses Chap. 4

In the figure, four hosts labeled Arthur, Merlin, Guenevere, and Lancelot, attach to
the networks, Taliesyn is a router that connects the ARPANET and the token ring net-
work, and Glatisant is a router that connects the token ring network to the Ethernet.
Host Merlin has connections to both the Ethernet and the token ring network, so it can
reach destinations on either network directly. Although a multi-homed host like Merlin
can be configured to route packets between the two nets, most sites use dedicated com-
puters as routers to avoid overloading conventional computer systems with the process-
ing required for routing. In the figure, a dedicated router, Glatisant, performs the task
of routing traffic between the Ethernet and token ring networks. (Note: actual traffic
between these two networks was higher than this configuration suggests because the fig-
ure only shows a few of the computers attached to the nets.)

As Figure 4.5 shows, an IP address must be assigned to each network connection.
Lancelot, which connects only to the Ethernet, has been assigned 128.10.2.26 as its only
IP address. Merlin has address 128.10.2.3 for its connection to the Ethernet and
192.5.48.3 for its connection to the token ring network. Whoever made the address as-
signment chose the same value for the low-order byte of each address. The addresses
assigned to routers Glatisant and Taliesyn do not follow the convention. For example,
Taliesyn's addresses, 10.0.0.37 and 192.5.48.6, are two completely unrelated strings of
digits. IP does not care whether any of the bytes in the dotted decimal form of a
computer's addresses are the same or different. However, network technicians,
managers, and administrators may need to use addresses for maintenance, testing, and
debugging. Choosing to make all of a computer's addresses end with the same octet
makes it easier for humans to remember or guess the address of a particular interface.

4.17 Network Byte Order

To create an internet that is independent of any particular vendor's machine archi-
tecture or network hardware, the software must define a standard representation for data.
Consider what happens, for example, when software on one computer sends a 32-bit
binary integer to another computer. The physical transport hardware moves the se-
quence of bits from the first machine to the second without changing the order. How-
ever, not all architectures store 32-bit integers in the same way. On some (called Little
Endian), the lowest memory address contains the low-order byte of the integer. On oth-
ers (called Big Endian), the lowest memory address holds the high-order byte of the in-
teger. Still others store integers in groups of 16-bit words, with the lowest addresses
holding the low-order word, but with bytes swapped. Thus, direct copying of bytes
from one machine to another may change the value of the number.

Standardizing byte-order for integers is especially important in an internet because
internet packets carry binary numbers that specify information like destination addresses
and packet lengths. Such quantities must be understood by both the senders and re-
ceivers. The TCP/IP protocols solve the byte-order problem by defining a network
standard byte order that all machines must use for binary fields in internet packets.
Each host or router converts binary items from the local representation to network stan-
dard byte order before sending a packet, and converts from network byte order to the
host-specific order when a packet arrives. Naturally, the user data field in a packet is

Sec. 4.17 Network Byte Order 75

exempt from this standard because the TCPIIP protocols do not know what data is being
carried - application programmers are free to format their own data representation and
translation. When sending integer values, many application programmers do choose to
follow the TCPIIP byte-order standards. Of course, users who merely invoke applica-
tion programs never need to deal with the byte order problem directly.

The internet standard for byte order specifies that integers are sent with the most
significant byte first (i.e., Big Endian style). If one considers the successive bytes in a
packet as it travels from one machine to another, a binary integer in that packet has its
most significant byte nearest the beginning of the packet and its least significant byte
nearest the end of the packet. Many arguments have been offered about which data
representation should be used, and the internet standard still comes under attack from
time to time. In particular, proponents of change argue that although most computers
were big endian when the standard was defined, most are now little endian. However,
everyone agrees that having a standard is crucial, and the exact form of the standard is
far less important.

4.18 Summary

TCPIIP uses 32-bit binary addresses as universal machine identifiers. Called Inter-
net Protocol addresses or IP addresses, the identifiers are partitioned into two parts: a
prefix identifies the network to which the computer attaches and the suffix provides a
unique identifier for the computer on that network. The original IP addressing scheme
is known as classful, with each prefix assigned to one of three primary classes. Leading
bits define the class of an address; the classes are of unequal size. The classful scheme
provides for 127 networks with over a million hosts each, thousands of networks with
thousands of hosts each, and over a million networks with up to 254 hosts each. To
make such addresses easier for humans to understand, they are written in dotted decimal
notation, with the values of the four octets written in decimal, separated by decimal
points.

Because the IP address encodes network identification as well as the identification
of a specific host on that network, routing is efficient. An important property of IP ad-
dresses is that they refer to network connections. Hosts with multiple connections have
multiple addresses. One advantage of the internet addressing scheme is that the form
includes an address for a specific host, a network, or all hosts on a network (broadcast).
The biggest disadvantage of the IP addressing scheme is that if a machine has multiple
addresses, knowing one address may not be sufficient to reach it when no path exists to
the specified interface (e.g., because a particular network is unavailable).

To permit the exchange of binary data among machines, TCPm protocols enforce
a standard byte ordering for integers within protocol fields. A host must convert all
binary data from its internal form to network standard byte order before sending a pack-
et, and it must convert from network byte order to internal order upon receipt.

ClassN Internet Addresses Chap. 4

FOR FURTHER STUDY

The internet addressing scheme presented here can be found in Reynolds and Pos-
tel [RFC 17001; further information can be found in Stahl, Romano, and Recker [RFC
11 171.

Several important additions have been made to the Internet addressing scheme over
the years; later chapters cover them in more detail. Chapter 10 discusses an important
extension called classless addressing that permits the division between prefix and suffix
to occur at an arbitrary bit position. In addition, Chapter 10 examines an essential part
of the Internet address standard called subnet addressing. Subnet addressing allows a
single network address to be used with multiple physical networks. Chapter 17 contin-
ues the exploration of IP addresses by describing how class D addresses are assigned
for internet multicast.

Cohen [I9811 explains bit and byte ordering, and introduces the terms "Big Endi-
an" and "Little Endian."

EXERCISES

Exactly how many class A, B, and C networks can exist? Exactly how many hosts can a
network in each class have? Be careful to allow for broadcast as well as class D and E ad-
dresses.
A machine readable list of assigned addresses is sometimes called an internet host table. If
your site has a host table, find out how many class A, B, and C network numbers have been
assigned.

How many hosts are attached to each of the local area networks at your site? Does your
site have any local area networks for which a class C address is insufficient?

What is the chief difference between the IP addressing scheme and the U.S. telephone
numbering scheme?

A single central authority cannot manage to assign Internet addresses fast enough to accom-
modate the demand. Can you invent a scheme that allows the central authority to divide its
task among several groups but still ensure that each assigned address is unique?

Does network standard byte order differ from your local machine's byte order?

How many IP addresses would be needed to assign a unique IP address to every house in
your country? the world? Is the IP address space sufficient?

Mapping Internet Addresses
To Physical Addresses
(ARP)

5.1 Introduction

We described the TCPIIP address scheme in which each host is assigned a 32-bit
address, and said that an internet behaves like a virtual network, using only the assigned
addresses when sending and receiving packets. We also reviewed several network
hardware technologies, and noted that two machines on a given physical network can
communicate only if they know each other's physical network address. What we have
not mentioned is how a host or a router maps an IP address to the correct physical ad-
dress when it needs to send a packet across a physical net. This chapter considers that
mapping, showing how it is implemented for the two most common physical network
address schemes.

5.2 The Address Resolution Problem

Consider two machines A and B that connect to the same physical network. Each
has an assigned IP address ZA and ZB and a physical address PA and PB. The goal is to
devise low-level software that hides physical addresses and allows higher-level pro-
grams to work only with internet addresses. Ultimately, however, communication must
be carried out by physical networks using whatever physical address scheme the under-
lying network hardware supplies. Suppose machine A wants to send a packet to

78 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5

machine B across a physical network to which they both attach, but A has only B's in-
ternet address IB. The question arises: how does A map that address to B's physical ad-
dress, PB?

Address mapping must be performed at each step along a path from the original
source to the ultimate destination. In particular, two cases arise. First, at the last step
of delivering a packet, the packet must be sent across one physical network to its final
destination. The computer sending the packet must map the final destination's Internet
address to the destination's physical address. Second, at any point along the path from
the source to the destination other than the final step, the packet must be sent to an in-
termediate router. Thus, the sender must map the intermediate router's Internet address
to a physical address.

The problem of mapping high-level addresses to physical addresses is known as
the address resolution problem and has been solved in several ways. Some protocol
suites keep tables in each machine that contain pairs of high-level and physical ad-
dresses. Others solve the problem by encoding hardware addresses in high-level ad-
dresses. Using either approach exclusively makes high-level addressing awkward at
best. This chapter discusses two techniques for address resolution used by TCPIIP pro-
tocols and shows when each is appropriate.

5.3 Two Types Of Physical Addresses

There are two basic types of physical addresses, exemplified by the Ethernet,
which has large, fixed physical addresses, and proNET, which has small, easily config-
ured physical addresses. Address resolution is difficult for Ethernet-like networks, but
easy for networks like proNET. We will consider the easy case first.

5.4 Resolution Through Direct Mapping

Consider a proNET token ring network. Recall from Chapter 2 that proNET uses
small integers for physical addresses and allows the user to choose a hardware address
when installing an interface board in a computer. The key to making address resolution
easy with such network hardware lies in observing that as long as one has the freedom
to choose both IP and physical addresses, they can be selected such that parts of them
are the same. Typically, one assigns IP addresses with the hostid portion equal to 1, 2,
3, and so on, and then, when installing network interface hardware, selects a physical
address that corresponds to the IP address. For example, the system administrator
would select physical address 3 for a computer with the IP address 192.5.48.3 because
192.5.48.3 is a class C address with the host portion equal to 3.

For networks like proNET, computing a physical address from an IP address is
trivial. The computation consists of extracting the host portion of the IP address. Ex-
traction is computationally efficient on most architectures because it requires only a few
machine instructions. The mapping is easy to maintain because it can be performed

Sec. 5.4 Resolution Through Direct Mapping 79

without reference to external data. Finally, new computers can be added to the network
without changing existing assignments or recompiling code.

Conceptually, choosing a numbering scheme that makes address resolution effi-
cient means selecting a function f that maps IP addresses to physical addresses. The
designer may be able to select a physical address numbering scheme as well, depending
on the hardware. Resolving IP address IA means computing

We want the computation off to be efficient. If the set of physical addresses is con-
strained, it may be possible to arrange efficient mappings other than the one given in
the example above. For instance, when using IP over a connection-oriented network
such as ATM, one cannot choose physical addresses. On such networks, one or more
computers (servers) store pairs of addresses, where each pair contains an Internet ad-
dress and the corresponding physical address. Typically, such servers store the pairs in
a table in memory to speed searching. To guarantee efficient address resolution in such
cases, software can use a conventional hash function to search the table. Exercise 5.1
suggests a related alternative.

5.5 Resolution Through Dynamic Binding

To understand why address resolution is difficult for some networks, consider Eth-
ernet technology. Recall from Chapter 2 that each Ethernet interface is assigned a 48-
bit physical address when the device is manufactured. As a consequence, when
hardware fails and requires that an Ethernet interface be replaced, the machine's physi-
cal address changes. Furthermore, because the Ethernet address is 48 bits long, there is
no hope it can be encoded in a 32-bit IP addresst.

Designers of TCPLP protocols found a creative solution to the address resolution
problem for networks like the Ethernet that have broadcast capability. The solution al-
lows new hosts or routers to be added to the network without recompiling code, and
does not require maintenance of a centralized database. To avoid maintaining a table of
mappings, the designers chose to use a low-level protocol to bind addresses dynamical-
ly. Termed the Address Resolution Protocol (ARP), the protocol provides a mechanism
that is both reasonably efficient and easy to maintain.

As Figure 5.1 shows, the idea behind dynamic resolution with ARP is simple:
when host A wants to resolve IP address ZB, it broadcasts a special packet that asks the
host with IP address l e to respond with its physical address, PB. AU hosts, including B,
receive the request, but only host B recognizes its IP address and sends a reply that con-
tains its physical address. When A receives the reply, it uses the physical address to
send the internet packet directly to B. We can summarize:

tBecause direct mapping is more convenient and efficient than dynamic binding, the next generation of
IP is being designed to allow 48-bit hardware addresses to be encoded in IP addresses.

Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5

The Address Resolution Protocol, ARP, allows a host to find the phy-
sical address of a target host on the same physical network, given
only the target's IP address.

Figure 5.1 The ARP protocol. To determine PB, B's physical address, from
IB, its IP address, (a) host A broadcasts an ARP request containing
IB to all machines on the net, and (b) host B responds with an
ARP reply that contains the pair (Is, PB).

5.6 The Address Resolution Cache

It may seem silly that for A to send a packet to B it first sends a broadcast that
reaches B. Or it may seem even sillier that A broadcasts the question, "how can I reach
you?" instead of just broadcasting the packet it wants to deliver. But there is an impor-
tant reason for the exchange. Broadcasting is far too expensive to be used every time
one machine needs to transmit a packet to another because every machine on the net-
work must receive and process the broadcast packet.

Sec. 5.7 ARP Cache Timeout

5.7 ARP Cache Timeout

To reduce communication costs, computers that use ARP maintain a cache of re-
cently acquired IP-to-physical address bindings. That is, whenever a computer sends an
ARP request and receives an ARP reply, it saves the IP address and corresponding
hardware address information in its cache for successive lookups. When transmitting a
packet, a computer always looks in its cache for a binding before sending an AFW re-
quest. If it finds the desired binding in its ARP cache, the computer need not broadcast
on the network. Thus, when two computers on a network communicate, they begin
with an ARP request and response, and then repeatedly transfer packets without using
ARP for each one. Experience shows that because most network communication in-
volves more than one packet transfer, even a small cache is worthwhile.

The AFW cache provides an example of soj? state, a technique commonly used in
network protocols. The name describes a situation in which information can become
"stale" without warning. In the case of ARP, consider two computers, A and B, both
connected to an Ethernet. Assume A has sent an ARP request, and B has replied.
Further assume that after the exchange B crashes. Computer A will not receive any no-
tification of the crash. Moreover, because it already has address binding information for
B in its ARP cache, computer A will continue to send packets to B. The Ethernet
hardware provides no indication that B is not on-line because Ethernet does not have
guaranteed delivery. Thus, A has no way of knowing when information in its AFW
cache has become incorrect.

To accommodate soft state, responsibility for correctness lies with the owner of the
information. Typically, protocols that implement soft state use timers, with the state in-
formation being deleted when the timer expires. For example, whenever address bind-
ing information is placed in an AFW cache, the protocol requires a timer to be set, with
a typical timeout being 20 minutes. When the timer expires, the information must be
removed. After removal there are two possibilities. If no further packets are sent to the
destination, nothing occurs. If a packet must be sent to the destination and there is no
binding present in the cache, the computer follows the normal procedure of broadcasting
an ARP request and obtaining the binding. If the destination is still reachable, the bind-
ing will again be placed in the ARP cache. If not, the sender will discover that the des-
tination is off-line.

The use of soft state in ARP has advantages and disadvantages. The chief advan-
tage arises from autonomy. First, a computer can determine when information in its
ARP cache should be revalidated independent of other computers. Second, a sender
does not need successful communication with the receiver or a third party to determine
that a binding has become invalid; if a target does not respond to an ARP request, the
sender will declare the target to be down. Third, the scheme does not rely on network
hardware to provide reliable transfer. The chief disadvantage of soft state arises from
delay - if the timer interval is N seconds, a sender may not detect that a receiver has
crashed until N seconds elapse.

82 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5

5.8 ARP Refinements

Several refinements of ARP have been included in the protocol. First, observe that
if host A is about to use ARP because it needs to send to B, there is a high probability
that host B will need to send to A in the near future. To anticipate B's need and avoid
extra network traffic, A includes its IP-to-physical address binding when sending B a re-
quest. B extracts A's binding from the request, saves the binding in its ARP cache, and
then sends a reply to A. Second, notice that because A broadcasts its initial request, all
machines on the network receive it and can extract and update A's IP-to-physical ad-
dress binding in their cache. Third, when a computer has its host interface replaced,
(e.g., because the hardware has failed) its physical address changes. Other computers
on the net that have stored a binding in their ARP cache need to be informed so they
can change the entry. The computer can notify others of a new address by sending an
ARP broadcast when it boots.

The following rule summarizes refinements:

The sender's IP-to-physical address binding is included in every ARP
broadcast; receivers update the IP-to-physical address binding infor-
mation in their cache before processing an ARP packet.

5.9 Relationship Of ARP To Other Protocols

ARP provides one possible mechanism to map from IP addresses to physical ad-
dresses; we have already seen that some network technologies do not need it. The point
is that ARP would be completely unnecessary if we could make all network hardware
recognize IP addresses. Thus, ARP merely imposes a new address scheme on top of
whatever low-level address mechanism the hardware uses. The idea can be summar-
ized:

ARP is a low-level protocol that hides the underlying network physi-
cal addressing, permitting one to assign an arbitrary IP address to
every machine. We think of ARP as part of the physical network sys-
tem, and not as part of the internet protocols.

5.1 0 ARP Implementation

Functionally, ARP is divided into two parts. The first part maps an IP address to a
physical address when sending a packet, and the second part answers requests from oth-
er machines. Address resolution for outgoing packets seems straightforward, but small
details complicate an implementation. Given a destination IP address the software con-
sults its ARP cache to see if it knows the mapping from IP address to physical address.

Sec. 5.10 ARP Implementation 83

If it does, the software extracts the physical address, places the data in a frame using
that address, and sends the frame. If it does not know the mapping, the software must
broadcast an ARP request and wait for a reply.

Broadcasting an ARP request to find an address mapping can become complex.
The target machine can be down or just too busy to accept the request. If so, the sender
may not receive a reply or the reply may be delayed. Because the Ethernet is a best-
effort delivery system, the initial ARP broadcast request can also be lost (in which case
the sender should retransmit, at least once). Meanwhile, the host must store the original
outgoing packet so it can be sent once the address has been resolvedt. In fact, the host
must decide whether to allow other application programs to proceed while it processes
an AFW request (most do). If so, the software must handle the case where an applica-
tion generates additional ARP requests for the same address without broadcasting multi-
ple requests for a given target.

Finally, consider the case where machine A has obtained a binding for machine B,
but then B's hardware fails and is replaced. Although B's address has changed, A's
cached binding has not, so A uses a nonexistent hardware address, making successful re-
ception impossible. This case shows why it is important to have ARP software treat its
table of bindings as a cache and remove entries after a fixed period. Of course, the ti-
mer for an entry in the cache must be reset whenever an AFW broadcast arrives contain-
ing the binding (but it is not reset when the entry is used to send a packet).

The second part of the ARP code handles ARP packets that arrive from the net-
work. When an ARP packet arrives, the software first extracts the sender's IP address
and hardware address pair, and examines the local cache to see if it already has an entry
for the sender. If a cache entry exists for the given IP address, the handler updates that
entry by overwriting the physical address with the physical address obtained from the
packet. The receiver then processes the rest of the AFW packet.

A receiver must handle two types of incoming ARP packets. If an ARP request ar-
rives, the receiving machine must see if it is the target of the request (i.e., some other
machine has broadcast a request for the receiver's physical address). If so, the ARP
software fomls a reply by supplying its physical hardware address, and sends the reply
directly back to the requester. The receiver also adds the sender's address pair to its
cache if the pair is not already present. If the IP address mentioned in the ARP request
does not match the local IP address, the packet is requesting a mapping for some other
machine on the network and can be ignored.

The other interesting case occurs when an AFW reply arrives. Depending on the
implementation, the handler may need to create a cache entry, or the entry may have
been created when the request was generated. In any case, once the cache has been up-
dated, the receiver tries to match the reply with a previously issued request. Usually,
replies arrive in response to a request, which was generated because the machine has a
packet to deliver. Between the time a machine broadcasts its ARP request and receives
the reply, application programs or higher-level protocols may generate additional re-
quests for the same address; the software must remember that it has already sent a re-
quest and not send more. Usually, ARP software places the additional packets on a
queue. Once the reply arrives and the address binding is known, the ARP software re-

?If the delay is significant, the host may choose to discard the outgoing packet(s).

84 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5

moves packets from the queue, places each packet in a frame, and uses the address
binding to fill in the physical destination address. If it did not previously issue a re-
quest for the IP address in the reply, the machine updates the sender's entry in its cache,
and then simply stops processing the packet.

5.1 1 ARP Encapsulation And Identification

When ARP messages travel from one machine to another, they must be carried in
physical frames. Figure 5.2 shows that the ARP message is carried in the data portion
of a frame.

ARPMESSAGE

FRAME I HEADER I FRAME DATA AREA

Figure 5.2 An ARP message encapsulated in a physical network frame.

To identify the frame as carrying an ARP message, the sender assigns a special value to
the type field in the frame header, and places the ARP message in the frame's data
field. When a frame arrives at a computer, the network software uses the frame type to
determine its contents. In most technologies, a single type value is used for all frames
that carry an ARP message - network software in the receiver must further examine
the ARP message to distinguish between ARP requests and ARP replies. For example,
on an Ethernet, frames carrying ARP messages have a type field of 0806,,. This is a
standard value assigned by the authority for Ethernet; other network hardware technolo-
gies use other values.

5.1 2 ARP Protocol Format

Unlike most protocols, the data in ARP packets does not have a fixed-format
header. Instead, to make ARP useful for a variety of network technologies, the length
of fields that contain addresses depend on the type of network. However, to make it
possible to interpret an arbitrary ARP message, the header includes fixed fields near the
beginning that speclfy the lengths of the addresses found in succeeding fields. In fact,
the ARP message format is general enough to allow it to be used with arbitrary physical
addresses and arbitrary protocol addresses. The example in Figure 5.3 shows the 28-
octet ARP message format used on Ethernet hardware (where physical addresses are

Sec. 5.12 ARP Protocol Format 85

48-bits or 6 octets long), when resolving IP protocol addresses (which are 4 octets
long).

Figure 5.3 shows an ARP message with 4 octets per line, a format that is standard
throughout this text. Unfortunately, unlike most of the remaining protocols, the
variable-length fields in ARP packets do not align neatly on 32-bit boundaries, making
the diagram difficult to read. For example, the sender's hardware address, labeled
SENDER HA, occupies 6 contiguous octets, so it spans two lines in the diagram.

SENDER IP (octets 2-3) I TARGET HA (octets 0-1) I

PROTOCOL TYPE

OPERATION

HARDWARE TYPE

SENDER HA (octets 4-5)

TARGET HA (octets 2-5)

TARGET IP (octets 0-3)

SENDER HA (octets 0-3)

HLEN

SENDER IP (octets 0-1)

Figure 5.3 An example of the A R P W message format when used for IP-
to-Ethernet address resolution. The length of fields depends on
the hardware and protocol address lengths, which are 6 octets for
an Ethernet address and 4 octets for an IP address.

PLEN

Field HARDWARE TYPE specifies a hardware interface type for which the sender
seeks an answer; it contains the value 1 for Ethernet. Similarly, field PROTOCOL
TYPE specifies the type of high-level protocol address the sender has supplied; it con-
tains 0800,, for IP addresses. Field OPERATION specifies an ARP request (I), ARP
response (2), RARPt request (3), or RARP response (4). Fields HLEN and PLEN allow
ARP to be used with arbitrary networks because they speclfy the length of the hardware
address and the length of the high-level protocol address. The sender supplies its
hardware address and IF' address, if known, in fields SENDER HA and SENDER IP.

When making a request, the sender also supplies the target hardware address
(RARP) or target IP address (ARP), using fields TARGET HA or TARGET IP. Before
the target machine responds, it fills in the missing addresses, swaps the target and
sender pairs, and changes the operation to a reply. Thus, a reply carries the IP and
hardware addresses of the original requester, as well as the IP and hardware addresses
of the machine for which a binding was sought.

tThe next chapter describes RAW, another protocol that uses the same message format.

86 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5

5.13 Summary

IP addresses are assigned independent of a machine's physical hardware address.
To send an internet packet across a physical net from one computer to another, the net-
work software must map the IP address into a physical hardware address and use the
hardware address to transmit the frame. If hardware addresses are smaller than IP ad-
dresses, a direct mapping can be established by having the machine's physical address
encoded in its IP address. Otherwise, the mapping must be performed dynamically.
The Address Resolution Protocol (ARP) performs dynamic address resolution, using
only the low-level network communication system. ARP permits machines to resolve
addresses without keeping a permanent record of bindings.

A machine uses ARP to find the hardware address of another machine by broad-
casting an ARP request. The request contains the IP address of the machine for which a
hardware address is needed. All machines on a network receive an ARP request. If the
request matches a machine's IP address, the machine responds by sending a reply that
contains the needed hardware address. Replies are directed to one machine; they are
not broadcast.

To make ARP efficient, each machine caches IP-to-physical address bindings. Be-
cause internet traffic tends to consist of a sequence of interactions between pairs of
machines, the cache eliminates most ARP broadcast requests.

FOR FURTHER STUDY

The address resolution protocol used here is given by Plummer [RFC 8261 and has
become a TCPAP internet protocol standard. Dalal and Printis [I9811 describes the re-
lationship between Ethernet and IP addresses, and Clark [RFC 8141 discusses addresses
and bindings in general. Parr [RFC 10291 discusses fault tolerant address resolution.
Kirkpatrick and Recker [RFC 11661 specifies values used to identify network frames in
the Internet Numbers document. Volume 2 of this text presents an example ARP im-
plementation, and discusses the caching policy.

EXERCISES

5.1 Given a small set of physical addresses (positive integers), can you find a function f and an
assignment of IP addresses such that f maps the P addresses 1-to-1 onto the physical ad-
dresses and computing f is efficient? (Hint: look at the literature on perfect hashing).

5.2 In what special cases does a host connected to an Ethernet not need to use ARP or an ARP
cache before transmitting an IP datagram?

Exercises 87

One common algorithm for managing the ARP cache replaces the least recently used entry
when adding a new one. Under what circumstances can this algorithm produce unneces-
sary network traffic?
Read the standard carefully. Should ARP update the cache if an old entry already exists for
a given IP address? Why or why not?

Should ARP software modify the cache even when it receives information without specifi-
cally requesting it? Why or why not?

Any implementation of ARP that uses a fixed-size cache can fail when used on a network
that has many hosts and much ARP traffic. Explain how.

ARP is often cited as a security weakness. Explain why.
Suppose an (incorrect) ARP implementation does not remove cache entries if they are fre-
quently used. Explain what can happen if the hardware address field in an ARP response
becomes corrupted during transmission.

Suppose machine C receives an ARP request sent from A looking for target B, and suppose
C has the binding from Is to PB in its cache. Should C answer the request? Explain.

How can a workstation use ARP when it boots to find out if any other machine on the net-
work is impersonating it? What are the disadvantages of the scheme?

Explain how sending IP packets to nonexistent addresses on a remote Ethernet can generate
excess broadcast traffic on that network.

Determining An Internet
Address At Startup (RA RP)

6.1 Introduction

We now know that physical network addresses are both low-level and hardware
dependent, and we understand that each machine using TCP/IP is assigned one or more
32-bit IP addresses that are independent of the machine's hardware addresses. Applica-
tion programs always use the IP address when specifying a destination. Because hosts
and routers must use a physical address to transmit a datagram across an underlying
hardware network; they rely on address resolution schemes like ARP to map between an
IP address and an equivalent hardware address.

Usually, a computer's IP address is kept on its secondary storage, where the
operating system finds it at startup. The question arises, "How does a machine without
a permanently attached disk determine its IP address?" The problem is critical for
workstations that store files on a remote server or for small embedded systems because
such machines need an IP address before they can use standard TCPm file transfer pro-
tocols to obtain their initial boot image. This chapter explores the question of how to
obtain an IP address, and describes a low-level protocol that such machines can use be-
fore they boot from a remote file server. Chapter 23 extends the discussion of
bootstrapping, and considers popular alternatives to the protocol presented here.

Because an operating system image that has a specific IP address bound into the
code cannot be used on multiple computers, designers usually try to avoid compiling a
machine's IP address in the operating system code or support software. In particular,
the bootstrap code often found in Read Only Memory (ROM) is usually built so the
same image can run on many machines. When such code starts execution, it uses the
network to contact a server and obtain the computer's IP address.

Determining An Internet Address At Startup (RARP) Chap. 6

The bootstrap procedure sounds paradoxical: a machine communicates with a re-
mote server to obtain an address needed for communication. The paradox is only ima-
gined, however, because the machine does know how to communicate. It can use its
physical address to communicate over a single network. Thus, the machine must resort
to physical network addressing temporarily in the same way that operating systems use
physical memory addressing to set up page tables for virtual addressing. Once a
machine knows its IP address, it can communicate across an internet.

The idea behind finding an IP address is simple: a machine that needs to know its
address sends a request to a server? on another machine, and waits until the server
sends a response. We assume the server has access to a disk where it keeps a database
of internet addresses. In the request, the machine that needs to know its internet address
must uniquely identify itself, so the server can look up the correct internet address and
send a reply. Both the machine that issues the request and the server that responds use
physical network addresses during their brief communication. How does the requester
know the physical address of a server? Usually, it does not - it simply broadcasts the
request to all machines on the local network. One or more servers respond.

Whenever a machine broadcasts a request for an address, it must uniquely identify
itself. What information can be included in its request that will uniquely identify the
machine? Any unique hardware identification suffices (e.g., the CPU serial number).
However, the identification should be something that an executing program can obtain
easily. Unfortunately, the length or format of CPU-specific information may vary
among processor models, and we would like to devise a server that accepts requests
from all machines on the physical network using a single format. Furthermore, en-
gineers who design bootstrap code attempt to create a single software image that can
execute on an arbitrary processor, and each processor model may have a slightly dif-
ferent set of instructions for obtaining a serial number.

6.2 Reverse Address Resolution Protocol (RARP)

The designers of TCP/IP protocols realized that there is another piece of uniquely
identifying information readily available, namely, the machine's physical network ad-
dress. Using the physical address as a unique identification has two advantages. Be-
cause a host obtains its physical addresses from the network interface hardware, such
addresses are always available and do not have to be bound into the bootstrap code.
Because the identifying information depends on the network and not on the CPU vendor
or model, all machines on a given network will supply uniform, unique identifiers.
Thus, the problem becomes the reverse of address resolution: given a physical network
address, devise a scheme that will allow a server to map it into an internet address.

The TCPnP protocol that allows a computer to obtain its IP address from a server
is known as the Reverse Address Resolution Protocol (RARP). RARP is adapted from
the ARP protocol of the previous chapter and uses the same message format shown in
Figure 5.3. In practice, the RARP message sent to request an internet address is a little
more general than what we have outlined above: it allows a machine to request the IP

tChapter 21 discusses servers in detail.

Sec. 6.2 Reverse Address Resolution Protocol (RARF') 91

address of a third party as easily as its own. It also allows for multiple physical net-
work types.

Like an ARP message, a RARP message is sent from one machine to another en-
capsulated in the data portion of a network frame. For example, an Ethernet frame car-
rying a RARP request has the usual preamble, Ethernet source and destination ad-
dresses, and packet type fields in front of the frame. The frame type contains the value
8035,, to identify the contents of the frame as a RARP message. The data portion of
the frame contains the 28-octet RARP message.

Figure 6.1 illustrates how a host uses RARP. The sender broadcasts a RARP re-
quest that specifies itself as both the sender and target machine, and supplies its physi-
cal network address in the target hardware address field. All computers on the network
receive the request, but only those authorized to supply the RARP service process the
request and send a reply; such computers are known informally as RARP servers. For
RARP to succeed, the network must contain at least one RARP server.

Figure 6.1 Example exchange using the RARP protocol. (a) Machine A
broadcasts a RARP request specifying itself as a target, and (b)
those machines authorized to supply the RAW service (C and D)
reply directly to A.

Servers answer requests by filling in the target protocol address field, changing the
message type from request to reply, and sending the reply back directly to the machine
making the request. The original machine receives replies from all RARP servers, even
though only the first is needed.

92 Determining An Internet Address At Startup (RARP) Chap. 6

Keep in mind that all communication between the computer seeking its IP address
and the server supplying it must be carried out using only the physical network. Furth-
ermore, the protocol allows a host to ask about an arbitrary target. Thus, the sender
supplies its hardware address separate from the target hardware address, and the server
is careful to send the reply to the sender's hardware address. On an Ethernet, having a
field for the sender's hardware address may seem redundant because the information is
also contained in the Ethernet frame header. However, not all Ethernet hardware pro-
vides the operating system with access to the physical frame header.

6.3 Timing RARP Transactions

Like any communication on a best-effort delivery network, RARP requests and
responses are susceptible to loss (including discard by the network interface if the CRC
indicates that the frame was corrupted). Because RARP uses the physical network
directly, no other protocol software will time the response or retransmit the request;
RARP software must handle these tasks. In general, RARP is used only on local area
networks like the Ethernet, where the probability of failure is low. If a network has
only one RARP server, however, that machine may not be able to handle the load, so
packets may be dropped.

Some computers that rely on RARP to boot, choose to retry indefinitely until they
receive a response. Other implementations announce failure after only a few tries to
avoid flooding the network with unnecessary broadcast traffic (e.g., in case the server is
unavailable). On an Ethernet, network failure is less likely than server overload. Mak-
ing RARP software retransmit quickly may have the unwanted effect of flooding a
congested server with more traffic. Using a large delay ensures that servers have ample
time to satisfy the request and return an answer.

6.4 Primary And Backup RARP Servers

The chief advantage of having several computers function as RARP servers is that
it makes the system more reliable. If one server is down or too heavily loaded to
respond, another answers the request. Thus, it is highly likely that the service will be
available. The chief disadvantage of using many servers is that when a machine broad-
casts a RARP request, the network becomes overloaded because all servers attempt to
respond. On an Ethernet, for example, using multiple RARP servers makes the proba-
bility of collision high.

How can the RAW service be arranged to keep it available and reliable without
incurring the cost of multiple, simultaneous replies? There are at least two possibilities,
and they both involve delaying responses. In the first solution, each machine that
makes RARP requests is assigned a primary server. Under normal circumstances, only
the machine's primary server responds to its RARP request. All nonprimary servers re-
ceive the request but merely record its arrival time. If the primary server is unavailable,

Sec. 6.4 Primary And Backup RARP Servers 93

the original machine will timeout waiting for a response and then rebroadcast the re-
quest. Whenever a nonprimary server receives a second copy of a RARP request within
a short time of the fist, it responds.

The second solution uses a similar scheme but attempts to avoid having all nonpri-
mary servers transmit responses simultaneously. Each nonprimary machine that re-
ceives a request computes a random delay and then sends a response. Under normal
circumstances, the primary server responds immediately and successive responses are
delayed, so there is low probability that several responses arrive at the same time.
When the primary server is unavailable, the requesting machine experiences a small de-
lay before receiving a reply. By choosing delays carefully, the designer can ensure that
requesting machines do not rebroadcast before they receive an answer.

6.5 Summary

At system startup, a computer that does not have permanent storage must contact a
server to find its IP address before it can communicate using TCP/IP. This chapter ex-
amined the RARP protocol that uses physical network addressing to obtain the
machine's internet address. The RARP mechanism supplies the target machine's physi-
cal hardware address to uniquely identify the processor and broadcasts the RARP re-
quest. Servers on the network receive the message, look up the mapping in a table
(presumably from secondary storage), and reply to the sender. Once a machine obtains
its IP address, it stores the address in memory and does not use RARP again until it re-
boots.

FOR FURTHER STUDY

The details of RARP are given in Finlayson, et. al. [RFC 9031. Finlayson [RFC
9061 describes workstation bootstrapping using the TFTP protocol. Bradley and Brown
[RFC 12931 specifies a related protocol, Inverse ARP. Inverse ARP p e m ~ t s a computer
to query the machine at the opposite end of a hardware connection to determine its IP
address, and was intended for computers on a connection-oriented network such as
Frame Relay or ATM. Volume 2 of this text describes an example implementation of
RARP.

Chapter 23 considers alternatives to RARP known as BOOTP and DHCP. Unlike
the low-level address determination scheme RARP supplies, BOOTP and DHCP build
on higher level protocols like IP and UDP. Chapter 23 compares the two approaches,
discussing the strengths and weaknesses of each.

Determining An Internet Address At Startup (RARP) Chap. 6

A RARP server can broadcast RARP replies to all machines or transmit each reply directly
to the machine that makes the request. Characterize a network technology in which broad-
casting replies to all machines is beneficial.

RARP is a narrowly focused protocol in the sense that replies only contain one piece of in-
formation (i.e., the requested IP address). When a computer boots, it usually needs to
know its name in addition to its Internet address. Extend RARP to supply the additional in-
formation.

How much larger will Ethernet frames become when information is added to RAW as
described in the previous exercise?

Adding a second RARP server to a network increases reliability. Does it ever make sense
to add a third? How about a fourth? Why or Why not?

The diskless workstations from one vendor use RARP to obtain their IP addresses, but al-
ways assume the response comes from the workstation's file server. The diskless machine
then tries to obtain a boot image from that server. If it does not receive a response, the
workstation enters an infinite loop broadcasting boot requests. Explain how adding a back-
up RARP server to such a configuration can cause the network to become congested with
broadcasts. Hint: think of power failures.

Monitor a local network while you reboot various computers. Which use RARP?

The backup RARP servers discussed in the text use the arrival of a second request in a
short period of time to trigger a reply. Consider the RARP server scheme that has all
servers answer the first request, but avoids congestion by having each server delay a ran-
dom time before answering. Under what circumstances could such a design yield better
results than the design described in the text?

Internet Protocol:
Connectionless Datagram
Delivery

7.1 Introduction

Previous chapters review pieces of network hardware and software that make inter-
net communication possible, explaining the underlying network technologies and ad-
dress resolution. This chapter explains the fundamental principle of connectionless
delivery and discusses how it is provided by the Internet Protocol (IP), which is one of
the two major protocols used in internetworking (TCP being the other). We will study
the format of IP datagrams and see how they form the basis for all internet communica-
tion. The next two chapters continue our examination of the Internet Protocol by dis-
cussing datagram routing and error handling.

7.2 A Virtual Network

Chapter 3 discusses an internet architecture in which routers connect multiple phy-
sical networks. Looking at the architecture may be misleading, because the focus
should be on the interface that an internet provides to users, not on the interconnection
technology.

Internet Protocol: Connectionless Datagram Delivery Chap. 7

A user thinks of an internet as a single virtual network that intercon-
nects all hosts, and through which communication is possible; its
underlying architecture is both hidden and irrelevant.

In a sense, an internet is an abstraction of physical networks because, at the lowest lev-
el, it provides the same functionality: accepting packets and delivering them. Higher
levels of internet software add most of the rich functionality users perceive.

7.3 Internet Architecture And Philosophy

Conceptually, a TCPIIP internet provides three sets of services as shown in Figure
7.1; their arrangement in the figure suggests dependencies among them. At the lowest
level, a connectionless delivery service provides a foundation on which everything rests.
At the next level, a reliable transport service provides a higher level platform on which
applications depend. We will soon explore each of these services, understand what they
provide, and see the protocols associated with them.

RELIABLE TRANSPORT SERVICE

CONNECTIONLESS PACKET DELIVERY SERVICE

Figure 7.1 The three conceptual layers of internet services.

7.4 The Conceptual Service Organization

Although we can associate protocol software with each of the services in Figure
7.1, the reason for identifying them as conceptual parts of the internet is that they clear-
ly point out the philosophical underpinnings of the design. The point is:

Internet sofrware is designed around three conceptual networking ser-
vices arranged in a hierarchy; much of its success has resulted be-
cause this architecture is surprisingly robust and adaptable.

Sec. 7.4 The Conceptual Service Organization 97

One of the most significant advantages of this conceptual separation is that it becomes
possible to replace one service without disturbing others. Thus, research and develop-
ment can proceed concurrently on all three.

7.5 Connectionless Delivery System

The most fundamental internet service consists of a packet delivery system.
Technically, the service is defined as an unreliable, best-effort, comectionless packet
delivery system, analogous to the service provided by network hardware that operates
on a best-effort delivery paradigm. The service is called unreliable because delivery is
not guaranteed. The packet may be lost, duplicated, delayed, or delivered out of order,
but the service will not detect such conditions, nor will it infornl the sender or receiver.
The service is called connectionless because each packet is treated independently from
all others. A sequence of packets sent from one computer to another may travel over
different paths, or some may be lost while others are delivered. Finally, the service is
said to use best-effort delivery because the internet software makes an earnest attempt to
deliver packets. That is, the internet does not discard packets capriciously; unreliability
arises only when resources are exhausted or underlying networks fail.

7.6 Purpose Of The lnternet Protocol

The protocol that defines the unreliable, connectionless delivery mechanism is
called the Internet Protocol and is usually referred to by its initials, IPt. IP provides
three important definitions. First, the IP protocol defines the basic unit of data transfer
used throughout a TCPhP internet. Thus, it specifies the exact format of all data as it
passes across the internet. Second, IP software performs the routing function, choosing
a path over which data will be sent. Third, in addition to the precise, formal specifica-
tion of data formats and routing, IP includes a set of rules that embody the idea of un-
reliable packet delivery. The rules characterize how hosts and routers should process
packets, how and when error messages should be generated, and the conditions under
which packets can be discarded. IP is such a fundamental part of the design that a
TCP/IP internet is sometimes called an IP-based technology.

We begin our consideration of IP in this chapter by looking at the packet format it
specifies. We leave until later chapters the topics of routing and error handling.

7.7 The lnternet Datagram

The analogy between a physical network and a TCP/IP internet is strong. On a
physical network, the unit of transfer is a frame that contains a header and data, where
the header gives information such as the (physical) source and destination addresses.
Th -internet chlf its basic transfer unit anJnternet datagram, sometimes referred to as <

tThe abbreviation IF' gives rise to the term "IF' address."

98 Internet Protocol: Connectionless Datagram Delivery Chap. 7

an IP datagram or merely a datagram. Like a typical physical network frame, a da-
tagram is divided into header and data areas. Also like a frame, the datagram header
contains the source and destination addresses and a type field that identifies the contents
of the datagram. The difference, of course, is that the datagram header contains IP ad-
dresses whereas the frame header contains physical addresses. Figure 7.2 shows the
general form of a datagram:

DATAGRAM HEADER DATAGRAM DATA AREA

Figure 7.2 General form of an IP datagram, the TCP/IP analogy to a network
frame. IP specifies the header format including the source and
destination IP addresses. IP does not specify the format of the
data area; it can be used to transport arbitrary data.

7.7.1 Datagram Format

Now that we have described the general layout of an IP datagram, we can look at
the contents in more detail. Figure 7.3 shows the arrangement of fields in a datagram:

I SOURCE lP ADDRESS I

VERS I HLEN I SERVICE TYPE

IDENTIFICATION

TIME TO LIVE I PROTOCOL

I DESTINATION IP ADDRESS I

TOTAL LENGTH

 FLAGS^ FRAGMENT OFFSET

HEADER CHECKSUM

I IP OPTIONS (IF ANY) I PADDING I
I DATA I

Figure 7 3 Format of an Internet datagram, the basic unit of transfer in a
TCPLP internet.

Because datagram processing occurs in software, the contents and format are not
constrained by any hardware. For example, the first Cbit field in a datagram (VERS)
contains the version of the IP protocol that was used to create the datagram. It is used
to verify that the sender, receiver, and any routers in between them agree on the format

Sec. 7.7 The Internet Datagram 99

of the datagram. All IP software is required to check the version field before processing
a datagram to ensure it matches the fomlat the software expects. If standards change,
machines will reject datagrams with protocol versions that differ from theirs, preventing
them from misinterpreting datagram contents according to an outdated format. The
current IP protocol version is 4. Consequently, the term IPv4 is often used to denote
the current protocol.

The header length field (HLEN), also 4 bits, gives the datagram header length
measured in 32-bit words. As we will see, all fields in the header have fixed length ex-
cept for the IP OPTIONS and corresponding PADDING fields. The most common
header, which contains no options and no padding, measures 20 octets and has a header
length field equal to 5.

The TOTAL LENGTH field gives the length of the IP datagram measured in octets,
including octets in the header and data. The size of the data area can be computed by
subtracting the length of the header (HLEN) from the TOTAL LENGTH. Because the
TOTAL LENGTH field is 16 bits long, the maximum possible size of an IP datagram is
216 or 65,535 octets. In most applications this is not a severe limitation. It may become
more important in the future if higher speed networks can carry data packets larger than
65,535 octets.

7.7.2 Datagram Type Of Service And Differentiated Services

Informally called Type Of Service (TOS), the 8-bit SERVICE TYPE field specifies
how the datagram should be handled. The field was originally divided into five sub-
fields as shown in Figure 7.4:

Figure 7.4 The original five subfields that comprise the 8-bit SERVICE TYPE
field.

0 1 2 3 4 5 6 7

Three PRECEDENCE bits specify datagram precedence, with values ranging from 0
(normal precedence) through 7 (network control), allowing senders to indicate the im-
portance of each datagram. Although some routers ignore type of service, it is an im-
portant concept because it provides a mechanism that can allow control information to
have precedence over data. For example, many routers use a precedence value of 6 or 7
for routing traffic to make it possible for the routers to exchange routing information
even when networks are congested.

Bits D, T, and R specify the type of transport desired for the datagram. When set,
the D bit requests low delay, the T bit requests high throughput, and the R bit requests
high reliability. Of course, it may not be possible for an internet to guarantee the type

UNUSED PRECEDENCE T D R

100 Internet Protocol: Connectionless Datagram Delivery Chap. 7

of transport requested (i.e., it could be that no path to the destination has the requested
property). Thus, we think of the transport request as a hint to the routing algorithms,
not as a demand. If a router does know more than one possible route to a given desti-
nation, it can use the type of transport field to select one with characteristics closest to
those desired. For example, suppose a router can select between a low capacity leased
line or a high bandwidth (but high delay) satellite connection. Datagrams carrying
keystrokes from a user to a remote computer could have the D bit set requesting that
they be delivered as quickly as possible, while datagrams carrying a bulk file transfer
could have the T bit set requesting that they travel across the high capacity satellite
path.

In the late 1990s, the IETF redefined the meaning of the 8-bit SERVICE TYPE
field to accommodate a set of diferentiated services (DS). Figure 7.5 illustrates the
resulting definition.

Figure 7.5 The differentiated services (DS) interpretation of the SERVICE
TYPE field in an IP datagram.

CODEPOINT

Under the differentiated services interpretation, the first six bits comprise a
codepoint, which is sometimes abbreviated @CPL and the last two bits are left unused.
A codepoint value maps to an underlying service definition, typically through an array
of pointers. Although it is possible to define 64 separate services, the designers suggest
that a given router will only have a few services, and multiple codepoints will map to
each service. Moreover, to maintain backward compatibility with the original defini-
tion, the standard distinguishes between the first three bits of the codepoint (the bits that
were formerly used for precedence) and the last three bits. When the last three bits con-
tain zero, the precedence bits define eight broad classes of service that adhere to the
same guidelines as the original definition: datagrams with a higher number in their pre-
cedence field are given preferential treatment over datagrams with a lower number.
That is, the eight ordered classes are defined by codepoint values of the form:

UNUSED

xxxo 0 0

where x denotes either a zero or a one.
The differentiated services design also accommodates another existing practice -

the widespread use of precedence 6 or 7 for routing traffic. The standard includes a
special case to handle these precedence values. A router is required to implement at
least two priority schemes: one for normal traffic and one for high-priority traffic.
When the last three bits of the CODEPOINT field are zero, the router must map a

Sec. 7.7 The Internet Datagram 101

codepoint with precedence 6 or 7 into the higher priority class and other codepoint
values into the lower priority class. Thus, if a datagram arrives that was sent using the
original TOS scheme, a router using the differentiated services scheme will honor pre-
cedence 6 and 7 as the datagram sender expects.

The 64 codepoint values are divided into three administrative groups as Figure 7.6
illustrates.

Pool Codepoint Assigned By
1 xxxxxo Standards organization
2 X X X X ~ 1 Local or experimental
3 xxxxo 1 Local or experimental for now

Figure 7.6 The three administrative pools of codepoint values.

As the figure indicates, half of the values (i.e., the 32 values in pool I) must be as-
signed interpretations by the ETF. Currently, all values in pools 2 and 3 are available
for experimental or local use. However, if the standards bodies exhaust all values in
pool I, they may also choose to assign values in pool 3.

The division into pools may seem unusual because it relies on the low-order bits of
the value to distinguish pools. Thus, rather than a contiguous set of values, pool I con-
tains every other codepoint value (i.e., the even numbers between 2 and 64). The divi-
sion was chosen to keep the eight codepoints corresponding to values xxxO 0 0 in the
same pool.

Whether the original TOS interpretation or the revised differentiated services in-
terpretation is used, it is important to realize that routing software must choose from
among the underlying physical network technologies at hand and must adhere to local
policies. Thus, specifying a level of service in a datagram does not guarantee that
routers along the path will agree to honor the request. To summarize:

We regard the service type specification as a hint to the routing algo-
rithm that helps it choose among various paths to a destination based
on local policies and its knowledge of the hardware technologies
available on those paths. An internet does not guarantee to provide
any particular type of service.

7.7.3 Datagram Encapsulation

Before we can understand the next fields in a datagram, it is important to consider
how datagrams relate to physical network frames. We start with a question: "How
large can a datagram be?" Unlike physical network frames that must be recognized by
hardware, datagrams are handled by software. They can be of any length the protocol
designers choose. We have seen that the Pv4 datagram format allots 16 bits to the total
length field, limiting the datagram to at most 65,535 octets.

102 Internet Protocol: Connectionless Datagram Delivery Chap. 7

More fundamental limits on datagram size arise in practice. We know that as da-
tagrams move from one machine to another, they must always be transported by the
underlying physical network. To make internet transportation efficient, we would like
to guarantee that each datagram travels in a distinct physical frame. That is, we want
our abstraction of a physical network packet to map directly onto a real packet if possi-
ble.

The idea of carrying one datagram in one network frame is called encapsulation.
To the underlying network, a datagram is like any other message sent from one machine
to another. The hardware does not recognize the datagram format, nor does it under-
stand the IP destination address. Thus, as Figure 7.7 shows, when one machine sends
an IP datagram to another, the entire datagram travels in the data portion of the network
frame t .

DATAGRAM DATA AREA

Figure 7.7 The encapsulation of an lP datagram in a frame. The physical net-
work treats the entire datagram, including the header, as data.

+ +

7.7.4 Datagram Size, Network MTU, and Fragmentation

FRAME
HEADER

In the ideal case, the entire IP datagram fits into one physical frame, making
transmission across the physical net efficient. To achieve such efficiency, the designers
of IP might have selected a maximum datagram size such that a datagram would always
fit into one frame. But which frame size should be chosen? After all, a datagram may
travel across many types of physical networks as it moves across an internet to its final
destination.

To understand the problem, we need a fact about network hardware: each packet-
switching technology places a fixed upper bound on the amount of data that can be
transferred in one physical frame. For example, Ethernet limits transfers to 1500$ oc-
tets of data, while FDDI permits approximately 4470 octets of data per frame. We refer
to these limits as the network's maximum transfer unit or MTU. MTU sizes can be
quite small: some hardware technologies limit transfers to 128 octets or less. Limiting
datagram to fit the smallest possible MTU in the internet makes transfers inefficient
when datagrams pass across a network that can carry larger size frames. However, al-
lowing datagrams to be larger than the minimum network MTU in an internet means
that a datagram may not always fit into a singIe network frame.

FRAME DATA AREA

tA field in the frame header usually identifies the data being carried; Ethernet uses the type value O8OO16
to specify that the data area contains an encapsulated IP datagram.

Sec. 7.7 The Internet Datagram 103

The choice should be obvious: the point of the internet design is to hide underlying
network technologies and make communication convenient for the user. Thus, instead
of designing datagrams that adhere to the constraints of physical networks, TCP/IP
software chooses a convenient initial datagram size and arranges a way to divide large
datagrams into smaller pieces when the datagram needs to traverse a network that has a
small MTU. The small pieces into which a datagram is divided are calledfragments,
and the process of dividing a datagram is known as fragmentation.

As Figure 7.8 illustrates, fragmentation usually occurs at a router somewhere along
the path between the datagram source and its ultimate destination. The router receives a
datagram from a network with a large MTU and must send it over a network for which
the MTU is smaller than the datagram size.

Net 1 1 1 Net 3

MTU=1500 MTU=1500

F i r e 7.8 An illustration of where fragmentation occurs. Router R, frag-
ments large datagrams sent from A to B; R, fragments large da-
tagrams sent from B to A.

In the figure, both hosts attach directly to Ethernets which have an MTU of 1500
octets. Thus, both hosts can generate and send datagrams up to 1500 octets long. The
path between them, however, includes a network with an MTU of 620. If host A sends
host B a datagram larger than 620 octets, router R, will fragment the datagram. Similar-
ly, if B sends a large datagram to A, router R, will fragment the datagram.

Fragment size is chosen so each fragment can be shipped across the underlying
network in a single frame. In addition, because IP represents the offset of the data in
multiples of eight octets, the fragment size must be chosen to be a multiple of eight. Of
course, choosing the multiple of eight octets nearest to the network MTU does not usu-
ally divide the datagram into equal size pieces; the last piece is often shorter than the
others. Fragments must be reassembled to produce a complete copy of the original da-
tagram before it can be processed at the destination.

The IP protocol does not limit datagrams to a small size, nor does it guarantee that
large datagrams will be delivered without fragmentation. The source can choose any
datagram size it thinks appropriate; fragmentation and reassembly occur automatically,
without the source taking special action. The IP specification states that routers must
accept datagrarns up to the maximum of the MTUs of networks to which they attach.

104 Internet Protocol: Connectionless Datagram Delivery Chap. 7

In addition, a router must always handle datagrams of up to 576 octets. (Hosts are also
required to accept, and reassemble if necessary, datagrams of at least 576 octets.)

Fragmenting a datagram means dividing it into several pieces. It may surprise you
to learn that each piece has the same format as the original datagram. Figure 7.9 illus-
trates the result of fragmentation.

DATAGRAM
HEADER

data, data, t data,
600 octets 600 octets : 200 octets

I FRAGMENT31 HEADER data, I

Fragment 1 (offset 0) FRAGMENT 1
HEADER

FRAGMENT 2
HEADER

Fragment 3 (offset 1200)

data,

Figure 7.9 (a) An original datagram carrying 1400 octets of data and (b) the
three fragments for network MTU of 620. Headers 1 and 2 have
the more fragments bit set. Offsets shown are decimal octets;
they must be divided by 8 to get the value stored in the fragment
headers.

data,

Each fragment contains a datagram header that duplicates most of the original da-
tagram header (except for a bit in the FLAGS field that shows it is a fragment), fol-
lowed by as much data as can be carried in the fragment while keeping the total length
smaller than the MTU of the network over which it must travel.

Fragment 2 (offset 600)

7.7.5 Reassembly Of Fragments

Should a datagram be reassembled after passing across one network, or should the
fragments be carried to the final host before reassembly? In a TCP/IP internet, once a
datagram has been fragmented, the fragments travel as separate datagrams all the way to
the ultimate destination where they must be reassembled. Preserving fragments all the
way to the ultimate destination has two disadvantages. First, because datagrams are not
reassembled immediately after passing across a network with small MTU, the small
fragments must be carried from the point of fragmentation to the ultimate destination.

See. 7.7 The Internet Datagram 105

Reassembling datagrams at the ultimate destination can lead to inefficiency: even if
some of the physical networks encountered after the point of fragmentation have large
MTU capability, only small fragments traverse them. Second, if any fragments are lost,
the datagram cannot be reassembled. The receiving machine starts a reassembly timer
when it receives an initial fragment. If the timer expires before all fragments arrive, the
receiving machine dlscards the surviving pieces without processing the datagram. Thus,
the probability of datagram loss increases when fragmentation occurs because the loss
of a single fragment results in loss of the entire datagram.

Despite the minor disadvantages, performing reassembly at the ultimate destination
works well. It allows each fragment to be routed independently, and does not require
intermediate routers to store or reassemble fragments.

7.7.6 Fragmentation Control

Three fields in the datagram header, IDENTIFICATION, FLAGS, and FRAGMENT
OFFSET, control fragmentation and reassembly of datagrams. Field IDENTIFICATION
contains a unique integer that identifies the datagram. Recall that when a router frag-
ments a datagram, it copies most of the fields in the datagram header into each frag-
ment. Thus, the IDENTIFICATION field must be copied. Its primary purpose is to al-
low the destination to know which arriving fragments belong to which datagrams. As a
fragment arrives, the destination uses the IDENTIFICATION field along with the da-
tagram source address to identify the datagram. Computers sending IP datagrams must
generate a unique value for the IDENTIFICATION field for each datagram?. One tech-
nique used by IP software keeps a global counter in memory, increments it each time a
new datagram is created, and assigns the result as the datagram's IDENTIFICATION
field.

Recall that each fragment has exactly the same format as a complete datagram.
For a fragment, field FRAGMENT OFFSET specifies the offset in the original datagram
of the data being carried in the fragment, measured in units of 8 octets*, starting at
offset zero. To reassemble the datagram, the destination must obtain all fragments start-
ing with the fragment that has offset 0 through the fragment with highest offset. Frag-
ments do not necessarily arrive in order, and there is no communication between the
router that fragmented the datagram and the destination trying to reassemble it.

The low-order two bits of the 3-bit FLAGS field control fragmentation. Usually,
application software using TCPIIP does not care about fragmentation because both frag-
mentation and reassembly are automatic procedures that occur at a low level in the
operating system, invisible to end users. However, to test internet software or debug
operational problems, it may be important to test sizes of datagrams for which fragmen-
tation occurs. The first control bit aids in such testing by specifying whether the da-
tagram may be fragmented. It is called the do notfragment bit because setting it to 1
specifies that the datagram should not be fragmented. An application may choose to
disallow fragmentation when only the entire datagram is useful. For example, consider
a bootstrap sequence in which a small embedded system executes a program in ROM
that sends a request over the internet to which another machine responds by sending

+In theory, retransmissions of a packet can carry the same IDENTIFICATION field as the original; in
practice, higher-level protocols perform retransmission, resulting in a new datagram with its own IDENTIFI-
CA TZON.

I - - - - - - - - - I- .L- LA->-- ,.$$--*.. --- ,.^^^:r.^A :.. -..1+:..1,.r -6 P -tntr

106 Intemet Protocol: Connectionless Datagram Delivery Chap. 7

back a memory image. If the embedded system has been designed so it needs the entire
image or none of it, the datagram should have the do notfragment bit set. Whenever a
router needs to fragment a datagram that has the do not fragment bit set, the router dis-
cards the datagram and sends an error message back to the source.

The low order bit in the FLAGS field specifies whether the fragment contains data
from the middle of the original datagram or from the end. It is called the more frag-
ments bit. To see why such a bit is needed, consider the IP software at the ultimate
destination attempting to reassemble a datagram. It will receive fragments (possibly out
of order) and needs to know when it has received all fragments for a datagram. When a
fragment arrives, the TOTAL LENGTH field in the header refers to the size of the frag-
ment and not to the size of the original datagram, so the destination cannot use the TO-
TAL LENGTH field to tell whether it has collected all fragments. The more fragments
bit solves the problem easily: once the destination receives a fragment with the more
fragments bit turned off, it knows this fragment carries data from the tail of the original
datagram. From the FRAGMENT OFFSET and TOTAL LENGTH fields, it can compute
the length of the original datagram. By examining the FRAGMENT OFFSET and TO-
TAL LENGTH of all fragments that have arrived, a receiver can tell whether the frag-
ments on hand contain all pieces needed to reassemble the original datagram.

7.7.7 Time to Live (TTL)

In principle, field TIME TO L N E specifies how long, in seconds, the datagram is
allowed to remain in the internet system. The idea is both simple and important: when-
ever a computer injects a datagram into the internet, it sets a maximum time that the da-
tagram should survive. Routers and hosts that process datagrams must decrement the
TIME TO L N E field as time passes and remove the datagram from the internet when its
time expires.

Estimating exact times is difficult because routers do not usually know the transit
time for physical networks. A few rules simplify processing and make it easy to handle
datagrams without synchronized clocks. First, each router along the path from source to
destination is required to decrement the TIME TO L N E field by I when it processes the
datagram header. Furthermore, to handle cases of overloaded routers that introduce
long delays, each router records the local time when the datagram arrives, and decre-
ments the TIME TO W E by the number of seconds the datagram remained inside the
router waiting for service?.

Whenever a TIME TO W E field reaches zero, the router discards the datagram
and sends an error message back to the source. The idea of keeping a timer for da-
tagrams is interesting because it guarantees that datagram cannot travel around an in-
ternet forever, even if routing tables become corrupt and routers route datagrams in a
circle.

Although once important, the notion of a router delaying a datagram for many
seconds is now outdated - current routers and networks are designed to forward each
datagram within a reasonable time. If the delay becomes excessive, the router simply
discards the datagram. Thus, in practice, the TIME TO W E acts as a "hop limit"
rather than an estimate of delay. Each router only decrements the value by 1.

?In practice, modem routers do not hold datagrams for multiple seconds.

Sec. 7.7 The Internet Datagram 107

7.7.8 Other Datagram Header Fields

Field PROTOCOL is analogous to the type field in a network frame; the value
specifies which high-level protocol was used to create the message carried in the DATA
area of the datagram. In essence, the value of PROTOCOL specifies the fom~at of the
DATA area. The mapping between a high level protocol and the integer value used in
the PROTOCOL field must be administered by a central authority to guarantee agree-
ment across the entire Internet.

Field HEADER CHECKSUM ensures integrity of header values. The IP checksum
is formed by treating the header as a sequence of 16-bit integers (in network byte ord-
er), adding them together using one's complement arithmetic, and then taking the one's
complement of the result. For purposes of computing the checksum, field HEADER
CHECKSUM is assumed to contain zero.

It is important to note that the checksum only applies to values in the IP header
and not to the data. Separating the checksum for headers and data has advantages and
disadvantages. Because the header usually occupies fewer octets than the data, having a
separate checksum reduces processing time at routers which only need to compute
header checksums. The separation also allows higher level protocols to choose their
own checksum scheme for the data. The chief disadvantage is that higher level proto-
cols are forced to add their own checksum or risk having corrupted data go undetected.

Fields SOURCE IP ADDRESS and DESTINATION IP ADDRESS contain the 32-bit
IP addresses of the datagram's sender and intended recipient. Although the datagram
may be routed through many intermediate routers, the source and destination fields nev-
er change; they speclfy the IP addresses of the original source and ultimate destination?.

The field labeled DATA in Figure 7.3 shows the beginning of the data area of the
datagram. Its length depends, of course, on what is being sent in the datagram. The IP
OPTIONS field, discussed below, is variable length. The field labeled PADDING,
depends on the options selected. It represents bits containing zero that may be needed
to ensure the datagram header extends to an exact multiple of 32 bits (recall that the
header length field is specified in units of 32-bit words).

7.8 Internet Datagram Options

The IP OPTIONS field following the destination address is not required in every
datagram; options are included primarily for network testing or debugging. Options
processing is an integral part of the IP protocol, however, so all standard implementa-
tions must include it.

The length of the IP OPTIONS field varies depending on which options are select-
ed. Some options are one octet long; they consist of a single octet option code. Other
options are variable length. When options are present in a datagram, they appear con-
tiguously, with no special separators between them. Each option consists of a single oc-
tet option code, which may be followed by a single octet length and a set of data octets
for that option. The option code octet is divided into three fields as Figure 7.10 shows.

?An exception is made when the datagram includes the source route options listed below.

Internet Protocol: Connectionless Datagram Delivery Chap. 7

0 1 2 3 4 5 6 7

I COPY I OPTION CLASS I OPTION NUMBER

Figure 7.10 The division of the option code octet into three fields of length 1,
2, and 5 bits.

The fields of the OPTION CODE consist of a 1-bit COPY flag, a 2-bit OPTION CLASS,
and the 5-bit OPTION NUMBER. The COPY flag controls how routers treat options
during fragmentation. When the COPY bit is set to I , it specifies that the option should
be copied into all fragments. When set to 0, the COPY bit means that the option should
only be copied into the first fragment and not into all fragments.

The OPTION CLASS and OPTION NUMBER bits specify the general class of the
option and a specific option in that class. The table in Figure 7.1 1 shows how option
classes are assigned.

Option Class Meaning
0 Datagram or network control
1 Reserved for future use
2 Debugging and measurement
3 Reserved for future use

Figure 7.11 Classes of IP options as encoded in the OPTION CLASS bits of
an option code octet.

The table in Figure 7.12 lists examples of options that can accompany an IP da-
tagram and gives their OPTION CLASS and OPTION NUMBER values. As the list
shows, most options are used for control purposes.

Sec. 7.8 Internet Datagram Options 109

Option Option
Class Number Length Description

-

-

11

var

var
4

var

4
4
4

var

var

End of option list. Used if options do
not end at end of header (see header
padding field for explanation).

No operation. Used to align octets in a
list of options.

Security and handling restrictions
(for military applications).

Loose source route. Used to request
routing that includes the specified routers.

Record route. Used to trace a route.
Stream identifier. Used to carry a
SATNET stream identifier (obsolete).

Strict source route. Used to specify
a exact path through the internet.

MTU Probe. Used for path MTU discovery.
MTU Reply. Used for path MTU discovery.
Router Alert. Router should examine this
datagram even if not an addressee.

Internet timestamp. Used to record
timestamps along the route.

Traceroute. Used by traceroute program
to find routers along a path.

Figure 7.12 Examples of IP options with their numeric class and number
codes. The value var in the length column stands for variable.

7.8.1 Record Route Option

The routing and timestamp options are the most interesting because they provide a
way to monitor or control how internet routers route datagram. The record route op-
tion allows the source to create an empty list of IP addresses and arrange for each router
that handles the datagram to add its IP address to the list. Figure 7.13 shows the format
of the record route option.

As described above, the CODE field contains the option class and option number
(0 and 7 for record route). The LENGTH field specifies the total length of the option as
it appears in the IP datagram, including the first three octets. The fields starting with
the one labeled FIRST IP ADDRESS comprise the area reserved for recording internet
addresses. The POINTER field specifies the offset within the option of the next avail-
able slot.

110 Internet Protocol: Connectionless Datagram Delivery Chap. 7

Figure 7.13 The format of the record route option in an IP datagram. The
option begins with three octets immediately followed by a list of
addresses. Although the diagram shows addresses in 32 bit un-
its, they are not aligned on any octet boundary in a datagram.

0 8 16 24 31

Whenever a machine handles a datagram that has the record route option set, the
machine adds its address to the record route list (enough space must be allocated in the
option by the original source to hold all entries that will be needed). To add itself to
the list, a machine first compares the pointer and length fields. If the pointer is greater
than the length, the list is full, so the machine forwards the datagram without inserting
its entry. If the list is not full, the machine inserts its Coctet IP address at the position
specified by the POINTER, and increments the POINTER by four.

When the datagram arrives, the destination machine can extract and process the list
of IP addresses. Usually, a computer that receives a datagram ignores the recorded
route. Using the record route option requires two machines that agree to cooperate; a
computer will not automatically receive recorded routes in incoming datagrams after it
turns on the record route option in outgoing datagrams. The source must agree to en-
able the record route option and the destination must agree to process the resultant list.

CODE(7) I LENGTH

7.8.2 Source Route Options

POINTER

Another idea that network builders find interesting is the source route option. The
idea behind source routing is that it provides a way for the sender to dictate a path
through the internet. For example, to test the throughput over a particular physical net-
work, N, system administrators can use source routing to force IP datagrams to traverse
network N even if routers would normally choose a path that did not include it. The
ability to make such tests is especially important in a production environment, because
it gives the network manager freedom to route users' datagrams over networks that are
known to operate correctly while simultaneously testing other networks. Of course,
source routing is only useful to people who understand the network topology; the aver-
age user has no need to know or use it.

FIRST IP ADDRESS

SECOND lP ADDRESS

. . .

Sec. 7.8 Internet Datagram Options 111

IF' supports two forms of source routing. One form, called strict source routing,
specifies a routing path by including a sequence of IP addresses in the option as Figure
7.14 shows.

0 8 16 24 31

I CODE(137) I LENGTH I POINTER I
IP ADDRESS OF FIRST HOP

IP ADDRESS OF SECOND HOP

Figure 7.14 The strict source route option specifies an exact route by giving a
list of IP addresses the datagram must follow.

Strict source routing means that the addresses specify the exact path the datagram must
follow to reach its destination. The path between two successive addresses in the list
must consist of a single physical network; an error results if a router cannot follow a
strict source route. The other form, called loose source routing, also includes a se-
quence of IP addresses. It specifies that the datagram must follow the sequence of IP
addresses, but allows multiple network hops between successive addresses on the list.

Both source route options require routers along the path to overwrite items in the
address list with their local network addresses. Thus, when the datagram anives at its
destination, it contains a list of all addresses visited, exactly like the list produced by
the record route option.

The format of a source route option resembles that of the record route option
shown above. Each router examines the POINTER and LENGTH fields to see if the list
has been exhausted. If it has, the pointer is greater than the length, and the router routes
the datagram to its destination as usual. If the list is not exhausted, the router follows
the pointer, picks up the IP address, replaces it with the router's address?, and routes
the datagram using the address obtained from the list.

7.8.3 Timestamp Option

The timestamp option works like the record route option in that the timestamp op-
tion contains an initially empty list, and each router along the path from source to desti-
nation fills in one item in the list. Each entry in the list contains two 32-bit items: the
IP address of the router that supplied the entry and a 32-bit integer timestamp. Figure
7.15 shows the format of the timestamp option.

t A router has one address for each interface; it records the address that corresponds to the network over
which it routes the datagram.

112 Internet Protocol: Connectionless Datagram Delivery Chap. 7

I FIRST IP ADDRESS I

0 8 16 24 31

FIRST TIMESTAMP

CODE(68) 1 LENGTH

Figure 7.15 The format of the timestamp option. Bits in the FLAGS field
control the exact format and rules routers use to process this op-
tion.

In the figure, the LENGTH and POINTER fields are used to specify the length of
the space reserved for the option and the location of the next unused slot (exactly as in
the record route option). The 4-bit OFLOW field contains an integer count of routers
that could not supply a timestamp because the option was too small.

The value in the 4-bit FLAGS field controls the exact format of the option and tells
how routers should supply timestamps. The values are:

POINTER

Flags value Meaning
0 Record timestamps only; omit IP addresses.
1 Precede each timestamp by an IP address

(this is the format shown in Figure 7.15).
3 IP addresses are specified by sender; a

router only records a timestamp if the
next IP address in the list matches the
router's IP address.

OFLOW 1 FLAGS

Figure 7.16 The interpretation of values in the FLAGS field of a timestamp
option.

Timestamps give the time and date at which a router handles the datagram, ex-
pressed as milliseconds since midnight, Universal Time?. If the standard representation
for time is unavailable, the router can use any representation of local time provided it
turns on the high-order bit in the timestamp field. Of course, timestamps issued by in-
dependent computers are not always consistent even if represented in universal time;
each machine reports time according to its local clock, and clocks may differ. Thus,
timestamp entries should always be treated as estimates, independent of the representa-
tion.

It may seem odd that the timestamp option includes a mechanism to have routers
record their IP addresses along with timestamps because the record route option already
provides that capability. However, recording IP addresses with timestamps eliminates

t Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian.

Sec. 7.8 Internet Datagram Options 113

ambiguity. Having an address recorded along with each timestamp is also useful be-
cause it allows the receiver to know exactly which path the datagram followed.

7.8.4 Processing Options During Fragmentation

The idea behind the COPY bit in the option CODE field should now be clear.
When fragmenting a datagram, a router replicates some IP options in all fragments
while it places others in only one fragment. For example, consider the option used to
record the datagram route. We said that each fragment will be handled as an indepen-
dent datagram, so there is no guarantee that all fragments follow the same path to the
destination. If all fragments contained the record route option, the destination might re-
ceive a different list of routes from each fragment. It could not produce a single, mean-
ingful list of routes for the reassembled datagram. Therefore, the IP standard specifies
that the record route option should only be copied into one of the fragments.

Not all IP options can be restricted to one fragment. Consider the source route op-
tion, for example, that specifies how a datagram should travel through the internet.
Source routing information must be replicated in all fragment headers, or fragments will
not follow the specified route. Thus, the code field for source route specifies that the
option must be copied into all fragments.

7.9 Summary

The fundamental service provided by TCPIIP internet software is a connectionless,
unreliable, best-effort packet delivery system. The Internet Protocol (IP) formally speci-
fies the format of internet packets, called ahtagrams, and informally embodies the ideas
of connectionless delivery. This chapter concentrated on datagram fonats; later
chapters will discuss IP routing and error handling.

Analogous to a physical frame, the IP datagram is divided into header and data
areas. Among other infornlation, the datagram header contains the source and destina-
tion IP addresses, fragmentation control, precedence, and a checksum used to catch
transmission errors. Besides fixed-length fields, each datagram header can contain an
options field. The options field is variable length, depending on the number and type of
options used as well as the size of the data area allocated for each option. Intended to
help monitor and control an internet, options allow one to specify or record routing in-
formation, or to gather timestamps as the datagram traverses an internet.

FOR FURTHER STUDY

Postel [I9801 discusses possible ways to approach internet protocols, addressing,
and routing. In later publications, Postel [RFC 7911 gives the standard for the Internet
Protocol. Braden [RFC 11221 further refines the standard. Hornig [RFC 8941 specifies

114 Internet Protocol: Connectionless Datagram Delivery Chap. 7

the standard for the transmission of IP datagrarns across an Ethernet. Clark [RFC 8151
describes efficient reassembly of fragments; Kent and Mogul [I9871 discusses the
disadvantages of fragmentation.

Nichols et. al. [RFC 24741 specifies the differentiated service interpretation of the
service type bits in datagram headers, and Blake et. al. [RFC 24751 discusses an archi-
tecture for differentiated services. In addition to the packet format, many constants
needed in the network protocols are also standardized; the values can be found in the
Official Internet Protocols RFC, which is issued periodically.

An alternative internet protocol suite known as XNS, is given in Xerox [1981].
Boggs et. al. [I9801 describes the PARC Universal Packet (PUP) protocol, an abstrac-
tion from XNS closely related to the IP datagram.

EXERCISES

What is the single greatest advantage of having the IF' checksum cover only the datagram
header and not the data? What is the disadvantage?

Is it ever necessary to use an IP checksum when sending packets over an Ethernet? Why
or why not?

What is the MTU size for a Frame Relay network? Hyperchannel? an ATM network?

Do you expect a high-speed local area network to have larger or smaller MTU size than a
wide area network?

Argue that fragments should have small, nonstandard headers.

Find out when the IP protocol version last changed. Is having a protocol version number
useful?
Extend the previous exercise by arguing that if the IP version changes, it makes more sense
to assign a new frame type than to encode the version number in the datagram.

Can you imagine why a one's complement checksum was chosen for IF' instead of a cyclic
redundancy check?

What are the advantages of doing reassembly at the ultimate destination instead of doing it
after the datagram travels across one network?
What is the minimum network MTU required to send an IP datagram that contains at least
one octet of data?

Suppose you are hired to implement IP datagram processing in hardware. Is there any rear-
rangement of fields in the header that would have made your hardware more efficient?
Easier to build?

If you have access to an implementation of IP, revise it and test your locally available im-
plementations of IP to see if they reject IP datagrarns with an out-of-date version number.

When a minimum-size IF' datagram travels across an Ethernet, how large is the frame?

The differentiated services interpretation of the SERVICE TYPE field allows up to 64
separate service levels. Argue that fewer levels are needed (i.e., make a list of all possible
services that a user might access).

The differentiated service definition was chosen to make it backward compatible with the
original type-of-service priority bits. Will the backward compatibility force implementa-
tions to be less efficient than an alternative scheme? Explain.

lnternet Protocol: Routing IP
Datagrams

8.1 Introduction

We have seen that all internet services use an underlying, connectionless packet
delivery system, and that the basic unit of transfer in a TCP/IP internet is the IP da-
tagram. This chapter adds to the description of connectionless service by describing
how routers forward IP datagrams and deliver them to their final destinations. We think
of the datagram format from Chapter 7 as characterizing the static aspects of the Inter-
net Protocol. The description of routing in this chapter characterizes the operational as-
pects. The next chapter completes our basic presentation of IP by describing how errors
are handled. Chapter 10 then describes extensions for classless and subnet addressing,
and later chapters show how other protocols use IP to provide higher-level services.

8.2 Routing In An lnternet

In a packet switching system, routing refers to the process of choosing a path over
which to send packets, and router refers to a computer making the choice. Routing oc-
curs at several levels. For example, within a wide area network that has multiple physi-
cal connections between packet switches, the network itself is responsible for routing
packets from the time they enter until they leave. Such internal routing is completely
self-contained inside the wide area network. Machines on the outside cannot participate
in decisions; they merely view the network as an entity that delivers packets.

116 Internet Protocol: Routing IP Datagram Chap. 8

Remember that the goal of IP is to provide a virtual network that encompasses
multiple physical networks and offers a connectionless datagram delivery service.
Thus, we will focus on IP forwarding, which is also called internet routing or IP rout-
ingf. The information used to make routing decisions is known as IP routing informa-
tion. Like routing within a single physical network, IP routing chooses a path over
which a datagram should be sent. Unlike routing within a single network, the IP rout-
ing algorithm must choose how to send a datagram across multiple physical networks.

Routing in an internet can be difficult, especially among computers that have mul-
tiple physical network connections. Ideally, the routing software would examine net-
work load, datagram length, or the type of service specified in the datagram header
when selecting the best path. Most internet routing software is much less sophisticated,
however, and selects routes based on fixed assumptions about shortest paths.

To understand IP routing completely, we must review the architecture of a TCP/IP
internet. First, recall that an internet is composed of multiple physical networks inter-
connected by computers called routers. Each router has direct connections to two or
more networks. By contrast, a host computer usually connects directly to one physical
network. We know that it is possible, however, to have a multi-homed host connected
directly to multiple networks.

Both hosts and routers participate in routing an IP datagram to its destination.
When an application program on a host attempts to communicate, the TCPJIP protocols
eventually generate one or more IP datagram. The host must make an initial routing
decision when it chooses where to send the datagrams. As Figure 8.1 shows, hosts
must make routing decisions even if they have only one network connection.

A path to some
p i n a t i o n s

path to other 4
destinations L

Figure 8.1 An example of a singly-homed host that must route datagram.
The host must choose to send a datagram either to router R, or to
router %, because each router provides the best path to some des-
tinations.

The primary purpose of routers is to make IP routing decisions. What about
multi-homed hosts? Any computer with multiple network connections can act as a
router, and as we will see, multi-homed hosts running TCPJIP have all the software

TChapter 18 describes a related topic known as layer 3 switching or IP switching.

Sec. 8.2 Routing In An Internet 117

needed for routing. Furthermore, sites that cannot afford separate routers sometimes use
general-purpose timesharing machines as both hosts and routers. However, the TCPDP
standards draw a sharp distinction between the functions of a host and those of a router,
and sites that try to mix host and router functions on a single machine sometimes find
that their multi-homed hosts engage in unexpected interactions. For now, we will dis-
tinguish hosts from routers, and assume that hosts do not perform the router's function
of transferring packets from one network to another.

8.3 Direct And Indirect Delivery

Loosely speaking, we can divide routing into two forms: direct delivery and in-
direct delivery. Direct delivery, the transmission of a datagram from one machine
across a single physical network directly to another, is the basis on which all internet
communication rests. Two machines can engage in direct delivery only if they both at-
tach directly to the same underlying physical transmission system (e.g., a single Ether-
net). Indirect delivery occurs when the destination is not on a directly attached net-
work, forcing the sender to pass the datagram to a router for delivery.

8.3.1 Datagram Delivery Over A Single Network

We know that one machine on a given physical network can send a physical frame
directly to another machine on the same network. To transfer an IP datagram, the
sender encapsulates the datagram in a physical frame, maps the destination IP address
into a physical address, and uses the network hardware to deliver it. Chapter 5 present-
ed two possible mechanisms for address resolution, including using the ARP protocol
for dynamic address binding on Ethernet-like networks. Chapter 7 discussed datagram
encapsulation. Thus, we have reviewed all the pieces needed to understand direct
delivery. To summarize:

Transmission of an IP datagram between two machines on a single
physical network does not involve routers. The sender encapsulates
the datagram in a physical frame, binds the destination ZP address to
a physical hardware address, and sends the resulting frame directly to
the destination.

How does the sender know whether the destination lies on a directly connected net-
work? The test is straightforward. We know that IP addresses are divided into a
network-specific prefix and a host-specific suffix. To see if a destination lies on one of
the directly connected networks, the sender extracts the network portion of the destina-
tion IP address and compares it to the network portion of its own IP address(es). A
match means the datagram can be sent directly. Here we see one of the advantages of
the Internet address scheme, namely:

Internet Protocol: Routing IP Datagrams Chap. 8

Because the internet addresses of all machines on a single network in-
clude a common network pre& and extracting that pre& requires
only a few machine instructions, testing whether a machine can be
reached directly is extremely eficient.

From an internet perspective, it is easiest to think of direct delivery as the final
step in any datagram transmission, even if the datagram traverses many networks and
intermediate routers. The final router along the path between the datagram source and
its destination will connect directly to the same physical network as the destination.
Thus, the final router will deliver the datagram using direct delivery. We can think of
direct delivery between the source and destination as a special case of general purpose
routing - in a direct route the datagram does not happen to pass through any intervening
routers.

8.3.2 Indirect Delivery

Indirect delivery is more difficult than direct delivery because the sender must
identify a router to which the datagram can be sent. The router must then forward the
datagram on toward its destination network.

To visualize how indirect routing works, imagine a large internet with many net-
works interconnected by routers but with only two hosts at the far ends. When one host
wants to send to the other, it encapsulates the datagram and sends it to the nearest
router. We know that the host can reach a router because all physical networks are in-
terconnected, so there must be a router attached to each network. Thus, the originating
host can reach a router using a single physical network. Once the frame reaches the
router, software extracts the encapsulated datagram, and the IP software selects the next
router along the path towards the destination. The datagram is again placed in a frame
and sent over the next physical network to a second router, and so on, until it can be
delivered directly. These ideas can be summarized:

Routers in a TCPAP internet form a cooperative, interconnected
structure. Datagrams pass from router to router until they reach a
router that can deliver the datagram directly.

How can a router know where to send each datagram? How can a host know
which router to use for a given destination? The two questions are related because they
both involve IP routing. We will answer them in two stages, considering the basic
table-driven routing algorithm in this chapter and postponing a discussion of how
routers learn new routes until later.

Sec. 8.4 Table-Driven IP Routing

8.4 Table-Driven IP Routing

The usual IP routing algorithm employs an Internet routing table (sometimes
called an IP routing table) on each machine that stores information about possible desti-
nations and how to reach them. Because both hosts and routers route datagrams, both
have IP routing tables. Whenever the IP routing software in a host or router needs to
transmit a datagram, it consults the routing table to decide where to send the datagram.

What information should be kept in routing tables? If every routing table con-
tained information about every possible destination address, it would be impossible to
keep the tables current. Furthermore, because the number of possible destinations is
large, machines would have insufficient space to store the information.

Conceptually, we would like to use the principle of information hiding and allow
machines to make routing decisions with minimal information. For example, we would
like to isolate information about specific hosts to the local environment in which they
exist and arrange for machines that are far away to route packets to them without know-
ing such details. Fortunately, the IP address scheme helps achieve this goal. Recall
that IP addresses are assigned to make all machines connected to a given physical net-
work share a common prefix (the network portion of the address). We have already
seen that such an assignment makes the test for direct delivery efficient. It also means
that routing tables only need to contain network prefixes and not full IP addresses.

8.5 Next-Hop Routing

Using the network portion of a destination address instead of the complete host ad-
dress makes routing efficient and keeps routing tables small. More important, it helps
hide information, keeping the details of specific hosts confined to the local environment
in which those hosts operate. Typically, a routing table contains pairs (N, R), where N
is the IP address of a destination network, and R is the IP address of the "next" router
along the path to network N. Router R is called the next hop, and the idea of using a
routing table to store a next hop for each destination is called next-hop routing. Thus,
the routing table in a router R only specifies one step along the path from R to a desti-
nation network - the router does not know the complete path to a destination.

It is important to understand that each entry in a routing table points to a router
that can be reached across a single network. That is, all routers listed in machine M's
routing table must lie on networks to which M connects directly. When a datagram is
ready to leave M, IP software locates the destination IP address and extracts the network
portion. M then uses the network portion to make a routing decision, selecting a router
that can be reached directly.

In practice, we apply the principle of infomlation hiding to hosts as well. We in-
sist that although hosts have IP routing tables, they must keep minimal information in
their tables. The idea is to force hosts to rely on routers for most routing.

Figure 8.2 shows a concrete example that helps explain routing tables. The exam-
ple internet consists of four networks connected by three routers. In the figure, the rout-

120 Internet Protocol: Routing IP Datagram Chap. 8

ing table gives the routes that router R uses. Because R connects directly to networks
20.0.0.0 and 30.0.0.0, it can use direct delivery to send to a host on either of those net-
works (possibly using ARP to find physical addresses). Given a datagram destined for
a host on network 40.0.0.0, R routes it to the address of router S, 30.0.0.7. S will then
deliver the datagram directly. R can reach address 30.0.0.7 because both R and S attach
directly to network 30.0.0.0.

TO REACH HOSTS ROUTE TO
ON NETWORK THIS ADDRESS

I 20.0.0.0 I DELIVER DIRECTLY

I 30.0.0.0 I DELIVER DIRECTLY

Figure 8.2 (a) An example intemet with 4 networks and 3 routers, and (b) the
routing table in R.

As Figure 8.2 demonstrates, the size of the routing table depends on the number of
networks in the intemet; it only grows when new networks are added. However, the
table size and contents are independent of the number of individual hosts connected to
the networks. We can summarize the underlying principle:

To hide information, keep routing tables small, and make routing de-
cisions efficient, IP routing software only keeps information about
destination network addresses, not about individual host addresses.

Sec. 8.5 Next-Hop Routing 121

Choosing routes based on the destination network ID alone has several conse-
quences. First, in most implementations, it means that all traffic destined for a given
network takes the same path. As a result, even when multiple paths exist, they may not
be used concurrently. Also, all types of traffic follow the same path without regard to
the delay or throughput of physical networks. Second, because only the final router
along the path attempts to communicate with the destination host, only it can deternine
if the host exists or is operational. Thus, we need to arrange a way for that router to
send reports of delivery problems back to the original source. Third, because each
router forwards traffic independently, datagrams traveling from host A to host B may
follow an entirely different path than datagrams traveling from host B back to host A.
We need to ensure that routers cooperate to guarantee that two-way communication is
always possible.

8.6 Default Routes

Another technique used to hide information and keep routing table sizes small con-
solidates multiple entries into a default case. The idea is to have the IP routing software
first look in the routing table for the destination network. If no route appears in the
table, the routing routines send the datagram to a default router.

Default routing is especially useful when a site has a small set of local addresses
and only one connection to the rest of the internet. For example, default routes work
well in host computers that attach to a single physical network and reach only one
router leading to the remainder of the internet. The routing decision consists of two
tests: one for the local net and a default that points to the only router. Even if the site
contains a few local networks, the routing is simple because it consists of a few tests for
the local networks plus a default for all other destinations.

8.7 Host-Specific Routes

Although we said that all routing is based on networks and not on individual hosts,
most IP routing software allows per-host routes to be specified as a special case. Hav-
ing per-host routes gives the local network administrator more control over network use,
permits testing, and can also be used to control access for security purposes. When de-
bugging network connections or routing tables, the ability to specify a special route to
one individual machine turns out to be especially useful.

8.8 The IP Routing Algorithm

Taking into account everything we have said, the IP algorithm used to forward da-
tagrams becomes?:

tChapter 10 discusses a slightly modified algorithm used with classless IP addresses.

122 Internet Protocol: Routing IP Datagrams Chap. 8

Algorithm:

RouteDatagram (Datagram, RoutingTable)

Extract destination IP address, D, from the datagram
and compute the network prefix, N;

if N matches any directly connected network address
deliver datagram to destination D over that network
(This involves resolving D to a physical address,
encapsulating the datagram, and sending the frame.)

else if the table contains a host-specific route for D
send datagram to next-hop specified in table

else if the table contains a route for network N
send datagram to next-hop specified in table

else if the table contains a default route
send datagram to the default router specified in table

else declare a routing error;

Figure 8 3 The algorithm IP uses to forward a datagram. Given an IF' da-
tagram and a routing table, this algorithm selects the next hop to
which the datagram should be sent. All routes must specify a
next hop that lies on a directly C O M ~ C ~ ~ network.

8.9 Routing With IP Addresses

It is important to understand that except for decrementing the time to live and
recomputing the checksum, IP routing does not alter the original datagram. In particu-
lar, the datagram source and destination addresses remain unaltered; they always specify
the IP address of the original source and the IP address of the ultimate destination?.
When IP executes the routing algorithm, it selects a new IP address, the IP address of
the machine to which the datagram should be sent next. The new address is most likely
the address of a router. However, if the datagram can be delivered directly, the new ad-
dress is the same as the address of the ultimate destination.

We said that the IP address selected by the IP routing algorithm is known as the
next hop address because it tells where the datagram must be sent next. Where does IP
store the next hop address? Not in the datagram; no place is reserved for it. In fact, IP
does not "store" the next hop address at all. After executing the routing algorithm, IP
passes the datagram and the next hop address to the network interface software respon-
sible for the physical network over which the datagram must be sent. The network in-

tThe only exception occurs when the datagram contains a source route option.

Sec. 8.9 Routing With IP Addresses 123

terface software binds the next hop address to a physical address, forms a frame using
that physical address, places the datagram in the data portion of the frame, and sends
the result. After using the next hop address to find a physical address, the network in-
terface software discards the next hop address.

It may seem odd that routing tables store the IP address of a next hop for each des-
tination network when those addresses must be translated into corresponding physical
addresses before the datagram can be sent. If we imagine a host sending a sequence of
datagrams to the same destination address, the use of IF' addresses will appear incredi-
bly inefficient. IP dutifully extracts the destination address in each datagram and uses
the routing table to produce a next hop address. It then passes the datagram and next
hop address to the network interface, which recomputes the binding to a physical ad-
dress. If the routing table used physical addresses, the binding between the next hop's
IP address and physical address could be performed once, saving unneeded computa-
tion.

Why does IP software avoid using physical addresses when storing and computing
routes? As Figure 8.4 illustrates, there are two important reasons.

EXAMINATION OR DATAGRAM
UPDATES OF ROUTES TO BE ROUTED

u
ZP addresses used . - - - - - - - - - - - -

Physical addresses used -1
DATAGRAM TO BE SENT

PLUS ADDRESS OF NEXT HOP

Figure 8.4 IP software and the routing table it uses reside above the address
boundary. Using only IP addresses makes routes easy to examine
or change and hides the details of physical addresses.

First, the routing table provides an especially clean interface between IP software
that routes datagram and high-level software that manipulates routes. To debug rout-
ing problems, network managers often need to examine the routing tables. Using only
IF' addresses in the routing table makes it easy for managers to understand and to deter-
mine whether software has updated the routes correctly. Second, the whole point of the
Internet Protocol is to build an abstraction that hides the details of underlying networks.

124 Internet Protocol: Routing IP Datagram Chap. 8

Figure 8.4 shows the address boundary, the important conceptual division between
low-level software that understands physical addresses and internet software that only
uses high-level addresses. Above this boundary, all software can be written to com-
municate using internet addresses; knowledge of physical addresses is relegated to a few
small, low-level routines. We will see that observing the boundary also helps keep the
implementation of remaining TCPJIP protocols easy to understand, test, and modify.

8.1 0 Handling Incoming Datagrams

So far, we have discussed IP routing by describing how forwarding decisions are
made about outgoing packets. It should be clear, however, that IP software must pro-
cess incoming datagrams as well.

When an IP datagram arrives at a host, the network interface software delivers it to
the IP module for processing. If the datagram's destination address matches the host's
IP address, IP software on the host accepts the datagram and passes it to the appropriate
higher-level protocol software for further processing. If the destination IP address does
not match, a host is required to discard the datagram (i.e., hosts are forbidden from at-
tempting to forward datagrams that are accidentally routed to the wrong machine).

Unlike hosts, routers perform forwarding. When an IP datagram arrives at a
router, it is delivered to the IP software. Again, two cases arise: the datagram could
have reached its final destination, or it may need to travel further. As with hosts, if the
datagram destination IP address matches the router's own IP address, the IP software
passes the datagram to higher-level protocol software for processingt. If the datagram
has not reached its final destination, IP routes the datagram using the standard algorithm
and the information in the local routing table.

Determining whether an IP datagram has reached its final destination is not quite
as trivial as it seems. Remember that even a host may have multiple physical connec-
tions, each with its own IP address. When an IP datagram arrives, the machine must
compare the destination internet address to the IP address for each of its network con-
nections. If any match, it keeps the datagram and processes it. A machine must also
accept datagrams that were broadcast on the physical network if their destination IP ad-
dress is the limited IP broadcast address or the directed IP broadcast address for that
network. As we will see in Chapters 10 and 17, classless, subnet, and multicast ad-
dresses make address recognition even more complex. In any case, if the address does
not match any of the local machine's addresses, IP decrements the time-to-live field in
the datagram header, discarding the datagram if the count reaches zero, or computing a
new checksum and routing the datagram if the count remains positive.

Should every machine forward the IP datagrams it receives? Obviously, a router
must forward incoming datagrams because that is its main function. We have also said
that some multi-homed hosts act as routers even though they are really general purpose
computing systems. While using a host as a router is not usually a good idea, if one
chooses to use that arrangement, the host must be configured to route datagrams just as
a router does. But what about other hosts, those that are not intended to be routers?

+Usually, the only datagrams destined for a router are those used to test connectivity or those that carry
router management commands, but a router must also keep a copy of datagrams that are broadcast on the net-
work.

Sec. 8.10 Handling Incoming Datagrams 125

The answer is that hosts not designated to be routers should not route datagrams that
they receive; they should discard them.

There are four reasons why a host not designated to serve as a router should refrain
from perfom~ng any router functions. First, when such a host receives a datagram in-
tended for some other machine, something has gone wrong with internet addressing,
routing, or delivery. The problem may not be revealed if the host takes corrective ac-
tion by routing the datagram. Second, routing will cause unnecessary network traffic
(and may steal CPU time from legitimate uses of the host). Third, simple errors can
cause chaos. Suppose that every host routes traffic, and imagine what happens if one
machine accidentally broadcasts a datagram that is destined for some host, H. Because
it has been broadcast, every host on the network receives a copy of the datagram.
Every host forwards its copy to H, which will be bombarded with many copies. Fourth,
as later chapters show, routers do more than merely route traffic. As the next chapter
explains, routers use a special protocol to report errors, while hosts do not (again, to
avoid having multiple error reports bombard a source). Routers also propagate routing
information to ensure that their routing tables are consistent. If hosts route datagrams
without participating fully in all router functions, unexpected anomalies can arise.

8.1 1 Establishing Routing Tables

We have discussed how IP routes datagram based on the contents of routing
tables, without saying how systems initialize their routing tables or update them as the
network changes. Later chapters deal with these questions and discuss protocols that al-
low routers to keep routes consistent. For now, it is only important to understand that
IP software uses the routing table whenever it decides how to forward a datagram, so
changing routing tables will change the paths datagrams follow.

8.12 Summary

IP uses routing information to forward datagrams; the computation consists of de-
ciding where to send a datagram based on its destination IP address. Direct delivery is
possible if the destination machine lies on a network to which the sending machine at-
taches; we think of this as the final step in datagram transmission. If the sender cannot
reach the destination directly, the sender must forward the datagram to a router. The
general paradigm is that hosts send indirectly routed datagrams to the nearest router; the
datagrams travel through the internet from router to router until they can be delivered
directly across one physical network.

When IP software looks up a route, the algorithm produces the 1P address of the
next machine (i.e., the address of the next hop) to which the datagram should be sent;
IP passes the datagram and next hop address to network interface software. Transrnis-
sion of a datagram from one machine to the next always involves encapsulating the da-
tagram in a physical frame, mapping the next hop internet address to a physical address,
and sending the frame using the underlying hardware.

126 Internet Protocol: Routing IF' Datagrams Chap. 8

The internet routing algorithm is table driven and uses only IP addresses.
Although it is possible for a routing table to contain a host-specific destination address,
most routing tables contain only network addresses, keeping routing tables small. Us-
ing a default route can also help keep a routing table small, especially for hosts that can
access only one router.

FOR FURTHER STUDY

Routing is an important topic. Frank and Chou [1971] and Schwartz and Stem
[I9801 discuss routing in general; Postel [1980] discusses internet routing. Braden and
Postel [RFC 10091 provides a summary of how Internet routers handle IP datagram.
Narten [I9891 contains a survey of Intemet routing. Fultz and Kleinrock [I9711
analyzes adaptive routing schemes; and McQuillan, Richer, and Rosen [I9801 describes
the ARPANET adaptive routing algorithm.

The idea of using policy statements to formulate rules about routing has been con-
sidered often. Leiner [RFC 11241 considers policies for interconnected networks.
Braun [RFC 11041 discusses models of policy routing for internets, Rekhter [RFC 10921
relates policy routing to the second NSFNET backbone, and Clark [RFC 11021
describes using policy routing with IP.

EXERCISES

Complete routing tables for all routers in Figure 8.2. Which routers will benefit most from
using a default route?
Examine the routing algorithm used on your local system. Are all the cases mentioned in
the chapter covered? Does the algorithm allow anything not mentioned?

What does a router do with the time to live value in an IF' header?

Consider a machine with two physical network connections and two IP addresses I, and I,.
Is it possible for that machine to receive a datagram destined for I, over the network with
address I,? Explain.
Consider two hosts, A and B, that both attach to a common physical network, N. Is it ever
possible, when using our routing algorithm, for A to receive a datagram destined for B?
Explain.

Modify the routing algorithm to accommodate the IF' source route options discussed in
Chapter 7.

An IP router must perform a computation that takes time proportional to the length of the
datagram header each time it processes a datagram. Explain.

A network administrator argues that to make monitoring and debugging his local network
easier, he wants to rewrite the routing algorithm so it tests host-specific routes before it
tests for direct delivery. How can he use the revised algorithm to build a network monitor?

Exercises 127

8.9 Is it possible to address a datagram to a router's IP address? Does it make sense to do so?

8.10 Consider a modified routing algorithm that examines host-specific routes before testing for
delivery on directly connected networks. Under what circumstances might such an algo-
rithm be desirable? undesirable?

8.11 Play detective: after monitoring IP traffic on a local area network for 10 minutes one even-
ing, someone notices that all frames destined for machine A carry IP datagrams that have
destination equal to A's IP address, while all frames destined for machine B carry IP da-
tagrams with destination not equal to B's IP address. Users report that both A and B can
communicate. Explain.

8.12 How could you change the IP datagram format to support high-speed packet switching at
routers? Hint: a router must recompute a header checksum after decrementing the time-to-
live field.

8.13 Compare CLNP, the I S 0 connectionless delivery protocol (IS0 standard 8473) with IP.
How well will the I S 0 protocol support high-speed switching? Hint: variable length fields
are expensive.

lnternet Protocol: Error And
Control Messages (ICMP)

9.1 Introduction

The previous chapter shows how the Internet Protocol software provides an unreli-
able, connectionless datagram delivery service by arranging for each router to forward
datagrams. A datagram travels from router to router until it reaches one that can deliver
the datagram directly to its final destination. If a router cannot route or deliver a da-
tagram, or if the router detects an unusual condition that affects its ability to forward the
datagram (e.g., network congestion), the router needs to infornl the original source to
take action to avoid or correct the problem. This chapter discusses a mechanism that
internet routers and hosts use to communicate such control or error information. We
will see that routers use the mechanism to report problems and hosts use it to test
whether destinations are reachable.

9.2 The lnternet Control Message Protocol

In the connectionless system we have described so far, each router operates auto-
nomously, routing or delivering datagrams that arrive without coordinating with the ori-
ginal sender. The system works well if all machines operate correctly and agree on
routes. Unfortunately, no large communication system works correctly all the time.
Besides failures of communication lines and processors, IP fails to deliver datagrams
when the destination machine is temporarily or permanently disconnected from the net-
work, when the time-to-live counter expires, or when intermediate routers become so

130 Internet Protocol: b r And Control Messages (ICMP) Chap. 9

congested that they cannot process the incoming traffic. The important difference
between having a single network implemented with dedicated hardware and an internet
implemented with software is that in the former, the designer can add special hardware
to inform attached hosts when problems arise. In an internet, which has no such
hardware mechanism, a sender cannot tell whether a delivery failure resulted from a lo-
cal malfunction or a remote one. Debugging becomes extremely difficult. The IP pro-
tocol itself contains nothing to help the sender test connectivity or learn about such
failures.

To allow routers in an internet to report errors or provide information about unex-
pected circumstances, the designers added a special-purpose message mechanism to the
TCP/IP protocols. The mechanism, known as the Internet Control Message Protocol
(ICMP), is considered a required part of IP and must be included in every IP implemen-
tation.

Like all other traffic, ICMP messages travel across the internet in the data portion
of IP datagrams. The ultimate destination of an ICMP message is not an application
program or user on the destination machine, however, but the Internet Protocol software
on that machine. That is, when an ICMP error message arrives, the ICMP software
module handles it. Of course, if ICMP determines that a particular higher-level proto-
col or application program has caused a problem, it will inform the appropriate module.
We can summarize:

The Internet Control Message Protocol allows routers to send error
or control messages to other routers or hosts; ICMP provides com-
munication between the Internet Protocol sofrware on one machine
and the Internet Protocol sofrware on another.

Initially designed to allow routers to report the cause of delivery errors to hosts,
ICMP is not restricted to routers. Although guidelines restrict the use of some ICMP
messages, an arbitrary machine can send an ICMP message to any other machine.
Thus, a host can use ICMP to correspond with a router or another host. The chief ad-
vantage of allowing hosts to use ICMP is that it provides a single mechanism used for
all control and information messages.

9.3 Error Reporting vs. Error Correction

Technically, ICMP is an error reporting mechanism. It provides a way .for routers
that encounter an error to report the error to the original source. Although the protocol
specification outlines intended uses of ICMP and suggests possible actions to take in
response to error reports, ICMP does not fully specify the action to be taken for each
possible error. In short,

Sec. 9.3 Error Reporting vs. Error Correction

When a datagram causes an error, ICMP can only report the error
condition back to the original source of the datagram; the source
must relate the error to an individual application program or take
other action to correct the problem.

Most errors stem from the original source, but others do not. Because ICMP re-
ports problems to the original source, however, it cannot be used to inform intermediate
routers about problems. For example, suppose a datagram follows a path through a se-
quence of routers, RI, R2, ..., Rk. If Rk has incorrect routing information and mistakenly
routes the datagram to router RE, RE cannot use ICMP to report the error back to router
Rk; ICMP can only send a report back to the original source. Unfortunately, the original
source has no responsibility for the problem or control over the misbehaving router. In
fact, the source may not be able to detemune which router caused the problem.

Why restrict ICMP to communication with the original source? The answer should
be clear from our discussion of datagram formats and routing in the previous chapters.
A datagram only contains fields that specify the original source and the ultimate desti-
nation; it does not contain a complete record of its trip through the internet (except for
unusual cases where the record route option is used). Furthermore, because routers can
establish and change their own routing tables, there is no global knowledge of routes.
Thus, when a datagram reaches a given router, it is impossible to know the path it has
taken to arrive there. If the router detects a problem, it cannot know the set of inter-
mediate machines that processed the datagram, so it cannot inform them of the problem.
Instead of silently discarding the datagram, the router uses ICMP to inform the original
source that a problem has occurred, and trusts that host administrators will cooperate
with network administrators to locate and repair the problem.

9.4 ICMP Message Delivery

ICMP messages require two levels of encapsulation as Figure 9.1 shows. Each
ICMP message travels across the internet in the data portion of an IP datagram, which
itself travels across each physical network in the data portion of a frame. Datagrams
carryin ICMP messages are routed exactly like datagrams carrying information for
users; i ere is no additional reliability or priority. Thus, error messages themselves may
be lost dr discarded. Furthermore, in an already congested network, the error message
may cause additional congestion. An exception is made to the error handling pro-
cedures if an IP datagram carrying an ICMP message causes an error. The exception,
established to avoid the problem of having error messages about error messages, speci-
fies that ICMP messages are not generated for errors that result from datagrams carrying
ICMP error messages.

Internet Protocol: Error And Control Messages (EMF') Chap. 9

FRAME FRAME DATA AREA
HEADER

ICMP
HEADER

Figure 9.1 Two levels of ICMP encapsulation. The ICMP message is encap-
sulated in an IP datagram, which is further encapsulated in a
frame for transmission. To identify ICMP, the datagram protocol
field contains the value I.

ICMP DATA

It is important to keep in mind that even though ICMP messages are encapsulated
and sent using IP, ICMP is not considered a higher level protocol - it is a required part
of IP. The reason for using IP to deliver ICMP messages is that they may need to trav-
el across several physical networks to reach their final destination. Thus, they cannot
be delivered by the physical transport alone.

9.5 ICMP Message Format

Although each ICMP message has its own format, they all begin with the same
three fields: an 8-bit integer message TYPE field that identifies the message, an 8-bit
CODE field that provides further information about the message type, and a 16-bit
CHECKSUM field (ICMP uses the same additive checksum algorithm as IP, but the
ICMP checksum only covers the ICMP message). In addition, ICMP messages that re-
port errors always include the header and first 64 data bits of the datagram causing the
problem.

The reason for returning more than the datagram header alone is to allow the re-
ceiver to determine more precisely which protocol(s) and which application program
were responsible for the datagram. As we will see later, higher-level protocols in the
TCPIIP suite are designed so that crucial information is encoded in the f i s t 64 bits.

The ICMP TYPE field defines the meaning of the message as well as its format.
The types include:

Sec. 9.5 ICMP Message Format

Type Field
0
3
4
5
8
9

10
11
12
13
14
15
16
17
18

ICMP Message Type
Echo Reply
Destination Unreachable
Source Quench
Redirect (change a route)
Echo Request
Router Advertisement
Router Solicitation
Time Exceeded for a Datagram
Parameter Problem on a Datagram
Timestamp Request
Timestamp Reply
Information Request (obsolete)
Information Reply (obsolete)
Address Mask Request
Address Mask Reply

The next sections describe each of these messages, giving details of the message format
and its meaning.

9.6 Testing Destination Reachability And Status (Ping)

TCP/IP protocols provide facilities to help network managers or users identlfy net-
work problems. One of the most frequently used debugging tools invokes the ICMP
echo request and echo reply messages. A host or router sends an ICMP echo request
message to a specified destination. Any machine that receives an echo request formu-
lates an echo reply and returns it to the original sender. The request contains an option-
al data area; the reply contains a copy of the data sent in the request. The echo request
and associated reply can be used to test whether a destination is reachable and respond-
ing. Because both the request and reply travel in IP datagrams, successful receipt of a
reply verifies that major pieces of the transport system work. First, IP software on the
source computer must route the datagram. Second, intermediate routers between the
source and destination must be operating and must route the datagram correctly. Third,
the destination machine must be running (at least it must respond to interrupts), and
both ICMP and IP software must be working. Finally, all routers along the return path
must have correct routes.

On many systems, the command users invoke to send ICMP echo requests is
named ping?. Sophisticated versions of ping send a series of ICMP echo requests, cap-
ture responses, and provide statistics about datagram loss. They allow the user to speci-
fy the length of the data being sent and the interval between requests. Less sophisticat-
ed versions merely send one ICMP echo request and await a reply.

tDave Mills once suggested that PING is an acronym for Packer InrerNer Groper.

134 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

9.7 Echo Request And Reply Message Format

Figure 9.2 shows the format of echo request and reply messages.

I TYPE (8 or 0) I CODE (0) I CHECKSUM I
I IDENTIFIER I SEQUENCE NUMBER I

OPTIONAL DATA

. . .

Figure 9.2 ICMP echo request or reply message format.

The field listed as OPTIONAL DATA is a variable length field that contains data to be
returned to the sender. An echo reply always returns exactly the same data as was re-
ceived in the request. Fields IDENTIFIER and SEQUENCE NUMBER are used by the
sender to match replies to requests. The value of the TYPE field specifies whether the
message is a request (8) or a reply (0).

9.8 Reports Of Unreachable Destinations

When a router cannot forward or deliver an IP datagram, it sends a destination un-
reachable message back to the original source, using the format shown in Figure 9.3.

TYPE (3) I CODE (0-12) 1 CHECKSUM

UNUSED (MUST BE ZERO)

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.3 ICMP destination unreachable message format.

The CODE field in a destination unreachable message contains an integer that further
describes the problem. Possible values are:

Sec. 9.8 Reports Of Unreachable Destinations

Code Value
0
1
2
3
4
5
6
7
8
9

Meaning
Network unreachable
Host unreachable
Protocol unreachable
Port unreachable
Fragmentation needed and DF set
Source route failed
Destination network unknown
Destination host unknown
Source host isolated
Communication with destination

network administratively prohibited
Communication with destination host

administratively prohibited
Network unreachable for type of service
Host unreachable for type of service

Although IP is a besteffort delivery mechanism, discarding datagrams should not
be taken lightly. Whenever an error prevents a router from routing or delivering a da-
tagram, the router sends a destination unreachable message back to the source and then
drops (i.e., discards) the datagram. Network unreachable errors usually imply routing
failures; host unreachable errors imply delivery failurest. Because the ICMP error mes-
sage contains a short prefn of the datagram that camed the problem, the source will
know exactly which address is unreachable.

Destinations may be unreachable because hardware is temporarily out of service,
because the sender specified a nonexistent destination address, or (in rare cir-
cumstances) because the router does not have a route to the destination network. Note
that although routers report failures they encounter, they may not know of all delivery
failures. For example, if the destination machine connects to an Ethernet network, the
network hardware does not provide acknowledgements. Therefore, a router can contin-
ue to send packets to a destination after the destination is powered down without receiv-
ing any indication that the packets are not being delivered. To summarize:

Although a router sends a destination unreachable message when it
encounters a datagram that cannot be forwarded or delivered, a
router cannot detect all such errors.

The meaning of protocol and port unreachable messages will become clear when
we study how higher level protocols use abstract destination points called ports. Most
of the remaining messages are self explanatory. If the datagram contains the source
route option with an incorrect route, it may trigger a source route failure message. I f a
router needs to fragment a datagram but the "don't fragment" bit is set, the router
sends afragmentation needed message back to the source.

tAn exception occurs for routers using the subnet addressing scheme of Chapter 10. They report a sub-
net routing failure with an ICMP host unreachable message.

136 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

9.9 Congestion And Datagram Flow Control

Because JP is connectionless, a router cannot reserve memory or communication
resources in advance of receiving datagram. As a result, routers can be overrun with
traffic, a condition known as congestion. It is important to understand that congestion
can arise for two entirely different reasons. First, a high-speed computer may be able to
generate traffic faster than anetwork can transfer it. For example, imagine a supercom-
puter generating internet traffic. The datagrams may eventually need to cross a slower-
speed wide area network (WAN) even though the supercomputer itself attaches to a
high-speed local area net. Congestion will occur in the router that attaches the LAN to
the WAN because datagrams arrive faster than they can be sent. Second, if many com-
puters simultaneously need to send datagrams through a single router, the router can ex-
perience congestion, even though no single source causes the problem.

When datagrams arrive too quickly for a host or router to process, it enqueues
them in memory temporarily. If the datagrams are part of a small burst, such buffering
solves the problem. If the traffic continues, the host or router eventually exhausts
memory and must discard additional datagram that arrive. A machine uses ICMP
source quench messages to report congestion to the original source. A source quench
message is a request for the source to reduce its current rate of datagram transmission.
Usually, congested routers send one source quench message for every datagram that
they discard. Routers may also use more sophisticated congestion control techniques.
Some monitor incoming traffic and quench sources that have the highest datagram
transmission rates. Others attempt to avoid congestion altogether by arranging to send
quench requests as their queues start to become long, but before they overflow.

There is no ICMP message to reverse the effect of a source quench. Instead, a host
that receives source quench messages for a destination, D, lowers the rate at which it
sends datagrams to D until it stops receiving source quench messages; it then gradually
increases the rate as long as no further source quench requests are received.

9.10 Source Quench Format

In addition to the usual ICMP TYPE, CODE, CHECKSUM fields, and an unused
32-bit field, source quench messages have a field that contains a datagram prefix. Fig-
ure 9.4 illustrates the format. As with most ICMP messages that report an error, the da-
tagram prefix field contains a prefix of the datagram that triggered the source quench re-
quest.

Sec. 9.10 Source Quench Format 137

Figure 9.4 ICMP source quench message format. A congested router sends
one source quench message each time it discards a datagram; the
datagram prefix identifies the datagram that was dropped.

TYPE (4)

9.1 1 Route Change Requests From Routers

Internet routing tables usually remain static over long periods of time. Hosts ini-
tialize them from a configuration file at system startup, and system administrators sel-
dom make routing changes during normal operations. If the network topology changes,
routing tables in a router or host may become incorrect. A change can be temporary
(e.g., when hardware needs to be repaired) or permanent (e.g., when a new network is
added to the internet). As we will see in later chapters, routers exchange routing infor-
mation periodically to accommodate network changes and keep their routes up-to-date.
Thus, as a general rule:

UNUSED (MUST BE ZERO)

CODE (0)

Routers are assumed to know correct routes; hosts begin with minimal
routing infonnution and learn new routes from routers.

CHECKSUM

To help follow this rule and to avoid duplicating routing information in the confi-
guration file on each host, the initial host route configuration specifies the minimum
possible routing information needed to communicate (e.g., the address of a single
router). Thus, the host begins with minimal information and relies on routers to update
its routing table. In one special case, when a router detects a host using a nonoptimal
route, it sends the host an ICMP message, called a redirect, requesting that the host
change its route. The router also forwards the original datagram on to its destination.

The advantage of the ICMP redirect scheme is simplicity: it allows a host to boot
knowing the address of only one router on the local network. The initial router returns
ICMP redirect messages whenever a host sends a datagram for which there is a better
route. The host routing table remains small but still contains optimal routes for all des-
tinations in use.

Redirect messages do not solve the problem of propagating routes in a general
way, however, because they are limited to interactions between a router and a host on a
directly connected network. Figure 9.5 illustrates the limitation. In the figure, assume
source S sends a datagram to destination D. Assume that router R, incorrectly routes
the datagram through router R, instead of through router R, (i.e., R, incorrectly chooses

138 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

a longer path than necessary). When router R, receives the datagram, it cannot send an
ICMP redirect message to R, because it does not know R,'s address. Later chapters ex-
plore the problem of how to propagate routes across multiple networks.

Figure 95 ICMP redirect messages do not provide routing changes among
routers. In this example, router R, cannot redirect R, to use the
shorter path for datagrams from S to D.

In addition to the requisite TYPE, CODE, and CHECKSUM fields, each redirect
message contains a 32-bit ROUTER INTERNET ADDRESS field and an INTERNET
HEADER field, as Figure 9.6 shows.

I TYPE (5) I CODE (0 to 3) I CHECKSUM

1 ROUTER INTERNET ADDRESS

I INTERNET HEADER + FIRST 64 BITS OF DATAGRAM I

Figure 9.6 ICMP redirect message format.

The ROUTER INTERNET ADDRESS field contains the address of a router that the host
is to use to reach the destination mentioned in the datagram header. The INTERNET
HEADER field contains the IP header plus the next 64 bits of the datagram that trig-
gered the message. Thus, a host receiving an ICMP redirect examines the datagram
prefm to determine the datagram's destination address. The CODE field of an ICMP
redirect message further specifies how to interpret the destination address, based on
values assigned as follows:

Sec. 9.1 1 Route Change Requests From Routers 139

Code Value Meaning
0 Redirect datagrams for the Net (now obsolete)
1 Redirect datagrams for the Host
2 Redirect datagrams for the Type of Service? and Net
3 Redirect datagrams for the Type of Service and Host

As a general rule, routers only send ICMP redirect requests to hosts and not to oth-
er routers. We will see in later chapters that routers use other protocols to exchange
routing information.

9.12 Detecting Circular Or Excessively Long Routes

Because internet routers compute a next hop using local tables, errors in routing
tables can produce a routing cycle for some destination, D. A routing cycle can consist
of two routers that each route a datagram for destination D to the other, or it can consist
of several routers. When several routers form a cycle, they each route a datagram for
destination D to the next router in the cycle. If a datagram enters a routing cycle, it will
pass around the cycle endlessly. As mentioned previously, to prevent datagrams from
circling forever in a TCP/IP internet, each IP datagram contains a time-to-live counter,
sometimes called a hop count. A router decrements the time-to-live counter whenever it
processes the datagram and discards the datagram when the count reaches zero.

Whenever a router discards a datagram because its hop count has reached zero or
because a timeout occurred while waiting for fragments of a datagram, it sends an
ICMP time exceeded message back to the datagram's source, using the format shown in
Figure 9.7.

TYPE(11) I CODE(Oor1) I CHECKSUM I
UNUSED (MUST BE ZERO)

I INTERNET HEADER + FIRST 64 BITS OF DATAGRAM I

Figure 9.7 ICMP time exceeded message format. A router sends this mes-
sage whenever a datagram is discarded because the time-to-live
field in the datagram header has reached zero or because its
reassembly timer expired while waiting for fragments.

ICMP uses the CODE field in each time exceeded message (value zero or one) to ex-
plain the nature of the tirneout being reported:

tRecall that each IP header specifies a type of service used for routing.

Internet Protocol: Error And Control Messages (ICMF') Chap. 9

Code Value Meaning
0 Time-to-live count exceeded
1 Fragment reassembly time exceeded

Fragment reassembly refers to the task of collecting all the fragments from a da-
tagram. When the first fragment of a datagram arrives, the receiving host starts a timer
and considers it an error if the timer expires before all the pieces of the datagram arrive.
Code value I is used to report such errors to the sender; one message is sent for each
such error.

9.1 3 Reporting Other Problems

When a router or host finds problems with a datagram not covered by previous
ICMP error messages (e.g., an incorrect datagram header), it sends a parameter problem
message to the original source. One possible cause of such problems occurs when argu-
ments to an option are incorrect. The message, formatted as shown in Figure 9.8, is
only sent when the problem is so severe that the datagram must be discarded.

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

0 8 16 31

Figure 9.8 ICMP parameter problem message format. Such messages are
only sent when the problem causes the datagram to be dropped.

TYPE (12)

POINTER

To make the message unambiguous, the sender uses the POINTER field in the message
header to identify the octet in the datagram that caused the problem. Code 1 is used to
report that a required option is missing (e.g., a security option in the military communi-
ty); the POINTER field is not used for code 1.

CODE (o or 1) I CHECKSUM

UNUSED (MUST BE ZERO)

9.14 Clock Synchronization And Transit Time Estimation

Although machines on an internet can communicate, they usually operate indepen-
dently, with each machine maintaining its own notion of the current time. Clocks that
differ widely can confuse users of distributed systems software. The TCPJIP protocol
suite includes several protocols that can be used to synchronize clocks. One of the sim-
plest techniques uses an ICMP message to obtain the time from another machine. A re-

Sec. 9.14 Clock Synchronization And Transit Time Estimation 141

questing machine sends an ICMP timestamp request message to another machine, ask-
ing that the second machine return its current value for the time of day. The receiving
machine returns a timestamp reply back to the machine making the request. Figure 9.9
shows the fom~at of timestamp request and reply messages.

I IDENTIFIER I SEQUENCE NUMBER I

0 8 16 31

ORIGINATE TIMESTAMP I

TYPE (13 or 14) (CODE (0)

RECEIVE TIMESTAMP I

CHECKSUM

I TRANSMIT TIMESTAMP I

Figure 9.9 ICMP timestamp request or reply message format.

The TYPE field identifies the message as a request (13) or a reply (14); the IDEN-
TIFIER and SEQUENCE NUMBER fields are used by the source to associate replies
with requests. Remaining fields specify times, given in milliseconds since midnight,
Universal Time?. The ORIGINATE TIMESTAMP field is filled in by the original
sender just before the packet is transmitted, the RECEIVE TIMESTAMP field is filled
immediately upon receipt of a request, and the TRANSMIT TIMESTAMP field is filled
immediately before the reply is transmitted.

Hosts use the three timestamp fields to compute estimates of the delay time
between them and to synchronize their clocks. Because the reply includes the ORI-
GINATE TIMESTAMP field, a host can compute the total time required for a request to
travel to a destination, be transforn~ed into a reply, and return. Because the reply canies
both the time at which the request entered the remote machine, as well as the time at
which the reply left, the host can compute the network transit time, and from that, esti-
mate the differences in remote and local clocks.

In practice, accurate estimation of round-trip delay can be difficult and substantial-
ly restricts the utility of ICMP timestamp messages. Of course, to obtain an accurate
estimate of round trip delay, one must take many measurements and average them.
However, the round-trip delay between a pair of machines that connect to a large inter-
net can vary dramatically, even over short periods of time. Furthermore, recall that be-
cause IP is a best-effort technology, datagrams can be dropped, delayed, or delivered
out of order. Thus, merely taking many measurements may not guarantee consistency;
sophisticated statistical analysis is needed to produce precise estimates.

t Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian.

142 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

9.15 Information Request And Reply Messages

The ICMP informution request and information reply messages (types 15 and 16)
are now considered obsolete and should not be used. They were originally intended to
allow hosts to discover their internet address at system startup. The current protocols
for address determination are RAW, described in Chapter 6, and BOOTP, described in
Chapter 23.

9.16 Obtaining A Subnet Mask

Chapter 10 discusses the motivation for subnet addressing as well as the details of
how subnets operate. For now, it is only important to understand that when hosts use
subnet addressing, some bits in the hostid portion of their IP address identlfy a physical
network. To participate in subnet addressing, a host needs to know which bits of the
32-bit internet address correspond to the physical network and which correspond to host
identifiers. The information needed to interpret the address is represented in a 32-bit
quantity called the subnet mask.

To learn the subnet mask used for the local network, a machine can send an ad-
dress mask request message to a router and receive an address mask reply. The
machine making the request can either send the message directly, if it knows the
router's address, or broadcast the message if it does not. Figure 9.10 shows the format
of address mask messages.

TYPE (1 7 or 18) 1 CODE (0) I CHECKSUM I
IDENTIFIER I SEQUENCE NUMBER

ADDRESS MASK

Figure 9.10 ICMP address mask request or reply message format. Usually,
hosts broadcast a request without knowing which specific router
will respond.

The TYPE field in an address mask message specifies whether the message is a request
(17) or a reply (18). A reply contains the network's subnet address mask in the AD-
DRESS MASK field. As usual, the IDENTIFIER and SEQUENCE NUMBER fields al-
low a machine to associate replies with requests.

Sec. 9.17 Router Discovery 143

9.1 7 Router Discovery

After a host boots, it must learn the address of at least one router on the local net-
work before it can send datagram to destinations on other networks. ICMP supports a
router discovery scheme that allows a host to discover a router address.

ICMP router discovery is not the only mechanism a host can use to find a router
address. The BOOTP and DHCP protocols described in Chapter 23 provide the main
alternative - each of the protocols provides a way for a host to obtain the address of a
default router along with other bootstrap information. However, BOOTP and DHCP
have a serious deficiency: the information they return comes from a database that net-
work administrators configure manually. Thus, the information cannot change quickly.

Of course, static router ~ o ~ g u r a t i o n does work well in some situations. For ex-
ample, consider a network that has only a single router connecting it to the rest of the
Internet. There is no need for a host on such a network to dynamically discover routers
or change routes. However, if a network has multiple routers comecting it to the rest
of the Internet, a host that obtains a default route at startup can lose connectivity if a
single router crashes. More important, the host cannot detect the crash.

The ICMP router discovery scheme helps in two ways. First, instead of providing
a statically configured router address via a bootstrap protocol, the scheme allows a host
to obtain information directly from the router itself. Second, the mechanism uses a soft
state technique with timers to prevent hosts from retaining a route after a router crashes
- routers advertise their information periodically, and a host discards a route if the ti-
mer for a route expires.

Figure 9.11 illustrates the format of the advertisement message a router sends.

I TYPE (9) I CODE (0) I CHECKSUM I
[-NUM ADDRS I ADDR SIZE (1) 1 LIFETIME I

ROUTER ADDRESS 1

PREFERENCE LEVEL 1

ROUTER ADDRESS 2
-

PREFERENCE LEVEL 2

Figure 9.11 ICMP router advertisement message format used with IPv4.
Routers send these messages periodically.

Besides the TYPE, CODE, and CHECKSUM fields, the message contains a field
labeled NUM ADDRS that specifies the number of address entries which follow (often
I), an ADDR SIZE field that specifies the size of an address in 32-bit units (1 for IPv4

144 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

addresses), and a LIFETIME field that specifies the time in seconds a host may use the
advertised address(es). The default value for LIFETIME is 30 minutes, and the default
value for periodic retransmission is 10 minutes, which means that a host will not dis-
card a route if the host misses a single advertisement message.

The remainder of the message consists of NUM ADDRS pairs of fields, where each
pair contains a ROUTER ADDRESS and an integer PRECEDENCE LEVEL for the
route. The precedence value is a two's complement integer; a host chooses the route
with highest precedence.

If the router and the network support multicast as described in Chapter 17, a router
multicast5 ICMP router advertisement messages to the all-systems multicast address
(i.e., 224.0.0.1). If not, the router sends the messages to the limited broadcast address
(i.e., the all 1's address). Of course, a host must never send a router advertisement mes-
sage.

9.18 Router Solicitation

Although the designers provided a range of values to be used as the delay between
successive router advertisements, they chose the default of 10 minutes. The value was
selected as a compromise between rapid failure detection and low overhead. A smaller
value would allow more rapid detection of router failure, but would increase network
traffic; a larger value would decrease traffic, but would delay failure detection. One of
the issues the designers considered was how to accommodate a large number of routers
on the same network.

From the point of view of a host, the default delay has a severe disadvantage: a
host cannot afford to wait many minutes for an advertisement when it first boots. To
avoid such delays, the designers included an ICMP router solicitation message that al-
lows a host to request an immediate advertisement. Figure 9.12 illustrates the message
format.

Figure 9.12 ICMP router solicitation message. A host sends a solicitation
after booting to request that routers on the local net immediately
respond with an ICMP router advertisement.

0 8 16 31

If a host supports multicasting, the host sends the solicitation to the all-routers
multicast address (i.e., 224.0.0.2); otherwise the host sends the solicitation to the limited
broadcast address (i.e., the all 1's address). The arrival of a solicitation message causes
a router to send a normal router advertisement. As the figure shows, the solicitation
does not need to carry information beyond the TYPE, CODE, and CHECKSUM fields.

TYPE (10)

RESERVED

CODE (0) CHECKSUM

Sec. 9.19 Summary 145

9.19 Summary

Normal communication across an internet involves sending messages from an ap-
plication on one host to an application on another host. Routers may need to comrnuni-
cate directly with the network software on a particular host to report abnormal condi-
tions or to send the host new routing inforn~ation.

The Internet Control Message Protocol provides for extranormal communication
among routers and hosts; it is an integral, required part of IP. ICMP includes source
quench messages that retard the rate of transmission, redirect messages that request a
host to change its routing table, echo requestheply messages that hosts can use to deter-
mine whether a destination can be reached, and router solicitation and advertisement
messages that hosts use to dynamically maintain a default route. An ICMP message
travels in the data area of an IP datagram and has three fixed-length fields at the begin-
ning of the message: an ICMP message type field, a code field, and an ICMP checksum
field. The message type determines the fornlat of the rest of the message as well as its
meaning.

FOR FURTHER STUDY

Both Tanenbaum [I9811 and Stallings [I9851 discuss control messages in general
and relate them to various network protocols. The central issue is not how to send con-
trol messages but when. Grange and Gien [1979], as well as Driver, Hopewell, and Ia-
quinto [1979], concentrate on a problem for which control messages are essential,
namely, flow control. Gerla and Kleinrock [I9801 compares flow control strategies
analytically. For a discussion of clock synchronization protocols see Mills [RFCs 956,
957, and 13051.

The Internet Control Message Protocol described here is a TCP/IF' standard defined
by Postel [RFC '7921 and updated by Braden [RFC [1122]. Nagle [RFC 8961 discusses
ICMP source quench messages and shows how routers should use them to handle
congestion control. Prue and Postel [RFC 10161 discusses a more recent technique
routers use in response to source quench. Nagle [I9871 argues that congestion is always
a concern in packet switched networks. Mogul and Postel [RFC 9501 discusses subnet
mask request and reply messages, and Deering [RFC 12561 discusses the solicitation
and advertisement messages used in router discovery. Jain, Ramakrishnan and Chiu
[I9871 considers how routers and transport protocols could cooperate to avoid conges-
tion.

Internet Protocol: Emor And Control Messages (ICMP) Chap. 9

Devise an experiment to record how many of each ICMP message type appear on your lo-
cal network during a day.

Experiment to see if you can send packets through a router fast enough to trigger an ICMP
source quench message.

Devise an algorithm that synchronizes clocks using ICMP timestamp messages.

See if your local computer system contains a ping command. How does the program inter-
face with protocols in the operating system? In particular, does the mechanism allow an ar-
bitrary user to create a ping program, or does such a program require special privilege?
Explain.

Assume that all routers send ICMP time-exceeded messages, and that your local TCP/IP
software will return such messages to an application program. Use the facility to build a
traceroute command that reports the list of routers between the source and a particular des-
tination.

If you connect to the global Internet, try to ping host 128.10.2.1 (a machine at Purdue).

Should a router give ICMP messages priority over normal traffic? Why or why not?

Consider an Ethernet that has one conventional host, H, and 12 routers connected to it.
Find a single (slightly illegal) frame carrying an IP packet that, when sent by host H,
causes H to receive exactly 24 packets.

Compare ICMP source quench packets with Jain's 1-bit scheme used in DECNET. Which
is a more effective strategy for dealing with congestion? Why?

There is no ICMP message that allows a machine to inform the source that transmission er-
rors are causing datagram to arrive conupted. Explain why.

In the previous question, under what circumstances might such a message be useful?

Should ICMP error messages contain a timestamp that specifies when they are sent? Why
or why not?

If routers at your site participate in ICMP router discovery, find out how many addresses
each router advertises on each interface.

Try to reach a server on a nonexistent host on your local network. Also try to communi-
cate with a nonexistent host on a remote network. In which case do you receive an error
message? Why?

9.15 Try using ping with a network broadcast address. How many computers answer? Read the
protocol documents to determine whether answering a broadcast request is required, recom-
mended, not recommended, or prohibited.

Classless And Subnet
Address Extensions (CIDR)

10.1 Introduction

Chapter 4 discusses the original Internet addressing scheme and presents the three
primary forms of IP addresses. This chapter examines five extensions of the IP address
scheme all designed to conserve network prefixes. The chapter considers the motivation
for each extension and describes the basic mechanisms used. In particular, it presents
the details of the address subnet scheme that is now part of the TCP/IF' standards, and
the classless address scheme that is an elective standard.

10.2 Review Of Relevant Facts

Chapter 4 discusses addressing in internetworks and presents the fundamentals of
the IP address scheme. We said that the 32-bit addresses are carefully assigned to make
the IP addresses of all hosts on a given physical network share a common prefix. In the
original IP address scheme, designers thought of the common prefix as defining the net-
work portion of an internet address and the remainder as a host portion. The conse-
quence of importance to us is:

In the original IP addressing scheme, each physical network is as-
signed a unique network address; each host on a network has the net-
work address as a prejtx of the host's individual address.

148 Classless And Subnet Address Extensions (CIDR) Chap. 10

The chief advantage of dividing an IP address into two parts arises from the size of the
routing tables required in routers. Instead of keeping one routing entry per destination
host, a router can keep one routing entry per network, and examine only the network
portion of a destination address when making routing decisions.

Recall that the original IP addressing scheme accommodated diverse network sizes
by dividing host addresses into three primary classes. Networks assigned class A ad-
dresses partition the 32 bits into an 8-bit network portion and a 24-bit host portion.
Class B addresses partition the 32 bits into 16-bit network and host portions, while class
C partitions the address into a 24-bit network portion and an 8-bit host portion.

To understand some of the address extensions in this chapter, it will be important
to realize that individual sites have the freedom to modify addresses and routes as long
as the modifications remain invisible to other sites. That is, a site can choose to assign
and use IP addresses in unusual ways internally as long as:

AU hosts and routers at the site agree to honor the site's addressing scheme.
Other sites on the Internet can treat addresses as a network prefix and a host

suffix.

10.3 Minimizing Network Numbers

The original classful IP addressing scheme seems to handle all possibilities, but it
has a minor weakness. How did the weakness arise? What did the designers fail to en-
vision? The answer is simple: growth. Because they worked in a world of expensive
mainframe computers, the designers envisioned an internet with hundreds of networks
and thousands of hosts. They did not foresee tens of thousands of small networks of
personal computers that would suddenly appear in the decade after TCP/IP was
designed.

Growth has been most apparent in the connected Internet, where the size has been
doubling every nine to fifteen months. The large population of networks with trivial
size stresses the entire Internet design because it means (I) immense administrative
overhead is required merely to manage network addresses, (2) the routing tables in
routers are extremely large, and (3) the address space will eventually be exhausted?.
The second problem is important because it means that when routers exchange informa-
tion from their routing tables, the load on the Internet is high, as is the computational
effort required in participating routers. The third problem is crucial because the original
address scheme could not accommodate the number of networks currently in the global
Internet. In particular, insufficient class B prefixes exist to cover all the medium-size
networks in the Internet. So the question is, "How can one minimize the number of as-
signed network addresses, especially class B, without abandoning the 32-bit addressing
scheme?"

To minimize the number of addresses used, we must avoid assigning network pre-
fixes whenever possible, and the same IP network prefix must be shared by multiple
physical networks. To minimize the use of class B addresses, class C addresses must
be used instead. Of course, the routing procedures must be modified, and all machines
that connect to the affected networks must understand the conventions used.

+Although there were many predictions that the lPv4 address space would be exhausted before the year

Sec. 10.3 Minimizing Network Numbers 149

The idea of sharing one network address among multiple physical networks is not
new and has taken several forms. We will examine three: transparent routers, proxy
ARP, and standard IP subnets. In addition, we will explore anonymous point-to-point
networks, a special case in which no network prefix needs to be assigned. Finally, we
will consider classless addressing, which abandons the rigid class system and allows the
address space to be divided in arbitrary ways.

10.4 Transparent Routers

The transparent router scheme is based on the observation that a network assigned
a class A IP address can be extended through a simple trick illustrated in Figure 10.1.

Figure 10.1 Transparent router T extending a wide area network to multiple
hosts at a site. Each host appears to have an IP address on the
WAN.

The trick consists of arranging for a physical network, usually a WAN, to multi-
plex several host connections through a single host port. As Figure 10.1 shows, a spe-
cial purpose router, T, connects the single host port from the wide area net to a local
area network. T is called a transparent router because other hosts and routers on the
WAN do not know it exists.

The local area network does not have its own IP prefix; hosts attached to it are as-
signed addresses as if they connected directly to the WAN. The transparent router
demultiplexes datagrams that arrive from the WAN by sending them to the appropriate
host (e.g., by using a table of addresses). The transparent router also accepts datagrams
from hosts on the local area network and routes them across the WAN toward their des-
tination.

To make demultiplexing efficient, transparent routers often divide the IP address
into multiple parts and encode information in unused parts. For example, the AR-
PANET was assigned class A network address 10.0.0.0. Each packet switch node
(PSN) on the ARPANET had a unique integer address. Internally, the ARPANET treat-
ed any Coctet IP address of the form I0 . p . u . i as four separate octets that specify a

150 Classless And Subnet Address Extensions (CIDR) Chap. 10

network (lo), a specific port on the destination PSN @), and a destination PSN (i).
Octet u remained uninterpreted. Thus, the ARPANET addresses 10.2.5.37 and
10.2.9.37 both refer to host 2 on PSN 37. A transparent router comected to PSN 37
on port 2 can use octet u to decide which real host should receive a datagram. The
WAN itself need not be aware of the multiple hosts that lie beyond the PSN.

Transparent routers have advantages and disadvantages when compared to conven-
tional routers. The chief advantage is that they require fewer network addresses because
the local area network does not need a separate IF' prefm. Another is that they can sup-
port load balancing. That is, if two transparent routers connect to the same local area
network, traffic to hosts on that network can be split between them. By comparison,
conventional routers can only advertise one route to a given network.

One disadvantage of transparent routers is that they only work with networks that
have a large address space from which to choose host addresses. Thus, they work best
with class A networks, and they do not work well with class C networks. Another
disadvantage is that because they are not conventional routers, transparent routers do not
provide all the same services as standard routers. In particular, transparent routers may
not participate fully in ICMP or network management protocols like SNMP. Therefore,
they do not return ICMP echo requests (i.e., one cannot easily "ping" a transparent
router to determine if it is operating).

10.5 Proxy ARP

The terms proxy ARP, promiscuous ARP, and the ARP hack refer to a second tech-
nique used to map a single IF' network prefix into two physical addresses. The tech-
nique, which only applies to networks that use ARP to bind internet addresses to physi-
cal addresses, can best be explained with an example.
tion.

Figure 10.2 illustrates the situa-

Main Network

Hidden Network

Figure 10.2 Proxy ARP technique (the ARP hack) allows one network ad-
dress to be shared between two physical nets. Router R answers
ARP requests on each network for hosts on the other network,
giving its hardware address and then routing datagrams correctly
when they arrive. In essence, R lies about IP-to-physical address
bindings.

Sec . 10.5 Proxy ARF' 151

In the figure, two networks share a single IP network address. Imagine that the
network labeled Main Network was the original network, and that the second, labeled
Hidden Network, was added later. The router connecting the two networks, R, knows
which hosts lie on which physical network and uses ARP to maintain the illusion that
only one network exists. To make the illusion work, R keeps the location of hosts com-
pletely hidden, allowing all other machines on the network to communicate as if direct-
ly connected. In our example, when host H, needs to communicate with host H,, it first
invokes ARP to map H4's IP address into a physical address. Once it has a physical ad-
dress, HI can send the datagram directly to that physical address.

Because R runs proxy ARP software, it captures the broadcast ARP request from
HI, decides that the machine in question lies on the other physical network, and
responds to the ARP request by sending its own physical address. H, receives the ARP
response, installs the mapping in its ARP table, and then uses the mapping to send da-
tagrams destined for H, to R. When R receives a datagram, it searches a special routing
table to determine how to route the datagram. R must forward datagrams destined for
H4 over the hidden network. To allow hosts on the hidden network to reach hosts on
the main network, R performs the proxy ARP service on that network as well.

Routers using the proxy ARP technique are taking advantage of an important
feature of the ARP protocol, namely, trust. ARP is based on the idea that all machines
cooperate and that any response is legitimate. Most hosts install mappings obtained
through ARP without checking their validity and without maintaining consistency.
Thus, it may happen that the ARP table maps several IP addresses to the same physical
address, but that does not violate the protocol specification.

Some implementations of ARP are not as lax as others. In particular, ARP imple-
mentations designed to alert managers to possible security violations will infom~ them
whenever two distinct IF' addresses map to the same physical hardware address. The
purpose of alerting the manager is to warn about spooJing, a situation in which one
machine claims to be another in order to intercept packets. Host implementations of
ARP that warn managers of possible spoofing cannot be used on networks that have
proxy ARP routers because the software will generate messages frequently.

The chief advantage of proxy ARP is that it can be added to a single router on a
network without disturbing the routing tables in other hosts or routers on that network.
Thus, proxy ARP completely hides the details of physical connections.

The chief disadvantage of proxy ARP is that it does not work for networks unless
they use ARP for address resolution. Furthermore, it does not generalize to more com-
plex network topology (e.g., multiple routers interconnecting two physical networks),
nor does it support a reasonable form of routing. In fact, most implementations of
proxy ARP rely on managers to maintain tables of machines and addresses manually,
making it both time consuming and prone to errors.

Classless And Subnet Address Extensions (CIDR) Chap. 10

10.6 Subnet Addressing

The third technique used to allow a single network address to span multiple physi-
cal networks is called subnet addressing, subnet routing, or subnetting. Subnetting is
the most widely used of the three techniques because it is the most general and because
it has been standardized. In fact, subnetting is a required part of IP addressing.

The easiest way to understand subnet addressing is to imagine that a site has a sin-
gle class B IP network address assigned to it, but it has two or more physical networks.
Only local routers know that there are multiple physical nets and how to route traffic
among them; routers in other autonomous systems route all traffic as if there were a sin-
gle physical network. Figure 10.3 shows an example.

Network 128.10.1.0

REST OF THE

Network 128.1 0.2.0

all traffic to

128.1 0.0.0

Figure 103 A site with two physical networks using subnet addressing to la-
bel them with a single class B network address. Router R ac-
cepts all traffic for net 128.10.0.0 and chooses a physical net-
work based on the thud octet of the address.

In the example, the site is using the single class B network address 128.10.0.0 for
two networks. Except for router R, all routers in the internet route as if there were a
single physical net. Once a packet reaches R, it must be sent across the correct physical
network to its destination. To make the choice of physical network efficient, the local
site has chosen to use the third octet of the address to distinguish between the two net-
works. The manager assigns machines on one physical net addresses of the form
128.10.1. X, and machines on the other physical net addresses of the form 128.10.2. X,
where X, the final octet of the address, contains a small integer used to identify a specif-
ic host. To choose a physical network, R examines the third octet of the destination ad-
dress and routes datagrams with value 1 to the network labeled 128.10.1.0 and those
with value 2 to the network labeled 128.10.2.0.

Conceptually, adding subnets only changes the interpretation of IP addresses slight-
ly. Instead of dividing the 32-bit IP address into a network prefix and a host suffix,
subnetting divides the address into a network portion and a local portion. The interpre-

Sec. 10.6 Subnet Addressing 153

tation of the network portion remains the same as for networks that do not use subnet-
ting. As before, reachability to the network must be advertised to outside autonomous
systems; all traffic destined for the network will follow the advertised route. The in-
terpretation of the local portion of an address is left up to the site (within the constraints
of the formal standard for subnet addressing). To summarize:

We think of a 32-bit 1P address as having an internet portion and a
local portion, where the internet portion identijies a site, possibly with
multiple physical networks, and the local portion identifies a physical
network and host at that site.

The example of Figure 10.3 showed subnet addressing with a class B address that
had a 2-octet internet portion and a 2-octet local portion. To make routing among the
physical networks efficient, the site administrator in our example chose to use one octet
of the local portion to identify a physical network, and the other octet of the local por-
tion to identify a host on that network, as Figure 10.4 shows.

lnternet
Part

Internet
Part

physical
network

local
Part

Figure 10.4 (a) Conceptual interpretation of a 32-bit IP address in the original
IP address scheme, and (b) conceptual interpretation of ad-
dresses using the subnet scheme shown in Figure 10.3. The lo-
cal portion is divided into two parts that identify a physical net-
work and a host on that network.

The result is a form of hierarchical addressing that leads to corresponding
hierarchical routing. The top level of the routing hierarchy (i.e., other autonomous sys-
tems in the internet) uses the first two octets when routing, and the next level (i.e., the
local site) uses an additional octet. Finally, the lowest level (i.e., delivery across one
physical network) uses the entire address. . .

Hierarchical addressing is not new; many systems have used it before. The best
example is the U.S. telephone system, where a 10-digit phone number is divided into a
3-digit area code, 3-digit exchange, and 4-digit connection. The advantage of using

154 Classless And Subnet Address Extensions (CIDR) Chap. 10

hierarchical addressing is that it accommodates large growth because it means a given
router does not need to know as much detail about distant destinations as it does about
local ones. One disadvantage is that choosing a hierarchical structure is difficult, and it
often becomes difficult to change a hierarchy once it has been established.

10.7 Flexibility In Subnet Address Assignment

The TCPmP standard for subnet addressing recognizes that not every site will have
the same needs for an address hierarchy; it allows sites flexibility in choosing how to
assign them. To understand why such flexibility is desirable, imagine a site with five
networks interconnected, as Figure 10.5 shows. Suppose the site has a single class B
network address that it wants to use for all physical networks. How should the local
part be divided to make routing efficient?

t To rest of Internet

Network 2 Network 3

Network 4 Network 5

Figure 10.5 A site with five physical networks arranged in three "levels."
The simplistic division of addresses into physical net and host
parts may not be optimal for such cases.

In our example, the site will choose a partition of the local part of the IP address
based on how it expects to grow. Dividing the 16-bit local part into an &bit network
identifier and an 8-bit host identifier as shown in Figure 10.4 allows up to 256 net-
works, with up to 256 hosts per network?. Figure 10.6 illustrates the possible choices if
a site uses thefied-length subnetting scheme described above and avoids the all 0s and
all 1s subnet and host addresses.

?In practice, the limit is 254 subnets of 254 hosts per subnet because the all 1s and all Os host addresses
are reserved for broadcast, and the all 1s or all Os subnet is not recommended.

Sec. 10.7 Flexibility In Subnet Address Assignment 155

Subnet Bits Number of Subnets Hosts per Subnet
0 1 65534
2 2 16382
3 6 81 90
4 14 4094
5 30 2046
6 62 1022
7 126 51 0
8 254 254
9 51 0 126

10 1022 62
11 2046 30
12 4094 14
13 81 90 6
14 1 6382 2

Figure 10.6 The possible fixed-length subnets sizes for a class B number,
with 8 subnet bits being the most popular choice; an organiza-
tion must choose one line in the table.

As the figure shows, an organization that adopts fixed-length subnetting must
choose a compromise. If the organization has a large number of physical networks, the
networks cannot contain many hosts; if the number of hosts on a network is large, the
number of physical networks must be small. For example, allocating 3 bits to identify a
physical network results in up to 6 networks that each support up to 8190 hosts. Allo-
cating 12 bits results in up to 4094 networks, but restricts the size of each to 62 hosts.

10.8 Variable-Length Subnets

We have implied that choosing a subnet addressing scheme is synonymous with
choosing how to partition the local portion of an IP address into physical net and host
parts. Indeed, most sites that implement subnetting use a fixed-length assignment. It
should be clear that the designers did not choose a specific division for subnetting be-
cause no single partition of the local part of the address works for all organizations -
some need many networks with few hosts per network, while others need a few net-
works with many hosts attached to each. The designers realized that the same problem
can exist within a single organization. To allow maximum autonomy, the TCPAP sub-
net standard provides even more flexibility than indicated above. An organization may
select a subnet partition on a per-network basis. Although the technique is known as
variable-length subnetting, the name is slightly misleading because the value does not
"vary" over time - once a partition has been selected for a particular network, the
partition never changes. All hosts and routers attached to that network must follow the
decision; if they do not, datagrams can be lost or rnisrouted. We can summarize:

Classless And Subnet Address Extensions (CIDR) Chap. 10

To allow maximum flexibility in choosing how to partition subnet ad-
dresses, the TCP/IP subnet standard permits variable-length subnet-
ting in which the partition can be chosen independently for each phy-
sical network. Once a subnet partition has been selected, all
machines on that network must honor it.

The chief advantage of variable-length subnetting is flexibility: an organization can
have a mixture of large and small networks, and can achieve higher utilization of the
address space. However, variable-length subnetting has serious disadvantages. Most
important, values for subnets must be assigned carefully to avoid address ambiguity, a
situation in which an address is interpreted differently depending on the physical net-
work. For example, an address can appear to match two different subnets. As a result,
invalid variable-length subnets may make it impossible for all pairs of hosts to com-
municate. Routers cannot resolve such ambiguity, which means that an invalid assign-
ment can only be repaired by renumbering. Thus, network managers are discouraged
from using variable-length subnetting.

10.9 Implementation Of Subnets With Masks

The subnet technology makes configuration of either fmed or variable length easy.
The standard specifies that a 32-bit mask is used to specify the division. Thus, a site
using subnet addressing must choose a 32-bit subnet mask for each network. Bits in the
subnet mask are set to 1 if machines on the network treat the corresponding bit in the IP
address as part of the subnet prefix, and 0 if they treat the bit as part of the host identif-
ier. For example, the 32-bit subnet mask:

specifies that the first three octets identlfy the network and the fourth octet identifies a
host on that network. A subnet mask should have 1s for all bits that correspond to the
network portion of the address (e.g., the subnet mask for a class B network will have 1s
for the first two octets plus one or more bits in the last two octets).

The interesting twist in subnet addressing arises because the standard does not res-
trict subnet masks to select contiguous bits of the address. For example, a network
might be assigned the mask:

which selects the first two octets, two bits from the third octet, and one bit from the
fourth. Although such flexibility makes it possible to arrange interesting assignments of
addresses to machines, doing so makes assigning host addresses and understanding rout-
ing tables tricky. Thus, it is recommended that sites use contiguous subnet masks and

Sec. 10.9 Implementation Of Subnets With Masks 157

that they use the same mask throughout an entire set of physical nets that share an IP
address.

10.1 0 Subnet Mask Representation

Specifying subnet masks in binary is both awkward and prone to errors. Therefore,
most software allows alternative representations. Sometimes, the representation follows
whatever conventions the local operating system uses for representation of binary quan-
tities, (e.g., hexadecimal notation).

Most IP software uses dotted decimal representation for subnet masks; it works
best when sites choose to align subnetting on octet boundaries. For example, many
sites choose to subnet class B addresses by using the third octet to identify the physical
net and the fourth octet to identify hosts as on the previous page. In such cases, the
subnet mask has dotted decimal representation 255.255.255.0, making it easy to write
and understand.

The literature also contains examples of subnet addresses and subnet masks
represented in braces as a 3-tuple:

{ <network numbeo , csubnet number>, <host number>]

In this representation, the value -1 means "all ones." For example, if the subnet mask
for a class B network is 255.255.255.0, it can be written (-1, -1,O).

The chief disadvantage of the 3-tuple representation is that it does not accurately
speclfy how many bits are used for each part of the address; the advantage is that it
abstracts away from the details of bit fields and emphasizes the values of the three parts
of the address. To see why address values are sometimes more important than bit
fields, consider the 3-tuple:

which denotes an address with a network number 128.10, all ones in the subnet field,
and all zeroes in the host field. Expressing the same address value using other
representations requires a 32-bit subnet mask as well as a 32-bit IP address, and forces
readers to decode bit fields before they can deduce the values of individual fields.
Furthermore, the 3-tuple representation is independent of the IP address class or the size
of the subnet field. Thus, the 3-tuple can be used to represent sets of addresses or
abstract ideas. For example, the 3-tuple:

{ <network numbeo, -1, -1 }

denotes "addresses with a valid network number, a subnet field containing all ones, and
a host field containing all ones." We will see additional examples later in this chapter.

158 Classless And Subnet Address Extensions (CIDR) Chap. 10

10.1 1 Routing In The Presence Of Subnets

The standard IP routing algorithm must be modified to work with subnet addresses.
AU hosts and routers attached to a network that uses subnet addressing must use the
modified algorithm, which is called subnet routing. What may not be obvious is that
unless restrictions are added to the use of subnetting, other hosts and routers at the site
may also need to use subnet routing. To see how a problem arises without restrictions,
consider the example set of networks shown in Figure 10.7.

In the figure, physical networks 2 and 3 have been (illegally) assigned subnet ad-
dresses of a single IP network address, N. Although host H does not directly attach to a
network that has a subnet address, it must use subnet routing to decide whether to send
datagram destined for network N to router R, or router R,. It could be argued that H
can send to either router and let them handle the problem, but that solution means not
all traffic will follow a shortest path. In larger examples, the difference between an op-
timal and nonoptimal path can be significant.

Net 1 (not a subnet address)

1

Net 2 (subnet of address N) Net 3 (subnet of address N)

Figure 10.7 An example (illegal) topology with three networks where Nets 2
and 3 are subnets of a single IP network address, N. If such to-
pologies were allowed, host H would need to use subnet routing
even though Net 1 does not have a subnet address.

In theory, a simple rule determines when machines need to use subnet routing.
The subnet rule is:

To achieve optimal routing, a machine M must use subnet routing for
an IP network address N, unless there is a single path P such that P
is a shortest path between M and every physical network that is a
subnet of N .

Unfortunately, understanding the theoretical restriction does not help in assigning sub-
nets. First, shortest paths can change if hardware fails or if routing algorithms redirect
traffic around congestion. Such dynamic changes make it difficult to use the subnet
rule except in trivial cases. Second, the subnet rule fails to consider the boundaries of
sites or the difficulties involved in propagating subnet masks. It is impossible to pro-
pagate subnet routes beyond the boundary of a given organization because the routing
protocols discussed later do not provide for it. Realistically, it becomes extremely diffi-

. cult to propagate subnet information beyond a given physical network. Therefore, the
designers recommend that if a site uses subnet addressing, that site should keep subnet-

Sec. 10.1 1 Routing In The Presence Of Subnets 159

ting as simple as possible. In particular, network administrators should adhere to the
following guidelines:

All subnets of a given network IP address must be contiguous, the
subnet masks should be uniform across all networks, and all machines
should participate in subnet routing.

The guidelines pose special difficulty for a large corporation that has multiple sites each
connected to the Internet, but not connected directly to one another. Such a corporation
cannot use subnets of a single address for all its sites because the physical networks are
not contiguous.

10.12 The Subnet Routing Algorithm

Like the standard IF' routing algorithm, the algorithm used with subnets searches a
table of routes. Recall that in the standard algorithm, per-host routes and default routes
are special cases that must be checked explicitly; table lookup is used for all others. A
conventional routing table contains entries of the form:

(network address, next hop address)

where the network address field specifies the IP address of a destination network, N,
and the next hop address field specifies the address of a router to which datagrams des-
tined for N should be sent. The standard routing algorithm compares the network por-
tion of a destination address to the network address field of each entry in the routing
table until a match is found. Because the next hop address field is constrained to speci-
fy a machine that is reachable over a directly connected network, only one table lookup
is ever needed.

The standard algorithm knows how an address is partitioned into network portion
and local portion because the first three bits encode the address type and format (i.e.,
class A, B, C, or D). With subnets, it is not possible to decide which bits correspond to
the network and which to the host from the address alone. Instead, the modified algo-
rithm used with subnets maintains additional information in the routing table. Each
table entry contains one additional field that specifies the subnet mask used with the
network in that entry:

(subnet mask, network address, next hop address)

When choosing routes, the modified algorithm uses the subnet mask to extract bits of
the destination address for comparison with the table entry. That is, it performs a bit-
wise Boolean and of the full 32-bit destination IF' address and the subnet mask field
from an entry, and it then checks to see if the result equals the value in the network ad-
dress field of that entry. If so, it routes the datagram to the address specified in the next
hop address field? of the entry.

tAs in the standard routing algorithm, the next hop router must be reachable by a directly C O M ~ C ~ ~ net-
work.

160 Classless And Subnet Address Extensions (CIDR) Chap. 10

10.13 A Unified Routing Algorithm

Observant readers may have guessed that if we allow arbitrary masks, the subnet
routing algorithm can subsume all the special cases of the standard algorithm. It can
handle routes to individual hosts, a default route, and routes to directly connected net-
works using the same masking technique it uses for subnets. In addition, masks can
handle routes to conventional classful addresses. The flexibility comes from the ability
to combine arbitrary 32-bit values in a subnet mask field and arbitrary 32-bit addresses
in a network address field. For example, to install a route for a single host, one uses a
mask of all 1s and a network address equal to the host's IP address. To install a default
route, one uses a subnet mask of all 0s and a network address of all 0s (because any
destination address and zero equals zero). To install a route to a (nonsubnetted) class B
network, one specifies a mask with two octets of 1s and two octets of 0s. Because the
table contains more information, the routing algorithm contains fewer special cases as
Figure 10.8 shows.

Algorithm:

Route-lP-Datagram (datagram, routing-table)

Extract destination IP address, ID, from datagram;
If prefix of ID matches address of any directly connected

network send datagram to destination over that network
(This involves resolving ID to a physical address,
encapsulating the datagram, and sending the frame.)

else
for each entry in routing table do

Let N be the bitwise-and of ID and the subnet mask
If N equals the network address field of the entry then

route the datagram to the specified next hop address
endforloop

If no matches were found, declare a routing error;

Figure 10.8 The unified IP routing algorithm. Given an IP datagram and a
routing table with masks, this algorithm selects a next hop router
to which the datagram should be sent. The next hop must lie on
a directly connected network.

Sec. 10.13 A Unified Routing Algorithm 161

In fact, most implementations eliminate the explicit test for destinations on directly
connected networks. To do so, one must add a table entry for each directly connected
network. Like other entries, each entry for a directly connected network contains a
mask that specifies the number of bits in the prefix.

10.1 4 Maintenance Of Subnet Masks

How do subnet masks get assigned and propagated? Chapter 9 answered the
second part of the question by showing that a host can obtain the subnet mask for a
given network by sending an ICMP subnet mask request to a router on that network.
The request can be broadcast if the host does not know the specific address of a router.
Later chapters will complete the answer to the second part by explaining that some of
the protocols routers use to exchange routing information pass subnet masks along with
each network address.

The first part of the question is more difficult to answer. Each site is free to
choose subnet masks for its networks. When making assignments, managers attempt to
balance sizes of networks, numbers of physical networks, expected growth, and ease of
maintenance. Difficulty arises because nonuniform masks give the most flexibility, but
make possible assignments that lead to ambiguous routes. Or worse, they allow valid
assignments that become invalid if more hosts are added to the networks. There are no
easy rules, so most sites make conservative choices. Typically, a site selects contiguous
bits from the local portion of an address to identify a network, and uses the same parti-
tion (i.e., the same mask) for all local physical networks at the site. For example, many
sites simply use a single subnet octet when subnetting a class B address.

10.1 5 Broadcasting To Subnets

Broadcasting is more difficult in a subnet architecture. Recall that in the original
IP addressing scheme, an address with a host portion of all 1s denotes broadcast to all
hosts on the specified network. From the viewpoint of an observer outside a subnetted
site, broadcasting to the network address still makes sense?. That is, the address:

{ network, -1, -1)

means "deliver a copy to all machines that have network as their network addresses,
even if they lie on separate physical networks." Operationally, broadcasting to such an
address makes sense only if the routers that interconnect the subnets agree to propagate
the datagram to all physical networks. Of course, care must be taken to avoid routing
loops. In particular, a router cannot merely propagate a broadcast packet that arrives on
one interface to all interfaces that share the subnet prefix. To prevent such loops,
routers use reverse path forwarding. The router extracts the source of the broadcast da-
tagram, and looks up the source in its routing table. The router then discards the da-

Klassless addressing, covered later in this chapter, has made broadcasting to all subnets obsolete.

i.

162 Classless And Subnet Address Extensions (CIDR) Chap. 10

tagram unless it arrived on the interface used to route to the source (i.e., arrived from
the shortest path).

Within a set of subnetted networks, it becomes possible to broadcast to a specific
subnet (i.e., to broadcast to all hosts on a physical network that has been assigned one
of the subnet addresses). The subnet address standard uses a host field of all ones to
denote subnet broadcast. That is, a subnet broadcast address becomes:

{ network, subnet, -1)

Considering subnet broadcast addresses and subnet broadcasting clarifies the
recommendation for using a consistent subnet mask across all networks that share a
subnetted IP address. As long as the subnet and host fields are identical, subnet broad-
cast addresses are unambiguous. More complex subnet address assignments may or
may not allow broadcasting to selected subsets of the physical networks that comprise a
subnet.

10.1 6 Anonymous Point-To-Point Networks

In the original IP addressing scheme, each network was assigned a unique prefm.
In particular, because IP views each point-to-point connection between a pair of
machines as a "network," the connection was assigned a network prefm and each com-
puter was assigned a host suffix. When addresses became scarce, the use of a prefix for
each point-to-point connection seemed absurd. The problem is especially severe for or-
ganizations that have many point-to-point connections. For example, an organization
with multiple sites might use leased digital circuits (e.g., T1 lines) to form a backbone
that interconnects a router at each site to routers at other sites.

To avoid assigning a prefm to each point-to-point connection, a simple technique
was invented. Known as anonymous networking, the technique is often applied when a
pair of routers is connected with a leased digital circuit. The technique simply avoids
numbering the leased line, and does not assign a host address to the routers at each end.
No hardware address is needed, so the interface software is configured to ignore the
next hop address when sending datagram. Consequently, an arbitrary value can be
used as the next-hop address in the IP routing table.

When the anonymous networking technique is applied to a point-to-point comec-
tion, the connection is known as an unnumbered network or an anonymous network.
The example in Figure 10.9 will help explain routing in unnumbered networks.

Sec. 10.16 Anonymous Point-To-Point Networks 163

R leased serial line

TO REACH HOSTS ROUTE TO USING THIS
ON NETWORK THIS ADDRESS INTERFACE

Figure 10.9 (a) An unnumbered point-to-point connection between two
routers, and (b) the routing table in router R,.

128.1 0.0.0

default

To understand why unnumbered networks are possible, one must remember that
serial lines used for point-to-point connections do not operate like shared-media
hardware. Because there is only one possible destination - the computer at the other
end of the circuit - the underlying hardware does not use physical addresses when
transmitting frames. Consequently, when IP hands a datagram to the network interface,
any value can be specified as a next hop because the hardware will ignore it. Thus, the
next-hop field of the IP routing table can contain an arbitrary value (e.g., zero).

The routing table in Figure 10.9b does not have a zero in the next hop field. In-
stead, the example demonstrates a technique often employed with unnumbered net-
works. Rather than leaving the next hop empty, it is filled with one of the IP addresses
assigned to the next-hop router (i.e., an address assigned to another of the router's inter-
faces). In the example, the address of R,'s Ethernet connection has been used.

We said that the hardware ignores the next hop address, so it may seem odd that a
value has been assigned. It may seem even more odd that the next-hop refers to a net-
work not directly reachable from R,. In fact, neither IP nor the network interface code
uses the value in any way. The only reason for specifying a non-zero entry is to make
it easier for humans to understand and remember the address of the router on the other
end of the point-to-point connection. In the example, we chose the address assigned to
R,'s Ethernet interface because R, does not have an address for the leased line interface.

DELIVER DIRECT

128.21 1.0.1 00

1

2

164 Classless And Subnet Address Extensions (CIDR) Chap. 10

10.17 Classless Addressing (Supernetting)

Subnet addressing was invented in the early 1980s to help conserve the IP address
space; the unnumbered networking technique followed. By 1993, it became apparent
that those techniques alone would not prevent Internet growth from eventually exhaust-
ing the address space. Work had begun on defining an entirely new version of IP with
larger addresses. To accommodate growth until the new version of IP could be stand-
ardized and adopted, however, a temporary solution was found.

Called classless addressing, supernet addressing, or supernetting, the scheme takes
an approach that is complementary to subnet addressing. Instead of using a single IP
network prefix for multiple physical networks at a given organization, supernetting al-
lows the addresses assigned to a single organization to span multiple classed prefixes.

To understand why classless addressing was adopted, one needs to know three
facts. First, the classful scheme did not divide network addresses into classes equally.
Although less than seventeen thousand class B numbers can be assigned, more than two
million class C network numbers exist. Second, class C numbers were being requested
slowly; only a small percentage of them had been assigned. Third, studies showed that
at the rate class B numbers were being assigned, class B prefixes would be exhausted
quickly. The situation became known as the Running Our of ADdress Space (ROADS)
problem.

To understand how supernetting works, consider a medium-sized organization that
joins the Internet. Such an organization would prefer to use a single class B address for
two reasons: a class C address cannot accommodate more than 254 hosts and a class B
address has sufficient bits to make subnetting convenient. To conserve class B
numbers, the supernetting scheme assigns an organization a block of class C addresses
instead of a single class B number. The block must be large enough to number all the
networks the organization will eventually connect to the Internet. For example, suppose
an organization requests a class B address and intends to subnet using the third octet as
a subnet field. Instead of a single class B number, supernetting assigns the organization
a block of 256 contiguous class C numbers that the organization can then assign to phy-
sical networks.

Although supernetting is easy to understand when viewed as a way to satisfy a sin-
gle organization, the proposers intended it to be used in a broader context. They en-
visioned a hierarchical Internet in which commercial Internet Service Providers (ISPs)
provide Internet connectivity. To connect its networks to the Internet, an org&zation
contracts with an ISP; the service provider handles the details of assigning IP addresses
to the organization as well as installing physical connections. The designers of super-
netting propose that an Internet Service Provider be assigned a large part of the address
space (i.e., a set of addresses that span many class C network numbers). The ISP can
then allocate one or more addresses from the set to each of its subscribers.

Sec. 10.18 The Effect Of Supernetting On Routing 165

10.18 The Effect Of Supernetting On Routing

Allocating many class C addresses in place of a single class B address conserves
class B numbers and solves the immediate problem of address space exhaustion. How-
ever, it creates a new problem: the information that routers store and exchange increases
dramatically. For example, assigning an organization 256 class C addresses instead of a
class B address requires 256 routes instead of one.

A technique known as Classless Inter-Domain Routing? (CIDR) solves the prob-
Iem. Conceptually, CIDR collapses a block of contiguous class C addresses into a sin-
gle entry represented by a pair:

(network address, count)

where network address is the smallest address in the block, and count specifies the total
number of network addresses in the block. For example, the pair:

is used to specify the three network addresses 192.5.48.0, 192.5.49.0, and 192.5.50.0.
If a few Internet Service Providers form the core of the Internet and each ISP owns

a large block of contiguous IP network numbers, the benefit of supernetting becomes
clear: routing tables are much smaller. Consider routing table entries in routers owned
by service provider P. The table must have a correct route to each of P's subscribers,
but the table does not need to contain a route for other providers' subscribers. Instead,
the table stores one entry for each other provider, where the entry identifies the block of
addresses owned by the provider.

10.19 CIDR Address Blocks And Bit Masks

In practice, CIDR does not restrict network numbers to class C addresses nor does
it use an integer count to specify a block size. Instead, CIDR requires the size of each
block of addresses to be a power of two, and uses a bit mask to identify the size of the
block. For example, suppose an organization is assigned a block of 2048 contiguous
addresses starting at address 128.211.168.0. The table in Figure 10.10 shows the binary
values of addresses in the range.

CIDR requires two items to specify the block of addresses in Figure 10.10: the
32-bit value of the lowest address in the block and a 32-bit mask. The mask operates
like a standard subnet mask by delineating the end of the prefix$. For the range shown,
a CIDR mask has 21 bits set, which means that the division between prefix and suffix
occurs after the 21" bit:

?The name is a slight misnomer because the scheme specifies addressing as well as routing.
$Unlike a subnet mask, a CIDR mask must use contiguous bits.

166 Classless And Subnet Address Extensions (CIDR) Chap. 10

Dotted Decimal 32-bit Binary Equivalent
lowest 128.21 1.1 68.0 1 0000000 1 101 001 1 101 01 000 00000000

highest 128.211.175.255 10000000110100111010111111111111

Figure 10.10 An example CIDR block of 2048 addresses. The table shows
the lowest and highest addresses in the range expressed as dot-
ted decimal and binary values.

10.20 Address Blocks And CIDR Notation

Because idenhfying a CIDR block requires both an address and a mask, a short-
hand notation was devised to express the two items. Called CIDR notation but known
informally as slash notation, the shorthand represents the mask length in decimal and
uses a slash to separate it from the address. Thus, in CIDR notation, the block of ad-
dresses in Figure 10.10 would be expressed as:

where /21 denotes 21 bits in a mask. The table in Figure 10.1 1 lists dotted decimal
values for all possible CIDR masks. The 18,l 16, and 124 prefixes correspond to tradi-
tional class A, B, and C divisions.

CIDR Notation Dotted Decimal I CIDR Notation Dotted Decimal

Figure 10.11 Dotted decimal mask values for all possible CIDR prefixes.

Sec. 10.21 A Classless Addressing Example 167

10.21 A Classless Addressing Example

The table in Figure 10.1 1 illustrates one of the chief advantages of classless ad-
dressing: complete flexibility in allocating blocks of various sizes. With CIDR, the ISP
can choose to assign each customer a block of an appropriate size. If it owns a CIDR
block of N bits, an ISP can choose to hand customers any piece of more than N bits.
For example, if the ISP is assigned 128.21 1.0.01 16, the ISP may choose to give one of
its customers the 2048 address in the 121 range that Figure 10.10 specifies. If the same
ISP also has a small customer with only two computers, the ISP might choose to assign
another block 128.21 1.176.212129, which covers the address range that Figure 10.12
specifies.

Dotted Decimal 32-bit Binary Equivalent
lowest 128.21 1 .l76.212 10000000 11 01 001 1 101 10000 11 01 01 00

highest 128.21 1.176.215 10000000 1101001 1 101 10000 110101 11

Figure 10.12 An example of CIDR block 128.21 1.176.212129. The use of
an arbitrary bit mask allows more flexibility in assigning a
block size than the classful addressing scheme.

One way to think about classless addresses is as if each customer of an ISP obtains
a (variable-length) subnet of the ISP's CIDR block. Thus, a given block of addresses
can be subdivided on an arbitrary bit boundary, and a separate route can be entered for
each subdivision. As a result, although the group of computers on a given network will
be assigned addresses in a contiguous range, the range does not need to correspond to a
predefined class. Instead, the scheme makes subdivision flexible by allowing one to
specify the exact number of bits that correspond to a prefm. To summarize:

Classless addressing, which is now used by ISPs, treats IP addresses
as arbitrary integers, and allows a network administrator to assign
addresses in contiguous blocks, where the number of addresses in a
block is a power of two.

10.22 Data Structures And Algorithms For Classless Lookup

The fundamental criterion used to judge the algorithms and data structures used
with routing tables is speed. There are two aspects: the primary consideration is the
speed of finding a next hop for a given destination, while a secondary consideration is
the speed of making changes to values in the table.

The introduction of classless addressing had a profound effect on routing because it
changed a fundamental assumption: unlike a classful address, a CIDR address is not
self-identrfying. That is, a router cannot determine the division between prefix and suf-

168 Classless And Subnet Address Extensions (CIDR) Chap. 10

fix merely by looking at the address. The difference is important because it means that
data structures and search algorithms used with classful addresses do not work when
routing tables contain classless addresses. After a brief review of classful lookup, we
will consider one of the data structures used for classless lookup.

10.22.1 Hashing And Classful Addresses

All route lookup algorithms are optimized for speed. When IP permitted only
classful addresses, a single technique provided the necessary optimization: hashing.
When a classful address is entered in a routing table, the router extracts the network
portion, N, and uses it as a hash key. Similarly, given a destination address, the router
also extracts the network portion, N, computes a hash function h(N), and uses the result
as an index into a bucket.

Hashing works well in a classful situation because addresses are self-idenwing.
Even if some entries in a table correspond to subnet routes, hashing is still efficient be-
cause the network portion of the address can be extracted and used as a key. If multiple
routes hash to the same bucket in the table, entries within the bucket are arranged in de-
creasing order of specificity - subnet routes precede network routes. Thus, if a given
destination matches both a network route and a subnet route, the algorithm will correct-
ly find and use the subnet route.

In a classless world, however, where addresses are not self-identifying, hashing
does not work well. Because it cannot compute the division between prefix and suffix,
a router cannot find a hash key for an arbitrary address. Thus, an alternate scheme must
be found.

10.22.2 Searching By Mask Length

The simplest lookup algorithm that accommodates classless addressing merely
iterates over all possible divisions between prefix and suffix. That is, given a destina-
tion address, D, the algorithm first tries using 32 bits of D, then 31 bits, and so on down
to 0 bits. For each possible size, M, the router extracts M bits from D, assumes the ex-
tracted bits comprise a network prefix, and looks up the prefix in the table. The algo-
rithm chooses the longest prefix that corresponds to a route in the table (i.e., the search
stops as soon as a match has been found).

The disadvantage of trying all possible lengths should be obvious: doing so is
many times slower than a standard classful lookup because the algorithm must search
the table for each possible prefix size until a match is found. The worst case occurs
when no route exists; in which case, the algorithm searches the table 32 times. Even
when it finds a route, a router using the iterative approach searches the table many
times unnecessarily. For example, 16 lookups are required before a router can find a
traditional class B network (i.e., 116) route. More important, the algorithm performs 31
unnecessary lookups before it succeeds in matching the default route (in many routing
tables, the default route is heavily used).

Sec. 10.22 Data Structures And Algorithms For Classless Lookup 169

10.22.3 Binary Trie Structures

To avoid inefficient searches, production software for classless routing lookup
must avoid the iterative approach. Instead, classless routing tables are usually stored in
a hierarchical data structure, and searching proceeds down the hierarchy. The most po-
pular data structures are variants of a binary trie in which the value of successive bits in
the address determine a path from the root downward.

A binary trie is a tree with paths determined by the data stored. To visualize a
binary trie, imagine that a set of 32-bit addresses is written as binary strings and redun-
dant suffixes are removed. What remains is a set of prefixes that uniquely identify each
item. For example, Figure 10.13 shows a set of seven addresses written in binary and
the corresponding unique prefixes.

As Figure 10.13 illustrates, the number of bits required to identify an address
depends on the values in the set. For example, the first address in the figure can be
uniquely identified by three bits because no other addresses begin with 001. However,
five bits are required to identify the last item in the table because the Cbit prefix 1011
is shared by more than one item.

32-Bit Address
001 1 01 01 00000000 00000000 00000000
01 0001 1 0 00000000 00000000 00000000
01 01 01 1 0 00000000 00000000 00000000
01100001 0000000000000000 00000000
1010101 0 11 110000 00000000 00000000
10110000000000100000000000000000
10111011 000010100000000000000000

Unique Prefix
001
01 00
01 01
01 1
101 0
10110
10111

Figure 10.13 A set of 32-bit binary addresses and the corresponding set of
prefixes that uniquely identify each.

Once a set of unique prefixes has been computed, they can be used to define a
binary trie. Figure 10.14 illustrates a trie for the seven prefixes in Figure 10.13.

Classless And Subnet Address Extensions (CIDR) Chap. 10

Figure 10.14 A binary trie for the seven binary prefixes listed in Figure
10.13. The path through the hie for prefix 0101 is shown dark-
ened.

Each interior node in the trie (shown as a circle) corresponds to two or more pre-
fixes, and each exterior node (shown as a square) corresponds to one unique prefix.
The search algorithm stops when it reaches an exterior node or when no path exists for
the specified prefix. For example, a search for address

fails because there is no branch with label 0 at the node corresponding to 10.

To make routing lookup eficient, routing sofrware that handles class-
less routes must use data structures and algorithms that differ from
those used for classful lookup. Many systems use a scheme based on
a binary trie to accommodate classless lookup.

10.23 Longest-Match Routing And Mixtures Of Route Types

Our brief description of binary tries only gives a sketch of the data structure used
in practice. For example, we said that a trie only needs to store a unique prefix for each
route in the table, without stating that the prefix must cover the entire network portion
of the route. To guarantee that a router does not forward datagrams unless the entire
network prefix in the destination matches the route, each exterior node in the trie must

Sec. 10.23 Longest-Match Routing And Mixtures Of Route Types 171

contain a 32-bit address, A, and a 32-bit mask, M, that covers the entire network portion
of A. When the search reaches an exterior node, the algorithm computes the logical d
of M with the destination address, and compares the result to A in the same way that
conventional lookup algorithms do. If the comparison fails, the datagram is rejected
(also like conventional lookup algorithms). In other words, we can view the trie as a
mechanism that quickly identifies items in the routing table that are potential candidates
rather than a mechanism that finds an exact match.

Even if we consider the trie to be a mechanism that identifies potential matches,
another important detail is missing from our description. We have assumed that each
entry in a routing table has a unique binary prefix. In practice, however, the entries in
most routing tables do not have unique prefixes because routing tables contain a mix-
ture of general and specific routes for the same destination. For example, consider any
routing table that contains a network-specific route and a different route for one particu-
lar subnet of the same network. Or consider a routing table that contains both a
network-specific route and a special route for one host on that network. The binary pre-
fix of the network route is also a prefix of the subnet or host-specific route. Figure
10.15 provides an example.

Prefix
128.1 0.0.0 I 16
128.1 0.2.0 124
128.10.3.0124
128.1 0.4.0 124
128.1 0.4.3 132
128.1 0.5.0 124
128.10.5.1 132

Next Hop
10.0.0.2
10.0.0.4
10.1.0.5
10.0.0.6
10.0.0.3
10.0.0.6
10.0.0.3

Figure 10.15 An example set of routes without unique prefixes. The situation
occurs frequently because many routing tables contain a mix-
ture of general and specific routes for the same network.

To permit overlapping prefixes, the trie data structure described above must be
modified to follow the longest-match paradigm when selecting a route. To do so, one
must allow interior nodes to contain an address 1 mask pair, and modify the search algo-
rithm to check for a match at each node. A match that occurs later in the search (i.e., a
match that corresponds to a more specific route) must override any match that occurs
earlier because a later match corresponds to a longer prefix.

10.23.1 PATRICIA And Level Compressed Tries

Our description of binary tries also omits details related to optimization of lookup.
The most important involves "skipping" levels in the trie that do not distinguish
among routes. For example, consider a binary trie for the set of routes in Figure 10.15.
Because each route in the list begins with the same sixteen bits (i.e., the value

172 Classless And Subnet Address Extensions (CIDR) Chap. 10

1OOOOOOO 00001010), a binary trie for the routes will only have one node at each of the
first sixteen levels below the root.

In this instance, it would be faster to examine all sixteen bits of a destination ad-
dress at once rather than extracting bits one at a time and using them to move through
the trie. Two modified versions of tries use the basic optimization. The first, a PATRZ-
CIA tree, allows each node to s p e c e a value to test along with a number of bits to
skip. The second, a level compressed trie, provides additional optimization by eliminat-
ing one or more levels in the trie that can be skipped along any path.

Of course, data structure optimizations represent a tradeoff. Although the optimi-
zations improve search speed, they require more computation when creating or m o d e -
ing a routing table. In most cases, however, such optimizations are justified because
one expects a routing table to be modified much less frequently than it is searched.

10.24 CIDR Blocks Reserved For Private Networks

Chapter 4 stated that the IETF had designated a set of prefixes to be reserved for
use with private networks. As a safeguard, reserved prefmes will never be assigned to
networks in the global Internet. Collectively, the reserved prefmes are known as private
addresses or nonroutable addresses. The latter term arises because routers in the global
Internet understand that the addresses are reserved; if a datagram destined to one of the
private addresses is accidentally routed onto the global Internet, a router in the Internet
will be able to detect the problem.

In addition to blocks that correspond to classful addresses, the set of reserved IPV4
prefmes contains a CIDR block that spans multiple classes. Figure 10.16 lists the
values in CIDR notation along with the dotted decimal value of the lowest and highest
addresses in the block. The last address block listed, 169.254/16, is unusual because it
is used by systems that autoconfigure IP addresses.

Prefix Lowest Address Highest Address
1018 10.0.0.0 10.255.255.255
172.16112 172.1 6.0.0 172.31.255.255
192.1681 16 192.1 68.0.0 192.1 68.255.255
169.254 1 16 169.254.0.0 169.254.255.255

Figure 10.16 The prefmes reserved for use with private internets not connect-
ed to the global Internet. If a datagram sent to one of these ad-
dresses accidentally reaches the Internet, an error will result.

Sec. 10.25 Summary 173

10.25 Summary

The original IP address scheme assigns a unique prefix to each physical network.
This chapter examined five techniques that have been invented to conserve IP addresses.
The first technique uses transparent routers to extend the address space of a single net-
work, usually a WAN, to include hosts on an attached local network. The second tech-
nique, called proxy ARP, arranges for a router to impersonate computers on another
physical network by answering ARP requests on their behalf. Proxy ARP is useful only
on networks that use ARP for address resolution, and only for ARP implementations
that do not complain when multiple internet addresses map to the same hardware ad-
dress. The third technique, a TCPnP standard called subnet addressing, allows a site to
share a single IP network address among multiple physical networks. All hosts and
routers connected to networks using subnetting must use a modified routing scheme in
which each routing table entry contains a subnet mask. The modified scheme can be
viewed as a generalization of the original routing algorithm because it handles special
cases like default routes or host-specific routes. The fourth technique allows a point-
to-point link to remain unnumbered (i.e., have no IP prefix).

The fifth technique, known as classless addressing (CIDR), represents a major shift
in IP technology. Instead of adhering to the original network classes, classless address-
ing allows the division between prefix and suffix to occur on an arbitrary bit boundary.
CIDR allows the address space to be divided into blocks, where the size of each block
is a power of two. One of the main motivations for CIDR arises from the desire to
combine multiple class C prefixes into a single supernet block. Because classless ad-
dresses are not self-identifying like the original classful addresses, CIDR requires signi-
ficant changes to the algorithms and data structures used by IP software on hosts and
routers to store and look up routes. Many implementations use a scheme based on the
binary trie data structure.

FOR FURTHER STUDY

The standard for subnet addressing comes from Mogul [RFC 9.501 with updates in
Braden [RFC 11221. Clark [RFC 9321, Karels [RFC 9361, Gads [RFC 9401, and Mogul
[RFC 9171 all contain early proposals for subnet addressing schemes. Mogul [RFC
9221 discusses broadcasting in the presence of subnets. Postel [RFC 9251 considers the
use of proxy ARP for subnets. Atallah and Comer [I9981 presents a provably optimal
algorithm for variable-length subnet assignment. Carl-Mitchell and Quarterman W C
10271 discusses using proxy ARP to implement transparent subnet routers. Rekhter and
Li [RFC 15181 specifies classless IP address allocation. Fuller, Li, Yu, and Varadhan
[RFC 15191 specifies CIDR routing and supernetting. Rekhter et. al. [RFC 19181 speci-
fies address prefixes reserved for private networks. Knuth [I9731 describes the PATRI-
CIA data structure.

Classless And Subnet Address Extensions (CIDR) Chap. 10

EXERCISES

If routers using proxy ARP use a table of host addresses to decide whether to answer
ARP requests, the routing table must be changed whenever a new host is added to one of
the networks. Explain how to assign IP addresses so hosts can be added without chang-
ing tables. Hint: think of subnets.

Although the standard allows all-0's to be assigned as a subnet number, some vendors'
software does not operate correctly. Try to assign a zero subnet at your site and see if
the route is propagated correctly.

Can transparent routers be used with local area networks like the Ethernet? Why or why
not?

Show that proxy ARP can be used with three physical networks that are interconnected
by two routers.

Consider a fixed subnet partition of a class B network number that will accommodate at
least 76 networks. How many hosts can be on each network?

Does it ever make sense to subnet a class C network address? Why or why not?

A site that chose to subnet their class B address by using the third octet for the physical
net was disappointed that they could not accommodate 255 or 256 networks. Explain.

Design a subnet address scheme for your organization assuming that you have one class
B address to use.

Is it reasonable for a single router to use both proxy ARP and subnet addressing? If so,
explain how. If not, explain why.

Argue that any network using proxy ARP is vulnerable to "spoofing" (i.e., an arbitrary
machine can impersonate any other machine).

Can you devise a (nonstandard) implementation of ARP that supports normal use, but
prohibits proxy ARP?

One vendor decided to add subnet addressing to its IP software by allocating a single
subnet mask used for all IP network addresses. The vendor modified its standard IP
routing software to make the subnet check a special case. Find a simple example in
which this implementation cannot work correctly. (Hint: think of a multi-homed host.)
Characterize the (restricted) situations in which the subnet implementation discussed in
the previous exercise will work correctly.

Read the standard to find out more about broadcasting in the presence of subnets. Can
you characterize subnet address assignments that allow one to specify a broadcast ad-
dress for all possible subnets?

The standard allows an arbitrary assignment of subnet masks for networks that comprise
a subnetted IP address. Should the standard restrict subnet masks to cover contiguous
bits in the address? Why or why not?

Find an example of variable length subnet assignments and host addresses that produces
address ambiguity.

Carefully consider default routing in the presence of subnets. What can happen if a
packet arrives destined for a nonexistent subnet?

Exercises 175

Compare architectures that use subnet addressing and routers to interconnect multiple
Ethernets to an architecture that uses bridges as described in Chapter 2. Under what cir-
cumstances is one architecture preferable to the other?
Consider a site that chooses to subnet a class B network address, but decides that some
physical nets will use 6 bits of the local portion to identify the physical net while others
will use 8. Find an assignment of host addresses that makes destination addresses ambi-
guous.
The subnet routing algorithm in Figure 10.8 uses a sequential scan of entries in the rout-
ing table, allowing a manager to place host-specific routes before network-specific or
subnet-specific routes. Invent a data structure that achieves the same flexibility but uses
hashing to make the lookup efficient. [This exercise was suggested by Dave Mills.]

Although much effort has been expended on making routers operate quickly, software
for classless route lookup still runs slower than the hashing schemes used with classful
lookup. Investigate data structures and lookup algorithms that operate faster than a
binary trie.
A binary trie uses one bit to select among two descendants at each node. Consider a trie
that uses two bits to select among four descendants at each node. Under what conditions
does such a trie make lookup faster? Slower?
If all Internet service providers use classless addressing and assign subscribers numbers
from their block of addresses, what problem occurs when a subscriber changes from one
provider to another?

Protocol Layering

11 .l Introduction

Previous chapters review the architectural foundations of internetworking, describe
how hosts and routers forward Internet datagrams, and present mechanisms used to map
IP addresses to physical network addresses. This chapter considers the structure of the
software found in hosts and routers that carries out network communication. It presents
the general principle of layering, shows how layering makes Internet Protocol software
easier to understand and build, and traces the path of datagrams through the protocol
software they encounter when traversing a TCP/IP internet.

11.2 The Need For Multiple Protocols

We have said that protocols allow one to specify or understand communication
without knowing the details of a particular vendor's network hardware. They are to
computer communication what programming languages are to computation. It should
be apparent by now how closely the analogy fits. Like assembly language, some proto-
cols describe communication across a physical network. For example, the details of the
Ethernet frame format, network access policy, and frame error handling comprise a pro-
tocol that describes communication on an Ethernet. Similarly, like a high-level
language, the Internet Protocol specifies higher-level abstractions (e.g., IP addressing,
datagram format, and the concept of unreliable, connectionless delivery).

Complex data communication systems do not use a single protocol to handle all
transmission tasks. Instead, they require a set of cooperative protocols, sometimes
called a protocol family or protocol suite. To understand why, think of the problems
that arise when machines communicate over a data network:

178 Protocol Layering Chap. 11

Hardware failure. A host or router may fail either because the hardware fails or
because the operating system crashes. A network transmission link may fail or acciden-
tally be disconnected. The protocol software needs to detect such failures and recover
from them if possible.

Network congestion. Even when aLl hardware and software operates correctly,
networks have finite capacity that can be exceeded. The protocol software needs to ar-
range ways that a congested machine can suppress further traffic.

Packet delay or loss. Sometimes, packets experience extremely long delays or
are lost. The protocol software needs to learn about failures or adapt to long delays.

Data corruption. Electrical or magnetic interference or hardware failures can
cause transmission errors that corrupt the contents of transmitted data. Protocol
software needs to detect and recover from such errors.

Data duplication or inverted arrivals. Networks that offer multiple routes may
deliver data out of sequence or may deliver duplicates of packets. The protocol
software needs to reorder packets and remove any duplicates.

Taken together, all the problems seem overwhelming. It is difficult to understand
how to write a single protocol that will handle them all. From the analogy with pro-
gramming languages, we can see how to conquer the complexity. Program translation
has been partitioned into four conceptual subproblems identified with the software that
handles each subproblem: compiler, assembler, link editor, and loader. The division
makes it possible for the designer to concentrate on one subproblem at a time, and for
the implementor to build and test each piece of software independently. We will see
that protocol software is partitioned similarly.

Two final observations from our programming language analogy will help clarify
the organization of protocols. First, it should be clear that pieces of translation software
must agree on the exact format of data passed between them. For example, the data
passed from a compiler to an assembler consists of a program defined by the assembly
programming language. The translation process involves multiple representations. The
analogy holds for communication software because multiple protocols define the
representations of data passed among communication software modules. Second, the
four parts of the translator form a linear sequence in which output from the compiler be-
comes input to the assembler, and so on. Protocol software also uses a linear sequence.

11.3 The Conceptual Layers Of Protocol Software

Think of the modules of protocol software on each machine as being stacked verti-
cally into layers, as in Figure 11.1. Each layer takes responsibility for handling one
part of the problem.

Sec. 11.3 The Conceptual Layers Of Protocol Software 179

Sender e I Layer n I

Receiver B
Layer n L

Figure 11.1 The conceptual organization of protocol software in layers.

...
Layer 2

Layer 1

Conceptually, sending a message from an application program on one machine to
an application program on another means transfemng the message down through suc-
cessive layers of protocol software on the sender's machine, forwarding the message
across the network, and transfemng the message up through successive layers of proto-
col software on the receiver's machine.

In practice, the protocol software is much more complex than the simple model of
Figure 11.1 indicates. Each layer makes decisions about the correctness of the message
and chooses an appropriate action based on the message type or destination address.
For example, one layer on the receiving machine must decide whether to keep the mes-
sage or forward it to another machine. Another layer must decide which application
program should receive the message.

To understand the difference between the conceptual organization of protocol
software and the implementation details, consider the comparison shown in Figure 11.2.
The conceptual diagram in Figure 11.2a shows an Internet layer between a high level
protocol layer and a network interface layer. The realistic diagram in Figure 11.2b
shows that the IP software may communicate with multiple high-level protocol modules
and with multiple network interfaces.

Although a diagram of conceptual protocol layering does not show all details, it
does help explain the general concept. For example, Figure 11.3 shows the layers of
protocol software used by a message that traverses three networks. The diagram shows
only the network interface and Internet Protocol layers in the routers because only those
layers are needed to receive, route, and send datagrams. We understand that any
machine attached to two networks must have two network interface modules, even
though the conceptual layering diagram shows only a single network interface layer in
each machine.

. . .
Layer 2

Layer 1

Network

180 Protocol Layering Chap. 11

Conceptual Layers Software Organization

Internet I Protocol Layer I
Protocol 1 Protocol 2

I IP Module I
Protocol 3

Interface Layer Interface 1 Interface 2 Interface 3

Protocol Layer
r I -

Figure 11.2 A comparison of (a) conceptual protocol layering and (b) a real-
istic view of software organization showing multiple network in-
terfaces below IF' and multiple protocols above it.

As Figure 11.3 shows, a sender on the original machine transmits a message which
the IP layer places in a datagram and sends across network 1. On intermediate routers,
the datagram passes up to the IP layer which sends it back out again (on a different net-
work). Only when it reaches the final destination machine, does IP extract the message
and pass it up to higher layers of protocol software.

lnterface

Figure 113 The path of a message traversing the Internet from the sender
through two intermediate routers to the receiver. Intermediate
routers only send the datagram to the IF' software layer.

Sec. 11.4 Functionality Of The Layers 181

11.4 Functionality Of The Layers

Once the decision has been made to partition the communication problem and or-
ganize the protocol software into modules that each handle one subproblem, the ques-
tion arises: "what functionality should reside in each module?" The question is not
easy to answer for several reasons. First, given a set of goals and constraints governing
a particular communication problem, it is possible to choose an organization that will
optimize protocol software for that problem. Second, even when considering general
network-level services such as reliable transport, it is possible to choose from among
fundamentally distinct approaches to solving the problem. Third, the design of network
(or internet) architecture and the organization of the protocol software are interrelated;
one cannot be designed without the other.

11.4.1 IS0 7-Layer Reference Model

Two ideas about protocol layering dominate the field. The first, based on early
work done by the International Organization for Standardization (ISO), is known as
ISO's Reference Model of Open System Interconnection, often referred to as the IS0
model. The IS0 model contains 7 conceptual layers organized as Figure 11.4 shows.

Layer Functionality

7 1 Application I
6 I Presentation I
5 1 Session

I Transport I
3 1 Network

2
Data Link

1 Connection
--

Figure 11.4 The IS0 7-layer reference model for protocol software.

182 Protocol Layering Chap. 11

The IS0 model, built to describe protocols for a single network, does not contain a
specific layer for internetwork routing in the same way TCPIIP protocols do.

11.5 X.25 And Its Relation To The IS0 Model

Although it was designed to provide a conceptual model and not an implementa-
tion guide, the IS0 layering scheme has been the basis for several protocol implementa-
tions. Among the protocols commonly associated with the IS0 model, the suite of pro-
tocols known as X.25 is probably the best known and most widely used. X.25 was es-
tablished as a recommendation of the International Telecommunications Union (ITU),
formerly the CCIZT, an organization that recommends standards for international tele-
phone services. X.25 has been adopted by public data networks, and became especially
popular in Europe. Considering X.25 will help explain IS0 layering.

In the X.25 view, a network operates much like a telephone system. An X.25 net-
work is assumed to consist of complex packet switches that contain the intelligence
needed to route packets. Hosts do not attach directly to communication wires of the
network. Instead each host attaches to one of the packet switches using a serial com-
munication line. In one sense, the connection between a host and an X.25 packet
switch is a miniature network consisting of one serial link. The host must follow a
complicated procedure to transfer packets onto the network.

Physical Layer. X.25 specifies a standard for the physical interconnection
between host computers and network packet switches, as well as the procedures used to
transfer packets from one machine to another. In the reference model, layer 1 specifies
the physical interconnection including electrical characteristics of voltage and current.
A corresponding protocol, X.21, gives the details used by public data networks.

Data Link Layer. The layer 2 portion of the X.25 protocol specifies how data
travels between a host and the packet switch to which it connects. X.25 uses the term
frame to refer to a unit of data as it passes between a host and a packet switch (it is im-
portant to understand that the X.25 definition offrame differs slightly from the way we
have defined it). Because raw hardware delivers only a stream of bits, the layer 2 pro-
tocol must define the format of frames and spec@ how the two machines recognize
frame boundaries. Because transmission errors can destroy data, the layer 2 protocol in-
cludes error detection (e.g., a frame checksum). Finally. because transmission is unreli-
able, the layer 2 protocol specifies an exchange of acknowledgements that allows the
two machines to know when a frame has been transferred successfully.

One commonly used layer 2 protocol, named the High Level Data Link Communi-
cation, is best known by its acronym, HDLC. Several versions of HDLC exist, with the
most recent known as HDLCLAPB. It is important to remember that successful
transfer at layer 2 means a frame has been passed to the network packet switch for
delivery; it does not guarantee that the packet switch accepted the packet or was able to
route it.

Network Layer. The IS0 reference model specifies that the third layer contains
functionality that completes the definition of the interaction between host and network.

Sec. 11.5 X.25 And Its Relation To The I S 0 Model 183

Called the network or communication subnet layer, this layer defines the basic unit of
transfer across the network and includes the concepts of destination addressing and rout-
ing. Remember that in the X.25 world, communication between host and packet switch
is conceptually isolated from the traffic that is being passed. Thus, the network might
allow packets defined by layer 3 protocols to be larger than the size of frames that can
be transferred at layer 2. The layer 3 software assembles a packet in the form the net-
work expects and uses layer 2 to transfer it (possibly in pieces) to the packet switch.
Layer 3 must also respond to network congestion problems.

Transport Layer. Layer 4 provides end-to-end reliability by having the destina-
tion host communicate with the source host. The idea here is that even though lower
layers of protocols provide reliable checks at each transfer, the end-to-end layer double
checks to make sure that no machine in the middle failed.

Session Layer. Higher layers of the IS0 model describe how protocol software
can be organized to handle all the functionality needed by application programs. The
IS0 committee considered the problem of remote terminal access so fundamental that
they assigned layer 5 to handle it. In fact, the central service offered by early public
data networks consisted of terminal to host interconnection. The carrier provides a spe-
cial purpose host computer called a Packet Assembler And Disassembler (PAD) on the
network with dialup access. Subscribers, often travelers who cany their own computer
and modem, dial up the local PAD, make a network connection to the host with which
they wish to communicate, and log in. Many carriers choose to make using the network
for long distance communication less expensive than direct dialup.

Presentation Layer. IS0 layer 6 is intended to include functions that many ap-
plication programs need when using the network. Typical examples include standard
routines that compress text or convert graphics images into bit streams for transmission
across a network. For example an IS0 standard known as Abstract Syntax Notation 1
(ASN.]), provides a representation of data that application programs use. One of the
TCP/IP protocols, SNMP, also uses ASN. 1 to represent data.

Application Layer. Finally, IS0 layer 7 includes application programs that use
the network. Examples include electronic mail or file transfer programs. In particular,
the ITU has devised a protocol for electronic mail known as the X.400 standard. In
fact, the ITU and IS0 worked jointly on message handling systems; the IS0 version is
called MOTZS.

11.5.1 The TCPAP 5-Layer Reference Model

The second major layering model did not arise from a standards committee, but
came instead from research that led to the TCPIIP protocol suite. With a little work, the
IS0 model can be stretched to describe the TCPAP layering scheme, but the underlying
assumptions are different enough to warrant distinguishing the two.

184 Protocol Layering Chap. 11

Broadly speaking, TCPDP software is organized into five conceptual layers - four
software layers that build on a fifth layer of hardware. Figure 11.5 shows the conceptu-
al layers as well as the form of data as it passes between them.

Conceptual Layer Objects Passed
Between Layers

Application

Messages or Streams

Transport

Transport Protocol Packets

Internet

IP Datagrams

Network Interface

. Network-Specific Frames

; Hardware ;

Figure 11.5 The 4 conceptual layers of TCPIIP software above the hardware
layer, and the form of objects passed between layers. The layer
labeled network interface is sometimes called the data link layer.

Application Layer. At the highest layer, users invoke application programs that
access services available across a TCPDP internet. An application interacts with one of
the transport layer protocols to send or receive data. Each application program chooses
the style of transport needed, which can be either a sequence of individual messages or
a continuous stream of bytes. The application program passes data in the required form
to the transport layer for delivery.

Transport Layer. The primary duty of the transport layer is to provide com-
munication from one application program to another. Such communication is often
called end-to-end. The transport layer may regulate flow of information. It may also
provide reliable transport, ensuring that data arrives without error and in sequence. To
do so, transport protocol software arranges to have the receiving side send back ack-
nowledgements and the sending side retransmit lost packets. The transport software
divides the stream of data being transmitted into small pieces (sometimes called pack-
ets) and passes each packet along with a destination address to the next layer for
transmission.

Although Figure 11.5 uses a single block to represent the application layer, a gen-
eral purpose computer can have multiple application programs accessing an internet at
one time. The transport layer must accept data from several user programs and send it
to the next lower layer. To do so, it adds additional information to each packet, includ-

Sec. 11.5 X.25 And Its Relation To The I S 0 Model 185

ing codes that identify which application program sent it and which application program
should receive it, as well as a checksum. The receiving machine uses the checksum to
verify that the packet arrived intact, and uses the destination code to identify the appli-
cation program to which it should be delivered.

Internet Layer. As we have already seen, the Internet layer handles communica-
tion from one machine to another. It accepts a request to send a packet from the tran-
sport layer along with an identification of the machine to which the packet should be
sent. It encapsulates the packet in an IP datagram, fills in the datagram header, uses the
routing algorithm to deternune whether to deliver the datagram directly or send it to a
router, and passes the datagram to the appropriate network interface for transmission.
The Internet layer also handles incoming datagrams, checking their validity, and uses
the routing algorithm to decide whether the datagram should be processed locally or for-
warded. For datagrams addressed to the local machine, software in the internet layer
deletes the datagram header, and chooses from among several transport protocols the
one that will handle the packet. Finally, the Internet layer sends and receives ICMP er-
ror and control messages as needed.

Network Inte$ace Layer. The lowest layer TCPIIP software comprises a net-
work interface layer, responsible for accepting IP datagrams and transmitting them over
a specific network. A network interface may consist of a device driver (e.g., when the
network is a local area network to which the machine attaches directly) or a complex
subsystem that uses its own data link protocol (e.g., when the network consists of pack-
et switches that communicate with hosts using HDLC).

11.6 Differences Between IS0 And Internet Layering

There are two subtle and important differences between the TCPm layering
scheme and the ISOlX.25 scheme. The first difference revolves around the focus of at-
tention on reliability, while the se&d involves the location of intelligence in the
overall system.

11.6.1 Link-Level vs. End-To-End Reliability

One major difference between the TCPm protocols and the X.25 protocols lies in
their approaches to providing reliable data transfer services. In the X.25 model, proto-
col software detects and handles errors at all layers. At the link level, complex proto-
cols guarantee that the transfer between a host and the packet switch to which it con-
nects will be correct. Checksums accompany each piece of data transferred, and the re-
ceiver acknowledges each piece of data received. The link layer protocol includes
timeout and retransmission algorithms that prevent data loss and provide automatic
recovery after hardware fails and restarts.

Successive layers of X.25 provide reliability of their own. At layer 3, X.25 also
provides error detection and recovery for packets transferred onto the network, wing
checksums as well as tirneout and retransmission techniques. Finally, layer 4 must pro-

186 Protocol Layering Chap. 1 1

vide end-to-end reliability, having the source correspond with the ultimate destination to
verify delivery.

In contrast to such a scheme, TCPW bases its protocol layering on the idea that re-
liability is an end-to-end problem. The architectural philosophy is simple: construct the
internet so it can handle the expected load, but allow individual links or machines to
lose data or corrupt it without trying to repeatedly recover. In fact, there is little or no
reliability in most TCPAP network interface layer software. Instead, the tganspoa layer
handles most error detection and recovery problems.

The resulting freedom from interface layer verification makes TCP/IP software
much easier to understand and implement correctly. Intermediate routers can discard
datagrams that become corrupted because of transmission errors or that cannot be
delivered. They can discard datagrams when the arrival rate exceeds machine capacity,
and can reroute datagrams through paths with shorter or longer delay without informing
the source or destination.

Having unreliable links means that some datagrams do not arrive. Detection and
recovery of datagram loss is carried out between the source host and the ultimate desti-
nation and is, therefore, called end-to-end verification. The end-to-end software located
in the TCP/IP transport layer uses checksums, acknowledgements, and timeouts to con-
trol transmission. Thus, unlike the connection-oriented X.25 protocol layering, the
TCP/IP software focuses most of its reliability control in one layer.

11.6.2 Locus of Intelligence and Decision Making

Another difference between the X.25 model and the TCPAP model emerges when
one considers the locus of authority and control. As a general rule, networks using
X.25 adhere to the idea that a network is a utility that provides a transport service. The
vendor that offers the service controls network access and monitors traffic to keep
records for accounting and billing. The network vendor also handles problems like
routing, flow control, and acknowledgements internally, making transfers reliable. This

[view leaves little that the hosts can (or need to) do. In short, the network is a complex,
independent system to which one can attach relatively simple host computers; the hosts

(themselves participate minimally in the network operation.
In contrast, TCPAP requires hosts to participate in almost all of the network proto-

cols. We have already mentioned that hosts actively implement end-to-end error detec-
tion and recovery. They also participate in routing because they must choose a router
when sending datagrams, and they participate in network control because they must
handle ICMP control messages. Thus, when compared to an X.25 network, a TCPAP

'' internet can be viewed as a relatively simple packet delivery system to which intelligent
I\ ,hosts attach.

Sec. 11.7 The Protocol Layering Principle

11.7 The Protocol Layering Principle

Independent of the particular layering scheme used or the functions of the layers,
the operation of layered protocols is based on a fundamental idea. The idea, called the
layering principle, can be summarized succinctly:

Layered protocols are designed so that layer n at the destination re-
ceives exactly the same object sent by layer n at the source.

The layering principle explains why layering is such a powerful idea. It allows the
protocol designer to focus attention on one layer at a time, without worrying about how
other layers perform. For example, when building a file transfer application, the
designer considers only two copies of the application program executing on two com-
puters, and concentrates on the messages they need to exchange for file transfer. The
designer assumes that the application on one host receives exactly the data that the ap-
plication on the other host sends.

Figure 11.6 illustrates how the layering principle works:

Host A Host B

Application L-J - - - - - - - - - -

Transport

- - - - - - - - - -

Internet

I Application I
identical - - - - - - - - - -
message

I Transport I
identical - - - - - - - - - -
packet

I Internet I
identical - - - - - - - - - -
datagram

Network
Interface identical Interface

Physical Net

Figure 11.6 The path of a message as it passes from an application on one
host to an application on another. Layer n on host B receives
exactly the same object that layer n on host A sent.

188 Protocoi Layering Chap. 11

11.7.1 Layering in a TCPnP lnternet Environment

Our statement of the layering principle is somewhat vague, and the illustration in
Figure 11.6 skims over an important issue because it fails to distinguish between
transfers from source to ultimate destination and transfers across multiple networks.
Figure 11.7 illustrates the distinction, showing the path of a message sent from an appli-
cation program on one host to an application on another through a router.

As the figure shows, message delivery uses two separate network frames, one for
the transmission from host A to router R, and another from router R to host B. The net-
work layering principle states that the frame delivered to R is identical to the frame sent
by host A. By contrast, the application and transport layers deal with end-toend issues
and are designed so the software at the source communicates with its peer at the ulti-
mate destination. Thus, the layering principle states that the packet received by the
transport layer at the ultimate destination is identical to the packet sent by the transport
layer at the original source.

Host A Host B

identical
Application &! - - -

_ - - - - - Application _ _ - - - message - - - - - - - - - -

identical
Transport _ _ - - - - Transport _ - - - - packet - - ' - - - - - - -

Router R
1 I

Internet Internet Internet
identical identical _ - - - - -
datagram - - - - - - - - datagram - _

Network Network Network
Interface identical Interface identical Interface

Figure 11.7 The layering principle when a router is used. The frame
delivered to router R is exactly the frame sent from host A, but
differs from the frame sent between R and B.

Sec. 11.7 The Protocol Layering Principle 189

It is easy to understand that in higher layers, the layering principle applies across
end-to-end transfers, and that at the lowest layer it applies to a single machine transfer.
It is not as easy to see how the layering principle applies to the Internet layer. On one
hand, we have said that hosts attached to an internet should view it as a large, virtual
network, with the IP datagram taking the place of a network frame. In this view, da-
tagrams travel from original source to ultimate destination, and the layering principle
guarantees that the ultimate destination receives exactly the datagram that the original
source sent. On the other hand, we know that the datagram header contains fields, like
a time to live counter, that change each time the datagram passes through a router.
Thus, the ultimate destination will not receive exactly the same datagram as the source
sent. We conclude that although most of the datagram stays intact as it passes across an
internet, the layering principle only applies to datagrarns across single machine
transfers. To be accurate, we should not view the Internet layer as providing end-to-end
service.

11.8 Layering In The Presence Of Network Substructure

Recall from Chapter 2 that some wide area networks contain multiple packet
switches. For example, a WAN can consist of routers that connect to a local network at
each site as well as to other routers using leased serial lines. When a router receives a
datagram, it either delivers the datagram to its destination on the local network, or
transfers the datagram across a serial line to another router. The question arises: "How
do the protocols used on serial lines fit into the TCPJIP layering scheme?" The answer
depends on how the designer views the serial line interconnections.

From the perspective of IP, the set of point-to-point connections among routers can
either function like a set of independent physical networks, or they can function collec-
tively like a single physical network. In the first case, each physical link is treated ex-
actly like any other network in the internet. The link is assigned a unique network
number, and the two hosts that share the link each have a unique IP address assigned
for their connectiont. Routes are added to the IP routing table as they would be for any
other network. A new software module is added at the network interface layer to con-
trol the new link hardware, but no substantial changes are made to the layering scheme.
The main disadvantage of the independent network approach is that it proliferates net-
work numbers (one for each connection between two machines) and causes routing
tables to be larger than necessary. Both S&al Line IP (SLIP) and the Point to Point
Protocol (PPP) treat each serial link as a separate network. --

The second approach to accommodating point-to-point connections avoids assign-
ing multiple IP addresses to the physical wires. Instead, it treats all the connections col-
lectively as a single, independent IP network with its own frame format, hardware ad-
dressing scheme, and data link protocols. Routers that use the second approach need
only one IP network number for all point-to-point connections.

Using the single network approach means extending the protocol layering scheme
to add a new intranetwork routing layer between the network interface layer and the

tThe only exception arises when using the anonymous network scheme described in Chapter 10; leaving
the link unnumbered does not change the layering.

190 Protocol Layering Chap. 1 1

hardware devices. For machines with only one point-to-point connection, an additional
layer seems unnecessary. To see why it is needed, consider a machine with several
physical point-to-point connections, and recall from Figure 11.2 how the network inter-
face layer is divided into multiple software modules that each control one network. We
need to add one network interface for the new point-to-point network, but the new inter-
face must control multiple hardware devices. Furthermore, given a datagram to send,
the new interface must choose the correct link over which the datagram should be sent.
Figure 1 1.8 shows the organization.

The Internet layer software passes to the network interface all datagrams that
should be sent on any of the point-to-point connections. The network interface passes
them to the intranet routing module that must further distinguish among multiple physi-
cal connections and route the datagram across the correct one.

The programmer who designs the intranet routing software determines exactly how
the software chooses a physical link. Usually, the algorithm relies on an intranet rout-
ing table. The intranet routing table is analogous to the internet routing table in that it
specifies a mapping of destination address to route. The table contains pairs of entries,
(D, L), where D is a destination host address and L specifies the physical line used to
reach that destination.

Conceptual Layer Software Organization

Transport

Internet
P

Network
Interface

lntranet

Figure 11.8 (a) Conceptual position of an intranet protocol for point-to-point
connections when IP treats them as a single IP network, and (b)
detailed diagram of corresponding software modules. Each ar-
row corresponds to one physical device.

The difference between an internet routing table and an intranet routing table is
that intranet routing tables are quite small. They only contain routing information for
hosts directly attached to the point-to-point network. The reason is simple: the Internet
layer maps an arbitrary destination address to a specific router address before passing

Sec. 11.8 Layering In The Presence Of Network Substructure 191

the datagram to a network interface. The intranet only to distinguish
among machines on a single point-to-point network.

11.9 Two Important Boundaries In The TCPnP Model

The conceptual protocol layering includes two boundaries that may not be obvious:
a protocol address boundary that separates high-level and low-level addressing, and an
operating system boundary that separates the system from application programs.

1 1.9.1 High-Level Protocol Address Boundary

Now that we have seen the layering of TCP/IP software, we can be precise about
an idea introduced in Chapter 8: a conceptual boundary partitions software that uses
low-level (physical) addresses from software that uses high-level (IP) addresses. As
Figure 11.9 shows, the boundary occurs between the network interface layer and the In-
ternet layer. That is,

Application programs as well as all protocol software from the Inter-
net layer upward use only IP addresses; the network interface layer
handles physical addresses.

Thus, protocols like ARP belong in the network interface layer. They are not part of IP.

Conceptual Layer Boundary

I Application I Sofware outside the operating system

I transport I Sofware inside the operating system

I Internet I Only IP addresses used - - - - - .
Physical addresses used

Interface

Hardware ;
.

Figure 11.9 The relationship between conceptual layering and the boundaries
for operating system and high-level protocol addresses.

192 Protocol Layering Chap. 1 1

11.9.2 Operating System Boundary

Figure 11.9 shows another important boundary as well, the division between
software that is generally considered part of the operating system and software that is
not. While each implementation of TCP/IP chooses how to make the distinction, many
follow the scheme shown. Because they lie inside the operating system, passing data
between lower layers of protocol software is much less expensive than passing it
between an application program and a transport layer. Chapter 20 discusses the prob-
lem in more detail and describes an example of the interface an operating system might
provide.

1 1 .I 0 The Disadvantage Of Layering

We have said that layering is a fundamental idea that provides the basis for proto-
col design. It allows the designer to divide a complicated problem into subproblems
and solve each one independently. Unfortunately, the software that results from strict
layering can be extremely inefficient. As an example, consider the job of the transport
layer. It must accept a stream of bytes from an application program, divide the stream
into packets, and send each packet across the internet. To optimize transfer, the tran-
sport layer should choose the largest possible packet size that will allow one packet to
travel in one network frame. In particular, if the destination machine attaches directly
to one of the same networks as the source, only one physical net will be involved in the
transfer, so the sender can optimize packet size for that network. If the software
preserves strict layering, however, the transport layer cannot know how the Internet
module will route traffic or which networks attach directly. Furthermore, the transport
layer will not understand the datagram or frame formats nor will it be able to determine
how many octets of header will be added to a packet. Thus, strict layering will prevent
the transport layer from optimizing transfers.

Usually, implementors relax the strict layering scheme when building protocol
software. They allow information like route selection and network MTU to propagate
upward. When allocating buffers, they often leave space for headers that will be added
by lower layer protocols and may retain headers on incoming frames when passing them
to higher layer protocols. Such optimizations can make dramatic improvements in effi-
ciency while retaining the basic layered structure.

11.1 1 The Basic Idea Behind Multiplexing And Demultiplexing

Communication protocols use techniques of multiplexing and demultiplexing
throughout the layered hierarchy. When sending a message, the source computer in-
cludes extra bits that encode the message type, originating program, and protocols used.

Sec. 1 1 . 1 1 The Basic Idea Behind Multiplexing And Demultiplexing 193

Eventually, all messages are placed into network frames for transfer and combined into
a stream of packets. At the receiving end, the destination machine uses the extra infor-
mation to guide processing.

Consider an example of demultiplexing shown in Figure 1 1.10.

Frame Arrives a

IP Module ARP Module

Figure 11.10 Demultiplexing of incoming frames based on the type field
found in the frame header.

RARP Module

The figure illustrates how software in the network interface layer uses the frame type to
choose a procedure to handle the incoming frame. We say that the network interface
demultiplexes the frame based on its type. To make such a choice possible, software in
the source machine must set the frame type field before transmission. Thus, each
software module that sends frames uses the type field to specify frame contents.

Multiplexing and demultiplexing occur at almost every protocol layer. For exam-
ple, after the network interface demultiplexes frames and passes those frames that con-
tain IP datagrams to the IP module, the IP software extracts the datagram and demulti-
plexes further based on the transport protocol. Figure 11.11 demonstrates demultiplex-
ing at the Internet layer.

A

Demultiplexing Based
On Frame Type

Protocol Layering Chap. 11

Datagram Arrives 0
Figure 11.11 Demultiplexing at the Internet layer. IP software chooses an ap-

propriate procedure to handle a datagram based on the protocol
type field in the datagram header.

TCP Protocol ICMP Protocol

To decide how to handle a datagram, internet software examines the header of a da-
tagram and selects a protocol handler based on the datagram type. In the example, the
possible datagram types are: ICMP, which we have already examined, and UDP, and
TCP, which we will examine in later chapters.

A

IP Module

4

UDP Protocol

1 1 .I 2 Summary

Protocols are the standards that specify how data is represented when being
transferred from one machine to another. Protocols specify how the transfer occurs,
how errors are detected, and how acknowledgements are passed. To simplify protocol
design and implementation, communication problems are segregated into subproblems
that can be solved independently. Each subproblem is assigned a separate protocol.

The idea of layering is fundamental because it provides a conceptual framework
for protocol design. In a layered model, each layer handles one part of the communica-
tion problem and usually corresponds to one protocol. Protocols follow the layering
principle, which states that the software implementing layer n on the destination
machine receives exactly what the software implementing layer n on the source machine
sends.

We examined the 5-layer Internet reference model as well as the older IS0 7-layer
reference model. In both cases, the layering model provides only a conceptual frame-
work for protocol software. The ITU X.25 protocols follow the IS0 reference model
and provide an example of reliable communication service offered by a commercial util-
ity, while the TCPIIP protocols provide an example of a different layering scheme.

In practice, protocol software uses multiplexing and demultiplexing to distinguish
among multiple protocols within a given layer, making protocol software more complex
than the layering model suggests.

For Further Study

FOR FURTHER STUDY

Postel [RFC 7911 provides a sketch of the Internet Protocol layering scheme, and
Clark [RFC 8171 discusses the effect of layering on implementations. Saltzer, Reed,
and Clark [I9841 argues that end-to-end verification is important. Chesson [I9871
makes the controversial argument that layering produces intolerably bad network
throughput. Volume 2 of this text examines layering in detail, and shows an example
implementation that achieves efficiency by compromising strict layering and passing
pointers between layers.

The IS0 protocol documents [1987a] and [1987b] describe ASN.l in detail. Sun
[RFC 10141 describes XDR, an example of what might be called a TCPm presentation
protocol. Clark [I9851 discusses passing information upward through layers.

EXERCISES

Study the I S 0 layering model in more detail. How well does the model describe com-
munication on a local area network like an Ethernet?

Build a case that T C P m is moving toward a six-layer protocol architecture that includes
a presentation layer. (Hint: various programs use the XDR protocol, Courier-Rdi,
ASN. 1 .)
Do you think any single presentation protocol will eventually emerge that replaces all
others? Why or why not?

Compare and contrast the tagged data format used by the ASN.l presentation scheme
with the untagged format used by XDR. Characterize situations in which one is better
than the other.

Find out how a UNIX system uses the mbuf structure to make layered protocol software
efficient.

Read about the System V UNIX streams mechanism. How does it help make protocol
implementation easier? What is its chief disadvantage?

User Datagram Protocol

12.1 Introduction

Previous chapters describe a TCP/IF' internet capable of transferring IP datagrams
among host computers, where each datagram is routed through the internet based on the
destination's IP address. At the Internet Protocol layer, a destination address identifies
a host computer; no further distinction is made regarding which user or which applica-
tion program will receive the datagram. This chapter extends the TCP/IF' protocol suite
by adding a mechanism that distinguishes among destinations within a given host, al-
lowing multiple application programs executing on a given computer to send and re-
ceive datagrams independently.

12.2 Identifying The Ultimate Destination

The operating systems in most computers support multiprogramming, which means
they permit multiple application programs to execute simultaneously. Using operating
system jargon, we refer to each executing program as a process, task, application pro-
gram, or a user level process; the systems are called multitasking systems. It may seem
natural to say that a process is the ultimate destination for a message. However, speci-
fying that a particular process on a particular machine is the ultimate destination for a
datagram is somewhat misleading. First, because processes are created and destroyed
dynamically, senders seldom know enough to identify a process on another machine.
Second, we would like to be able to replace processes that receive datagrams without

198 User Datagram Protocol (UDP) Chap. 12

informing all senders (e.g., rebooting a machine can change al l the processes, but
senders should not be required to know about the new processes). Third, we need to
identify destinations from the functions they implement without knowing the process
that implements the function (e.g., to allow a sender to contact a file server without
knowing which process on the destination machine implements the file server function).
More important, in systems that allow a single process to handle two or more functions,
it is essential that we arrange a way for a process to decide exactly which function the
sender desires.

Instead of thinking of a process as the ultimate destination, we will imagine that
each machine contains a set of abstract destination points called protocol ports. Each
protocol port is identified by a positive integer. The local operating system provides an
interface mechanism that processes use to specify a port or access it.

Most operating systems provide synchronous access to ports. From a particular
process's point of view, synchronous access means the computation stops during a port
access operation. For example, if a process attempts to extract data from a port before
any data arrives, the operating system temporarily stops (blocks) the process until data
arrives. Once the data arrives, the operating system passes the data to the process and
restarts it. In general, ports are bufSered, so data that arrives before a process is ready to
accept it will not be lost. To achieve buffering, the protocol software located inside the
operating system places packets that arrive for a particular protocol port in a (finite)
queue until a process extracts them.

To communicate with a foreign port, a sender needs to know both the IF' address of
the destination machine and the protocol port number of the destination within that
machine. Each message must carry the number of the destination port on the machine
to which the message is sent, as well as the source port number on the source machine
to which replies should be addressed. Thus, it is possible for any process that receives
a message to reply to the sender.

12.3 The User Datagram Protocol

In the TCPDP protocol suite, the User Datagram Protocol or UDP provides the
primary mechanism that application programs use to send datagrams to other applica-
tion programs. UDP provides protocol ports used to distinguish among multiple pro-
grams executing on a single machine. That is, in addition to the data sent, each UDP
message contains both a destination port number and a source port number, making it
possible for the UDP software at the destination to deliver the message to the correct re-
cipient and for the recipient to send a reply.

UDP uses the underlying Internet Protocol to transport a message from one
machine to another, and provides the same unreliable, connectionless datagram delivery
semantics as IF'. It does not use acknowledgements to make sure messages arrive, it
does not order incoming messages, and it does not provide feedback to control the rate
at which information flows between the machines. Thus, UDP messages can be lost,
duplicated, or arrive out of order. Furthermore, packets can arrive faster than the reci-
pient can process them. We can summarize:

Sec. 12.3 The User Datagram Protocol 199

The User Datagram Protocol (UDP) provides an unreliable connec-
tionless delivery service using IP to transport messages between
machines. It uses IP to carry messages, but adds the ability to distin-
guish among multiple destinations within a given host computer.

An application program that uses UDP accepts full responsibility for handling the
problem of reliability, including message loss, duplication, delay, out-of-order delivery,
and loss of connectivity. Unfortunately, application programmers often ignore these
problems when designing software. Furthermore, because programmers often test net-
work software using highly reliable, low-delay local area networks, testing may not ex-
pose potential failures. Thus, many application programs that rely on UDP work well
in a local environment but fail in dramatic ways when used in a larger TCP/IP internet.

12.4 Format Of UDP Messages

Each UDP message is called a user datagram. Conceptually, a user datagram con-
sists of two parts: a UDP header and a UDP data area. As Figure 12.1 shows, the
header is divided into four 16-bit fields that specify the port from which the message
was sent, the port to which the message is destined, the message length, and a UDP
checksum.

I UDP SOURCE PORT 1 UDP DESTINATION PORT I
I DATA I

UDP MESSAGE LENGTH

Figure 12.1 The format of fields in a UDP datagram.

UDP CHECKSUM

The SOURCE PORT and DESTINATION PORT fields contain the 16-bit UDP pro-
tocol port numbers used to demultiplex datagram among the processes waiting to re-
ceive them. The SOURCE PORT is optional. When used, it specifies the port to which
replies should be sent; if not used, it should be zero.

The LENGTH field contains a count of octets in the UDP datagram, including the
UDP header and the user data. Thus, the minimum value for LENGTH is eight, the
length of the header alone.

The UDP checksum is optional and need not be used at all; a value of zero in the
CHECKSUM field means that the checksum has not been computed. The designers
chose to make the checksum optional to allow implementations to operate with little

I

200 User Datagram Protocol (UDP) Chap. 12

computational overhead when using UDP across a highly reliable local area network.
Recall, however, that IP does not compute a checksum on the data portion of an IP da-
tagram. Thus, the UDP checksum provides the only way to guarantee that data has ar-
rived intact and should be used.

B e g i ~ e r s often wonder what happens to UDP messages for which the computed
checksum is zero. A computed value of zero is possible because UDP uses the same
checksum algorithm as IP: it divides the data into 16-bit quantities and computes the
one's complement of their one's complement sum. Surprisingly, zero is not a problem
because one's complement arithmetic has two representations for zero: all bits set to
zero or all bits set to one. When the computed checksum is zero, UDP uses the
representation with all bits set to one.

12.5 UDP Pseudo-Header

The UDP checksum covers more information than is present in the UDP datagram
alone. To compute the checksum, UDP prepends a pseudo-header to the UDP da-
tagram, appends an octet of zeros to pad the datagram to an exact multiple of 16 bits,
and computes the checksum over the entire object. The octet used for padding and the
pseudo-header are not transmitted with the UDP datagram, nor are they included in the
length. To compute a checksum, the software first stores zero in the CHECKSUM field,
then accumulates a 16-bit one's complement sum of the entire object, including the
pseudo-header, UDP header, and user data.

The purpose of using a pseudo-header is to venfy that the UDP datagram has
reached its correct destination. The key to understanding the pseudo-header lies in real-
izing that the correct destination consists of a specific machine and a specific protocol
port within that machine. The UDP header itself specifies only the protocol port
number. Thus, to verify the destination, UDP on the sending machine computes a
checksum that covers the destination IP address as well as the UDP datagram. At the
ultimate destination, UDP software verifies the checksum using the destination IP ad-
dress obtained from the header of the IP datagram that carried the UDP message. If the
checksums agree, then it must be true that the datagram has reached the intended desti-
nation host as well as the correct protocol port within that host.

The pseudo-header used in the UDP checksum computation consists of 12 octets of
data arranged as Figure 12.2 shows. The fields of the pseudo-header labeled SOURCE
IP ADDRESS and DESTINATION IP ADDRESS contain the source and destination IP
addresses that will be used when sending the UDP message. Field PROTO contains the
IP protocol type code (17 for UDP), and the field labeled UDP LENGTH contains the
length of the UDP datagram (not including the pseudo-header). To verify the check-
sum, the receiver must extract these fields from the IP header, assemble them into the
pseudo-header format, and recompute the checksum.

Sec. 12.5 UDP Pseudo-Header 201

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

Figure 12.2 The 12 octets of the pseudo-header used during UDP checksum
computation.

ZERO

12.6 UDP Encapsulation And Protocol Layering

UDP provides our first example of a transport protocol. In the layering model of
Chapter 11, UDP lies in the layer above the Internet Protocol layer. Conceptually, ap-
plication programs access UDP, which uses IP to send and receive datagrams as Figure
12.3 shows.

PROTO

Conceptual Layering

Application

User Datagram (UDP)

UDP LENGTH

Internet (IP)

Network Interface

Figure 123 The conceptual layering of UDP between application programs
and IP.

Layering UDP above IP means that a complete UDP message, including the UDP
header and data, is encapsulated in an IP datagram as it travels across an internet as Fig-
ure 12.4 shows.

User Datagram Protocol (UDP) Chap. 12

UDP
EADER UDP DATA AREA

t t

Figure 12.4 A UDP datagram encapsulated in an IP datagram for transmis-
sion across an internet. The datagram is further encapsulated in
a frame each time it travels across a single network.

I

IP
HEADER

.

For the protocols we have examined, encapsulation means that UDP prepends a
header to the data that a user sends and passes it to IP. The IP layer prepends a header
to what it receives from UDP. Finally, the network interface layer embeds the datagram
in a frame before sending it from one machine to another. The format of the frame
depends on the underlying network technology. Usually, network frames include an ad-
ditional header.

On input, a packet arrives at the lowest layer of network software and begins its
ascent through successively higher layers. Each layer removes one header before pass-
ing the message on, so that by the time the highest level passes data to the receiving
process, all headers have been removed. Thus, the outermost header corresponds to the
lowest layer of protocol, while the innermost header corresponds to the highest protocol
layer. When considering how headers are inserted and removed, it is important to keep
in mind the layering principle. In particular, observe that the layering principle applies
to UDP, so the UDP datagram received from IP on the destination machine is identical
to the datagram that UDP passed to IP on the source machine. Also, the data that UDP
delivers to a user process on the receiving machine will be exactly the data that a user
process passed to UDP on the sending machine.

The division of duties among various protocol layers is rigid and clear:

IP DATA AREA

FRAME
HEADER

The ZP layer is responsible only for transferring data between a pair
of hosts on an internet, while the UDP layer is responsible only for
diferentiating among multiple sources or destinations within one host.

I I

FRAME DATA AREA

Thus, only the IP header identifies the source and destination hosts; only the UDP layer
identifies the source or destination ports within a host.

1

Sec. 12.7 Layering And The UDP Checksum Computation 203

12.7 Layering And The UDP Checksum Computation

Observant readers will have noticed a seeming contradiction between the layering
rules and the UDP checksum computation. Recall that the W P checksum includes a
pseudo-header that has fields for the source and destination IP addresses. It can be ar-
gued that the destination IP address must be known to the user when sending a UDP da-
tagram, and the user must pass it to the UDP layer. Thus, the UDP layer can obtain the
destination IP address without interacting with the IP layer. However, the source IP ad-
dress depends on the route IP chooses for the datagram, because the IP source address
identifies the network interface over which the datagram is transmitted. Thus, UDP
cannot know a source IP address unless it interacts with the IP layer.

We assume that UDP software asks the IP layer to compute the source and (possi-
bly) destination IP addresses, uses them to construct a pseudo-header, computes the
checksum, discards the pseudo-header, and then passes the UDP datagram to IP for
transmission. An alternative approach that produces greater efficiency arranges to have
the UDP layer encapsulate the UDP datagram in an IP datagram, obtain the source ad-
dress from IP, store the source and destination addresses in the appropriate fields of the
datagram header, compute the UDP checksum, and then pass the IP datagram to the IP
layer, which only needs to fill in the remaining IP header fields.

Does the strong interaction between UDP and IP violate our basic premise that
layering reflects separation of functionality? Yes. UDP has been tightly integrated with
the IP protocol. It is clearly a compromise of the pure separation, made for entirely
practical reasons. We are willing to overlook the layering violation because it is impos-
sible to fully identify a destination application program without specifying the destina-
tion machine, and we want to make the mapping between addresses used by UDP and
those used by IP efficient. One of the exercises examines this issue from a different
point of view, asking the reader to consider whether UDP should be separated from IP.

12.8 UDP Multiplexing, Demultiplexing, And Ports

We have seen in Chapter 11 that software throughout the layers of a protocol
hierarchy must multiplex or demultiplex among multiple objects at the next layer. UDP
software provides another example of multiplexing and demultiplexing. It accepts UDP
datagrams from many application programs and passes them to IP for transmission, and
it accepts aniving UDP datagrams from IP and passes each to the appropriate applica-
tion program.

Conceptually, all multiplexing and demultiplexing between UDP software and ap-
plication programs occur through the port mechanism. In practice, each application pro-
gram must negotiate with the operating system to obtain a protocol port and an associat-
ed port number before it can send a UDP datagram?. Once the port has been assigned,
any datagram the application program sends through the port will have that port number
in its UDP SOURCE PORT field.

tFor now, we will describe ports abstractly; Chapter 22 provides an example of the operating system
primitives used to create and use ports.

204 User Datagram Protocol (UDP) Chap. 12

While processing input, UDP accepts incoming datagrams from the IP software
and demultiplexes based on the UDP destination port, as Figure 12.5 shows.

r

Port 1 Port 2 Port 3

I

UDP: Demultiplexing
Based On Port

A
UDP Datagram arrives

I IP Layer I
Figure 12.5 Example of demultiplexing one layer above IP. UDP uses the

UDP destination port number to select an appropriate destination
port for incoming datagram.

The easiest way to think of a UDP port is as a queue. In most implementations, when
an application program negotiates with the operating system to use a given port, the
operating system creates an internal queue that can hold arriving messages. Often, the
application can specify or change the queue size. When UDP receives a datagram, it
checks to see that the destination port number matches one of the ports currently in use.
If not, it sends an ICMP port unreachable error message and discards the datagram. If
a match is found, UDP enqueues the new datagram at the port where an application pro-
gram can access it. Of course, an error occurs if the port is full, and UDP discards the
incoming datagram.

12.9 Reserved And Available UDP Port Numbers

How should protocol port numbers be assigned? The problem is important because
two computers need to agree on port numbers before they can intemperate. For exam-
ple, when computer A wants to obtain a file from computer B, it needs to know what
port the file transfer program on computer B uses. There are two fundamental ap-
proaches to port assignment. The first approach uses a central authority. Everyone
agrees to allow a central authority to assign port numbers as needed and to publish the
list of all assignments. Then all software is built according to the list. This approach is
sometimes called universal assignment, and the port assignments specified by the au-
thority are called well-known port assignments.

Sec. 12.9 Reserved And Available UDP Port Numbers 205

The second approach to port assignment uses dynamic binding. In the dynamic
binding approach, ports are not globally known. Instead, whenever a program needs a
port, the network software assigns one. To learn about the current port assignment on
another computer, it is necessary to send a request that asks about the current port as-
signment (e.g., What port is the file transfer service using?). The target machine replies
by giving the correct port number to use.

The TCP/IP designers adopted a hybrid approach that assigns some port numbers a
priori, but leaves many available for local sites or application programs. The assigned
port numbers begin at low values and extend upward, leaving large integer values avail-
able for dynamic assignment. The table in Figure 12.6 lists some of the currently as-
signed UDP port numbers. The second column contains Internet standard assigned key-
words, while the third contains keywords used on most UNIX systems.

Decimal Keyword

ECHO
DISCARD
USERS
DAYTIME

QUOTE
CHARGEN
TIME
NAMESERVER
NICNAME
DOMAIN
BOOTPS
BOOTPC
TFTP
KERBEROS
SUNRPC
NTP

UNlX Keyword

echo
discard
systat
daytime
netstat
qotd
chargen
time
name
whois
nameserver
bootps
bootpc
tftp
kerberos
sunrpc
ntp
snmp
snmp-trap
biff
who
syslog
timed

Description
Reserved
Echo
Discard
Active Users
Daytime
Network status program
Quote of the Day
Character Generator
Time
Host Name Server
Who Is
Domain Name Server
BOOTP or DHCP Server
BOOTP or DHCP Client
Trivial File Transfer
Kerberos Security Service
Sun Remote Procedure Call
Network Time Protocol
Simple Network Management Proto
SNMP traps
UNlX comsat
UNlX rwho daemon
System log
Time daemon

Figure 12.6 An illustrative sample of currently assigned UDP ports showing
the standard keyword and the UNIX equivalent; the list is not
exhaustive. To the extent possible, other transport protocols that
offer identical services use the same port numbers as UDP.

206 User Datagram Protocol (UDP) Chap. 12

12.1 0 Summary

Most computer systems permit multiple application programs to execute simultane-
ously. Using operating system jargon, we refer to each executing program as a process.
The User Datagram Protocol, UDP, distinguishes among multiple processes within a
given machine by allowing senders and receivers to add two 16-bit integers called pro-
tocol port numbers to each UDP message. The port numbers identify the source and
destination. Some UDP port numbers, called well known, are permanently assigned and
honored throughout the Internet (e.g., port 69 is reserved for use by the trivial file
transfer protocol TFTP described in Chapter 26). Other port numbers are available for
arbitrary application programs to use.

UDP is a thin protocol in the sense that it does not add significantly to the seman-
tics of IP. It merely provides application programs with the ability to communicate us-
ing IP's unreliable connectionless packet delivery service. Thus, UDP messages can be
lost, duplicated, delayed, or delivered out of order; the application program using UDP
must handle these problems. Many programs that use UDP do not work correctly
across an internet because they fail to accommodate these conditions.

In the protocol layering scheme, UDP lies in the transport layer, above the Internet
Protocol layer and below the application layer. Conceptually, the transport layer is in-
dependent of the Internet layer, but in practice they interact strongly. The UDP check-
sum includes IP source and destination addresses, meaning that UDP software must in-
teract with IP software to find addresses before sending datagram.

FOR FURTHER STUDY

Tanenbaum [I9811 contains a tutorial comparison of the datagram and virtual cir-
cuit models of communication. Ball et. al. [I9791 describes message-based systems
without discussing the message protocol. The UDP protocol described here is a stan-
dard for TCPm and is defined by Postel [RFC 7681.

12.1 Try UDP in your local environment. Measure the average transfer speed with messages
of 256, 512, 1024, 2048, 4096, and 8192 bytes. Can you explain the results (hint: what
is your network MTU)?

12.2 Why is the UDP checksum separate from the IP checksum? Would you object to a pro-
tocol that used a single checksum for the complete IP datagram including the UDP mes-
sage?

123 Not using checksums can be dangerous. Explain how a single corrupted ARP packet
broadcast by machine P can make it impossible to reach another machine, Q.

Exercises 207

Should the notion of multiple destinations identified by protocol ports have been built
into IP? Why, or why not?
Name Registry. Suppose you want to allow arbitrary pairs of application programs to es-
tablish communication with UDP, but you do not wish to assign them fixed UDP port
numbers. Instead, you would like potential correspondents to be identified by a charac-
ter string of 64 or fewer characters. Thus, a program on machine A might want to com-
municate with the "funny-special-long-id" program on machine B (you can assume that a
process always knows the IP address of the host with which it wants to communicate).
Meanwhile, a process on machine C wants to communicate with the "comer's-own-
program-id" on machine A. Show that you only need to assign one UDP port to make
such communication possible by designing software on each machine that allows (a) a
local process to pick an unused UDP port ID over which it will communicate, (b) a local
process to register the 64-character name to which it responds, and (c) a foreign process
to use UDP to establish communication using only the 64-character name and destination
internet address.
Implement name registry software from the previous exercise.
What is the chief advantage of using preassigned UDP port numbers? The chief disad-
vantage?

What is the chief advantage of using protocol ports instead of process identifiers to
specify the destination within a machine?
UDP provides unreliable datagram communication because it does not guarantee delivery
of the message. Devise a reliable datagram protocol that uses timeouts and ack-
nowledgements to guarantee delivery. How much network overhead and delay does reli-
ability introduce?
Send UDP datagrams across a wide area network and measure the percentage lost and
the percentage reordered. Does the result depend on the time of day? The network
load?

Reliable Stream Transport
Service (TCP)

13.1 Introduction

Previous chapters explore the unreliable comectionless packet delivery service that
forms the basis for all internet communication and the IP protocol that defines it. This
chapter introduces the second most important and well-known network-level service, re-
liable stream delivery, and the Transmission Control Protocol (TCP) that defines it.
We will see that TCP adds substantial functionality to the protocols already discussed,
but that its implementation is also substantially more complex.

Although TCP is presented here as part of the TCP/IP Internet protocol suite, it is
an independent, general purpose protocol that can be adapted for use with other delivery
systems. For example, because TCP makes very few assumptions about the underlying
network, it is possible to use it over a single network like an Ethernet, as well as over a
complex internet. In fact, TCP has been so popular that one of the International Organi-
zation for Standardization's open systems protocols, TP-4, has been derived from it.

13.2 The Need For Stream Delivery

At the lowest level, computer communication networks provide unreliable packet
delivery. Packets can be lost or destroyed when transmission errors interfere with data,
when network hardware fails, or when networks become too heavily loaded to accom-
modate the load presented. Networks that route packets dynamically can deliver them
out of order, deliver them after a substantial delay, or deliver duplicates. Furthermore,

210 Reliable Stream Transport Service (TCP) Chap. 13

underlying network technologies may dictate an optimal packet size or pose other con-
straints needed to achieve efficient transfer rates.

At the highest level, application programs often need to send large volumes of data
from one computer to another. Using an unreliable connectionless delivery system for
large volume transfers becomes tedious and annoying, and it requires programmers to
build error detection and recovery into each application program. Because it is difficult
to design, understand, or modlfy software that correctly provides reliability, few appli-
cation programmers have the necessary technical background. As a consequence, one
goal of network protocol research has been to find general purpose solutions to the
problems of providing reliable stream delivery, making it possible for experts to build a
single instance of stream protocol software that all application programs use. Having a
single general purpose protocol helps isolate application programs from the details of
networking, and makes it possible to define a uniform interface for the stream transfer
service.

13.3 Properties Of The Reliable Delivery Service

The interface between application programs and the TCPIIP reliable delivery ser-
vice can be characterized by 5 features:

Stream Orientation. When two application programs (user processes) transfer
large volumes of data, we think of the data as a stream of bits, divided into 8-bit octets,
which are informally called bytes. The stream delivery service on the destination
machine passes to the receiver exactly the same sequence of octets that the sender
passes to it on the source machine.

Virtual Circuit Connection. Making a stream transfer is analogous to placing a
telephone call. Before transfer can start, both the sending and receiving application pro-
grams interact with their respective operating systems, informing them of the desire for
a stream transfer. Conceptually, one application places a "call" which must be accept-
ed by the other. Protocol software modules in the two operating systems communicate
by sending messages across an internet, verifying that the transfer is authorized, and that
both sides are ready. Once all details have been settled, the protocol modules inform
the application programs that a connection has been established and that transfer can be-
gin. During transfer, protocol software on the two machines continue to communicate
to verify that data is received correctly. If the communication fails for any reason (e.g.,
because network hardware along the path between the machines fails), both machines
detect the failure and report it to the appropriate application programs. We use the term
virtual circuit to describe such connections because although application programs view
the connection as a dedicated hardware circuit, the reliability is an illusion provided by
the stream delivery service.

Buffered Transfer. Application programs send a data stream across the virtual
circuit by repeatedly passing data octets to the protocol software. When transferring
data, each application uses whatever size pieces it finds convenient, which can be as
small as a single octet. At the receiving end, the protocol software delivers octets from

Sec. 13.3 Properties Of The Reliable Delivery Service 211

the data stream in exactly the same order they were sent, making them available to the
receiving application program as soon as they have been received and verified. The
protocol software is free to divide the stream into packets independent of the pieces the
application program transfers. To make transfer more efficient and to minimize net-
work traffic, implementations usually collect enough data from a stream to fill a reason-
ably large datagram before transmitting it across an internet. Thus, even if the applica-
tion program generates the stream one octet at a time, transfer across an internet may be
quite efficient. Similarly, if the application program chooses to generate extremely
large blocks of data, the protocol software can choose to divide each block into smaller
pieces for transmission.

For those applications where data should be delivered even though it does not fill a
buffer, the stream service provides a push mechanism that applications use to force a
transfer. At the sending side, a push forces protocol software to transfer all data that
has been generated without waiting to fill a buffer. When it reaches the receiving side,
the push causes TCP to make the data available to the application without delay. The
reader should note, however, that the push function only guarantees that all data will be
transferred; it does not provide record boundaries. Thus, even when delivery is forced,
the protocol software may choose to divide the stream in unexpected ways.

Unstructured Stream. It is important to understand that the TCPIIP stream ser-
vice does not honor structured data streams. For example, there is no way for a payroll
application to have the stream service mark boundaries between employee records, or to
identify the contents of the stream as being payroll data. Application programs using
the stream service must understand stream content and agree on stream format before
they initiate a connection.

Full Duplex Connection. Connections provided by the TCPhP stream service al-
low concurrent transfer in both directions. Such connections are called full duplex.
From the point of view of an application process, a full duplex connection consists of
two independent streams flowing in opposite directions, with no apparent interaction.
The stream service allows an application process to terminate flow in one direction
while data continues to flow in the other direction, making the connection hay duplex.
The advantage of a full duplex connection is that the underlying protocol software can
send control information for one stream back to the source in datagrams carrying data in
the opposite direction. Such piggybacking reduces network traffk.

13.4 Providing Reliability

We have said that the reliable stream delivery service guarantees to deliver a
stream of data sent from one machine to another without duplication or data loss. The
question arises: "How can protocol software provide reliable transfer if the underlying
communication system offers only unreliable packet delivery?" The answer is compli-
cated, but most reliable protocols use a single fundamental technique known as positive
acknowledgement with retransmission. The technique requires a recipient to communi-
cate with the source, sending back an acknowledgement (ACK) message as it receives

212 Reliable Stream Transport Service (TCP) Chap. 13

data. The sender keeps a record of each packet it sends and waits for an acknowledge-
ment before sending the next packet. The sender also starts a timer when it sends a
packet and retransmits a packet if the timer expires before an acknowledgement arrives.

Figure 13.1 shows how the simplest positive acknowledgement protocol transfers
data.

Events At Sender Site Network Messages Events At Receiver Site

Send Packet 1

Receive Packet 1
Send ACK 1

Receive ACK 1
Send Packet 2

Receive Packet 2
Send ACK 2

Receive ACK 2

Figure 13.1 A protocol using positive acknowledgement with retransmission
in which the sender awaits an acknowledgement for each packet
sent. Vertical distance down the figure represents increasing
time and diagonal lines across the middle represent network
packet transmission.

In the figure, events at the sender and receiver are shown on the left and right. Each di-
agonal line crossing the middle shows the transfer of one message across the network.

Figure 13.2 uses the same format diagram as Figure 13.1 to show what happens
when a packet is lost or corrupted. The sender starts a timer after transmitting a packet.
When the timer expires, the sender assumes the packet was lost and retransmits it.

The final reliability problem arises when an underlying packet delivery system du-
plicates packets. Duplicates can also arise when networks experience high delays that
cause premature retransmission. Solving duplication requires careful thought because
both packets and acknowledgements can be duplicated. Usually, reliable protocols
detect duplicate packets by assigning each packet a sequence number and requiring the
receiver to remember which sequence numbers it has received. To avoid confusion
caused by delayed or duplicated acknowledgements, positive acknowledgement proto-
cols send sequence numbers back in acknowledgements, so the receiver can correctly
associate acknowledgements with packets.

Sec. 13.4 Providing Reliability

Events At Sender Site

Send Packet 1
Start Timer

ACK would normally
arrive at this time

Timer Expires

Retransmit Packet 1
Start Timer

Receive ACK 1
Cancel Timer

Network Messages

Packet lost

213

Events At Receiver Site

Packet should arrive
ACK should be sent

Receive Packet 1
Send ACK 1

Figure 13.2 Timeout and retransmission that occurs when a packet is lost.
The dotted lines show the time that would be taken by the
transmission of a packet and its acknowledgement, if the packet
was not lost.

13.5 The Idea Behind Sliding Windows

Before examining the TCP stream service, we need to explore an additional con-
cept that underlies stream transmission. The concept, known as a sliding window,
makes stream transmission efficient. To understand the motivation for sliding windows,
recall the sequence of events that Figure 13.1 depicts. To achieve reliability, the sender
transmits a packet and then waits for an acknowledgement before transmitting another.
As Figure 13.1 shows, data only flows between the machines in one direction at any
time, even if the network is capable of simultaneous communication in both directions.
The network will be completely idle during times that machines delay responses (e.g.,
while machines compute routes or checksums). If we imagine a network with high
transmission delays, the problem becomes clear:

A simple positive acknowledgement protocol wastes a substantial
amount of network bandwidth because it must &lay sending a new
packet until it receives an acknowledgement for the previous packet.

The sliding window technique is a more complex form of positive acknowledge-
ment and retransmission than the simple method discussed above. Sliding window pro-
tocols use network bandwidth better because they allow the sender to transmit multiple
packets before waiting for an acknowledgement. The easiest way to envision sliding

214 Reliable Stream Transport Service (TCP) Chap. 13

window operation is to think of a sequence of packets to be transmitted as Figure 13.3
shows. The protocol places a small, fixed-size window on the sequence and transmits
all packets that lie inside the window.

initial window

window slides

Figure 133 (a) A sliding window protocol with eight packets in the window,
and (b) The window sliding so that packet 9 can be sent when
an acknowledgement has been received for packet I . Only
unacknowledged packets are retransmitted.

We say that a packet is unacknowledged if it has been transmitted but no acknowledge-
ment has been received. Technically, the number of packets that can be unack-
nowledged at any given time is constrained by the window size and is limited to a
small, fixed number. For example, in a sliding window protocol with window size 8,
the sender is permitted to transmit 8 packets before it receives an acknowledgement.

As Figure 13.3 shows, once the sender receives an acknowledgement for the first
packet inside the window, it "slides" the window along and sends the next packet. The
window continues to slide as long as acknowledgements are received.

The performance of sliding window protocols depends on the window size and the
speed at which the network accepts packets. Figure 13.4 shows an example of the
operation of a sliding window protocol when sending three packets. Note that the
sender transmits all three packets before receiving any acknowledgements.

With a window size of 1, a sliding window protocol is exactly the same as our
simple positive acknowledgement protocol. By increasing the window size, it is possi-
ble to eliminate network idle time completely. That is, in the steady state, the sender
can transmit packets as fast as the network can transfer them. The main point is:

Because a well tuned sliding window protocol keeps the network com-
pletely saturated with packets, it obtains substantially higher
throughput than a simple positive acknowledgement protocol.

Sec. 13.5 The Idea Behind Sliding Windows 215

Conceptually, a sliding window protocol always remembers which packets have
been acknowledged and keeps a separate timer for each unacknowledged packet. If a
packet is lost, the timer expires and the sender retransmits that packet. When the sender
slides its window, it moves past all acknowledged packets. At the receiving end, the
protocol software keeps an analogous window, accepting and acknowledging packets as
they arrive. Thus, the window partitions the sequence of packets into three sets: those
packets to the left of the window have been successfully transmitted, received, and ack-
nowledged; those packets to the right have not yet been transmitted; and those packets
that lie in the window are being transmitted. The lowest numbered packet in the win-
dow is the first packet in the sequence that has not been acknowledged.

Events At Sender Site Network Messages

Send Packet 1

Send Packet 2

Send Packet 3

Receive ACK 1

Receive ACK 2

Receive ACK 3

Events At Receiver Site

Receive Packet 1
Send ACK 1

Receive Packet 2
Send ACK 2

Receive Packet 3
Send ACK 3

Figure 13.4 An example of three packets transmitted using a sliding window
protocol. The key concept is that the sender can transmit all
packets in the window without waiting for an acknowledgement.

13.6 The Transmission Control Protocol

Now that we understand the principle of sliding windows, we can examine the reli-
able stream service provided by the TCPIIP Internet protocol suite. The service is de-
fined by the Transmission Control Protocol, or TCP. The reliable stream service is so
important that the entire protocol suite is referred to as TCPAP. It is important to
understand that:

TCP is a communication protocol, not a piece of sojhare.

The difference between a protocol and the software that implements it is analogous
to the difference between the definition of a programming language and a compiler. As
in the programming language world, the distinction between definition and implementa-

216 Reliable Stream Transport Service (TCP) Chap. 13

tion sometimes becomes blurred. People encounter TCP software much more frequent-
ly than they encounter the protocol specification, so it is natural to think of a particular
implementation as the standard. Nevertheless, the reader should try to distinguish
between the two.

Exactly what does TCP provide? TCP is complex, so there is no simple answer.
The protocol specifies the format of the data and acknowledgements that two computers
exchange to achieve a reliable transfer, as well as the procedures the computers use to
ensure that the data arrives correctly. It specifies how TCP software distinguishes
among multiple destinations on a given machine, and how communicating machines re-
cover from errors like lost or duplicated packets. The protocol also specifies how two
computers initiate a TCP stream transfer and how they agree when it is complete.

It is also important to understand what the protocol does not include. Although the
TCP specification describes how application programs use TCP in general terms, it does
not dictate the details of the interface between an application program and TCP. That
is, the protocol documentation only discusses the operations TCP supplies; it does not
specify the exact procedures application programs invoke to access these operations.
The reason for leaving the application program interface unspecified is flexibility. In
particular, because programmers usually implement TCP in the computer's operating
system, they need to employ whatever interface the operating system supplies. Allow-
ing the implementor flexibility makes it possible to have a single specification for TCP
that can be used to build software for a variety of machines.

Because TCP assumes little about the underlying communication system, TCP can
be used with a variety of packet delivery systems, including the IP datagram delivery
service. For example, TCP can be implemented to use dialup telephone lines, a local
area network, a high speed fiber optic network, or a lower speed long haul network. In
fact, the large variety of delivery systems TCP can use is one of its strengths.

13.7 Ports, Connections, And Endpoints

Like the User Datagram Protocol (UDP) presented in Chapter 12, TCP resides
above IP in the protocol layering scheme. Figure 13.5 shows the conceptual organiza-
tion. TCP allows multiple application programs on a given machine to communicate
concurrently, and it demultiplexes incoming TCP traffic among application programs.
Like the User Datagram Protocol, TCP uses protocol port numbers to iden* the ulti-
mate destination within a machine. Each port is assigned a small integer used to identi-
fy it?.

tAlthough both TCP and UDP use integer port identifiers starting at I to identify ports, there is no confu-
sion between them because an incoming IP datagram identifies the protocol being used as well as the port

Sec. 13.7 Ports, Connections, And Endpoints

Conceptual Layering

Network Interface

Figure 13.5 The conceptual layering of UDP and TCP above IP. TCP pro-
vides a reliable stream service, while UDP provides an unreli-
able datagram delivery service. Application programs use both.

When we discussed UDP ports, we said to think of each port as a queue into which
protocol software places arriving datagrams. TCP ports are much more complex be-
cause a given port number does not correspond to a single object. Instead, TCP has
been built on the connection abstraction, in which the objects to be identified are virtual
circuit connections, not individual ports. Understanding that TCP uses the notion of
connections is crucial because it helps explain the meaning and use of TCP port
numbers:

TCP uses the connection, not the protocol port, as its fundamental
abstraction; connections are identlj?ed by a pair of endpoints.

Exactly what are the "endpoints" of a connection? We have said that a connec-
tion consists of a virtual circuit between two application programs, so it might be natur-
al to assume that an application program serves as the connection "endpoint." It is not.
Instead, TCP defines an endpoint to be a pair of integers (host,port), where host is the
IP address for a host and port is a TCP port on that host. For example, the endpoint
(128.10.2.3,25) specifies TCP port 25 on the machine with IP address 128.10.2.3.

Now that we have defined endpoints, it will be easy to understand connections.
Recall that a c o ~ e c t i o n is defined by its two endpoints. Thus, if there is a connection
from machine (18.26.0.36) at MIT to machine (128.10.2.3) at Purdue University, it
might be defined by the endpoints:

(18.26.0.36, 1069) and (128.10.2.3, 25).

218 Reliable Stream Transport Service (TCP) Chap. 13

Meanwhile, another connection might be in progress from machine (128.9.0.32) at the
Information Sciences Institute to the same machine at Purdue, identified by its end-
points:

(128.9.0.32, 1184) and (128.10.2.3, 53).

So far, our examples of connections have been straightforward because the ports
used at all endpoints have been unique. However, the connection abstraction allows
multiple connections to share an endpoint. For example, we could add another connec-
tion to the two listed above from machine (128.2.254.139) at CMU to the machine at
Purdue:

(128.2.254.139, 1184) and (128.10.2.3, 53).

It might seem strange that two connections can use the TCP port 53 on machine
128.10.2.3 simultaneously, but there is no ambiguity. Because TCP associates incom-
ing messages with a connection instead of a protocol port, it uses both endpoints to
identify the appropriate connection. The important idea to remember is:

Because TCP identij?es a connection by a pair of endpoints, a given
TCP port number can be shared by multiple connections on the same
machine.

From a programmer's point of view, the connection abstraction is significant. It
means a programmer can devise a program that provides concurrent service to multiple
connections simultaneously without needing unique local port numbers for each connec-
tion. For example, most systems provide concurrent access to their electronic mail ser-
vice, allowing multiple computers to send them electronic mail concurrently. Because
the program that accepts incoming mail uses TCP to communicate, it only needs to use
one local TCP port even though it allows multiple connections to proceed concurrently.

13.8 Passive And Active Opens

Unlike UDP, TCP is a connection-oriented protocol that requires both endpoints to
agree to participate. That is, before TCP traffic can pass across an internet, application
programs at both ends of the connection must agree that the connection is desired. To
do so, the application program on one end performs a passive open function by contact-
ing its operating system and indicating that it will accept an incoming connection. At
that time, the operating system assigns a TCP port number for its end of the connection.
The application program at the other end must then contact its operating system using
an active open request to establish a connection. The two TCP software modules com-
municate to establish and verify a connection. Once a connection has been created, ap-
plication programs can begin to pass data; the TCP software modules at each end ex-
change messages that guarantee reliable delivery. We win return to the details of estab-
lishing connections after examining the TCP message format.

Sec. 13.9 Segments, Streams, And Sequence Numbers

13.9 Segments, Streams, And Sequence Numbers

TCP views the data stream as a sequence of octets or bytes that it divides into seg-
ments for transmission. Usually, each segment travels across an internet in a single IP
datagram.

TCP uses a specialized sliding window mechanism to solve two important prob-
lems: efficient transmission and flow control. Like the sliding window protocol
described earlier, the TCP window mechanism makes it possible to send multiple seg-
ments before an acknowledgement arrives. Doing so increases total throughput because
it keeps the network busy. The TCP form of a sliding window protocol also solves the
end-to-end flow control problem, by allowing the receiver to restrict transmission until
it has sufficient buffer space to accommodate more data.

The TCP sliding window mechanism operates at the octet level, not at the segment
or packet level. Octets of the data stream are numbered sequentially, and a sender
keeps three pointers associated with every connection. The pointers define a sliding
window as Figure 13.6 illustrates. The first pointer marks the left of the sliding win-
dow, separating octets that have been sent and acknowledged from octets yet to be ack-
nowledged. A second pointer marks the right of the sliding window and defines the
highest octet in the sequence that can be sent before more acknowledgements are re-
ceived. The third pointer marks the boundary inside the window that separates those
octets that have already been sent from those octets that have not been sent. The proto-
col software sends all octets in the window without delay, so the boundary inside the
window usually moves from left to right quickly.

current window

Figure 13.6 An example of the TCP sliding window. Octets through 2 have
been sent and acknowledged, octets 3 through 6 have been sent
but not acknowledged, octets 7 though 9 have not been sent but
will be sent without delay, and octets 10 and higher cannot be
sent until the window moves.

We have described how the sender's TCP window slides along and mentioned that
the receiver must maintain a similar window to piece the stream together again. It is
important to understand, however, that because TCP connections are full duplex, two
transfers proceed simultaneously over each connection, one in each direction. We think
of the transfers as completely independent because at any time data can flow across the
connection in one direction, or in both directions. Thus, TCP software at each end

220 Reliable Stream Transport Service (TCP) Chap. 13

maintains two windows per connection (for a total of four), one slides along the data
stream being sent, while the other slides along as data is received.

13.1 0 Variable Window Size And Flow Control

One difference between the TCP sliding window protocol and the simplified slid-
ing window protocol presented earlier occurs because TCP allows the window size to
vary over time. Each acknowledgement, which specifies how many octets have been
received, contains a window advertisement that specifies how many additional octets of
data the receiver is prepared to accept. We think of the window advertisement as speci-
fying the receiver's current buffer size. In response to an increased window advertise-
ment, the sender increases the size of its sliding window and proceeds to send octets
that have not been acknowledged. In response to a decreased window advertisement,
the sender decreases the size of its window and stops sending octets beyond the boun-
dary. TCP software should not contradict previous advertisements by shrinking the
window past previously acceptable positions in the octet stream. Instead, smaller adver-
tisements accompany acknowledgements, so the window size changes at the time it
slides forward.

The advantage of using a variable size window is that it provides flow control as
well as reliable transfer. To avoid receiving more data than it can store, the receiver
sends smaller window advertisements as its buffer fills. In the extreme case, the re-
ceiver advertises a window size of zero to stop all transmissions. Later, when buffer
space becomes available, the receiver advertises a nonzero window size to trigger the
flow of data again?.

Having a mechanism for flow control is essential in an internet environment, where
machines of various speeds and sizes communicate through networks and routers of
various speeds and capacities. There are two independent flow problems. First, internet
protocols need end-to-end flow control between the source and ultimate destination.
For example, when a minicomputer communicates with a large mainframe, the mini-
computer needs to regulate the influx of data, or protocol software would be overrun
quickly. Thus, TCP must implement end-to-end flow control to guarantee reliable
delive~y. Second, internet protocols need a flow control mechanism that allows inter-
mediate systems (i.e., routers) to control a source that sends more traffic than the
machine can tolerate.

When intermediate machines become overloaded, the condition is called conges-
tion, and mechanisms to solve the problem are called congestion control mechanisms.
TCP uses its sliding window scheme to solve the end-to-end flow control problem; it
does not have an explicit mechanism for congestion control. We will see later, howev-
er, that a carefully programmed TCP implementation can detect and recover from
congestion while a poor implementation can make it worse. In particular, although a
carefully chosen retransmission scheme can help avoid congestion, a poorly chosen
scheme can exacerbate it.

?There are two exceptions to transmission when the window size is zero. Fist, a sender is allowed to
transmit a segment with the urgent bit set to inform the receiver that urgent data is available. Second, to avoid
a potential deadlock that can arise if a nonzero advertisement is lost after the window size reaches zero, the
-',..A',- ..-nl.-m " C;.,~A ..A",h.., -A,.,4L.*ll.,

Sec. 13.11 TCP Segment Format 22 1

13.1 1 TCP Segment Format

The unit of transfer between the TCP software on two machines is called a seg-
ment. Segments are exchanged to establish connections, transfer data, send ack-
nowledgements, advertise window sizes, and close connections. Because TCP uses pig-
gybacking, an acknowledgement traveling from machine A to machine B may travel in
the same segment as data traveling from machine A to machine B, even though the ack-
nowledgement refers to data sent from B to A t . Figure 13.7 shows the TCP segment
format.

SOURCE PORT DESTINATION PORT

LEN

I OPTIONS (IF ANY) I PADDING I

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

CHECKSUM

I DATA I

I RESERVED

URGENT POINTER

Figure 13.7 The format of a TCP segment with a TCP header followed by
data. Segments are used to establish connections as well as to
carry data and acknowledgements.

CODE BITS I WINDOW

1

Each segment is divided into two parts, a header followed by data. The header,
known as the TCP header, carries the expected identification and control information.
Fields SOURCE PORT and DESTINATION PORT contain the TCP port numbers that
identify the application programs at the ends of the connection. The SEQUENCE
NUMBER field identifies the position in the sender's byte stream of the data in the seg-
ment. The ACKNOWLEDGEMENT NUMBER field identifies the number of the octet
that the source expects to receive next. Note that the sequence number refers to the
stream flowing in the same direction as the segment, while the acknowledgement
number refers to the stream flowing in the opposite direction from the segment.

The HLENS field contains an integer that specifies the length of the segment
header measured in 32-bit multiples. It is needed because the OPTIONS field varies in
length, depending on which options have been included. Thus, the size of the TCP
header varies depending on the options selected. The 6-bit field marked RESERVED is
reserved for future use.

?In practice, piggybacking does not usually occur because most applications do not send data in both
directions simultaneously.

$The specification says the HLEN field is the offset of the data area within the segment.

222 Reliable Stream Transport Service (TCP) Chap. 13

Some segments carry only an acknowledgement while some carry data. Others
carry requests to establish or close a connection. TCP software uses the 6-bit field la-
beled CODE BITS to determine the purpose and contents of the segment. The six bits
tell how to interpret other fields in the header according to the table in Figure 13.8.

Bit (left to right)
URG
ACK
PSH
RST
SYN
FIN

Meaning if bit set to 1
Urgent pointer field is valid
Acknowledgement field is valid
This segment requests a push
Reset the connection
Synchronize sequence numbers
Sender has reached end of its byte stream

Figure 13.8 Bits of the CODE field in the TCP header.

TCP software advertises how much data it is willing to accept every time it sends a
segment by specifying its buffer size in the WINDOW field. The field contains a 16-bit
unsigned integer in network-standard byte order. Window advertisements provide
another example of piggybacking because they accompany all segments, including those
carrying data as well as those carrying only an acknowledgement.

13.12 Out Of Band Data

Although TCP is a stream-oriented protocol, it is sometimes important for the pro-
gram at one end of a connection to send data out of band, without waiting for the pro-
gram at the other end of the connection to consume octets already in the stream. For
example, when TCP is used for a remote login session, the user may decide to send a
keyboard sequence that interrupts or aborts the program at the other end. Such signals
are most often needed when a program on the remote machine fails to operate correctly.
The signals must be sent without waiting for the program to read octets already in the
TCP stream (or one would not be able to abort programs that stop reading input).

To accommodate out of band signaling, TCP allows the sender to specify data as
urgent, meaning that the receiving program should be notified of its arrival as quickly
as possible, regardless of its position in the stream. The protocol specifies that when
urgent data is found, the receiving TCP should notify whatever application program is
associated with the connection to go into "urgent mode." After all urgent data has
been consumed, TCP tells the application program to return to normal operation.

The exact details of how TCP informs the application program about urgent data
depend on the computer's operating system, of course. The mechanism used to mark
urgent data when transmitting it in a segment consists of the URG code bit and the UR-
GENT POINTER field. When the URG bit is set, the urgent pointer specifies the posi-
tion in the segment where urgent data ends.

Sec. 13.13 Maximum Segment Size Option 223

13.13 Maximum Segment Size Option

Not all segments sent across a connection will be of the same size. However, both
ends need to agree on a maximum segment they will transfer. TCP software uses the
OPTIONS field to negotiate with the TCP software at the other end of the connection;
one of the options allows TCP software to specify the maximum segment size (MSS)
that it is willing to receive. For example, when an embedded system that only has a
few hundred bytes of buffer space connects to a large supercomputer, it can negotiate an
MSS that restricts segments so they fit in the buffer. It is especially important for com-
puters connected by high-speed local area networks to choose a maximum segment size
that fills packets or they will not make good use of the bandwidth. Therefore, if the
two endpoints lie on the same physical network, TCP usually computes a maximum
segment size such that the resulting IP datagrams will match the network MTU. If the
endpoints do not lie on the same physical network, they can attempt to discover the
minimum MTU along the path between them, or choose a maximum segment size of
536 (the default size of an IP datagram, 576, minus the standard size of IP and TCP
headers).

In a general internet environment, choosing a good maximum segment size can be
difficult because performance can be poor for either extremely large segment sizes or
extremely small sizes. On one hand, when the segment size is small, network utiliza-
tion remains low. To see why, recall that TCP segments travel encapsulated in IP da-
tagrams which are encapsulated in physical network frames. Thus, each segment has at
least 40 octets of TCP and IP headers in addition to the data. Therefore, datagrams car-
rying only one octet of data use at most 1/41 of the underlying network bandwidth for
user data; in practice, minimum interpacket gaps and network hardware framing bits
make the ratio even smaller.

On the other hand, extremely large segment sizes can also produce poor perfor-
mance. Large segments result in large IP datagrams. When such datagrams travel
across a network with small MTU, IP must fragment them. Unlike a TCP segment, a
fragment cannot be acknowledged or retransmitted independently; all fragments must
arrive or the entire datagram must be retransmitted. Because the probability of losing a
given fragment is nonzero, increasing segment size above the fragmentation threshold
decreases the probability the datagram will arrive, which decreases throughput.

In theory, the optimum segment size, S, occurs when the IP datagrams carrying the
segments are as large as possible without requiring fragmentation anywhere along the
path from the source to the destination. In practice, finding S is difficult for several rea-
sons. First, most implementations of TCP do not include a mechanism for doing sot.
Second, because routers in an internet can change routes dynamically, the path da-
tagrams follow between a pair of communicating computers can change dynamically
and so can the size at which datagram must be fragmented. Third, the optimum size
depends on lower-level protocol headers (e.g., the segment size must be reduced to ac-
commodate IP options). Research on the problem of finding an optimal segment size
continues.

?To discover the path MTU, a sender probes the path by sending datagrams with the IP do nor frngment
bit set. It then decreases the size if ICMP error messages report that fragmentation was required.

224 Reliable Stream Transport Service (TCP) Chap. 13

13.1 4 TCP Checksum Computation

The CHECKSUM field in the TCP header contains a 16-bit integer checksum used
to verify the integrity of the data as well as the TCP header. To compute the checksum,
TCP software on the sending machine follows a procedure like the one described in
Chapter 12 for UDP. It prepends a pseudo header to the segment, appends enough zero
bits to make the segment a multiple of 16 bits, and computes the 16-bit checksum over
the entire result. TCP does not count the pseudo header or padding in the segment
length, nor does it transmit them. Also, it assumes the checksum field itself is zero for
purposes of the checksum computation. As with other checksums, TCP uses 16-bit ar-
ithmetic and takes the one's complement of the one's complement sum. At the receiv-
ing site, TCP software performs the same computation to verify that the segment arrived
intact.

The purpose of using a pseudo header is exactly the same as in UDP. It allows the
receiver to verify that the segment has reached its correct destination, which includes
both a host IP address as well as a protocol port number. Both the source and destina-
tion IP addresses are important to TCP because it must use them to identify a connec-
tion to which the segment belongs. Therefore, whenever a datagram arrives carrying a
TCP segment, IP must pass to TCP the source and destination IP addresses from the da-
tagram as well as the segment itself. Figure 13.9 shows the format of the pseudo
header used in the checksum computation.

0 8 16 3 1

SOURCE IP ADDRESS I

Figure 13.9 The format of the pseudo header used in TCP checksum compu-
tations. At the receiving site, this information is extracted from
the IP datagram that carried the segment.

DESTINATION IP ADDRESS

The sending TCP assigns field PROTOCOL the value that the underlying delivery
system will use in its protocol type field. For IP datagram carrying TCP, the value is
6. The TCP LENGTH field specifies the total length of the TCP segment including the
TCP header. At the receiving end, information used in the pseudo header is extracted
from the IP datagram that carried the segment and included in the checksum computa-
tion to verify that the segment arrived at the correct destination intact.

ZERO PROTOCOL TCP LENGTH

Sec. 13.15 Acknowledgements And Retransmission

13.1 5 Acknowledgements And Retransmission

Because TCP sends data in variable length segments and because retransmitted
segments can include more data than the original, acknowledgements cannot easily refer
to datagrams or segments. Instead, they refer to a position in the stream using the
stream sequence numbers. The receiver collects data octets from arriving segments and
reconstructs an exact copy of the stream being sent. Because segments travel in IP da-
tagrams, they can be lost or delivered out of order; the receiver uses the sequence
numbers to reorder segments. At any time, the receiver will have reconstructed zero or
more octets contiguously from the beginning of the stream, but may have additional
pieces of the stream from datagrams that arrived out of order. The receiver always ack-
nowledges the longest contiguous prefix of the stream that has been received correctly.
Each acknowledgement specifies a sequence value one greater than the highest octet po-
sition in the contiguous prefix it received. Thus, the sender receives continuous feed-
back from the receiver as it progresses through the stream. We can summarize this im-
portant idea:

A TCP acknowledgement speczjies the sequence number of the next
octet that the receiver expects to receive.

The TCP acknowledgement scheme is called cumulative because it reports how much of
the stream has accumulated. Cumulative acknowledgements have both advantages and
disadvantages. One advantage is that acknowledgements are both easy to generate and
unambiguous. Another advantage is that lost acknowledgements do not necessarily
force retransmission. A major disadvantage is that the sender does not receive informa-
tion about all successful transmissions, but only about a single position in the stream
that has been received.

To understand why lack of information about all successful transmissions makes
cumulative acknowledgements less efficient, think of a window that spans 5000 octets
starting at position 101 in the stream, and suppose the sender has transmitted all data in
the window by sending five segments. Suppose further that the first segment is lost, but
all others arrive intact. As each segment arrives, the receiver sends an acknowledge-
ment, but each acknowledgement specifies octet 101, the next highest contiguous octet
it expects to receive. There is no way for the receiver to tell the sender that most of the
data for the current window has arrived.

When a timeout occurs at the sender's side, the sender must choose between two
potentially inefficient schemes. It may choose to retransmit one segment or all five seg-
ments. In this case retransmitting all five segments is inefficient. When the first seg-
ment arrives, the receiver will have all the data in the window, and will acknowledge
5101. If the sender follows the accepted standard and retransmits only the first unack-
nowledged segment, it must wait for the acknowledgement before it can decide what
and how much to send. Thus, it reverts to a simple positive acknowledgement protocol
and may lose the advantages of having a large window.

226 Reliable Stream Transport Service (TCP) Chap. 13

13.16 Timeout And Retransmission

One of the most important and complex ideas in TCP is embedded in the way it
handles timeout and retransmission. Like other reliable protocols, TCP expects the des-
tination to send acknowledgements whenever it successfully receives new octets from
the data stream. Every time it sends a segment, TCP starts a timer and waits for an
acknowledgement. If the timer expires before data in the segment has been ack-
nowledged, TCP assumes that the segment was lost or corrupted and retransmits it.

To understand why the TCP retransmission algorithm differs from the algorithm
used in many network protocols, we need to remember that TCP is intended for use in
an internet environment. In an internet, a segment traveling between a pair of machines
may traverse a single, low-delay network (e.g., a high-speed LAN), or it may travel
across multiple intermediate networks through multiple routers. Thus, it is impossible
to know a prion how quickly acknowledgements will return to the source. Further-
more, the delay at each router depends on traffic, so the total time required for a seg-
ment to travel to the destination and an acknowledgement to return to the source varies
dramatically from one instant to another. Figure 13.10, which shows measurements of
round trip times across the global Internet for 100 consecutive packets, illustrates the
problem. TCP software must accommodate both the vast differences in the time re-
quired to reach various destinations and the changes in time required to reach a given
destination as traffic load varies.

TCP accommodates varying internet delays by using an adaptive retransmission
algorithm. In essence, TCP monitors the performance of each connection and deduces
reasonable values for timeouts. As the performance of a connection changes, TCP re-
vises its timeout value (i.e., it adapts to the change).

To collect the data needed for an adaptive algorithm, TCP records the time at
which each segment is sent and the time at which an acknowledgement arrives for the
data in that segment. From the two times, TCP computes an elapsed time known as a
sample round trip time or round trip sample. Whenever it obtains a new round trip
sample, TCP adjusts its notion of the average round trip time for the connection. Usu-
ally, TCP software stores the estimated round trip time, RZT, as a weighted average and
uses new round trip samples to change the average slowly. For example, when comput-
ing a new weighted average, one early averaging technique used a constant weighting
factor, a, where 0 I a c 1, to weight the old average against the latest round trip sample:

R l l = (a Old-RTT) + ((1 -a) New-Round-Trip-Sample)

Choosing a value for a close to 1 makes the weighted average immune to changes that
last a short time (e.g., a single segment that encounters long delay). Choosing a value
for a close to 0 makes the weighted average respond to changes in delay very quickly.

Sec. 13.16 Timeout And Retransmission

Time -

4 s

I
I I I I I I I I I I

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Datagram Number

Figure 13.10 A plot of Internet round trip times as measured for 100 succes-
sive IP datagrams. Although the Internet now operates with
much lower delay, the delays still vary over time.

When it sends a packet, TCP computes a timeout value as a function of the current
round trip estimate. Early implementations of TCP used a constant weighting factor, $
($ > I), and made the timeout greater than the current round trip estimate:

Timeout = $ * RTT

Choosing a value for $ can be difficult. On one hand, to detect packet loss quickly, the
timeout value should be close to the current round trip time (i.e., $ should be close to
1). Detecting packet loss quickly improves throughput because TCP will not wait an
unnecessarily long time before retransmitting. On the other hand, if $ = 1, TCP is over-
ly eager - any small delay will cause an unnecessary retransmission, which wastes net-
work bandwidth. The original specification recommended setting $=2; more recent
work described below has produced better techniques for adjusting timeout.

228 Reliable Stream Transport Service (TCP) Chap. 13

We can summarize the ideas presented so far:

To accommodate the varying delays encountered in an internet en-
vironment, TCP uses an adaptive retransmission algorithm that moni-
tors delays on each connection and adjusts its timeout parameter ac-
cordingly.

13.1 7 Accurate Measurement Of Round Trip Samples

In theory, measuring a round trip sample is trivial - it consists of subtracting the
time at which the segment is sent from the time at which the acknowledgement arrives.
However, complications arise because TCP uses a cumulative acknowledgement scheme
in which an acknowledgement refers to data received, and not to the instance of a
specific datagram that carried the data. Consider a retransmission. TCP forms a seg-
ment, places it in a datagram and sends it, the timer expires, and TCP sends the seg-
ment again in a second datagram. Because both datagrams carry exactly the same data,
the sender has no way of knowing whether an acknowledgement corresponds to the ori-
ginal or retransmitted datagram. This phenomenon has been called acknowledgement
ambiguity, and TCP acknowledgements are said to be ambiguous.

Should TCP assume acknowledgements belong with the earliest (i.e., original)
transmission or the latest (i.e., the most recent retransmission)? Surprisingly, neither as-
sumption works. Associating the acknowledgement with the original transmission can
make the estimated round trip time grow without bound in cases where an internet loses
datagramst. If an acknowledgement arrives after one or more retransmissions, TCP
will measure the round trip sample from the original transmission, and compute a new
R l T using the excessively long sample. Thus, RTT will grow slightly. The next time
TCP sends a segment, the larger R R will result in slightly longer timeouts, so if an
acknowledgement arrives after one or more retransmissions, the next sample round trip
time will be even larger, and so on.

Associating the acknowledgement with the most recent retransmission can also fail.
Consider what happens when the end-to-end delay suddenly increases. When TCP
sends a segment, it uses the old round trip estimate to compute a timeout, which is now
too small. The segment arrives and an acknowledgement starts back, but the increase in
delay means the timer expires before the acknowledgement arrives, and TCP retransmits
the segment. Shortly after TCP retransmits, the first acknowledgement arrives and is
associated with the retransmission. The round trip sample will be much too small and
will result in a slight decrease of the estimated round trip time, RTT. Unfortunately,
lowering the estimated round trip time guarantees that TCP will set the timeout too
small for the next segment. Ultimately, the estimated round trip time can stabilize at a
value, T, such that the correct round trip time is slightly longer than some multiple of T.
Implementations of TCP that associate acknowledgements with the most recent re-
transmission have been observed in a stable state with RTT slightly less than one-half
of the correct value (i.e., TCP sends each segment exactly twice even though no loss
occurs).

tThe estimate can only grow arbitrarily large if every segment is lost at least once.

Sec. 13.18 Karn's Algorithm And Timer Backoff

13.1 8 Karn's Algorithm And Timer Backoff

If the original transmission and the most recent transmission both fail to provide
accurate round trip times, what should TCP do? The accepted answer is simple: TCP
should not update the round trip estimate for retransmitted segments. This idea, known
as Kam's Algorithm, avoids the problem of ambiguous acknowledgements altogether by
only adjusting the estimated round trip for unambiguous acknowledgements (ack-
nowledgements that arrive for segments that have only been transmitted once).

Of course, a simplistic implementation of Karn's algorithm, one that merely ig-
nores times from retransmitted segments, can lead to failure as well. Consider what
happens when TCP sends a segment after a sharp increase in delay. TCP computes a
timeout using the existing round trip estimate. The timeout will be too small for the
new delay and will force retransmission. If TCP ignores acknowledgements from re-
transmitted segments, it will never update the estimate and the cycle will continue.

To accommodate such failures, Kam's algorithm requires the sender to combine re-
transmission timeouts with a timer backoff strategy. The backoff technique computes
an initial timeout using a formula like the one shown above. However, if the timer ex-
pires and causes a retransmission, TCP increases the timeout. In fact, each time it must
retransmit a segment, TCP increases the timeout (to keep timeouts from becoming ridi-
culously long, most implementations limit increases to an upper bound that is larger
than the delay along any path in the internet).

Implementations use a variety of techniques to compute backoff. Most choose a
multiplicative factor, y, and set the new value to:

new-timeout = y * timeout

Typically, y is 2. (It has been argued that values of y less than 2 lead to instabilities.)
Other implementations use a table of multiplicative factors, allowing arbitrary backoff at
each step?.

Kam's algorithm combines the backoff technique with round trip estimation to
solve the problem of never increasing round trip estimates:

Kam's algorithm: When computing the round trip estimate, ignore
samples that correspond to retransmitted segments, but use a backoff
strategy, and retain the timeout value from a retransmitted packet for
subsequent packets until a valid sample is obtained.

Generally speaking, when an internet misbehaves, Kam's algorithm separates computa-
tion of the timeout value from the current round trip estimate. It uses the round trip es-
timate to compute an initial timeout value, but then backs off the timeout on each re-
transmission until it can successfully transfer a segment. When it sends subsequent seg-
ments, it retains the timeout value that results from backoff. Finally, when an ack-
nowledgement arrives corresponding to a segment that did not require retransmission,

tBerkeley UNIX is the most notable system that uses a table of factors, but current values in the table are
equivalent to using y =2.

230 Reliable Stream Transport Service (TCP) Chap. 13

TCP recomputes the round trip estimate and resets the timeout accordingly. Experience
shows that Karn's algorithm works well even in networks with high packet losst.

13.19 Responding To High Variance In Delay

Research into round trip estimation has shown that the computations described
above do not adapt to a wide range of variation in delay. Queueing theory suggests that
the variation in round trip time, o, varies proportional to ll(1-L), where L is the current
network load, O I L I l . If an internet is running at 50% of capacity, we expect the
round trip delay to vary by a factor of f 20, or 4. When the load reaches 80%, we ex-
pect a variation of 10. The original TCP standard specified the technique for estimating
round trip time that we described earlier. Using that technique and limiting P to the
suggested value of 2 means the round trip estimation can adapt to loads of at most 30%.

The 1989 specification for TCP requires implementations to estimate both the aver-
age round trip time and the variance, and to use the estimated variance in place of the
constant P. As a result, new implementations of TCP can adapt to a wider range of
variation in delay and yield substantially higher throughput. Fortunately, the approxi-
mations require little computation; extremely efficient programs can be derived from the
following simple equations:

DlFF = SAMPLE - Old-RTT

Smoothed-RTT = Old-RTT + 6* DlFF

DEV = Old-DEV + p (IDIFF[- Old-DEV)

Timeout = Smoothed-RTT + q DEV

where DEV is the estimated mean deviation, 6 is a fraction between 0 and 1 that con-
trols how quickly the new sample affects the weighted average, p is a fraction between
0 and 1 that controls how quickly the new sample affects the mean deviation, and q is a
factor that controls how much the deviation affects the round trip timeout. To make the
computation efficient, TCP chooses 6 and p to each be an inverse of a power of 2,
scales the computation by 2" for an appropriate n, and uses integer arithmetic. Research
suggests values of 6 = 1 /2;', p = 1 /22, and n = 3 will work well. The original value for q
in 4.3BSD UNM was 2; it was changed to 4 in 4.4 BSD UNIX.

Figure 13.1 1 uses a set of randomly generated values to illustrate how the comput-
ed timeout changes as the roundtrip time varies. Although the roundtrip times are artifi-
cial, they follow a pattern observed in practice: successive packets show small varia-
tions in delay as the overall average rises or falls.

tPhil Karn is an amateur radio enthusiast who developed this algorithm to allow TCP communication
across a high-loss packet radio connection.

Responding To High Variance In Delay

I I I I I I I I I I *
20 40 60 80 100 120 140 160 180 200

Datagram Number

Figure 13.11 A set of 200 (randomly generated) roundtrip times shown as
dots, and the TCP retransmission timer shown as a solid line.
The timeout increases when delay varies.

Note that frequent change in the roundmp time, including a cycle of increase and
decrease, can produce an increase in the retransmission timer. Furthermore, although
the timer tends to increase quickly when delay rises, it does not decrease as rapidly
when delay falls.

Figure 13.12 uses the data points from Figure 13.10 to show how TCP responds to
the extreme case of variance in delay. Recall that the goal is to have the retransmission
timer estimate the actual roundtrip time as closely as possible without underestimating.
The figure shows that although the timer responds quickly, it can underestimate. For
example, between the two successive datagrams marked with arrows, the delay doubles
from less than 4 seconds to more than 8. More important, the abrupt change follows a
period of relative stability in which the variation in delay is small, making it impossible
for any algorithm to anticipate the change. In the case of the TCP algorithm, because
the timeout (approximately 5) substantially underestimates the large delay, an unneces-
sary retransmission occurs. However, the estimate responds quickly to the increase in
delay, meaning that successive packets arrive without retransmission.

10 2

8 s

6 s

Time

4 s

2 s

Reliable Stream Transport Service (TCP) Chap. 13

I
I I I I I I I I I I)

10 20 30 40 50 60 70 80 90 100

Datagram Number

Figure 13.12 The TCP retransmission timer for the data from Figure 13.10.
Arrows mark two successive datagrams where the delay dou-
bles.

13.20 Response To Congestion

It may seem that TCP software could be designed by considering the interaction
between the two endpoints of a connection and the communication delays between
those endpoints. In practice, however, TCP must also react to congestion in the inter-
net. Congestion is a condition of severe delay caused by an overload of datagrams at
one or more switching points (e.g., at routers). When congestion occurs, delays in-
crease and the router begins to enqueue datagrams until it can route them. We must
remember that each router has finite storage capacity and that datagrams compete for
that storage (i.e., in a datagram based internet, there is no preallocation of resources to
individual TCP connections). In the worst case, the total number of datagrams arriving
at the congested router grows until the router reaches capacity and starts to drop da-
tagrams.

Sec. 13.20 Response To Congestion 233

Endpoints do not usually know the details of where congestion has occurred or
why. To them, congestion simply means increased delay. Unfortunately, most tran-
sport protocols use tirneout and retransmission, so they respond to increased delay by
retransmitting datagrams. Retransmissions aggravate congestion instead of alleviating
it. If unchecked, the increased traffic will produce increased delay, leading to increased
traffic, and so on, until the network becomes useless. The condition is known as
congestion collapse.

To avoid congestion collapse, TCP must reduce transmission rates when conges-
tion occurs. Routers watch queue lengths and use techniques like ICMP source quench
to inform hosts that congestion has occurred?, but transport protocols like TCP can help
avoid congestion by reducing transmission rates automatically whenever delays occur.
Of course, algorithms to avoid congestion must be constructed carefully because even
under normal operating conditions an internet will exhibit wide variation in round trip
delays.

To avoid congestion, the TCP standard now recommends using two techniques:
slow-start and multiplicative decrease. They are related and can be implemented easily.
We said that for each connection, TCP must remember the size of the receiver's win-
dow (i.e., the buffer size advertised in acknowledgements). To control congestion TCP
maintains a second limit, called the congestion window limit or congestion window, that
it uses to restrict data flow to less than the receiver's buffer size when congestion oc-
curs. That is, at any time, TCP acts as if the window size is:

Allowed-window = min (receiver-advertisement, congestion-window)

In the steady state on a non-congested connection, the congestion window is the same
size as the receiver's window. Reducing the congestion window reduces the traffic
TCP will inject into the connection. To estimate congestion window size, TCP assumes
that most datagram loss comes from congestion and uses the following strategy:

Multiplicative Decrease Congestion Avoidance: Upon loss of a seg-
ment, reduce the congestion window by hay (down to a minimum of at
least one segment). For those segments that remain in the allowed
window, backoff the retransmission timer exponentially.

Because TCP reduces the congestion window by half for every loss, it decreases the
window exponentially if loss continues. In other words, if congestion is likely, TCP
reduces the volume of traffic exponentially and the rate of retransmission exponentially.
If loss continues, TCP eventually limits transmission to a single datagram and continues
to double tirneout values before retransmitting. The idea is to provide quick and signifi-
cant traff3c reduction to allow routers enough time to clear the datagrams already in
their queues.

How can TCP recover when congestion ends? You might suspect that TCP should
reverse the multiplicative decrease and double the congestion window when traffic be-
gins to flow again. However, doing so produces an unstable system that oscillates wild-

?In a congested network, queue lengths grow exponentially for a significant time

234 Reliable Stream Transport Service (TCP) Chap. 13

ly between no traffic and congestion. Instead, TCP uses a technique called slow-start?
to scale up transmission:

Slow-Start (Additive) Recovery: Whenever starting trafic on a new
connection or increasing trafic after a period of congestion, start the
congestion window at the size of a single segment and increase the
congestion window by one segment each time an acknowledgement ar-
rives.

Slow-start avoids swamping the internet with additional traffic immediately after
congestion clears or when new connections suddenly start.

The term slow-start may be a misnomer because under ideal conditions, the start is
not very slow. TCP initializes the congestion window to 1, sends an initial segment,
and waits. When the acknowledgement arrives, it increases the congestion window to
2, sends two segments, and waits. When the two acknowledgements arrive they each
increase the congestion window by 1, so TCP can send 4 segments. Acknowledge-
ments for those will increase the congestion window to 8. Within four round-trip times,
TCP can send 16 segments, often enough to reach the receiver's window limit. Even
for extremely large windows, it takes only log,N round trips before TCP can send N
segments.

To avoid increasing the window size too quickly and causing additional conges-
tion, TCP adds one additional restriction. Once the congestion window reaches one half
of its original size before congestion, TCP enters a congestion avoidance phase and
slows down the rate of increment. During congestion avoidance, it increases the
congestion window by 1 only if all segments in the window have been acknowledged.

Taken together, slow-start increase, multiplicative decrease, congestion avoidance,
measurement of variation, and exponential timer backoff improve the performance of
TCP dramatically without adding any significant computational overhead to the protocol
software. Versions of TCP that use these techniques have improved the performance of
previous versions by factors of 2 to 10.

13.21 Congestion, Tail Drop, And TCP

We said that communication protocols are divided into layers to make it possible
for designers to focus on a single problem at a time. The separation of functionality
into layers is both necessary and useful - it means that one layer can be changed
without affecting other layers, but it means that layers operate in isolation. For exam-
ple, because it operates end-to-end, TCP remains unchanged when the path between the
endpoints changes (e.g., routes change or additional networks routers are added). How-
ever, the isolation of layers restricts inter-layer communication. In particular, although
TCP on the original source interacts with TCP on the ultimate destination, it cannot in-
teract with lower layer elements along the path. Thus, neither the sending nor receiving

tThe term slow-start is attributed to John Nagle; the technique was originally called sofr-start.

Sec. 13.21 Congestion, Tail Drop, And TCP 235

TCP receives reports about conditions in the network, nor does either end inform lower
layers along the path before transferring data.

Researchers have observed that the lack of communication between layers means
that the choice of policy or implementation at one layer can have a dramatic effect on
the performance of higher layers. In the case of TCP, policies that routers use to handle
datagrams can have a significant effect on both the perfomlance of a single TCP con-
nection and the aggregate throughput of all connections. For example, if a router delays
some datagrams more than otherst, TCP will back off its retransmission timer. If the
delay exceeds the retransmission timeout, TCP will assume congestion has occurred.
Thus, although each layer is defined independently, researchers try to devise mechan-
isms and implementations that work well with protocols in other layers.

The most important interaction between IP implementation policies and TCP oc-
curs when a router becomes overrun and drops datagrams. Because a router places each
incoming datagram in a queue in memory until it can be processed, the policy focuses
on queue management. When datagrams arrive faster than they can be forwarded, the
queue grows; when datagram arrive slower than they can be forwarded, the queue
shrinks. However, because memory is finite, the queue cannot grow without bound.
Early router software used a tail-drop policy to manage queue overflow:

Tail-Drop Policy For Routers: if the input queue is filled when a da-
tagram arrives, discard the datagram.

The name tail-drop arises from the effect of the policy on an arriving sequence of
datagrams. Once the queue fills, the router begins discarding all additional datagrams.
That is, the router discards the "tail" of the sequence.

Tail-drop has an interesting effect on TCP. In the simple case where datagram
traveling through a router carry segments from a single TCP connection, the loss causes
TCP to enter slow-start, which reduces throughput until TCP begins receiving ACKs
and increases the congestion window. A more severe problem can occur, however,
when the datagrams traveling through a router carry segments from many TCP connec-
tions because tail-drop can cause global synchronization. To see why, observe that da-
tagrams are typically multiplexed, with successive datagrams each coming from a dif-
ferent source. Thus, a tail-drop policy makes it likely that the router will discard one
segment from N connections rather than N segments from one connection. The simul-
taneous loss causes all N instances of TCP to enter slow-start at the same time.

13.22 Random Early Discard (RED)

How can a router avoid global synchronization? The answer lies in a clever
scheme that avoids tail-drop whenever possible. Known as Random Early Discard,
Random Early Drop, or Random Early Detection, the scheme is more frequently re-
ferred to by its acronym, RED. A router that implements RED uses two threshold

TTechnically, variance in delay is referred to as jitter.

236 Reliable Stream Transport Service (TCP) Chap. 13

values to mark positions in the queue: Tmin and Tma. The general operation of RED
can be described by three rules that determine the disposition of each arriving datagram:

If the queue currently contains fewer than Tmin datagrams, add the new
datagram to the queue.
If the queue contains more than T- datagrams, discard the new da-
tagram.
If the queue contains between Tmin and T- datagrams, randomly dis-
card the datagram according to a probability, p.

The randomness of RED means that instead of waiting until the queue overflows and
then driving many TCP connections into slow-start, a router slowly and randomly drops
datagrams as congestion increases. We can summarize:

RED Policy For Routers: i f the input queue is full when a datagram
arrives, discard the datagram; if the input queue is not full but the
size exceeds a minimum threshold, avoid synchronization by discard-
ing the datagram with probability p.

The key to making RED work well lies in the choice of the thresholds Tmin and
T-, and the discard probability p. Tmin must be large enough to ensure that the output
link has high utilization. Furthermore, because RED operates like tail-drop when the
queue size exceeds T-, the value must be greater than Tmin by more than the typical
increase in queue size during one TCP round trip time (e.g., set T- at least twice as
large as Tmin). Otherwise, RED can cause the same global oscillations as tail-drop.

Computation of the discard probability, p, is the most complex aspect of RED. In-
stead of using a constant, a new value of p is computed for each datagram; the value
depends on the relationship between the current queue size and the thresholds. To
understand the scheme, observe that all RED processing can be viewed probabilistically.
When the queue size is less than Tmin, RED does not discard any datagrams, making the
discard probability 0. Similarly, when the queue size is greater than T-, RED dis-
cards al l datagrams, making the discard probability I. For intermediate values of queue
size, (i.e., those between Tmin and Tmax), the probability can vary from 0 to I linearly.

Although the linear scheme forms the basis of RED'S probability computation, a
change must be made to avoid overreacting. The need for the change arises because
network traffic is bursty, which results in rapid fluctuations of a router's queue. If RED
used a simplistic linear scheme, later datagrams in each burst would be assigned high
probability of being dropped (because they arrive when the queue has more entries).
However, a router should not drop datagrams unnecessarily because doing so has a
negative impact on TCP throughput. Thus, if a burst is short, it is unwise to drop da-
tagrams because the queue will never overflow. Of course, RED cannot postpone dis-
card indefinitely because a long-term burst will overflow the queue, resulting in a tail-
drop policy which has the potential to cause global synchronization problems.

Sec. 13.22 Random Early Discard (RED) 237

How can RED assign a higher discard probability as the queue fills without dis-
carding datagrams from each burst? The answer lies in a technique borrowed from
TCP: instead of using the actual queue size at any instant, RED computes a weighted
average queue size, avg, and uses the average size to detemGne the probability. The
value of avg is an exponential weighted average, updated each time a datagram arrives
according to the equation:

avg = (1 - y) * Old-avg + y* Current-queue-size

where y denotes a value between 0 and 1. If y is small enough, the average will track
long term trends, but will remain immune to short bursts?

In addition to equations that determine y, RED contains other details that we have
glossed over. For example, RED computations can be made extremely efficient by
choosing constants as powers of two and using integer arithmetic. Another important
detail concerns the measurement of queue size, which affects both the RED computation
and its overall effect on TCP. In particular, because the time required to forward a da-
tagram is proportional to its size, it makes sense to measure the queue in octets rather
than in datagrams; doing so requires only minor changes to the equations for p and y.
Measuring queue size in octets affects the type of traffic dropped because it makes the
discard probability proportional to the amount of data a sender puts in the stream rather
than the number of segments. Small datagrams (e.g., those that carry remote login traff-
ic or requests to servers) have lower probability of being dropped than large datagrams
(e.g., those that cany file transfer traffic). One positive consequence of using size is
that when acknowledgements travel over a congested path, they have a lower probabili-
ty of being dropped. As a result, if a (large) data segment does arrive, the sending TCP
will receive the ACK and will avoid unnecessary retransmission.

Both analysis and simulations show that RED works well. It handles congestion,
avoids the synchronization that results from tail drop, and allows short bursts without
dropping datagrams unnecessarily. The IETF now recommends that routers implement
RED.

13.23 Establishing A TCP Connection

To establish a connection, TCP uses a three-way handshake. In the simplest case,
the handshake proceeds as Figure 13.13 shows.

?An example value suggested for y is .002.

Reliable Stream Transport Service (TCP) Chap. 13

Events At Site 1 Network Messages Events At Site 2

Send SYN seq=x

Receive SYN + ACK segment
Send ACK y+l

Receive SYN segment
Send SYN seq=y, ACK x+l

Receive ACK segment

Figure 13.13 The sequence of messages in a three-way handshake. Time
proceeds down the page; diagonal lines represent segments sent
between sites. SYN segments cany initial sequence number
information.

The first segment of a handshake can be identified because it has the SYNt bit set in
the code field. The second message has both the SYN bit and ACK bits set, indicating
that it acknowledges the first SYN segment as well as continuing the handshake. The
final handshake message is only an acknowledgement and is merely used to inform the
destination that both sides agree that a connection has been established.

Usually, the TCP software on one machine waits passively for the handshake, and
the TCP software on another machine initiates it. However, the handshake is carefully
designed to work even if both machines attempt to initiate a connection simultaneously.
Thus, a connection can be established from either end or from both ends simultaneous-
ly. Once the connection has been established, data can flow in both directions equally
well. There is no master or slave.

The three-way handshake is both necessary and sufficient for correct synchroniza-
tion between the two ends of the connection. To understand why, remember that TCP
builds on an unreliable packet delivery service, so messages can be lost, delayed, dupli-
cated, or delivered out of order. Thus, the protocol must use a timeout mechanism and
retransmit lost requests. Trouble arises if retransmitted and original requests arrive
while the connection is being established, or if retransmitted requests are delayed until
after a connection has been established, used, and terminated. A three-way handshake
(plus the rule that TCP ignores additional requests for connection after a connection has
been established) solves these problems.

tSYN stands for synchronization; it is pronounced "sin."

Sec. 13.24 Initial Sequence Numbers

13.24 Initial Sequence Numbers

The three-way handshake accomplishes two important functions. It guarantees that
both sides are ready to transfer data (and that they know they are both ready), and it al-
lows both sides to agree on initial sequence numbers. Sequence numbers are sent and
acknowledged during the handshake. Each machine must choose an initial sequence
number at random that it will use to identify bytes in the stream it is sending. Sequence
numbers cannot always start at the same value. In particular, TCP cannot merely
choose sequence 1 every time it creates a connection (one of the exercises examines
problems that can arise if it does). Of course, it is important that both sides agree on an
initial number, so octet numbers used in acknowledgements agree with those used in
data segments.

To see how machines can agree on sequence numbers for two streams after only
three messages, recall that each segment contains both a sequence number field and an
acknowledgement field. The machine that initiates a handshake, call it A, passes its ini-
tial sequence number, x, in the sequence field of the first SYN segment in the three-way
handshake. The second machine, B, receives the SYN, records the sequence number,
and replies by sending its initial sequence number in the sequence field as well as an
acknowledgement that specifies B expects octet x + l . In the final message of the
handshake, A "acknowledges" receiving from B all octets through y. In all cases, ack-
nowledgements follow the convention of using the number of the next octet expected.

We have described how TCP usually carries out the three-way handshake by ex-
changing segments that contain a minimum amount of information. Because of the pro-
tocol design, it is possible to send data along with the initial sequence numbers in the
handshake segments. In such cases, the TCP software must hold the data until the
handshake completes. Once a connection has been established, the TCP software can
release data being held and deliver it to a waiting application program quickly. The
reader is referred to the protocol specification for the details.

13.25 Closing a TCP Connection

Two programs that use TCP to communicate can terminate the conversation grace-
fully using the close operation. Internally, TCP uses a modified three-way handshake to
close connections. Recall that TCP connections are full duplex and that we view them
as containing two independent stream transfers, one going in each direction. When an
application program tells TCP that it has no more data to send, TCP will close the con-
nection in one direction. To close its half of a comection, the sending TCP finishes
transmitting the remaining data, waits for the receiver to acknowledge it, and then sends
a segment with the FIN bit set. The receiving TCP acknowledges the FIN segment and
informs the application program on its end that no more data is available (e.g., using the
operating system's end-of-file mechanism).

Once a connection has been closed in a given direction, TCP refuses to accept
more data for that direction. Meanwhile, data can continue to flow in the opposite

240 Reliable Stream Transport Service (TCP) Chap. 13

direction until the sender closes it. Of course, acknowledgements continue to flow back
to the sender even after a connection has been closed. When both directions have been
closed, the TCP software at each endpoint deletes its record of the connection.

The details of closing a connection are even more subtle than suggested above be-
cause TCP uses a modified three-way handshake to close a connection. Figure 13.14 il-
lustrates the procedure.

Events At Site 1

(application closes connection)
Send FIN seq=x

Receive ACK segment

Receive FIN + ACK segment
Send ACK y+l

Network Messages

1
/

/

Events At Site 2

Receive FIN segment
Send ACK x+l
(inform application)

(application closes connection)
Send FIN seq=y, ACK x+l

Receive ACK segment

Figure 13.14 The modified three-way handshake used to close connections.
The site that receives the first FIN segment acknowledges it
immediately and then delays before sending the second FIN
segment.

The difference between three-way handshakes used to establish and break connections
occurs after a machine receives the initial FIN segment. Instead of generating a second
FIN segment immediately, TCP sends an acknowledgement and then informs the appli-
cation of the request to shut down. Informing the application program of the request
and obtaining a response may take considerable time (e.g., it may involve human in-
teraction). The acknowledgement prevents retransmission of the initial FIN segment
during the wait. Finally, when the application program instructs TCP to shut down the
connection completely, TCP sends the second FIN segment and the original site replies
with the third message, an ACK.

Sec. 13.26 TCP Connection Reset 24 1

13.26 TCP Connection Reset

Normally, an application program uses the close operation to shut down a connec-
tion when it finishes using it. Thus, closing connections is considered a normal part of
use, analogous to closing files. Sometimes abnornlal conditions arise that force an ap-
plication program or the network software to break a connection. TCP provides a reset
facility for such abnormal disconnections.

To reset a connection, one side initiates termination by sending a segment with the
RST bit in the CODE field set. The other side responds to a reset segment immediately
by aborting the connection. TCP also informs the application program that a reset oc-
curred. A reset is an instantaneous abort that means that transfer in both directions
ceases immediately, and resources such as buffers are released.

13.27 TCP State Machine

Like most protocols, the operation of TCP can best be explained with a theoretical
model called afinite state machine. Figure 13.15 shows the TCP finite state machine,
with circles representing states and arrows representing transitions between them. The
label on each transition shows what TCP receives to cause the transition and what it
sends in response. For example, the TCP software at each endpoint begins in the
CLOSED state. Application programs must issue either a passive open command (to
wait for a connection from another machine), or an active open command (to initiate a
connection). An active open command forces a transition from the CLOSED state to
the SYN SENT state. When TCP follows the transition, it emits a SYN segment. When
the other end returns a segment that contains a SYN plus ACK, TCP moves to the ES-
TABLISHED state and begins data transfer.

The TIMED WAIT state reveals how TCP handles some of the problems incurred
with unreliable delivery. TCP keeps a notion of maximum segment lifetime (MSL), the
maximum time an old segment can remain alive in an internet. To avoid having seg-
ments from a previous connection interfere with a current one, TCP moves to the
TIMED WAIT state after closing a connection. It remains in that state for twice the
maximum segment lifetime before deleting its record of the connection. If any dupli-
cate segments happen to arrive for the connection during the timeout interval, TCP will
reject them. However, to handle cases where the last acknowledgement was lost, TCP
acknowledges valid segments and restarts the timer. Because the timer allows TCP to
distinguish old connections from new ones, it prevents TCP from responding with a
RST (reset) if the other end retransmits a FIN request.

Reliable Stream Transport Service (TCP) Chap. 13

close 1 fin
CLOSE

LISHED

close l fin
close 1 fin

timeout afer 2 segment lifetimes

v 1

Figure 13.15 The TCP finite state machine. Each endpoint begins in the
closed state. Labels on transitions show the input that caused
the transition followed by the output if any.

Sec. 13.28 Forcing Data Delivery 243

13.28 Forcing Data Delivery

We have said that TCP is free to divide the stream of data into segments for
transmission without regard to the size of transfer that application programs use. The
chief advantage of allowing TCP to choose a division is efficiency. It can accumulate
enough octets in a buffer to make segments reasonably long, reducing the high overhead
that occurs when segments contain only a few data octets.

Although buffering improves network throughput, it can interfere with some appli-
cations. Consider using a TCP connection to pass characters from an interactive tenni-
nal to a remote machine. The user expects instant response to each keystroke. If the
sending TCP buffers the data, response may be delayed, perhaps for hundreds of keys-
trokes. Similarly, because the receiving TCP may buffer data before making it available
to the application program on its end, forcing the sender to transmit data may not be
sufficient to guarantee delivery.

To accommodate interactive users, TCP provides a push operation that an applica-
tion program can use to force delivery of octets currently in the stream without waiting
for the buffer to fill. The push operation does more than force TCP to send a segment.
It also requests TCP to set the PSH bit in the segment code field, so the data will be
delivered to the application program on the receiving end. Thus, when sending data
from an interactive terminal, the application uses the push function after each keystroke.
Similarly, application programs can force output to be sent and displayed on the termi-
nal promptly by calling the push function after writing a character or line.

13.29 Reserved TCP Port Numbers

Like UDP, TCP combines static and dynamic port binding, using a set of well-
known port assignments for commonly invoked programs (e.g., electronic mail), but
leaving most port numbers available for the operating system to allocate as programs
need them. Although the standard originally reserved port numbers less than 256 for
use as well-known ports, numbers over 1024 have now been assigned. Figure 13.16
lists some of the currently assigned TCP ports. It should be pointed out that although
TCP and UDP port numbers are independent, the designers have chosen to use the same
integer port numbers for any service that is accessible from both UDP and TCP. For
example, a domain name server can be accessed either with TCP or with UDP. In ei-
ther protocol, port number 53 has been reserved for servers in the domain name system.

13.30 TCP Performance

As we have seen, TCP is a complex protocol that handles communication over a
wide variety of underlying network technologies. Many people assume that because
TCP tackles a much more complex task than other transport protocols, the code must be
cumbersome and inefficient. Surprisingly, the generality we discussed does not seem to

244 Reliable Stream Transport Service (TCP) Chap. 13

hinder TCP performance. Experiments at Berkeley have shown that the same TCP that
operates efficiently over the global Internet can deliver 8 Mbps of sustained throughput
of user data between two workstations on a 10 Mbps Ethernet?. At Cray Research,
Inc., researchers have demonstrated TCP throughput approaching a gigabit per second.

Decimal Keyword UNlX Keyword Description

TCPMUX
ECHO
DISCARD
USERS
DAYTIME

QUOTE
CHARGEN
FTP-DATA
FTP
SSH
TELNET
SMTP
TIME
NICNAME
DOMAIN
BOOTPS

FINGER
WWW
KERBEROS
SUPDUP
HOSTNAME
ISO-TSAP
X400
X400-SND
POP3
SUNRPC
AUTH
UUCP-PATH
NNTP
NTP
NETBIOS-SSN
SNMP

echo
discard
systat
daytime
netstat
qotd
chargen
ftp-data
ft P
ssh
telnet
smtp
time
whois
nameserver
bootps
rje
finger
WWW

kerberos
supdup
hostnames
iso-tsap
x400
x400-snd
pop3
sunrpc
auth
uucp-path
nntp
ntp

snmp

Reserved
TCP Multiplexor
Echo
Discard
Active Users
Daytime
Network status program
Quote of the Day
Character Generator
File Transfer Protocol (data)
File Transfer Protocol
Secure Shell
Terminal Connection
Simple Mail Transport Protocol
Time
Who Is
Domain Name Server
BOOTP or DHCP Server
any private RJE service
Finger
World Wide Web Server
Kerberos Security Service
SUPDUP Protocol
NIC Host Name Server
ISO-TSAP
X.400 Mail Service
X.400 Mail Sending
Post Office Protocol Vers. 3
SUN Remote Procedure Call
Authentication Service
UUCP Path Service
USENET News Transfer Protocol
Network Time Protocol
NETBIOS Session Service
Simple Network Management Protc

Figure 13.16 Examples of currently assigned TCP port numbers. To the ex-
tent possible, protocols like UDP use the same numbers.

?Ethernet, IP, and TCP headers and the required inter-packet gap account for the remaining bandwidth.

Sec. 13.31 Silly Widow Syndrome And Small Packets 245

13.31 Silly Window Syndrome And Small Packets

Researchers who helped developed TCP observed a serious performance problem
that can result when the sending and receiving applications operate at different speeds.
To understand the problem, remember that TCP buffers incoming data, and consider
what can happen if a receiving application chooses to read incoming data one octet at a
time. When a connection is first established, the receiving TCP allocates a buffer of K
bytes, and uses the WZNDOW field in acknowledgement segments to advertise the avail-
able buffer size to the sender. If the sending application generates data quickly, the
sending TCP will transmit segments with data for the entire window. Eventually, the
sender will receive an acknowledgement that specifies the entire window has been
filled, and no additional space remains in the receiver's buffer.

When the receiving application reads an octet of data from a full buffer, one octet
of space becomes available. We said that when space becomes available in its buffer,
TCP on the receiving machine generates an acknowledgement that uses the WINDOW
field to inform the sender. In the example, the receiver will advertise a window of 1
octet. When it learns that space is available, the sending TCP responds by transmitting
a segment that contains one octet of data.

Although single-octet window advertisements work correctly to keep the receiver's
buffer filled, they result in a series of small data segments. The sending TCP must
compose a segment that contains one octet of data, place the segment in an IP datagram,
and transmit the result. When the receiving application reads another octet, TCP gen-
erates another acknowledgement, which causes the sender to transmit another segment
that contains one octet of data. The resulting interaction can reach a steady state in
which TCP sends a separate segment for each octet of data.

Transfemng small segments consumes unnecessary network bandwidth and intro-
duces unnecessary computational overhead. The transmission of small segments con-
sumes unnecessary network bandwidth because each datagram carries only one octet of
data; the ratio of header to data is large. Computational overhead arises because TCP
on both the sending and receiving computers must process each segment. The sending
TCP software must allocate buffer space, form a segment header, and compute a check-
sum for the segment. Similarly, IP software on the sending machine must encapsulate
the segment in a datagram, compute a header checksum, route the datagram, and
transfer it to the appropriate network interface. On the receiving machine, IP must veri-
fy the IP header checksum and pass the segment to TCP. TCP must verify the segment
checksum, examine the sequence number, extract the data, and place it in a buffer.

Although we have described how small segments result when a receiver advertises
a small available window, a sender can also cause each segment to contain a small
amount of data. For example, imagine a TCP implementation that aggressively sends
data whenever it is available, and consider what happens if a sending application gen-
erates data one octet at a time. After the application generates an octet of data, TCP
creates and transmits a segment. TCP can also send a small segment if an application
generates data in fmed-sized blocks of B octets, and the sending TCP extracts data from

246 Reliable Stream Transport Service (TCP) Chap. 13

the buffer in maximum segment sized blocks, M, where M#B, because the last block in
a buffer can be small.

Known as silly window syndrome (SWS), the problem plagued early TCP imple-
mentations. To summarize,

Early TCP implementations exhibited a problem known as silly win-
dow syndrome in which each acknowledgement advertises a small
amount of space available and each segment carries a small amount
of data.

13.32 Avoiding Silly Window Syndrome

TCP specifications now include heuristics that prevent silly window syndrome. A
heuristic used on the sending machine avoids transmitting a small amount of data in
each segment. Another heuristic used on the receiving machine avoids sending small
increments in window advertisements that can trigger small data packets. Although the
heuristics work well together, having both the sender and receiver avoid silly window
helps ensure good performance in the case that one end of a connection fails to correct-
ly implement silly window avoidance.

In practice, TCP software must contain both sender and receiver silly window
avoidance code. To understand why, recall that a TCP c o ~ e c t i o n is full duplex - data
can flow in either direction. Thus, an implementation of TCP includes code to send
data as well as code to receive it.

13.32.1 Receive-Side Silly Window Avoidance

The heuristic a receiver uses to avoid silly window is straightforward and easiest to
understand. In general, a receiver maintains an internal record of the currently available
window, but delays advertising an increase in window size to the sender until the win-
dow can advance a significant amount. The definition of "significant" depends on the
receiver's buffer size and the maximum segment size. TCP defines it to be the
minimum of one half of the receiver's buffer or the number of data octets in a
maximum-sized segment.

Receive-side silly window prevents small window advertisements in the case where
a receiving application extracts data octets slowly. For example, when a receiver's
buffer fills completely, it sends an acknowledgement that contains a zero window adver-
tisement. As the receiving application extracts octets from the buffer, the receiving
TCP computes the newly available space in the buffer. Instead of sending a window
advertisement immediately, however, the receiver waits until the available space reaches
one half of the total buffer size or a maximum sized segment. Thus, the sender always
receives large increments in the current window, allowing it to transfer large segments.
The heuristic can be summarized as follows.

Sec. 13.32 Avoiding Silly Window Syndrome 247

Receive-Side Silly Window Avoidance: Before sending an updated
window advertisement afer advertising a zero window, wait for space
to become available that is either at least 50% of the total buffer size
or equal to a maximum sized segment.

13.32.2 Delayed Acknowledgements

Two approaches have been taken to implement silly window avoidance on the re-
ceive side. In the first approach, TCP acknowledges each segment that arrives, but does
not advertise an increase in its window until the window reaches the limits specified by
the silly window avoidance heuristic. In the second approach, TCP delays sending an
acknowledgement when silly window avoidance specifies that the window is not suffi-
ciently large to advertise. The standards recommend delaying acknowledgements.

Delayed acknowledgements have both advantages and disadvantages. The chief
advantage arises because delayed acknowledgements can decrease traffic and thereby in-
crease throughput. For example, if additional data arrives during the delay period, a
single acknowledgement will acknowledge all data received. If the receiving applica-
tion generates a response immediately after data arrives (e.g., character echo in a remote
login session), a short delay may p e m ~ t the acknowledgement to piggyback on a data
segment. Furthermore, TCP cannot move its window until the receiving application ex-
tracts data from the buffer. In cases where the receiving application reads data as soon
as it arrives, a short delay allows TCP to send a single segment that acknowledges the
data and advertises an updated window. Without delayed acknowledgements, TCP will
acknowledge the arrival of data immediately, and later send an additional acknowledge-
ment to update the window size.

The disadvantages of delayed acknowledgements should be clear. Most important,
if a receiver delays acknowledgements too long, the sending TCP will retransmit the
segment. Unnecessary retransmissions lower throughput because they waste network
bandwidth. In addition, retransmissions require computational overhead on the sending
and receiving machines. Furthermore, TCP uses the arrival of acknowledgements to es-
timate round trip times; delaying acknowledgements can confuse the estimate and make
retransmission times too long.

To avoid potential problems, the TCP standards place a limit on the time TCP de-
lays an acknowledgement. Implementations cannot delay an acknowledgement for
more than 500 milliseconds. Furthermore, to guarantee that TCP receives a sufficient
number of round trip estimates, the standard recommends that a receiver should ack-
nowledge at least every other data segment.

248 Reliable Stream Transport Service (TCP) Chap. 13

13.32.3 Send-Side Silly Window Avoidance

The heuristic a sending TCP uses to avoid silly window syndrome is both surpris-
ing and elegant. Recall that the goal is to avoid sending small segments. Also recall
that a sending application can generate data in arbitrarily small blocks (e.g., one octet at
a time). Thus, to achieve the goal, a sending TCP must allow the sending application to
make multiple calls to write, and must collect the data transferred in each call before
transmitting it in a single, large segment. That is, a sending TCP must delay sending a
segment until it can accumulate a reasonable amount of data. The technique is known
as clumping.

The question arises, "How long should TCP wait before transmitting data?" On
one hand, if TCP waits too long, the application experiences large delays. More irnpor-
tant, TCP cannot know whether to wait because it cannot know whether the application
will generate more data in the near future. On the other hand, if TCP does not wait
long enough, segments will be small and throughput will be low.

Protocols designed prior to TCP confronted the same problem and used techniques
to clump data into larger packets. For example, to achieve efficient transfer across a
network, early remote terminal protocols delayed transmitting each keystroke for a few
hundred milliseconds to determine whether the user would continue to press keys. Be-
cause TCP is designed to be general, however, it can be used by a diverse set of appli-
cations. Characters may travel across a TCP connection because a user is typing on a
keyboard or because a program is transferring a file. A fixed delay is not optimal for
all applications.

Like the algorithm TCP uses for retransmission and the slow-start algorithm used
to avoid congestion, the technique a sending TCP uses to avoid sending small packets is
adaptive - the delay depends on the current performance of the internet. Like slow-
start, send-side silly window avoidance is called self clocking because it does not com-
pute delays. Instead, TCP uses the arrival of an acknowledgement to trigger the
transmission of additional packets. The heuristic can be summarized:

Send-Side Silly Window Avoidance: When a sending application gen-
erates additional data to be sent over a connection for which previous
data has been transmitted but not acknowledged, place the new data
in the output buffer as usual, but do not send additional segments un-
til there is suficient data to fill a maximum-sized segment. If still
waiting to send when an acknowledgement arrives, send all data that
has accumulated in the buffer. Apply the rule even when the user re-
quests a push operation.

If an application generates data one octet at a time, TCP will send the first octet
immediately. However, until the ACK arrives, TCP will accumulate additional octets in
its buffer. Thus, if the application is reasonably fast compared to the network (i.e., a
file transfer), successive segments will each contain many octets. If the application is
slow compared to the network (e.g., a user typing on a keyboard), small segments will
be sent without long delay.

Sec. 13.32 Avoiding Silly Window Syndrome 249

Known as the Nagle algorithm after its inventor, the technique is especially elegant
because it requires little computational overhead. A host does not need to keep separate
timers for each connection, nor does the host need to examine a clock when an applica-
tion generates data. More important, although the technique adapts to arbitrary combi-
nations of network delay, maximum segment size, and application speed, it does not
lower throughput in conventional cases.

To understand why throughput remains high for conventional communication, ob-
serve that applications optimized for high throughput do not generate data one octet at a
time (doing so would incur unnecessary operating system overhead). Instead, such ap-
plications write large blocks of data with each call. Thus, the outgoing TCP buffer be-
gins with sufficient data for at least one maximum size segment. Furthermore, because
the application produces data faster than TCP can transfer data, the sending buffer
remains nearly full, and TCP does not delay transmission. As a result, TCP continues
to send segments at whatever rate the internet can tolerate, while the application contin-
ues to fill the buffer. To summarize:

TCP now requires the sender and receiver to implement heuristics
that avoid the silly window syndrome. A receiver avoids advertising a
small window, and a sender uses an adaptive scheme to delay
transmission so it can clump data into large segments.

13.33 Summary

The Transmission Control Protocol, TCP, defines a key service provided by an in-
ternet, namely, reliable stream delivery. TCP provides a full duplex connection
between two machines, allowing them to exchange large volumes of data efficiently.

Because it uses a sliding window protocol, TCP can make efficient use of a net-
work. Because it makes few assumptions about the underlying delivery system, TCP is
flexible enough to operate over a large variety of delivery systems. Because it provides
flow control, TCP allows systems of widely varying speeds to communicate.

The basic unit of transfer used by TCP is a segment. Segments are used to pass
data or control information (e.g., to allow TCP software on two machines to establish
connections or break them). The segment fornlat permits a machine to piggyback ack-
nowledgements for data flowing in one direction by including them in the segment
headers of data flowing in the opposite direction.

TCP implements flow control by having the receiver advertise the amount of data
it is willing to accept. It also supports out-of-band messages using an urgent data facili-
ty and forces delivery using a push mechanism.

The current TCP standard specifies exponential backoff for retransmission timers
and congestion avoidance algorithms like slow-start, multiplicative decrease, and addi-
tive increase. In addition, TCP uses heuristics to avoid transferring small packets. Fi-
nally, the IETF recommends that routers use RED instead of tail-drop because doing so
avoids TCP synchronization and improves throughput.

Reliable Stream Transport Service PCP) Chap. 13

FOR FURTHER STUDY

The standard for TCP can be found in Postel [RFC 7931; Braden [RFC 11221 con-
tains an update that clarifies several points. Clark [RFC 8131 describes TCP window
management, Clark [RFC 8161 describes fault isolation and recovery, and Postel [RFC
8791 reports on TCP maximum segment sizes. Nagle [RFC 8961 comments on conges-
tion in TCPAP networks and explains the effect of self clocking for send-side silly win-
dow avoidance. Karn and Partridge [1987] discusses estimation of round-trip times, and
presents Karn's algorithm. Jacobson [I9881 gives the congestion control algorithms
that are now a required part of the standard. Floyd and Jacobson [I9931 presents the
RED scheme, and Clark and Fang [I9981 discusses an allocation framework that uses
RED. Tomlinson [I9751 considers the three-way handshake in more detail. Mills [RFC
8891 reports measurements of Internet round-trip delays. Jain [I9861 describes timer-
based congestion control in a sliding window environment. Borman [April 19891 sum-
marizes experiments with high-speed TCP on Cray computers.

EXERCISES

TCP uses a finite field to contain stream sequence numbers. Study the protocol specifi-
cation to find out how it allows an arbitrary length stream to pass from one machine to
another.

The text notes that one of the TCP options permits a receiver to specify the maximum
segment size it is willing to accept. Why does TCP support an option to specify max-
imum segment size when it also has a window advertisement mechanism?

Under what conditions of delay, bandwidth, load, and packet loss will TCP retransmit
significant volumes of data unnecessarily?

Lost TCP acknowledgements do not necessarily force retransmissions. Explain why.

Experiment with local machines to determine how TCP handles machine restart. Estab-
lish a connection (e.g., a remote login) and leave it idle. Wait for the destination
machine to crash and restart, and then force the local machine to send a TCP segment
(e.g., by typing characters to the remote login).

Imagine an implementation of TCP that discards segments that arrive out of order, even
if they fall in the current window. That is, the imagined version only accepts segments
that extend the byte stream it has already received. Does it work? How does it compare
to a standard TCP implementation?

Consider computation of a TCP checksum. Assume that although the checksum field in
the segment has not been set to zero, the result of computing the checksum is zero.
What can you conclude?

What are the arguments for and against automatically closing idle connections?

Exercises 25 1

If two application programs use TCP to send data but only send one character per seg-
ment (e.g., by using the PUSH operation), what is the maximum percent of the network
bandwidth they will have for their data?

Suppose an implementation of TCP uses initial sequence number 1 when it creates a
connection. Explain how a system crash and restart can confuse a remote system into
believing that the old connection remained open.

Look at the round-trip time estimation algorithm suggested in the I S 0 TP-4 protocol
specification and compare it to the TCP algorithm discussed in this chapter. Which
would you prefer to use?

Find out how implementations of TCP must solve the overlapping segment problem.
The problem arises because the receiver must accept only one copy of all bytes from the
data stream even if the sender transmits two segments that partially overlap one another
(e.g., the first segment carries bytes 100 through 200 and the second carries bytes 150
through 250).
Trace the TCP finite state machine transitions for two sites that execute a passive and ac-
tive open and step through the three-way handshake.

Read the TCP specification to find out the exact conditions under which TCP can make
the transition from FIN WAIT-1 to TIMED WAIT.

Trace the TCP state transitions for two machines that agree to close a connection grace-
fully.

Assume TCP is sending segments using a maximum window size (64 Kbytes) on a chan-
nel that has infinite bandwidth and an average roundmp time of 20 milliseconds. What
is the maximum throughput? How does throughput change if the roundtrip time in-
creases to 40 milliseconds (while bandwidth remains infinite)?

As the previous exercise illustrates, higher throughput can be achieved with larger win-
dows. One of the drawbacks of the TCP segment format is the size of the field devoted
to window advertisement. How can TCP be extended to allow larger windows without
changing the segment format?

Can you derive an equation that expresses the maximum possible TCP throughput as a
function of the network bandwidth, the network delay, and the time to process a segment
and generate an acknowledgement. Hint: consider the previous exercise.

Describe (abnormal) circumstances that can leave one end of a connection in state FIN
WAIT-2 indefinitely (hint: think of datagram loss and system crashes).

Show that when a router implements RED, the probability a packet will be discarded
from a particular TCP connection is proportional to the percentage of traffic that the con-
nection generates.

Routing: Cores, Peers, And
Algorithms

14.1 Introduction

Previous chapters concentrate on the network level services TCPm offers and the
details of the protocols in hosts and routers that provide those services. In the discus-
sion, we assumed that routers always contain correct routes, and we observed that
routers can ask directly c o ~ e c t e d hosts to change routes with the ICMP redirect
mechanism.

This chapter considers two broad questions: "What values should routing tables
contain?" and "How can those values be obtained?" To answer the first question, we
will consider the relationship between internet architecture and routing. In particular,
we will discuss internets structured around a backbone and those composed of multiple
peer networks, and consider the consequences for routing. While many of our examples
are drawn from the global Internet, the ideas apply equally well to smaller corporate in-
ternets. To answer the second question, we will consider the two basic types of route
propagation algorithms and see how each supplies routing information automatically.

We begin by discussing routing in general. Later sections concentrate on internet
architecture and describe the algorithms routers use to exchange routing information.
Chapters 15 and 16 continue to expand our discussion of routing. They explore proto-
cols that routers owned by two independent administrative groups use to exchange in-
formation, and protocols that a single group uses among all its routers.

254 Routing: Cores, Peers, And Algorithms Chap. 14

14.2 The Origin Of Routing Tables

Recall from Chapter 3 that IF' routers provide active interconnections among net-
works. Each router attaches to two or more physical networks and forwards IF' da-
tagrams among them, accepting datagrams that arrive over one network interface, and
routing them out over another interface. Except for destinations on directly attached
networks, hosts pass all IP traffic to routers which forward datagrams on toward their fi-
nal destinations. A datagram travels from router to router until it reaches a router that
attaches directly to the same network as the final destination. Thus, the router system
forms the architectural basis of an internet and handles all traffic except for direct
delivery from one host to another.

Chapter 8 describes the IP routing algorithm that hosts and routers follow to for-
ward datagrams, and shows how the algorithm uses a table to make routing decisions.
Each entry in the routing table specifies the network portion of a destination address
and gives the address of the next machine along a path used to reach that network. Like
hosts, routers directly deliver datagrams to destinations on networks to which the router
attaches.

Although we have seen the basics of datagram forwarding, we have not said how
hosts or routers obtain the information for their routing tables. The issue has two as-
pects: what values should be placed in the tables, and how routers obtain those values.
Both choices depend on the architectural complexity and size of the internet as well as
administrative policies.

In general, establishing routes involves initialization and update. Each router must
establish an initial set of routes when it starts, and it must update the table as routes
change (e.g., when a network interface fails). Initialization depends on the operating
system. In some systems, the router reads an initial routing table from secondary
storage at startup, keeping it resident in main memory. In others, the operating system
begins with an empty table which must be filled in by executing explicit commands
(e.g., commands found in a startup command script). Finally, some operating systems
start by deducing an initial set of routes from the set of addresses for the local networks
to which the machine attaches and contacting a neighboring machine to ask for addi-
tional routes.

Once an initial routing table has been built, a router must accommodate changes in
routes. In small, slowly changing internets, managers can establish and modify routes
by hand. In large, rapidly changing environments, however, manual update is impossi-
bly slow and prone to human errors. Automated methods are needed.

Before we can understand the automatic routing table update protocols used in IF'
routers, we need to review several underlying ideas. The next sections do so, providing
the necessary conceptual foundation for routing. Later sections discuss internet archi-
tecture and the protocols routers use to exchange routing information.

Sec. 14.3 Routing With Partial Information 255

14.3 Routing With Partial Information

The principal difference between routers and typical hosts is that hosts usually
know little about the structure of the internet to which they connect. Hosts do not have
complete knowledge of all possible destination addresses, or even of all possible desti-
nation networks. In fact, many hosts have only two routes in their routing table: a route
for the local network and a default route for a nearby router. The host sends all nonlo-
cal datagrams to the local router for delivery. The point is that:

A host can route datagrams successfully even if it only has partial
routing information because it can rely on a router.

Can routers also route datagrams with only partial information? Yes, but only
under certain circumstances. To understand the criteria, imagine an internet to be a
foreign country crisscrossed with dirt roads that have directional signs posted at inter-
sections. Imagine that you have no map, cannot ask directions because you cannot
speak the local language, have no ideas about visible landmarks, but you need to travel
to a village named Sussex. You leave on your journey, following the only road out of
town and begin to look for directional signs. The first sign reads:

Norfolk to the left; Hammond to the right; others straight ahead.?

Because the destination you seek is not listed explicitly, you continue straight ahead. In
routing jargon, we say you follow a default route. After several more signs, you finally
find one that reads:

Essex to the left; Sussex to the right; others straight ahead.

You turn to the right, follow several more signs, and emerge on a road that leads to
Sussex.

Our imagined travel is analogous to a datagram traversing an internet, and the road
signs are analogous to routing tables in routers along the path. Without a map or other
navigational aids, travel is completely dependent on road signs, just as datagram routing
in an internet depends entirely on routing tables. Clearly, it is possible to navigate even
though each road sign contains only partial information.

A central question concerns correctness. As a traveler, you might ask, "How can I
be sure that following the signs will lead to my final destination?" You also might ask,
"How can I be sure that following the signs will lead me to my destination along a
shortest path?" These questions may seem especially troublesome if you pass many
signs without finding your destination listed explicitly. Of course, the answers depend
on the topology of the road system and the contents of the signs, but the fundamental
idea is that when taken as a whole, the information on the signs should be both con-
sistent and complete. Looking at this another way, we see that it is not necessary for
each intersection to have a sign for every destination. The signs can list default paths as

tFomnately, signs are printed in a language you can read.

256 Routing: Cores, Peers, And Algorithms Chap. 14

long as all explicit signs point along a shortest path, and the turns for shortest paths to
all destinations are marked. A few examples will explain some ways that consistency
can be achieved.

At one extreme, consider a simple star-shaped topology of roads in which each vil-
lage has exactly one road leading to it, and all those roads meet at a central point. To
guarantee consistency, the sign at the central intersection must contain information
about all possible destinations. At the other extreme, imagine an arbitrary set of roads
with signs at all intersections listing all possible destinations. To guarantee consistency,
it must be true that at any intersection if the sign for destination D points to road R, no
road other than R leads to a shorter path to D.

Neither of these architectural extremes works well for an internet router system.
On one hand, the central intersection approach fails because no machine is fast enough
to serve as a central switch through which all traffic passes. On the other hand, having
information about all possible destinations in all routers is impractical because it re-
quires propagating large volumes of information whenever a change occurs or whenever
administrators need to check consistency. Thus, we seek a solution that allows groups
to manage local routers autonomously, adding new network interconnections and routes
without changing distant routers.

To help explain some of the architecture described later, consider a third topology
in which half the cities lie in the eastern part of the country and half lie in the western
part. Suppose a single bridge spans the river that separates east from west. Assume
that people living in the eastern part do not like Westerners, so they are willing to allow
road signs that list destinations in the east but none in the west. Assume that people
living in the west do the opposite. Routing will be consistent if every road sign in the
east lists all eastern destinations explicitly and points the default path to the bridge,
while every road sign in the west lists all western destinations explicitly and points the
default path to the bridge.

14.4 Original Internet Architecture And Cores

Much of our knowledge of routing and route propagation protocols has been
derived from experience with the global Internet. When TCPDP was first developed,
participating research sites were connected to the ARPANET, which served as the Inter-
net backbone. During initial experiments, each site managed routing tables and in-
stalled routes to other destinations by hand. As the fledgling Internet began to grow, it
became apparent that manual maintenance of routes was impractical; automated
mechanisms were needed.

The Internet designers selected a router architecture that consisted of a small, cen-
tral set of routers that kept complete information about all possible destinations, and a
larger set of outlying routers that kept partial information. In terms of our analogy, it is
like designating a small set of centrally located intersections to have signs that list all
destinations, and allowing the outlying intersections to list only local destinations. As
long as the default route at each outlying intersection points to one of the central inter-

Sec. 14.4 Original Internet Architecture And Cores 257

sections, travelers will eventually reach their destination. The advantage of using partial
information in outlying routers is that it permits local administrators to manage local
structural changes without affecting other parts of the Internet. The disadvantage is that
it introduces the potential for inconsistency. In the worst case, an error in an outlying
router can make distant routes unreachable.

We can summarize these ideas:

The routing table in a given router contains partial information about
possible destinations. Routing that uses partial information allows
sites autonomy in making local routing changes, but introduces the
possibility of inconsistencies that may make some destinations un-
reachable from some sources.

Inconsistencies among routing tables usually arise from errors in the algorithms
that compute routing tables, incorrect data supplied to those algorithms, or from errors
that occur while transmitting the results to other routers. Protocol designers look for
ways to limit the impact of errors, with the objective being to keep all routes consistent
at all times. If routes become inconsistent for some reason, the routing protocols should
be robust enough to detect and correct the errors quickly. Most important, the protocols
should be designed to constrain the effect of errors.

14.5 Core Routers

Loosely speaking, early Internet routers could be partitioned into two groups, a
small set of core routers controlled by the Internet Network Operations Center (INOC),
and a larger set of noncore routersl- controlled by individual groups. The core system
was designed to provide reliable, consistent, authoritative routes for all possible destina-
tions; it was the glue that held the Internet together and made universal interconnection
possible. By fiat, each site assigned an Internet network address had to arrange to ad-
vertise that address to the core system. The core routers communicated among them-
selves, so they could guarantee that the infornlation they shared was consistent. Be-
cause a central authority monitored and controlled the core routers, they were highly re-
liable.

To fully understand the core router system, it is necessary to recall that the Internet
evolved with a wide-area network, the ARPANET, already in place. When the Internet
experiments began, designers thought of the ARPANET as a main backbone on which
to build. Thus, a large part of the motivation for the core router system came from the
desire to connect local networks to the ARPANET. Figure 14.1 illustrates the idea.

tThe terms srub and nonrouting have also been used in place of noncore.

Routing: Cores, Peers, And Algorithms Chap. 14

ARPANET BACKBONE

Core
Routers

Figure 14.1 The early Internet core router system viewed as a set of routers
that connect local area networks to the ARPANET. Hosts on
the local networks pass all nonlocal traffic to the closest core
router.

To understand why such an architecture does not lend itself to routing with partial
information, suppose that a large internet consists entirely of local area networks, each
attached to a backbone network through a router. Also imagine that some of the routers
rely on default routes. Now consider the path a datagram follows. At the source site,
the local router checks to see if it has an explicit route to the destination and, if not,
sends the datagram along the path specified by its default route. All datagrams for
which the router has no route follow the same default path regardless of their ultimate
destination. The next router along the path diverts datagrams for which it has an expli-
cit route, and sends the rest along its default route. To ensure global consistency, the
chain of default routes must reach every router in a giant cycle as Figure 14.2 shows.
Thus, the architecture requires all local sites to coordinate their default routes. In addi-
tion, depending on default routes can be inefficient even when it is consistent. As Fig-
ure 14.2 shows, in the worst case a datagram will pass through all n routers as it travels
from source to destination instead of going directly across the backbone.

BACKBONE

Figure 14.2 A set of routers connected to a backbone network with default
routes shown. Routing is inefficient even though it is consistent.

Sec. 14.5 Core Routers 259

To avoid the inefficiencies default routes cause, Internet designers arranged for all
core routers to exchange routing information so that each would have complete informa-
tion about optimal routes to all possible destinations. Because each core router knew
routes to all possible destinations, it did not need a default route. If the destination ad-
dress on a datagram was not in a core router's routing table, the router would generate
an ICMP destination unreachable message and drop the datagram. In essence, the core
design avoided inefficiency by eliminating default routes.

Figure 14.3 depicts the conceptual basis of a core routing architecture. The figure
shows a central core system consisting of one or more core routers, and a set of outly-
ing routers at local sites. Outlying routers keep information about local destinations and
use a'default route that sends datagrams destined for other sites to the core.

Figure 143 The routing architecture of a simplistic core system showing de-
fault routes. Core routers do not use default routes; outlying
routers, labeled Li, each have a default route that points to the
core.

Although the simplistic core architecture illustrated in Figure 14.3 is easy to under-
stand, it became impractical for three reasons. First, the Internet outgrew a single, cen-
trally managed long-haul backbone. The topology became complex and the protocols
needed to maintain consistency among core routers became nontrivial. Second, not
every site could have a core router connected to the backbone, so additional routing
structure and protocols were needed. Third, because core routers all interacted to ensure
consistent routing infornlation, the core architecture did not scale to arbitrary size. We
will return to this last problem in Chapter 15 after we examine the protocols that the
core system used to exchange routing infonation.

260 Routing: Cores, Peers, And Algorithms Chap. 14

14.6 Beyond The Core Architecture To Peer Backbones

The introduction of the NSFNET backbone into the Internet added new complexity
to the routing structure. From the core system point of view, the c o ~ e c t i o n to
NSFNET was initially no different than the c o ~ e c t i o n to any other site. NSFNET at-
tached to the ARPANET backbone through a single router in Pittsburgh. The core had
explicit routes to all destinations in NSFNET. Routers inside NSFNET knew about lo-
cal destinations and used a default route to send all non-NSFNET traffic to the core via
the Pittsburgh router.

As NSFNET grew to become a major part of the Internet, it became apparent that
the core routing architecture would not suffice. The most important conceptual change
occurred when multiple connections were added between the ARPANET and NSFNET
backbones. We say that the two became peer backbone networks or simply peers. Fig-
ure 14.4 illustrates the resulting peer topology.

HOST 1 ARPANET BACKBONE HOST 2

HOST 3 NSFNET BACKBONE HOST 4

Figure 14.4 An example of peer backbones interconnected through multiple
routers. The diagram illustrates the architecture of the Internet
in 1989. In later generations, parallel backbones were each
owned by an ISP.

To understand the difficulties of IP routing among peer backbones, consider routes
from host 3 to host 2 in Figure 14.4. Assume for the moment that the figure shows
geographic orientation, so host 3 is on the West Coast attached to the NSFNET back-
bone while host 2 is on the East Coast attached to the ARPANET backbone. When es-
tablishing routes between hosts 3 and 2, the managers must decide whether to (a) route
the traffic from host 3 through the West Coast router, R1, and then across the AR-
PANET backbone, or (b) route the traffic from host 3 across the NSFNET backbone,
through the Midwest router, R2, and then across the ARPANET backbone to host 2, or
(c) route the traffic across the NSFNET backbone, through the East Coast router, R3,
and then to host 2. A more circuitous route is possible as well: traffic could flow from
host 3 through the West Coast router, across the ARPANET backbone to the Midwest
router, back onto the NSFNET backbone to the East Coast router, and finally across the

Sec. 14.6 Beyond The Core Architecture To Peer Backbones 26 1

ARPANET backbone to host 2. Such a route may or may not be advisable, depending
on the policies for network use and the capacity of various routers and backbones.

For most peer backbone configurations, traffic between a pair of geographically
close hosts should take a shortest path, independent of the routes chosen for cross-
country traffic. For example, traffic from host 3 to host I should flow through the West
Coast router because it minimizes distance on both backbones.

All these statements sound simple enough, but they are complex to implement for
two reasons. First, although the standard IP routing algorithm uses the network portion
of an IP address to choose a route, optimal routing in a peer backbone architecture re-
quires individual routes for individual hosts. For our example above, the routing table
in host 3 needs different routes for host 1 and host 2, even though both hosts 1 and 2 at-
tach to the ARPANET backbone. Second, managers of the two backbones must agree
to keep routes consistent among all routers or routing loops can develop (a routing loop
occurs when routes in a set of routers point in a circle).

It is important to distinguish network topology from routing architecture. It is pos-
sible, for example, to have a single core system that spans multiple backbone networks.
The core machines can be programmed to hide the underlying architectural details and
to compute shortest routes among themselves. It is not possible, however, to partition
the core system into subsets that each keep partial information without losing func-
tionality. Figure 14.5 illustrates the problem.

default route to sites
default routes beyond core 1 default routes

from sites from sites
behind core 2

CORE #l CORE #2

beyond core 2

Figure 145 An attempt to partition a core routing architecture into two sets
of routers that keep partial information and use default routes.
Such an architecture results in a routing loop for datagrams that
have an illegal (nonexistent) destination.

As the figure shows, outlying routers have default routes to one side of the parti-
tioned core. Each side of the partition has information about destinations on its side of
the world and a default route for information on the other side of the world. In such an
architecture, any datagram sent to an illegal address will cycle between the two parti-
tions in a routing loop until its time to live counter reaches zero.

We can summarize as follows:

262 Routing: Cores, Peers, And Algorithms Chap. 14

A core routing architecture assumes a centralized set of routers serves
as the repository of information about all possible destinations in an
internet. Core systems work best for internets that have a single, cen-
trally managed backbone. Expanding the topology to multiple back-
bones makes routing complex; attempting to partition the core archi-
tecture so that all routers use default routes introduces potential rout-
ing loops.

14.7 Automatic Route Propagation

We said that the original Internet core system avoided default routes because it
propagated complete information about all possible destinations to every core router.
Many corporate internets now use a similar scheme - routers in the corporation run
programs that communicate routing information. The next sections discuss two basic
types of algorithms that compute and propagate routing information, and use the origi-
nal core routing protocol to illustrate one of the algorithms. A later section describes a
protocol that uses the other type of algorithm.

It may seem that automatic route propagation mechanisms are not needed, especial-
ly on small internets. However, internets are not static. Connections fail and are later
replaced. Networks can become overloaded at one moment and underutilized at the
next. The purpose of routing propagation mechanisms is not merely to find a set of
routes, but to continually update the information. Humans simply cannot respond to
changes fast enough; computer programs must be used. Thus, when we think about
route propagation, it is important to consider the dynamic behavior of protocols and al-
gorithms.

14.8 Distance Vector (Bellman-Ford) Routing

The term distance-vectod refers to a class of algorithms routers use to propagate
routing information. The idea behind distance-vector algorithms is quite simple. The
router keeps a list of all known routes in a table. When it boots, a router initializes its
routing table to contain an entry for each directly connected network. Each entry in the
table identifies a destination network and gives the distance to that network, usually
measured in hops (which will be defined more precisely later). For example, Figure
14.6 shows the initial contents of the table on a router that attaches to two networks.

tThe tern vector-distance, Ford-Fulkerson, Bellman-Ford, and Bellman are synonymous with distance-
vector, the last two are taken from the names of researchers who published the idea.

Sec. 14.8 Distance Vector (Bellman-Ford) Routing

Destination I Distance I Route
direct

Net 2 O I direct

Fire 14.6 An initial distance-vector routing table with an entry for each
directly c o ~ e c t e d network. Each entry contains the IP address
of a network and an integer distance to that network.

Periodically, each router sends a copy of its routing table to any other router it can
reach directly. When a report arrives at router K from router J , K examines the set of
destinations reported and the distance to each. If J knows a shorter way to reach a des-
tination, or if J lists a destination that K does not have in its table, or if K currently
routes to a destination through J and J's distance to that destination changes, K replaces
its table entry. For example, Figure 14.7 shows an existing table in a router, K, and an
update message from another router, J.

Destination
Net 1
Net 2
Net 4
Net 17
Net 24
Net 30
Net 42

Distance
0
0
8
5
6
2
2

(a>

Route Destination
direct Net 1
direct - Net4

Router L Net 17
Router M - Net 21
Router J Net 24
Router Q Net 30
Router J - Net 42

Distance
2
3
6
4
5
10
3

Figure 14.7 (a) An existing route table for a router K, and (b) an incoming
routing update message from router J. The marked entries will
be used to update existing entries or add new entries to K's
table.

Note that if J reports distance N, an updated entry in K will have distance N+I (the
distance to reach the destination from J plus the distance to reach J). Of course, the
routing table entries contain a third column that specifies a next hop. The next hop en-
try in each initial route is marked direct delivery. When router K adds or updates an en-
try in response to a message from router J, it assigns router J as the next hop for that
entry.

The term distance-vector comes from the information sent in the periodic mes-
sages. A message contains a list of pairs (V , D), where V identifies a destination
(called the vector), and D is the distance to that destination. Note that distance-vector
algorithms report routes in the first person (i-e., we think of a router advertising, "I can

264 Routing: Cores, Peers, And Algorithms Chap. 14

reach destination V at distance D"). In such a design, all routers must participate in the
distance-vector exchange for the routes to be efficient and consistent.

Although distance-vector algorithms are easy to implement, they have disadvan-
tages. In a completely static environment, distance-vector algorithms propagate routes
to all destinations. When routes change rapidly, however, the computations may not
stabilize. When a route changes (i.e, a new connection appears or an old one fails), the
information propagates slowly from one router to another. Meanwhile, some routers
may have incorrect routing information.

For now, we will examine a simple protocol that uses the distance-vector algorithm
without discussing all the shortcomings. Chapter 16 completes the discussion by show-
ing another distance-vector protocol, the problems that can arise, and the heuristics used
to solve the most serious of them.

14.9 Gateway-To-Gateway Protocol (GGP)

The original core routers used a distance-vector protocol known as the Gateway-
to-Gateway Protocolf (GGP) to exchange routing information. Although GGP only
handled classful routes and is no longer part of the TCPJIP standards$, it does provide a
concrete example of distance-vector routing. GGP was designed to travel in IP da-
tagrams similar to UDP datagrams or TCP segments. Each GGP message has a f i e d
format header that identifies the message type and the format of the remaining fields.
Because only core routers participated in GGP, and because core routers were controlled
by a central authority, other routers could not interfere with the exchange.

The original core system was arranged to permit new core routers to be added
without modifying existing routers. When a new router was added to the core system,
it was assigned one or more core neighbors with which it communicated. The neigh-
bors, members of the core, already propagated routing information among themselves.
Thus, the new router only needed to inform its neighbors about networks it could reach;
they updated their routing tables and propagated this new information further.

GGP is a true distance-vector protocol. The information routers exchange with
GGP consists of a set of pairs, (N , D), where N is an IP network address, and D is a
distance measured in hops. We say that a router using GGP advertises the networks it
can reach and its cost for reaching them.

GGP measures distance in router hops, where a router is defined to be zero hops
from directly connected networks, one hop from networks that are reachable through
one other router, and so on. Thus, the number of hops or the hop count along a path
from a given source to a given destination refers to the number of routers that a da-
tagram encounters along that path. It should be obvious that using hop counts to calcu-
late shortest paths does not always produce desirable results. For example, a path with
hop count 3 that crosses three LANs may be substantially faster than a path with hop
count 2 that crosses two slow speed serial lines. Many routers use artificially high hop
counts for routes across slow networks.

?Recall that although vendors adopted the term IP router, scientists originally used the term IP gateway.
$The IETF has declared GGP historic, which means that it is no longer recommended for use with

TCPAP.

Sec. 14.10 Distance Factoring 265

14.10 Distance Factoring

Like most routing protocols, GGP uses multiple message types, each with its own
format and purpose. A field in the message header contains a code that identifies the
specific message type; a receiver uses the code to decide how to process the message.
For example, before two routers can exchange routing information, they must establish
communication, and some message types are used for that purpose. The most funda-
mental message type in GGP is also fundamental to any distance-vector protocol: a
routing update which is used to exchange routing information.

Conceptually, a routing update contains a list of pairs, where each entry contains
an IP network address and the distance to that network. In practice, however, many
routing protocols rearrange the information to keep messages small. In particular, ob-
serve that few architectures consist of a linear arrangement of networks and routers. In-
stead, most are hierarchical, with multiple routers attached to each network. Conse-
quently, most distance values in an update are small numbers, and the same values tend
to be repeated frequently. To reduce message size, routing protocols often use a tech-
nique that was pioneered in GGP. Known as distance factoring, the technique avoids
sending copies of the same distance number. Instead, the list of pairs is sorted by dis-
tance, each distance value is represented once, and the networks reachable at that dis-
tance follow. The next chapter shows how other routing protocols factor information.

14.1 1 Reliability And Routing Protocols

Most routing protocols use connectionless transport. For example, GGP encapsu-
lates messages directly in IP datagrams; modem routing protocols usually encapsulate in
UDP?. Both IP and UDP offer the same semantics: messages can be lost, delayed, du-
plicated, corrupted, or delivered out of order. Thus, a routing protocol that uses them
must compensate for failures.

Routing protocols use several techniques to handle delivery problems. Checksums
are used to handle corruption. Loss is either handled by sofr state$ or through ack-
nowledgement and retransmission. For example, GGP uses an extended acknowledge-
ment scheme in which a receiver can return either a positive or negative acknowledge-
ment.

To handle delivery out of order and the corresponding reply that occurs when an
old message arrives, routing protocols often used sequence numbers. In GGP, for ex-
ample, each side chooses an initial number to use for sequencing when communication
begins. The other side must then acknowledge the sequence number. After the initial
exchange, each message contains the next number in the sequence, which allows the re-
ceiver to know whether the message arrived in order. In a later chapter, we will see an
example of a routing protocol that uses soft state infornlation.

tThere are exceptions - the next chapter discusses a protocol that uses TCP.
:Recall that soft state relies on timeouts to remove old infornlation rather than waiting for a message

from the source.

266 Routing: Cores, Peers, And Algorithms Chap. 14

14.1 2 Link-State (SPF) Routing

The main disadvantage of the distance-vector algorithm is that it does not scale
well. Besides the problem of slow response to change mentioned earlier, the algorithm
requires the exchange of large messages. Because each routing update contains an entry
for every possible network, message size is proportional to the total number of networks
in an internet. Furthermore, because a distance-vector protocol requires every router to
participate, the volume of information exchanged can be enormous.

The primary alternative to distance-vector algorithms is a class of algorithms
known as link state, link status, or Shortest Path Firstt (SPF). The SPF algorithm re-
quires each participating router to have complete topology information. The easiest
way to think of the topology information is to imagine that every router has a map that
shows all other routers and the networks to which they connect. In abstract terms, the
routers correspond to nodes in a graph and networks that connect routers correspond to
edges. There is an edge (link) between two nodes if and only if the corresponding
routers can communicate directly.

Instead of sending messages that contain lists of destinations, a router participating
in an SPF algorithm performs two tasks. First, it actively tests the status of all neighbor
routers. In terms of the graph, two routers are neighbors if they share a link; in network
terms, two neighbors connect to a common network. Second, it periodically propagates
the link status information to all other routers.

To test the status of a directly connected neighbor, a router periodically exchanges
short messages that ask whether the neighbor is alive and reachable. If the neighbor re-
plies, the link between them is said to be up. Otherwise, the link is said to be down$.
To inform all other routers, each router periodically broadcasts a message that lists the
status (state) of each of its links. A status message does not spec@ routes - it simply
reports whether communication is possible between pairs of routers. Protocol software
in the routers arranges to deliver a copy of each link status message to all participating
routers (if the underlying networks do not support broadcast, delivery is done by for-
warding individual copies of the message point-to-point).

Whenever a link status message arrives, a router uses the information to update its
map of the internet, by marking links up or down. Whenever link status changes, the
router recomputes routes by applying the well-known Dijkstra shortest path algorithm
to the resulting graph. Dijkstra's algorithm computes the shortest paths to all destina-
tions from a single source.

One of the chief advantages of SPF algorithms is that each router computes routes
independently using the same original status data; they do not depend on the computa-
tion of intermediate machines. Because link status messages propagate unchanged, it is
easy to debug problems. Because routers perform the route computation locally, it is
guaranteed to converge. Finally, because link status messages only carry information
about the direct connections from a single router, the size does not depend on the
number of networks in the internet. Thus, SPF algorithms scale better than distance-
vector algorithms.

?The name "shortest path first" is a misnomer because all routing algorithms seek shortest paths.
$In practice, to prevent oscillations between the up and down states, most protocols use a k-our-ofn rule

to test liveness, meaning that the link remains up until a signif~cant percentage of requests have no reply, and
then it remains down until a significant percentage of messages receive a reply.

Sec. 14.13 Summary

14.13 Summary

To ensure that all networks remain reachable with high reliability, an internet must
provide globally consistent routing. Hosts and most routers contain only partial routing
information; they depend on default routes to send datagram to distant destinations.
Originally, the global Internet solved the routing problem by using a core router archi-
tecture in which a set of core routers each contained complete information about all net-
works. Routers in the original Internet core system exchanged routing information
periodically, meaning that once a single core router learned about a route, all core
routers learned about it. To prevent routing loops, core routers were forbidden from us-
ing default routes.

A single, centrally managed core system works well for an internet architecture
built on a single backbone network. However, a core architecture does not suff~ce for
an internet that consists of a set of separately managed peer backbones that interconnect
at multiple places.

When routers exchange routing information they use one of two basic algorithms,
distance-vector or SPF. A distance-vector protocol, GGP, was originally used to pro-
pagate routing update information throughout the Internet core.

The chief disadvantage of distance-vector algorithms is that they perform a distri-
buted shortest path computation that may not converge if the status of network connec-
tions changes continually. Another disadvantage is that routing update messages grow
large as the number of networks increases.

The use of SPF routing predates the Internet. One of the earliest examples of an
SPF protocol comes from the ARPANET, which used a routing protocol internally to
establish and maintain routes among packet switches. The ARPANET algorithm was
used for a decade.

FOR FURTHER STUDY

The definition of the core router system and GGP protocol in this chapter comes
from Hinden and Sheltzer [RFC 8231. Braden and Postel [RFC 18121 contains further
specifications for Internet routers. Almquist [RFC 17161 summarizes later discussions.
Braun [RFC 10931 and Rekhter [RFC 10921 discuss routing in the NSFNET backbone.
Clark W 11021 and Braun [RFC 11041 both discuss policy-based routing. The next
two chapters present protocols used for propagating routing information between
separate sites and within a single site.

268

EXERCISES

Routing: Cores, Peers, And Algorithms Chap. 14

Suppose a router discovers it is about to route an IP datagram back over the same net-
work interface on which the datagram arrived. What should it do? Why?
After reading RFC 823 and RFC 1812, explain what an Internet core router (i.e., one
with complete routing information) should do in the situation described in the previous
question.
How can routers in a core system use default routes to send all illegal datagrams to a
specific machine?
Imagine students experimenting with a router that attaches a local area network to an in-
ternet that has a core routing system. The students want to advertise their network to a
core router, but if they accidentally advertise zero length routes to arbitrary networks,
traffic from the internet will be diverted to their router incorrectly. How can a core pro-
tect itself from illegal data while still accepting updates from such "untrusted" routers?

Which ICMP messages does a router generate?
Assume a router is using unreliable transport for delivery. How can the router determine
whether a designated neighbor is "up" or "down"? (Hint: consult RFC 823 to find out
how the original core system solved the problem.)
Suppose two routers each advertise the same cost, k, to reach a given network, N.
Describe the circumstances under which routing through one of them may take fewer to-
tal hops than routing through the other one.
How does a router know whether an incoming datagram carries a GGP message? An
OSPF message?
Consider the distance-vector update shown in Figure 14.7 carefully. For each item u p
dated in the table, give the reason why the router will perform the update.
Consider the use of sequence numbers to ensure that two routers do not become con-
fused when datagrams are duplicated, delayed, or delivered out of order. How should
initial sequence numbers be selected? Why?

Routing: Exterior Gate way
Protocols And Autonomous
Systems (BGP)

15.1 Introduction

The previous chapter introduces the idea of route propagation and examines one
protocol routers use to exchange routing information. This chapter extends our under-
standing of internet routing architectures. It discusses the concept of autonomous sys-
tems, and shows a protocol that a group of networks and routers operating under one
administrative authority uses to propagate routing information about its networks to oth-
er groups.

15.2 Adding Complexity To The Architectural Model

The original core routing system evolved at a time when the Internet had a single
wide area backbone as the previous chapter describes. Consequently, part of the
motivation for a core architecture was to provide connections between a network at each
site and the backbone. If an internet consists of only a single backbone plus a set of at-
tached local area networks, the core approach propagates all necessary routing informa-
tion correctly. Because all routers attach to the wide area backbone network, they can
exchange all necessary routing information directly. Each router knows the single local
network to which it attaches, and propagates that infom~ation to the other routers. Each
router learns about other destination networks from other routers.

270 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

It may seem that it would be possible to extend the core architecture to an arbitrary
size internet merely by adding more sites, each with a router connecting to the back-
bone. Unfortunately, the scheme does not scale - having all routers participate in a
single routing protocol only suffices for trivial size internets. There are three reasons.
First, even if each site consists of a single network, the scheme cannot accommodate an
arbitrary number of sites because each additional router generates routing traffic. If a
large set of routers attempt to communicate, the total bandwidth becomes overwhelm-
ing. Second, the scheme cannot accommodate multiple routers and networks at a given
site because only those routers that connect directly to the backbone network can com-
municate directly. Third, in a large internet, the networks and routers are not all
managed by a single entity, nor are shortest paths always used. Instead, because net-
works are owned and managed by independent groups, the groups may choose policies
that differ. A routing architecture must provide a way for each group to independently
control routing and access.

The consequences of limiting router interaction are significant. The idea provides
the motivation for much of the routing architecture used in the global Internet, and ex-
plains some of the mechanisms we will study. To summarize this important principle:

Although it is desirable for routers to exchange routing information, it
is impractical for all routers in an arbitrarily large internet to partici-
pate in a single routing update protocol.

15.3 Determining A Practical Limit On Group Size

The above statement leaves many questions open. For example, what size internet
is considered "large"? If only a limited set of routers can participate in an exchange of
routing information, what happens to routers that are excluded? Do they function
correctly? Can a router that is not participating ever forward a datagram to a router that
is participating? Can a participating router forward a datagram to a non-participating
router?

The answer to the question of size involves understanding the algorithm being used
and the capacity of the network that connects the routers as well as the details of the
routing protocol. There are two issues: delay and overhead. Delay is easy to under-
stand. For example, consider the maximum delay until all routers are informed about a
change when they use a distance-vector protocol. Each router must receive the new in-
formation, update its routing table, and then forward the information to its neighbors.
In an internet with N routers arranged in a linear topology, N steps are required. Thus,
N must be limited to guarantee rapid distribution of information.

The issue of overhead is also easy to understand. Because each router that partici-
pates in a routing protocol must send messages, a larger set of participating routers
means more routing traffic. Furthermore, if routing messages contain a list of possible
destinations, the size of each message grows as the number of routers and networks in-

Sec. 15.3 Determining A Practical Limit On Group Size 27 1

crease. To ensure that routing traffic remains a small percentage of the total traffic on
the underlying networks, the size of routing messages must be limited.

In fact, most network managers do not have sufficient information required to per-
form detailed analysis of the delay or overhead. Instead, they follow a simple heuristic
guideline:

It is safe to allow up to a dozen routers to participate in a single rout-
ing infonnation protocol across a wide area network; approximately
Fve times as many can safely participate across a set of local area
networks.

Of course, the rule only gives general advice and there are many exceptions. For
example, if the underlying networks have especially low delay and high capacity, the
number of participating routers can be larger. Similarly, if the underlying networks
have unusually low capacity or a high amount of traffic, the number of participating
routers must be smaller to avoid overloading the networks with routing traffic.

Because an internet is not static, it can be difficult to estimate how much traffic
routing protocols will generate or what percentage of the underlying bandwidth the rout-
ing tdEc will consume. For example, as the number of hosts on a network grows over
time, increases in the traffic generated consume more of the network capacity. In addi-
tion, increased traffk can arise from new applications. Therefore, network managers
cannot rely solely on the guideline above when choosing a routing architecture. Instead,
they usually implement a trafic monitoring scheme. In essence, a traffic monitor
listens passively to a network and records statistics about the traffic. In particular, a
monitor can compute both the network utilization (i.e., percentage of the underlying
bandwidth being used) and the percentage of packets carrying routing protocol mes-
sages. A manager can observe traffic trends by taking measurements over long periods
(e.g., weeks or months), and can use the output to determine whether too many routers
are participating in a single routing protocol.

15.4 A Fundamental Idea: Extra Hops

Although the number of routers that participate in a single routing protocol must be
limited, doing so has an important consequence because it means that some routers will
be outside the group. It might seem that an "outsider" could merely make a member
of the group a default. In the early Internet, the core system did indeed function as a
central routing mechanism to which noncore routers sent datagrams for delivery. How-
ever, researchers learned an important lesson: if a router outside of a group uses a
member of the group as a default route, routing will be suboptimal. More important,
one does not need a large number of routers or a wide area network - the problem can
occur whenever a nonparticipating router uses a participating router for delivery. To see
why, consider the example in Figure 15.1.

272 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

Backbone Network

participating participating
router router

nonparticipating
router

Figure 15.1 An architecture that can cause the extra hop problem. Nonop-
timal routing occurs when a nonparticipating router connected to
the backbone has a default route to a participating router.

In the figure, routers R, and R, connect to local area networks 1 and 2, respective-
ly. Because they participate in a routing protocol, they both know how to reach both
networks. Suppose nonparticipating router R3 chooses one of the participating routers,
say R,, as a default. That is, R3 sends R, all datagrams destined for networks to which it
has no direct connection. In particular, R3 sends datagram destined for network 2
across the backbone to its chosen participating router, R,, which must then forward
them back across the backbone to router R,. The optimal route, of course, requires R3
to transmit datagrams destined for network 2 directly to R,. Notice that the choice of
participating router makes no difference. Only destinations that lie beyond the chosen
router have optimal routes; all paths that go through other backbone routers require the
datagram to make a second, unnecessary trip across the backbone network. Also notice
that the participating routers cannot use ICMP redirect messages to inform R, that it has
nonoptimal routes because ICMP redirect messages can only be sent to the original
source and not to intermediate routers.

We call the routing anomaly illustrated in Figure 15.1 the extra hop problem. The
problem is insidious because everything appears to work correctly - datagrams do
reach their destination. However, because routing is not optimal, the system is extreme-
ly inefficient. Each datagram that takes an extra hop consumes resources on the inter-
mediate router as well as twice as much backbone bandwidth as it should. Solving the
problem requires us to change our view of architecture:

Treating a group of routers that participate in a routing update proto-
col as a default delivery system can introduce an extra hop for da-
tagram trafic; a mechanism is needed that allows nonparticipating
routers to learn routes from participating routers so they can choose
optimal routes.

Sec. 15.5 Hidden Networks

15.5 Hidden Networks

Before we examine mechanisms that allow a router outside a group to learn routes,
we need to understand another aspect of routing: hidden networks (i.e. networks that are
concealed from the view of routers in a group). Figure 15.2 shows an example that will
illustrate the concept.

Q- router participating

Local Net 1 (I)
Local Net 2

Figure 15.2 An example of multiple networks and routers with a single back-
bone connection. A mechanism is needed to pass reachability
information about additional local networks into the core system.

In the figure, a site has multiple local area networks with multiple routers connect-
ing them. Suppose the site has just installed local network 4 and has obtained an Inter-
net address for it (for now, imagine that the site obtained the address from another ISP).
Also assume that the routers R,, R,, and R, each have correct routes for all four of the
site's local networks as well as a default route that passes other traffic to the ISP's
router, R,. Hosts directly attached to local network 4 can communicate with one anoth-
er, and any computer on that network can route packets out to other Internet sites.
However, because router R, attaches only to local network 1, it does not know about lo-
cal network 4. We say that, from the viewpoint of the ISP's routing system, local net-
work 4 is hidden behind local network I. The important point is:

Because an individual organization can have an arbitrarily complex
set of networks interconnected by routers, no router from another or-
ganization can attach directly to all networks. A mechanism is need-
ed that allows nonparticipating routers to inform the other group
about hidden networks.

274 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

We now understand a fundamental aspect of routing: information must flow in two
directions. Routing information must flow from a group of participating routers to a
nonparticipating router, and a nonparticipating router must pass information about hid-
den networks to the group. Ideally, a single mechanism should solve both problems.
Building such a mechanism can be tricky. The subtle issues are responsibility and ca-
pability. Exactly where does responsibility for informing the group reside? If we de-
cide that one of the nonparticipating routers should inform the group, which one is ca-
pable of doing it? Look again at the example. Router R4 is the router most closely as-
sociated with local network 4, but it lies 2 hops away from the nearest core router.
Thus, R4 must depend on router R3 to route packets to network 4. The point is that R4
knows about local network 4 but cannot pass datagrams directly from R,. Router R, lies
one hop from the core and can guarantee to pass packets, but it does not directly attach
to local network 4. So, it seems incorrect to grant R3 responsibility for advertising net-
work 4. Solving this dilemma will require us to introduce a new concept. The next
sections discuss the concept and a protocol that implements it.

15.6 Autonomous System Concept

The puzzle over which router should communicate information to the group arises
because we have only considered the mechanics of an internet routing architecture and
not the administrative issues. Interconnections, like those in the example of Figure
15.2, that arise because an internet has a complex structure, should not be thought of as
multiple independent networks connected to an internet. Instead, the architecture should
be thought of as a single organization that has multiple networks under its control. Be-
cause the networks and routers fall under a single administrative authority, that authori-
ty can guarantee that internal routes remain consistent and viable. Furthermore, the ad-
ministrative authority can choose one of its routers to serve as the machine that will ap-
prise the outside world of networks within the organization. In the example from Fig-
ure 15.2, because routers R,, R,, and R4 fall under control of one administrative authori-
ty, that authority can arrange to have R3 advertise networks 2, 3, and 4 (R, already
knows about network 1 because it has a direct connection to it).

For purposes of routing, a group of networks and routers controlled by a single ad-
ministrative authority is called an autonomous system (AS). Routers within an auto-
nomous system are free to choose their own mechanisms for discovering, propagating,
validating, and checking the consistency of routes. Note that, under this definition, the
original Internet core routers formed an autonomous system. Each change in routing
protocols within the core autonomous system was made without affecting the routers in
other autonomous systems. In the previous chapter, we said that the original Internet
core system used GGP to communicate, and a later generation used SPREAD. Eventu-
ally, ISPs evolved their own backbone networks that use more recent protocols. The
next chapter reviews some of the protocols that autonomous systems use internally to
propagate routing information.

Sec. 15.7 From A Core To Independent Autonomous Systems

15.7 From A Core To Independent Autonomous Systems

Conceptually, the autonomous system idea was a straightforward and natural gen-
eralization of the original Internet architecture, depicted by Figure 15.2, with auto-
nomous systems replacing local area networks. Figure 15.3 illustrates the idea.

System 1

Figure 153 Architecture of an internet with autonomous systems at backbone
sites. Each autonomous system consists of multiple networks
and routers under a single administrative authority.

To make networks that are hidden inside autonomous systems reachable
throughout the Internet, each autonomous system must advertise its networks to other
autonomous systems. An advertisement can be sent to any autonomous system. In a
centralized, core architecture, however, it is crucial that each autonomous system pro-
pagate information to one of the routers in the core autonomous system.

It may seem that our definition of an autonomous system is vague, but in practice
the boundaries between autonomous systems must be precise to allow automated algo-
rithms to make routing decisions. For example, an autonomous system owned by a cor-
poration may choose not to route packets through an autonomous system owned by
another even though they connect directly. To make it possible for automated routing
algorithms to distinguish among autonomous systems, each is assigned an autonomous
system number by the central authority that is charged with assigning all Internet net-
work addresses. When routers in two autonomous systems exchange routing informa-
tion, the protocol arranges for messages to carry the autonomous system number of the
system each router represents.

We can summarize the ideas:

A large TCPLIP internet has additional structure to accommodate ad-
ministrative boundaries: each collection of networks and routers
managed by one administrative authority is considered to be a single
autonomous system that is free to choose an internal routing architec-
ture and protocols.

276 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

We said that an autonomous system needs to collect information about all its net-
works and designate one or more routers to pass the information to other autonomous
systems. The next sections presents the details of a protocol routers use to advertise
network reachability. Later sections return to architectural questions to discuss an im-
portant restriction the autonomous system architecture imposes on routing.

15.8 An Exterior Gateway Protocol

Computer scientists use the term Exterior Gateway Protocol (EGP)? to denote any
protocol used to pass routing information between two autonomous systems. Currently
a single exterior protocol is used in most TCPJIP internets. Known as the Border Gate-
way Protocol (BGP), it has evolved through four (quite different) versions. Each ver-
sion is numbered, which gives rise to the formal name of the current version: BGP-4.
Throughout this text, the term BGP will refer to BGP-4.

When a pair of autonomous systems agree to exchange routing information, each
must designate a router* that will speak BGP on its behalf; the two routers are said to
become BGP peers of one another. Because a router speaking BGP must communicate
with a peer in another autonomous system, it makes sense to select a machine that is
near the "edge" of the autonomous system. Hence, BGP terminology calls the
machine a border gateway or border router. Figure 15.4 illustrates the idea.

Figure 15.4 Conceptual illustration of two routers, R, and R,, using BGP to
advertise networks in their autonomous systems after collecting
the information from other routers internally. An organization
using BGP usually chooses a router that is close to the outer
"edge" of the autonomous system.

In the figure, router R, gathers information about networks in autonomous system I
and reports that information to router R2 using BGP, while router R2 reports information
from autonomous system 2.

?Originally, the term EGP referred to a specific protocol that was used for communication with the Inter-
net core; the name was coined when the term gateway was used instead of router.
. $Although the protocol allows an arbitrary computer to be used, most autonomous systems run BGP on a
router; all the examples in this text will assume BGP is running on a router.

Sec. 15.9 BGP Characteristics 277

15.9 BGP Characteristics

BGP is unusual in several ways. Most important, BGP is neither a pure distance-
vector protocol nor a pure link state protocol. It can be characterized by the following:

Inter-Autonomous System Communication. Because BGP is designed as an exteri-
or gateway protocol, its primary role is to allow one autonomous system to comrnuni-
cate with another.

Coordination Among Multiple BGP Speakers. If an autonomous system has multi-
ple routers each communicating with a peer in an outside autonomous system, BGP can
be used to coordinate among routers in the set to guarantee that they all propagate con-
sistent information.

Propagation Of Reachability Information. BGP allows an autonomous system to
advertise destinations that are reachable either in or through it, and to learn such infor-
mation from another autonomous system.

Next-Hop Paradigm. Like distance-vector routing protocols, BGP supplies next
hop information for each destination.

Policy Support. Unlike most distance-vector protocols that advertise exactly the
routes in the local routing table, BGP can implement policies that the local administra-
tor chooses. In particular, a router running BGP can be configured to distinguish
between the set of destinations reachable by computers inside its autonomous system
and the set of destinations advertised to other autonomous systems.

Reliable Transport. BGP is unusual among protocols that pass routing information
because it assumes reliable transport. Thus, BGP uses TCP for all communication.

Path Information. In addition to specifying destinations that can be reached and a
next hop for each, BGP advertisements include path information that allows a receiver
to learn a series of autonomous systems along a path to the destination.

Incremental Updates. To conserve network bandwidth, BGP does not pass full in-
formation in each update message. Instead, full information is exchanged once, and
then successive messages cany incremental changes called deltas.

Support For Classless Addressing. BGP supports CIDR addresses. That is, rather
than expecting addresses to be self-identifying, the protocol provides a way to send a
mask along with each address.

Route Aggregation. BGP conserves network bandwidth by allowing a sender to
aggregate route information and send a single entry to represent multiple, related desti-
nations.

Authentication. BGP allows a receiver to authenticate messages (i.e., verify the
identity of a sender).

278 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

15.10 BGP Functionality And Message Types

BGP peers perform three basic functions. The first function consists of initial peer
acquisition and authentication. The two peers establish a TCP connection and perform
a message exchange that guarantees both sides have agreed to communicate. The
second function forms the primary focus of the protocol - each side sends positive or
negative reachability information. That is, a sender can advertise that one or more des-
tinations are reachable by giving a next hop for each, or the sender can declare that one
or more previously advertised destinations are no longer reachable. The third function
provides ongoing verification that the peers and the network connections between them
are functioning correctly.

To handle the three functions described above, BGP defines four basic message
types. Figure 15.5 contains a summary.

Type Code Message Type Description
1 OPEN Initialize communication
2 UPDATE Advertise or withdraw routes
3 NOTIFICATION Response to an incorrect message
4 KEEPALIVE Actively test peer connectivity

Figure 155 The four basic message types in BGP-4.

15.1 1 BGP Message Header

Each BGP message begins with a fmed header that identifies the message type.
Figure 15.6 illustrates the header format.

0 16 24 31

- -

- MARKER
- -

LENGTH I TYPE

Figure 15.6 The format of the header that precedes every BGP message.

The 16-octet UARKER field contains a value that both sides agree to use to mark
the beginning of a message. The Zoctet LENGTH field specifies the total message
length measured in octets. The minimum message size is 19 octets (for a message type
that has no data following the header), and the maximum allowable length is 4096 oc-

Sec. 15.1 1 BGP Message Header 279

tets. Finally, the 1-octet TYPE field contains one of the four values for the message
type listed in Figure 15.5.

The MARKER may seem unusual. In the initial message, the marker consists of all
1s; if the peers agree to use an authentication mechanism, the marker can contain au-
thentication information. In any case, both sides must agree on the value so it can be
used for synchronization. To understand why synchronization is necessary, recall that
all BGP messages are exchanged across a stream transport (i.e., TCP), which does not
identify the boundary between one message and the next. In such an environment, a
simple error on either side can have dramatic consequences. In particular, if either the
sender or receiver miscounts the octets in a message, a synchronization error will occur.
More important, because the transport protocol does not specify message boundaries,
the transport protocol will not alert the receiver to the error. Thus, to ensure that the
sender and receiver remain synchronized, BGP places a well-known sequence at the be-
ginning of each message, and requires a receiver to verify that the value is intact before
processing the message.

15.12 BGP OPEN Message

As soon as two BGP peers establish a TCP connection, they each send an OPEN
message to declare their autonomous system number and establish other operating
parameters. In addition to the standard header, an OPEN message contains a value for a
hold timer that is used to specify the maximum number of seconds which may elapse
between the receipt of two successive messages. Figure 15.7 illustrates the format.

0 8 16

1 VERSION I
AUTONOMOUS SYSTEMS NUM

HOLD TIME

I BGP IDENTIFIER I
PARM. LEN I

7

Optional Parameters (variable)

Figure 15.7 The forniat of the BGP OPEN message that is sent at startup.
These octets follow the standard message header.

Most fields are straightforward. The VERSION field identifies the protocol version
used (this format is for version 4). Recall that each autonomous system is assigned a
unique number. Field AUTONOMOUS SYSTEMS NUM gives the autonomous system

280 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

number of the sender's system. The HOLD TIME field specifies a maximum time that
the receiver should wait for a message from the sender. The receiver is required to im-
plement a timer using this value. The timer is reset each time a message arrives; if the
timer expires, the receiver assumes the sender is no longer available (and stops forward-
ing datagrams along routes learned from the sender).

Field BGP IDENTIFIER contains a 32-bit integer value that uniquely identifies the
sender. If a machine has multiple peers (e.g., perhaps in multiple autonomous systems),
the machine must use the same identifier in all communication. The protocol specifies
that the identifier is an IP address. Thus, a router must choose one of its IP addresses
to use with all BGP peers.

The last field of an OPEN message is optional. If present, field PARM. LEN speci-
fies the length measured in octets, and the field labeled Optional Parameters contains a
list of parameters. It has been labeled variable to indicate that the size varies from mes-
sage to message. When parameters are present, each parameter in the list is preceded
by a 2-octet header, with the first octet specifying the type of the parameter, and the
second octet specifying the length. If there are no parameters, the value of PARM. LEN
is zero and the message ends with no further data.

Only one parameter type is defined in the original standard: type I is reserved for
authentication. The authentication parameter begins with a header that identifies the
type of authentication followed by data appropriate for the type. The motivation for
making authentication a parameter arises from a desire to allow BGP peers to choose an
authentication mechanism without making the choice part of the BGP standard.

When it accepts an incoming OPEN message, a machine speaking BGP responds
by sending a KEEPALNE message (discussed below). Each side must send an OPEN
and receive a KEEPALNE message before they can exchange routing information.
Thus, a KEEPALNE message functions as the acknowledgement for an OPEN.

15.1 3 BGP UPDATE Message

Once BGP peers have created a TCP connection, sent OPEN messages, and ack-
nowledged them, the peers use UPDATE messages to advertise new destinations that
are reachable or to withdraw previous advertisements when a destination has become
unreachable. Figure 15.8 illustrates the format of UPDATE messages.

As the figure shows, each UPDATE message is divided into two parts: the first
lists previously advertised destinations that are being withdrawn, and the second speci-
fies new destinations being advertised. As usual, fields labeled variable do not have a
fixed size; if the information is not needed for a particular UPDATE, the field can be
omitted from the message. Field WITHDRAWN LEN is a 2-octet field that specifies the
size of the Withdrawn Destinations field that follows. If no destinations are being with-
drawn, WlTHDRAWN LEN contains zero. Similarly, the PATH LEN field specifies the
size of the Path Attributes that are associated with new destinations being advertised. If
there are no new destinations, the PATH LEN field contains zero.

Sec. 15.13 BGP UPDATE Message 28 1

0 16 31

WITHDRAWN LEN
1

I Withdrawn Destinations (variable) I
I

PATH LEN
I

Path Attributes (variable)

Destination Networks (variable)

Figure 15.8 BGP UPDATE message format in which variable size areas of
the message may be omitted. These octets follow the standard
message header.

15.14 Compressed Mask-Address Pairs

Both the Withdrawn Destinations and the Destination Networks fields contain a list
of IP network addresses. To accommodate classless addressing, BGP must send an ad-
dress mask with each IP address. Instead of sending an address and a mask as separate
32-bit quantities, however, BGP uses a compressed representation to reduce message
size. Figure 15.9 illustrates the format:

LEN

IP Address (1-4 octets) I
Figure 15.9 The compressed format BGP uses to store a destination address

and the associated mask.

The figure shows that BGP does not actually send a bit mask. Instead, it encodes
information about the mask into a single octet that precedes each address. The mask
octet contains a binary integer that specifies the number of bits in the mask (mask bits
are assumed to be contiguous). The address that follows the mask octet is also
compressed - only those octets covered by the mask are included. Thus, only one ad-
dress octet follows a mask value of 8 or less, two follow a mask value of 9 to 16, three
follow a mask value of 17 to 24, and four follow a mask value of 25 to 32. Interesting-
ly, the standard also allows a mask octet to contain zero (in which case no address oc-
tets follow it). A zero length is useful because it corresponds to a default route.

282 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

15.15 BGP Path Attributes

We said that BGP is not a pure distance-vector protocol because it advertises more
than a next hop. The additional information is contained in the Path Attributes field of
an update message. A sender can use the path attributes to specify: a next hop for the
advertised destinations, a list of autonomous systems along the path to the destinations,
and whether the path information was learned from another autonomous system or
derived from within the sender's autonomous system.

It is important to note that the path attributes are factored to reduce the size of the
UPDATE message, meaning that the attributes apply to all destinations advertised in the
message. Thus, if different attributes apply to some destinations, they must be adver-
tised in a separate UPDATE message.

Path attributes are important in BGP for three reasons. First, path information al-
lows a receiver to check for routing loops. The sender can specify an exact path
through all autonomous systems to the destination. If any autonomous system appears
more than once on the list, there must be a routing loop. Second, path information al-
lows a receiver to implement policy constraints. For example, a receiver can examine
paths to verify that they do not pass through untrusted autonomous systems (e.g., a
competitor's autonomous system). Third, path information allows a receiver to know
the source of all routes. In addition to allowing a sender to specify whether the infor-
mation came from inside its autonomous system or from another system, the path attri-
butes allow the sender to declare whether the information was collected with an exterior
gateway protocol such as BGP or an interior gateway protocol?. Thus, each receiver
can decide whether to accept or reject routes that originate in autonomous systems
beyond the peer's.

Conceptually, the Path Attributes field contains a list of items, where each item
consists of a triple:

(type, length, value)

Instead of fixed-size fields, the designers chose a flexible encoding scheme that minim-
izes the space each item occupies. As specified in Figure 15.10, the type information
always requires two octets, but other fields vary in size.

tThe next chapter describes interior gateway protocols.

Sec. 15.15 BGP Path Attributes

0 1 2 3 4 5 6 7 8 15

Flag Bits I Type Code I

Flaa Bits Descri~tion

0 0 for required attribute, 1 if optional
1 1 for transitive, 0 for nontransitive
2 0 for complete, 1 for partial
3 0 if length field is one octet; 1 if two

5-7 unused (must be zero)

Figure 15.10 Bits of the 2-octet type field that appears before each BGP attri-
bute path item and the meaning of each.

For each item in the Path Attributes list, a length field follows the 2-octet type
field, and may be either one or two octets long. As the figure shows, flag bit 3 speci-
fies the size of the length field. A receiver uses the type field to determine the size of
the length field, and then uses the contents of the length field to determine the size of
the value field.

Each item in the Path attributes field can have one of seven possible type codes.
Figure 15.1 1 summarizes the possibilities.

Type Code
1
2
3
4
5
6
7

Meaning
Specify origin of the path information
List of autonomous systems on path to destination
Next hop to use for destination
Discriminator used for multiple AS exit points
Preference used within an autonomous system
Indication that routes have been aggregated
ID of autonomous system that aggregated routes

Figure 15.11 The BGP attribute type codes and the meaning of each.

15.16 BGP KEEPALIVE Message

Two BGP peers periodically exchange KEEPALNE messages to test network con-
nectivity and to verify that both peers continue to function. A KEEPALNE message
consists of the standard message header with no additional data. Thus, the total mes-
sage size is 19 octets (the minimum BGP message size).

There are two reasons why BGP uses keepalive messages. First, periodic message
exchange is needed because BGP uses TCP for transport, and TCP does not include a
mechanism to continually test whether a connection endpoint is reachable. However,

284 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

TCP does report an error to an application if it cannot deliver data the application sends.
Thus, as long as both sides periodically send a keepalive, they will know if the TCP
connection fails. Second, keepalives conserve bandwidth compared to other messages.
Many early routing protocols used periodic exchange of routing information to test con-
nectivity. However, because routing information changes infrequently, the message
content seldom changes. Furthermore, because routing messages are usually large,
resending the same message wastes network bandwidth needlessly. To avoid the ineffi-
ciency, BGP separates the functionality of route update from connectivity testing, allow-
ing BGP to send small KEEPALNE messages frequently, and reserving larger UPDATE
messages for situations when reachability information changes.

Recall that a BGP speaker specifies a hoM timer when it opens a connection; the
hold timer specifies a maximum time that BGP is to wait without receiving a message.
As a special case, the hold timer can be zero to specify that no KEEPAWE messages
are used. If the hold timer is greater than zero, the standard recommends setting the
KEEPAWE interval to one third of the hold timer. In no case can a BGP speaker
make the KEEPALNE interval less than one second (which agrees with the requirement
that a nonzero hold timer cannot be less than three seconds).

15.1 7 Information From The Receiver's Perspective

Unlike most protocols that propagate routing information, an Exterior Gateway
Protocol does not merely report the set of destinations it can reach. Instead, exterior
protocols must provide information that is correct from the outsider's perspective.
There are two issues: policies and optimal routes. The policy issue is obvious: a router
inside an autonomous system may be allowed to reach a given destination, while outsid-
ers are prohibited from reaching the same destination. The routing issue means that a
router must advertise a next hop that is optimal from the outsider's perspective. Figure
15.12 illustrates the idea.

Sec. 15.17 Information From The Receiver's Perspective

To peer in other Autonomous System t

Figure 15.12 Example of an autonomous system. Router R, runs BGP and
reports information from the outsider's perspective, not from its
own routing table.

In the figure, router R, has been designated to speak BGP on behalf of the auto-
nomous system. It must report reachability to networks I through 4. However, when
giving a next hop, it reports network 1 as reachable through router R,, networks 3 and 4
as reachable through router R,, and network 2 as reachable through R,.

15.18 The Key Restriction Of Exterior Gateway Protocols

We have already seen that because exterior protocols follow policy restrictions, the
networks they advertise may be a subset of the networks they can reach. However,
there is a more fundamental limitation imposed on exterior routing:

An exterior gateway protocol does not commz4nicate or interpret dis-
tance metrics, even if metrics are available.

Protocols like BGP do allow a speaker to declare that a destination has become un-
reachable or to give a list of autonomous systems on the path to the destination, but

286 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

they cannot transmit or compare the cost of two routes unless the routes come from
within the same autonomous system. In essence, BGP can only specify whether a path
exists to a given destination; it cannot transmit or compute the shorter of two paths.

We can see now why BGP is careful to label the origin of information it sends.
The essential observation is this: when a router receives advertisements for a given des-
tination from peers in two different autonomous systems, it cannot compare the costs.
Thus, advertising reachability with BGP is equivalent to saying, "My autonomous sys-
tem provides a path to this network." There is no way for the router to say, "My auto-
nomous system provides a better path to this network than another autonomous sys-
tem."

Looking at interpretation of distances allows us to realize that BGP cannot be used
as a routing algorithm. In particular, even if a router learns about two paths to the same
network, it cannot know which path is shorter because it cannot know the cost of routes
across intermediate autonomous systems. For example, consider a router that uses BGP
to communicate with two peers in autonomous systems p and f. I f the peer in auto-
nomous system p advertises a path to a given destination through autonomous systems
p, q, and r, and the peer in f advertises a path to the same destination through auto-
nomous systems f and g, the receiver has no way of comparing the lengths of the two
paths. The path through three autonomous systems might involve one local area net-
work in each system, while the path through two autonomous systems might require
several hops in each. Because a receiver does not obtain full routing information, it
cannot compare.

Because it does not include a distance metric, an autonomous system must be care-
ful to advertise only routes that traffic should follow. Technically, we say that an Exte-
rior Gateway Protocol is a reachability protocol rather than a routing protocol. We can
summarize:

Because an Exterior Gateway Protocol like BGP only propagates
reachability information, a receiver can implement policy constraints,
but cannot choose a least cost route. A sender must only advertise
paths that trafic should follow.

The key point here is that any internet which uses BGP to provide exterior routing in-
formation must either rely on policies or assume that each autonomous system crossing
is equally expensive. Although it may seem innocuous, the restriction has some surpris-
ing consequences:

1. Although BGP can advertise multiple paths to a given network, it
does not provide for the simultaneous use of multiple paths. That is,
at any given instant, all traffic routed from a computer in one auto-
nomous system to a network in another will traverse one path, even
if multiple physical connections are present. Also note that an out-
side autonomous system will only use one return path even if the

Sec. 15.18 The Key Restriction Of Exterior Gateway Protocols

source system divides outgoing traffic among two or more paths. As
a result, delay and throughput between a pair of machines can be
asymmetric, making an internet difficult to monitor or debug.

2. BGP does not support load sharing on routers between arbitrary auto-
nomous systems. If two autonomous systems have multiple routers
connecting them, one would like to balance the traffic equally among
all routers. BGP allows autonomous systems to divide the load by
network (e.g., to partition themselves into multiple subsets and have
multiple routers advertise partitions), but it does not support more
general load sharing.

3. As a special case of point 2, BGP alone is inadequate for optimal
routing in an architecture that has two or more wide area networks
interconnected at multiple points. Instead, managers must manually
configure which networks are advertised by each exterior router.

4. To have rationalized routing, all autonomous systems in an internet
must agree on a consistent scheme for advertising reachability. That
is, BGP alone will not guarantee global consistency.

15.1 9 The Internet Routing Arbiter System

For an internet to operate correctly, routing information must be globally con-
sistent. Individual protocols such as BGP that handle the exchange between a pair of
routers, do not guarantee global consistency. Thus, a mechanism is needed to rational-
ize routing information globally. In the original Internet routing architecture, the core
system guaranteed globally consistent routing information because at any time the core
had exactly one path to each destination. When the core system was removed, a new
mechanism was created to rationalize routing information.

Known as the routing arbiter (RA) system, the new mechanism consists of a repli-
cated, authenticated database of reachability information. Updates to the database are
authenticated to prevent an arbitrary router from advertising a path to a given destina-
tion. In general, only an autonomous system that owns a given network is allowed to
advertise reachability. The need for such authentication became obvious in the early
core system, which allowed any router to advertise reachability to any network. On
several occasions, routing errors occurred when a router inadvertently advertised in-
correct reachability infornlation. The core accepted the information and changed routes,
causing some networks to become unreachable.

To understand how other routers access the routing arbiter database, consider the
current Internet architecture. We said that major ISPs interconnect at Network Access
Points (NAPS). Thus, in terms of routing, a NAP represents the boundary between mul-
tiple autonomous systems. Although it would be possible to use BGP among each pair
of ISPs at the NAP, doing so is both inefficient and prone to inconsistencies. Instead,
each NAP has a computer called a route server (RS) that maintains a copy of the rout-

288 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

ing arbiter database and runs BGP. Each ISP designates one of its routers near a NAP
to be a BGP border router. The designated border router maintains a connection to the
route server over which it uses BGP. The ISP advertises reachability to its networks
and the networks of its customers, and learns about networks in other ISPs.

One of the chief advantages of using BGP for route server access lies in its ability
to carry negative information as well as positive information. When a destination be-
comes unreachable, the ISP informs the route server, which then makes the information
available to other ISPs. Spreading negative information reduces unnecessary traffic be-
cause datagram to unreachable destinations can be discarded before they transit from
one ISP to anothert.

15.20 BGP NOTIFICATION Message

In addition to the OPEN and UPDATE message types described above, BGP sup-
ports a NOTIFICATION message type used for control or when an error occurs. Errors
are permanent - once it detects a problem, BGP sends a notification message and then
closes the TCP connection. Figure 15.13 illustrates the message format.

ERR CODE I ERR SUBCODE (DATA

Figure 15.13 BGP NOTIF'ICATION message format. These octets follow the
standard message header.

The 8-bit field labeled ERR CODE specifies one of the possible reasons listed in
Figure 15.14.

ERR CODE Meaning
1 Error in message header
2 Error in OPEN message
3 Error in UPDATE message
4 Hold timer expired
5 Finite state machine error
6 Cease (terminate connection)

Figure 15.14 The possible values of the ERR CODE field in a BGP NOTIFI-
CATION message.

tLike the core system it replaced, the routing arbiter system does not include default routes. As a conse-
quence, it is sometimes called a default-free zone.

Sec. 15.20 BGP NOTIFICATION Message 289

For each possible ERR CODE, the ERR SUBCODE field contains a further expla-
nation. Figure 15.15 lists the possible values.

Subcodes For Message Header Errors

1 Connection not synchronized
2 lncorrect message length
3 Incorrect message type

Subcodes For OPEN Message Errors

1 Version number unsupported
2 Peer AS invalid
3 BGP identifier invalid
4 Unsupported optional parameter
5 Authentication failure
6 Hold time unacceptable

Subcodes For UPDATE Message Errors

-

Attribute list malformed
Unrecognized attribute
Missing attribute
Attribute flags error
Attribute length error
Invalid ORIGIN attribute
AS routing loop
Next hop invalid
Error in optional attribute
Invalid network field
Malformed AS path

Figure 15.15 The meaning of the ERR SUBCODE field in a BGP NOTIFI-
CATION message.

15.21 Decentralization Of Internet Architecture

Two important architecture questions remain unanswered. The first focuses on
centralization: how can the Internet architecture be modified to remove dependence on a
(centralized) router system? The second concerns levels of trust: can an internet archi-
tecture be expanded to allow closer cooperation (trust) between some autonomous sys-
tems than among others?

290 Routing: Exterior Gateway Protocols And Autonomous Systems (BGP) Chap. 15

Removing all dependence on a central system and adding trust are not easy.
Although TCP/IP architectures continue to evolve, centralized roots are evident in many
protocols. Without some centralization, each ISP would need to exchange reachability
information with all ISPs to which it attached. Consequently, the volume of routing
traffic would be significantly higher than with a routing arbiter scheme. Finally, cen-
tralization fills an important role in rationalizing routes and guaranteeing trust - in ad-
dition to storing the reachability database, the routing arbiter system guarantees global
consistency and provides a trusted source of information.

15.22 Summary

Routers must be partitioned into groups or the volume of routing traffic would be
intolerable. The connected Internet is composed of a set of autonomous systems, where
each autonomous system consists of routers and networks under one administrative au-
thority. An autonomous system uses an Exterior Gateway Protocol to advertise routes
to other autonomous systems. Specifically, an autonomous system must advertise
reachability of its networks to another system before its networks are reachable from
sources within the other system.

The Border Gateway Protocol, BGP, is the most widely used Exterior Gateway
Protocol. We saw that BGP contains three message types that are used to initiate com-
munication (OPEN), send reachability information (UPDATE) and report an error con-
dition (NOTIFICATION). Each message starts with a standard header that includes
(optional) authentication information. BGP uses TCP for communication, but has a
keepalive mechanism to ensure that peers remain in communication.

In the global Internet, each ISP is assigned to a separate autonomous system, and
the main boundary among autonomous systems occurs at NAPS, where multiple ISPs
interconnect. Instead of requiring pairs of ISPs to use BGP to exchange routing infor-
mation, each NAP includes a route server. An ISP uses BGP to communicate with the
route server, both to advertise reachability to its networks and its customers' networks
as well as to learn about networks in other ISPs.

FOR FURTHER STUDY

Background on early Internet routing can be found in [RFCs 827, 888, 904, and
9751. Rekhter and Li [RFC 17711 describes version 4 of the Border Gateway Protocol
(BGP-4). BGP has been through three substantial revisions; earlier versions appear in
[RFCs 1163, 1267, and 16541. Traina [RFC 17731 reports experience with BGP-4, and
Traina [RFC 17741 analyzes the volume of routing traffic generated. Finally, Villam-
izar et. al. {RFC 24391 considers the problem of route flapping.

Exercises

EXERCISES

If your site runs an Exterior Gateway Protocol such as BGP, how many routes does
NSFNET advertise?

Some implementations of BGP use a "hold down" mechanism that causes the protocol
to delay accepting an OPEN from a peer for a fixed time following the receipt of a cease
request message from that neighbor. Find out what problem a hold down helps solve.

For the networks in Figure 15.2, which router(s) should run BGP? Why?

The fornlal specification of BGP includes a finite state machine that explains how BGP
operates. Draw a diagram of the state machine and label transitions.

What happens if a router in an autonomous system sends BGP routing update messages
to a router in another autonomous system, claiming to have reachability for every possi-
ble internet destination?

Can two autonomous systems establish a routing loop by sending BGP update messages
to one another? Why or why not?

Should a router that uses BGP to advertise routes treat the set of routes advertised dif-
ferently than the set of routes in the local routing table? For example, should a router
ever advertise reachability if it has not installed a route to that network in its routing
table? Why or why not? Hint: read the RFC.
With regard to the przvious question, examine the BGP-4 specification carefully. Is it
legal to advertise reachability to a destination that is not listed in the local routing table?

If you work for a large corporation, find out whether it includes more than one auto-
nomous system. If so, how do they exchange routing information?

What is the chief advantage of dividing a large, multi-national corporation into multiple
autonomous systems? What is the chief disadvantage?

Corporations A and B use BGP to exchange routing idomlation. To keep computers in
B from reaching machines on one of its networks, N, the network administrator at cor-
poration A configures BGP to omit N from advertisements sent to B. Is network N
secure? Why or why not?

Because BGP uses a reliable transport protocol, KEEPALIVE messages cannot be lost.
Does it make sense to specify a keepalive interval as one-third of the hold timer value?
Why or why not?

Consult the RFCs for details of the Path Anributes field. What is the minimum size of a
BGP UPDATE message?

Routing: In An Autonomous
System (RIP, OSPF,
HELLO)

16.1 Introduction

The previous chapter introduces the autonomous system concept and examines
BGP, an Exterior Gateway Protocol that a router uses to advertise networks within its
system to other autonomous systems. This chapter completes our overview of internet
routing by examining how a router in an autonomous system learns about other net-
works within its autonomous system.

16.2 Static Vs. Dynamic Interior Routes

Two routers within an autonomous system are said to be interior to one another.
For example, two routers on a university campus are considered interior to one another
as long as machines on the campus are collected into a single autonomous system.

How can routers in an autonomous system leam about networks within the auto-
nomous system? In small, slowly changing internets, managers can establish and modi-
fy routes by hand. The administrator keeps a table of networks and updates the table
whenever a new network is added to, or deleted from, the autonomous system. For ex-
ample, consider the small corporate internet shown in Figure 16.1.

Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

Net 1

Net 3

Net 4 Net 5

Figure 16.1 An example of a small internet consisting of 5 Ethernets and 4
routers at a single site. Only one possible route exists between
any two hosts in this internet.

Routing for the internet in the figure is trivial because only one path exists between
any two points. The manager can manually configure routes in all hosts and routers. If
the internet changes (e.g., a new network is added), the manager must reconfigure the
routes in all machines.

The disadvantages of a manual system are obvious: manual systems cannot accom-
modate rapid growth or rapid change. In large, rapidly changing environments like the
global Internet, humans simply cannot respond to changes fast enough to handle prob-
lems; automated methods must be used. Automated methods can also help improve re-
liability and response to failure in small internets that have alternate routes. To see
how, consider what happens if we add one additional router to the internet in Figure
16.1, producing the internet shown in Figure 16.2.

In internet architectures that have multiple physical paths, managers usually choose
one to be the primary path. If the routers along the primary path fail, routes must be
changed to send traffic along an alternate path. Changing routes manually is both time
consuming and error-prone. Thus, even in small internets, an automated system should
be used to change routes quickly and reliably.

Sec. 16.2 Static Vs. Dynamic Interior Routes

Net 1

I
Net 2 7'

Net 4 Net 5

Figure 16.2 The addition of router R, introduces an alternate path between
networks 2 and 3. Routing software can quickly adapt to a
failure and automatically switch routes to the alternate path.

To automate the task of keeping network reachability information accurate, interior
routers usually communicate with one another, exchanging either network reachability
data or network routing information from which reachability can be deduced. Once the
reachability information for an entire autonomous system has been assembled, one of
the routers in the system can advertise it to other autonomous systems using an Exterior
Gateway Protocol.

Unlike exterior router communication, for which BGP provides a widely accepted
standard, no single protocol has emerged for use within an autonomous system. Part of
the reason for diversity comes from the varied topologies and technologies used in auto-
nomous systems. Another part of the reason stems from the tradeoffs between simplici-
ty and functionality - protocols that are easy to install and configure do not provide
sophisticated functionality. As a result, a handful of protocols have become popular.
Most small autonomous systems choose a single protocol, and use it exclusively to pro-
pagate routing information internally. Larger autonomous systems often choose a small
set.

Because there is no single standard, we use the term Interior Gateway Protocol
(IGP) as a generic description that refers to any algorithm that interior routers use when
they exchange network reachability and routing information. For example, the last gen-
eration of core routers used a protocol named SPREAD as its Interior Gateway Protocol.
Some autonomous systems use BGP as their IGP, although this seldom makes sense for
small autonomous systems that span local area networks with broadcast capability.

Figure 16.3 illustrates two autonomous systems, each using an IGP to propagate
routing information among its interior routers.

Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

Figure 16.3 Conceptual view of two autonomous systems each using its own
IGP internally, but using BGP to communicate between an exte-
rior router and the other system.

In the figure, IGP, refers to the interior router protocol used within autonomous
system 1, and IGP, refers to the protocol used within autonomous system 2. The figure
also illustrates an important idea:

A single router may use two dzfferent routing protocols simultaneous-
ly, one for communication outside its autonomous system and another
for communication within its autonomous system.

In particular, routers that run BGP to advertise reachability usually also need to run an
IGP to obtain information from within their autonomous system.

16.3 Routing Information Protocol (RIP)

16.3.1 History of RIP

One of the most widely used IGPs is the Routing Information Protocol (RIP), also
known by the name of a program that implements it, routedt. The routed software was
originally designed at the University of California at Berkeley to provide consistent
routing and reachability information among machines on their local networks. It relies
on physical network broadcast to make routing exchanges quickly. It was not designed
to be used on large, wide area networks (although vendors now sell versions of RIP
adapted for use on WANs).

Based on earlier internetworking research done at Xerox Corporation's Palo Alto
Research Center (PARC), routed implements a protocol derived from the Xerox NS
Routing Information Protocol (RIP), but generalizes it to cover multiple families of net-
works.

?The name comes from the UNIX convention of attaching "d" to the names of daemon processes; it is
a " -,....- A,,

Sec. 16.3 Routing Information Protocol (RIP) 297

Despite minor improvements over its predecessors, the popularity of RIP as an IGP
does not arise from its technical merits alone. Instead, it is the result of Berkeley distri-
buting routed software along with their popular 4BSD UNIX systems. Thus, many
TCPIIP sites adopted and installed routed, and started using RIP without even consider-
ing its technical merits or limitations. Once installed and running, it became the basis
for local routing, and research groups adopted it for larger networks.

Perhaps the most startling fact about RTP is that it was built and widely adopted
before a fornlal standard was written. Most implementations were derived from the
Berkeley code, with interoperability among them limited by the programmer's under-
standing of undocumented details and subtleties. As new versions appeared, more prob-
lems arose. An RFC standard appeared in June 1988, and made it possible for vendors
to ensure interoperability.

16.3.2 RIP Operation

The underlying RIP protocol is a straightforward implementation of distance-vector
routing for local networks. It partitions participants into active and passive (i.e., silent)
machines. Active participants advertise their routes to others; passive participants listen
to RIP messages and use them to update their routing table, but do not advertise. Only
a router can run RIP in active mode; a host must use passive mode.

A router running RIP in active mode broadcasts a routing update message every 30
seconds. The update contains information taken from the router's current routing data-
base. Each update contains a set of pairs, where each pair contains an IP network ad-
dress and an integer distance to that network. RIP uses a hop count metric to measure
distances. In the RIP metric, a router is defined to be one hop from a directly connect-
ed network?, two hops from a network that is reachable through one other router, and
so on. Thus, the number of hops or the hop count along a path from a given source to a
given destination refers to the number of routers that a datagram encounters along that
path. It should be obvious that using hop counts to calculate shortest paths does not al-
ways produce optimal results. For example, a path with hop count 3 that crosses three
Ethernets may be substantially faster than a path with hop count 2 that crosses two sa-
tellite connections. To compensate for differences in technologies, many RIP imple-
mentations allow managers to configure artificially high hop counts when advertising
connections to slow networks.

Both active and passive RIP participants listen to all broadcast messages, and up-
date their tables according to the distance-vector algorithm described earlier. For exam-
ple, in the internet of Figure 16.2, router R, will broadcast a message on network 2 that
contains the pair (1, I), meaning that it can reach network 1 at cost 1. Routers R, and
R, will receive the broadcast and install a route to network 1 through R, (at cost 2).
Later, routers R, and R, will include the pair (1,2) when they broadcast their RIP mes-
sages on network 3. Eventually, all routers and hosts will install a route to network 1.

FUP specifies a few rules to improve performance and reliability. For example,
once a router learns a route from another router, it must apply hysteresis, meaning that
it does not replace the route with an equal cost route. In our example, if routers R, and

tother routing protocols define a direct connection to be zero hops.

298 Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

R, both advertise network I at cost 2, routers R, and R, will install a route through the
one that happens to advertise first. We can summarize:

To prevent oscillation among equal cost paths, RIP specifies that ex-
isting routes should be retained until a new route has strictly lower
cost.

What happens if the first router to advertise a route fails (e.g., if it crashes)? RIP
specifies that all listeners must timeout routes they leam via RIP. When a router in-
stalls a route in its table, it starts a timer for that route. The timer must be restarted
whenever the router receives another RIP message advertising the route. The route be-
comes invalid if 180 seconds pass without the route being advertised again.

RIP must handle three kinds of errors caused by the underlying algorithm. First,
because the algorithm does not explicitly detect routing loops, RIP must either assume
participants can be trusted or take precautions to prevent such loops. Second, to prevent
instabilities RIP must use a low value for the maximum possible distance (RIP uses 16).
Thus, for internets in which legitimate hop counts approach 16, managers must divide
the internet into sections or use an alternative protocol. Third, the distance-vector algo-
rithm used by RIP can create a slow convergence or count to infinity problem, in which
inconsistencies arise because routing update messages propagate slowly across the net-
work. Choosing a small infiity (16) helps limit slow convergence, but does not elirn-
inate it.

Routing table inconsistency is not unique to RIP. It is a fundamental problem that
occurs with any distance-vector protocol in which update messages carry only pairs of
destination network and distance to that network. To understand the problem consider
the set of routers shown in Figure 16.4. The figure depicts routes to network 1 for the
internet shown in Figure 16.2.

Network (&+- (a)

Figure 16.4 The slow convergence problem. In (a) three routers each have a
route to network 1. In (b) the connection to network I has van-
ished, but R, causes a loop by advertising it.

Sec. 16.3 Routing Infomation Protocol (RIP) 299

As Figure 16.4a shows, router R, has a direct connection to network I, so there is a
route in its table with distance 1 , which will be included in its periodic broadcasts.
Router R, has learned the route from R,, installed the route in its routing table, and ad-
vertises the route at distance 2. Finally, R, has learned the route from R, and advertises
it at distance 3.

Now suppose that R,'s connection to network 1 fails. R, will update its routing
table immediately to make the distance 16 (infinity). In the next broadcast, R, will re-
port the higher cost route. However, unless the protocol includes extra mechanisms to
prevent it, some other router could broadcast its routes before R,. In particular, suppose
R, happens to advertise routes just after R,'s connection fails. If so, R, will receive R,'s
message and follow the usual distance-vector algorithm: it notices that R, has advertised
a route to network 1 at lower cost, calculates that it now takes 3 hops to reach network
1 (2 for R, to reach network I plus 1 to reach R,), and installs a new route with R, list-
ed as the next hop. Figure 16.4b depicts the result. At this point, if either R, or R, re-
ceives a datagram destined for network 1, they will route the datagram back and forth
until the datagram's time-to-live counter expires.

Subsequent RIP broadcasts by the two routers do not solve the problem quickly.
In the next round of routing exchanges, R, broadcasts its routing table entries. When it
learns that R,'s route to network 1 has distance 3, R, calculates a new distance for its
route, making it 4. In the third round, R, receives a report from R, which includes the
increased distance, and then increases the distance in its table to 5. The two routers
continue counting to RIP infinity.

16.3.3 Solving The Slow Convergence Problem

For the example in Figure 16.4, it is possible to solve the slow convergence prob-
lem by using a technique known as split horizon update. When using split horizon, a
router does not propagate information about a route back over the same interface from
which the route arrived. In the example, split horizon prevents router R, from advertis-
ing a route to network 1 back to router R,, so if R, loses connectivity to network I, it
must stop advertising a route. With split horizon, no routing loop appears in the exam-
ple network. Instead, after a few rounds of routing updates, all routers will agree that
the network is unreachable. However, the split horizon heuristic does not prevent rout-
ing loops in all possible topologies as one of the exercises suggests.

Another way to think of the slow convergence problem is in terms of information
flow. If a router advertises a short route to some network, all receiving routers respond
quickly to install that route. If a router stops advertising a route, the protocol must
depend on a timeout mechanism before it considers the route unreachable. Once the
timeout occurs, the router finds an alternative route and starts propagating that informa-
tion. Unfortunately, a router cannot know if the alternate route depended on the route
that just disappeared. Thus, negative information does not always propagate quickly. A
short epigram captures the idea and explains the phenomenon:

Good news travels quickly; bad news travels slowly.

300 Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

Another technique used to solve the slow convergence problem employs hold
down. Hold down forces a participating router to ignore information about a network
for a fmed period of time following receipt of a message that claims the network is un-
reachable. Typically, the hold down period is set to 60 seconds. The idea is to wait
long enough to ensure that all machines receive the bad news and not mistakenly accept
a message that is out of date. It should be noted that all machines participating in a RIP
exchange need to use identical notions of hold down, or routing loops can occur. The
disadvantage of a hold down technique is that if routing loops occur, they will be
preserved for the duration of the hold down period. More important, the hold down
technique preserves all incorrect routes during the hold down period, even when alterna-
tives exist.

A final technique for solving the slow convergence problem is called poison re-
verse. Once a connection disappears, the router advertising the connection retains the
entry for several update periods, and includes an infinite cost in its broadcasts. To
make poison reverse most effective, it must be combined with triggered updates. Trig-
gered updates force a router to send an immediate broadcast when receiving bad news,
instead of waiting for the next periodic broadcast. By sending an update immediately, a
router minimizes the time it is vulnerable to believing good news.

Unfortunately, while triggered updates, poison reverse, hold down, and split hor-
izon techniques all solve some problems, they introduce others. For example, consider
what happens with triggered updates when many routers share a common network. A
single broadcast may change all their routing tables, triggering a new round of broad-
casts. If the second round of broadcasts changes tables, it will trigger even more broad-
casts. A broadcast avalanche can resultt.

The use of broadcast, potential for routing loops, and use of hold down to prevent
slow convergence can make RIP extremely inefficient in a wide area network. Broad-
casting always takes substantial bandwidth. Even if no avalanche problems occur, hav-
ing all machines broadcast periodically means that the traffic increases as the number of
routers increases. The potential for routing loops can also be deadly when line capacity
is limited. Once lines become saturated by looping packets, it may be difficult or im-
possible for routers to exchange the routing messages needed to break the loops. Also,
in a wide area network, hold down periods are so long that the timers used by higher
level protocols can expire and lead to broken connections. Despite these well-known
problems, many groups continue to use RIP as an IGP in wide area networks.

16.3.4 RIP1 Message Format

RIP messages can be broadly classified into two types: routing information mes-
sages and messages used to request information. Both use the same format which con-
sists of a fmed header followed by an optional list of network and distance pairs. Fig-
ure 16.5 shows the message format used with version 1 of the protocol, which is known
as RIP1 :

tTo help avoid collisions on the underlying network, RIP requires each router to wait a small random
time before sending a triggered update.

Sec. 16.3 Routing Information Protocol @UP) 30 1

IP ADDRESS OF NET 1

0 8 16 24 31

MUST BE ZERO

COMMAND (1-5) 1 VERSION (1)

FAMILY OF NET 1

I MUST BE ZERO I

MUST BE ZERO

MUST BE ZERO

r - DISTANCE T o NET 1

MUST BE ZERO

FAMILY OF NET 2

MUST BE ZERO

DISTANCE TO NET 2

MUST BE ZERO

Figure 16.5 The format of a version 1 RIP message. After the 32-bit header,
the message contains a sequence of pairs, where each pair con-
sists of a network IP address and an integer distance to that net-
work.

IP ADDRESS OF NET 2

In the figure, field COMMAND specities an operation according to the following
table:

Command
1
2

Meaning
Request for partial or full routing information
Response containing network-distance pairs from

sender's routing table
Turn on trace mode (obsolete)
Turn off trace mode (obsolete)
Reserved for Sun Microsystems internal use
Update Request (used with demand circuits)
Update Response (used with demand circuits)
Update Acknowledge (used with demand circuits)

A router or host can ask another router for routing information by sending a request
command. Routers reply to requests using the response command. In most cases, how-
ever, routers broadcast unsolicited response messages periodically. Field VERSION
contains the protocol version number (1 in this case), and is used by the receiver to ver-
Ify it will interpret the message correctly.

302 Routing: In An Autonomous System @UP, OSPF, HELLO) Chap. 16

16.3.5 RIP1 Address Conventions

The generality of RIP is also evident in the way it transmits network addresses.
The address format is not limited to use by TCPJIP; it can be used with multiple net-
work protocol suites. As Figure 16.5 shows, each network address reported by RIP can
have an address of up to 14 octets. Of course, IP addresses need only 4; RIP specifies
that the remaining octets must be zero?. The field labeled FAMILY OF NET i identi-
fies the protocol family under which the network address should be interpreted. RIP
uses values assigned to address families under the 4BSD UNIX operating system (IP
addresses are assigned value 2).

In addition to normal IP addresses, RIP uses the convention that address 0.0.0.0
denotes a default route. RIP attaches a distance metric to every route it advertises, in-
cluding default routes. Thus, it is possible to arrange for two routers to advertise a de-
fault route (e.g., a route to the rest of the internet) at different metrics, making one of
them a primary path and the other a backup.

The final field of each entry in a RIP message, DISTANCE TO NET i, contains an
integer count of the distance to the specified network. Distances are measured in router
hops, but values are limited to the range 1 through 16, with distance 16 used to signify
infinity (i.e., no route exists).

16.3.6 RIP1 Route Interpretation And Aggregation

Because RIP was originally designed to be used with classful addresses, version 1
did not include any provision for a subnet mask. When subnet addressing was added to
IP, version 1 of RIP was extended to permit routers to exchange subnetted addresses.
However, because RIPl update messages do not contain explicit mask information, an
important restriction was added: a router can include host-specific or subnet-specific ad-
dresses in routing updates as long as all receivers can unambiguously interpret the ad-
dresses. In particular, subnet routes can only be included in updates sent across a net-
work that is part of the subnetted p r e f ~ , and only if the subnet mask used with the net-
work is the same as the subnet mask used with the address. In essence, the restriction
means that RIPl cannot be used to propagate variable-length subnet address or classless
addresses. We can summarize:

Because it does not include e-xplicit subnet information, RIPl only
permits a router to send subnet routes if receivers can unambiguously
interpret the addresses according to the subnet mask they have avail-
able locally. As a consequence, RIPl can only be used with classful
or jixed-length subnet addresses.

What happens when a router running RIPl connects to one or more networks that
are subnets of a prefix N as well as to one or more networks that are not part of N? The
router must prepare different update messages for the two types of interfaces. Updates
sent over the interfaces that are subnets of N can include subnet routes, but updates sent

tThe designers chose to locate an IP address in the third through sixth octets of the address field to en-
sure 32-bit alignment.

Sec. 16.3 Routing Information Protocol (RIP) 303

over other interfaces cannot. Instead, when sending over other interfaces the router is
required to aggregate the subnet information and advertise a single route to network N.

16.3.7 RIP2 Extensions

The restriction on address interpretation means that version 1 of RIP cannot be
used to propagate either variable-length subnet addresses or the classless addresses used
with CIDR. When version 2 of RIP (RIP2) was defined, the protocol was extended to
include an explicit subnet mask along with each address. In addition, RIP2 updates in-
clude explicit next-hop information, which prevents routing loops and slow conver-
gence. As a result, RIP2 offers siWcantly increased functionality as well as improved
resistance to errors.

16.3.8 RIP2 Message Format

The message format used with RIP2 is an extension of the RIP1 format, with addi-
tional information occupying unused octets of the address field. In particular, each ad-
dress includes an explicit next hop as well as an explicit subnet mask as Figure 16.6 il-
lustrates.

I NEXT HOP FOR NET 1 I

0 8 16 24 31

COMMAND (1-5) 1 VERSION (1)

FAMILY OF NET 1

I SUBNET MASK FOR NET 2 I

MUST BE ZERO

ROUTE TAG FOR NET 1

DISTANCE TO NET 1

NEXT HOP FOR NET 2

DISTANCE TO NET 2

IP ADDRESS OF NET 1

SUBNET MASK FOR NET 1

FAMILY OF NET 2

Figure 16.6 The format of a RIP2 message. In addition to pairs of a network
IP address and an integer distance to that network, the message
contains a subnet mask for each address and explicit next-hop
information.

ROUTE TAG FOR NET 2

IP ADDRESS OF NET 2

304 Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

RIP2 also attaches a 16-bit ROUTE TAG field to each entry. A router must send
the same tag it receives when it transmits the route. Thus, the tag provides a way to
propagate additional information such as the origin of the route. In particular, if RIP2
learns a route from another autonomous system, it can use the ROUTE TAG to pro-
pagate the autonomous system's number.

Because the version number in RIP2 occupies the same octet as in RIP1, both ver-
sions of the protocols can be used on a given router simultaneously without interfer-
ence. Before processing an incoming message, RIP software examines the version
number.

16.3.9 Transmitting RIP Messages

RIP messages do not contain an explicit length field or an explicit count of entries.
Instead, RIP assumes that the underlying delivery mechanism will tell the receiver the
length of an incoming message. In particular, when used with TCPAP, RIP messages
rely on UDP to tell the receiver the message length. RIP operates on UDP port 520.
Although a RIP request can originate at other UDP ports, the destination UDP port for
requests is always 520, as is the source port from which RIP broadcast messages ori-
ginate.

16.3.10 The Disadvantage Of RIP Hop Counts

Using RIP as an interior router protocol limits routing in two ways. First, RIP res-
tricts routing to a hop-count metric. Second, because it uses a small value of hop count
for infinity, RIP restricts the size of any internet using it. In particular, RIP restricts the
span of an internet (i.e., the maximum distance across) to 16. That is, an internet using
RIP can have at most 15 routers between any two hosts.

Note that the limit on network span is neither a limit on the total number of routers
nor a limit on density. In fact, most campus networks have a small span even if they
have many routers because the topology is arranged as a hierarchy. Consider, for ex-
ample, a typical corporate intranet. Most use a hierarchy that consists of a high-speed
backbone network with multiple routers each connecting the backbone to a workgroup,
where each workgroup occupies a single LAN. Although the corporation can include
dozens of workgroups, the span of the entire intranet is only 2. Even if each workgroup
is extended to include a router that connects one or more additional LANs, the max-
imum span only increases to 4. Similarly, extending the hierarchy one more level only
increases the span to 6. Thus, the limit that RIP imposes affects large autonomous sys-
tems or autonomous systems that do not have a hierarchical organization.

Even in the best cases, however, hop counts provide only a crude measure of net-
work capacity or responsiveness. Thus, using hop counts does not always yield routes
with least delay or highest capacity. Furthermore, computing routes on the basis of
minimum hop counts has the severe disadvantage that it makes routing relatively static
because routes cannot respond to changes in network load. The next sections consider
an alternative metric, and explain why hop count metrics remain popular despite their
limitations.

Sec. 16.4 The Hello Protocol

16.4 The Hello Protocol

The HELLO protocol provides an example of an IGP that uses a routing metric
other than hop count. Although HELLO is now obsolete, it was significant in the histo-
ry of the Internet because it was the IGP used among the original NSFNET backbone
"fuzzball" routers?. HELLO is significant to us because it provides an example of a
protocol that uses a metric of delay.

HELLO provides two functions: it synchronizes the clocks among a set of
machines, and it allows each machine to compute shortest delay paths to destinations.
Thus, HELLO messages carry timestamp information as well as routing idomlation.
The basic idea behind HELLO is simple: each machine participating in the HELLO ex-
change maintains a table of its best estimate of the clocks in neighboring machines. Be-
fore transmitting a packet, a machine adds its timestamp by copying the current clock
value into the packet. When a packet arrives, the receiver computes an estimate of the
current delay on the link by subtracting the timestamp on the incoming packet from the
local estimate for the current clock in the neighbor. Periodically, machines poll their
neighbors to reestablish estimates for clocks.

HELLO messages also allow participating machines to compute new routes. The
protocol uses a modified distance-vector scheme that uses a metric of delay instead of
hop count. Thus, each machine periodically sends its neighbors a table of destinations
it can reach and an estimated delay for each. When a message arrives from machine X,
the receiver examines each entry in the message and changes the next hop to X if the
route through X is less expensive than the current route (i.e., any route where the delay
to X plus the delay from X to the destination is less than the current delay to the desti-
nation).

16.5 Delay Metrics And Oscillation

It may seem that using delay as a routing metric would produce better routes than
using a hop count. In fact, HELLO worked well in the early Internet backbone. How-
ever, there is an important reasons why delay is not used as a metric in most protocols:
instability.

Even if two paths have identical characteristics, any protocol that changes routes
quickly can become unstable. Instability arises because delay, unlike hop counts, is not
fixed. Minor variations in delay measurements occur because of hardware clock drift,
CPU load during measurement, or bit delays caused by link-level synchronization.
Thus, if a routing protocol reacts quickly to slight differences in delay, it can produce a
two-stage oscillation effect in which traffic switches back and forth between the alter-
nate paths. In the f i s t stage, the router finds the delay on path 1 slightly less and
abruptly switches traffic onto it. In the next round, the router finds that path B has
slightly less delay and switches traffic back.

To help avoid oscillation, protocols that use delay implement several heuristics.
First, they employ the hold down technique discussed previously to prevent routes from

tThe term fuubaN referred to a noncommercial router that consisted of specially-crafted protocol
software running on a PDP11 computer.

306 Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

changing rapidly. Second, instead of measuring as accurately as possible and compar-
ing the values directly, the protocols round measurements to large multiples or imple-
ment a minimum threshold by ignoring differences less than the threshold. Third, in-
stead of comparing each individual delay measurement, they keep a running average of
recent values or alternatively apply a K-out-of-N rule that requires at least K of the most
recent N delay measurements be less than the current delay before the route can be
changed.

Even with heuristics, protocols that use delay can become unstable when compar-
ing delays on paths that do not have identical characteristics. To undersand why, it is
necessary to know that traffic can have a dramatic effect on delay. With no traffic, the
network delay is simply the time required for the hardware to transfer bits from one
point to another. As the traffic load imposed on the network increases, however, delays
begin to rise because routers in the system need to enqueue packets that are waiting for
transmission. If the load is even slightly more than 100% of the network capacity, the
queue becomes unbounded, meaning that the effective delay becomes infinite. To sum-
marize:

The effective delay across a network depends on trafic; as the load
increases to 100% of the network capacity, delay grows rapidly.

Because delays are extremely sensitive to changes in load, protocols that use delay
as a metric can easily fall into a positive feedback cycle. The cycle is triggered by a
small external change in load (e.g., one computer injecting a burst of additional traffic).
The increased traffic raises the delay, which causes the protocol to change routes. How-
ever, because a route change affects the load, it can produce an even larger change in
delays, which means the protocol will again recompute routes. As a result, protocols
that use delay must contain mechanisms to dampen oscillation.

We described heuristics that can solve simple cases of route oscillation when paths
have identical throughput characteristics and the load is not excessive. The heuristics
can become ineffective, however, when alternative paths have different delay and
throughput characteristics. As an example consider the delay on two paths: one over a
satellite and the other over a low capacity serial line (e.g., a 9600 baud serial line). In
the first stage of the protocol when both paths are idle, the serial line will appear to
have significantly lower delay than the satellite, and will be chosen for traffic. Because
the serial line has low capacity, it will quickly become overloaded, and the delay will
rise sharply. In the second stage, the delay on the serial line will be much greater than
that of the satellite, so the protocol will switch traffic away from the overloaded path.
Because the satellite path has large capacity, traffic which overloaded the serial line
does not impose a significant load on the satellite, meaning that the delay on the satel-
lite path does not change with traffic. In the next round, the delay on the unloaded seri-
al line will once again appear to be much smaller than the delay on the satellite path.
The protocol will reverse the routing, and the cycle will continue. Such oscillations do,
in fact, occur in practice. As the example shows, they are difficult to manage because
traffic which has little effect on one network can overload another.

Sec. 16.6 Combining RIP, Hello, And BGP

16.6 Combining RIP, Hello, And BGP

We have already observed that a single router may use both an Interior Gateway
Protocol to gather routing information within its autonomous system and an Exterior
Gateway Protocol to advertise routes to other autonomous systems. In principle, it
should be easy to construct a single piece of software that combines the two protocols,
making it possible to gather routes and advertise them without human intervention. In
practice, technical and political obstacles make doing so complex.

Technically, IGP protocols, like RIP and Hello, are routing protocols. A router
uses such protocols to update its routing table based on information it acquires from
other routers inside its autonomous system. Thus, routed, the UNIX program that im-
plements RIP, advertises infornlation from the local routing table and changes the local
routing table when it receives updates. RIP trusts routers within the same autonomous
system to pass correct data.

In contrast, exterior protocols such as BGP do not trust routers in other auto-
nomous systems. Consequently, exterior protocols do not advertise all possible routes
from the local routing table. Instead, such protocols keep a database of network reacha-
bility, and apply poiicy constraints when sending or receiving infornlation. Ignoring
such policy constraints can affect routing in a larger sense - some parts of the internet
can be become unreachable. For example, if a router in an autonomous system that is
running RIP happens to propagate a low-cost route to a network at Purdue University
when it has no such route, other routers running RIP will accept and install the route.
They will then pass Purdue traffic to the router that made the error. As a result, it may
be impossible for hosts in that autonomous system to reach Purdue. The problem be-
comes more serious if Exterior Gateway Protocols do not implement policy constraints.
For example, if a border router in the autonomous system uses BGP to propagate the
illegal route to other autonomous systems, the network at Purdue may become umeach-
able from some parts of the internet.

16.7 Inter-Autonomous System Routing
i

We have seen that EGPs such as BGP allow one autonomous system to advertise
reachability infonnation to another. However, it would be useful to also provide inter-
azrtonomous system ro ing in which routers choose least-cost paths. Doing so requires Y additional trust. Extending the notions of trust from a single autonomous system to
multiple autonoqous systems is complex. The simplest approach groups autonomous
systems hierarchically. Imagine, for example, three autonomous systems in three
separate academic departments on a large university campus. It is natural to group
these three together because they share administrative ties. The motivation for hierarch-
ical grouping comes primarily from the notion of trust. Routers within a group trust
one another with a higher level of confidence than routers in separate groups.

Grouping autonomous systems requires extensions to routing protocols. When re-
porting distances, the values must be increased when passing across the boundary from

308 Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

one group to another. The technique, loosely called metric transformation, partitions
distance values into three categories. For example, suppose routers within an auto-
nomous system use distance values less than 128. We can make a rule that when pass-
ing distance information across an autonomous system boundary within a single group,
the distances must be transformed into the range of 128 to 191. Finally, we can make a
rule that when passing distance values across the boundary between two groups, the
values must be transformed into the range of 192 to 254t. The effect of such transfor-
mations is obvious: for any given destination network, any path that lies entirely within
the autonomous system is guaranteed to have lower cost than a path that strays outside
the autonomous system. Furthermore, among all paths that stray outside the auto-
nomous system, those that remain within the group have lower cost than those that
cross group boundaries. The key advantage of metric transformations is that they allow
each autonomous system to choose an IGP, yet make it possible for other systems to
compare routing costs. /

16.8 Gated: Inter-Autonomous System Communication

A mechanism has been created to provide an interface between autonomous sys-
tems. Known as gated*, the mechanism understands multiple protocols (both IGPs and
BGP), and ensures that policy constraints are honored. For example, gated can accept
RIP messages and modify the local computer's routing table just like the routed pro-
gram. It can also advertise routes from within its autonomous system using BGP. The
rules gated follows allow a system administrator to specify exactly which networks gat-
ed may and may not advertise and how to report distances to those networks. Thus,
although gated is not an IGP, it plays an important role in routing because it demon-
strates that it is feasible to build an automated mechanism linking an IGP with BGP
without sacrificing protection.

Gated performs another useful task by implementing metric transformations. Thus,
it is possible and convenient to use gated between two autonomous systems as well as
on the boundary between two groups of routers that each participate in an IGP.

16.9 The Open SPF Protocol (OSPF)

In Chapter 14, we said that a link state routing algorithm, which uses SPF to com-
pute shortest paths, scales better than a distance-vector algorithm. To encourage the
adoption of link state technology, a working group of the Internet Engineering Task
Force has designed an interior gateway protocol that uses the link state algorithm.
Called Open SPF (OSPF), the new protocol tackles several ambitious goals.

As the name implies, the specification is available in the published literature.
Making it an open standard that anyone can implement without paying license fees has
encouraged many vendors to support OSPF. Consequently, it has become a popular re-
placement for proprietary protocols.

?The term autonomous confederation has been used to describe a group of autonomous systems; boun-
daries of autonomous confederations correspond to transformations beyond 191.

$The name gated is pronounced "gate d" from "gate daemon."

Sec. 16.9 The Open SPF Protocol (OSPF) 309

OSPF includes type of service routing. Managers can install multiple routes to a
given destination, one for each priority or type of service. When routing a datagram, a
router running OSPF uses both the destination address and type of service field in an IP
header to choose a route. OSPF is among the first TCP/IF' protocols to offer type of
service routing.

OSPF provides load balancing. If a manager specifies multiple routes to a given
destination at the same cost, OSPF distributes traffic over all routes equally. Again,
OSPF is among the first open IGPs to offer load balancing; protocols like RIP compute
a single route to each destination.

To permit growth and make the networks at a site easier to manage, OSPF allows
a site to partition its networks and routers into subsets called areas. Each area is self-
contained; knowledge of an area's topology remains hidden from other areas. Thus,
multiple groups within a given site can cooperate in the use of OSPF for routing even
though each group retains the ability to change its internal network topology indepen-
dently.

The OSPF protocol specifies that all exchanges between routers can be authenti-
cated. OSPF allows a variety of authentication schemes, and even allows one area to
choose a different scheme than another area. The idea behind authentication is to
guarantee that only trusted routers propagate routing information. To understand why
this could be a problem, consider what can happen when using RIP1, which has no au-
thentication. If a malicious person uses a personal computer to propagate RIP messages
advertising lowcost routes, other routers and hosts running RIP will change their routes
and start sending datagrams to the personal computer.

OSPF includes support for host-specific, subnet-specific, and classless routes as
well as classful network-specific routes. All types may be needed in a large internet.

To accommodate multi-access networks like Ethernet, OSPF extends the SPF al-
gorithm described in Chapter 14. We described the algorithm using a point-to-point
graph and said that each router running SPF would periodically broadcast link status
messages about each reachable neighbor. If K routers attach to an Ethernet, they will
broadcast K2 reachability messages. OSPF minimizes broadcasts by allowing a more
complex graph topology in which each node represents either a router or a network.
Consequently, OSPF allows every multi-access network to have a designated gateway
(i.e., a designated router) that sends link status messages on behalf of all routers at-
tached to the network; the messages report the status of all links from the network to
routers attached to the network. OSPF also uses hardware broadcast capabilities, where
they exist, to deliver link status messages.

To permit maximum flexibility, OSPF allows managers to describe a virtual net-
work topology that abstracts away from the details of physical connections. For exarn-
ple, a manager can configure a virtual link between two routers in the routing graph
even if the physical connection between the two routers requires communication across
a transit network.

OSPF allows routers to exchange routing information learned from other (exter-
nal) sites. Basically, one or more routers with connections to other sites learn informa-
tion about those sites and include it when sending update messages. The message for-

310 Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

mat distinguishes between information acquired from external sources and information
acquired from routers interior to the site, so there is no ambiguity about the source or
reliability of routes.

16.9.1 OSPF Message Format

Each OSPF message begins with a fixed, 24-octet header as Figure 16.7 shows:

SOURCE ROUTER IP ADDRESS

AREA ID

VERSION (1) I TYPE

I CHECKSUM I AUTHENTICATION TYPE (

MESSAGE LENGTH

AUTHENTICATION (octets 0-3)

AUTHENTICATION (octets 4-7)

Figure 16.7 The fixed 24-octet OSPF message header.

Field VERSION specifies the version of the protocol. Field TYPE identifies the
message type as one of:

T Y P ~ Meaning
1 Hello (used to test reachability)
2 Database description (topology)
3 Link status request
4 Link status update
5 Link status acknowledgement

The field labeled SOURCE ROUTER IP ADDRESS gives the address of the sender, and
the field labeled AREA ID gives the 32-bit identification number for the area.

Because each message can include authentication, field AUTHENTICATION TYPE
specifies which authentication scheme is used (currently, 0 means no authentication and
I means a simple password is used).

16.9.2 OSPF Hello Message Format

OSPF sends hello messages on each link periodically to establish and test neighbor
reachability. Figure 16.8 shows the format.

Sec. 16.9 The Open SPF Protocol (OSPF) 311

OSPF HEADER WITH TYPE = 1

NETWORK MASK

DEAD TIMER I HELLO INTER I GWAY PRlO

DESIGNATED ROUTER

I BACKUP DESIGNATED ROUTER I
NEIGHBOR, IP ADDRESS

NEIGHBOR, IP ADDRESS

I NEIGHBOR. IP ADDRESS I

Figure 16.8 OSPF hello message format. A pair of neighbor routers ex-
changes these messages periodically to test reachability.

Field NETWORK MASK contains a mask for the network over which the message
has been sent (see Chapter 10 for details about masks). Field DEAD TIMER gives a
time in seconds after which a nomesponding neighbor is considered dead. Field HEL-
LO INTER is the nomlal period, in seconds, between hello messages. Field GWAY
PRIO is the integer priority of this router, and is used in selecting a backup designated
router. The fields labeled DESIGNATED ROUTER and BACKUP DESIGNATED
ROUTER contain IP addresses that give the sender's view of the designated router and
backup designated router for the network over which the message is sent. Finally,
fields labeled NEIGHBOR, IP ADDRESS give the IP addresses of all neighbors from
which the sender has recently received hello messages.

16.9.3 OSPF Database Description Message Format

Routers exchange OSPF database description messages to initialize their network
topology database. In the exchange, one router serves as a master, while the other is a
slave. The slave acknowledges each database description message with a response.
Figure 16.9 shows the format.

Because it can be large, the topology database may be divided into several mes-
sages using the I and M bits. Bit I is set to I in the initial message; bit M is set to I if
additional messages follow. Bit S indicates whether a message was sent by a master (I)
or by a slave (0). Field DATABASE SEQUENCE NUMBER numbers messages sequen-
tially so the receiver can tell if one is missing. The initial message contains a random
integer R; subsequent messages contain sequential integers starting at R.

312 Routing: In An Autonomous System (RE', OSPF, HELLO) Chap. 16

OSPF HEADER WITH TYPE =2

I MUST BE ZERO 1 l 1 ~ 1 ~ 1
I DATABASE SEQUENCE NUMBER I
I LINK TYPE I
I LINK ID I
I ADVERTISING ROUTER I

Figure 16.9 OSPF database description message format. The fields starting
at LlNK TYPE are repeated for each link being specified.

LlNK SEQUENCE NUMBER

The fields from LINK TYPE through LINK AGE describe one link in the network
topology; they are repeated for each link. The LINK TYPE describes a link according to
the following table.

LINK CHECKSUM

Link Type Meaning
1 Router link
2 Network link
3 Summary link (IP network)
4 Summary link (link to border router)
5 External link (link to another site)

LINK AGE

Field LINK ID gives an identification for the link (which can be the IP address of a
router or a network, depending on the link type).

Field ADVERTISING ROUTER specifies the address of the router advertising this
link, and LINK SEQUENCE NUMBER contains an integer generated by that router to
ensure that messages are not missed or received out of order. Field LINK CHECKSUM
provides further assurance that the link information has not been corrupted. Finally,
field LINK AGE also helps order messages - it gives the time in seconds since the link
was established.

. . .

Sec. 16.9 The Open SPF Protocol (OSPF) 313

16.9.4 OSPF Link Status Request Message Format

After exchanging database description messages with a neighbor, a router may dis-
cover that parts of its database are out of date. To request that the neighbor supply up-
dated information, the router sends a link status request message. The message lists
specific links as shown in Figure 16.10. The neighbor responds with the most current
information it has about those links. The three fields shown are repeated for each link
about which status is requested. More than one request message may be needed if the
list of requests is long.

LlNK TYPE

LlNK ID

ADVERTISING ROUTER

Figure 16.10 OSPF link status request message format. A router sends this
message to a neighbor to request current information about a
specific set of links.

16.9.5 OSPF Link Status Update Message Format

Routers broadcast the status of links with a link status update message. Each up-
date consists of a list of advertisements, as Figure 16.1 1 shows.

314 Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

0 16 31

OSPF HEADER WITH TYPE =4

- - - - -

NUMBER OF LlNK STATUS ADVERTISEMENTS

LlNK STATUS ADVERTISEMENT,

. . .

LlNK STATUS ADVERTISEMENT,

Figure 16.11 OSPF link status update message format. A router sends such a
message to broadcast information about its directly connected
links to all other routers.

Each link status advertisement has a header format as shown in Figure 16.12. The
values used in each field are the same as in the database description message.

LlNK ID

0 16 31

ADVERTISING ROUTER

LlNK SEQUENCE NUMBER

LINK CHECKSUM I LENGTH

LINK AGE

Figure 16.12 The format of the header used for all link status advertisements.

LINK TYPE 1

Following the link status header comes one of four possible formats to describe the
links from a router to a given area, the links from a router to a specific network, the
links from a router to the physical networks that comprise a single, subnetted IP net-
work (see Chapter lo), or the links from a router to networks at other sites. In all cases,
the LINK TYPE field in the link status header specifies which of the formats has been
used. Thus, a router that receives a link status update message knows exactly which of
the described destinations lie inside the site and which are external.

Sec. 16.10 Routing With Partial Information

16.1 0 Routing With Partial Information

We began our discussion of internet router architecture and routing by discussing
the concept of partial information. Hosts can route with only partial idomlation be-
cause they rely on routers. It should be clear now that not all routers have complete in-
formation. Most autonomous systems have a single router that connects the auto-
nomous system to other autonomous systems. For example, if the site connects to the
global Internet, at least one router must have a connection that leads from the site to an
ISP. Routers within the autonomous system know about destinations within that auto-
nomous system, but they use a default route to send all other traffic to the ISP.

How to do routing with partial information becomes obvious if we examine a
router's routing tables. Routers at the center of the Internet have a complete set of
routes to all possible destinations that they learn from the routing arbiter system; such
routers do not use default routing. In fact, if a destination network address does not ap-
pear in the routing arbiter database, only two possibilities exist: either the address is not
a valid destination IF' address, or the address is valid but currently unreachable (e.g., be-
cause routers or networks leading to that address have failed). Routers beyond those in
ISPs at the center of the Internet do not usually have a complete set of routes; they rely
on a default route to handle network addresses they do not understand.

Using default routes for most routers has two consequences. First, it means that
local routing errors can go undetected. For example, if a machine in an autonomous
system incorrectly routes a packet to an external autonomous system instead of to a lo-
cal router, the external system will route it back (perhaps to a different entry point).
Thus, connectivity may appear to be preserved even if routing is incorrect. The prob-
lem may not seem severe for small autonomous systems that have high speed local area
networks, but in a wide area network, incorrect routes can be disastrous. Second, on the
positive side, using default routes whenever possible means that the routing update mes-
sages exchanged by most routers will be much smaller than they would be if complete
information had to be included.

16.1 1 Summary

Managers must choose how to pass routing information among the local routers
within an autonomous system. Manual maintenance of routing information suffices
only for small, slowly changing internets that have minimal interconnection; most re-
quire automated procedures that discover and update routes automatically. Two routers
under the control of a single manager run an Interior Gateway Protocol, IGP, to ex-
change routing information.

An IGP implements either the distance-vector algorithm or the link state algorithm,
which is known by the name Shortest Path First (SPF). We examined three specific
IGPs: RIP, HELLO, and OSPF. RIP, a distance-vector protocol implemented by the
UNIX program routed, is among the most popular. It uses split horizon, hold-down,
and poison reverse techniques to help eliminate routing loops and the problem of count-

316 Routing: In An Autonomous System (RIP, OSPF, HELLO) Chap. 16

ing to infinity. Although it is obsolete, Hello is interesting because it illustrates a
distance-vector protocol that uses delay instead of hop counts as a distance metric. We
discussed the disadvantages of delay as a routing metric, and pointed out that although
heuristics can prevent instabilities from arising when paths have equal throughput
characteristics, long-term instabilities arise when paths have different characteristics.
Finally, OSPF is a protocol that implements the link status algorithm.

Also, we saw that the gated program provides an interface between an Interior
Gateway Protocol like RE' and the Exterior Gateway Protocol, BGP, automating the
process of gathering routes from within an autonomous system and advertising them to
another autonomous system.

FOR FURTHER STUDY

Hedrick [RFC 10581 discusses algorithms for exchanging routing information in
general and contains the standard specification for RIPl. Malkin [RFC 24531 gives the
standard for RIP2. The HELLO protocol is documented in Mills [RFC 8911. Mills and
Braun [I9871 considers the problems of converting between delay and hop-count
metrics. Moy [RFC 15831 contains the lengthy specification of OSPF as well as a dis-
cussion of the motivation behind it. Fedor [June 19881 describes gated.

EXERCISES

What network families does RIP support? Hint: read the networking section of the 4.3
BSD UNIX Programmer's Manual.

Consider a large autonomous system using an interior router protocol like HELLO that
bases routes on delay. What difficulty does this autonomous system have if a subgroup
decides to use RIP on its routers?

Within a RIP message, each IP address is aligned on a 32-bit boundary. Will such ad-
dresses be aligned on a 32-bit boundary if the IP datagram canying the message starts on
a 32-bit boundary?

An autonomous system can be as small as a single local area network or as large as mul-
tiple long haul networks. Why does the variation in size make it difficult to find a stan-
dard IGP?
Characterize the circumstances under which the split horizon technique will prevent slow
convergence.

Consider an internet composed of many local area networks running RIP as an IGP.
Find an example that shows how a routing loop can result even if the code uses "hold
down" after receiving information that a network is unreachable.

Should a host ever run RIP in active mode? Why or why not?

Exercises 317

Under what circumstances will a hop count metric produce better routes than a metric
that uses delay?

Can you imagine a situation in which an autonomous system chooses not to advertise all
its networks? Hint: think of a university.

In broad terms, we could say that RIP distributes the local routing table, while BGP dis-
tributes a table of networks and routers used to reach them (i.e., a router can send a BGP
advertisement that does not exactly match items in its own routing table). What are the
advantages of each approach?

Consider a function used to convert between delay and hop-count metrics. Can you find
properties of such functions that are sufficient to prevent routing loops. Are your pro-
perties necessary as well? (Hint: look at Mills and Braun [1987].)
Are there circumstances under which an SPF protocol can form routing loops? Hint:
think of best-effort delivery.

Build an application program that sends a request to a router running RIP and displays
the routes returned.

Read the RIP specification carefully. Can routes reported in a response to a query differ
from the routes reported by a routing update message? If so how?

Read the OSPF specification carefully. How can a manager use the virtual link facility?

OSPF allows managers to assign many of their own identifiers, possibly leading to du-
plication of values at multiple sites. Which identifier(s) may need to change if two sites
running OSPF decide to merge?

Compare the version of OSPF available under 4BSD UNIX to the version of RIP for the
same system. What are the differences in source code size? Object code size? Data
storage size? What can you conclude?

Can you use ICMP redirect messages to pass routing information among interior
routers? Why or why not?

Write a program that takes as input a description of your organization's internet, uses
RIP queries to obtain routes from the routers, and reports any inconsistencies.

If your organization runs gated, obtain a copy of the configuration files and explain the
meaning of each item.

Internet Multicasting

17.1 Introduction

Earlier chapters define the original IP classful addressing scheme and extensions
such as subnetting and classless addressing. This chapter explores an additional feature
of the IP addressing scheme that permits efficient multipoint delivery of datagram. We
begin with a brief review of the underlying hardware support. Later sections describe
IP addressing for multipoint delivery and protocols that routers use to propagate the
necessary routing information.

17.2 ~Qrdware Broadcast
I

Many hardware technologies contain mechanisms to send packets to multiple desti-
nations $multaneously (or nearly simultaneously). Chapter 2 reviews several technolo-
gies 9 discusses the most common form of multipoint delivery: broadcasting. Broad-
cast delivery means that the network delivers one copy of a packet to each destination.
On bus technologies like Ethernet, broadcast delivery can be accomplished with a single
packet transmission. On networks composed of switches with point-to-point comec-
tions, software must implement broadcasting by forwarding copies of the packet across
individual connections until all switches have received a copy.

With most hardware technologies, a computer specifies broadcast delivery by send-
ing a packet to a special, reserved destination address called the broadcast address. For
example, Ethernet hardware addresses consist of 48-bit identifiers, with the all 1s ad-
dress used to denote broadcast. Hardware on each machine recognizes the machine's
hardware address as well as the broadcast address, and accepts incoming packets that
have either address as their destination.

320 Internet Multicasting Chap. 17

The chief disadvantage of broadcasting arises from its demand on resources - in
addition to using network bandwidth, each broadcast consumes computational resources
on all machines. For example, it would be possible to design an alternative internet
protocol suite that used broadcast to deliver datagrams on a local network and relied on
IP software to discard datagrams not intended for the local machine. However, such a
scheme would be extremely inefficient because all computers on the network would re-
ceive and process every datagram, even though a machine would discard most of the
datagrams that arrived. Thus, the designers of TCPIIP used unicast routing and address
binding mechanisms like ARP to eliminate broadcast delivery.

17.3 Hardware Origins Of Multicast

Some hardware technologies support a second, less common form of multi-point
delivery called multicasting. Unlike broadcasting, multicasting allows each system to
choose whether it wants to participate in a given multicast. Typically, a hardware tech-
nology reserves a large set of addresses for use with multicast. When a group of
machines want to communicate, they choose one particular multicast address to use for
communication. After configuring their network interface hardware to recognize the
selected multicast address, all machines in the group will receive a copy of any packet
sent to that multicast address.

At a conceptual level, multicast addressing can be viewed as a generalization of all
other address forms. For example, we can think of a conventional unicast address as a
form of multicast addressing in which there is exactly one computer in the multicast
group. Similarly, we can think of directed broadcast addressing as a form of multicast-
ing in which all computers on a particular network are members of the multicast group.
Other multicast addresses can correspond to arbitrary sets of machines.

Despite its apparent generality, multicasting cannot replace conventional forms be-
cause there is a fundamental difference in the underlying mechanisms that implement
forwarding and delivery. Unicast and broadcast addresses identify a computer or a set
of computers attached to one physical segment, so forwarding depends on the network
topology. A multicast address identifies an arbitrary set of listeners, so the forwarding
mechanism must propagate the packet to all segments. For example, consider two LAN
segments connected by an adaptive bridge that has learned host addresses. If a host on
segment 1 sends a unicast frame to another host on segment 1, the bridge will not for-
ward the frame to segment 2. If a host uses a multicast address, however, the bridge
will forward the frame. Thus. we can conclude:

Although it may help us to think of multicast addressing as a generali-
zation that subsumes unicast and broadcast addresses, the underlying
forwarding and delivery mechanisms can make multicast less eficient.

Sec. 17.3 Hardware Origins Of Multicast 321

17.4 Ethernet Multicast

Ethernet provides a good example of hardware multicasting. One-half of the Eth-
ernet addresses are reserved for multicast - the low-order bit of the high-order octet
distinguishes conventional unicast addresses (0) from multicast addresses (I). In dotted
hexadecimal notation?, the multicast bit is given by:

When an Ethernet interface board is initialized, it begins accepting packets destined
for either the computer's hardware address or the Ethernet broadcast address. However,
device driver software can reconfigure the device to allow it to also recognize one or
more multicast addresses. For example, suppose the driver configures the Ethernet mul-
ticast address:

After the configuration, an interface will accept any packet sent to the computer's uni-
cast address, the broadcast address, or that one multicast address (the hardware will con-
tinue to ignore packets sent to other multicast addresses). The next sections explain
both how IP uses basic multicast hardware and the special meaning of the multicast ad-
dress

17.5 IP Multicast

IP multicasting is the internet abstraction of hardware multicasting. It follows the
paradigm of allowing transmission to a subset of host computers, but generalizes the
concept to allow the subset to spread across arbitrary physical networks throughout the
internet. In IP terminology, a given subset is known as a multicast group. IP multicast-
ing has the following general characteristics:

Group address. Each multicast group is a unique class D address. A few IP
multicast addresses are permanently assigned by the Internet authority, and
correspond to groups that always exist even if they have no current members.
Other addresses are temporary, and are available for private use.

Number of groups. IP provides addresses for up to 228 simultaneous multicast
groups. Thus, the number of groups is limited by practical constraints on rout-
ing table size rather than addressing.

Dynamic group membership. A host can join or leave an IP multicast group at
any time. Furthermore, a host may be a member of an arbitrary number of
multicast groups.

?Dotted hexadecimal notation represents each octet as two hexadecimal digits with octets separated by
periods; the subscript 16 can be omitted only when the context is unambiguous.

322 Internet Multicasting Chap. 17

Use of hardware. If the underlying network hardware supports multicast, IF'
uses hardware multicast to send IP multicast. If the hardware does not support
multicast, IF' uses broadcast or unicast to deliver IP multicast.

Inter-network forwarding. Because members of an IF' multicast group can at-
tach to multiple physical networks, special multicast routers are required to for-
ward IF' multicast; the capability is usually added to conventional routers.

Delivery semantics. IF' multicast uses the same best-effort delivery semantics
as other IP datagram delivery, meaning that multicast datagrams can be lost, de-
layed, duplicated, or delivered out of order.

Membership and transmission. An arbitrary host may send datagrams to any
multicast group; group membership is only used to determine whether the host
receives datagram sent to the group.

17.6 The Conceptual Pieces

Three conceptual pieces are required for a general purpose internet multicasting
system:

1. A multicast addressing scheme

2. An effective notification and delivery mechanism

3. An efficient internetwork forwarding facility

Many goals, details, and constraints present challenges for an overall design. For
example, in addition to providing sufficient addresses for many groups, the multicast
addressing scheme must accommodate two conflicting goals: allow local autonomy in
assigning addresses, while defining addresses that have meaning globally. Similarly,
hosts need a notification mechanism to inform routers about multicast groups in which
they are participating, and routers need a delivery mechanism to transfer multicast pack-
ets to hosts. Again there are two possibilities: we desire a system that makes effective
use of hardware multicast when it is available, but also allows IF' multicast delivery
over networks that do not have hardware support for multicast. Finally a multicast for-
warding facility presents the biggest design challenge of the three: our goal is a scheme
that is both efficient and dynamic - it should route multicast packets along the shortest
paths, should not send a copy of a datagram along a path if the path does not lead to a
member of the group, and should allow hosts to join and leave groups at any time.

IF' multicasting includes all three aspects. It defines IP multicast addressing, speci-
fies how hosts send and receive multicast datagrams, and describes the protocol routers
use to determine multicast group membership on a network. The remainder of the
chapter considers each aspect in more detail, beginning with addressing.

Sec. 17.7 IP Multicast Addresses 323

1 7.7 IP Multicast Addresses

We said that IP multicast addresses are divided into two types: those that are per-
manently assigned, and those that are available for temporary use. Permanent addresses
are called well-known; they are used for major services on the global Internet as well as
for infrastructure maintenance (e.g., multicast routing protocols). Other multicast ad-
dresses correspond to transient multicast groups that are created when needed and dis-
carded when the count of group members reaches zero.

Like hardware multicasting, IP multicasting uses the datagram's destination ad-
dress to specify that a particular datagram must be delivered via multicast. IP reserves
class D addresses for multicast; they have the form shown in Figure 17.1.

Figure 17.1 The format of class D IP addresses used for multicasting. Bits 4
through 31 identify a particular multicast group.

0 1 2 3 4 31

The first 4 bits contain 1110 and identify the address as a multicast. The remain-
ing 28 bits specify a particular multicast group. There is no further structure in the
group bits. In particular, the group field is not partitioned into bits that identify the ori-
gin or owner of the group, nor does it contain administrative information such as wheth-
er all members of the group are on one physical network.

When expressed in dotted decimal notation, multicast addresses range from

1 1 1 0

224.0.0.0 through 239.255.255.255

Group Identification

However, many parts of the address space have been assigned special meaning. For ex-
ample, the lowest address, 224.0.0.0, is reserved; it cannot be assigned to any group.
Furthemlore, the remaining addresses up through 224.0.0.255 are devoted to multicast
routing and group maintenance protocols; a router is prohibited from forwarding a da-
tagram sent to any address in that range. Figure 17.2 shows a few examples of per-
manently assigned addresses.

Internet Multicasting Chap. 17

224.0.0.0
224.0.0.1
224.0.0.2
224.0.0.3
224.0.0.4
224.0.0.5
224.0.0.6
224.0.0.7
224.0.0.8
224.0.0.9
224.0.0.1 0
224.0.0.1 1
224.0.0.1 2
224.0.0.1 3
224.0.0.1 4
224.0.0.1 5
224.0.0.1 6
224.0.0.1 7
224.0.0.1 8

224.0.0.1 9
through

224.0.0.255
224.0.1.21
224.0.1.84
224.0.1.85
239.1 92.0.0

through
239.251.255.255

239.252.0.0
through

239.255.255.255

Address Meaning
Base Address (Reserved)
All Systems on this Subnet
All Routers on this Subnet
Unassigned
DVMRP Routers
OSPFIGP All Routers
OSPFIGP Designated Routers
ST Routers
ST Hosts
RIP2 Routers
IGRP Routers
Mobile-Agents
DHCP Server / Relay Agent
All PIM Routers
RSVP-Encapsulation
All-CBT-Routers
Designated-Sbm
All-Sbms
VRRP

Unassigned

DVMRP on MOSPF
Jini Announcement
Jini Request

Scope restricted to one organization

Scope restricted to one site

Figure 17.2 Examples of a few permanent IP multicast address assignments.
Many other addresses have specific meanings.

We will see that two of the addresses in the figure are especially important to the
multicast delivery mechanism. Address 224.0.0.1 is permanently assigned to the all
systems group, and address 224.0.0.2 is permanently assigned to the all routers group.
The all systems group includes all hosts and routers on a network that are participating
in IP multicast, whereas the all routers group includes only the routers that are partici-
pating. In general, both of these groups are used for control protocols and not for the

Sec. 17.7 IP Multicast Addresses 325

normal delivery of data. Furthermore, datagrams sent to these addresses only reach
machines on the same local network as the sender; there are no IP multicast addresses
that refer to all systems in the internet or all routers in the internet.

17.8 Multicast Address Semantics

IP treats multicast addresses differently than unicast addresses. For example, a
multicast address can only be used as a destination address. Thus, a multicast address
can never appear in the source address field of a datagram, nor can it appear in a source
route or record route option. Furthermore, no ICMP error messages can be generated
about multicast datagrams (e.g., destination unreachable, source quench, echo reply, or
time exceeded). Thus, a ping sent to a multicast address will go unanswered.

The rule prohibiting ICMP errors is somewhat surprising because IP routers do
honor the time-to-live field in the header of a multicast datagram. As usual, each router
decrements the count, and discards the datagram (without sending an ICMP message) if
the count reaches zero. We will see that some protocols use the time-to-live count as a
way to limit datagram propagation.

17.9 Mapping IP Multicast To Ethernet Multicast

Although the IP multicast standard does not cover all types of network hardware, it
does specify how to map an IP multicast address to an Ethernet multicast address. The
mapping is efficient and easy to understand:

To map an IP multicast address to the corresponding Ethernet multi-
cast address, place the low-order 23 bits of the IP multicast address
into the low-order 23 bits of the special Ethernet multicast address
01.00.5E.00.00.00,,

For example, IP multicast address 224.0.0.2 becomes Ethernet multicast address
01.00.5E.00.00.02,,.

Interestingly, the mapping is not unique. Because IP multicast addresses have 28
significant bits that identify the multicast group, more than one multicast group may
map onto the same Ethernet multicast address at the same time. The designers chose
this scheme as a compromise. On one hand, using 23 of the 28 bits for a hardware ad-
dress means most of the multicast address is included. The set of addresses is large
enough so the chances of two groups choosing addresses with all low-order 23 bits
identical is small. On the other hand, arranging for IP to use a fmed part of the Ether-
net multicast address space makes debugging much easier and eliminates interference
between IP and other protocols that share an Ethernet. The consequence of this design
is that some multicast datagrams may be received at a host that are not destined for that
host. Thus, the IP software must carefully check addresses on all incoming datagrams
and discard any unwanted multicast datagrams.

Internet Multicasting Chap. 17

17.10 Hosts And Multicast Delivery

We said that IP multicasting can be used on a single physical network or
throughout an internet. In the former case, a host can send directly to a destination host
merely by placing the datagram in a frame and using a hardware multicast address to
which the receiver is listening. In the latter case, special multicast routers forward mul-
ticast datagrams among networks, so a host must send the datagram to a multicast
router. Surprisingly, a host does not need to install a route to a multicast router, nor
does the host's default route need to specify one. Instead, the technique a host uses to
forward a multicast datagram to a router is unlike the routing lookup used for unicast
and broadcast datagrams - the host merely uses the local network hardware's multicast
capability to transmit the datagram. Multicast routers listen for all IP multicast
transmissions; if a multicast router is present on the network, it will receive the da-
tagram and forward it on to another network if necessary. Thus, the primary difference
between local and nonlocal multicast lies in multicast routers, not in hosts.

17.1 1 Multicast Scope

The scope of a multicast group refers to the range of group members. If all
members are on the same physical network, we say that the group's scope is restricted
to one network. Similarly, if all members of a group lie within a single organization,
we say that the group has a scope limited to one organization.

In addition to the group's scope, each multicast datagram has a scope which is de-
fined to be the set of networks over which a given multicast datagram will be propagat-
ed. Informally, a datagram's scope is referred to as its range.

IP uses two techniques to control multicast scope. The first technique relies on the
datagram's time-to-live (mL) field to control its range. By setting the TTL to a small
value, a host can limit the distance the datagram will be routed. For example, the stan-
dard specifies that control messages, which are used for communication between a host
and a router on the same network, must have a TTL of 1. As a consequence, a router
never forwards any datagram carrying control information because the TTL expires
causing the router to discard the datagram. Similarly, if two applications mnning on a
single host want to use IP multicast for interprocessor communication (e.g., for testing
software), they can choose a TTL value of 0 to prevent the datagram from leaving the
host. It is possible to use successively larger values of the TTL field to further extend
the notion of scope. For example, some router vendors suggest configuring routers at a
site to restrict multicast datagrams from leaving the site unless the datagram has a TTL
greater than 15. We conclude that it is possible to use the 'ITL field in a datagram
header to provide coarse-grain control over the datagram's scope.

Known as administrative scoping, the second technique used to control scoping
consists of reserving parts of the address space for groups that are local to a given site
or local to a given organization. According to the standard, routers in the Internet are
forbidden from forwarding any datagram that has an address chosen from the restricted

Sec. 17.1 1 Multicast Scope 327

space. Thus, to prevent multicast communication among group members from acciden-
tally reaching outsiders, an organization can assign the group an address that has local
scope. Figure 17.2 shows examples of address ranges that correspond to administrative
scoping.

17.12 Extending Host Software To Handle Multicasting

A host participates in IP multicast at one of three levels as Figure 17.3 shows:

Level Meaning
0 Host can neither send nor receive IP multicast
1 Host can send but not receive IP multicast
2 Host can both send and receive IP multicast

Figure 17.3 The three levels of participation in IP multicast.

Modifications that allow a host to send IP multicast are not difficult. The IP
software must allow an application program to specify a multicast address as a destina-
tion IP address, and the network interface software must be able to map an IF' multicast
address into the corresponding hardware multicast address (or use broadcast if the
hardware does not support multicasting).

Extending host software to receive IP multicast datagrams is more complex. IP
software on the host must have an API that allows an application program to declare
that it wants to join or leave a particular multicast group. If multiple application pro-
grams join the same group, the IP software must remember to pass each of them a copy
of datagrams that arrive destined for that group. If all application programs leave a
group, the host must remember that it no longer participates in the group. Furthermore,
as we will see in the next section, the host must run a protocol that informs the local
multicast routers of its group membership status. Much of the complexity comes from
a basic idea:

Hosts join specijk IP multicast groups on specific networks.

That is, a host with multiple network connections may join a particular multicast group
on one network and not on another. To understand the reason for keeping group
membership associated with networks, remember that it is possible to use IP multicast-
ing among local sets of machines. The host may want to use a multicast application to
interact with machines on one physical net, but not with machines on another.

Because group membership is associated with particular networks, the software
must keep separate lists of multicast addresses for each network to which the machine
attaches. Furthermore, an application program must specify a particular network when
it asks to join or leave a multicast group.

328 Internet Multicasting Chap. 17

17.1 3 Internet Group Management Protocol

To participate in IP multicast on a local network, a host must have software that al-
lows it to send and receive multicast datagrams. To participate in a multicast that spans
multiple networks, the host must inform local multicast routers. The local routers con-
tact other multicast routers, passing on the membership information and establishing
routes. We will see later that the concept is similar to conventional route propagation
among internet routers.

Before a multicast router can propagate multicast membership information, it must
determine that one or more hosts on the local network have decided to join a multicast
group. To do so, multicast routers and hosts that implement multicast must use the In-
ternet Group Management Protocol (IGMP) to communicate group membership infor-
mation. Because the current version is 2, the protocol described here is officially
known as IGMPv2.

IGMP is analogous to ICMP?. Like ICMP, it uses IP datagrams to carry mes-
sages. Also like ICMP, it provides a service used by IP. Therefore,

Although IGMP uses IP datagrams to carry messages, we think of it
as an integral part of ZP, not a separate protocol.

Furthermore, IGMP is a standard for TCPA'; it is required on all machines that receive
IP multicast (i.e., all hosts and routers that participate at level 2).

Conceptually, IGMP has two phases. Phase 1: When a host joins a new multicast
group, it sends an IGMP message to the group's multicast address declaring its
membership. Local multicast routers receive the message, and establish necessary rout-
ing by propagating the group membership information to other multicast routers
throughout the internet. Phase 2: Because membership is dynamic, local multicast
routers periodically poll hosts on the local network to determine whether any hosts still
remain members of each group. If any host responds for a given group, the router
keeps the group active. If no host reports membership in a group after several polls, the
multicast router assumes that none of the hosts on the network remain in the group, and
stops advertising group membership to other multicast routers.

17.14 IGMP Implementation

IGMP is carefully designed to avoid adding overhead that can congest networks.
In particular, because a given network can include multiple multicast routers as well as
hosts that all participate in multicasting, IGMP must avoid having all participants gen-
erate control traffic. There are several ways IGMP minimizes its effect on the network:

First, all communication between hosts and multicast routers uses IP multi-
cast. That is, when IGMP messages are encapsulated in an IP datagram for
transmission, the IP destination address is a multicast address - routers

tChapter 9 discusses ICMP, the Internet Control Message Protocol.

Sec. 17.14 IGMP Implementation 329

send general IGMP queries to the all hosts address, hosts send some IGMP
messages to the all routers address, and both hosts and routers send IGMP
messages that are specific to a group to the group's address. Thus, da-
tagrams carrying IGMP messages are transmitted using hardware multicast
if it is available. As a result, on networks that support hardware multicast,
hosts not participating in IP multicast never receive IGMP messages.

Second, when polling to determine group membership, a multicast router
sends a single query to request information about all groups instead of
sending a separate message to each?. The default polling rate is 125
seconds, which means that IGMP does not generate much traffic.

Third, if multiple multicast routers attach to the same network, they quickly
and efficiently choose a single router to poll host membership. Thus, the
amount of IGMP traffic on a network does not increase as additional multi-
cast routers are attached to the net.

Fourth, hosts do not respond to a router's IGMP query at the same time.
Instead, each query contains a value, N, that specifies a maximum response
time (the default is 10 seconds). When a query arrives, a host chooses a
random delay between 0 and N which it waits before sending a response.
In fact, if a given host is a member of multiple groups, the host chooses a
different random number for each. Thus, a host's response to a router's
query will be spaced randomly over 10 seconds.

Fifth, each host listens for responses from other hosts in the group, and
suppresses unnecessary response traffic.

To understand why extra responses from group members can be suppressed, recall
that a multicast router does not need to keep an exact record of group membership.
Transmissions to the group are sent using hardware multicast. Thus, a router only
needs to know whether at least one host on the network remains a member of the group.
Because a query sent to the all systems address reaches every member of a group, each
host computes a random delay and begins to wait. The host with smallest delay sends
its response first. Because the response is sent to the group's multicast address, all oth-
er members receive a copy as does the multicast router. Other members cancel their ti-
mers and suppress transmission. Thus, in practice, only one host from each group
responds to a request message.

17.1 5 Group Membership State Transitions

On a host, IGMP must remember the status of each multicast group to which the
host belongs (i.e., a group from which the host accepts datagram).$. We think of a
host as keeping a table in which it records group membership information. Initially, all
entries in the table are unused. Whenever an application program on the host joins a

?The protocol does include a message type that allows a router to query a specific group, if necessary.
, , . . . A n n ' " - . . * : - L--, ,- -_-L^-L:_ :_ .L̂ *

330 Internet Multicasting Chap. 17

new group, IGMP software allocates an entry and fills in information about the group.
Among the information, IGMP keeps a group reference counter which it initializes to 1.
Each time another application program joins the group, IGMP increments the reference
counter in the entry. If one of the application programs terminates execution (or expli-
citly drops out of the group), IGMP decrements the group's reference counter. When
the reference count reaches zero, the host informs multicast routers that it is leaving the
multicast group.

The actions IGMP software takes in response to various events can best be ex-
plained by the state transition diagram in Figure 17.4.

another hosf responds/cancel timer

m
n pin group/staft timer timer expiredsend response

leave group/cancel timer query am'ves/start timer

reference count becomes zeroAeave group

Figure 17.4 The three possible states of an entry in a host's multicast group
table and transitions among them where each transition is la-
beled with an event and an action. The state transitions do not
show messages sent when joining and leaving a group.

A host maintains an independent table entry for each group of which it is currently
a member. As the figure shows, when a host first joins the group or when a query ar-
rives from a multicast router, the host moves the entry to the DELAYING MEMBER
state and chooses a random delay. If another host in the group responds to the router's
query before the timer expires, the host cancels its timer and moves to the MEMBER
state. If the timer expires, the host sends a response message before moving to the
MEMBER state. Because a router only generates a query every 125 seconds, one ex-
pects the host to remain in the MEMBER state most of the time.

The diagram in Figure 17.4 omits a few details. For example, if a query arrives
while the host is in the DELAYING MEMBER state, the protocol requires the host to
reset its timer. More important, to maintain backward compatibility with IGMPVI, ver-
sion 2 also handles version 1 messages, making it possible to use both IGMPvl and
IGMPv2 on the same network concurrently.

Sec. 17.16 IGMP Message Format

17.16 IGMP Message Format

As Figure 17.5 shows, IGMP messages used by hosts have a simple format.

0 8 16 31

TYPE I RESPTIME I CHECKSUM

GROUP ADDRESS (ZERO IN QUERY) 1
Figure 17.5 The fomiat of the &octet IGMP message used for communica-

tion between hosts and routers.

Each IGMP message contains exactly eight octets. Field TYPE identifies the type
of message, with the possible types listed in Figure 17.6. When a router polls for group
membership, field labeled RESP TIME carries a maximum interval for the random delay
that group members compute, measured in tenths of seconds. Each host in the group
delays a random time between zero and the specified value before responding. As we
said, the default is 10 seconds, which means all hosts in a group choose a random value
between 0 and 10. IGMP allows routers set a maximum value in each query message to
give managers control over IGMP traffic. If a network contains many hosts, a higher
delay value further spreads out response times and, therefore, lowers the probability of
having more than one host respond to the query. The CHECKSUM field contains a
checksum for the message (IGMP checksums are computed over the IGMP message
only, and use the same algorithm as TCP and IP). Finally, the GROUP ADDRESS field
is either used to specify a particular group or contains zero to refer to all groups. When
it sends a query to a specific group, a router fills in the GROUP ADDRESS field; hosts
fill in the field when sending membership reports.

Type Group Address Meaning
0x1 1 unused (zero) General membership query
0x1 1 used Specific group membership query
0x1 6 used Membership report
0x1 7 used Leave group

0x1 2 used Membership report (version 1)

Figure 17.6 IGMP message types used in version 2. The version 1 member-
ship report message provides backward compatibility.

Note that IGMP does not provide a mechanism that allows a host to discover the
IP address of a group - application software must know the group address before it
can use IGMP to join the group. Some applications use permanently assigned ad-
dresses, some allow a manager to configure the address when the software is installed,

332 Internet Multicasting Chap. 17

and others obtain the address dynamically (e.g., from a server). In any case, IGMP pro-
vides no support for address lookup.

17.17 Multicast Forwarding And Routing Information

Although IGMP and the multicast addressing scheme described above spec* how
hosts interact with a local router and how multicast datagrams are transferred across a
single network, they do not specify how routers exchange group membership informa-
tion or how routers ensure that a copy of each datagram reaches all group members.
More important, although multiple protocols have been proposed, no single standard has
emerged for the propagation of multicast routing information. In fact, although much
effort has been expended, there is no agreement on an overall plan - existing protocols
differ in their goals and basic approach.

Why is multicast routing so difficult? Why not extend conventional routing
schemes to handle multicast? The answer is that multicast routing differs from conven-
tional routing in fundamental ways because multicast forwarding differs from conven-
tional forwarding. To appreciate some of the differences, consider multicast forwarding
over the architecture that Figure 17.7 depicts.

network 1

network 3
I

B C D E

I network 2

Figure 17.7 A simple internet with three networks connected by a router that
illustrates multicast forwarding. Hosts marked with a dot parti-
cipate in one multicast group while those marked with an "x"
w c i p a t e in another.

17.17.1 Need For Dynamic Routing

Even for the simple topology shown in the figure, multicast forwarding differs
from unicast forwarding. For example, the figure shows two multicast groups: the
group denoted by a dot has members A, B, and C, and the group denoted by a cross has
members D, E, and F. The dotted group has no members on network 2. To avoid
wasting bandwidth unnecessarily, the router should never send packets intended for the

Sec. 17.17 Multicast Forwarding And Routing Information 333

dotted group across network 2. However, a host can join any group at any time - if
the host is the first on its network to join the group, multicast routing must be changed
to include the network. Thus, we come to an important difference between convention-
al routing and multicast routing:

Unlike unicast routing in which routes change only when the topology
changes or equipment fails, multicast routes can change simply be-
cause an application program joins or leaves a multicast group.

17.1 7.2 lnsuff iciency Of Destination Routing

The example in Figure 17.7 illustrates another aspect of multicast routing. If host
F and host E each send a datagram to the cross group, router R will receive and forward
them. Because both datagrams are directed at the same group, they have the same des-
tination address. However, the correct forwarding actions differ: R sends the datagram
from E to net 2, and sends the datagram from F to net 1. Interestingly, when it receives
a datagram destinated for the cross group sent by host A, the router uses a third action:
it forwards two copies, one to net 1 and the other to net 2. Thus, we see the second
major difference between conventional forwarding and multicast forwarding:

Multicast forwarding requires a router to examine more than the des-
tination address.

17.17.3 Arbitrary Senders

The final feature of multicast routing illustrated by Figure 17.7 arises because IP
allows an arbitrary host, one that is not necessarily a member of the group, to send a da-
tagram to the group. In the figure, for example, host G can send a datagram to the dot-
ted group even though G is not a member of any group and there are no members of the
dotted group on G's network. More important, as it travels through the internet, the da-
tagram may pass across other networks that have no group members attached. Thus, we
can summarize:

A multicast datagram may originate on a computer that is not part of
the multicast group, and may be routed across networks that do not
have any group members attached.

334 Internet Multicasting Chap. 17

17.18 Basic Multicast Routing Paradigms

We know from the example above that multicast routers use more than the destina-
tion address to forward datagram, so the question arises: "exactly what information
does a multicast router use when deciding how to forward a datagram?" The answer
lies in understanding that because a multicast destination represents a set of computers,
an optimal forwarding system will reach all members of the set without sending a da-
tagram across a given network twice. Although a single multicast router such as the
one in Figure 17.7 can simply avoid sending a datagram back over the interface on
which it arrives, using the interface alone will not prevent a datagram from being for-
warded among a set of routers that are arranged in a cycle. To avoid such routing
loops, multicast routers rely on the datagram's source address.

One of the first ideas to emerge for multicast forwarding was a form of broadcast-
ing described earlier. Known as Reverse Path Forwarding (RPF),I- the scheme uses a
datagram's source address to prevent the datagram from traveling around a loop repeat-
edly. To use RPF, a multicast router must have a conventional routing table with shor-
test paths to all destinations. When a datagram arrives, the router extracts the source
address, looks it up in the local routing table, and finds I, the interface that leads to the
source. If the datagram arrived over interface I, the router forwards a copy to each of
the other interfaces; otherwise, the router discards the copy.

Because it ensures that a copy of each multicast datagram is sent across every net-
work in the internet, the basic RPF scheme guarantees that every host in a multicast
group will receive a copy of each datagram sent to the group. However, RPF alone is
not used for multicast routing because it wastes bandwidth by transmitting multicast da-
tagrams over networks that neither have group members nor lead to group members.

To avoid propagating multicast datagrams where they are not needed, a modified
form of RPF was invented. Known as Truncated Reverse Path Forwarding (TRPF) or
Truncated Reverse Path Broadcasting (TRPB), the scheme follows the RPF algorithm,
but further restricts propagation by avoiding paths that do not lead to group members.
To use TRPF, a multicast router needs two pieces of information: a conventional rout-
ing table and a list of multicast groups reachable through each network interface. When
a multicast datagram anives, the router first applies the RPF rule. If RPF specifies dis-
carding the copy, the router does so. However, if RPF specifies transmitting the da-
tagram over a particular interface, the router first makes an additional check to venfy
that one or more members of the group designated in the datagram's destination address
are reachable over the interface. If no group members are reachable over the interface,
the router skips that interface, and continues examining the next one. In fact, we can
now understand the origin of the term truncated - a router truncates forwarding when
no more group members lie along the path.

We can summarize:

When making a forwarding decision, a multicast router uses both the
datagram's source and destination addresses. The basic forwarding
mechanism is known as Truncated Reverse Path Forwarding.

+Reverse path forwarding is sometimes called Reverse Path Broadcasting (RPB).

Sec. 17.18 Basic Multicast Routing Paradigms

17.19 Consequences Of TRPF

Although TRPF guarantees that each member of a multicast group receives a copy
of each datagram sent to the group, it has two surprising consequences. First, because it
relies on RPF to prevent loops, TRPF delivers an extra copy of datagrams to some net-
works just like conventional RPF. Figure 17.8 illustrates how duplicates arise.

network 1
I 1 I

1 network 4

I

Figure 17.8 A topology that causes an RPF scheme to deliver multiple copies
of a datagram to some destinations.

In the figure, when host A sends a datagram, routers R, and R2 each receive a copy.
Because the datagram arrives over the interface that lies along the shortest path to A, R,
forwards a copy to network 2, and R2 forwards a copy to network 3. When it receives a
copy from network 2 (the shortest path to A), R, forwards the copy to network 4. Un-
fortunately, R4 also forwards a copy to network 4. Thus, although RPF allows R, and
R4 to prevent a loop by discarding the copy that arrives over network 4, host B receives
two copies of the datagram.

A second surprising consequence arises because TRPF uses both source and desti-
nation addresses when forwarding datagrarns: delivery depends on a datagram's source.
For example, Figure 17.9 shows how multicast routers forward datagrams from two dif-
ferent sources across a fixed topology.

Internet Multicasting Chap. 17

net 1

net 4 net 6

net 1

Figure 17.9 Examples of paths a multicast datagram follows under TRPF as-
suming the source is (a) host X, and @) host Z, and the group
has a member on each of the networks. The number of copies
received depends on the source.

As the figure shows, the source affects both the path a datagram follows to reach a
given network as well as the delivery details. For example, in part (a) of the figure, a
transmission by host X causes TRPF to deliver two copies of the datagram to network 5.
In part (b), only one copy of a transmission by host Z reaches network 5, but two copies
reach networks 2 and 4.

Sec. 17.20 Multicast Trees

17.20 Multicast Trees

Researchers use graph theory terminology to describe the set of paths from a given
source to all members of a multicast group: they say that the paths define a graph-
theoretic tree?, which is sometimes called a forwarding tree or a delivery tree. Each
multicast router corresponds to a node in the tree, and a network that connects two
routers corresponds to an edge in the tree. The source of a datagram is the root or root
node of the tree. Finally, the last router along each of the paths from the source is
called a leaf router. The terminology is sometimes applied to networks as well -
researchers call a network hanging off a leaf router a leaf network.

As an example of the terminology, consider Figure 17.9. Part a shows a tree with
mot X, and leaves R,, R,, R,, and R,. Technically, part b does not show a tree because
router R, lies along two paths. Informally, researchers often overlook the details and
refer to such graphs as trees.

The graph terminology allows us to express an important principle:

A multicast forwarding tree is defined as a set of paths through multi-
cast routers from a source to all members of a multicast group. For a
given multicast group, each possible source of datagrams can deter-
mine a dzfferent forwarding tree.

One of the immediate consequences of the principle concerns the size of tables
used to forward multicast. Unlike conventional routing tables, each entry in a multicast
table is identified by a pair:

(multicast group, source)

Conceptually, source identifies a single host that can send datagrams to the group (i.e.,
any host in the internet). In practice, keeping a separate entry for each host is unwise
because the forwarding trees defined by all hosts on a single network are identical.
Thus, to save space, routing protocol use a network prefix as a source. That is, each
router defines one forwarding entry that is used for all hosts on the same physical net-
work.

Aggregating entries by network prefix instead of by host address reduces the table
size dramatically. However, multicast routing tables can grow much larger than con-
ventional routing tables. Unlike a conventional table in which the size is proportional
to the number of networks in the internet, a multicast table has size proportional to the
product of the number of networks in the internet and the number of multicast groups.

tA graph is a tree if it does not contain any cycles (i.e., a router does not appear on more than one path).

338 Internet Multicasting Chap. 17

17.21 The Essence Of Multicast Routing

Observant readers may have noticed an inconsistency between the features of IP
multicasting and TRPF. We said that TRPF is used instead of conventional RPF to
avoid unnecessary traffic: TRPF does not forward a datagram to a network unless that
network leads to at least one member of the group. Consequently, a multicast router
must have knowledge of group membership. We also said that IP allows any host to
join or leave a multicast group at any time, which results in rapid membership changes.
More important, membership does not follow local scope - a host that joins may be far
from some router that is forwarding datagrams to the group. So, group membership in-
formation must be propagated across the internet.

The issue of membership is central to routing; all multicast routing schemes pro-
vide a mechanism for propagating membership information as well as a way to use the
information when forwarding datagrams. In general, because membership can change
rapidly, the information available at a given router is imperfect, so routing may lag
changes. Therefore, a multicast design represents a tradeoff between routing traffic
overhead and inefficient data transmission. On one hand, if group membership informa-
tion is not propagated rapidly, multicast routers will not make optimal decisions (i.e.,
they either forward datagrams across some networks unnecessarily or fail to send da-
tagrams to all group members). On the other hand, a multicast routing scheme that
communicates every membership change to every router is doomed because the result-
ing traffic can overwhelm an internet. Each design chooses a compromise between the
two extremes.

17.22 Reverse Path Multicasting

One of the earliest forms of multicast routing was derived from TRPF. Known as
Reverse Path Multicast (RPM), the scheme extends TRPF to make it more dynamic.
Three assumptions underlie the design. First, it is more important to ensure that a mul-
ticast datagram reaches each member of the group to which it is sent than to eliminate
unnecessary transmission. Second, multicast routers each contain a conventional rout-
ing table that has correct information. Third, multicast routing should improve efficien-
cy when possible (i.e. eliminate needless transmission).

RPM uses a two step process. When it begins, RPM uses the RPF broadcast
scheme to send a copy of each datagram across all networks in the internet. Doing so
ensures that all group members receive a copy. Simultaneously, RPM proceeds to have
multicast routers inform one another about paths that do not lead to group members.
Once it learns that no group members lie along a given path, a router stops forwarding
along that path.

How do routers learn about the location of group members? As in most multicast
routing schemes, RPM propagates membership information bottom-up. The informa-
tion starts with hosts that choose to join or leave groups. Hosts communicate member-
ship information with their local router by using IGMP. Thus, although a multicast

Sec. 17.22 Reverse Path Multicasting 339

router does not know about distant group members, it does know about local members
(i.e. members on each of its directly-attached networks). As a consequence, routers at-
tached to leaf networks can decide whether to forward over the leaf network - if a leaf
network contains no members for a given group, the router connecting that network to
the rest of the internet does not forward on the network. In addition to taking local ac-
tion, the leaf router infornls the next router along the path back to the source. Once it
learns that no group members lie beyond a given network interface, the next router
stops forwarding datagrams for the group across the network. When a router finds that
no group members lie beyond it, the router informs the next router along the path to the
root.

Using graph-theoretic terminology, we say that when a router learns that a group
has no members along a path and stops forwarding, it has pruned (i.e., removed) the
path from the forwarding tree. In fact, RPM is called a broadcast and prune strategy
because a router broadcasts (using RPF) until it receives information that allows it to
prune a path. Researchers also use another tern1 for the RPM algorithm: they say that
the system is data-driven because a router does not send group membership information
to any other routers until datagrams arrive for that group.

In the data-driven model, a router must also handle the case where a host decides
to join a particular group after the router has pruned the path for that group. RPM han-
dles joins bottom-up: when a host informs a local router that it has joined a group, the
router consults its record of the group and obtains the address of the router to which it
had previously sent a prune request. The router sends a new message that undoes the
effect of the previous prune and causes datagrams to flow again. Such messages are
known as graji requests, and the algorithm is said to graft the previously pruned branch
back onto the tree.

17.23 Distance Vector Multicast Routing Protocol

One of the first multicast routing protocols is still in use in the global Internet.
Known as the Distance Vector Multicast Routing Protocol (DVMRP), the protocol al-
lows multicast routers to pass group membership and routing information among them-
selves. DVMRP resembles the RIP protocol described in Chapter 16, but has been ex-
tended for multicast. In essence, the protocol passes information about current multicast
group membership and the cost to transfer datagrams between routers. For each possi-
ble (group, source) pair, the routers impose a forwarding tree on top of the physical in-
terconnections. When a router receives a datagram destined for an IP multicast group,
it sends a copy of the datagram out over the network links that correspond to branches
in the forwarding tree?.

Interestingly, DVMRP defines an extended form of IGMP used for communication
between a pair of multicast routers. It specifies additional IGMP message types that al-
low routers to declare membership in a multicast group, leave a multicast group, and in-
terrogate other routers. The extensions also provide messages that carry routing infor-
mation, including cost metrics.

tDVMRP changed substantially between version 2 and 3 when it incorporated the RPM algorithm
described above.

340 Internet Multicasting Chap. 17

17.24 The Mrouted Program

Mrouted is a well-known program that implements DVMRP for UNM systems.
Like routed?, mrouted cooperates closely with the operating system kernel to install
multicast routing information. Unlike routed, however, mrouted does not use the stan-
dard routing table. Instead, it can be used only with a special version of UNIX known
as a multicast kernel. A UNIX multicast kernel contains a special multicast routing
table as well as the code needed to forward multicast datagrams. Mrouted handles:

Route propagation. Mrouted uses DVMRP to propagate multicast
routing information from one router to another. A computer running
mrouted interprets multicast routing information, and constructs a mul-
ticast routing table. As expected, each entry in the table specifies a
(group, source) pair and a corresponding set of interfaces over which to
forward datagrams that match the entry. Mrouted does not replace
conventional route propagation protocols; a computer usually runs
mrouted in addition to standard routing protocol software.

Multicast tunneling. One of the chief problems with internet multicast
arises because not all internet routers can forward multicast datagrams.
Mrouted can arrange to tunnel a multicast datagram from one router to
another through intermediate routers that do not participate in multicast
routing.

Although a single mrouted program can perform both tasks, a given computer may
not need both functions. To allow a manager to specify exactly how it should operate,
mrouted uses a configuration file. The configuration file contains entries that specify
which multicast groups mrouted is permitted to advertise on each interface, and how it
should forward datagrams. Furthermore, the configuration file associates a metric and
threshold with each route. The metric allows a manager to assign a cost to each path
(e.g., to ensure that the cost assigned to a path over a local area network will be lower
than the cost of a path across a slow serial link). The threshold gives the minimum IP
time to live (7TL) that a datagram needs to complete the path. If a datagram does not
have a sufficient lTL to reach its destination, a multicast kernel does not forward the
datagram. Instead, it discards the datagram, which avoids wasting bandwidth.

Multicast tunneling is perhaps the most interesting capability of mrouted. A tunnel
is needed when two or more hosts wish to participate in multicast applications, and one
or more routers along the path between the participating hosts do not run multicast rout-
ing software. Figure 17.10 illustrates the concept.

?Recall that routed is the UNIX program that implements RIP.

Sec. 17.24 The Mrouted Program 34 1

net 1 net 2

(with no support

Figure 17.10 An example internet configuration that requires multicast tun-
neling for computers attached to networks 1 and 2 to partici-
pate in multicast communication. Routers in the internet that
separates the two networks do not propagate multicast routes,
and cannot forward datagrarns sent to a multicast address.

To allow hosts on networks 1 and 2 to exchange multicast, managers of the two
routers configure an mrouted tunnel. The tunnel merely consists of an agreement
between the mrouted programs running on the two routers to exchange datagrams.
Each router listens on its local net for datagrarns sent to the specified multicast destina-
tion for which the tunnel has been configured. When a multicast datagram arrives that
has a destination address equal to one of the configured tunnels, mrouted encapsulates
the datagram in a conventional unicast datagram and sends it across the internet to the
other router. When it receives a unicast datagram through one of its tunnels, mrouted
extracts the multicast datagram, and then forwards according to its multicast routing
table.

The encapsulation technique that mrouted uses to tunnel datagrams is known as
ZP-in-ZP. Figure 17.1 1 illustrates the concept.

I DtgiE I MULTICAST DATAGRAM DATA AREA I

Figure 17.11 An illustration of IP-in-IP encapsulation in which one datagram
is placed in the data area of another. A pair of multicast
routers use the encapsulation to communicate when intermedi-
ate routers do not understand multicasting.

342 Internet Multicasting Chap. 17

As the figure shows, IP-in-IP encapsulation preserves the original multicast da-
tagram, including the header, by placing it in the data area of a conventional unicast da-
tagram. On the receiving machine, the multicast kernel extracts and processes the mul-
ticast datagram as if it arrived over a local interface. In particular, once it extracts the
multicast datagram, the receiving machine must decrement the time to live field in the
header by one before forwarding. Thus, when it creates a tunnel, mrouted treats the in-
ternet connecting two multicast routers like a single, physical network. Note that the
outer, unicast datagram has its own time to live counter, which operates independently
from the time to live counter in the multicast datagram header. Thus, it is possible to
limit the number of physical hops across a given tunnel independent of the number of
logical hops a multicast datagram must visit on its journey from the original source to
the ultimate destination.

Multicast tunnels form the basis of the Internet's Multicast Backbone (MBONE).
Many Internet sites participate in the MBONE; the MBONE allows hosts at participat-
ing sites to send and receive multicast datagrams, which are then propagated to all other
participating sites. The MBONE is often used to propagate audio and video (e.g., for
teleconferences).

To participate in the MBONE, a site must have at least one multicast router con-
nected to at least one local network. Another site must agree to tunnel traffic, and a
tunnel is configured between routers at the two sites. When a host at the site sends a
multicast datagram, the local router at the host's site receives a copy, consults its multi-
cast routing table, and forwards the datagram over the tunnel using IP-in-IP. When it
receives a multicast datagram over a tunnel, a multicast router removes the outer encap-
sulation, and then forwards the datagram according to the local multicast routing table.

The easiest way to understand the MBONE is to think of it as a virtual network
built on top of the Internet (which is a virtual network). Conceptually, the MBONE
consists of multicast routers that are interconnected by a set of point-to-point networks.
Some of the conceptual point-to-point connections coincide with physical networks;
others are achieved by tunneling. The details are hidden from the multicast routing
software. Thus, when mrouted computes a multicast forwarding tree for a given
(group, source), it thinks of a tunnel as a single link connecting two routers.

Tunneling has two consequences. First, because some tunnels are much more ex-
pensive than others, they cannot all be treated equally. Mrouted handles the problem by
allowing a manager to assign a cost to each tunnel, and uses the costs when choosing
routes. Typically, a manager assigns a cost that reflects the number of hops in the
underlying internet. It is also possible to assign costs that reflect administrative boun-
daries (e.g., the cost assigned to a tunnel between two sites in the same company is as-
signed a much lower cost than a tunnel to another company). Second, because DVMRP
forwarding depends on knowing the shortest path to each source, and because multicast
tunnels are completely unknown to conventional routing protocols, DVMRP must com-
pute its own version of unicast forwarding that includes the tunnels.

Sec. 17.25 Alternative Protocols 343

17.25 Alternative Protocols

Although DVMRP has been used in the MBONE for many years, as the Internet
grew, the IETF became aware of its limitations. Like RIP, DVMRP uses a small value
for infinity. More important, the amount of information DVMRP keeps is overwhelm-
ing - in addition to entries for each active (group, source), it must also store entries for
previously active groups so it knows where to send a graft message when a host joins a
group that was pruned. Finally, DVMRP uses a broadcast-and-prune paradigm that
generates traffic on all networks until membership information can be propagated. Iron-
ically, DVMRP also uses a distance-vector algorithm to propagate membership informa-
tion, which makes propagation slow.

Taken together, the limitations of DVMRP mean that it cannot scale to handle a
large number of routers, larger numbers of multicast groups, or rapid changes in
membership. Thus, DVMRP is inappropriate as a general-purpose multicast routing
protocol for the global Internet.

To overcome the limitations of DVMRP, the IETF has investigated other multicast
protocols. Efforts have resulted in several designs, including Core Based Trees (CBT),
Protocol Independent Multicast (PIM), and Multicast extensions to OSPF (MOSPF).
Each is intended to handle the problems of scale, but does so in a slightly different way.
Although all these protocols have been implemented and both PIM and MOSPF have
been used in parts of the MBONE, none of them is a required standard.

17.26 Core Based Trees (CBT)

CBT avoids broadcasting and allows all sources to share the same forwarding tree
whenever possible. To avoid broadcasting, CBT does not forward multicasts along a
path until one or more hosts along that path join the multicast group. Thus, CBT rev-
erses the fundamental scheme used by DVMRP - instead of forwarding datagrams un-
til negative information has been propagated, CBT does not forward along a path until
positive information has been received. We say that instead of using the data-driven
paradigm, CBT uses a demand-driven paradigm.

The demand-driven paradigm in CBT means that when a host uses IGMP to join a
particular group, the local router must then inform other routers before datagrams will
be forwarded. Which router or routers should be informed? The question is critical in
all demand-driven multicast routing schemes. Recall that in a data-driven scheme, a
router uses the arrival of data traffic to know where to send routing messages (it pro-
pagates routing messages back over networks from which the traffic arrives). However,
in a positive-infom~ation scheme, no traffic will arrive for a group until the membership
information has been propagated.

CBT uses a combination of static and dynamic algorithms to build a multicast for-
warding tree. To make the scheme scalable, CBT divides the internet into regions,
where the size of a region is determined by network administrators. Within each re-
gion, one of the routers is designated as a core router; other routers in the region must

344 Internet Multicasting Chap. 17

either be configured to know the core for their region, or use a dynamic discovery
mechanism to find it. In any case, core discovery only occurs when a router boots.

Knowledge of a core is important because it allows multicast routers in a region to
form a shared tree for the region. As soon as a host joins a multicast group, the local
router that receives the host request, L, generates a CBT join request which it sends to
the core using conventional unicast routing. Each intermediate router along the path to
the core examines the request. As soon as the request reaches a router R that is already
part of the CBT shared tree, R returns an acknowledgement, passes the group member-
ship information on to its parent, and begins forwarding traffic for the group. As the
acknowledgement passes back to the leaf router, intermediate routers examine the mes-
sage, and configure their multicast routing table to forward datagrams for the group.
Thus, router L is linked into the forwarding tree at router R.

We can summarize:

Because CBT uses a demand-driven paradigm, it divides the internet
into regions and designates a core router for each region; other
routers in the region dynamically build a forwarding tree by sending
join requests to the core.

CBT includes a facility for tree maintenance that detects when a link between a
pair of routers fails. To detect failure, each router periodically sends a CBT echo re-
quest to its parent in the tree (i.e., the next router along the path to the core). If the re-
quest is unacknowledged, CBT informs any routers that depend on it, and proceeds to
rejoin the tree at another point.

17.27 Protocol Independent Multicast (PIM)

In reality, PIM consists of two independent protocols that share little beyond the
name and basic message header formats: PIM - Dense Mode (PIM-DM) and PIM -
Sparse Mode (PIM-SM). The distinction arises because no single protocol works well
in all possible situations. In particular, PIM's dense mode is designed for a LAN en-
vironment in which all, or nearly all, networks have hosts listening to each multicast
group; whereas, PIM's sparse mode is deigned to accommodate a wide area environ-
ment in which the members of a given multicast group occupy a small subset of all pos-
sible networks.

17.27.1 PIM Dense Mode (PIM-DM)

Because PIM's dense mode assumes low-delay networks that have plenty of
bandwidth, the protocol has been optimized to guarantee delivery rather than to reduce
overhead. Thus, PIM-DM uses a broadcast-and-prune approach similar to DVMRP -
it begins by using RPF to broadcast each datagram to every group, and only stops send-
ing when it receives explicit prune requests.

Sec. 17.27 Rotocol Independent Multicast (PIM) 345

17.27.2 Protocol Independence

The greatest difference between DVMRP and PIM dense mode arises from the in-
formation PIM assumes is available. In particular, in order to use RPF, PIM-DM dense
mode requires traditional unicast routing information - the shortest path to each desti-
nation must be known. Unlike DVMRP, however, PIM-DM does not contain facilities
to propagate conventional routes. Instead, it assumes the router also uses a convention-
al routing protocol that computes the shortest path to each destination, installs the route
in the routing table, and maintains the route over time. In fact, part of PIM-DM'S pro-
tocol independence refers to its ability to co-exist with standard routing protocols.
Thus, a router can use any of the routing protocols discussed (e.g., RIP, or OSPF) to
maintain correct unicast routes, and PIM's dense mode can use routes produced by any
of them. To summarize:

Although it assumes a correct unicast routing table exists, PIM dense
mode does not propagate unicast routes. Instead, it assumes each
router also runs a conventional routing protocol which maintains the
unicast routes.

17.27.3 PIM Sparse Mode (PIM-SM)

PIM's sparse mode can be viewed as an extension of basic concepts from CBT.
Like CBT, PIM-SM is demand-driven. Also like CBT, PIM-SM needs a point to which
join messages can be sent. Therefore, sparse mode designates a router called a Rendez-
vous Point (RP) that is the functional equivalent of a CBT core. When a host joins a
multicast group, the local router unicasts a join request to the RP; routers along the path
examine the message, and if any router is already part of the tree, the router intercepts
the message and replies. Thus, PIM-SM builds a shared forwarding tree for each group
like CBT, and the trees are rooted at the rendezvous point?.

The main conceptual difference between CBT and PIM-SM arises from sparse
mode's ability to optimize connectivity through reconfiguration. For example, instead
of a single RP, each sparse mode router maintains a set of potential RP routers, with
one selected at any time. If the current RP becomes unreachable (e.g., because a net-
work failure causes disconnection), PIM-SM selects another RP from the set and starts
rebuilding the forwarding tree for each multicast group. The next section considers a
more significant reconfiguration.

17.27.4 Switching From Shared To Shortest Path Trees

In addition to selecting an alternative RP, PIM-SM can switch from the shared tree
to a Shortest Path tree (SP tree). To understand the motivation, consider the network
interconnection that Figure 17.12 illustrates.

When an arbitrary host sends a datagram to a multicast group, the datagram is t ~ ~ e k d to the RP for the
group, which then multicasts the datagram down the shared tree.

346 Internet Multicasting Chap. 17

net 1

f-- source
X

net 2 net 3

net 6 - member
Y

I net 7 I

Figure 17.12 A set of networks with a rendezvous point and a multicast
group that contains two members. The demand-driven strategy
of building a shared tree to the rendezvous results in nonop-
timal routing.

In the figure, router R, has been selected as the RP. Thus, routers join the shared
tree by sending along a path to R,. For example, assume hosts X and Y have joined a
particular multicast group. The path to the shared tree from host X consists of routers
R,, R,, and R,, and the path from host Y to the shared tree consists of routers R,, R,-, R,,
and R,.

Although the shared tree approach forms shortest paths from each host to the RP, it
may not optimize routing. In particular, if group members are not close to the RP, the
inefficiency can be significant. For example, the figure shows that when host X sends a
datagram to the group, the datagram is routed from X to the RP and from the RP to Y.
Thus, the datagram must pass through six routers. However, the optimal (i.e., shortest)
path from X to Y only contains two routers (R, and R,).

PIM sparse mode includes a facility to allow a router to choose between the shared
tree or a shorest path tree to the source (sometimes called a source tree). Although
switching trees is conceptually straightforward, many details complicate the protocol.
For example, most implementations use the receipt of traffic to trigger the change - if
the traffic from a particular source exceeds a preset threshold, the router begins to estab-
lish a shortest path?. Unfortunately, traffic can change rapidly, so routers must apply
hysteresis to prevent oscillations. Furthermore, the change requires routers along the
shortest path to cooperate; all routers must agree to forward datagrams for the group.
Interestingly, because the change affects only a single source, a router must continue its
connection to the shared tree so it can continue to receive from other sources. More im-
portant, it must keep sufficient routing information to avoid forwarding multiple copies
of each datagram from a (group, source) pair for which a shortest path tree has been es-
tablished.

tThe implementation from at least one vendor starts building a shortest path immediately (i.e., the traffic
threshold is zero).

Sec. 17.28 Multicast Extensions To OSPF (MOSPF) 347

17.28 Multicast Extensions To OSPF (MOSPF)

So far, we have seen that multicast routing protocols like PIM can use infomiation
from a unicast routing table to form delivery trees. Researchers have also investigated a
broader question: "how can multicast routing benefit from additional information that is
gathered by conventional routing protocols?" In particular, a link state protocol such as
OSPF provides each router with a copy of the internet topology. More specifically,
OSPF provides the router with the topology of its OSPF area.

When such information is available, multicast protocols can indeed use it to com-
pute a forwarding tree. The idea has been demonstrated in a protocol known as Multi-
cast extensions to OSPF (MOSPF), which uses OSPF's topology database to fornl a for-
warding tree for each source. MOSPF has the advantage of being demand-driven,
meaning that the traffic for a particular group is not propagated until it is needed (i.e.,
because a host joins or leaves the group). The disadvantage of a demand-driven scheme
arises from the cost of propagating routing information - all routers in an area must
maintain membership about every group. Furthermore, the information must be syn-
chronized to ensure that every router has exactly the same database. As a consequence,
MOSPF sends less data traffic, but sends more routing information than data-driven
protocols.

Although MOSPF's paradigm of sending all group information to all routers works
within an area, it cannot scale to an arbitrary internet. Thus, MOSPF defines inter-area
multicast routing in a slightly different way. OSPF designates one or more routers in an
area to be an Area Border Router (ABR) which then propagates routing infornlation to
other areas. MOSPF further designates one or more of the area's ABRs to be a Multi-
cast Area Border Router MABR which propagates group membership infomiation to
other areas. MABRs do not implement a symmetric transfer. Instead, MABRs use a
core approach - they propagate membership information from their area to the back-
bone area, but do not propagate information from the backbone down.

An MABR can propagate multicast information to another area without acting as
an active receiver for traffic. Instead, each area designates a router to receive multicast
on behalf of the area. When an outside area sends in multicast traffic, traffic for all
groups in the area is sent to the designated receiver, which is sometimes called a multi-
cast wildcard receiver.

17.29 Reliable Multicast And ACK Implosions

The tern1 reliable multicast refers to any system that uses multicast delivery, but
also guarantees that all group members receive data in order without any loss, duplica-
tion, or corruption. In theory, reliable multicast combines the advantage of a forward-
ing scheme that is more efficient than broadcast with the advantage of having all data
arrive intact. Thus, reliable multicast has great potential benefit and applicability (e.g.,
a stock exchange could use reliable multicast to deliver stock prices to many destina-
tions).

348 Internet Multicasting Chap. 17

In practice, reliable multicast is not as general or straightforward as it sounds.
First, if a multicast group has multiple senders, the notion of delivering datagrams "in
sequence" becomes meaningless. Second, we have seen that widely used multicast for-
warding schemes such as RPF can produce duplication even on small internets. Third,
in addition to guarantees that all data will eventually arrive, applications like audio or
video expect reliable systems to bound the delay and jitter. Fourth, because reliability
requires acknowledgements and a multicast group can have an arbitrary number of
members, traditional reliable protocols require a sender to handle an arbitrary number of
acknowledgements. Unfortunately, no computer has enough processing power to do so.
We refer to the problem as an ACK implosion; it has become the main focus of much
research.

.-
To overcome the ACK implosion problem, reliable multicast protocols take a

hierarchical approach in which multicasting is restricted to a single source?. Before
data is sent, a forwarding tree is established from the source to all group members, and
acknowledgement points must be identified.

An acknowledgement point, which is also known as an acknowledgement aggrega-
tor or designated router (DR), consists of a router in the forwarding tree that agrees to
cache copies of the data and process acknowledgements from routers or hosts further
down the tree. If a retransmission is required, the acknowledgement point obtains a
copy from its cache.

Most reliable multicast schemes use negative rather than positive acknowledge-
ments - the host does not respond unless a datagram is lost. To allow a host to detect
loss, each datagram must be assigned a unique sequence number. When it detects loss,
a host sends a NACK to request retransmission. The NACK propagates along the for-
warding tree toward the source until it reaches an acknowledgement point. The ack-
nowledgement point processes the NACK, and retransmits a copy of the lost datagram
along the forwarding tree.

How does an acknowledgement point ensure that it has a copy of all datagrams in
the sequence? It uses the same scheme as a host. When a datagram arrives, the ack-
nowledgement point checks the sequence number, places a copy in its memory, and
then proceeds to propagate the datagram down the forwarding tree. If it finds that a da-
tagram is missing, the acknowledgement point sends a NACK up the tree toward the
source. The NACK either reaches another acknowledgement point that has a copy of
the datagram (in which case that acknowledgement point transmits a second copy), or
the NACK reaches the source (which retransmits the missing datagram).

The choice of branching topology and acknowledgement points is crucial to the
success of a reliable multicast scheme. Without sufficient acknowledgement points, a
missing datagram can cause an ACK implosion. In particular, if a given router has
many descendants, a lost datagram can cause that router to be overrun with retransmis-
sion requests. Unfortunately, automating selection of acknowledgement points has not
turned out to be simple. Consequently, many reliable multicast protocols require manu-
al configuration. Thus, multicast is best suited to: services that tend to persist over long
periods of time, topologies that do not change rapidly, and situations where intermediate
routers agree to serve as acknowledgement points.

?Note that a single source does not limit functionality because the source can agree to forward any mes-
sage it receives via unicast. Thus, an arbitrary host can send a packet to the source, which then multicasts the
packet to the group.

Sec. 17.29 Reliable Multicast And ACK Implosions 349

Is there an alternative approach to reliability? Some researchers are experimenting
with protocols that incorporate redundant infornlation to reduce or eliminate retransmis-
sion. One scheme sends redundant datagrams. Instead of sending a single copy of each
datagram, the source sends N copies (typically 2 or 3). Redundant datagrams work
especially well when routers implement a Random Early Discard (RED) strategy be-
cause the probability of more than one copy being discarded is extremely small.

Another approach to redundancy involves forward error-correcting codes. Analo-
gous to the error-correcting codes used with audio CDs, the scheme requires a sender to
incorporate error-correction infomlation into each datagram in a data stream. If one da-
tagram is lost, the error correcting code contains sufficient redundant information to al-
low a receiver to reconstruct the missing datagram without requesting a retransmission.

17.30 Summary

IP multicasting is an abstraction of hardware multicasting. It allows delivery of a
datagram to multiple destinations. IP uses class D addresses to specify multicast
delivery; actual transmission uses hardware multicast, if it is available.

IP multicast groups are dynamic: a host can join or leave a group at any time. For
local multicast, hosts only need the ability to send and receive multicast datagrams.
However, IP multicasting is not limited to a single physical network - multicast routers
propagate group membership information and arrange routing so that each member of a
multicast group receives a copy of every datagram sent to that group.

Hosts communicate their group membership to multicast routers using IGMP.
IGMP has been designed to be efficient and to avoid using network resources. In most
cases, the only traffic IGMP introduces is a periodic message from a multicast router
and a single reply for each multicast group to which hosts on that network belong.

A variety of protocols have been designed to propagate multicast routing infom~a-
tion across an internet. The two basic approaches are data-driven and demand-driven.
In either case, the amount of information in a multicast forwarding table is much larger
than in a unicast routing table because multicasting requires entries for each
(group, source) pair.

Not all routers in the global Internet propagate multicast routes or forward multi-
cast traffic. Groups at two or more sites, separated by an internet that does not support
multicast routing, can use an IP tunnel to transfer multicast datagrams. When using a
tunnel, a program encapsulates a multicast datagram in a conventional unicast datagram.
The receiver must extract and handle the multicast datagram.

Reliable multicast refers to a scheme that uses multicast forwarding but offers reli-
able delivery semantics. To avoid the ACK implosion problem, reliable multicast
schemes either use a hierarchy of acknowledgement points or send redundant infomla-
tion.

Internet Multicasting Chap. 17

Deering [RFC 22361 specifies the standard for IP multicasting described in this
chapter, which includes version 2 of IGMP. Waitzman, Partridge, and Deering [RFC
10751 describes DVMRP, Estrin et. al. [RFC 23621 describes PIM sparse mode, Ballar-
die [RFCs 2189 22011 describes CBT, and Moy [RFC 15851 describes MOSPF.

Eriksson [I9941 explains the multicast backbone. Casner and Deering [July 19921
reports on the first multicast of an IETF meeting.

The standard suggests using 23 bits of an IP multicast address to form a hardware multi-
cast address. In such a scheme, how many IP multicast addresses map to a single
hardware multicast address?

Argue that IP multicast addresses should use only 23 of the 28 possible bits. Hint: what
are the practical limits on the number of groups to which a host can belong and the
number of hosts on a single network?

IP must always check the destination addresses on incoming multicast datagrams and
discard datagrams if the host is not in the specified multicast group. Explain how the
host might receive a multicast destined for a group to which that host is not a member.
Multicast routers need to know whether a group has members on a given network. Is
there any advantage to them knowing the exact set of hosts on a network that belong to a
given multicast group?

Find three applications in your environment that can benefit from IP multicast.

The standard says that IP software must arrange to deliver a copy of any outgoing multi-
cast datagram to application programs on the host that belong to the specified multicast
group. Does this design make programming easier or more difficult? Explain.

When the underlying hardware does not support multicast, IP multicast uses hardware
broadcast for delivery. How can doing so cause problems? Is there any advantage to
using IP multicast over such networks?

DVMRP was derived from RIP. Read RFC 1075 on DVMRP and compare the two pro-
tocols. How much more complex is DVMRP than RIP?
IGMP does not include a strategy for acknowledgement or retransmission, even when
used on networks that use besteffort delivery. What can happen if a query is lost?
What can happen if a response is lost?

Explain why a multi-homed host may need to join a multicast group on one network, but
not on another. (Hint: consider an audio teleconference.)

Estimate the size of the multicast forwarding table needed to handle multicast of audio
from 100 radio stations, if each station has a total of ten million listeners at random loca-
tions around the world.

Exercises 35 1

Argue that only two types of multicast are practical in the Internet: statically configured
commercial services that multicast to large numbers of subscribers and dynamically con-
figured services that include a few participants (e.g., family members in three households
participating in a conference phone call).

Consider reliable multicast achieved through redundant transmission. If a given link has
high probability of corruption, is it better to send redundant copies of a datagram or to
send one copy that uses forward error-correcting codes? Explain.

The data-driven multicast routing paradigm works best on local networks that have low
delay and excess capacity, while the demand-driven paradigm works best in a wide area
environment that has limited capacity and higher delay. Does it make sense to devise a
single protocol that combines the two schemes? Why or why not. (Hint: investigate
MOSPF.)

Devise a quantitative measure that can be used to decide when PIM-SM should switch
from a shared tree to a shortest path tree.

Read the protocol specification to find out the notion of "sparse" used in PIM-SM.
Find an example of an internet in which the population of group members is sparse, but
for which DVMRP is a better multicast routing protocol.

TCP/IP Over ATM Networks

18.1 Introduction

Previous chapters explain the fundamental parts of TCPAP and show how the com-
ponents operate over conventional LAN and WAN technologies. This chapter explores
how TCP/IP, which was designed for connectionless networks, can be used over a
connection-oriented technology?. We will see that TCP/IP is extremely flexible - a
few of the address binding details must be modified for a connection-oriented environ-
ment, but most protocols remain unchanged.

The challenge arises when using TCPIIP over Non-Broadcast Multiple-Access
(NBMA) networks (i.e., connection-oriented networks which allow multiple computers
to attach, but do not support broadcast from one computer to all others). We will see
that an NBMA environment requires modifications to IP protocols such as ARP that
rely on broadcast.

To make the discussion concrete and relate it to available hardware, we will use
Asynchronous Transfer Mode (ATM) in all examples. This chapter expands the brief
description of ATM in Chapter 2, and covers additional details. The next sections
describe the physical topology of an ATM network, the logical connectivity provided,
ATM's connection paradigm, and the ATM adaptation protocol used to transfer data.
Later sections discuss the relationship between ATM and TCP/IP. They explain ATM
addressing, and show the relationship between a host's ATM address and its IP address.
They also describe a modified form of the Address Resolution Protocol (ARP) used to
resolve an IP address across a connection-oriented network, and a modified form of In-
verse ARP that a server can use to obtain and manage addresses. Most important, we
will see how IP datagrams travel across an ATM network without IP fragmentation.

?Some documents use the abbreviation CL for connectionless and CO for connection-oriented

354 TCP/IP Over ATM Networks Chap. 18

18.2 ATM Hardware

Like most connection-oriented technologies, ATM uses special-purpose electronic
switches as the basic network building block. The switches in an ATM LAN usually
provide connections for between 16 and 32 computers.? Although it is possible to use
copper wiring between a host and an ATM switch, most installations use optical fiber to
provide higher data rates. Figure 18.1 shows a diagram of an ATM switch with com-
puters connected, and explains the connection.

computer attached
to switch -5'

fiber to fiber from
switch 1 1 switch

Figure 18.1 (a) The schematic diagram of a single ATM switch with four
computers attached, and (b) the details of each connection. A
pair of optical fibers carries data to and from the switch.

Physically, a host interface board plugs into a computer's bus. The interface
hardware includes optical transmitters and receivers along with the circuitry needed to
convert between electrical signals and the pulses of light that travel down the fiber to
the switch. Because each fiber is used to carry light in only one direction, a connection
that allows a computer to both send and receive data requires a pair of fibers.

18.3 Large ATM Networks

Although a single ATM switch has finite capacity, multiple switches can be inter-
connected to form a larger network. In particular, to connect computers at two sites to
the same network, a switch can be installed at each site, and the two switches can then
be connected. The connection between two switches diiers slightly from the connec-
tion between a host computer and a switch. For example, interswitch connections usu-
ally operate at higher speeds, and use slightly modified protocols. Figure 18.2 illus-
trates the topology, and shows the conceptual difference between a Network to Network
Interface (NNI) and a User to Network Interface (UNI).

?Switches used in larger networks provide more connections; the point is that the number of computers
attached to a given switch is limited.

Sec. 18.3 Large ATM Networks 355

NNI or UNI used between UNI used between
two ATM switches switch and a computer

ATM SWITCH

Figure 18.2 Three ATM switches combined to fornl a large network.
Although an NNI interface is designed for use between switches,
UNI connections can be used between ATM switches in a
private network.

18.4 The Logical View Of An ATM Network

The goal of ATM is an end-to-end communication system. To a computer at-
tached to an ATM network, an entire fabric of ATM switches appears to be a homo-
geneous network. Like the voice telephone system, a bridged Ethernet, or an IP inter-
net, ATM hides the details of physical hardware and gives the appearance of a single,
physical network with many computers attached. For example, Figure 18.3 illustrates
how the ATM switching system in Figure 18.2 appears logically to the eight computers
that are attached to it.

0 TM SWITCHING SYSTE

Figure 1 8 3 The logical view of the ATM switches in Figure 18.2. ATM
gives the appearance of a uniform network; any computer can
communicate with any other computer.

Thus, ATM provides the same general abstraction across homogeneous ATM
hardware that TCP/IP provides for heterogeneous systems:

Despite a physical architecture fhat permits a switching fabric to con-
tain multiple switches, ATM hardware provides attached computers
with the appearance of a single, physical network. Any computer on
an ATM network can communicate directly with any other; the com-
puters remain unaware of the physical network structure.

356 TCPm Over ATM Networks Chap. 18

18.5 The Two ATM Connection Paradigms

ATM provides a connection-oriented interface to attached hosts. That is, before it
can send data to a remote destination, a host must establish a connection, an abstraction
analogous to a telephone call. Although there is only one type of underlying connec-
tion, ATM offers two ways to create a connection. The first is known as a Pennanent
Virtual Circuit? (PVC), and the second is known as a Switched Virtual Circuit? (SVC).

18.5.1 Permanent Virtual Circuits

In telephone jargon, a PVC is said to be a provisioned service. Provisioning sim-
ply means that a person is required to enter the necessary configuration manually into
each switch along the path from the source to the destination (e.g., by typing into the
console on each switch). Although the terms PVC and provisioned service may sound
esoteric, the concept is not; even the most basic connection-oriented hardware supports
PVCs.

On one hand, manual co~gura t ion has an obvious disadvantage: it cannot be
changed rapidly or easily. Consequently, PVCs are only used for connections that stay
in place for relatively long periods of time (weeks or years). On the other hand, manual
configuration has advantages: a PVC does not require all switches to agree on a stan-
dard signaling mechanism. Thus, switches from two or more vendors may be able to
interoperate when using PVCs, even if they cannot when using SVCs. Second, PVCs
are often required for network management, maintenance, and debugging operations.

18.5.2 Switched Virtual Circuits

Unlike a PVC, an SVC is created automatically by software, and terminated when
no longer needed. Software on a host initiates SVC creation; it passes a request to the
local switch. The request includes the complete address of a remote host computer with
which an SVC is needed and parameters that specify the quality of service required
(e.g., the bandwidth and delay). The host then waits for the ATM network to create a
circuit and respond. The ATM signaling$ system establishes a path from the originat-
ing host across the ATM network (possibly through multiple switches) to the remote
host computer.

During signaling, each ATM switch along the path and the remote computer must
agree to establish the virtual circuit. When it agrees, a switch records information about
the circuit, reserves the necessary resources, and sends the request to the next switch
along the path. Once all the switches and the remote computer respond, signaling com-
pletes, and the switches at each end of the connection report to the hosts that the virtual
circuit is in place.

Like all abstractions, connections must be identified. The UNI interface uses a
24-bit integer to identify each virtual circuit. When administrators create PVCs, they
assign an identifier to each. When software on a host creates a new SVC, the local
ATM switch assigns an identifier and informs the host. Unlike co~ectionless technolo-

TAlthough the ATM standard uses the term vir?ual channel, we will follow common practice and call it a
v i m 1 circuit.

$The term signaling derives from telephone jargon.

Sec. 18.5 The Two ATM Connection Paradigms 357

gies, a connection-oriented system does not require each packet to carry either a source
or destination address. Instead, a host places a circuit identifier in each outgoing pack-
et, and the switch places a circuit identifier in each packet it delivers.

18.6 Paths, Circuits, And Identifiers

We said that a comection-oriented technology assigns a unique integer identifier to
each circuit, and that a host uses the identifier when performing VO operations or when
closing the circuit. However, connection-oriented systems do not assign each circuit a
globally unique identifier. Instead, the identifier is analogous to an V0 descriptor that
is assigned to a program by the operating system. Like an V0 descriptor, a circuit iden-
tifier is a shorthand that a program uses in place of the full information that was used to
create the circuit. Also like an VO descriptor, a circuit identifier only remains valid
while the circuit is open. Furthermore, a circuit identifier is meaningful only across a
single hop - the circuit identifiers obtained by hosts at the two ends of a given virtual
circuit usually differ. For example, the sender may be using identifier 17 while the re-
ceiver uses identifier 49; each switch along the path translates the circuit identifier in a
packet as the packet flows from one host to the other.

Technically, a circuit identifier used with the UNI interface consists of a 24-bit in-
teger divided into two fields?. Figure 18.4 shows how ATM partitions the 24 bits into
an 8-bit virtual path identifier (VPI) and a 16-bit virtual circuit identifier (VCZ). Often,
the entire identifier is referred to as a VPVVCIpair.

Figure 18.4 The 24-bit connection identifier used with UNI. The identifier is
divided into virtual path and virtual circuit parts.

VPI FIELD VCI FIELD

The motivation for dividing a connection identifier into VPI and VCI fields is
similar to the reasons for dividing an IP address into network and host fields. If a set of
virtual circuits follows the same path, an administrator can arrange for all circuits in the
set to use the same VPI. ATM hardware can then use the VPI to route traffic eficient-
ly. Commercial carriers can also use the VPI for accounting - a carrier can charge a
customer for a virtual path, and then allow the customer to decide how to multiplex
multiple virtual circuits over the path.

8 BITS

?The circuit identifier used with NNI has a slightly different format and a different length.

16 BITS

358 TCPJIP Over ATM Networks Chap. 18

18.7 ATM Cell Transport

At the lowest level, an ATM network uses fixed-size frames called cells to carry
data. ATM requires all cells to be the same size because doing so makes it possible to
build faster switching hardware and to handle voice as well as data. Each ATM cell is
53 octets long, and consists of a 5-octet header followed by 48 octets of payload (i.e.
data). Figure 18.5 shows the format of a cell header.

I FLOW CONTROL VPI (FIRST 4 BITS)

VPI (LAST 4 BITS) f VCI (FIRST 4 BITS)

VCI (MIDDLE 8 BITS)

I VCI (LAST 4 BITS) f PAYLOAD TYPE PRlO I

I CYCLIC REDUNDANCY CHECK I
Figure 185 The format of the five-octet UNI cell header used between a host

and a switch. The diagram shows one octet per line; forty-eight
octets of data follow the header.

18.8 ATM Adaptation Layers

Although ATM switches small cells at the lowest level, application programs that
transfer data over ATM do not read or write cells. Instead, a computer interacts with
ATM through an ATM Adaptation Layer, which is part of the ATM standard. The
adaptation layer performs several functions, including detection and correction of errors
such as lost or corrupted cells. Usually, fmware that implements an ATM adaptation
layer is located on a host interface along with hardware and fmware that provide cell
transmission and reception. Figure 18.6 illustrates the organization of a typical ATM
interface, and shows how data passes from the computer's operating system through the
interface board and into an ATM network.

Sec. 18.8 ATM Adaptation Layers

DEVICE DRIVER 5 sofrware in
t

host computer

host interface -
board

optical fiber

I 1

1 I
ADAPTATION LAYER

1 t
CELL TRANSPORT

1 t
OPTICAL COMM.

4

Figure 18.6 The conceptual organization of ATM interface hardware and the
flow of data through it. Software on a host interacts with an
adaptation layer protocol to send and receive data; the adaptation
layer converts to and from cells.

v

When establishing a connection, a host must spec@ which adaptation layer proto-
col to use. Both ends of the connection must agree on the choice, and the adaptation
layer cannot be changed once the connection has been established. To summarize:

-

Although ATM hardware uses small, jixed-size cells to transport data,
a higher layer protocol called an ATM Adaptation Layer provides
data transfer services for computers that use ATM. When a virtual
circuit is created, both ends of the circuit must agree on which adup-
tation layer protocol will be used.

TCPlIP Over ATM Networks Chap. 18

18.9 ATM Adaptation Layer 5

Computers use ATM Adaptation Layer 5 (AAL.5) to send data across an ATM net-
work. Interestingly, although ATM uses small fmed-size cells at the lowest level,
AAL5 presents an interface that accepts and delivers large, variable-length packets.
Thus, the interface computers use to send data makes ATM appear much like a connec-
tionless technology. In particular, AAL5 allows each packet to contain between 1 and
65,535 octets of data. Figure 18.7 illustrates the packet format that AAL5 uses.

Between 1 and 65,535
octets of data

&octet
trailer

Figure 18.7 (a) The basic packet format that AAL5 accepts and delivers, and
(b) the fields in the 8-octet trailer that follows the data.

&BIT
UU

Unlike most network frames that place control information in a header, -5
places control information in an 8-octet trailer at the end of the packet. The AAL5
trailer contains a 16-bit length field, a 32-bit cyclic redundancy check (CRC) used as a
frame checksum, and two 8-bit fields labeled UU and CPZ that are currently unused?.

Each AALS packet must be divided into cells for transport across an ATM net-
work, and then must be recombined to form a packet before being delivered to the re-
ceiving host. If the packet, including the 8-octet trailer, is an exact multiple of 48 oc-
tets, the division will produce completely full cells. If the packet is not an exact multi-
ple of 48 octets, the final cell will not be full. To accommodate arbitrary length pack-
ets, AALS allows the final cell to contain between 0 and 40 octets of data, followed by
zero padding, followed by the 8-octet trailer. In other words, AALS places the trailer in
the last 8 octets of the final cell, where it can be found and extracted without knowing
the length of the packet.

tField UU can contain any value; field CPI must be set to zero.

&BIT
CPI

16-BIT
LENGTH

32-BIT
FRAME CHECKSUM

Sec. 18.10 AALS Convergence, Segmentation, And Reassembly 36 1

18.1 0 AAL5 Convergence, Segmentation, And Reassembly

When an application sends data over an ATM connection using -5, the host
delivers a block of data to the AAL5 interface. AAL5 generates a trailer, divides the in-
formation into 48-octet pieces, and transfers each piece across the ATM network in a
single cell. On the receiving end of the connection, AAL5 reassembles incoming cells
into a packet, checks the CRC to ensure that all pieces arrived correctly, and passes the
resulting block of data to the host software. The process of dividing a block of data
into cells and regrouping them is known as ATM segmentation and reassemblyt (SAR).

By separating the functions of segmentation and reassembly from cell transport,
AAL5 follows the layering principle. The ATM cell transfer layer is classified as
machine-to-machine because the layering principle applies from one machine to the next
(e.g., between a host and a switch or between two switches). The AAL5 layer is classi-
fied as end-to-end because the layering principle applies from the source to the destina-
tion - AAL5 presents the receiving software with data in exactly the same size blocks
as the application passed to AAL5 on the sending end.

How does AAL5 on the receiving side know how many cells comprise a packet?
The sending AAL5 uses the low-order bit of the PAYLOAD TYPE field of the ATM cell
header to mark the final cell in a packet. One can think of it as an end-of-packet bit.
Thus, the receiving AAL5 collects incoming cells until it finds one with the end-of-
packet bit set. ATM standards use the term convergence to describe mechanisms that
recognize the end of a packet. Although AAL5 uses a single bit in the cell header for
convergence, other ATM adaptation layer protocols are free to use other convergence
mechanisms.

To summarize:

A computer uses ATM Adaptation Layer 5 to transfer a large block of
data over an ATM virtual circuit. On the sending host, AAL5 gen-
erates a trailer, segments the block of data into cells, and transmits
each cell over the virtual circuit. On the receiving host, AALS
reassembles the cells to reproduce the original block of data, strips
off the trailer, and delivers the block of data to the receiving host
sofrware. A single bit in the cell header marks the final cell of a
given data block

18.1 1 Datagram Encapsulation And IP MTU Size

We said that IP uses AAL5 to transfer datagrams across an ATM network. Before
data can be sent, a virtual circuit (PVC or SVC) must be in place to the destination
computer and both ends must agree to use AAL5 on the circuit. To transfer a datagram,
the sender passes it to AAL5 along with the VPWCI identifying the circuit. AAL5
generates a trailer, divides the datagram into cells, and transfers the cells across the net-

tUse of the term reassembly suggests the strong similarity between AALS segmentation and IP fragmen-
tation: both mechanisms divide a large block of data into smaller units for transfer.

362 TCPIIP Over ATM Networks Chap. 18

work. At the receiving end, AAL5 reassembles the cells, checks the CRC to verify that
no bits were lost or corrupted, extracts the datagram, and passes it to IP.

In reality, AALS uses a 16-bit length field, making it possible to send 64K octets
in a single packet. Despite the capabilities of AAL5, TCPm restricts the size of da-
tagrams that can be sent over ATM. The standards impose a default of 9180 octets? per
datagram. As with any network interface, when an outgoing datagram is larger than the
network MTU, IP fragments the datagram, and passes each fragment to AAL5. Thus,
AAL5 accepts, transfers, and delivers datagrams of 9180 octets or less. To summarize:

When TCP/IP sends data across an ATM network, it transfers an en-
tire datagram using ATM Adaptation Layer 5. Although AAL.5 can
accept and transfer packets that contain up to 64K octets, the TCPnP
standards specify a default MTU of 9180 octets. IP must fragment
any datagram larger than 9180 octets before passing it to AALS.

18.1 2 Packet Type And Multiplexing

Observant readers will have noticed that the AAL5 trailer does not include a type
field. Thus, an AAL5 frame is not self-identifying. As a result, the simplest form of
encapsulation described above does not suffice if the two ends want to send more than
one type of data across a single VC (e.g., packets other than IP). Two possibilities ex-
ist:

The two computers at the ends of a virtual circuit agree a priori that the cir-
cuit will be used for a specific protocol (e.g., the circuit will only be used to
send IP datagram).
The two computers at the ends of a virtual circuit agree a priori that some
octets of the data area will be reserved for use as a type field.

The former scheme, in which the computers agree on the high-level protocol for a
given circuit, has the advantage of not requiring additional information in a packet. For
example, if the computers agree to transfer IP, a sender can pass each datagram directly
to AAL5 to transfer; nothing needs to be sent besides the datagram and the AAL5
trailer. The chief disadvantage of such a scheme lies in duplication of virtual circuits: a
computer must create a separate virtual circuit for each high-level protocol. Because
most carriers charge for each virtual circuit, customers try to avoid using multiple cir-
cuits because it adds unnecessary cost.

The latter scheme, in which two computers use a single virtual circuit for multiple
protocols, has the advantage of allowing all traffic to travel over the same circuit, but
the disadvantage of requiring each packet to contain octets that identlfy the protocol
type. The scheme also has the disadvantage that packets from all protocols travel with
the same delay and priority.

tThe size 9180 was chosen to make ATM compatible with an older technology called Switched Multime-
gabit Data Service (SMDS); a value other than 9180 can be used if both ends agree.

Sec. 18.12 Packet Type And Multiplexing 363

The TCPIIP standards spec@ that computers can choose between the two methods
of using AALS. Both the sender and receiver must agree on how the circuit will be
used; the agreement may involve manual configuration. Furthermore, the standards
suggest that when computers choose to include type information in the packet, they
should use a standard IEEE 802.2 Logical Link Control (LLC) header followed by a
SubNetwork Attachment Point (SNAP) header. Figure 18.8 illustrates the LLCISNAP
information prefured to a datagram before it is sent over an ATM virtual circuit.

LLC (AA. AA. 03) I OUI, (00)

OUln (00.00) I TYPE (08.00)

IP DATAGRAM

Figure 18.8 The packet format used to send a datagram over AALS when
multiplexing multiple protocols on a single virtual circuit. The
I-octet LLCISNAP header identifies the contents as an IP da-
tagram.

As the figure shows, the LLC field consists of three octets that contain the hexade-
cimal values AA.AA.03t. The SNAP header consists of five octets: three that contain
an Organizationally Unique Identifier (OUI) and two for a type*. Field OUI identifies
an organization that administers values in the TYPE field, and the TYPE field identifies
the packet type. For an IP datagram, the OUI field contains 00.00.00 to identify the or-
ganization responsible for Ethernet standards, and the TYPE field contains 08.00, the
value used when encapsulating IP in an Ethernet frame. Software on the sending host
must prefix the LLCISNAP header to each packet before sending it to AALS, and
software on the receiving host must examine the header to determine how to handle the
packet.

18.13 IP Address Binding In An ATM Network

We have seen that encapsulating a datagram for transmission across an ATM net-
work is straightforward. By contrast, IP address binding in a Non-Broadcast Multiple-
Access (NBUA) environment can be difficult. Like other network technologies, ATM
assigns each attached computer a physical address that must be used when establishing
a virtual circuit. On one hand, because an ATM physical address is larger than an IP
address, an ATM physical address cannot be encoded within an IP address. Thus, IP
cannot use static address binding for ATM networks. On the other hand, ATM

?The notation represents each octet as a hexadecimal value separated by decimal points.
$To avoid unnecessary fragmentation, the eight octets of an LLCISNAP header are ignored in the MTU

computation (i.e., the effective MTU of an ATM connection that uses an LLCISNAP header is 9188).

364 TCPlIP Over ATM Networks Chap. 18

hardware does not support broadcast. Thus, IP cannot use conventional ARP to bind
addresses on ATM networks.

ATM permanent virtual circuits further complicate address binding. Because a
manager configures each permanent virtual circuit manually, a host only knows the
circuit's VPWCI pair. Software on the host may not know the IP address nor the
ATM hardware address of the remote endpoint. Thus, an IP address binding mechan-
ism must provide for the identification of a remote computer connected over a PVC as
well as the dynamic creation of SVCs to known destinations.

Switched connection-oriented technologies further complicate address binding be-
cause they require two levels of binding. First, when creating a virtual circuit over
which datagrams will be sent, the IP address of the destination must be mapped to an
ATM endpoint address. The endpoint address is used to create a virtual circuit.
Second, when sending a datagram to a remote computer over an existing virtual circuit,
the destination's IP address must be mapped to the VPWCI pair for the circuit. The
second binding is used each time a datagram is sent over an ATM network; the first
binding is necessary only when a host creates an SVC.

18.14 Logical IP Subnet Concept

Although no protocol has been proposed to solve the general case of address bind-
ing for NBMA networks like ATM, a protocol has been devised for a restricted form.
The restricted form arises when a group of computers uses an ATM network in place of
a single (usually local) physical network. The group forms a Logical IP Subnet (LIS).
Multiple logical IP subnets can be defined among a set of computers that all attach to
the same ATM hardware network. For example, Figure 18.9 illustrates eight computers
attached to an ATM network divided into two LIS.

ATM NETWORK

Figure 18.9 Eight computers attached to an ATM network participating in
two Logical IP Subnets. Computers marked with a slash partici-
pate in one LIS, while computers marked with a circle partici-
pate in the other LIS.

Sec. 18.14 Logical IP Subnet Concept 365

As the figure shows, all computers attach to the same physical ATM network.
Computers A, C, D, E, and F participate in one LIS, while computers B, F, G, and H
participate in another. Each logical IP subnet functions like a separate LAN. The com-
puters participating in an LIS establish virtual circuits among themselves to exchange
datagramst. Because each LIS fomls a conceptually separate network, IP applies the
standard rules for a physical network to each LIS. For example, all computers in an
LIS share a single IP network prefix, and that prefix differs from the prefixes used by
other logical subnets. Furthermore, although the computers in an LIS can choose a non-
standard MTU, all computers must use the same MTU on all virtual circuits that
comprise the LIS. Finally, despite the ATM hardware that provides potential connec-
tivity, a host in one LIS is forbidden from communicating directly with a host in anoth-
er LIS. Instead, all communication between logical subnets must proceed through a
router just as communication between two physical Ethemets proceeds through a router.
In Figure 18.9, for example, machine F represents an IP router because it participates in
both logical subnets.

To summarize:

TCP/IP allows a subset of computers attached to an ATM network to
operate like an independent LAN. Such a group is called a Logical IP
Subnet (US); computers in an LIS share a single IP network prefix.
A computer in an LIS can communicate directly with any other com-
puter in the same LIS, but is required to use a router when communi-
cating with a computer in another LIS.

18.1 5 Connection Management

Hosts must manage ATM virtual circuits carefully because creating a circuit takes
time and, for commercial ATM services, can incur additional economic cost. Thus, the
simplistic approach of creating a virtual circuit, sending one datagram, and then closing
the circuit is too expensive. Instead, a host must maintain a record of open circuits so
they can be reused.

Circuit management occurs in the network interface software below IP. When a
host needs to send a datagram, it uses conventional IP routing to find the appropriate
next-hop address, N$, and passes it along with the datagram to the network interface.
The network interface examines its table of open virtual circuits. If an open circuit ex-
ists to N, the host uses AAL5 to send the datagram. Otherwise, before the host can
send the datagram, it must locate a computer with IP address N, create a circuit, and add
the circuit to its table.

The concept of logical IP subnets constrains IP routing. In a properly configured
routing table, the next-hop address for each destination must be a computer within the
same logical subnet as the sender. To understand the constraint, remember that each
LIS is designed to operate like a single LAN. The same constraint holds for a host at-

tThe standard specifies the use of LLCISNAP encapsulation within an LIS.
$As usual, a next-hop address is an IP address.

366 TCPlIP Over ATM Networks Chap. 18

tached to a LAN, namely, each next-hop address in the routing table must be a router
attached to the LAN.

One of the reasons for dividing computers into logical subnets arises from
hardware and software constraints. A host cannot maintain an arbitrarily large number
of open virtual circuits at the same time because each circuit requires resources in the
ATM hardware and in the operating system. Dividing computers into logical subnets
limits the maximum number of simultaneously open circuits to the number of comput-
ers in the LIS.

18.16 Address Binding Within An LIS

When a host creates a virtual circuit to a computer in its LIS, the host must speclfy
an ATM hardware address for the destination. How can a host map a next-hop address
into an appropriate ATM hardware address? The host cannot broadcast a request to all
computers in the LIS because ATM does not offer hardware broadcast. Instead, it con-
tacts a server to obtain the mapping. Communication between the host and server uses
ATMARP, a variant of the ARP protocol described in Chapter 5.

As with conventional ARP, a sender forms a request that includes the sender's IP
and ATM hardware addresses as well as the IP address of a target for which the ATM
hardware address is needed. The sender then transmits the request to the ATMARP
server for the logical subnet. If the server knows the ATM hardware address, it sends
an A T W reply. Otherwise, the server sends a negative ATUARP reply.

18.1 7 ATMARP Packet Format

Figure 18.10 illustrates the format of an ATMARP packet. As the figure shows,
ATMARP modifies the ARP packet format slightly. The major change involves addi-
tional address length fields to accommodate ATM addresses. To appreciate the
changes, one must understand that multiple address forms have been proposed for
ATM, and that no single form appears to be the emerging standard. Telephone com-
panies that offer public ATM networks use an &octet format where each address is an
ISDN telephone number defined by ITU standard document E.164. By contrast, the
ATM Forum? allows each computer attached to a private ATM network to be assigned
a 20-octet Network Service Access Point (NSAP) address. Thus, a two-level hierarchical
address may be needed that specifies an E.164 address for a remote site and an NSAP
address of a host on a local switch at the site.

To accommodate multiple address formats and a two-level hierarchy, an ATMARP
packet contains two length fields for each ATM address as well as a length field for
each protocol address. As Figure 18.10 shows, an ATMARP packet begins with fixed-
size fields that specify address lengths. The first two fields follow the same format as
conventional ARP. The field labeled HARDWARE TYPE contains the hexadecimal

TThe ATM Forum is a consortium of industrial members that recommends standards for private ATM

Sec. 18.17 ATMARP Packet Format 367

value 0x0013 for ATM, and the field labeled PROTOCOL TYPE contains the hexade-
cimal value 0x0800 for IP.

Because the address format of the sender and target can differ, each ATM address
requires a length field. Field SEND HLEN specifies the length of the sender's ATM ad-
dress, and field SEND HLEN2 specifies the length of the sender's ATM subaddress.
Fields TAR HLEN and TAR HLEN2 specify the lengths of the target's ATM address and
subaddress. Finally, fields SEND PLEN and TAR PLEN speafy the lengths of the
sender's and target's protocol addresses.

Following the length fields in the header, an ATMARP packet contains six ad-
dresses. The first three address fields contain the sender's ATM address, ATM subad-
dress, and protocol address. The last three fields contain the target's ATM address,
ATM subaddress, and protocol address. In the example in Figure 18.10, both the sender
and target subaddress length fields contain zero, and the packet does not contain octets
for subaddresses.

1 HARDWARE TYPE (0x0013) 1 PROTOCOL TYPE (0x0800) 1

I SENDER'S ATM ADDRESS (octets 0-3) I

SEND HLEN (20)

SEND PLEN (4)

I-
-

SENDER'S ATM ADDRESS (octets 4-7)

SENDER'S ATM ADDRESS (octets 8-1 1)

SENDER'S ATM ADDRESS (octets 12-1 5)

SENDER'S ATM ADDRESS (octets 16-1 9)

*

SEND HLEN2 (0)

TAR HLEN (20)

I SENDER'S PROTOCOL ADDRESS I

OPERATION

TAR HLEN2 (0) TAR PLEN (4)

TARGET'S ATM ADDRESS (octets 0-3)

TARGET'S ATM ADDRESS (octets 4-71

I - TARGET'S ATM ADDRESS (octets 8-1 1)

TARGET'S ATM ADDRESS (octets 12-15)

TARGET'S ATM ADDRESS (octets 16-1 9)

TARGET'S PROTOCOL ADDRESS

Figure 18.10 The format of an ATMARP packet when used with 20-octet
ATM addresses such as those recommended by the ATM
Forum.

368 TCPlIP Over ATM Networks Chap. 18

18.17.1 Format Of ATM Address Length Fields

Because ATMARP is designed for use with either E.164 addresses or 20-octet
NSAP addresses, fields that contain an ATM address length include a bit that specifies
the address format. Figure 18.11 illustrates how ATMARP encodes the address type
and length in an 8-bit field.

Figure 18.11 The encoding of ATM address type and length in an 8-bit field.
Bit I distinguishes the two types of ATM addresses.

0 1 2 3 4 5 6 7

A single bit encodes the type of an ATM address because only two forms are
available. If bit 1 contains zero, the address is in the NSAP format recommended by
the ATM Forum. If bit 1 contains one, the address is in the E.164 format recommended
by the ITU. Because each ATM address length field in an ATMARP packet has the
form shown in Figure 18.11, a single packet can contain multiple types of ATM ad-
dresses.

18.17.2 Operation Codes Used With The ATMARP Protocol

I I I I I

LENGTH OF ADDRESS IN OCTETS
I I I I I

0

The packet format shown in Figure 18.10 is used to request an address binding, re-
ply to a request, or request an inverse address binding. When a computer sends an AT-
MARP packet, it must set the OPERATION field to specify the type of binding. The
table in Figure 18.12 shows the values that can be used in the OPERATION field, and
gives the meaning of each. The remainder of this section explains how the protocol
works.

TYPE

Code Meaning
1 ATMARP Request
2 ATMARP Reply
8 lnverse ATMARP Request
9 lnverse ATMARP Reply
10 ATMARP Negative Ack

Figure 18.12 The values that can appear in the OPERATION field of an AT-
MAW packet and their meanings. When possible, values have
been chosen to agree with the operation codes used in conven-
tional ARP.

Sec. 18.18 Using ATMARP Packets To Determine An Address 369

18.18 Using ATMARP Packets To Determine An Address

Performing address binding for connection-oriented hardware is slightly more com-
plex than for connectionless hardware. Because ATM hardware supports two types of
virtual circuits, two cases arise. First, we will consider the case of permanent virtual
circuits. Second, we will consider the case of switched virtual circuits.

18.1 8.1 Permanent Virtual Circuits

To understand the problems PVCs introduce, recall how ATM hardware operates.
A network administrator must configure each PVC; hosts themselves do not participate
in PVC setup. In particular, a host begins operation with PVCs in place, and does not
receive any information from the hardware about the address of the remote endpoint.
Thus, unless address information has been configured into the hosts (e.g., stored on
disk), the host does not know the IP address or ATM address of the computer to which
a PVC connects.

The Inverse ATMARP protocol (InATUARP) solves the problem of finding ad-
dresses when using PVCs. To use the protocol, a computer must know each of the per-
manent virtual circuits that have been configured. To determine the IP and ATM ad-
dresses of the remote endpoint, a computer sends an Inverse ATMARP request packet
with the OPERATION field set to 8. Whenever such a request amves over a PVC, the
receiver generates an Inverse ATMARP reply with the OPERATION field set to 9.
Both the request and the reply contain the sender's IP address and ATM address. Thus,
a computer at each end of the connection learns the binding for the computer at the oth-
er end. In summary,

Two computers that communicate over a permanent virtual circuit use
Inverse ATMARP to discover each others' IP and ATM addresses.
One computer sends an Inverse ATMARP request, to which the other
sends a reply.

18.1 8.2 Switched Virtual Circuits

Within an LIS, computers create switched virtual circuits on demand. When com-
puter A needs to send a datagram to computer B and no circuit currently exists to B, A
uses ATM signaling to create the necessary circuit. Thus, A begins with B's IP address,
which must be mapped to an equivalent ATM address. We said that each LIS has an
ATMARP server, and all computers in an LIS must be configured so they know how to
reach the server (e.g., a computer can have a PVC to the server or can have the server's
ATM address stored on disk). A server does not form connections to other computers;
the server merely waits for computers in the LIS to contact it. To map address B to an
ATM address, computer A must have a virtual circuit open to the ATMARP server for
the LIS. Computer A forms an ATMARP request packet and sends it over the connec-

370 TCPIIP Over ATM Networks Chap. 18

tion to the server. The OPERATION field in the packet contains I , and the target's pro-
tocol address field contains B's IP address.

An ATMARP server maintains a database of mappings from IP addresses to ATM
addresses. If the server knows B's ATM address, the ATMARP protocol operates simi-
lar to proxy ARP. The server forms an ATMARP reply by setting the OPERATION
code to 2 and filling in the ATM address that corresponds to the target IP address. As
in conventional ARP, the server exchanges sender and target entries before returning the
reply to the computer that sent the request.

If the server does not know the ATM address that corresponds to the target IP ad-
dress in a request, ATMARP's behavior differs from conventional ARP. Instead of ig-
noring the request, the server returns a negative acknowledgement (an ATMARP packet
with an OPERATION field of 10). A negative acknowledgement distinguishes between
addresses for which a server does not have a binding and a malfunctioning server.
Thus, when a host sends a request to an ATMARP server, it determines one of three
outcomes unambiguously. The host can learn the ATM address of the target, that the
target is not currently available in the LIS, or that the server is not currently responding.

18.19 Obtaining Entries For A Server Database

An ATMARP server builds and maintains its database of bindings automatically.
To do so, it uses Inverse ATMARP. Whenever a host or router first opens a virtual cir-
cuit to an ATMARP server, the server immediately sends an Inverse ATMARP request
packet?. The host or router must answer by sending an Inverse ATMARP reply packet.
When it receives an Inverse ATMARP reply, the server extracts the sender's IP and
ATM addresses, and stores the binding in its database. Thus, each computer in an LIS
must establish a connection to the ATMARP server, even if the computer does not in-
tend to look up bindings.

Each host or router in an LIS must register its IP address and
corresponding ATM address with the ATMARP server for the LIS.
Registration occurs automatically whenever a computer establishes a
virtual circuit to an ATMARP server because the server sends an In-
verse ATMARP to which the computer must respond.

18.20 Timing Out ATMARP Information In A Server

Like the bindings in a conventional ARP cache, bindings obtained via ATMARP
must be timed out and removed. How long should an entry persist in a server? Once a
computer registers its binding with an ATMARP server, the server keeps the entry for a
minimum of 20 minutes. After 20 minutes, the server examines the entry. If no circuit
exists to the computer that sent the entry, the server deletes the entry$. If the computer
that sent the entry has maintained an open virtual circuit, the server attempts to revali-

+The circuit must use AALS with LLCISNAP type identification.
f A server does not automaticallv delete an entry when a circuit is closed: it waits for the timeout ~eriod.

Sec. 18.20 Timing Out ATMARP Information In A Server 37 1

date the entry. The server sends an Inverse ATMARP request and awaits a response. If
the response verifies information in the entry, the server resets the timer and waits
another 20 minutes. If the Inverse ATMARP response does not match the information
in the entry, the server closes the circuit and deletes the entry.

To help reduce traffic, the ATMARP standard permits an optimization. It allows a
host to use a single virtual circuit for all communication with an ATMARP server.
When the host sends an ATMARP request, the request contains the host's binding in
the SENDER'S field. The server can extract the binding and use it to revalidate its
stored information. Thus, if a host sends more than one ATMARP request every 20
minutes, the server will not need to send the host an Inverse ATMARP request.

18.21 Timing Out ATMARP Information In A Host Or Router

A host or router must also use timers to invalidate information obtained from an
ATMARP server. In particular, the standard specifies that a computer can keep a bind-
ing obtained from the ATMARP server for at most 15 minutes. When 15 minutes ex-
pire, the entry must be removed or revalidated. If an address binding expires and the
host does not have an open virtual circuit to the destination, the host removes the entry
from its ARP cache. If a host has an open virtual circuit to the destination, the host at-
tempts to revalidate the address binding. Expiration of an address binding can delay
traffic because:

A host or router must stop sending data to any destination for which
the address binding has expired until the binding can be revalidated.

The method a host uses to revalidate a binding depends on the type of virtual cir-
cuit being used. If the host can reach the destination over a PVC, the host sends an In-
verse ATMARP request on the circuit and awaits a reply. If the host has an SVC open
to the destination, the host sends an ATMARP request to the ATMARP server.

18.22 IP Switching Technologies

So far, we have described ATM as a connection-oriented network technology that
IP uses to transfer datagram. However, engineers have also investigated a more funda-
mental union of the two technologies. They began with the question: "can switching
hardware be exploited to forward IP traffic at higher speeds?" The assumption under-
lying the effort is that hardware will be able to switch more packets per second than to
route them. If the assumption is correct, the question makes sense because router ven-
dors are constantly trying to find ways to increase router perfomlance and scale.

Ipsilon Corporation was one of the first companies to produce products that com-
bined IP and hardware switches; they used ATM, called their technology IP switching,
and called the devices they produced IP switches. Since Ipsilon, other companies have

372 TCP/IP Over ATh4 Networks Chap. 18

produced a series of designs and names, including tag switching, layer 3 switching, and
label switching. Several of the ideas have been folded into a standard endorsed by the
IETF that is known as Multi-Protocol Label Switching (MPLS)?. Contributors to the
open standard hope that it will allow products from multiple vendors to interoperate.

18.23 Switch Operation

How do IP switching technologies work? There are two general answers. Early
technologies all assumed the presence of a conventional NBMA network (usually
A T ') . The goal was to optimize IP routing to send datagrams across the ATM fabric
instead of other networks whenever possible. In addition to proposing ways to optimize
routes, later efforts also proposed modifying the switching hardware to optimize it for
IP traffic. In particular, two optimizations have been proposed. First, if switching
hardware can be redesigned to either use large cells or to allow variable-length frames,
header overhead will be reduced$. Second, if hardware can be built to parse IP headers
and extract needed fields, an incoming datagram can be forwarded faster.

Forwarding is at the heart of all label switching. There are three aspects. First, at
the IP layer, a forwarding device must function as a conventional IP router to transfer
datagrams between a local network and the switched fabric. Thus, the device must
learn about remote destinations, and must map an IP destination address into a next-hop
address. Second, at the network interface layer, a forwarding device must be able to
create and manage connections through the switched fabric (i.e., by mapping IP ad-
dresses to underlying hardware addresses and creating SVCs as needed). Third, a for-
warding device must optimize paths through the switched fabric.

18.24 Optimized IP Forwarding

Optimized forwarding involves high-speed classification and shortcut paths. To
understand shortcut paths, imagine three switches, S,, S2, and S3, and suppose that to
reach a given destination the IP routing table in S, specifies forwarding to S,, which for-
wards to S,, which delivers to the destination. Further suppose that all three devices are
connected to the same fabric. If S, observes that many datagrams are being sent to the
destination, it can optimize routing by bypassing S2 and setting up a shortcut path (i.e., a
virtual circuit) directly to S3. Of course, many details need to be handled. For example,
although our example involves only three devices, a real network may have many.
After it learns the path a datagram will travel to its destination, S, must find the last hop
along the path that is reachable through the switched network, translate the IP address
of that hop to an underlying hardware address, and form a connection. Recognizing
whether a given hop on the path connects to the same switching fabric and translating
addresses are not easy; complex protocols are needed to pass the necessary information.
To give IP the illusion that datagrams are following the routes specified by IP, either S,
or S3 must agree to account for the bypassed router when decrementing the TTL field in

TDespite having "multi-protocol" in the name, MPLS is focused almost exclusively on finding ways to
put IP over an NBMA switched hardware platform.

.$In the industry, ATh4 header overhead is known as the cell tux.

Sec. 18.24 Optimized IP Forwarding 373

the datagram header. Furthermore, S, must continue to receive routing updates from S2
so it can revert to the old path in case routes change.

18.25 Classification, Flows, And Higher Layer Switching

A classification scheme examines each incoming datagram and chooses a connec-
tion over which the datagram should travel. Building a classification scheme in
hardware further enhances the technology by allowing a switch to make the selection at
high speed. Most of the proposed classification schemes use a two-level hierarchy.
First, the switch classifies a datagram into one of many possible flows, and then the
flow is mapped onto a given connection. One can think of the mapping mathematically
as a pair of functions:

f = c, (datagram)

and

where f identifies a particular flow, and vc identifies a connection. We will see below
that separating the two functions provides flexibility in the possible mappings.

In practice function c, does not examine the entire datagram. Instead, only header
fields are used. Strict layer 3 classzjication restricts computation to fields in the IP
header such as the source and destination IP addresses and type of service. Most ven-
dors implement layer 4 classification^, and some offer layer 5 classification. In addi-
tion to examining fields in the IP header, layer 4 classification schemes also examine
protocol port numbers in the TCP or UDP header. Layer 5 schemes look further into
the datagram and consider the application.

The concept of flows is important in switching IP because it allows the switch to
track activity. For example, imagine that as it processes datagrams, a switch makes a
list of (source,destination) pairs and keeps a counter with each. It does not make sense
for a switch to optimize all routes because some flows only contain a few packets (e.g.,
when someone pings a remote computer). The count of flow activity provides a meas-
ure - when the count reaches a threshold, the switch begins to look for an optimized
route. Layer 4 classification helps optimize flows because it allows the switch to know
the approximate duration of a connection and whether traffic is caused by multiple TCP
connections or a single connection.

Flows are also an important tool to make switched schemes work well with TCP.
If a switch begins using a shortcut on a path that TCP is using, the round-trip time
changes and some segments arrive out of order, causing TCP to adjust its retransmission
timer. Thus, a switch using layer 4 classification can map each TCP session to a dif-
ferent flow, and then choose whether to map a flow to the original path or the shortcut.
Most switching technologies employ hysteresis by retaining the original path for exist-
ing TCP connections, but using a shortcut for new connections (i.e., moving existing

tVendors use the term layer 4 switching to characterize products that implement layer 4 classification.

374 TCP/IP Over ATM Networks Chap. 18

connections to the shortcut after a fixed amount of time has elapsed or if the connection
is idle).

18.26 Applicability Of Switching Technology

Although many vendors are pushing products that incorporate switched IP, there
are several reasons why the technology has not had more widespread acceptance. First,
in many cases switching costs more than conventional routing, but does not offer much
increase in performance. The difference is most significant in the local area environ-
ment where inexpensive LANs, like Ethernet, have sufficient capacity and inexpensive
routers work. In fact, computer scientists continue to find ways to improve IP forward-
ing schemes, which means that traditional routers can process more datagrams per
second without requiring an increase in hardware speed. Second, the availability of
inexpensive higher-speed LANs, such as gigabit Ethernet, has made organizations
unwilling to use more expensive connection-oriented technology for an entire organiza-
tion. Third, although switching IP appears straightforward, the details make it complex.
Consequently, the protocols are significantly more complex than other parts of IP,
which makes them more difficult to build, install, configure, and manage. We conclude
that although there may be advantages to switched IP, it will not replace all traditional
routers.

18.27 Summary

IP can be used over connection-oriented technologies; we examined ATM as a
specific example. ATM is a high-speed network technology in which a network con-
sists of one or more switches interconnected to form a switching fabric. The resulting
system is characterized as a Non-Broadcast Multiple-Access technology because it ap-
pears to operate as a single, large network that provides communication between any
two attached computers, but does not allow a single packet to be broadcast to all of
them.

Because ATM is connection-oriented, two computers must establish a virtual cir-
cuit through the network before they can transfer data; a host can choose between a
switched or permanent type of virtual circuit. Switched circuits are created on demand;
permanent circuits require manual configuration. In either case, ATM assigns each
open circuit an integer identifier. Each frame a host sends and each frame the network
delivers contains a circuit identifier; a frame does not contain a source or destination ad-
dress.

Although the lowest levels of ATM use 53-octet cells to transfer information, IP
always uses ATM Adaptation Layer 5 (AAL5). AAL5 accepts and delivers variable-
size blocks of data, where each block can be up to 64K octets. To send an IP datagram
across ATM, the sender must form a virtual circuit connection to the destination, speci-
fy using AAL5 on the circuit, and pass each datagram to AAL5 as a single block of

Sec. 18.27 Summary 375

data. AAL5 adds a trailer, divides the datagram and trailer into cells for transmission
across the network, and then reassembles the datagram before passing it to the operating
system on the destination computer. IP uses a default MTU of 9180, and AALS per-
forms the segmentation into cells.

A Logical IP Subnet (LIS) consists of a set of computers that use ATM in place of
a LAN; the computers form virtual circuits among themselves over which they ex-
change datagrams. Because ATM does not support broadcasting, computers in an LIS
use a modified form of ARP known as ATMARP. An ATMARP server performs all
address binding; each computer in the LIS must register with the server by supplying its
IP address and ATM address. As with conventional ARP, a binding obtained from AT-
MARP is aged. After the aging period, the binding must be revalidated or discarded. A
related protocol, Inverse ATMARP, is used to discover the ATM and IP addresses of a
remote computer c o ~ e c t e d by a pernlanent virtual circuit.

Switching hardware technology can be used with IP. An IP switch acts as a router,
but also classifies IF' datagrams and sends them across the switched network when pos-
sible. Layer 3 classification uses only the datagram header; layer 4 classification also
examines the TCP or UDP header. MPLS is a new standard for switching IF' that is
designed to allow systems from multiple vendors to interoperate.

FOR FURTHER STUDY

Newman et. al. [April 19981 describes IP switching. Laubach and Halpern [RFC
22251 introduces the concept of Logical IP Subnet, defines the ATMARP protocol, and
specifies the default MTU. Grossman and Heinanen [RFC 26841 describes the use of
LLCISNAP headers when encapsulating IP in AALS.

Partridge [I9941 describes gigabit networking in general, and the importance of
cell switching in particular. De Prycker [I9931 considers many of the theoretical under-
pinnings of ATM and discusses its relationship to telephone networks.

EXERCISES

18.1 If your organization has an ATM switch or ATM service, find the technical and econom-
ic specifications, and then compare the cost of using ATM with the cost of another tech-
nology such as Ethernet.

18.2 A typical connection between a host and a private ATM switch operates at 155 Mbps.
Consider the speed of the bus on your favorite computer. What percentage of the bus is
required to keep an ATM interface busy?

183 Many operating systems choose TCP buffer sizes to be multiples of 8K octets. If IP
fragments datagrams for an MTU of 9180 octets, what size fragments result from a da-
tagram that carries a TCP segment of 16K octets? of 24K octets?

376 TCPIIP Over ATM Networks Chap. 18

Look at the definition of IPv6 described in Chapter 33. What new mechanism relates
directly to ATM?
ATM is a best-effort delivery system in which the hardware can discard cells if the net-
work becomes congested. What is the probability of datagram loss if the probability of
loss of a single cell is 11P and the datagram is 576 octets long? 1500 octets? 4500 oc-
tets? 9180 octets?
A typical remote login session using TCP generates datagram of 41 octets: 20 octets of
IP header, 20 octets of TCP header, and 1 octet of data. How many ATM cells are re-
quired to send such a datagram using the default IP encapsulation over AALS?
How many cells, octets, and bits can be present on a fiber that connects to an ATM
switch if the fiber is 3 meters long? 100 meters? 3000 meters? To find out, consider an
ATM switch transmitting data at 155 Mbps. Each bit is a pulse of light that lasts
ll(155 x lo6) second. Assume the pulse travels at the speed of light, calculate its length,
and compare to the length of the fiber.
A host can specify a two-level ATM address when requesting an SVC. What ATM net-
work topologies are appropriate for a two-level addressing scheme? Characterize situa-
tions for which additional levels of hierarchy are useful.

An ATM network guarantees to deliver cells in order, but may drop cells if it becomes
congested. Is it possible to modify TCP to take advantage of cell ordering to reduce pro-
tocol overhead? Why or why not?
Read about the LANE and MPOA standards that allow ATM to emulate an Ethernet or
other local area network. What is the chief advantage of using ATM to emulate LANs?
The chief disadvantage?
A large organization that uses ATM to interconnect IP hosts must divide hosts into logi-
cal IP subnets. Two extremes exist: the organization can place all hosts in one large
LIS, or the organization can have many LIS (e.g., each pair of hosts forms an LIS). Ex-
plain why neither extreme is desirable.
How many ATM cells are required to transfer a single ATMARP packet when each
ATM address and subaddress is 20 octets and each protocol address is 4 octets?
ATM allows a host to establish multiple virtual circuits to a given destination. What is
the major advantage of doing so?
Measure the throughput and delay of an ATM switch when using TCP. If your operat-
ing system permits, repeat the experiment with the TCP transmit buffer set to various
sizes (if your system uses sockets, refer to the manual for details on how to set the
buffer size). Do the results surprise you?
IP does not have a mechanism to associate datagrams traveling across an ATM network
with a specific ATM virtual circuit. Under what circumstances would such a mechanism
be useful?
A server does not immediately remove an entry from its cache when the host that sent
the information closes its connection to the server. What is the chief advantage of such
a design? What is the chief disadvantage?
Is IP switching worthwhile for applications you run? To find out, monitor the traffic
from your computer and find the average duration of TCP connections, the number of
simultaneous connections, and the number of IP destinations you contact in a week.

Read about MPLS. Should MPLS accommodate layer 2 forwarding (i.e., bridging) as
well as optimized IP forwarding? Why or why not?

Mobile IP

19.1 Introduction

Previous chapters describe the original IP addressing and routing schemes used
with stationary computers. This chapter considers a recent extension of IP designed to
allow portable computers to move from one network to another.

19.2 Mobility, Routing, and Addressing

In the broadest sense, the term mobile computing refers to a system that allows
computers to move from one location to another. Mobility is often associated with
wireless technologies that allow movement across long distances at high speed. How-
ever, speed is not the central issue for IP. Instead, a challenge only arises when a host
changes from one network to another. For example, a notebook computer attached to a
wireless LAN can move around the range of the transmitter rapidly without affecting IP,
but simply unplugging a desktop computer and plugging it into a different network re-
quires reconfiguring IP.

The IP addressing scheme, which was designed and optimized for a stationary en-
vironment, makes mobility difficult. In particular, because a host's IP address includes
a network prefn, moving the host to a new network means either:

The host's address must change.
Routers must propagate a host-specific route across the entire internet.

Neither alternative works well. On one hand, changing an address is time-consuming,
usually requires rebooting the computer, and breaks all existing transport-layer connec-

378 Mobile IP Chap. 19

tions. In addition, if the host contacts a server that uses addresses to authenticate, an
additional change to DNS may be required. On the other hand, a host-specific routing
approach cannot scale because it requires space in routing tables proportional to the
number of hosts, and because transmitting routes consumes excessive bandwidth.

19.3 Mobile IP Characteristics

The IETF devised a solution to the mobility problem that overcomes some of the
limitations of the original IP addressing scheme. Officially named IP mobility support,
it is popularly called mobile IP. The general characteristics include the following.

Transparency. Mobility is transparent to applications and transport layer protocols
as well as to routers not involved in the change. In particular, as long as they remain
idle, all open TCP connections survive a change in network and are ready for further
use.

Interoperability with IPv4. A host using mobile IP can interoperate with stationary
hosts that run conventional IPv4 software as well as with other mobile hosts. Further-
more, no special addressing is required - the addresses assigned to mobile hosts do not
differ from addresses assigned to fixed hosts.

Scalability. The solution scales to large internets. In particular, it permits mobility
across the global Internet.

Security. Mobile IP provides security facilities that can be used to ensure all mes-
sages are authenticated (i.e., to prevent an arbitrary computer from impersonating a
mobile host).

Macro mobility. Rather than attempting to handle rapid network transitions such
as one encounters in a wireless cellular system, mobile IP focuses on the problem of
long-duration moves. For example, mobile IP works well for a user who takes a port-
able computer on a business trip, and leaves it attached to the new location for a week.

19.4 Overview Of Mobile IP Operation

The biggest challenge for mobility lies in allowing a host to retain its address
without requiring routers to learn host-specific routes. Mobile IP solves the problem by
allowing a single computer to hold two addresses simultaneously. The first address,
which can be thought of as the computer's primary address, is permanent and fixed. It
is the address applications and transport protocols use. The second address, which can
be thought of as a secondary address, is temporary - it changes as the computer
moves, and is valid only while the computer visits a given location.

A mobile host obtains a primary address on its original, home network. After it
moves to a foreign network and obtains a secondary address, the mobile must send the
secondary address to an agent (usually a router) at home. The agent agrees to intercept
datagrams sent to the mobile's primary address, and uses IP-in-IP encapsulation to tun-
nel each datagram to the secondary address?.

?Chapter 17 illustrates IF-in-IP encapsulation.

Sec. 19.4 Overview Of Mobile IP Operation 379

If the mobile moves again, it obtains a new secondary address, and infom~s the
home agent of its new location. When the mobile returns home, it must contact the
home agent to deregister, meaning that the agent will stop intercepting datagrams.
Similarly, a mobile can choose to deregister at any time (e.g., when leaving a remote lo-
cation).

We said that mobile IP is designed for macroscopic mobility rather than high-speed
movement. The reason should be clear: overhead. In particular, after it moves, a
mobile must detect that it has moved, communicate across the foreign network to obtain
a secondary address, and then communicate across the internet to its agent at home to
arrange forwarding. The point is:

Because it requires considerable overhead after each move, mobile ZP
is intended for situations in which a host moves infrequently and
remains at a given location for a relatively long period of time.

19.5 Mobile Addressing Details

A mobile's primary or home address is assigned and administered by the network
administrator of the mobile's home network; there is no distinction between an address
assigned to a stationary computer and a home address assigned to a mobile computer.
Applications on a mobile computer always use the home address.

Whenever it connects to a network other than its home, a mobile must obtain a
temporary address. Known as a care of address, the temporary address is never known
or used by applications. Instead, only IF' software on the mobile and agents on the
home or foreign networks use the temporary address. A care-of address is administered
like any other address on the foreign network, and a route to the care-of address is pro-
pagated using conventional routing protocols.

In practice, there are two types of care-of addresses; the type used by a mobile
visiting a given network is determined by the network's administrator. The two types
differ in the method by which the address is obtained and in the entity responsible for
forwarding. The first fornl, which is known as a co-located care-of address, requires a
mobile computer to handle aLl forwarding itself. In essence, a mobile that uses a co-
located care-of address has software that uses two addresses simultaneously - applica-
tions use the home address, while lower layer software uses the care-of address to re-
ceive datagram. The chief advantage of a co-located address lies in its ability to work
with existing internet infrastructure. Routers on the foreign network do not know
whether a computer is mobile; care-of addresses are allocated to mobile computers by
the same mechanisms used to allocate addresses to fmed computers (e.g., the DHCP
protocol discussed in Chapter 23). The chief disadvantage of the co-located form arises
from the extra software required - the mobile must contain facilities to obtain an ad-
dress and to communicate with the home agent.

380 Mobile IP Chap. 19

The second form, which is known as a foreign agent care-of address, requires an
active participant on the remote network. The active entity, also a router, is called a
foreign agent to distinguish it from the home agent on the mobile's home network.
When using a foreign agent care-of address, a mobile must first discover the identity of
an agent, and then contact the agent to obtain a care-of address. Surprisingly, a foreign
agent does not need to assign the mobile a unique address. Instead, we will see that the
agent can supply one of its IP addresses, and agree to forward datagrams to the mobile.
Although assigning a unique address makes communication slightly easier, using an ex-
isting address means that visiting mobiles do not consume IP addresses.

19.6 Foreign Agent Discovery

Known as agent discovery, the process of finding a foreign agent uses the ICMP
router discovery mechanism. Recall from Chapter 9 that router discovery requires each
router to periodically send an ICMP router advertisement message, and allows a host to
send an ICMP router solicitation to prompt for an advertisement?. Agent discovery
piggybacks additional information on router discovery messages to allow a foreign
agent to advertise its presence or a mobile to solicit an advertisement. The additional
information appended to each message is known as a mobility agent extension$. Mobil-
ity extensions do not use a separate ICMP message type. Instead, a mobile host
deduces that the extension is present when the datagram length specified in the IP
header is greater than the length of the ICMP router discovery message. Figure 19.1 il-
lustrates the extension format.

TYPE (16) I LENGTH 1 SEQUENCE NUM

CARE-OF ADDRESSES

LIFETIME

Figure 19.1 The format of a Mobility Agent Advertisement Extension mes-
sage. This extension is appended to an ICMP router advertise-
ment.

CODE I RESERVED

Each message begins with a 1-octet TYPE field followed by a 1-octet LENGTH
field. The LENGTH field specifies the size of the extension message in octets, exclud-
ing the TYPE and LENGTH octets. The LIFETIME field specifies the maximum
amount of time in seconds that the agent is willing to accept registration requests, with
all 1s indicating infinity. Field SEQUENCE NUM specifies a sequence number for the
message to allow a recipient to determine when a message is lost. Each bit in the
CODE field defines a specific feature of the agent as listed in Figure 19.2.

t A mobile that does not know an agent's IP address can multicast to the all agents group (224.0.0.11).
$A mobility agent also appends a prefix extension to the message that specifies the IP prefu being used

on the network; a mobile uses the prefix extension to determine when it has moved to a new network.

Sec. 19.6 Foreign Agent Discovery 38 1

Bit
0

Meaning
Registration with an agent is required; co-located

care-of addressing is not permitted
The agent is busy and is not accepting registrations
Agent functions as a home agent
Agent functions as a foreign agent
Agent uses minimal encapsulation
Agent uses GRE-style encapsulationt
Agent supports header compression when communicating

with mobile
Unused (must be zero)

Figure 19.2 Bits of the CODE field of a mobility agent advertisement.

19.7 Agent Registration

Before it can receive datagram at a foreign location, a mobile host must register.
The registration procedure allows a host to:

Register with an agent on the foreign network.

Register directly with its home agent to request forwarding.

Renew a registration that is due to expire.

Deregister after returning home.

If it obtains a co-located care-of address, a mobile perfomls all necessary registra-
tion directly; the mobile can use the address to communicate with its home agent and
register. If it obtains a care-of address from a foreign agent, however, a mobile cannot
use the address to communicate directly with its home agent. Instead, the mobile must
send registration requests to the foreign agent, which then contacts the mobile's home
agent on its behalf. Similarly, the foreign agent must forward messages it receives that
are destined for the mobile host.

19.8 Registration Message Format

All registration messages are sent via UDP. Agents listen to well-known port 434;
requests may be sent from an arbitrary source port to destination port 434. An agent
reverses the source and destination points, so a reply is sent from source port 434 to the
port the requester used.

A registration message begins with a set of fixed-size fields followed by variable-
length extensions. Each request is required to contain a mobile-home authentication ex-
tension that allows the home agent to verify the mobile's identity. Figure 19.3 illus-
trates the message fomlat.

tGRE, which stands for Generic Routing Encapsulation, refers to a generalized encapsulation scheme that
allnurc an mhitmrv nrntwnl tn he ~nrmxulatcd. TP-in-IP i s nne narticnlar c a w

382 Mobile IP Chap. 19

I IDENTIFICATION I

0 8 16 31

I EXTENSIONS. . . I

TYPE (1 or 3) I FLAGS

Figure 193 The format of a mobile IP registration message.

LIFETIME

The TYPE field specifies whether the message is a registration request (I) or a
registration reply (3). The LIFETIME field specifies the number of seconds the regis-
tration is valid (a zero requests immediate deregistration, and all 1s specifies an infinite
lifetime). The HOME ADDRESS, HOME AGENT, and CARE-OF ADDRESS fields
specify the two IP addresses of the mobile and the address of its home agent, and the
IDENTIFICATION field contains a 64-bit number generated by the mobile that is used
to match requests with incoming replies and to prevent the mobile from accepting old
messages. Bits of the FLAGS field are used to specify forwarding details as listed in
Figure 19.4.

HOME ADDRESS

Bit Meaning
0 This is a simultaneous (additional) address

rather than a replacement.
1 Mobile requests home agent to tunnel a copy of

each broadcast datagram
2 Mobile is using a co-located care-of address and

will decapsulate datagrams itself
3 Mobile requests agent to use minimal encapsulation
4 Mobile requests agent to use GRE encapsulation
5 Mobile requests header compression

6-7 Reserved (must be zero)

Figure 19.4 The meaning of FLAGS bits in a mobile registration request.

If it has a co-located care-of address, a mobile can send a registration request
directly to its home agent. Otherwise, the mobile sends the request to a foreign agent,
which then forwards the request to the home agent. In the latter case, both the foreign
and home agents process the request, and both must approve. For example, either the
home or foreign agents can limit the registration lifetime.

Sec. 19.9 Communication With A Foreign Agent 383

19.9 Communication With A Foreign Agent

We said that a foreign agent can assign one of its IP addresses for use as a care-of
address. Doing so causes a problem because it means a mobile will not have a unique
address on the foreign network. The question then becomes: how can a foreign agent
and a mobile host communicate over a network if the mobile does not have a valid IP
address on the network? Communication requires relaxing the rules for IP addressing
and using an alternative scheme for address binding. In particular, when a mobile host
sends to a foreign agent, the mobile is allowed to use its home address as an IP source
address. Furthermore, when a foreign agent sends a datagram to a mobile, the agent is
allowed to use the mobile's home address as an IP destination address.

Although the mobile's home address can be used, an agent is not allowed to ARP
for the address (i.e., ARP is still restricted to IP addresses that are valid on the net-
work). To perform address binding without ARP, an agent is required to record all in-
formation about a mobile when a registration request arrives and to keep the infornla-
tion during communication. In particular, an agent must record the mobile's hardware
address. When it sends a datagram to the mobile, the agent consults its stored infornla-
tion to determine the appropriate hardware address. Thus, although ARP is not used,
the agent can send datagrams to a mobile via hardware unicast. We can summarize:

If a mobile does not have a unique foreign address, a foreign agent
must use the mobile's home address for communication. Instead of
relying on ARP for address binding, the agent records the mobile's
hardware address when a request arrives and uses the recorded infor-
mation to supply the necessary binding.

19.1 0 Datagram Transmission And Reception

Once it has registered, a mobile host on a foreign network can communicate with
an arbitrary computer. To do so, the mobile creates a datagram that has the computer's
address in the destination field and the mobile's home address in the source field-1. The
datagram follows the shortest path from the foreign network to the destination. Howev-
er, a reply will not follow the shortest path directly to the mobile. Instead, the reply
will travel to the mobile's home network. The home agent, which has learned the
mobile's location from the registration, intercepts the datagram and uses IP-in-IP encap-
sulation to tunnel the datagram to the care-of address. If a mobile has a co-located
care-of address, the encapsulated datagram passes directly to the mobile, which dis-
careds the outer datagram and then processes the inner datagram. If a mobile is using a
foreign agent for communication, the care-of address on the outer datagram specifies the
foreign agent. When it receives a datagram from a home agent, a foreign agent decap-
sulates the datagram, consults its table of registered mobiles, and transmits the datagram
across the local network to the appropriate mobile. To summarize:

tThe foreign network and the ISP that connects it to the rest of the internet must agree to transmit da-
tagrams with an arbitrary source address.

Mobile IP Chap. 19

Because a mobile uses its home address as a source address when
communicating with an arbitrary destination, each reply is forwarded
to the mobile's home network, where an agent intercepts the da-
tagram, encapsulates it in another datagram, and forwards it either
directly to the mobile or to the foreign agent the mobile is using.

19.1 1 The Two-Crossing Problem

The description above highlights the major disadvantage of mobile IP: inefficient
routing. Because a mobile uses its home address, a datagram sent to the mobile will be
forwarded to the mobile's home network first and then to the mobile. The problem is
especially severe because computer communication often exhibits spatial locality of
reference, which means that a mobile visiting a foreign network will tend to communi-
cate with computers on that network. To understand why mobile IP handles spatial lo-
cality poorly, consider Figure 19.5.

Home Site Foreign Site

I
PI destination fi

home agent
foreign agent

-- A + mobile's original home - mobile

Figure 19.5 A topology in which mobile IP routing is inefficient. When
mobile M communicates with local destination D, datagrams
from D travel across the internet to the mobile's home agent and
then back to the mobile.

In the figure, mobile M has moved from it's original home to a foreign network.
We assume the mobile has registered with its home agent, router R,, and the home
agent has agreed to forward datagrams. Now consider communication between the
mobile and destination D, which is located at the same site as the mobile. Datagram
from M to D travel through router R, and are then delivered to D. However, because
datagrams sent from D to M contain M's home address, they follow a path through R,
and across the internet to the mobile's home network. When the datagrams reach R,
(the mobile's home agent), they are tunneled back across the internet to the foreign site
(either directly to M or to a foreign agent). Because crossing an internet is much more
expensive than local delivery, the situation described above is known as the two-
crossing problem, and is sometimes called the 2X problemt.

tIf destination D is not close to the mobile, a slightly less severe version of the problem occurs which is
known as triangle forwarding or dog-leg forwarding.

Sec. 19.1 1 The Two-Crossing Problem 385

Mobile IP does not guarantee to solve the 2X problem. However, some route op-
timization is possible. In particular, if a site expects a visiting mobile to interact heavi-
ly with local computers, the site can arrange to propagate a host-specific route for the
mobile. To ensure correct routing, the host-specific route must be deleted when the
mobile leaves. Of course, the problem remains whenever a mobile communicates with
a destination outside the region where the host-specific route has been propagated. For
example, suppose mobiles move frequently between two corporations in cities A and B.
The network managers at the two sites can agree to propagate host-specific routes for all
visiting mobiles, meaning that when a mobile communicates with other computers at
the foreign site, traffic stays local to the site. However, because host-specific routes are
limited to the two corporate sites, communication between the mobile and any other
destination in the foreign city will result in replies being forwarded through the
mobile's home agent. Thus, the 2X problem remains for any destination outside the
corporation.

We can summarize:

Mobile IP introduces a routing inefficiency known as the 2X problem
that occurs when a mobile visits a foreign network far from its home
and then communicates with a computer near the foreign site. Each
datagram sent to the mobile travels across the intemet to the mobile's
home agent which then forwards the datagram back to the foreign
site. Eliminating the problem requires propagating host-specific
routes; the problem remains for any destination that does not receive
the host-spec& route.

19.12 Communication With Computers On the Home Network

We said that when a mobile is visiting a foreign network, the mobile's home agent
must intercept all datagrams sent to the mobile. Normally, the home agent is the router
that connects the mobile's home network to the rest of the intemet. Thus, all datagrams
that arrive for the host pass through the home agent. Before forwarding a datagram, the
home agent examines its table of mobile hosts to determine whether the destination host
is currently at home or visiting a foreign network.

Although a home agent can easily intercept all datagrams that arrive for a mobile
host from outside, there is one additional case that the agent must handle: datagrams
that originate locally. In particular, consider what happens when a host on the mobile's
home network sends a datagram to a mobile. Because IP specifies direct delivery over
the local network, the sender will not forward the datagram to a router. Instead, the
sender will ARP for the mobile's hardware address, encapsulate the datagram, and
transmit it.

If a mobile has moved to a foreign network, the home agent must intercept all da-
tagrams, including those sent by local hosts. To guarantee that it can intercept da-
tagrams from local hosts, the home agent uses proxy ARP. That is, a home agent must

386 Mobile IP Chap. 19

listen for ARP requests that specify the mobile as a target, and must answer the requests
by supplying its own hardware address. Proxy ARP is completely transparent to local
computers - any local system that ARPs for a mobile's address will receive a reply,
and will forward the datagram as usual.

The use of proxy ARP also solves the problem of multiple connections. If a
mobile's home network has multiple routers that connect to various parts of the internet,
only one needs to function as a home agent for the mobile. The other routers remain
unaware of mobility; they use ARP to resolve addresses as usual. Thus, because the
home agent answers the ARP requests, other routers forward datagrams without distin-
guishing between mobile and nonmobile hosts.

19.13 Summary

Mobile IP allows a computer to move from one network to another without chang-
ing its IP address and without requiring all routers to propagate a host-specific route.
When it moves from its original home network to a foreign network, a mobile computer
must obtain an additional, temporary address known as a care-of address. Applications
use the mobile's original, home address; the care-of address is only used by underlying
network software to enable forwarding and delivery across the foreign network.

Once it detects that it has moved, a mobile either obtains a co-located care-of ad-
dress or discovers a foreign mobility agent and requests the agent to assign a care-of ad-
dress. After obtaining a care-of address, the mobile registers with its home agent (either
directly or indirectly through the foreign agent), and requests the agent to forward da-
tagrams.

Once registration is complete, a mobile can communicate with an arbitrary comput-
er on the internet. Datagrams sent by the mobile are forwarded directly to the specified
destination. However, each datagram sent back to the mobile follows a route to the
mobile's home network where it is intercepted by the home agent, encapsulated in IP,
and then tunneled to the mobile.

FOR FURTHER STUDY

Perkins [FWC 20021 describes IP Mobility Support and defines the details of mes-
sages; an Internet draft describes version 2 [draft-ietf-mobileip-v2-OO.txt]. Perkins
[RFC 20031, Perkins [FWC 20041, and Hanks et. al. {RFC 17011 describe the details of
three IP-in-IP encapsulation schemes. Montenegro [RFC 23441 describes a reverse tun-
neling scheme for mobile IP. Finally, Perkins and Johnson [draft-ietf-mobileip-optim-
07.txtl considers route optimization for mobile IP.

Exercises

EXERCISES

Compare the encapsulation schemes in RFCs 2003 and 2004. What are the advantages
and disadvantages of each?

Read the mobile IF' specification carefully. How frequently must a router send a mobili-
ty agent advertisement? Why?

Consult the mobile IP specification. When a foreign agent forwards a registration re-
quest to a mobile's home agent, which protocol ports are used? Why?

The specification for mobile IP allows a single router to function as both a home agent
for a network and a foreign agent that supports visitors on the network. What are the
advantages and disadvantages of using a single router for both functions?

The mobile IF' specification defines three conceptually separate forms of authentication:
mobile to home agent, mobile to foreign agent, and foreign agent to home agent. What
are the advantages of separating them? The disadvantages?

Read the mobile IP specification to determine how a mobile host joins a multicast group.
How are multicast datagrams routed to the mobile? What is the optimal scheme?

Private Network
Interconnection (NAT, VPN)

20.1 Introduction

Previous chapters describe an internet as a single-level abstraction that consists of
networks interconnected by routers. This chapter considers an alternative - a two-level
internet architecture in which each organization has a private internet and a central in-
ternet interconnects them.

The chapter examines technologies used with a two-level architecture. One solves
the pragmatic problem of limited address space, and the other offers increased func-
tionality in the form of privacy that prevents outsiders from viewing the data.

20.2 Private And Hybrid Networks

One of the major drawbacks of a single-level internet architecture is the lack of
privacy. If an organization comprises multiple sites, the contents of datagrams that
travel across the Internet between the sites can be viewed by outsiders because they pass
across networks owned by other organizations. A two-level architecture distinguishes
between internal and external datagrams (i-e., datagrams sent between two computers
within an organization and datagrams sent between a computer in the organization and a
computer in another organization). The goal is to keep internal datagrams private,
while still allowing external communication.

The easiest way to guarantee privacy among an organization's computers consists
of building a completely isolated private internet, which is usually referred to as a

390 Private Network Lnterconnection (NAT, VPN) Chap. 20

private network. That is, an organization builds its own TCP/IP internet separate from
the global Internet. A private network uses routers to interconnect networks at each
site, and leased digital circuits to interconnect the sites. All data remains private be-
cause no outsiders have access to any part of a private network. Furthermore, because
the private network is isolated from the global Internet, it can use arbitrary IP addresses.

Of course, complete isolation is not always desirable. Thus, many organizations
choose a hybrid network architecture that combines the advantages of private network-
ing with the advantages of global Internet connectivity. That is, the organization uses
globally valid IF' addresses and connects each site to the Internet. The advantage is that
hosts in the organization can access the global Internet when needed, but can be assured
of privacy when communicating internally. For example, consider the hybrid architec-
ture illustrated by Figure 20.1 in which an organization has a private network that inter-
connects two sites and each site has a connection to the Internet.

Site 1 Site 2

128.1 0.1 .O 192.5.48.0

128.1 0.2.0 128.21 0.0.0

Figure 20.1 An example of a hybrid network. In addition to a leased circuit
that interconnects the two sites, each has a connection to the glo-
bal Internet.

In the figure, a leased circuit between routers R, and R, provides privacy for inter-
site traffic. Thus, routing at each site is arranged to send traffic across the leased circuit
rather than across the global Internet.

20.3 A Virtual Private Network (VPN)

The chief disadvantage of either a completely private network or a hybrid scheme
arises from the high cost: each leased circuit (e.g., a T1 line) is expensive. Consequent-
ly, many organizations seek lower-cost alternatives. One way to reduce costs arises
from the use of alternative circuit technologies. For example, a common carrier may
change less for a Frame Relay or ATM PVC than for a T-series circuit that has
equivalent capacity. Another way to lower costs involves using fewer circuits.
Minimum circuit cost is achieved by eliminating all circuits and passing data across the
global Internet.

Sec. 20.3 A Virtual Private Network (VPN) 39 1

Using the global Internet as an interconnection among sites appears to eliminate
the privacy offered by a completely private network. The question becomes:

How can an organization that uses the global Internet to connect its
sites keep its data private?

The answer lies in a technology that allows an organization to configure a Virtual
Private Network (VPN)?. A VPN is private in the same way as a private network -
the technology guarantees that communication between any pair of computers in the
VPN remains concealed from outsiders. A VPN is virtual because it does not use
leased circuits to interconnect sites. Instead, a VPN uses the global Internet to pass
traffic from one site to another.

Two basic techniques make a VPN possible: tunneling and encryption. We have
already encountered tunneling in Chapters 17 and 19. VPNs use the same basic idea -
they define a tunnel across the global Internet between a router at one site and a router
at another, and use IP-in-IP encapsulation to forward datagram across the tunnel.

Despite using the same basic concept, a VPN tunnel differs dramatically from the
tunnels described previously. In particular, to guarantee privacy, a VPN encrypts each
outgoing datagram before encapsulating it in another datagram for transmission$. Fig-
ure 20.2 illustrates the concept.

ENCRYPTED INNER DATAGRAM

Figure 20.2 Illustration of IP-in-IP encapsulation used with a VPN. To en-
sure privacy, the inner datagram is encrypted before being sent.

DATAGRAM
HEADER

As the figure shows, the entire inner datagram, including the header, is encrypted
before being encapsulated. When a datagram arrives over a tunnel, the receiving router
decrypts the data area to reproduce the inner datagram, which it then forwards.
Although the outer datagram traverses arbitrary networks as it passes across the tunnel,
outsiders cannot decode the contents because they do not have the encryption key.
Furthermore, even the identity of the original source and destination are hidden because
the header of the inner datagram is encrypted as well. Thus, only addresses in the outer
datagram header are visible: the source address is the IP address of the router at one end
of a tunnel, and the destination address is the IP address of the router at the other end of
the tunnel.

OUTERDATAGRAMDATAAREA

tThe name is a slight misnomer because the technology actually provides a virtual private internet.
$Chapter 32 considers IP security, and discusses the encapsulation used with IPsec.

Private Network Interconnection (NAT, VPN) Chap. 20

To summarize:

A Virtual Private Network sends data across the Internet, but encrypts
intersite transmissions to guarantee privacy.

20.4 VPN Addressing And Routing

The easiest way to understand VPN addressing and routing is to think of each VPN
tunnel as a replacement for a leased circuit in a private network. As in the private net-
work case, a router contains explicit routes for destinations within the organization.
However, instead of routing data across a leased lined, a VPN routes the data through a
tunnel. For example Figure 20.3 shows the VPN equivalent of the private network ar-
chitecture from Figure 20.1 along with a routing table for a router that handles tunnel-
ing.

Figure 20.3 A VPN that spans two sites and R,'s routing table. The tunnel
from R, to R, is configured like a point-to-point leased circuit.

Site 1 Site 2

128.10.1 .O 192.5.48.0

destination ned hop

As an example of forwarding in a VPN, consider a datagram sent from a computer
on network 128.10.2.0 to a computer on network 128.210.0.0. The sending host for-
wards the datagram to R,, which forwards it to R,. According to the routing table in R,,
the datagram must be sent across the tunnel to R,. Therefore, R, encrypts the datagram,
encapsulates it in the data area of an outer datagram with destination R,. R, then for-
ward the outer datagram through the local ISP and across the Internet. The datagram
arrives at R,, which recognizes it as tunneled from R,. R, decrypts the data area to pro-

128.21 0.0.0 128.10.2.0

Routing table in R,

128.10.1.0

128.10.2.0

192.5.48.0

128.210.0.0

default

direct

'32
tunnel to R,

tunnel to R,

ISP's router

Sec. 20.4 VPN Addressing And Routing 393

duce the original datagram, looks up the destination in its routing table, and forwards
the datagram to R, for delivery.

20.5 A VPN With Private Addresses

A VPN offers an organization the same addressing options as a private network. If
hosts in the VPN do not need general Internet connectivity, the VPN can be configured
to use arbitrary IP addresses; if hosts need Internet access, a hybrid addressing scheme
can be used. A minor difference is that when private addressing is used, one globally
valid IP address is needed at each site for tunneling. Figure 20.4 illustrates the concept.

@addre:'

using subnet INTERNET using subnet
10.1.0.0 10.2.0.0

10.1 address 10.2 address

Figure 20.4 Illustration of addressing for a VPN that interconnects two com-
pletely private sites over the global Internet. Computers at each
site use private addresses.

As the figure shows, site 1 uses subnet 10.1.0.0116, while site 2 uses subnet
10.2.0.0116. Only two globally valid addresses are needed. One is assigned to the con-
nection from router R, to the Internet, and the other is assigned to the connection from
R, to the Internet. Routing tables at the sites speclfy routes for private addresses; only
the VPN tunneling software needs to know about or use the globally valid IP addresses.

VPNs use the same addressing structure as a private network. Hosts in a complete-
ly isolated VPN can use arbitrary addresses, but a hybrid architecture with valid IP ad-
dresses must be employed to provide hosts with access to the global Internet. The ques-
tion remains: "How can a site provide access to the global Internet without assigning
each host a valid IP address?" There are two general solutions.

Known as an application gateway approach, the first solution offers hosts access to
Internet services without offering IP-level access. Each site has a multi-homed host
connected to both the global Internet (with a globally valid IP address) and the internal
network (using a private IP address). The multi-homed host runs a set of application
programs, known as application gateways, that each handle one service. Hosts at the
site do not send datagrams to the global Internet. Instead, they send each request to the
appropriate application gateway on the multihomed host, which accesses the service on
the Internet and then relays the information back across the internal network. For ex-
ample, Chapter 27 describes an e-mail gateway that can relay e-mail messages between
external hosts and internal hosts.

394 Private Network Interconnection (NAT, VPN) Chap. 20

The chief advantage of the application gateway approach lies in its ability to work
without changes to the underlying infrastructure or addressing. The chief disadvantage
arises from the lack of generality, which can be summarized:

Each application gateway handles only one specijk service; multiple
gateways are required for multiple services.

Consequently, although they are useful in special circumstances, application gateways
do not solve the problem in a general way. Thus, a second solution was invented.

20.6 Network Address Translation (NAT)

A technology has been created that solves the general problem of providing IP-
level access between hosts at a site and the rest of the Internet, without requiring each
host at the site to have a globally valid IP address. Known as Network Address Trans-
lation (NAT), the technology requires a site to have a single connection to the global In-
ternet and at least one globally valid IP address, G. Address G is assigned to a comput-
er (a multi-homed host or a router) that connects the site to the Internet and runs NAT
software. Informally, we refer to a computer that runs NAT software as a NAT box; all
datagrams pass through the NAT box as they travel from the site out to the Internet or
from the Internet into the site.

NAT translates the addresses in both outgoing and incoming datagrams by replac-
ing the source address in each outgoing datagram with G and replacing the destination
address in each incoming datagram with the private address of the correct host. Thus,
from the view of an external host, all datagram come from the NAT box and all
responses return to the NAT box. From the view of internal hosts, the NAT box ap-
pears to be a router that can reach the global Internet.

The chief advantage of NAT arises from its combination of generality and tran-
sparency. NAT is more general than application gateways because it allows an arbitrary
internal host to access an arbitrary service on a computer in the global Internet. NAT is
transparent because it allows an internal host to send and receive datagrams using a
private (i.e., nomoutabie) address.

To summarize:

Nen~ork Address Translation technology provides transparent IP-level
access to the Internet from a host with a private address.

Sec. 20.7 NAT Translation Table Creation 395

20.7 NAT Translation Table Creation

Our overview of NAT omits an important detail because it does not specify how
NAT knows which internal host should receive a datagram that arrives from the Inter-
net. In fact, NAT maintains a translation table that it uses to perform the mapping.
Each entry in the table specifies two items: the IP address of a host on the Internet and
the internal IP address of a host at the site. When an incoming datagram arrives from
the Internet, NAT looks up the datagram's destination address in the translation table,
extracts the corresponding address of an internal host, replaces the datagram's destina-
tion address with the host's address, and forwards the datagram across the local network
to the host?.

The NAT translation table must be in place before a datagram arrives from the In-
ternet. Otherwise, NAT has no way to identify the correct internal host to which the
datagram should be forwarded. How and when is the table initialized? There are
several possibilities:

Manual initialization. A manager configures the translation table manually be-
fore any communication occurs.

Outgoing datagrams. The table is built as a side-effect of sending datagrams.
When it receives a datagram from an internal host, NAT creates an entry in the
translation table to record the address of the host and the address of the desti-
nation.

Incoming name lookups. The table is built as a side-effect of handing domain
name lookups. When a host on the Internet looks up the domain name of an
internal host to find its IP address$, the domain name software creates an entry
in the NAT translation table, and then answers the request by sending address
G. Thus, from outside the site, it appears that all host names at the site map to
address G.

Each initialization technique has advantages and disadvantages. Manual initializa-
tion provides permanent mappings and allows IP datagrams to be sent in either direction
at any time. Using an outgoing datagram to initialize the table has the advantage of be-
ing automatic, but does not allow communication to be initiated from the outside. Us-
ing incoming domain name lookups requires modifying domain name software. It ac-
commodates communication initiated from outside the site, but only works if the sender
performs a domain name lookup before sending datagrams.

Most implementations of NAT use outgoing datagrams to initialize the table; the
strategy is especially popular among ISPs. To understand why, consider a small ISP
that serves dialup customers. Figure 20.5 illustrates the architecture.

+Of course, whenever it replaces an address in a datagram header, NAT must recompute the header
checksum.

$Chapter 24 describes how the Domain Name System (DNS) operates.

Private Network Interco~ection (NAT, VPN) Chap. 20

hosts using
dialup access

F'igure 205 The use of NAT by a small ISP that serves dialup customers.
NAT translation allows the ISP to assign a private address to
each dialup customer.

The ISP must assign an IP address to a customer whenever the customer dials in.
NAT permits the ISP to assign private addresses (e.g., the first customer is assigned
10.0.0.1, the second 10.0.0.2, and so on). When a customer sends a datagram to a desti-
nation on the Internet, NAT uses the outgoing datagram to initialize its translation table.

20.8 Multi-Address NAT

So far, we have described a simplistic implementation of NAT that performs a 1-
to-1 address mapping between an external address and an internal address. That is, a
1-to-1 mapping permits at most one computer at the site to access a given machine on
the global Internet at any time. In practice, more complex forms of NAT are used that
allow multiple hosts at a site to access a given external address concurrently.

One variation of NAT permits concurrency by retaining the 1-to-1 mapping, but al-
lowing the NAT box to hold multiple Internet addresses. Known as multi-address NAT,
the scheme assigns the NAT box a set of K globally valid addresses, G,, G,, ... G,.
When the first internal host accesses a given destination, the NAT box chooses address
G,, adds an entry to the translation table, and sends the datagram. If another host ini-
tiates contact with the same destination, the NAT box chooses address G,, and so on.
Thus, multi-address NAT allows up to K internal hosts to access a given destination
concurrently.

20.9 Port-Mapped NAT

Another popular variant of NAT provides concurrency by translating TCP or UDP
protocol port numbers as well as addresses. Sometimes called Network Address Port
Translation (NAPT), the scheme expands the NAT translation table to include additional
fields. Besides a pair of source and destination IP addresses, the table contains a pair of
source and destination protocol port numbers and a protocol port number used by the
NAT box. Figure 20.6 illustrates the contents of the table.

Sec. 20.9 Port-Mapped NAT 397

Private Private External External NAT Protocol
Address Port Address Port Port Used
10.0.0.5 21 023 128.1 0.1 9.20 80 14003 tcp
10.0.0.1 386 128.1 0.1 9.20 80 14010 tcP
10.0.2.6 26600 207.200.75.200 21 1401 2 tcP
10.0.0.3 1274 128.21 0.1.5 80 14007 tcP

Figure 20.6 An example of a translation table used by NAPT. The table in-
cludes port numbers as well as IF' addresses.

The table in the figure has enmes for four internal computers that are currently ac-
cessing destinations on the global Internet. All communication is using TCP. Interest-
ingly, the table shows two internal hosts, 10.0.0.5 and 10.0.0.1, both accessing protocol
port 80 (a Web server) on computer 128.I0.19.20. In this case, it happens that the two
source ports being used for the two connections differ. However, source port unique-
ness cannot be guaranteed - it could turn out that two internal hosts happen to choose
the same source port number. Thus, to avoid potential conflicts, NAT assigns a unique
port number to each communication that is used on the Internet. Recall that TCP iden-
tifies each connection with a Ctuple that represents the IF' address and protocol port
number of each endpoint. The first two items in the table correspond to TCP connec-
tions that the two internal hosts identify with the 4-tuples:

However, the computer in the Internet that receives datagram after NAPT performs the
translation identifies the same two connections with the 4-tuples:

(G, 14003, 128.10.19.20, 80)
(G, 1401 0, 128.1 0.19.20, 80)

where G is the globally valid address of the NAT box.
The primary advantage of NAPT lies in the generality it achieves with a single glo-

bally valid IF' address; the primary disadvantage arises because it restricts communica-
tion to TCP or UDP. As long as all communication uses TCP or UDP, NAPT allows
an internal computer to access multiple external computers, and multiple internal com-
puters to access the same external computer without interference. A port space of 16
bits allows up to 216 pairs of applications to communicate at the same time. To sum-
marize:

Several variants of NAT exist, including the popular NAPT form that
translates protocol port numbers as well as IP addresses.

398 Private Network Interconnection (NAT, VPN) Chap. 20

20.10 Interaction Between NAT And ICMP

Even straightforward changes to an IP address can cause unexpected side-effects in
higher layer protocols. In particular, to maintain the illusion of transparency, NAT must
handle ICMP. For example, suppose an internal host uses ping to test reachability of a
destination on the Internet. The host expects to receive an ICMP echo reply for each
ICMP echo request message it sends. Thus, NAT must forward incoming echo replies
to the correct host. However, NAT does not forward all ICMP messages that arrive
from the Internet. If routes in the NAT box are incorrect, for example, an ICMP
redirect message must be processed locally. Thus, when an ICMP message arrives
from the Internet, NAT must fust determine whether the message should be handled lo-
cally or sent to an internal host. Before forwarding to an internal host, NAT translates
the ICMP message.

To understand the need for ICMP translation, consider an ICMP destination un-
reachable message. The message contains the header from a datagram, D, that caused
the error. Unfortunately, NAT translated addresses before sending D, so the source ad-
dress is not the address the internal host used. Thus, before forwarding the message,
NAT must open the ICMP message and translate the addresses in D so they appear in
exactly the form that the internal host used. After making the change, NAT must
recompute the checksum in D, the checksum in the ICMP header, and the checksum in
the outer datagram header.

20.1 1 Interaction Between NAT And Applications

Although ICMP makes NAT complex, application protocols have a more serious
effect. In general, NAT will not work with any application that sends IP addresses or
protocol ports as data. For example, when two programs use the File Transfer Protocol
(FTP) described in Chapter 26, they have a TCP connection between them. As part of
the protocol, one program obtains a protocol port on the local machine, converts the
number to ASCII, and sends the result across a TCP connection to another program. If
the connection between the programs passes through NAPT from an internal host to a
host on the Internet, the port number in the data stream must be changed to agree with
the port number NAPT has selected instead of the port the internal host is using. In
fact, if NAT fails to open the data stream and change the number, the protocol will fail.
Implementations of NAT have been created that recognize popular protocols such as
FTP and make the necessary change in the data stream. However, there exist applica-
tions that cannot use NAT. To summarize:

NAT affects ICMP and higher layer protocols; except for a few stan-
dard applications like FTP, an application protocol that passes IP ad-
dresses or protocol port numbers as data will not operate correctly
across NAT.

Sec. 20.1 1 Interaction Between NAT And Applications 399

Changing items in a data stream increases the complexity of NAPT in two ways.
First, it means that NAFT must have detailed knowledge of each application that
transfers such infom~ation. Second, if the port numbers are represented in ASCII, as is
the case with FTP, changing the value can change the number of octets transferred. In-
serting even one additional octet into a TCP connection is difficult because each octet in
the stream has a sequence number. Because a sender does not know that additional data
has been inserted, it continues to assign sequence numbers without the additional data.
When it receives additional data, the receiver will generate acknowledgements that ac-
count for the data. Thus, after it inserts additional data, NAT must translate the se-
quence numbers in each outgoing segment and each incoming acknowledgement.

20.1 2 Conceptual Address Domains

We have described NAT as a technology that can be used to connect a private net-
work to the global Internet. In fact, NAT can be used to interconnect any two address
&mains. Thus, NAT can be used between two corporations that each have a private
network using address 10.0.0.0. More important, NAT can be used at two levels:
between a customer's private and an ISP's private address domains as well as between
the ISP's address domain and the global Internet. Finally, NAT can be combined with
VPN technology to form a hybrid architecture in which private addresses are used
within the organization, and NAT is used to provide connectivity between each site and
the global Internet.

As an example of multiple levels of NAT, consider an individual who works at
home from several computers which are connected to a LAN. The individual can as-
sign private addresses to the computers at home, and use NAT between the home net-
work and the corporate intranet. The corporation can also assign private addresses and
use NAT between its intranet and the global Internet.

20.13 Slirp And Masquerade

Two implementations of Network Address Translation have become especially po-
pular; both were designed for the Unix operating system. The slirp program, derived
from 4.4 BSD, comes with program source code. It was designed for use in a dialup ar-
chitecture like the one shown in Figure 20.5. Slirp combines PPP and NAT into a sin-
gle program. It runs on a computer that has: a valid IP address, a permanent Internet
connection, and one or more dialup modems. The chief advantage of slirp is that it can
use an ordinary user account on a Unix system for general-purpose Internet access. A
computer that has a private address dials in and runs slirp. Once slirp begins, the dialup
line switches from ASCII commands to PPP. The dialup computer starts PPP and ob-
tains access to the Internet (e.g., to access a Web site).

Slirp implements NAFT - it uses protocol port numbers to demultiplex connec-
tions, and can rewrite protocol port numbers as well as IP addresses. It is possible to

400 Private Network Interconnection (NAT, VPN) Chap. 20

have multiple computers (e.g., computers on a LAN) accessing the Internet at the same
time through a single occurrence of shrp running on a UNIX system.

Another popular implementation of NAT has been designed for the Linux operat-
ing system. Known as masquerade, the program implements NAPT. Unlike slirp,
masquerade does not require computers to access it via dialup, nor does masquerade
need a user to login to the UNM system before starting it. Instead, masquerade offers
many options; it can be configured to operate like a router between two networks, and it
handles most of the NAT variations discussed in this chapter, including the use of mul-
tiple IP addresses.

20.1 4 Summary

Although a private network guarantees privacy, the cost can be high. Virtual
Private Network (VPN) technology offers a lower cost alternative that allows an organi-
zation to use the global Internet to interconnect multiple sites and use encryption to
guarantee that intersite traffic remains private. Like a traditional private network, a
VPN can either be completely isolated (in which case hosts are assigned private ad-
dresses) or a hybrid architecture that allows hosts to communicate with destinations on
the global Internet.

Two technologies exist that provide communication between hosts in different ad-
dress domains: application gateways and Network Address Translation (NAT). An ap-
plication gateway acts like a proxy by receiving a request from a host in one domain,
sending the request to a destination in another, and then returning the result to the origi-
nal host. A separate application gateway must be installed for each service.

Network Address Translation provides transparent IP-level access to the global In-
ternet from a host that has a private address. NAT is especially popular among ISPs be-
cause it allows customers to access arbitrary Internet services while using a private IP
address. Applications that pass address or port information in the data stream will not
work with NAT until NAT has been programmed to recognize the application and make
the necessary changes in the data; most implementations of NAT only recognize a few
(standard) services.

FOR FURTHER STUDY

Many router and software vendors sell Virtual Private Network technologies, usu-
ally with a choice of encryption schemes and addressing architecture. Consult the ven-
dors' literature for more information.

Several versions of NAT are also available commercially. The charter of the IETF
working group on NAT can be found at:

For Further Study 4 0 1

In addition, Srisuresh and Holdrege [RFC 26631 defines NAT temlinology, and the In-
ternet Draft repository at

contains several Internet Drafts on NAT.
More details about the masquerade program can be found in the Linux documenta-

tion. A resource page can be found at URL:

More information on slirp can be found in the program documentation; a resource
page for slirp can be found at:

Under what circumstances will a VPN transfer substantially more packets than conven-
tional IP when sending the same data across the Internet? Hint: think about encapsula-
tion.

Read the slirp document to find out about port redirection. Why is it needed?

What are the potential problems when three address domains are connected by two NAT
boxes?

In the previous question, how many times will a destination address be translated? A
source address?

Consider an ICMP host unreachable message sent through two NAT boxes that intercon-
nect three address domains. How many address translations will occur? How many
translations of protocol port numbers will occur?

Imagine that we decide to create a new Internet parallel to the existing Internet that allo-
cates addresses from the same address space. Can NAT technology be used to connect
the two arbitrarily large Internets that use the same address space? If so, explain how.
If not, explain why not.

Is NAT completely transparent to a host? To answer the question, try to find a sequence
of packets that a host can transmit to determine whether it is located behind a NAT box.

What are the advantages of combining NAT technology with VPN technology? The
disadvantages?

Obtain a copy of slirp and instrument it to measure perfomlance. Does slirp processing
overhead ever delay datagram? Why or why not?

Obtain NAT and configure it on a Linux system between a private address domain and
the Internet. Which well-known services work correctly and which do not?

Read about a variant of NAT called twice NAT that allows communication to be initiated
from either side of the NAT box at any time. How does twice NAT ensure that transla-
tions are consistent? If two instances of twice NAT are used to interconnect three ad-
dress domains, is the result completely transparent to all hosts?

Client-Server Model Of
Interaction

21 .I Introduction

Early chapters present the details of TCPhP technology, including the protocols
that provide basic services and the router architecture that provides needed routing in-
formation. Now that we understand the basic technology, we can examine application
programs that profit from the cooperative use of a TCPIIP internet. While the example
applications are both practical and interesting, they do not comprise the main emphasis.
Instead, focus rests on the patterns of interaction among the communicating application
programs. The primary pattern of interaction among cooperating applications is known
as the client-server paradigm?. Client-server interaction forms the basis of most net-
work communication, and is fundamental because it helps us understand the foundation
on which distributed algorithms are built. This chapter considers the relationship
between client and server; later chapters illustrate the client-server pattern with further
examples.

21.2 The Client-Server Model

The term server applies to any program that offers a service that can be reached
over a network. A server accepts a request over the network, performs its service, and
returns the result to the requester. For the simplest services, each request arrives in a
single IP datagram and the server returns a response in another datagram.

- -

tMarketing literature sometimes substitutes the term application-server for client-server; the underlying
scientific principle is unchanged.

404 Client-Server Model Of Interaction Chap. 21

An executing program becomes a client when it sends a request to a server and
waits for a response. Because the client-server model is a convenient and natural exten-
sion of interprocess communication on a single machine, it is easy to build programs
that use the model to interact.

Servers can perform simple or complex tasks. For example, a time-of-day server
merely returns the current time whenever a client sends the server a packet. A web
server receives requests from a browser to fetch a copy of a Web page; the server ob-
tains a copy of the file for the page and returns it to the browser.

Usually, servers are implemented as application programst. The advantage of im-
plementing servers as application programs is that they can execute on any computing
system that supports TCP/IP communication. Thus, the server for a particular service
can execute on a timesharing system along with other programs, or it can execute on a
personal computer. Multiple servers can offer the same service, and can execute on the
same machine or on multiple machines. In fact, managers commonly replicate copies of
a given server onto physically independent machines to increase reliability or improve
performance. If a computer's primary purpose is support of a particular server program,
the term "server" may be applied to the computer as well as to the server program.
Thus, one hears statements such as "machine A is our file server."

21.3 A Simple Example: UDP Echo Server

The simplest form of client-server interaction uses unreliable datagram delivery to
convey messages from a client to a server and back. Consider, for example, a UDP
echo server. The mechanics are straightforward as Figure 21.1 shows. At the server
site, a UDP echo server process begins by negotiating with its operating system for per-
mission to use the UDP port ID reserved for the echo service, the UDP echo port.
Once it has obtained permission, the echo server process enters an infiite loop that has
three steps: (1) wait for a datagram to amve at the echo port, (2) reverse the source and
destination addresses$ (including source and destination IP addresses as well as UDP
port ids), and (3) return the datagram to its original sender. At some other site, a pro-
gram becomes a UDP echo client when it allocates an unused UDP protocol port, sends
a UDP message to the UDP echo server, and awaits the reply. The client expects to re-
ceive back exactly the same data as it sent.

The UDP echo service illustrates two important points that are generally true about
client-server interaction. The first concerns the difference between the lifetime of
servers and clients:

A server starts execution before interaction begins and (usually) con-
tinues to accept requests and send responses without ever terminating.
A client is any program that makes a request and awaits a response;
it (usually) terminates afer using a server a finite number of times.

?Many operating systems refer to a running application program as a process, a user process, or a rask.
$One of the exercises suggests considering this step in more detail.

Sec. 21.3 A Simple Example: UDP Echo Sewer

Figure 21.1 UDP echo as an example of the client-server model. In (a) the
client sends a request to the server at a known IP address and at
a well-known UDP port, and in (b) the server returns a response.
Clients use any UDP port that is available.

-
client 0

The second point, which is more technical, concerns the use of reserved and non-
reserved port identifiers:

response sent to
client's port

A server waits for requests at a well-known port that has been
reserved for the service it offers. A client allocates an arbitrary,
unused nonreserved port for its communication.

In a client-server interaction, only one of the two ports needs to be reserved. Assigning
a unique port identifier to each service makes it easy to build both clients and servers.

Who would use an echo service? It is not a service that the average user finds in-
teresting. However, programmers who design, implement, measure, or modify network
protocol software, or network managers who test routes and debug communication
problems, often use echo servers in testing. For example, an echo service can be used
to determine if it is possible to reach a remote machine.

406 Client-Sewer Model Of Interaction Chap. 21

21.4 Time And Date Service

The echo server is extremely simple, and little code is required to implement either
the server or client side (provided that the operating system offers a reasonable way to
access the underlying UDP/IP protocols). Our second example, a time server, shows
that even simple client-server interaction can provide useful services. The problem a
time server solves is that of setting a computer's time-of-day clock. The time of day
clock is a hardware device that maintains the current date and time, making it available
to programs. Once set, the time of day clock keeps time as accurately as a wristwatch.

Some systems solve the problem by asking a programmer to type in the time and
date when the system boots. The system increments the clock periodically (e.g., every
second). When an application program asks for the date or time, the system consults
the internal clock and formats the time of day in human readable form. Client-server
interaction can be used to set the system clock automatically when a machine boots. To
do so, a manager configures one machine, typically the machine with the most accurate
clock, to run a time-of-day server. When other machines boot, they contact the server
to obtain the current time.

21.4.1 Representation for the Date and Time

How should an operating system maintain the date and time-of-day? One useful
representation stores the time and date as the count of seconds since an epoch date. For
example, the UMX operating system uses the zeroth second of January 1, 1970 as its
epoch date. The TCPm protocols also define an epoch date and report times as
seconds past the epoch. For TCPJIP, the epoch is defined to be the zeroth second of
January 1, 1900 and the time is kept in a 32-bit integer, a representation that accommo-
dates all dates in the near future.

Keeping the date as the time in seconds since an epoch makes the representation
compact and allows easy comparison. It ties together the date and time of day and
makes it possible to measure time by incrementing a single binary integer.

21.4.2 Local and Universal Time

Given an epoch date and representation for the time, to what time zone does the
count refer? When two systems communicate across large geographic distances, using
the local time zone from one or the other becomes difficult; they must agree on a stan-
dard time zone to keep values for date and time comparable. Thus, in addition to defin-
ing a representation for the date and choosing an epoch, the TCPDP time server stan-
dard specifies that all values are given with respect to a single time zone. Originally
called Greenwich Mean Time, the time zone is now known as universal coordinated
time or universal time.

The interaction between a client and a server that offers time service works much
like an echo server. At the server side, the server application obtains permission to use
the reserved port assigned to time servers, waits for a UDP message directed to that
port, and responds by sending a UDP message that contains the current time in a 32-bit
integer. We can summarize:

Sec. 21.4 T i e And Date Service

Sending a datagram to a time server is equivalent to making a request
for the current time; the server responds by returning a UDP message
that contains the current time.

21.5 The Complexity of Sewers

In our examples so far, servers are fairly simple because they are sequential. That
is, the server processes one request at a time. After accepting a request, the server
forms a reply and sends it before going back to see if another request has arrived. We
implicitly assume that the operating system will queue requests that arrive for a server
while it is busy, and that the queue will not become too long because the server has
only a trivial amount of work to do.

In practice, servers are usually much more difficult to build than clients because
they need to accommodate multiple concurrent requests, even if a single request takes
considerable time to process. For example, consider a file transfer server responsible
for copying a file to another machine on request. Typically, servers have two parts: a
single master program that is responsible for accepting new requests, and a set of slaves
that are responsible for handling individual requests. The master server performs the
following five steps:

Open port
The master opens the well-known port at which it can be
reached.

Wait for client
The master waits for a new client to send a request.

Choose port
If necessary, the master allocates a new local protocol port for
this request and informs the client (we will see that this step is
unnecessary with TCP and most uses of UDP).

Start Slave
The master starts an independent, concurrent slave to handle this
request (e.g., in UNIX, it forks a copy of the server process).
Note that the slave handles one request and then terminates -
the slave does not wait for requests from other clients.

Continue
The master returns to the wait step and continues accepting new
requests while the newly created slave handles the previous re-
quest concurrently.

Because the master starts a slave for each new request, processing proceeds con-
currently. Thus, requests that require little time to complete can finish earlier than re-
quests that take longer, independent of the order in which they are started. For exam-
ple, suppose the first client that contacts a file server requests a large file transfer that

408 Client-Server Model Of Interaction Chap. 21

takes many minutes. If a second client contacts the server to request a transfer that
takes only a few seconds, the second transfer can start and complete while the first
transfer proceeds.

In addition to the complexity that results because servers handle concurrent re-
quests, complexity also arises because servers must enforce authorization and protection
rules. Server programs usually need to execute with highest privilege because they
must read system files, keep logs, and access protected data. The operating system will
not restrict a server program if it attempts to access users' files. Thus, servers cannot
blindly honor requests from other sites. Instead, each server takes responsibility for en-
forcing the system access and protection policies.

Finally, servers must protect themselves against malformed requests or against re-
quests that will cause the server program itself to abort. Often, it is difficult to foresee
potential problems. For example, one project at Purdue University designed a file
server that allowed student operating systems to access files on a UNIX timesharing
system. Students discovered that requesting the server to open a file named /dev/tty
caused the server to abort because UNIX associates that name with the control terminal
to which a program is attached. The server, created at system startup, had no such ter-
minal. Once an abort occurred, no client could access files until a systems programmer
restarted the server.

A more serious example of server vulnerability became known in the fall of 1988
when a student at Cornell University built a worm program that attacked computers on
the global Internet. Once the worm started running on a machine, it searched the Inter-
net for computers with servers that it knew how to exploit, and used the servers to
create more copies of itself. In one of the attacks, the worm used a bug in the UNIX
fingerd server. Because the server did not check incoming requests, the worm was able
to send an illegal string of input that caused the server to overwrite parts of its internal
data areas. The server, which executed with highest privilege, then misbehaved, allow-
ing the worm to create copies of itself.

We can summarize our discussion of servers:

Servers are usually more dificult to build than clients because,
although they can be implemented with application programs, servers
must enforce all the access and protection policies of the computer
system on which they run, and must protect themselves against all
possible errors.

21.6 RARP Server

So far, all our examples of client-server interaction require the client to know the
complete server address. The RARP protocol from Chapter 6 provides an example of
client-server interaction with a slightly different twist. Recall that a machine can use
RARP to find its IP address at startup. Instead of having the client communicate direct-
ly with a server, RARP clients broadcast their requests. One or more machines execut-
ing RARP server processes respond, each returning a packet that answers the query.

Sec. 21.6 RARP Server 409

There are two significant differences between a RARP server and a UDP echo or
time server. First, RARP packets travel across the physical network directly in
hardware frames, not in IP datagrams. Thus, unlike the UDP echo server which allows
a client to contact a server anywhere on an internet, the RARP server requires the client
to be on the same physical network. Second, RARP cannot be implemented by an ap-
plication program. Echo and time servers can be built as application programs because
they use UDP. By contrast, a RARP server needs access to raw hardware packets.

What are the alternatives to client-server interaction, and when might they be at-
tractive? This section gives an answer to these questions.

In the client-server model, programs usually act as clients when they need informa-
tion, but it is sometimes important to minimize such interactions. The ARP protocol
from Chapter 5 gives one example. It uses a modified form of client-server interaction
to obtain physical address mappings. Machines that use ARP keep a cache of answers
to improve the efficiency of later queries. Caching improves the performance of client-
server interaction in cases where the recent history of queries is a good indicator of fu-
ture use.

Although caching improves performance, it does not change the essence of client-
server interaction. The essence lies in our assumption that processing must be driven
by demand. We have assumed that a program executes until it needs information and
then acts as a client to obtain the needed information. Taking a demand-driven view of
the world is natural and arises from experience. Caching helps alleviate the cost of ob-
taining information by lowering the retrieval cost for all except the first process that
makes a request.

How can we lower the cost of information retrieval for the first request? In a dis-
tributed system, it may be possible to have concurrent background activities that collect
and propagate information before any particular program requests it, making retrieval
costs low even for the initial request. More important, precollecting information can al-
low a given system to continue executing even though other machines or the networks
connecting them fail.

Precollection is the basis for the 4BSD UNIX ruptime command. When invoked,
ruptime reports the CPU load and time since system startup for each machine on the lo-
cal network. A background program running on each machine uses UDP to broadcast
information about the machine periodically. The same program also collects incoming
information and places it in a file. Because machines propagate information continu-
ously, each machine has a copy of the latest infornlation on hand; a client seeking infor-
mation never needs to access the network. Instead, it reads the information from secon-
dary storage and prints it in a readable form.

The chief advantage of having information collected locally before the client needs
it is speed. The ruptime command responds immediately when invoked without waiting
for messages to traverse the network. A second benefit occurs because the client can

410 Client-Server Model Of Interaction Chap. 21

find out something about machines that are no longer operating. In particular, if a
machine stops broadcasting information, the client can report the time elapsed since the
last broadcast (i.e., it can report how long the machine has been off-line).

Precollection has one major disadvantage: it uses processor time and network
bandwidth even when no one cares about the data being collected. For example, the
ruptime broadcast and collection continues running throughout the night, even if no one
is logged in to read the information. If only a few machines connect to a given net-
work, precollection cost is insignificant. It can be thought of as an innocuous back-
ground activity. For networks with many hosts, however, the large volume of broadcast
traffic generated by precollection makes it too expensive. In particular, the cost of read-
ing and processing broadcast messages becomes high. Thus, precollection is not among
the most popular alternatives to client-server.

21.8 Summary

Distributed programs require network communication. Such programs often fall
into a pattern of use known as client-server interaction. A server process awaits a re-
quest and performs action based on the request. The action usually includes sending a
response. A client program formulates a request, sends it to a server, and then awaits a
reply.

We have seen examples of clients and servers and found that some clients send re-
quests directly, while others broadcast requests. Broadcast is especially useful on a lo-
cal network when a machine does not know the address of a server.

We also noted that if servers use internet protocols like UDP, they can accept and
respond to requests across an internet. If they communicate using physical frames and
physical hardware addresses, they are restricted to a single physical network.

Finally, we considered an alternative to the client-server paradigm that uses precol-
lection of information to avoid delays. An example of precollection came from a
machine status service.

FOR FURTHER STUDY

UDP echo service is defined in Postel [RFC 8621. The UNIX Programmer's
Manual describes the ruptime command (also see the related description of who) .
Feinler et. al. [I9851 specifies many standard server protocols not discussed here, in-
cluding discard, character generation, day and time, active users, and quote of the day.
The next chapters consider others.

Exercises

EXERCISES

Build a UDP echo client that sends a datagram to a specified echo server, awaits a reply,
and compares it to the original message.

Carefully consider the manipulation of IP addresses in a UDP echo server. Under what
conditions is it incorrect to create new IP addresses by reversing the source and destina-
tion IP addresses?

As we have seen, servers can be implemented by separate application programs or by
building server code into the protocol software in an operating system. What are the ad-
vantages and disadvantages of having an application program (user process) per server?

Suppose you do not know the IP address of a local machine running a UDP echo server,
but you know that it responds to requests sent to port 7. Is there an IP address you can
use to reach it?

Build a client for the UDP time service.

Characterize situations in which a server can be located on a separate physical network
from its client. Can a RARP server ever be located on a separate physical network from
it clients? Why or why not?

What is the chief disadvantage of having all machines broadcast their status periodically?

Examine the format of data broadcast by the servers that implement the 4BSD UNIX
mptime command. What information is available to the client in addition to machine
status?
What servers are running on computers at your site? If you do not have access to sys-
tem configuration files that list the servers started for a given computer, see if your sys-
tem has a command that prints a list of open TCP and UDP ports (e.g., the UNIX netstat
command).

Some servers allow a manager to gracefully shut them down or restart them. What is the
advantage of graceful shutdown?

The Socket Interface

22.1 Introduction

So far, we have concentrated on discussing the principles and concepts that under-
lie the TCPAP protocols without specifying the interface between the application pro-
grams and the protocol software. This chapter reviews one example of an Application
Program Znter$ace (Am, the interface between application programs and TCP/IP proto-
cols. There are two reasons for postponing the discussion of APIs. First, in principle
we must distinguish between the interface and TCPm protocols because the standards
do not specify exactly how application programs interact with protocol software. Thus,
the interface architecture is not standardized; its design lies outside the scope of the pro-
tocol suite. Second, in practice, it is inappropriate to tie the protocols to a particular
API because no single interface architecture works well on all systems. In particular,
because protocol software resides in a computer's operating system, interface details
depend on the operating system.

Despite the lack of a standard, reviewing an example will help us understand how
programmers use TCPAP. Although the example we have chosen is from the BSD
UNIX operating system, it has become, de facto, a standard that is widely accepted and
used in many systems. In particular, it forms the basis for Microsoft's Windows Sock-
ets? interface. The reader should keep in mind that our goal is merely to give one con-
crete example, not to prescribe how APIs should be designed. The reader should also
remember that the operations listed here are not part of the TCP/IP standards.

tProgrammers often use the term WZNSOCK as a replacement for Windows Sockets.

414 The Socket Interface Chap. 22

22.2 The UNIX UO Paradigm And Network UO

Developed in the late 1960s and early 1970s, UNIX was originally designed as a
timesharing system for single processor computers. It is a process-oriented operating
system in which each application program executes as a user level process. An applica-
tion program interacts with the operating system by making system calls. From the
programmer's point of view, system calls look and behave exactly like other procedure
calls. They take arguments and return one or more results. Arguments can be values
(e.g., an integer count) or pointers to objects in the application program (e.g., a buffer to
be filled with characters).

Derived from those in Multics and earlier systems, the UNIX input and output
(YO) primitives follow a paradigm sometimes referred to as open-read-write-close. Be-
fore a user process can perform V0 operations, it calls open to specify the file or device
to be used and obtains permission. The call to open returns a small integerfile descrip-
tort that the process uses when performing YO operations on the opened file or device.
Once an object has been opened, the user process makes one or more calls to read or
write to transfer data. Read transfers data into the user process; write transfers data
from the user process to the file or device. Both read and write take three arguments
that specify the file descriptor to use, the address of a buffer, and the number of bytes to
transfer. After all transfer operations are complete, the user process calls close to in-
form the operating system that it has finished using the object (the operating system au-
tomatically closes all open descriptors if a process terminates without calling close).

22.3 Adding Network UO to UNIX

Originally, UNM designers cast all VO operations in the open-read-write-close
paradigm described above. The scheme included VO for character-oriented devices like
keyboards and block-oriented devices like disks and data files. An early implementa-
tion of TCP/IP under UNIX also used the open-read-write-close paradigm with a special
file name, /dev/tcp.

The group adding network protocols to BSD UNIX decided that because network
protocols are more complex than conventional VO devices, interaction between user
processes and network protocols must be more complex than interactions between user
processes and conventional V0 facilities. In particular, the protocol interface must al-
low programmers to create both server code that awaits co~ect ions passively as well as
client code that forms co~ect ions actively. Furthermore, application programs sending
datagrams may wish to specify the destination address along with each datagram instead
of binding destinations at the time they call open. To handle all these cases, the
designers chose to abandon the traditional UNIX open-read-write-close paradigm, and
added several new operating system calls as well as new library routines. Adding net-
work protocols to UNIX increased the complexity of the 110 interface substantially.

Further complexity arises in the UNIX protocol interface because designers at-
tempted to build a general mechanism to accommodate many protocols. For example,

?The term "fie descriptor" arises because in UNIX all devices are mapped into the file system name
space. In most cases, VO operations on files and devices are indistinguishable.

Sec. 22.3 Adding Network UO to UNM 415

the generality makes it possible for the operating system to include software for other
protocol suites as well as TCP/IP, and to allow an application program to use one or
more of them at a time. As a consequence, the application program cannot merely sup-
ply a 32-bit address and expect the operating system to interpret it correctly. The appli-
cation must explicitly specify that the 32-bit number represents an IP address.

22.4 The Socket Abstraction

The basis for network I/0 in the socket API centers on an abstraction known as the
sockert. We think of a socket as a generalization of the UNIX file access mechanism
that provides an endpoint for communication. As with file access, application programs
request the operating system to create a socket when one is needed. The system returns
a small integer that the application program uses to reference the newly created socket.
The chief difference between file descriptors and socket descriptors is that the operating
system binds a file descriptor to a specific file or device when the application calls
open, but it can create sockets without binding them to specific destination addresses.
The application can choose to supply a destination address each time it uses the socket
(e.g., when sending datagrams), or it can choose to bind the destination address to the
socket and avoid specifying the destination repeatedly (e.g., when making a TCP con-
nection).

Whenever it makes sense, sockets perform exactly like UNIX files or devices, so
they can be used with traditional operations like read and write. For example, once an
application program creates a socket and creates a TCP connection from the socket to a
foreign destination, the program can use write to send a stream of data across the con-
nection (the application program at the other end can use read to receive it). To make it
possible to use primitives like read and write with both files and sockets, the operating
system allocates socket descriptors and file descriptors from the same set of integers and
makes sure that if a given integer has been allocated as a file descriptor, it will not also
be allocated as a socket descriptor.

22.5 Creating A Socket

The socket function creates sockets on demand. It takes three integer arguments
and returns an integer result:

result = socket(pf, type, protocol)

Argument pf specifies the protocol family to be used with the socket. That is, it speci-
fies how to interpret addresses when they are supplied. Current families include the
TCP/IP internet (PFJNET), Xerox Corporation PUP internet (PF-PUP), Apple Com-
puter Incorporated AppleTalk network (PFAPPLETALK), and UNIX file system
(PF-UNIX) as well as many others*.

tFor now, we will describe sockets as part of the operating system as they are implemented in UNM;
later sections describe how other operating systems use library routines to provide a socket API.

$In UNM, application programs contain symbolic names like PF-ZNET; system files contain the defmi-
tions that specify numeric values for each name.

416 The Socket Interface Chap. 22

Argument type specifies the type of communication desired. Possible types in-
clude reliable stream delivery service (SOCK-STREAM) and comectionless datagram
delivery service (SOCK-DGRAM), as well as a raw type (SOCK-RAW) that allows
privileged programs to access low-level protocols or network interfaces. Two additional
types were planned, but not implemented.

Although the general approach of separating protocol families and types may seem
sufficient to handle all cases easily, it does not. First, it may be that a given family of
protocols does not support one or more of the possible service types. For example, the
UNIX family has an interprocess communication mechanism called a pipe that uses a
reliable stream delivery service, but has no mechanism for sequenced packet delivery.
Thus, not all combinations of protocol family and service type make sense. Second,
some protocol families have multiple protocols that support one type of service. For
example, it may be that a single protocol family has two connectionless datagram
delivery services. To accommodate multiple protocols within a family, the socket call
has a third argument that can be used to select a specific protocol. To use the third ar-
gument, the programmer must understand the protocol family well enough to know the
type of service each protocol supplies.

Because the designers tried to capture many of the conventional UNIX operations
in their socket design, they needed a way to* simulate the lJNIX pipe mechanism. It is
not necessary to understand the details of pipes; only one salient feature is important:
pipes differ from standard network operations because the calling process creates both
endpoints for the communication simultaneously. To accommodate pipes, the designers
added a sockerpair function that takes the form:

socketpair(pf, type, protocol, sarray)

Socketpair has one more argument than the socket procedure, sarray. The additional ar-
gument gives the address of a two-element integer array. Socketpair creates two sock-
ets simultaneously and places the two socket descriptors in the two elements of sarray.
Readers should understand that socketpair is not meaningful when applied to the
TCPm protocol family (it has been included here merely to make our description of the
interface complete).

22.6 Socket Inheritance And Termination

UNIX uses the fork and exec system calls to start new application programs. It is a
two-step procedure. In the first step, fork creates a separate copy of the currently exe-
cuting application program. In the second step, the new copy replaces itself with the
desired application program. When a program calls fork, the newly created copy inher-
its access to all open sockets just as it inherits access to all open files. When a program
calls exec, the new application retains access to all open sockets. We will see that mas-
ter servers use socket inheritance when they create slave servers to handle a specific
connection. Internally, the operating system keeps a reference count associated with
each socket, so it knows how many application programs (processes) have access to it.

Sec. 22.6 Socket Inheritance And Termination 417

Both the old and new processes have the same access rights to existing sockets,
and both can access the sockets. Thus, it is the responsibility of the programmer to en-
sure that the two processes use the shared socket meaningfully.

When a process finishes using a socket it calls close. Close has the form:

where argument socket specifies the descriptor of a socket to close. When a process ter-
minates for any reason, the system closes all sockets that remain open. Internally, a call
to close decrements the reference count for a socket and destroys the socket if the count
reaches zero.

22.7 Specifying A Local Address

Initially, a socket is created without any association to local or destination ad-
dresses. For the TCPAP protocols, this means no local protocol port number has been
assigned and no destination port or IP address has been specified. In many cases, appli-
cation programs do not care about the local address they use and are willing to allow
the protocol software to choose one for them. However, server processes that operate at
a well-known port must be able to speclfy that port to the system. Once a socket has
been created, a server uses the bind function to establish a local address for it. Bind has
the following form:

bind(socket, localaddr, addrlen)

Argument socket is the integer descriptor of the socket to be bound. Argument lo-
caladdr is a structure that specifies the local address to which the socket should be
bound, and argument addrlen is an integer that specifies the length of the address meas-
ured in bytes. Instead of giving the address merely as a sequence of bytes, the
designers chose to use a structure for addresses as Figure 22.1 illustrates.

0 16 31

ADDRESS FAMILY ADDRESS OCTETS 0-1 1
I ADDRESS OCTETS 2-5 I

ADDRESS OCTETS 6-9

ADDRESS OCTETS 10-1 3

Figure 22.1 The sockaddr structure used when passing a TCPJIP address to
the socket interface.

418 The Socket Interface Chap. 22

The structure, generically named sockaddr, begins with a 16-bit ADDRESS FAMI-
LY field that identifies the protocol suite to which the address belongs. It is followed
by an address of up to I4 octets. When declared in C, the socket address structure is a
union of structures for all possible address families.

The value in the ADDRESS FAMILY field determines the format of the remaining
address octets. For example, the value 2t in the ADDRESS FAMILY field means the
remaining address octets contain a TCP/IF' address. Each protocol family defines how it
will use octets in the address field. For TCP/IP addresses, the socket address is known
as sockaddr-in. It includes both an IP address and a protocol port number (i.e., an in-
ternet socket address structure can contain both an IP address and a protocol port at that
address). Figure 22.2 shows the exact format of a TCP/IP socket address.

I ADDRESS FAMILY (2) I PROTOCOL PORT 1
I p IP ADDRESS

UNUSED (ZERO)

UNUSED (ZERO) *

Figure 22.2 The format of a socket address structure (sockaddr-in) when
used with a TCPJIP address. The structure includes both an IP
address and a protocol port at that address.

Although it is possible to specify arbitrary values in the address structure when cal-
ling bind, not all possible bindings are valid. For example, the caller might request a
local protocol port that is already in use by another program, or it might request an in-
valid IP address. In such cases, the bind call fails and returns an error code.

22.8 Connecting Sockets To Destination Addresses

Initially, a socket is created in the unconnected state, which means that the socket
is not associated with any foreign destination. The function connect binds a permanent
destination to a socket, placing it in the connected state. An application program must
call connect to establish a connection before it can transfer data through a reliable
stream socket. Sockets used with connectionless datagram services need not be con-
nected before they are used, but doing so makes it possible to transfer data without
specifying the destination each time.

The connect function has the form:

connect(socket, destaddr, addrlen)

TUNE uses the symbolic name PF-[NET to denote TCP/IP addresses.

Sec. 22.8 Connecting Sockets To Destination Addresses 419

Argument socket is the integer descriptor of the socket to connect. Argument destuddr
is a socket address structure that specifies the destination address to which the socket
should be bound. Argument uddrlen specifies the length of the destination address
measured in bytes.

The semantics of connect depend on the underlying protocols. Selecting the reli-
able stream delivery service in the PF-INET family means choosing TCP. In such
cases, connect builds a TCP connection with the destination and returns an error if it
cannot. In the case of comectionless service, connect does nothing more than store the
destination address locally.

22.9 Sending Data Through A Socket

Once an application program has established a socket, it can use the socket to
transmit data. There are five possible functions from which to choose: send, sendto,
sendmsg, write, and writev. Send, write, and writev only work with connected sockets
because they do not allow the caller to specify a destination address. The differences
between the three are minor. Write takes three arguments:

write(socket, buffer, length)

Argument socket contains an integer socket descriptor (write can also be used with other
types of descriptors). Argument buffer contains the address of the data to be sent, and
argument length specifies the number of bytes to send. The call to write blocks until
the data can be transferred (e.g., it blocks if internal system buffers for the socket are
full). Like most system calls, write returns an error code to the application calling it,
allowing the programmer to know if the operation succeeded.

The system call writev works like write except that it uses a "gather write" form,
making it possible for the application program to write a message without copying the
message into contiguous bytes of memory. Writev has the form:

writev(socket, iovector, vectorlen)

Argument iovector gives the address of an array of type iovec that contains a sequence
of pointers to the blocks of bytes that form the message. As Figure 22.3 shows, a
length accompanies each pointer. Argument vectorlen specifies the number of entries in
iovector.

420 The Socket Interface Chap. 22

POINTER TO BLOCK, (32-bit address)

LENGTH OF BLOCK, (32-bit integer)
:

POINTER TO BLOCK, (32-bit address)

LENGTH OF BLOCK, (32-bit integer)

Figure 22.3 The format of an iovector of type iovec used with writev and
readv.

The send function has the form:

send(socket, message, length, flags)

where argument socket specifies the socket to use, argument message gives the address
of the data to be sent, argument length specifies the number of bytes to be sent, and ar-
gument flags controls the transmission. One value for flags allows the sender to specify
that the message should be sent out-of-band on sockets that support such a notion. For
example, recall from Chapter 13 that out-of-band messages correspond to TCP's notion
of urgent data. Another value forflags allows the caller to request that the message be
sent without using local routing tables. The intention is to allow the caller to take con-
trol of routing, making it possible to write network debugging software. Of course, not
all sockets support all requests from arbitrary programs. Some requests require the pro-
gram to have special privileges; others are simply not supported on all sockets.

Functions sendto and sendmsg allow the caller to send a message through an un-
comected socket because they both require the caller to specify a destination. Sendto,
which takes the destination address as an argument, has the form:

sendto(socket, message, length, flags, destaddr, addrlen)

The first four arguments are exactly the same as those used with the send function. The
final two arguments specify a destination address and give the length of that address.
Argument destaddr specifies the destination address using the socknddr-in structure as
defined in Figure 22.2.

A programmer may choose to use function sendmsg in cases where the long list of
arguments required for sendto makes the program inefficient or difficult to read.
Sendmsg has the form:

sendmsg(socket, messagestruct, flags)

where argument messagestruct is a structure of the form illustrated in Figure 22.4. The
structure contains information about the message to be sent, its length, the destination

Sec. 22.9 Sending Data Through A Socket 42 1

address, and the address length. This call is especially useful because there is a
corresponding input operation (described below) that produces a message structure in
exactly the same fom~at.

0 3 1

POINTER TO SOCKETADDR 1
r p - SIZE OF SocKETADDR

POINTER TO IOVEC LlST

LENGTH OF IOVEC LlST

POINTER TO ACCESS RIGHTS LlST

LENGTH OF ACCESS RIGHTS LlST

Figure 22.4 The fornlat of message structure messagestmt used by sendrnsg.

22.10 Receiving Data Through A Socket

Analogous to the five different output operations, the socket API offers five func-
tions that a process can use to receive data through a socket: r e d , reudv, recv,
recvfrom, and recvmsg. The conventional input operation, read, can only be used when
the socket is connected. It has the form:

read(descriptor, buffer, length)

where descriptor gives the integer descriptor of a socket or file descriptor from which to
read data, bufSer specifies the address in memory at which to store the data, and length
specifies the maximum number of bytes to read.

An alternative form, reudv, allows the caller to use a "scatter read" style of inter-
face that places the incoming data in noncontiguous locations. Reudv has the form:

readv(descriptor, iovector, vectorlen)

Argument iovector gives the address of a structure of type iovec (see Figure 22.3) that
contains a sequence of pointers to blocks of memory into which the incoming data
should be stored. Argument vectorlen specifies the number of entries in iovector.

In addition to the conventional input operations, there are three additional functions
for network message input. Processes call recv to receive data from a connected socket.
It has the form:

recv(socket, buffer, length, flags)

422 The Socket Interface Chap. 22

Argument socket specifies a socket descriptor from which data should be received. Ar-
gument buffer specifies the address in memory into which the message should be
placed, and argument length specifies the length of the buffer area. Finally, argument
flags allows the caller to control the reception. Among the possible values for theflags
argument is one that allows the caller to look ahead by extracting a copy of the next in-
coming message without removing the message from the socket.

The function recvfrom allows the caller to specify input from an unconnected sock-
et. It includes additional arguments that allow the caller to specify where to record the
sender's address. The form is:

recvfrom(socket, buffer, length, flags, fromaddr, addrlen)

The two additional arguments, fromaddr and addrlen, are pointers to a socket address
structure and an integer. The operating system uses fromaddr to record the address of
the message sender and uses fromlen to record the length of the sender's address. No-
tice that the output operation sendto, discussed above, takes an address in exactly the
same form as recvfrom generates. Thus, sending replies is easy.

The final function used for input, recvmsg, is analogous to the sendmsg output
operation. Recvmsg operates like recvfrom, but requires fewer arguments. Its form is:

recvmsg(socket, messagestruct, flags)

where argument messagestruct gives the address of a structure that holds the address for
an incoming message as well as locations for the sender's address. The structure pro-
duced by recvmsg is exactly the same as the structure used by sendmsg, making them
operate well as a pair.

22.1 1 Obtaining Local And Remote Socket Addresses

We said that newly created processes inherit the set of open sockets from the pro-
cess that created them. Sometimes, a newly created process needs to determine the des-
tination address to which a socket connects. A process may also wish to determine the
local address of a socket. Two functions provide such information: getpeemume and
getsockname (despite their names, both deal with what we think of as "addresses").

A process calls getpeemame to determine the address of the peer (i.e., the remote
end) to which a socket connects. It has the form:

getpeername(socket, destaddr, addrlen)

Argument socket specifies the socket for which the address is desired. Argument des-
taddr is a pointer to a structure of type sockaddr (see Figure 22.1) that will receive the
socket address. Finally, argument addrlen is a pointer to an integer that will receive the
length of the address. Getpeemume only works with connected sockets.

Sec. 22.1 1 Obtaining Local And Remote Socket Addresses 423

Function getsockname returns the local address associated with a socket. It has the
form:

getsockname(socket, localaddr, addrlen)

As expected, argument socket specifies the socket for which the local address is desired.
Argument localaddr is a pointer to a structure of type sockaddr that will contain the ad-
dress, and argument addrlen is a pointer to an integer that will contain the length of the
address.

22.12 Obtaining And Setting Socket Options

In addition to binding a socket to a local address or connecting it to a destination
address, the need arises for a mechanism that permits application programs to control
the socket. For example, when using protocols that use timeout and retransmission, the
application program may want to obtain or set the timeout parameters. It may also want
to control the allocation of buffer space, determine if the socket allows transmission of
broadcast, or control processing of out-of-band data. Rather than add new functions for
each new control operation, the designers decided to build a single mechanism. The
mechanism has two operations: getsockopt and setsockopt.

Function getsockopt allows the application to request information about the socket.
A caller specifies the socket, the option of interest, and a location at which to store the
requested information. The operating system examines its internal data structures for
the socket and passes the requested information to the caller. The call has the form:

getsockopt(socket, level, optionid, optionval, length)

Argument socket specifies the socket for which information is needed. Argument level
identifies whether the operation applies to the socket itself or to the underlying proto-
cols being used. Argument optionid specifies a single option to which the request ap-
plies. The pair of arguments optionval and length specify two pointers. The first gives
the address of a buffer into which the system places the requested value, and the second
gives the address of an integer into which the system places the length of the option
value.

Function setsockopt allows an application program to set a socket option using the
set of values obtained with getsockopt. The caller specifies a socket for which the op-
tion should be set, the option to be changed, and a value for the option. The call to set-
sockopt has the form:

setsockopt(socket, level, optionid, optionval, length)

where the arguments are like those for getsockopt, except that the length argument con-
tains the length of the option being passed to the system. The caller must supply a legal
value for the option as well as a correct length for that value. Of course, not all options

424 The Socket Interface Chap. 22

apply to all sockets. The correctness and semantics of individual requests depend on
the current state of the socket and the underlying protocols being used.

22.13 Specifying A Queue Length For A Server

One of the options that applies to sockets is used so frequently, a separate function
has been dedicated to it. To understand how it arises, consider a server. The server
creates a socket, binds it to a well-known protocol port, and waits for requests. If the
server uses a reliable stream delivery, or if computing a response takes nontrivial
amounts of time, it may happen that a new request arrives before the server finishes
responding to an old request. To avoid having protocols reject or discard incoming re-
quests, a server must tell the underlying protocol software that it wishes to have such
requests enqueued until it has time to process them.

The function listen allows servers to prepare a socket for incoming connections. In
terms of the underlying protocols, listen puts the socket in a passive mode ready to ac-
cept connections. When the server invokes listen, it also informs the operating system
that the protocol software should enqueue multiple simultaneous requests that arrive at
the socket. The form is:

listen(socket, qlength)

Argument socket gives the descriptor of a socket that should be prepared for use by a
server, and argument qlength specifies the length of the request queue for that socket.
After the call, the system will enqueue up to qlength requests for connections. If the
queue is full when a request arrives, the operating system will refuse the c o ~ e c t i o n by
discarding the request. Listen applies only to sockets that have selected reliable stream
delivery service.

22.14 How A Server Accepts Connections

As we have seen, a server process uses the functions socket, bind, and listen to
create a socket, bind it to a well-known protocol port, and specify a queue length for
connection requests. Note that the call to bind associates the socket with a well-known
protocol port, but that the socket is not connected to a specific foreign destination. In
fact, the foreign destination must specify a wildcard, allowing the socket to receive con-
nection requests from an arbitrary client.

Once a socket has been established, the server needs to wait for a connection. To
do so, it uses function accept. A call to accept blocks until a connection request ar-
rives. It has the form:

newsock = accept(socket, addr, addrlen)

Sec. 22.14 How A Server Accepts Connections 425

Argument socket specifies the descriptor of the socket on which to wait. Argument
addr is a pointer to a structure of type sockaddr, and addrlen is a pointer to an integer.
When a request anives, the system fills in argument addr with the address of the client
that has placed the request and sets addrlen to the length of the address. Finally, the
system creates a new socket that has its destination connected to the requesting client,
and returns the new socket descriptor to the caller. The original socket still has a wild-
card foreign destination, and it still remains open. Thus, the master server can continue
to accept additional requests at the original socket.

When a connection request arrives, the call to accept returns. The server can either
handle requests iteratively or concurrently. In the iterative approach, the server handles
the request itself, closes the new socket, and then calls accept to obtain the next connec-
tion request. In the concurrent approach, after the call to accept returns, the master
server creates a slave to handle the request (in UNIX terminology, it forks a child pro-
cess to handle the request). The slave process inherits a copy of the new socket, so it
can proceed to service the request. When it finishes, the slave closes the socket and ter-
minates. The original (master) server process closes its copy of the new socket after
starting the slave. It then calls accept to obtain the next connection request.

The concurrent design for servers may seem confusing because multiple processes
will be using the same local protocol port number. The key to understanding the
mechanism lies in the way underlying protocols treat protocol ports. Recall that in TCP
a pair of endpoints define a connection. Thus, it does not matter how many processes
use a given local protocol port number as long as they connect to different destinations.
In the case of a concurrent server, there is one process per client and one additional pro-
cess that accepts connections. The socket the master server process uses has a wildcard
for the foreign destination, allowing it to connect with an arbitrary foreign site. Each
remaining process has a specific foreign destination. When a TCP segment anives, it
will be sent to the socket connected to the segment's source. If no such socket exists,
the segment will be sent to the socket that has a wildcard for its foreign destination.
Furthermore, because the socket with a wildcard foreign destination does not have an
open connection, it will only honor TCP segments that request a new connection.

22.15 Servers That Handle Multiple Services

The socket API provides another interesting possibility for server design because it
allows a single process to wait for connections on multiple sockets. The system call
that makes the design possible is called select, and it applies to I/O in general, not just
to communication over sockets?. Select has the form:

nready = select(ndesc, indesc, outdesc, excdesc, timeout)

In general, a call to select blocks waiting for one of a set of file descriptors to be-
come ready. Argument ndesc specifies how many descriptors should be examined (the
descriptors checked are always 2 through ndesc-1). Argument indesc is a pointer to a

tThe version of select in Windows Sockets applies only to socket descriptors.

426 The Socket Interface Chap. 22

bit mask that specifies the file descriptors to check for input, argument outdesc is a
pointer to a bit mask that specifies the file descriptors to check for output, and argument
excdesc is a pointer to a bit mask that specifies the file descriptors to check for excep-
tion conditions. Finally, if argument timeout is nonzero, it is the address of an integer
that specifies how long to wait for a connection before returning to the caller. A zero
value for timeout forces the call to block until a descriptor becomes ready. Because the
timeout argument contains the address of the timeout integer and not the integer itself, a
process can request zero delay by passing the address of an integer that contains zero
(i.e., a process can poll to see if VO is ready).

A call to select returns the number of descriptors from the specified set that are
ready for VO. It also changes the bit masks specified by indesc, outdesc, and excdesc to
inform the application which of the selected file descriptors are ready. Thus, before cal-
ling select, the caller must turn on those bits that correspond to descriptors to be
checked. Following the call, all bits that remain set to I correspond to a ready file
descriptor.

To communicate over more than one socket at a time, a process first creates all the
sockets it needs and then uses select to determine which of them becomes ready for I/0
first. Once it finds a socket has become ready, the process uses the input or output pro-
cedures defined above to communicate.

22.16 Obtaining And Setting Host Names

Most operating systems maintain an internal host name. For machines on the In-
ternet, the internal name is usually chosen to be the domain name for the machine's
main network interface. The gethostname function allows user processes to access the
host name, and the sethostname function allows privileged processes to set the host
name. Gethosrnuine has the form:

gethostname(name, length)

Argument name gives the address of an array of bytes where the name is to be stored,
and argument length is an integer that specifies the length of the name array. To set the
host name, a privileged process makes a call of the form:

sethostname(name, length)

Argument name gives the address of an array where the name is stored, and argument
length is an integer that gives the length of the name array.

Sec. 22.17 Obtaining And Setting The Internal Host Domain 427

22.17 Obtaining And Setting The Internal Host Domain

The operating system maintains a string that specifies the name domain to which a
machine belongs. When a site obtains authority for part of the domain name space, it
invents a string that identifies its piece of the space and uses that string as the name of
the domain. For example, machines in the domain

cs . purdue . edu

have names taken from the Arthurian legend. Thus, one finds machines named merlin,
arthur, guenevere, and lancelot. The domain itself has been named camelot, so the
operating system on each host in the group must be informed that it resides in the
camelot domain. To do so, a privileged process uses function setdomainname, which
has the form:

setdomainname(name, length)

Argument name gives the address of an array of bytes that contains the name of a
domain, and argument length is an integer that gives the length of the name.

User processes call getdomainname to retrieve the name of the domain from the
system. It has the form:

where argument name specifies the address of an array where the name should be
stored, and argument length is an integer that specifies the length of the array.

22.1 8 Socket Library Calls

In addition to the functions described above, the socket API offers a set of library
routines that perform useful functions related to networking. Figure 22.5 illustrates the
difference between system calls and library routines. System calls pass control to the
computer's operating system, while library routines are like other procedures that the
programmer binds into a program.

The Socket Interface Chap. 22

+
System Calls In

Computer's Operating System

Figure 22.5 The difference between library routines, which are bound into an
application program, and system calls, which are part of the
operating system. A program can call either; library routines
can call other library routines or system calls.

Many of the socket library routines provide database services that allow a process
to determine the names of machines and network services, protocol port numbers, and
other related information. For example, one set of library routines provides access to
the database of network services. We think of entries in the services database as 3-
tuples, where each 3-tuple contains the (human readable) name of a network service, the
protocol that supports the service, and a protocol port number for the service. Library
routines exist that allow a process to obtain information from an entry given any piece.

The next sections examine groups of library routines, explaining their purposes and
providing information about how they can be used. As we will see, the sets of library
routines that provide access to a sequential database follow a pattern. Each set allows
the application to: establish a connection to the database, obtain entries one at a time,
and close the connection. The routines used for these three operations are named setX-
en?, getXent, and endXent, where X is the name of the database. For example, the li-
brary routines for the host database are named sethostent, gethostent, and endhostent.
The sections that describe these routines summarize the calls without repeating the de-
tails of their use.

22.1 9 Network Byte Order Conversion Routines

Recall that machines differ in the way they store integer quantities and that the
TCPIIP protocols define a machine independent standard for byte order. The socket
API provides four library functions that convert between the local machine byte order
and the network standard byte order. To make programs portable, they must be written
to call the conversion routines every time they copy an integer value from the local
machine to a network packet, or when they copy a value from a network packet to the
local machine.

Sec. 22.19 Network Byte Order Conversion Routines 429

All four conversion routines are functions that take a value as an argument and re-
turn a new value with the bytes rearranged. For example, to convert a short (2-byte) in-
teger from network byte order to the local host byte order, a programmer calls ntohs
(network to host short). The format is:

localshort = ntohs(netshort)

Argument netshol-r is a 2-byte (16-bit) integer in network standard byte order and the
result, localshort, is in local host byte order.

The C programming language calls 4 byte (32 bit) integers longs. Function ntohl
(network to host long) converts 4-byte longs from network standard byte order to local
host byte order. Programs invoke ntohl as a function, supplying a long integer in net-
work byte order as an argument:

locallong = ntohl(net1ong)

Two analogous functions allow the programmer to convert from local host byte
order to network byte order. Function htons converts a 2-byte (short) integer in the
host's local byte order to a 2-byte integer in network standard byte order. Programs in-
voke htons as a function:

netshort = htons(1ocalshort)

The final conversion routine, htonl, converts long integers to network standard byte
order. Like the others, htonl is a function:

netlong = htonl(local1ong)

It should be obvious that the conversion routines preserve the following mathemat-
ical relationships:

netshort = htons(ntohs(netshort))

and
localshort = ntohs(htons(1ocalshort))

Similar relationships hold for the long integer conversion routines.

22.20 IP Address Manipulation Routines

Because many programs translate between 32-bit IP addresses and the correspond-
ing dotted decimal notation, the socket library includes utility routines that perform the
translation. Procedures i n e t - d r and inet-nefwork both translate from dotted decimal

430 'Ihe Socket Interface Chap. 22

format to a 32-bit IP address in network byte order. Inet-addr forms a 32-bit host IP
address; inet-network forms the network address with zeroes for the host part. They
have the form:

and
address = inet-addr(string)

address = inet-network(string)

where argument string gives the address of an ASCII smng that contains the number
expressed in dotted decimal format. The dotted decimal form can have 1 to 4 segments
of digits separated by periods (dots). If all 4 appear, each corresponds to a single byte
of the resulting 32-bit integer. If less than 4 appear, the last segment is expanded to fill
remaining bytes.

Procedure inet-ntoa performs the inverse of inet-addr by mapping a 32-bit integer
to an ASCII string in dotted decimal format. It has the form:

str = inet-ntoa(internetaddr)

where argument internetaddr is a 32-bit IP address in network byte order, and str is the
address of the resulting ASCII version.

Often programs that manipulate IP addresses must combine a network address with
the local address of a host on that network. Procedure inet-mkeaddr performs such a
combination. It has the form:

internetaddr = inet-makeaddr(net, local)

Argument net is a 32-bit network IP address in host byte order, and argument local is
the integer representing a local host address on that network, also in local host byte ord-
er.

Procedures inet-netof and inet-lnaof provide the inverse of inet-mkeaddr by
separating the network and local portions of an IP address. They have the form:

and
net = inet-netof(internetaddr)

local = inet-lnaof(internetaddr)

where argument internetaddr is a 32-bit IP address in network byte order, and the
results are returned in host byte order.

Sec. 22.21 Accessing The Domain Name System 43 1

22.21 Accessing The Domain Name System?

A set of five library procedures comprise the interface to the TCPIIP domain name
system. Application programs that call these routines become clients of one domain
name system, sending one or more servers requests and receiving responses.

The general idea is that a program makes a query, sends it to a server, and awaits
an answer. Because many options exist, the routines have only a few basic parameters
and use a global structure, res, to hold others. For example, one field in res enables de-
bugging messages while another controls whether the code uses UDP or TCP for
queries. Most fields in res begin with reasonable defaults, so the routines can be used
without changing res.

A program calls res-init before using other procedures. The call takes no argu-
ments:

Res-init reads a file that contains information like the name of the machine that runs the
domain name server and stores the results in global structure res.

Procedure res-mkquery forms a domain name query and places it in a buffer in
memory. The form of the call is:

res-rnkquery(op, dname, class, type, data, datalen, newrr, buffer, buflen)

The first seven arguments correspond directly to the fields of a domain name query.
Argument op specifies the requested operation, dnarne gives the address of a character
array that contains a domain name, class is an integer that gives the class of the query,
type is an integer that gives the type of the query, data gives the address of an array of
data to be included in the query, and datalen is an integer that gives the length of the
data. In addition to the library procedures, the socket API provides application pro-
grams with definitions of symbolic constants for important values. Thus, programmers
can use the domain name system without understanding the details of the protocol. The
last two arguments, bufler and buflen, specify the address of an area into which the
query should be placed and the integer length of the buffer area, respectively. Finally,
in the current implementation, argument newrr is unused.

Once a program has formed a query, it calls res-send to send it to a name server
and obtain a response. The form is:

res-send(buffer, buflen, answer, anslen)

Argument bu$er is a pointer to memory that holds the message to be sent (presumably,
the application called procedure res-mkquery to form the message). Argument buflen is
an integer that specifies the length. Argument answer gives the address in memory into
which a response should be written, and integer argument anslen specifies the length of
the answer area.

tChapter 24 considers the Domain Name System in detail.

432 The Socket Interface Chap. 22

In addition to routines that make and send queries, the socket library contains two
routines that translate domain names between conventional ASCII and the compressed
format used in queries. Procedure dn-expand expands a compressed domain name into
a full ASCII version. It has the form:

dn-expand(msg, eom, compressed, full, fullen)

Argument m g gives the address of a domain name message that contains the name to
be expanded, with eom specifying the end-of-message limit beyond which the expansion
cannot go. Argument compressed is a pointer to the first byte of the compressed name.
Argument full is a pointer to an array into which the expanded name should be written,
and argumentfullen is an integer that specifies the length of the array.

Generating a compressed name is more complex than expanding a compressed
name because compression involves eliminating common suffixes. When compressing
names, the client must keep a record of suffixes that have appeared previously. Pro-
cedure dn-comp compresses a full domain name by comparing suffixes to a list of pre-
viously used suffiies and eliminating the longest possible suffix. A call has the form:

dn-comp(ful1, compressed, cmprlen, prevptrs, lastptr)

Argumentfull gives the address of a full domain name. Argument compressed points to
an array of bytes that will hold the compressed name, with argument cmprlen specifying
the length of the array. The argument prevptrs is the address of an array of pointers to
previously compressed suffixes, with lastptr pointing to the end of the array. Normally,
dn-comp compresses the name and updates prevptrs if a new suffix has been used.

Procedure dn-comp can also be used to translate a domain name from ASCII to the
internal form without compression (i.e., without removing suffixes). To do so, a pro-
cess invokes dn-comp with the prevptrs argument set to NULL (i.e., zero).

22.22 Obtaining Information About Hosts

Library procedures exist that allow a process to retrieve information about a host
given either its domain name or its IP address. When used on a machine that has ac-
cess to a domain name server, the library procedures make the process a client of the
domain name system by sending a request to a server and waiting for a response. When
used on systems that do not have access to the domain name system (e.g., a host not on
the Internet), the routines obtain the desired information from a database kept on secon-
dary storage.

Function gethostbyname takes a domain name and returns a pointer to a structure
of information for that host. A call takes the form:

ptr = gethostbyname(namestr)

Sec. 22.22 Obtaining Information About Hosts 433

Argument namestr is a pointer to a character string that contains a domain name for the
host. The value returned, ptr, points to a structure that contains the following informa-
tion: the official host name, a list of aliases that have been registered for the host, the
host address type (i.e., whether the address is an IP address), the address length, and a
list of one or more addresses for the host. More details can be found in the UNIX
Programmer's Manual.

Function gethostbyaddr produces the same information as gethostbyname. The
difference between the two is that gethostbyaddr accepts a host address as an argument:

pt. = gethostbyaddr(addr, len, type)

Argument addr is a pointer to a sequence of bytes that contain a host address. Argu-
ment len is an integer that gives the length of the address, and argument type is an in-
teger that specifies the type of the address (e.g., that it is an IP address).

As mentioned earlier, procedures sethostent, gethostent, and endhostent provide
sequential access to the host database.

22.23 Obtaining Information About Networks

Hosts either use the domain name system or keep a simple database of networks in
their internet. The socket library routines include five routines that allow a process to
access the network database. Procedure getnetbyname obtains and formats the contents
of an entry from the database given the domain name of a network. A call has the
fomx

ptr = gemetbyname(name)

where argument name is a pointer to a string that contains the name of the network for
which information is desired. The value returned is a pointer to a structure that contains
fields for the official name of the network, a list of registered aliases, an integer address
type, and a 32-bit network address (i.e., an IP address with the host portion set to zero).

A process calls library routine getnetbyaddr when it needs to search for infornla-
tion about a network given its address. The call has the form:

ptr = getnetbyaddr(netaddr, addrtype)

Argument netaddr is a 32-bit network address, and argument addrtype is an integer that
specifies the type of netaddr. Procedures setnetent, getnetent, and endnetent provide
sequential access to the network database.

434 The Socket Interface Chap. 22

22.24 Obtaining lnformation About Protocols

Five library routines provide access to the database of protocols available on a
machine. Each protocol has an official name, registered aliases, and an official protocol
number. Procedure getprotobyname allows a caller to obtain information about a proto-
col given its name:

ptr = getprotobyname(name)

Argument name is a pointer to an ASCII string that contains the name of the protocol
for which information is desired. The function returns a pointer to a structure that has
fields for the official protocol name, a list of aliases, and a unique integer value as-
signed to the protocol.

Procedure getprotobynumber allows a process to search for protocol information
using the protocol number as a key:

ptr = getprotobynumber(number)

Finally, procedures getprotoent, setprotoent, and endprotoent provide sequential access
to the protocol database.

22.25 Obtaining lnformation About Network Services

Recall from Chapters 12 and 13 that some UDP and TCP protocol port numbers
are reserved for well-known services. For example, TCP port 43 is reserved for the
whois service. Whois allows a client on one machine to contact a server on another and
obtain information about a user that has an account on the server's machine. The entry
for whois in the services database specifies the service name, whois, the protocol, TCP,
and the protocol port number 43. Five library routines exist that obtain information
about services and the protocol ports they use.

Procedure getservbyname maps a named service onto a port number:

ptr = getservbyname(name, proto)

Argument name specifies the address of a string that contains the name of the desired
service, and integer argument proto specifies the protocol with which the service is to
be used. Typically, protocols are limited to TCP and UDP. The value returned is a
pointer to a structure that contains fields for the name of the service, a list of aliases, an
identification of the protocol with which the service is used, and an integer protocol
port number assigned for that service.

Procedure getservbyport allows the caller to obtain an entry from the services data-
base given the port number assigned to it. A call has the form:

ptr = getservbyport(port, proto)

The Socket Interface Chap. 22

char *argv[l;
{

int s; /* socket descriptor
k t la; /* length of received data
strud socl~&k-in sa; /* Internet socket addr. structure
strud hosta~t *hp; /* result of host nmoe 1-
strud Servent *sp;
char m [mFsIZ+ll; - -;
char *host;

/* result of service 1-
/* Wfer to read whois information
/* pointer to rme of this ~ogram

/* pointer to m t e host nmoe
char Sser; /* pointer to m t e user name

IwnanE = argv[OI;
/*
* Check that there are t w armFnd line -ts

*/
if(- != 3) {

£print£ (stderr, "Usage: %s host -w, lImaln2) ;
d t (1) ;

I
host = argv[ll;
user = argv[21;
/*
* mok up the specified h o s m

*/
if((hp = gethosm(host)) = MJLL) {

£printf (stderr, "%s: %s: no such host?\nm, nynarr~, host) ;
d t (1) ;

Sec. 22.26 An Example Client

sa.sinmrt = sp-xgart;

/*
* Allocate an open socket
*/
if ((s = socket (Ip>h-adchrtype, S O M S O M m , 0)) < 0) {

perrar("socketW);
sdt (1) ;

22.27 An Example Server

The example server is only slightly more complex than the client. The server
listens on the well-known "whois" port and returns the requested information in
response to a request from any client. The information is taken from the UNIX pass-
word file on the server's machine.

The Socket Interface Chap. 22

*hrogrann: wbissemer
*

~urpose: IMX m l i c a t i a n program that acts as a server for
* the %hoisn service an the locdl mchine. It listens

an well-laxxm WIS port (43) and - me5 frcm
clients. ?his program n x p i ~ ~ ~ super-user privilege to

* Iun.

*

/* # of requests W're wi l l - to cpleue */
/* ImXjRun bst nafE length W tolerate */

/* staI&& IMX azgumnt declarations */

/* socket descriptars */
/ * ~ p u p o s e ~ t e g e r */
/* Internet socket structure */
/* result of host nam loolap3 */
/* pointer to n m ~ of this program */
/* result of Service loolap3 */

char localbost-+I];/* locdl host nin\e as character string */

Sec. 22.27 An Example Sewer

I
/*
* G e t our UMl host infOm3tion

*/
gethostrwre (localhost, MAXHXWm) ;

i f ((@ = g e t k s t A y n a ~ (l ~ t)) = NJLL) {

fpurintf (stderr, "k: cannot get l o d host info?\n', nyname);
e X i t (1) ;

I
/*
* ~ t t h e ~ ~ ~ t r n n b e r a n d a r ~ i n f o
into the sccbt strudure

*/
sa.singort = sp->Sqart;
-((char *)@-a&, (char *)&Sa.sin-addr, @-*lasgth);
sa.sin-faanily = lgJ->h-addrtype;

/*
Allocate an cpm socket for irvXmirg ma

*/
i f ((s = s~cket(?p>h~ai&type, -, 0)) < 0)

permr("sccbt9);
exit (1) ;

1
/*
*Binlthesockettotheservicepart
*sowehearirvXmirgcxxnEmicns
*/

if (hird(s, &sa, sizeof sa) < 0) {

permr('bind");
exit (1) ;

I
/*
* s e t ~ ~ a w = W i l l f d L l b e h i r d

*/
listen(s, BMKKG);

/*
* Go into an infinite locp wai* far n e ~ amnecticn~

*/
while(1) {

i = sizeof isa;
/*
e bar^ in mt 0 while d t i r g for new cus-s

*/
i f ((t = accept(s, &isa, &i)) < 0) {

The Socket Interface Chap. 22

perrar("acC€ptV) ;

exit (1) ;

1
is (t) ; / perform the actual W I S Service */
close (t) ;

1
1
/*
* G e t the W I S request fmm mmte host ard f o m t a reply.
*/

*is~sock)
int sock;

{

strud passwd 9;
char M [mF'SIZ+11;
int i;

22.28 Summary

Because TCPAP protocol software resides inside an operating system, the exact in-
terface between an application program and TCP/IP protocols depends on the details of
the operating system; it is not specified by the TCP/IP protocol standard. We examined
the socket API, which was originally designed for BSD UNIX, but has become, de fac-

Sec. 22.28 Summary 44 1

to, a standard used by vendors such as Microsoft. We saw that sockets adopted the
UNIX open-read-write-close paradigm. To use TCP, a program must create a socket,
bind addresses to it, accept incoming connections, and then communicate using the read
or write primitives. Finally, when finished using a socket, the program must close it.
In addition to the socket abstraction and system calls that operate on sockets, BSD
UNIX includes library routines that help programmers create and manipulate IP ad-
dresses, convert integers between the local machine format and network standard byte
order, and search for information such as network addresses.

The socket interface has become popular and is widely supported by many ven-
dors. Vendors who do not offer socket facilities in their aperating systems often pro-
vide a socket library that makes it possible for programmefs to write applications using
socket calls even though the underlying operating system uses a different set of system
calls.

FOR FURTHER STUDY

Detailed idomlation on the socket functions cad be found in the UNIX
Programmer's Manual, where Section 2 contains a description of each UNIX system
call and Section 3 contains a description of each library procedure. UNIX also supplies
on-line copies of the manual pages via the man command. Leffler, McKusick, Karels,
and Quarterman [I9891 explores the UNIX system in more detail. Hall et. al. [I9931
contains the original standard for Windows Sockets, atrd Hall et. al. [I9961 describes
version 2.

Operating system vendors often provide libraries of procedures that emulate sock-
ets on their systems. Consult vendors' programming manuals for details. Gilligan
[RFC 21331 considers socket extensions for IPv6.

Volume 3 of this text describes how client and server programs are structured and
how they use the socket API. The BSD sockets version of Volume 3 contains example
code for Unix; the Windows sockets version contains the same examples for Microsoft
Windows. The TLI version of Volume 3 provides an introduction to the Transport
Layer Interface, an alternative to sockets used in System V UNIX.

22.1 Try running the sample whois client and server on your local system.
22.2 Build a simple server that accepts multiple concurrent connections (to test it, have the

process that handles a connection print a short message, delay a random time, print
another message, and exit).

The Socket Interface Chap. 22

When is the listen call important?
What procedures does your local system provide to access the domain name system?
Devise a server that uses a single UNIX process, but handles multiple concurrent TCP
connections. Hint: think of select boll in SYSTEM V).
Read about the AT&T System V Transport Library Interface (TLI) and compare it to the
socket interface. What are the major conceptual differences?
Each operating system limits the number of sockets a given program can use at any time.
How many sockets can a program create on your local system?
The socketlfile descriptor mechanism and associated read and write operations can be
considered a form of object-oriented design. Explain why.
Consider an alternative interface design that provides an interface for every layer of pro-
tocol software (e.g., the system allows an application program to send and receive raw
packets without using IP, or to send and receive IP datagrams without using UDP or
TCP). What are the advantages of having such an interface? The disadvantages?
A client and server can both run on the same computer and use a TCP socket to com-
municate. Explain how it is possible to build a client and server that can communicate
on a single machine without learning the host's IP address.
Experiment with the sample server in this chapter to see if you can generate TCP con-
nections sufficiently fast to exceed the backlog the server specifies. Do you expect in-
coming connection requests to exceed the backlog faster if the server operates on a com-
puter that has I processor than on a computer that has 5 processors? Explain.

Bootstrap And
A utocon figuration (BOO TP,
DHCP)

23.1 Introduction

This chapter shows how the client-server paradigm is used for bootstrapping. Each
computer attached to a TCP/IP internet needs to know its IP address before it can send
or receive datagram. In addition, a computer needs other information such as the ad-
dress of a router, the subnet mask to use, and the address of a name server. Chapter 6
describes how a computer can use the RARP protocol at system startup to determine its
IP address. This chapter discusses an alternative: two closely-related bootstrap proto-
cols that each allows a host to determine its IP address without using RARP. Surpris-
ingly, the client and server communicate using UDP, the User Datagram Protocol
described in Chapter 12.

What makes the bootstrapping procedure surprising is that UDP relies on IP to
transfer messages, and it might seem impossible that a computer could use UDP to find
an IP address to use when communicating. Examining the protocols will help us under-
stand how a computer can use the special IP addresses mentioned in Chapter 4 and the
flexibility of the UDP/IP transport mechanism. We will also see how a server assigns
an IP address to a computer automatically. Such assignment is especially important in
environments that permit temporary internet connections or where computers move
from one network to another (e.g., an employee with a portable computer moves from
one location in a company to another).

444 Bootstrap And Autoconfiguration (BOOTP, DHCP) Chap. 23

23.2 The Need For An Alternative To RARP

Chapter 6 presents the problem diskless computers face during system startup.
Such machines usually contain a startup program in nonvolatile storage (e.g., in ROM).
To minimize cost and keep parts interchangeable, a vendor uses exactly the same pro-
gram in all machines. Because computers with different IP addresses run the same boot
program, the code cannot contain an IP address. Thus, a diskless machine must obtain
its IP address from another source. In fact, a diskless computer needs to know much
more than its IP address. Usually, the ROM only contains a small startup program, so
the diskless computer must also obtain an initial memory image to execute. In addition,
each diskless machine must determine the address of a file server on which it can store
and retrieve data, and the address of the nearest IP router.

The RARP protocol of Chapter 6 has three drawbacks. First, because RARP
operates at a low level, using it requires direct access to the network hardware. Thus, it
may be difficult or impossible for an application programmer to build a server. Second,
although RARP requires a packet exchange between a client machine and a computer
that answers its request, the reply contains only one small piece of information: the
client's 4-octet IP address. This drawback is especially annoying on networks like an
Ethernet that enforce a minimum packet size because additional information could be
sent in the response at no additional cost. Third, because RAW uses a computer's
hardware address to identify the machine, it cannot be used on networks that dynamical-
ly assign hardware addresses.

To overcome some of the drawbacks of RARP, researchers developed the
BOOTstrap Protocol (BOOTP). Later, the Dynamic Host Configuration Protocol
(DHCP) was developed as a successor to BOOTP. Because the two protocols are close-
ly related, most of the description in this chapter applies to both. To simplify the text,
we will describe BOOTP first, and then see how DHCP extends the functionality to
provide dynamic address assignment.

Because it uses UDP and IP, BOOTP can be implemented with an application pro-
gram. Like RARP, BOOTP operates in the client-server paradigm and requires only a
single packet exchange. However, BOOTP is more efficient than RARP because a sin-
gle BOOTP message specifies many items needed at startup, including a computer's IP
address, the address of a router, and the address of a server. BOOTP also includes a
vendor-specific field in the reply that allows hardware vendors to send additional infor-
mation used only for their computerst.

23.3 Using IP To Determine An IP Address

We said that BOOTP uses UDP to carry messages and that UDP messages are en-
capsulated in IP datagrams for delivery. To understand how a computer can send
BOOTP in an IP datagram before the computer learns its LP address, recall from
Chapter 4 that there are several special-case IP addresses. In particular, when used as a
destination address, the IP address consisting of all 1s (255.255.255.255) specifies limit-

?As we will see, the term "vendor-specific" is a misnomer because the current specification also recom-
mends using the vendor-specific area for general purpose information such as subnet masks; DHCP changes
the name of the field to options.

Sec. 23.3 Using IP To Determine An IP Address 445

ed broadcast. IP software can accept and broadcast datagrams that specify the limited
broadcast address even before the software has discovered its local LP address informa-
tion. The point is that:

An application program can use the limited broadcast IP address to
force IP to broadcast a datagram on the local network before IP has
discovered the IP address of the local network or the machine's IP
address.

Suppose client machine A wants to use BOOTP to find bootstrap information (in-
cluding its IP address) and suppose B is the server on the same physical net that will
answer the request. Because A does not know B's IP address or the IP address of the
network, it must broadcast its initial BOOTP request using the IP limited broadcast ad-
dress. What about the reply? Can B send a directed reply? No, not usually. Although
it may not be obvious, B may need to use the limited broadcast address for its reply,
even though it knows A's IP address. To see why, consider what happens if an applica-
tion program on B attempts to send a datagram using A's IP address. After routing the
datagram, IP software on B will pass the datagram to the network interface software.
The interface software must map the next hop IP address to a corresponding hardware
address, presumably using ARP as described in Chapter 5. However, because A has not
yet received the BOOTP reply, it does not recognize its IP address, so it cannot answer
B's ARP request. Therefore, B has only two alternatives: either broadcast the reply or
use information from the request packet to manually add an entry to its ARP cache. On
systems that do not allow application programs to modify the ARP cache, broadcasting
is the only solution.

23.4 The BOOTP Retransmission Policy

BOOTP places all responsibility for reliable communication on the client. We
know that because UDP uses IP for delivery, messages can be delayed, lost, delivered
out of order, or duplicated. Furthermore, because IP does not provide a checksum for
data, the UDP datagram could arrive with some bits corrupted. To guard against corr-
uption, BOOTP requires that UDP use checksums. It also specifies that requests and re-
plies should be sent with the do not fragment bit set to accommodate clients that have
too little memory to reassemble datagrams. BOOTP is also constructed to allow multi-
ple replies; it accepts and processes the first.

To handle datagram loss, BOOTP uses the conventional technique of timeout and
retransmission. When the client transmits a request, it starts a timer. If no reply arrives
before the timer expires, the client must retransmit the request. Of course, after a power
failure all machines on a network will reboot simultaneously, possibly overrunning the
BOOTP server(s) with requests. If all clients use exactly the same retransmission
tirneout, many or all of them will attempt to retransmit simultaneously. To avoid the
resulting collisions, the BOOTP specification recommends using a random delay. In

446 Bootstrap And Autoconfiguration (BOOTP, DHCP) Chap. 23

addition, the specification recommends starting with a random timeout value between 0
and 4 seconds, and doubling the timer after each retransmission. After the timer
reaches a large value, 60 seconds, the client does not increase the timer, but continues
to use randomization. Doubling the timeout after each retransmission keeps BOOTP
from adding excessive traffic to a congested network; the randomization helps avoid
simultaneous transmissions.

23.5 The BOOTP Message Format

To keep an implementation as simple as possible, BOOTP messages have fixed-
length fields, and replies have the same format as requests. Although we said that
clients and servers are programs, the BOOTP protocol uses the terms loosely, referring
to the machine that sends a BOOTP request as the client and any machine that sends a
reply as a server. Figure 23.1 shows the BOOTP message format.

0 8 16 24 31

I

I YOUR IP ADDRESS I

TRANSACTION ID

SERVER IP ADDRESS

ROUTER IP ADDRESS

OP

SECONDS

I CLIENT HARDWARE ADDRESS (16 OCTETS) I

1 HLEN HTYPE

UNUSED

SERVER HOST NAME (64 OCTETS)

HOPS

-
CLIENT IP ADDRESS

I BOOT FILE NAME (128 OCTETS) I
I VENDOR-SPECIFIC AREA (64 OCTETS) I

Figure 23.1 The format of a BOOTP message. To keep implementations
small enough to fit in ROM, all fields have fixed length.

Sec. 23.5 The BOOTP Message Format 447

Field OP specifies whether the message is a request (I) or a reply (2). As in ARP,
fields HTYPE and HLEN specify the network hardware type and length of the hardware
address (e.g., Ethernet has type I and address length 6)t. The client places 0 in the
HOPS field. If it receives the request and decides to pass the request on to another
machine (e.g., to allow bootstrapping across multiple routers), the BOOTP server incre-
ments the HOPS count. The TRANSACTION ID field contains an integer that diskless
machines use to match responses with requests. The SECONDS field reports the
number of seconds since the client started to boot.

The CLIENT IP ADDRESS field and all fields following it contain the most impor-
tant information. To allow the greatest flexibility, clients fill in as much information as
they know and leave remaining fields set to zero. For example, if a client knows the
name or address of a specific server from which it wants information, it can fill in the
SERVER IP ADDRESS or SERVER HOST NAME fields. I f these fields are nonzero,
only the server with matching nameladdress will answer the request; if they are zero,
any server that receives the request will reply.

BOOTP can be used from a client that already knows its IP address (e.g., to obtain
boot file information). A client that knows its IP address places it in the CLIENT IP
ADDRESS field; other clients use zero. If the client's IP address is zero in the request,
a server returns the client's IP address in the YOUR IP ADDRESS field.

23.6 The Two-step Bootstrap Procedure

BOOTP uses a two-step bootstrap procedure. It does not provide clients with a
memory image - it only provides the client with information needed to obtain an im-
age. The client then uses a second protocol (e.g., TFTP from Chapter 26) to obtain the
memory image. While the two-step procedure many seem unnecessary, it allows a
clean separation of configuration and storage. A BOOTP server does not need to run
on the same machine that stores memory images. In fact, the BOOTP server operates
from a simple database that only knows the names of memory images.

Keeping configuration separate from storage is important because it allows ad-
ministrators to configure sets of machines so they act identically or independently. The
BOOT FILE NAME field of a BOOTP message illustrates the concept. Suppose an ad-
ministrator has several workstations with different hardware architectures, and suppose
that when users boot one of the workstations, they either choose to run UNIX or a local
operating system. Because the set of workstations includes multiple hardware architec-
tures, no single memory image will operate on all machines. To accommodate such
diversity, BOOTP allows the BOOT FILE NAME field in a request to contain a generic
name like "unix," which means, "I want to boot the UNIX operating system for this
machine." The BOOTP server consults its configuration database to map the generic
name into a specific file name that contains the UNIX memory image appropriate for
the client hardware, and returns the specific (i.e., fully qualified) name in its reply. Of
course, the configuration database also allows completely automatic bootstrapping in
which the client places zeros in the BOOT FILE NAME field, and BOOTP selects a

tValues for the HTYPE field can be found in the latest Assigned Numbers RFC.

448 Bootstrap And Autoconfiguration (BOOTP, DHCP) Chap. 23

memory image for the machine. The advantage of the automatic approach is that it al-
lows users to spec@ generic names that work on any machine; they do not need to
remember specific file names or hardware architectures.

23.7 Vendor-Specific Field

The VENDOR-SPECIFIC AREA contains optional information to be passed from
the server to the client. Although the syntax is intricate, it is not difficult. The first
four octets of the field are called a magic cookie and define the format of remaining
items; the standard format described here uses a magic cookie value of 99.130.83.99
(dotted decimal notation). A list of items follows the cookie, where each item contains
a one-octet type, an optional one-octet length, and a multi-octet valuet. The standard
defines the following types that have predetermined, fmed length values:

Item Item Value Contents
T Y P ~ Code Length of Value

Padding 0 - Zero - used only for padding
Subnet Mask 1 4 Subnet mask for local net
Time of Day 2 4 Time of day in universal time
End 255 - End of item list

Figure 23.2 Items in the vendor information. The length field must exist for
types 1 and 2; it must not exist for types 0 and 255.

Although a computer can obtain subnet mask information with an ICMP request, the
standard now recommends that BOOTP servers supply the subnet mask in each reply to
eliminate unnecessary ICMP messages.

Additional items in the VENDOR-SPECIFIC AREA all use a TLV encoding -
each item has a type octet, length octet, and a value. Figure 23.3 lists the possibilities.

23.8 The Need For Dynamic Configuration

BOOTP was designed for a relatively static environment in which each host has a
permanent network connection. A manager creates a BOOTP configuration file that
specifies a set of BOOTP parameters for each host. The file does not change frequently
because the configuration usually remains stable. Typically, a configuration continues
unchanged for weeks.

With the advent of wireless networking and portable computers such as laptops and
notebooks, it has become possible to move a computer from one location to another
quickly and easily. BOOTP does not adapt to such situations because configuration in-
formation cannot be changed quickly. BOOTP only provides a static mapping from a
host identifier to parameters for the host. Furthermore, a manager must enter a set of

?The format is an example of TLV encoding, which stands for Type Length Value.

Sec. 23.8 The Need For Dynamic Configuration 449

Item Item Length Contents
TY ~e Code Octet of Value

Routers
Time Server
IENI 16 Server
Domain Server
Log Server
Quote Server
Lpr Servers
Impress
RLP Server
Hostname
Boot Size
RESERVED

IP addresses of N/4 routers
IP addresses of N/4 time servers
IP addresses of N/4 IENI 16 servers
IP addresses of N/4 DNS servers
IP addresses of N/4 log servers
IP addresses of N/4 quote servers
IP addresses of N/4 Ipr servers
IP addresses of N/4 Impress servers
IP addresses of N/4 RLP servers
N bytes of client host name
2-octet integer size of boot file
Reserved for site specific use

Figure 23.3 Types and contents of items in the VENDOR-SPECIFIC AREA of
a BOOTP reply that have variable lengths.

parameters for each host, and then store the information in a BOOTP server configura-
tion file - BOOTP does not include a way to dynamically assign values to individual
machines. In particular, a manager must assign each host an IP address, and must con-
figure the server so it understands the mapping from host identifier to IP address.

Static parameter assignment works well if computers remain at fixed locations and
a manager has sufficient IP addresses to assign each computer a unique IP address.
However, in cases where computers move frequently or the number of physical comput-
ers exceeds the number of available IP host addresses, static assignment incurs exces-
sive overhead.

To understand how the number of computers can exceed the number of available
IP addresses, consider a LAN in a college laboratory that has been assigned a I24 ad-
dress that allows up to 254 hosts. Assume that because the laboratory only has seats for
30 students, the college schedules labs at ten different times during the week to accom-
modate up to 300 students. Further assume that each student canies a personal note-
book computer that they use in the lab. At any given time, the net has at most 30 active
computers. However, because the network address can accommodate at most 254 hosts,
a manager cannot assign a unique address to each computer. Thus, although resources
such as physical connections limit the number of simultaneous connections, the number
of potential computers that can use the facility is high. Clearly, a system is inadequate
if it requires a manager to change the server's configuration file before a new computer
can be added to the network and begin to communicate; an automated mechanism is
needed.

450 Bootstrap And Autoconfiguration (BOOTP, DHCP) Chap. 23

23.9 Dynamic Host Configuration

To handle automated address assignment, the IETF has designed a new protocol.
Known as the Dynamic Host Configuration Protocol (DHCP), the new protocol extends
BOOTP in two ways. First, DHCP allows a computer to acquire all the configuration
information it needs in a single message. For example, in addition to an IP address, a
DHCP message can contain a subnet mask. Second, DHCP allows a computer to obtain
an IP address quickly and dynamically. To use DHCP's dynamic address allocation
mechanism, a manager must configure a DHCP server by supplying a set of IP ad-
dresses. Whenever a new computer connects to the network, the new computer contacts
the server and requests an address. The server chooses one of the addresses the
manager specified, and allocates that address to the computer.

To be completely general, DHCP allows three types of address assignment; a
manager chooses how DHCP will respond for each network or for each host. Like
BOOTP, DHCP allows manual configuration in which a manager can configure a
specific address for a specific computer. DHCP also permits automatic configuration in
which a manager allows a DHCP server to assign a permanent address when a computer
first attaches to the network. Finally, DHCP permits completely dynamic configuration
in which a server "loans" an address to a computer for a limited time.

Like BOOTP, DHCP uses the identity of the client to decide how to proceed.
When a client contacts a DHCP server, the client sends an identifier, usually the client's
hardware address. The server uses the client's identifier and the network to which the
client has connected to determine how to assign the client and 1P address. Thus, a
manager has complete control over how addresses are assigned. A server can be con-
figured to allocate addresses to specific computers statically (like BOOTP), while allow-
ing other computers to obtain permanent or temporary addresses dynamically.

23.10 Dynamic IP Address Assignment

Dynamic address assignment is the most significant and novel aspect of DHCP.
Unlike the static address assignment used in BOOTP, dynamic address assignment is
not a one-to-one mapping, and the server does not need to know the identity of a client
a priori. In particular, a DHCP server can be configured to permit an arbitrary comput-
er to obtain an IP address and begin communicating. Thus, DHCP makes it possible to
design systems that autoconfigure. After such a computer has been attached to a net-
work, the computer uses DHCP to obtain an IP address, and then configures its TCPm
software to use the address. Of course, autoconfiguration is subject to administrative
restrictions - a manager decides whether each DHCP server allows autoconfiguration.
To summarize:

Because it allows a host to obtain all the parameters needed for com-
munication without manual intervention, DHCP permits autoconfi-
guration. Autoconfiguration is, of course, subject to administrative
constraints.

See. 23.10 Dynamic IP Address Assignment 45 1

To make autoconfiguration possible, a DHCP server begins with a set of IP ad-
dresses that the network administrator gives the server to manage. The administrator
specifies the rules by which the server operates. A DHCP client negotiates use of an
address by exchanging messages with a server. In the exchange, the server provides an
address for the client, and the client verifies that it accepts the address. Once a client
has accepted an address, it can begin to use that address for communication.

Unlike static address assignment, which pernlanently allocates each IP address to a
specific host, dynamic address assignment is temporary. We say that a DHCP server
leases an address to a client for a finite period of time. The server specifies the lease
period when it allocates the address. During the lease period, the server will not lease
the same address to another client. At the end of the lease period, however, the client
must renew the lease or stop using the address.

How long should a DHCP lease last? The optimal time for a lease depends on the
particular network and the needs of a particular host. For example, to guarantee that ad-
dresses can be recycled quickly, computers on a network used by students in a universi-
ty laboratory might have a short lease period (e.g., one hour). By contrast, a corporate
network might use a lease period of one day or one week. To accommodate all possible
environments, DHCP does not specify a fixed constant for the lease period. Instead, the
protocol allows a client to request a specific lease period, and allows a server to inform
the client of the lease period it grants. Thus, a manager can decide how long each
server should allocate an address to a client. In the extreme, DHCP reserves a value for
infinity to permit a lease to last arbitrarily long like the permanent address assignments
used in BOOTP.

23.1 1 Obtaining Multiple Addresses

A multi-homed computer connects to more than one network. When such a com-
puter boots, it may need to obtain configuration information for each of its interfaces.
Like a BOOTP message, a DHCP message only provides information about one inter-
face. A computer with multiple interfaces must handle each interface separately. Thus,
although we will describe DHCP as if a computer needs only one address, the reader
must remember that each interface of a multi-homed computer may be at a different
point in the protocol.

Both BOOTP and DHCP use the notion of relay agent to permit a computer to
contact a server on a nonlocal network. When a relay agent receives a broadcast re-
quest from a client, it forwards the request to a server and then returns the reply from
the server to the host. Relay agents can complicate multi-homed configuration because
a server may receive multiple requests from the same computer. However, although
both BOOTP and DHCP use the term client identifier, we assume that a multihomed
client sends a value that identifies a particular interface (e.g., a unique hardware ad-
dress). Thus, a server will always be able to distinguish among requests from a multi-
homed host, even when the server receives such requests via a relay agent.

452 Bootstrap And Autoconfiguration (BOOTP, DHCP) Chap. 23

23.12 Address Acquisition States

When it uses DHCP to obtain an IP address, a client is in one of six states. The
state transition diagram in Figure 23.4 shows events and messages that cause a client to
change state.

When a client first boots, it enters the INITIALIZE state. To start acquiring an IP
address, the client first contacts all DHCP servers in the local net. To do so, the client
broadcasts a DHCPDISCOVER message and moves to the state labeled SELECT. Be-
cause the protocol is an extension of BOOTP, the client sends the DHCPDISCOVER
message in a UDP datagram with the destination port set to the BOOTP port (i.e., port
67). All DHCP servers on the local net receive the message, and those servers that have
been programmed to respond to the particular client send a DHCPOFFER message.
Thus, a client may receive zero or more responses.

While in state SELECT, the client collects DHCPOFFER responses from DHCP
servers. Each offer contains configuration information for the client along with an IP
address that the server is offering to lease to the client. The client must choose one of
the responses (e g , the first to arrive), and negotiate with the server for a lease. To do
so, the client sends the server a DHCPREQUEST message, and enters the REQUEST
state. To acknowledge receipt of the request and start the lease, the server responds by
sending a DHCPACK. Arrival of the acknowledgement causes the client to move to the
BOUND state, where the client proceeds to use the address. To summarize:

To use DHCP, a host becomes a client by broadcasting a message to
all servers on the local network. The host then collects offers from
servers, selects one of the offers, and verifies acceptance with the
server.

23.13 Early Lease Termination

We think of the BOUND state as the normal state of operation; a client typically
remains in the BOUND state while it uses the IP address it has acquired. If a client has
secondary storage (e.g., a local disk), the client can store the IP address it was assigned,
and request the same address when it restarts again. In some cases, however, a client in
the BOUND state may discover it no longer needs an IP address. For example, suppose
a user attaches a portable computer to a network, uses DHCP to acquire an IP address,
and then uses TCPm to read electronic mail. The user may not know how long read-
ing mail will require, or the portable computer may allow the server to choose a lease
period. In any case, DHCP specifies a minimum lease period of one hour. If after ob-
taining an IP address, the user discovers that no e-mail messages are waiting to be read,
the user may choose to shutdown the portable computer and move to another location.

When it no longer needs a lease, DHCP allows a client to terminate a lease without
waiting for the lease to expire. Such termination is helpful in cases where neither the
client nor the server can determine an appropriate lease duration at the time the lease is

Sec. 23.13 Early Lease Termination 453

Host Boots \

PT DHCPNACK I \ DHCPNACK

I DHCPOFFER

Select m e r l
DHCPREQUEST

Lease Expires

87.5% Expiration l

Lease Reaches
\ 50% Expiration /

DHCPREQUEST

1
Cancel Leasel DHCPRELEASE

Figure 23.4 The six main states of a DHCP client and transitions among
them. Each label on a transition lists the incoming message or
event that causes the transmission, followed by a slash and the
message the client sends.

granted because it allows a server to choose a reasonably long lease period. Early ter-
mination is especially important if the number of IP addresses a server has available is
much smaller than the number of computers that attach to the network. If each client
terminates its lease as soon as the IP address is no longer needed, the server will be able
to assign the address to another client.

To terminate a lease early, a client sends a DHCPRELEASE message to the server.
Releasing an address is a final action that prevents the client from using the address
further. Thus, after transmitting the release message, the client must not send any other
datagrams that use the address. In terms of the state transition diagram of Figure 23.4,
a host that sends a DHCPRELEASE leaves the BOUND state, and must start at the INI-
T W Z E state again before it can use IP.

454 Bootstrap And Autoconfiguration (BOOTP, DHCP) Chap. 23

23.1 4 Lease Renewal States

We said that when it acquires an address, a DHCP client moves to the BOUND
state. Upon entering the BOUND state, the client sets three timers that control lease
renewal, rebinding, and expiration. A DHCP server can specify explicit values for the
timers when it allocates an address to the client; if the server does not specify timer
values, the client uses defaults. The default value for the first timer is one-half of the
total lease time. When the first timer expires, the client must attempt to renew its lease.
To request a renewal, the client sends a DHCPREQUEST message to the server form
which the lease was obtained. The client then moves to the RENEW state to await a
response. The DHCPREQUEST contains the IP address the client is currently using,
and asks the server to extend the lease on the address. As in the initial lease negotia-
tion, a client can request a period for the extension, but the server ultimately controls
the renewal. A server can respond to a client's renewal request in one of two ways: it
can instruct the client to stop using the address or it can approve continued use. If it
approves, the server sends a DHCPACK, which causes the client to return to the
BOUND state and continue using the address. The DHCPACK can also contain new
values for the client's timers. If a server disapproves of continued use, the server sends
a DHCPNACK (negative acknowledgement), which causes the client to stop using the
address immediately and return to the INITIALIZE state.

After sending a DHCPREQUEST message that requests an extension on its lease, a
client remains in state RENEW awaiting a response. If no response arrives, the server
that granted the lease is either down or unreachable. To handle the situation, DHCP re-
lies on a second timer, which was set when the client entered the BOUND state. The
second timer expires after 87.5% of the lease period, and causes the client to move from
state RENEW to state REBIND. When making the transition, the client assumes the old
DHCP server is unavailable, and begins broadcasting a DHCPREQUEST message to
any server on the local net. Any server configured to provide service to the client can
respond positively (i.e., to extend the lease), or negatively (i.e. to deny further use of the
IP address). If it receives a positive response, the client returns to the BOUND state,
and resets the two timers. If it receives a negative response, the client must move to the
INITIALIZE state, must immediately stop using the IP address, and must acquire a new
IP address before it can continue to use IP.

After moving to the REBIND state, a client will have asked the original server plus
all servers on the local net for a lease extension. In the rare case that a client does not
receive a response from any server before its third timer expires, the lease expires. The
client must stop using the IP address, must move back to the INITlALlZE state, and be-
gin acquiring a new address.

Sec. 23.15 DHCP Message Format 455

23.15 DHCP Message Format

As Figure 23.5 illustrates, DHCP uses the BOOTP message format, but modifies
the contents and meanings of some fields.

TRANSACTION ID

SECONDS I FLAGS

0 8 16 24 31

1 OP

I-pp CLIENT IP ADDRESS

HTYPE

YOUR IP ADDRESS I
I SERVER lP ADDRESS I

I HLEN

I ROUTER IP ADDRESS I

HOPS

CLIENT HARDWARE ADDRESS (16 OCTETS)

SERVER HOST NAME (64 OCTETS)

Figure 23.5 The format of a DHCP message, which is an extension of a
BOOTP message. The options field is variable length; a client
must be prepared to accept at least 312 octets of options.

As the figure shows, most of the fields in a DHCP message are identical to fields
in a BOOTP message. In fact, the two protocols are compatible; a DHCP server can be
programmed to answer BOOTP requests. However, DHCP changes the meaning of two
fields. First, DHCP interprets BOOTP's UNUSED field as a 16-bit FLAGS field. In
fact, Figure 23.6 shows that only the high-order bit of the FLAGS field has been as-
signed a meaning.

Bootstrap And Autoconfiguration (BOOTI', DHCP) Chap. 23

Figure 23.6 The format of the 16-bit FLAGS field in a DHCP message. The
leftmost bit is interpreted as a broadcast request; all others bits
must be set to zero.

Because the DHCP request message contains the client's hardware address, a
DHCP server normally sends its responses to the client using hardware unicast. A
client sets the high-order bit in the FLAGS field to request that the server respond using
hardware broadcast instead of hardware unicast. To understand why a client might
choose a broadcast response, recall that while a client communicates with a DHCP
server, it does not yet have an IP address. If a datagram arrives via hardware unicast
and the destination address does not match the computer's address, IP can discard the
datagram. However, IP is required to accept and handle any datagram sent to the IP
broadcast address. To ensure IP software accepts and delivers DHCP messages that ar-
rive before the machine's IP address has been configured, a DHCP client can request
that the server send responses using IP broadcast.

23.16 DHCP Options And Message Type

Surprisingly, DHCP does not add new fixed fields to the BOOTP message format,
nor does it change the meaning of most fields. For example, the OP field in a DHCP
message contains the same values as the OP field in a BOOTP message: the message is
either a boot request (1) or a boot reply (2). To encode information such as the lease
duration, DHCP uses options. In particular, Figure 23.7 illustrates the DHCP message
type option used to specify which DHCP message is being sent.

The options field has the same format as the VENDOR SPECIFIC AREA, and
DHCP honors all the vendor specific information items defined for BOOTP. As in
BOOTP, each option consists of a 1-octet code field and a 1-octet length field followed
by octets of data that comprise the option. As the figure shows, the option used to
specify a DHCP message type consists of exactly three octets. The first octet contains
the code 53, the second contains the length 1, and the third contains a value used to
identify one of the possible DHCP messages.

Sec. 23.17 Option Overload

TYPE FIELD Corresponding DHCP Message Type

0 8 16 23

1 DHCPDISCOVER
2 DHCPOFFER
3 DHCPREQUEST
4 DHCPDECLINE
5 DHCPACK
6 DHCPNACK
7 DHCPRELEASE

CODE(53) 1 LENGTH (1)

Figure 23.7 The format of a DHCP message type option us

TYPE (1 - 7)

wify the
DHCP message being sent. The table lists possible values of the
third octet and their meaning.

23.1 7 Option Overload

Fields SERVER HOST NAME and BOOT FILE NAME in the DHCP message
header each occupy many octets. If a given message does not contain information in ei-
ther of those fields, the space is wasted. To allow a DHCP server to use the two fields
for other options, DHCP defines an Option Overload option. When present, the over-
load option tells a receiver to ignore the usual meaning of the SERVER HOST NAME
and BOOT FILE NAME fields, and look for options in the fields instead.

23.18 DHCP And Domain Names?

Although it can allocate an IP address to a computer on demand, DHCP does not
completely automate all the procedures required to attach a permanent host to an inter-
net. In particular, DHCP does not interact with the domain name system. Thus, the
binding between a host name and the IP address DHCP assigns the host must be
managed independently.

What name should a host receive when it obtains an IP address from DHCP? Con-
ceptually, there are three possibilities. First, the host does not receive a name.
Although it is possible to run client software on a host without a name, using an un-
named computer can be inconvenient. Second, the host is automatically assigned a
name along with an IP address. This method is currently popular because names can be
preallocated, and no change is required to the DNS. For example, a system administra-
tor can configure the local domain name server to have a host name for each IP address
DHCP manages. Once it has been installed in DNS, the name-to-address binding

?Chapter 24 considers the Domain Name System in detail.

458 Bootstrap And Autoconfiguration (BOOTP, DHCP) Chap. 23

remains static. The chief disadvantage of a static binding is that the host receives a new
name whenever it receives a new address (e.g., if a host moves from one physical net to
another). Third, the host can be assigned a permanent name that remains unchanged.
Keeping a permanent host name is convenient because the computer can always be
reached via one name, independent of the computer's current location.

Additional mechanisms are needed to support permanent host names. In particular,
permanent host names require coordination between DHCP and DNS. A DNS server
must change the name-to-address binding whenever a host receives an IP address, and
must remove the binding when a lease expires. Although, an IETF working group is
currently considering how DHCP should interact with the domain name system, there is
currently no protocol for dynamic DNS update. Thus, until a dynamic update mechan-
ism is developed, there is no protocoI that maintains permanent host names while allow-
ing DHCP to change IP addresses.

23.1 9 Summary

The BOOTstrap Protocol, BOOTP, provides an alternative to RARP for a comput-
er that needs to detennine its IP address. BOOTP is more general than RARP because
it uses UDP, making it possible to extend bootstrapping across a router. BOOTP also
allows a machine to determine a router address, a (file) server address, and the name of
a program the computer should run. Finally, BOOTP allows administrators to establish
a configuration database that maps a generic name, like "unix," into the fully qualified
file name that contains a memory image appropriate for the client hardware.

BOOTP is designed to be small and simple enough to reside in a bootstrap ROM.
The client uses the limited broadcast address to communicate with the server, and takes
responsibility for retransmitting requests if the server does not respond. Retransmission
uses an exponential backoff policy similar to Ethernet to avoid congestion.

Designed as a successor to BOOTP, the Dynamic Host Configuration Protocol
(DHCP) extends BOOTP in several ways. Most important, DHCP permits a server to
allocate IP addresses automatically or dynamically. Dynamic allocation is necessary for
environments such as a wireless network where computers can attach and detach quick-
ly. To use DHCP, a computer becomes a client. The computer broadcasts a request for
DHCP servers, selects one of the offers it receives, and exchanges messages with the
server to obtain a lease on the advertised IP address.

When a client obtains an IF' address, the client starts three timers. After the first ti-
mer expires, the client attempts to renew its lease. If a second timer expires before
renewal completes, the client attempts to rebind its address from any server. If the final
timer expires before a lease has been renewed, the client stops using the IP address and
returns to the initial state to acquire a new address. A frnite state machine explains
lease acquisition and renewal.

For Further Study

FOR FURTHER STUDY

BOOTP is a standard protocc)1 in the TCP/LF' suite. Further details can be found in
Croft and Gilmore [RFC 9511, which compares BOOTP to RARP and serves as the of-
ficial standard. Reynolds [RFC 10841 tells how to interpret the vendor-specific area,
and Braden [RFC 11231 recommends using the vendor-specific area to pass the subnet
mask.

Droms [RFC 21311 contains the specification for DHCP, including a detailed
description of state transitions; another revision is expected soon. A related document,
Alexander and Droms [RFC 21321, specifies the encoding of DHCP options and
BOOTP vendor extensions. Finally, Droms [RFC 15341 discusses the interoperability
of BOOTP and DHCP.

EXERCISES

BOOTP does not contain an explicit field for returning the time of day from the server
to the client, but makes it part of the (optional) vendor-specific information. Should the
time be included in the required fields? Why or why not?

Argue that separation of configuration and storage of memory images is not good. (See
RFC 951 for hints.)

The BOOTP message format is inconsistent because it has two fields for client IP ad-
dress and one for the name of the boot image. If the client leaves its IP address field
empty, the server returns the client's IP address in the second field. If the client leaves
the boot file name field empty, the server replaces it with an explicit name. Why?

Read the standard to find out how clients and servers use the HOPS field.

When a BOOTP client receives a reply via hardware broadcast, how does it know
whether the reply is intended for another BOOTP client on the same physical net?

When a machine obtains its subnet mask with BOOTP instead of ICMP, it places less
load on other host computers. Explain.

Read the standard to find out how a DHCP client and server can agree on a lease dura-
tion without having synchronized clocks.

Consider a host that has a disk and uses DHCP to obtain an IP address. If the host
stores its address on disk along with the date the lease expires, and then reboots within
the lease period, can it use the address? Why or why not?

DHCP mandates a minimum address lease of one hour. Can you imagine a situation in
which DHCP's minimum lease causes inconvenience? Explain.

Read the RFC to find out how DHCP specifies renewal and rebinding timers. Should a
server ever set one without the other? Why or why not?

The state transition diagram does not show retransmission. Read the standard to find out
how many times a client should retransmit a request.

460 Bootstrap And Autoconfiguration (BOOTP, DHCP) Chap. 23

23.12 Can DHCP guarantee that a client is not "spoofing" (i.e., can DHCP guarantee that it
will not send configuration information for host A to host B)? Does the answer differ for
BOOTP? Why or why not?

23.13 DHCP specifies that a client must be prepared to handle at least 312 octets of options.
How did the number 312 arise?

23.14 Can a computer that uses DHCP to obtain an IP address operate a server? If so, how
does a client reach the server?

The Domain Name System

24.1 Introduction

The protocols described in earlier chapters use 32-bit integers called Internet Proto-
col addresses (IP addresses) to identify machines. Although such addresses provide a
convenient, compact representation for specifying the source and destination in packets
sent across an internet, users prefer to assign machines pronounceable, easily remem-
bered names.

This chapter considers a scheme for assigning meaningful high-level names to a
large set of machines, and discusses a mechanism that maps between high-level
machine names and IP addresses. It considers both the translation from high-level
names to IP addresses and the translation from IP addresses to high-level machine
names. The naming scheme is interesting for two reasons. First, it has been used to as- @
sign machine names throughout the global Internet. Second, because it uses a geo-
graphically distributed set of servers to map names to addresses, the implementation of c-
the name mapping mechanism provides a large scale example of the client-server para-
digm described in Chapter 21.

The Domain Name System (DNS) Chap. 24

24.2 Names For Machines

The earliest computer systems forced users to understand numeric addresses for ob-
jects like system tables and peripheral devices. Timesharing systems advanced comput-
ing by allowing users to invent meaningful symbolic names for both physical objects
(e.g., peripheral devices) and abstract objects (e.g., files). A similar pattern has emerged
in computer networking. Early systems supported point-to-point connections between
computers and used low-level hardware addresses to specify machines. Internetworking
introduced universal addressing as well as protocol software to map universal addresses
into low-level hardware addresses. Because most computing environments contain mul-
tiple machines, users need meaningful, symbolic names to identify them.

Early machine names reflected the small environment in which they were chosen.
It was quite common for a site with a handful of machines to choose names based on
the machines' purposes. For example, machines often had names like research, produc-
tion, accounting, and development. Users find such names preferable to cumbersome
hardware addresses.

Although the distinction between address and name is intuitively appealing, it is
artificial. Any name is merely an identifier that consists of a sequence of characters
chosen from a finite alphabet. Names are only useful if the system can efficiently map
them to the object they denote. Thus, we think of an IP address as a low-level name,
and we say that users prefer high-level names for machines.

The form of high-level names is important because it determines how names are
translated to low-level names or bound to objects, as well as how name assignments are
authorized. When only a few machines interconnect, choosing names is easy, and any
form will suffice. On the Internet, to which approximately one hundred million
machines connect, choosing symbolic names becomes difficult. For example, when its
main departmental computer was connected to the Internet in 1980, the Computer Sci-
ence Department at Purdue University chose the name purdue to identify the connected
machine. The list of potential conflicts contained only a few dozen names. By mid
1986, the official list of hosts on the Internet contained 3100 officially registered names
and 6500 official aliasest. Although the list was growing rapidly in the 1980s, most
sites had additional machines (e.g., personal computers) that were not registered.

24.3 Flat Namespace

The original set of machine names used throughout the Internet formed a flat
namespace in which each name consisted of a sequence of characters without any furth-
er structure. In the original scheme, a central site, the Network Information Center
(NZC), administered the namespace and determined whether a new name was appropri-
ate (i.e., it prohibited obscene names or new names that conflicted with existing names).

The chief advantage of a flat namespace is that names are convenient and short; the
chief disadvantage is that a flat namespace cannot generalize to large sets of machines
for both technical and administrative reasons. First. because names are drawn from a

tBy 1990, more than 137,000 Internet hosts had names, and by 2000 the number exceeded 60 million.

Sec. 24.3 Flat Namespace 463

single set of identifiers, the potential for conflict increases as the number of sites in-
creases. Second, because authority for adding new names must rest at a single site, the
administrative workload at that central site also increases with the number of sites. To
understand the severity of the problem, imagine a rapidly growing internet with
thousands of sites, each of which has hundreds of individual personal computers and
workstations. Every time someone acquires and connects a new personal computer, its
name must be approved by the central authority. Third, because the name-to-address
bindings change frequently, the cost of maintaining correct copies of the entire list at
each site is high and increases as the number of sites increases. Alternatively, if the
name database resides at a single site, network traffic to that site increases with the
number of sites.

24.4 Hierarchical Names

How can a naming system accommodate a large, rapidly expanding set of names
without requiring a central site to administer it? The answer lies in dzntralizing $e
naming mechanism by delegating authority for parts of the namespace and distributing
rGponsibility f;lr the mapping between names and addresses. TCPIIP internets use such
a scheme. Before examining the details of the TCPIIP scheme, we will consider the
motivation and intuition behind it.

The partitioning of a namespace must be defined in a way that supports efficient
name mapping and guarantees autonomous control of name assignment. Optimizing
only for efficient mapping can lead to solutions that retain a flat namespace and reduce
traffic by dividing the names among multiple mapping machines. Optimizing only for
administrative ease can lead to solutions that make delegation of authority easy but
name mapping expensive or complex.

To understand how the namespace should be divided, consider the internal struc-
ture of large organizations. At the top, a chief executive has overall responsibility. Be-
cause the chief executive cannot oversee everything, the organization may be partitioned
into divisions, with an executive in charge of each division. The chief executive grants
each division autonomy within specified limits. More to the point, the executive in
charge of a particular division can hire or fire employees, assign offices, and delegate
authority, without obtaining direct permission from the chief executive.

Besides making it easy to delegate authority, the hierarchy of a large organization
introduces autonomous operation. For example, when an office worker needs informa-
tion like the telephone number of a new employee, he or she begins by asking local
clerical workers (who may contact clerical workers in other divisions). The point is that
although authority always passes down the corporate hierarchy, information can flow
across the hierarchy from one office to another.
- -

464 The Domain Name System (DNS) Chap. 24

24.5 Delegation Of Authority For Names

A hierarchical naming scheme works like the management of a large organization.
The namespace is partitioned at the top level, and authority for names in subdivisions is
passed to designated agents. For example, one might choose to partition the namespace
based on site name and to delegate to each site responsibility for maintaining names
within its partition. The topmost level of the hierarchy divides the namespace and
delegates authority for each division; it need not be bothered by changes within a divi-
sion.

The syntax of hierarchically assigned names often reflects the hierarchical delega-
tion of authority used to assign them. As an example, consider a namespace with
names of the form:

local. site

where site is the site name authorized by the central authority, local is the part of a
name controlled by the site, and the period? (".") is a delimiter used to separate them.
When the topmost authority approves adding a new site, X , it adds X to the list of valid
sites and delegates to site X authority for all names that end in " .X ".

24.6 Subset Authority

In a hierarchical namespace, authority may be further subdivided at each level. In
our example of partition by sites, the site itself may consist of several administrative
groups, and the site authority may choose to subdivide its namespace among the groups.
The idea is to keep subdividing the namespace until each subdivision is small enough to
be manageable.

Syntactically, subdividing the namespace introduces another partition of the name.
For example, adding a group subdivision to names already partitioned by site produces
the following name syntax:

local. group. site

Because the topmost level delegates authority, group names do not have to agree among
all sites. A university site might choose group names like engineering, science, and
arts, while a corporate site might choose group names like production, accounting, and
personnel.

The U.S. telephone system provides another example of a hierarchical naming syn-
tax. The 10 digits of a phone number have been partitioned into a 3-digit area code, 3-
digit exchange, and Cdigit subscriber number within the exchange. Each exchange has
authority for assigning subscriber numbers within its piece of the namespace. Although
it is possible to group arbitrary subscribers into exchanges and to group arbitrary ex-
changes into area codes, the assignment of telephone numbers is not capricious; they are
carefully chosen to make it easy to route phone calls across the telephone network.

tIn domain names, the period delimiter is pronounced "dot."

Sec. 24.6 Subset Authority 465

The telephone example is important because it illustrates a key distinction between
the hierarchical naming scheme used in a TCP/rP internet and other hierarchies: parti-
tioning the set of machines owned by an organization along lines of authority does not
necessarily imply partitioning by physical location. For example, it could be that at
some university, a single building houses the mathematics department as well as the
computer science department. It might even turn out that although the machines from
these two groups fall under completely separate administrative domains, they connect to
the same physical network. It also may happen that a single group owns machines on
several physical networks. For these reasons, the TCP/IP naming scheme allows arbi-
trary delegation of authority for the hierarchical namespace without regard to physical
connections. The concept can be summarized:

In a TCP/IP internet, hierarchical machine names are assigned ac-
cording to the structure of organizations that obtain authority for
parts of the namespace, not necessarily according to the structure of

4 the physical network interconnections.

Of course, at many sites the organizational hierarchy corresponds with the structure of
physical network interconnections. At a large university, for example, most depart-
ments have their own local area network. If the department is assigned part of the nam-
ing hierarchy, all machines that have names in its part of the hierarchy will also connect
to a single physical network.

24.7 Internet Domain Names

The mechanism that implements a machine name hierarchy for TCPm internets is
called the Domain Name System (DNS). DNS has two, conceptually independent as-
pects. The first is abstract: it specifies the name syntax and rules for delegating authori-
ty over names. The second is concrete: it specifies the implementation of a distributed
computing system that efficiently maps names to addresses. This section considers the
name syntax, and later sections examine the implementation.

The domain name system uses a hierarchical naming scheme known as domain
names. As in our earlier examples, a domain name consists of a sequence of subnames
separated by a delimiter character, the period. In our examples we said that individual
sections of the name might represent sites or groups, but the domain system simply
calls each section a label. Thus, the domain name

cs .purdue . edu

contains three labels: cs, purdue, and edu. Any suffix of a label in a domain name is
also called a domain. In the above example the lowest level domain is cs .purdue. edzi,
(the domain name for the Computer Science Department at Purdue University), the
second level domain is purdue. edu (the domain name for Purdue University), and the

466 The Domain Name System (DNS) Chap. 24

top-level domain is edu (the domain name for educational institutions). As the example
shows, domain names are written with the local label first and the top domain last. As
we will see, writing them in this order makes it possible to compress messages that con-
tain multiple domain names.

24.8 Official And Unofficial Internet Domain Names

In theory, the domain name standard specifies an abstract hierarchical namespace
with arbitrary values for labels. Because the domain system dictates only the form of
names and not their actual values, it is possible for any group that builds an instance of
the domain system to choose labels for all parts of its hierarchy. For example, a private
company can establish a domain hierarchy in which the top-level labels specify cor-
porate subsidiaries, the next level labels specify corporate divisions, and the lowest level
labels specify departments.

However, most users of the domain technology follow the hierarchical labels used
by the official Internet domain system. There are two reasons. First, as we will see, the
Internet scheme is both comprehensive and flexible. It can accommodate a wide variety
of organizations, and allows each group to choose between geographical or organiza-
tional naming hierarchies. Second, most sites follow the Internet scheme so they can at-
tach their TCPIIP installations to the global Internet without changing names. Because
the Internet naming scheme dominates almost all uses of the domain name system, ex-
amples throughout the remainder of this chapter have labels taken from the Internet
naming hierarchy. Readers should remember that, although they are most likely to en-
counter these particular labels, the domain name system technology can be used with
other labels if desired.

The Internet authority has chosen to partition its top level into the domains listed
in Figure 24. l t.

Domain Name
COM
EDU
GOV
MIL
NET
ORG
ARPA
INT
country code

Meaning
Commercial organizations
Educational institutions (4-year)
Government institutions
Military groups
Major network support centers
Organizations other than those above
Temporary ARPANET domain (obsolete)
International organizations
Each country (geographic scheme)

Figure 24.1 The top-level Internet domains and their meanings. Although la-
bels are shown in upper case, domain name system comparisons
are insensitive to case, so EDU is equivalent to edu.

fThe following additional toplevel domains have been proposed, but not formally adopted: FIRM,
STORE, WEB, ARTS, REC, INFO, and NOM.

Sec. 24.8 Official And Unofficial Internet Domain Names 467

Conceptually, the top-level names permit two completely different naming hierar-
chies: geographic and organizational. The geographic scheme divides the universe of
machines by country. Machines in the United States fall under the top-level domain
US; when a foreign country wants to register machines in the domain name system, the
central authority assigns the country a new top-level domain with the country's interna-
tional standard 2-letter identifier as its label. The authority for the US domain has
chosen to divide it into one second-level domain per state. For example, the domain for
the state of Virginia is

As an alternative to the geographic hierarchy, the top-level domains also allow or-
ganizations to be grouped by organizational type. When an organization wants to parti-
cipate in the domain naming system, it chooses how it wishes to be registered and re-
quests approval. The central authority reviews the application and assigns the organiza-
tion a subdomain? under one of the existing top-level domains. For example, it is pos-
sible for a university to register itself as a second-level domain under EDU (the usual
practice), or to register itself under the state and country in which it is located. So far,
few organizations have chosen the geographic hierarchy; most prefer to register under
COM, EDU, MIL, or GOV. There are two reasons. First, geographic names are longer
and therefore more difficult to type. Second, geographic names are much more difficult
to discover or guess. For example, Purdue University is located in West Lafayette, In-
diana. While a user could easily guess an organizational name, like purdue.edu, a geo-
graphic name is often difficult to guess because it is usually an abbreviation, like

m . us. laf. '
Another example may help clarify the relationship between the naming hierarchy

and authority for names. A machine named xinu in the Computer Science Department
at Purdue University has the official domain name

xinu. cs .purdue . edu

The machine name was approved and registered by the local network manager in the
Computer Science Department. The department manager had previously obtained au-
thority for the subdomain cs .purdue. edu from a university network authority, who had
obtained permission to manage the subdomain purdue. edu from the Internet authority.
The Internet authority retains control of the edu domain, so new universities can only be
added with its permission. Similarly, the university network manager at Purdue Univer-
sity retains authority for the purdue. edu subdomain, so new third-level domains may
only be added with the manager's permission.

Figure 24.2 illustrates a small part of the Internet domain name hierarchy. As the
figure shows, Digital Equipment Corporation, a commercial organization, registered as
dec . corn, Purdue University registered as purdue . edu, and the National Science Foun-
dation, a government agency, registered as nsf.gov. In contrast, the Corporation for
National Research Initiatives chose to register under the geographic hierarchy as
cnri . reston. va . us$.

?The standard does not define the term "subdomain." We have chosen to use it because its analogy to
"subset" helps clarify the relationship among domains.

$Interestingly, CNRI also registered using the name nri . reston. va . us.

The Domain Name System @NS) Chap. 24

n - unnamed root

cnri 0
Figure 24.2 A small part of the Internet domain name hierarchy (tree). In

practice, the tree. is broad and flat; most host entries appear by
the fifth level.

24.9 Named Items And Syntax Of Names

The domain name system is quite general because it allows multiple naming hierar-
chies to be embedded in one system. To allow clients to distinguish among multiple
types of entries, each named item stored in the system is assigned a type that specifies
whether it is the address of a machine, a mailbox, a user, and so on. When a client asks
the domain system to resolve a name, it must specify the type of answer desired. For
example, when an electronic mail application uses the domain system to resolve a
name, it specifies that the answer should be the address of a mail exchanger. A remote
login application specifies that it seeks a machine's IP address. It is important to under-
stand the following:

A given name may map to more than one item in the domain system.
The client spec@es the type of object desired when resolving a name,
and the server returns objects of that type.

In addition to specifying the type of answer sought, the domain system allows the
client to specify the protocol family to use. The domain system partitions the entire set
of names by class, allowing a single database to store mappings for multiple protocol
suites?.

?In practice, few domain servers use multiple protocol suites.

Sec. 24.9 Named Items And Syntax Of Names 469

The syntax of a name does not determine what type of object it names or the class
of protocol suite. In particular, the number of labels in a name does not detem~ne
whether the name refers to an individual object (machine) or a domain. Thus, in our
example, it is possible to have a machine named

gwen .purdue . edu

even though

cs . purdue . edu

names a subdomain. We can summarize this important point:

1
One cannot distinguish the names of subdomains from the names of i

individual objects or the type of an object using only the domain name
I syntax.

24.1 0 Mapping Domain Names To Addresses

In addition to the - -- rules for name syntax and delegation of authority, the domain
name scheme includes an efficient, reliable, general purpose, distributed system for
mapping names t6 addresses. The systemjs diMbut& in th_technicd sense, meaning
that a set of servers operating at multiple sites cooperatively solve the mapping prob-
lem. It is efficient in the sense that most names can be mapped locally; only a few re-
quire internet trafEc. It is general purpose because it is not restricted to machine names
(although we will use that example for now). Finally, it is reliable in that no single
machine failure will prevent the system from operating correctly.

The domain mechanism for mapping names to addresses consists of independent,
cooperative systems called name servers. A name server is a server that sup-
plies name-to-address translation, mapping from domain names to IP addresses. Often,
server software executes on a dedicated processor, and the machine itself is called the
name server. The client software, called a name resolver, uses one or more name
servers when translating a name.

The easiest way to understand how domain servers work is to imagine them ar-
ranged in a tree structure that corresponds to the naming hierarchy, as Figure 24.3 illus-
trates. The root of the tree is a server that recognizes the top-level domains and knows
which server resolves each domain. Given a name to resolve, the root can choose the
correct server for that name. At the next level, a set of name servers each provide
answers for one top-level domain (e.g., edu). A server at this level knows which
servers can resolve each of the subdomains under its domain. At the third level of the
tree, name servers provide answers for subdomains (e.g., purdue under edu). The con-
ceptual tree continues with one server at each level for which a subdomain has been de-
fined.

The Domain Name System @NS) Chap. 24

Links in the conceptual tree do not indicate physical network connections. Instead,
they show which other name servers a given server knows and contacts. The servers
themselves may be located at arbitrary locations on an internet. Thus, the tree of
servers is an abstraction that uses an internet for communication.

(7, Server

Figure 243 The conceptual arrangement of domain name servers in a tree
that corresponds to the naming hierarchy. In theory, each server
knows the addresses of all lower-level servers for all sub-
domains within the domain it handles.

If servers in the domain system worked exactly as our simplistic model suggests,
the relationship between connectivity and authorization would be quite simple. When
authority was granted for a subdomain, the organization requesting it would need to es-
tablish a domain name server for that subdomain and link it into the tree.

In practice, the relationship between the naming hierarchy and the tree of servers is
not as simple as our model implies. The tree of servers has few levels because a single
physical server can contain all of the information for large parts of the naming hierar-
chy. In particular, organizations often collect information from all of their subdomains
into a single server. Figure 24.4 shows a more realistic organization of servers for the
naming hierarchy of Figure 24.2.

A root server contains information about the root and top-level domains, and each
organization uses a single server for its names. Because the tree of servers is shallow,
at most two servers need to be contacted to resolve a name like xinu. cs .purdue. edu:
the root server and the server for domain purdue. edu (i.e., the root server knows which

Sec. 24.10 Mapping Domain Names To Addresses 47 1

server handles purdue . edu, and the entire domain infornlation for Purdue resides in one
server).

Figure 24.4 A realistic organization of servers for the naming hierarchy of
Figure 24.2. Because the tree is broad and flat, few servers need
to be contacted when resolving a name.

24.1 1 Domain Name Resolution

Although the conceptual tree makes understanding the relationship between servers
easy, it hides several subtle details. Looking at the name resolution algorithm will help
explain them. Conceptually, domain name resolution proceeds top-down, starting with
the root name server and proceeding to servers located at the leaves of the tree. There
are two ways to use the domain name system: by contacting name servers one at a time
or asking the name server system to perform the complete translation. In either case,
the client software forms a domain name query that contains the name to be resolved, a
declaration of the class of the name, the type of answer desired, and a code that speci-
fies whether the name server should translate the name completely. It sends the query
to a name server for resolution.

When a domain name server receives a query, it checks to see if the name lies in
the subdomain for which it is an authority. If so, it translates the name to an address

I
according to its database, and appends an answer to the query before sending it back to
the client. If the name server cannot resolve the name completely, it checks to see what
type of interaction the client specified. If the client requested complete translation (re-
cursive resolution, in domain name terminology), the server contacts a domain name
server that can resolve the name and returns the answer to the client. If the client re-
quested non-recursive resolution (iterative resolution), the name server cannot supply an
answer. It generates a reply that specifies the name server the client should contact next
to resolve the name.

472 The Domain Name System (DNS) Chap. 24

How does a client find a name server at which to begin the search? How does a
name server find other name servers that can answer questions when it cannot? The
answers are simple. A client must know how to contact at least one name server. To
ensure that a domain name server can reach others, the domain system requires that
each server know the address of at least one root server?. In addition, a server may
know the address of a server for the domain immediately above it (called the parent).

Domain name servers use a well-known protocol port for all communication, so
clients know how to communicate with a server once they know the IP address of the
machine in which the server executes. There is no standard way for hosts to locate a
machine in the local environment on which a name server runs; that is left to whoever
designs the client software*.

In some systems, the address of the machine that supplies domain name service is
bound into application programs at compile time, while in others, the address is config-
ured into the operating system at startup. In others, the administrator places the address
of a server in a file on secondary storage.

24.1 2 Efficient Translation

Although it may seem natural to resolve queries by working down the tree of name
servers, it can lead to inefficiencies for three reasons. First, most name resolution refers
to local names, those found within the same subdivision of the namespace as the
machine from which the request originates. Tracing a path through the hierarchy to
contact the local authority would be inefficient. Second, if each name resolution always
started by contacting the topmost level of the hierarchy, the machine at that point would
become overloaded. Third, failure of machines at the topmost levels of the hierarchy
would prevent name resolution, even if the local authority could resolve the name. The
telephone number hierarchy mentioned earlier helps explain. Although telephone
numbers are assigned hierarchically, they are resolved in a bottom-up fashion. Because
the majority of telephone calls are local, they can be resolved by the local exchange
without searching the hierarchy. Furthermore, calls within a given area code can be
resolved without contacting sites outside the area code. When applied to domain
names, these ideas lead to a two-step name resolution mechanism that preserves the ad-
ministrative hierarchy but permits efficient translation.

We have said that most queries to name servers refer to local names. In the two-
step name resolution process, resolution begins with the local name server. If the local
server cannot resolve a name, the query must then be sent to another server in the
domain system.

+For reliability, there are multiple servers for each node in the domain server tree; the root server is furth-
er replicated to provide load balancing.

$See BOOTPIDHCP in Chapter 23 for one possible approach.

Sec. 24.13 Caching: The Key To Efficiency 473

24.13 Caching: The Key To Efficiency

The cost of lookup for nonlocal names can be extremely high if resolvers send
each query to the root server. Even if queries could go directly to the server that has
authority for the name, name lookup can present a heavy load to an internet. Thus, to
improve the overall performance of a name server system, it is necessary to lower the
cost of lookup for nonlocal names.

Internet name servers use name caching to optimize search costs. Each server
maintains a cache of recently used names as well as a record of where the mapping in-
formation for that name was obtained. When a client asks the server to resolve a name,
the server f i s t checks to see if it has authority for the name according to the standard
procedure. If not, the server checks its cache to see if the name has been resolved re-
cently. Servers report cached information to clients, but mark it as a nonauthoritative
binding, and give the domain name of the server, S, from which they obtained the bind-
ing. The local server also sends along additional information that tells the client the
binding between S and an IP address. Therefore, clients receive answers quickly, but
the information may be out-of-date. If efficiency is important, the client will choose to
accept the nonauthoritative answer and proceed. If accuracy is important, the client will
choose to contact the authority and verify that the binding between name and address is
still valid.

Caching works well in the domain name system because name to address bindings
change infrequently. However, they do change. If servers cached information the first
time it was requested and never changed it, entries in the cache could become incorrect.
To keep the cache correct, servers time each entry and dispose of entries that exceed a
reasonable time. When the server is asked for the information after it has removed the
entry from the cache, it must go back to the authoritative source and obtain the binding
again. More important, servers do not apply a single fixed tirneout to all entries, but al-
low the authority for an entry to configure its timeout. Whenever an authority responds
to a request, it includes a Time To Live (TTL) value in the response that specifies how
long it guarantees the binding to remain. Thus, authorities can reduce network overhead
by specifying long tirneouts for entries that they expect to remain unchanged, while im-
proving correctness by specifying short timeouts for entries that they expect to change
frequently.

Caching is important in hosts as well as in local domain name servers. Many
timesharing systems run a complex form of resolver code that attempts to provide even
more efficiency than the server system. The host downloads the complete database of
names and addresses from a local domain name server at startup, maintains its own
cache of recently used names, and uses the server only when names are not found. Na-
turally, a host that maintains a copy of the local server database must check with the
server periodically to obtain new mappings, and the host must remove entries from its
cache after they become invalid. However, most sites have little trouble maintaining
consistency because domain names change so infrequently.

Keeping a copy of the local server's database in each host has several advantages.
Obviously, it makes name resolution on local hosts extremely fast because it means the

474 The Domain Name System (DNS) Chap. 24

host can resolve names without any network activity. It also means that the local site
has protection in case the local name server fails. Finally, it reduces the computational
load on the name server, and makes it possible for a given server to supply names to
more machines.

24.14 Domain Server Message Format

Looking at the details of messages exchanged between clients and domain name
servers will help clarify how the system operates from the view of a typical application
program. We assume that a user invokes an application program and supplies the name
of a machine with which the application must communicate. Before it can use proto-
cols like TCP or UDP to communicate with the specified machine, the application pro-
gram must find the machine's IP address. It passes the domain name to a local resolver
and requests an IP address. The local resolver checks its cache and returns the answer
if one is present. If the local resolver does not have an answer, it formats a message
and sends it to the server (i.e., it becomes a client). Although our example only in-
volves one name, the message format allows a client to ask multiple questions in a sin-
gle message. Each question consists of a domain name for which the client seeks an IP
address, a specification of the query class (i.e., internet), and the type of object desired
(e.g., address). The server responds by returning a similar message that contains
answers to the questions for which the server has bindings. If the server cannot answer
all questions, the response will contain information about other name servers that the
client can contact to obtain the answers.

Responses also contain information about the servers that are authorities for the re-
plies and the IP addresses of those servers. Figure 24.5 shows the message format. As
the figure shows, each message begins with a fixed header. The header contains a
unique IDENT1F1CAT1ON field that the client uses to match responses to queries, and a
PARAMETER field that specifies the operation requested and a response code. Figure
24.6 gives the interpretation of bits in the PARAMETER field.

The fields labeled NUMBER OF each give a count of entries in the corresponding
sections that occur later in the message. For example, the field labeled NUMBER OF
QUESTIONS gives the count of entries that appear in the QUESTION SECTION of the
message.

The QUESTION SECTION contains queries for which answers are desired. The
client fills in only the question section; the server returns the questions and answers in
its response. Each question consists of a QUERY DOMAIN NAME followed by QUERY
TYPE and QUERY CLASS fields, as Figure 24.7 shows.

Sec. 24.14 Domain Server Message Format 475

0 16 3:

QUESTION SECTION
...

IDENTIFICATION

NUMBER OF AUTHORITY

ANSWER SECTION
. . .

AUTHORITY SECTION
...

PARAMETER

NUMBER OF ADDITIONAL

I ADDITIONAL INFORMATION SECTION

Figure 24.5 Domain name server message format. The question, answer, au-
thority, and additional information sections are variable length.

Bit of PARAMETER field Meaning
Operation:

0 Query
1 Response

Query Type:
0 Standard
1 Inverse
2 Completion 1 (now obsolete)
3 Completion 2 (now obsolete)

Set if answer authoritative
Set if message truncated
Set if recursion desired
Set if recursion available
Reserved
Response Type:

0 No error
1 Format error in query
2 Server failure
3 Name does not exist

Figure 24.6 The meaning of bits of the PARAMETER field in a domain name
server message. Bits are numbered left to right starting at 0.

476 The Domain Name System (DNS) Chap. 24

QUERY DOMAIN NAME
...

QUERY TYPE I QUERY CLASS

Figure 24.7 The format of entries in the QUESTION SECTION of a domain
name server message. The domain name is variable length.
Clients fill in the questions; servers return them along with
answers.

Although the QUERY DOMAIN NAME field has variable length, we will see in the next
section that the internal representation of domain names makes it possible for the re-
ceiver to know the exact length. The QUERY TYPE encodes the type of the question
(e.g., whether the question refers to a machine name or a mail address). The QUERY
CLASS field allows domain names to be used for arbitrary objects because official Inter-
net names are only one possible class. It should be noted that, although the diagram in
Figure 24.5 follows our convention of showing formats in 32-bit multiples, the QUERY
DOMAIN NAME field may contain an arbitrary number of octets. No padding is used.
Therefore, messages to or from domain name servers may contain an odd number of oc-
tets.

In a domain name server message, each of the ANSWER SECTION, AUTHORITY
SECTION, and ADDITIONAL INFORMATION SECTION consists of a set of resource
records that describe domain names and mappings. Each resource record describes one
name. Figure 24.8 shows the format.

I RESOURCE DOMAIN NAME I
TYPE I CLASS

TIME TO LIVE

RESOURCE DATA LENGTH

I RESOURCE DATA I
Figure 24.8 The format of resource records used in later sections of messages

returned by domain name servers.

Sec. 24.14 Domain Sewer Message Format 477

The RESOURCE DOMAIN NAME field contains the domain name to which this
resource record refers. It may be an arbitrary length. The TYPE field specifies the type
of the data included in the resource record; the CLASS field specifies the data's class.
The TIME TO LIVE field contains a 32-bit integer that specifies the number of seconds
information in this resource record can be cached. It is used by clients who have re-
quested a name binding and may want to cache the results. The last two fields contain
the results of the binding, with the RESOURCE DATA LENGTH field specifying the
count of octets in the RESOURCE DATA field.

24.1 5 Compressed Name Format

When represented in a message, domain names are stored as a sequence of labels.
Each label begins with an octet that specifies its length. Thus, the receiver reconstructs
a domain name by repeatedly reading a 1-octet length, n, and then reading a label n oc-
tets long. A length octet containing zero marks the end of the name.

Domain name servers often return multiple answers to a query and, in many cases,
suffixes of the domain overlap. To conserve space in the reply packet, the name servers
compress names by storing only one copy of each domain name. When extracting a
domain name from a message, the client software must check each segment of the name
to see whether it consists of a literal string (in the format of a 1-octet count followed by
the characters that make up the name) or a pointer to a literal string. When it en-
counters a pointer, the client must follow the pointer to a new place in the message to
find the remainder of the name.

Pointers always occur at the beginning of segments and are encoded in the count
byte. If the top two bits of the 8-bit segment count field are Is, the client must take the
next 14 bits as an integer pointer. If the top two bits are zero, the next 6 bits specify
the number of characters in the label that follow the count octet.

24.1 6 Abbreviation Of Domain Names

The telephone number hierarchy illustrates another useful feature of local resolu-
tion, name abbreviation. Abbreviation provides a method of shortening names when
the resolving process can supply part of the name automatically. Normally, a subscriber
omits the area code when dialing a local telephone number. The resulting digits form
an abbreviated name assumed to lie within the same area code as the subscriber's
phone. Abbreviation also works well for machine names. Given a name like xyz, the
resolving process can assume it lies in the same local authority as the machine on which
it is being resolved. Thus, the resolver can supply missing parts of the name automati-

478 The Domain Name System (DNS) Chap. 24

cally. For example, within the Computer Science Department at Purdue, the abbreviat-
ed name

is equivalent to the full domain name

xinu. cs . purdue . edu

Most client software implements abbreviations with a domain suffix list. The local net-
work manager configures a list of possible suffixes to be appended to names during
lookup. When a resolver encounters a name, it steps through the list, appending each
suffix and trying to look up the resulting name. For example, the suffix list for the
Computer Science Department at Purdue includes:

. cs . purdue . edu

. cc . purdue . edu

. purdue . edu
null

Thus, local resolvers first append cs.purdue.edu onto the name xinu. If that lookup
fails, they append cc.purdue.edu onto the name and look that up. The last suffix in
the example list is the null suing, meaning that if all other lookups fail, the resolver will
attempt to look up the name with no suffix. Managers can use the suffix list to make
abbreviation convenient or to restrict application programs to local names.

We said that the client takes responsibility for the expansion of such abbreviations,
but it should be emphasized that such abbreviations are not part of the domain name
system itself. The domain system only allows lookup of a fully specified domain name.
As a consequence, programs that depend on abbreviations may not work correctly out-
side the environment in whlch they were built. We can summarize:

The domain name system only maps full domain names into ad-
dresses; abbreviations are not part of the domain name system itselj
but are introduced by client sofhvare to make local names convenient
for users.

24.1 7 Inverse Mappings

We said that the domain name system can provide mappings other than machine
name to 1P address. Inverse queries allow the client to ask a server to map "back-
wards" by taking an answer and generating the question that would produce that
answer. Of course, not all answers have a unique question. Even when they do, a
server may not be able to provide it. Although inverse queries have been part of the
domain system since it was first specified, they are generally not used because there is
often no way to find the server that can resolve the query without searching the entire
set of servers.

Sec. 24.18 Pointer Queries

24.18 Pointer Queries

One form of inverse mapping is so obviously needed that the domain system sup-
ports a special domain and a special form of question called a pointer query to answer
it. In a pointer query, the question presented to a domain name server specifies an IP
address encoded as a printable string in the form of a domain name (i.e., a textual
representation of digits separated by periods). A pointer query requests the name server
to return the correct domain name for the machine with the specified IP address.
Pointer queries are especially useful for diskless machines because they allow the sys-
tem to obtain a high-level name given only an IP address. (We have already seen in
Chapter 6 how a diskless machine can obtain its IP address.)

Pointer queries are not difficult to generate. If we think of an IP address written in
dotted-decimal form, it has the following format:

To form a pointer query, the client rearranges the dotted decimal representation of the
address into a string of the form:

a'a'd. ccc . bbb . aaa . in-addr . arpa

The new form is a name in the special in-addr. arpa domain?. Because the local name
server may not be the authority for either the arpa domain or the in-addr. arpa domain,
it may need to contact other name servers to complete the resolution. To make the
resolution of pointer queries efficient, the Internet root domain servers maintain a data-
base of valid IP addresses along with information about domain name servers that can
resolve each address.

24.19 Object Types And Resource Record Contents

We have mentioned that the domain name system can be used for translating a
domain name to a mail exchanger address as well as for translating a host name to an IP
address. The domain system is quite general in that it can be used for arbitrary
hierarchical names. For example, one might decide to store the names of available
computational services along with a mapping from each name to the telephone number
to call to find out about the corresponding service. Or one might store names of proto-
col products along with a mapping to the names and addresses of vendors that offer
such products.

Recall that the system accommodates a variety of mappings by including a type in
each resource record. When sending a request, a client must specify the type in its
query*; servers specify the data type in all resource records they return. The type deter-
mines the contents of the resource record according to the table in Figure 24.9

tThe octets of the IF' address must be reversed when forming a domain name because IF' addresses have
the most significant octets first while domain names have the least-significant octets first.

$Queries can specify a few additional types (e.g., there is a query type that requests all resource records).

480 The Domain Name System (DNS) Chap. 24

TY pe
A
CNAME
HlNFO
MlNFO
MX

NS
PTR
SOA

TXT

Meaning
Host Address
Canonical Name
CPU & 0s
Mailbox info
Mail Exchanger

Name Sewer
Pointer
Start of Authority

Arbitrary text

Contents
32-bit IP address
Canonical domain name for an alias
Name of CPU and operating system
Information about a mailbox or mail list
16-bit preference and name of host that

acts as mail exchanger for the domain
Name of authoritative server for domain
Domain name (like a symbolic link)
Multiple fields that specify which

parts of the naming hierarchy
a server implements

Uninterpreted string of ASCII text

Figure 24.9 Domain name system resource record types.

Most data is of type A, meaning that it consists of the name of a host attached to
the Internet along with the host's IP address. The second most useful domain type, MX,
is assigned to names used for electronic mail exchangers. It allows a site to speclfy
multiple hosts that are each capable of accepting mail. When sending electronic mail,
the user specifies an electronic mail address in the form user@domain-part. The mail
system uses the domain name system to resolve domain-part with query type MX. The
domain system returns a set of resource records that each contain a preference field and
a host's domain name. The mail system steps through the set from highest preference
to lowest (lower numbers mean higher preference). For each MX resource record, the
mailer extracts the domain name and uses a type A query to resolve that name to an IP
address. It then tries to contact the host and deliver mail. If the host is unavailable, the
mailer will continue trying other hosts on the list.

To make lookup efficient, a server always returns additional bindings that it knows
in the ADDITIONAL INFORMATION SECTION of a response. In the case of M X
records, a domain server can use the ADDITIONAL INFORMATION SECTION to return
type A resource records for domain names reported in the ANSWER SECTION. Doing
so substantially reduces the number of queries a mailer sends to its domain server.

24.20 Obtaining Authority For A Subdomain

Before an institution is granted authority for an official second-level domain, it
must agree to operate a domain name server that meets Internet standards. Of course, a
domain name server must obey the protocol standards that specify message formats and
the rules for responding to requests. The server must also know the addresses of
servers that handle each subdomain (if any exist) as well as the address of at least one
root server.

Sec. 24.20 Obtaining Authority For A Subdomain 48 1

In practice, the domain system is much more complex than we have outlined. In
most cases, a single physical server can handle more than one part of the naming hierar-
chy. For example, a single name server at Purdue University handles both the second-
level domain purdue. edu as well as the geographic domain laf. in. us. A subtree of
names managed by a given name server fornls a zone of authority. Another practical
complication arises because servers must be able to handle many requests, even though
some requests take a long time to resolve. Usually, servers support concurrent activity,
allowing work to proceed on later requests while earlier ones are being processed. Han-
dling requests concurrently is especially important when the server receives a recursive
request that forces it to send the request on to another server for resolution.

Server implementation is also complicated because the Internet authority requires
that the information in every domain name server be replicated. Information must ap-
pear in at least two servers that do not operate on the same computer. In practice, the
requirements are quite stringent: the servers must have no single common point of
failure. Avoiding common points of failure means that the two name servers cannot
both attach to the same network; they cannot even obtain electrical power from the
same source. Thus, to meet the requirements, a site must find at least one other site that
agrees to operate a backup name server. Of course, at any point in the tree of servers, a
server must know how to locate both the primary and backup name servers for sub-
domains, and it must direct queries to a backup name server if the primary server is
unavailable.

24.21 Summary

Hierarchical naming systems allow delegation of authority for names, making it
possible to accommodate an arbitrarily large set of names without overwhelming a cen-
tral site with administrative duties. Although name resolution is separate from delega- _--
tion of authority, it is possible to create hierarchical na&=Ystems in which resoiution
is an efficient process that starts at the local server even tiough delegation of authority k
aliafs flows from the top of the hierarchy downward.

We examined the Internet domain name system (DNS) and saw that it offers a
hierarchical naming scheme. DNS uses distributed lookup in which domain name
servers map each domain name to an IP address or mail exchanger address. Clients be-
gin by trying to resolve names locally. When the local server cannot resolve the name,
the client must choose to work through the tree of name servers iteratively or request
the local name server to do it recursively. Finally, we saw that the domain name sys-
tem supports a variety of bindings including bindings from IP addresses to high-level
names.

The Domain Name System (DNS) Chap. 24

FOR FURTHER STUDY

Mockapetris [RFC 10341 discusses Internet domain naming in general, giving the
overall philosophy, while Mockapetris [RFC 10351 provides a protocol standard for the
domain name system. Mockapetris [RFC 11011 discusses using the domain name sys-
tem to encode network names and proposes extensions useful for other mappings. Pos-
tel and Reynolds [RFC 9201 states the requirements that an Internet domain name server
must meet. Stahl [RFC 10321 gives administrative guidelines for establishing a domain,
and Lottor [RFC 10331 provides guidelines for operating a domain name server. East-
lake P C 25351 presents security extensions. Partridge W C 9741 relates domain
naming to electronic mail addressing. Finally, Lottor [RFC 12961 provides an interest-
ing summary of Internet growth obtained by walking the domain name tree.

EXERCISES

Machine names should not be bound into the operating system at compile time. Explain
why.
Would you prefer to use a machine that obtained its name from a remote file or from a
name server? Why?
Why should each name server know the IF' address of its parent instead of the domain
name of its parent?
Devise a naming scheme that tolerates changes to the naming hierarchy. As an example,
consider two large companies that each have an independent naming hierarchy, and s u p
pose the companies merge. Can you arrange to have all previous names still work
correctly?
Read the standard and find out how the domain name system uses SOA records.

The Internet domain name system can also accommodate mailbox names. Find out how.
The standard suggests that when a program needs to find the domain name associated
with an IF' address, it should send an inverse query to the local server first and use
domain in-addr. arpa only if that fails. Why?
How would you accommodate abbreviations in a domain naming scheme? As an exam-
ple, show two sites that are both registered under .edu and a top level server. Explain
how each site would treat each type of abbreviation.
Obtain the official description of the domain name system and build a client program.
Look up the name rnerlin.cs.purdue.edu.

Extend the exercise above to include a pointer query. Try looking up the domain name
for address 128.10.2.3.
Find a copy of the program nslookup, and use it to look up the names in the two previ-
ous exercises.

Exercises 483

24.12 If we extended the domain name syntax to include a dot after the toplevel domain,
names and abbreviations would be unambiguous. What are the advantages and disad-
vantages of the extension?

24.13 Read the RFCs on the domain name system. What are the maximum and minimum pos-
sible values a DNS server can store in the TIME-TO-LNE field of a resource record?

24.14 Should the domain name system permit partial match queries (i.e. a wildcard as part of a
name)? Why or why not?

24.15 The Computer Science Department at Purdue University chose to place the following
type A resource record entry in its domain name server:

Explain what will happen if a remote site tries to ping a machine with domain name
localhost.cs.purdue.edu.

Applications: Remote Login
(TELNET, Rlogin)

25.1 Introduction

This chapter and the next five continue our exploration of internetworking by exa-
\ mining high-level internet services and the protocols that support them. These services

form an integral part of TCP/IP. They determine how users perceive an internet and
demonstrate the power of the technology.

We will learn that high-level services provide increased communication functional-
ity, and allow users and programs to interact with automated services on remote
machines and with remote users. We will see that high-level protocols are implemented
with application programs, and will learn how they depend on the network level ser-
vices described in previous chapters. This chapter begins by examining remote login.

25.2 Remote Interactive Computing

We have already seen how the client-server model can provide specific computa-
tional services like a time-of-day service to multiple machines. Reliable stream proto-
cols like TCP make possible interactive use of remote machines as well. For example,
imagine building a server that provides a remote text editing service. To implement an
editing service, we need a server that accepts requests to edit a file and a client to make
such requests. To invoke the remote editor service, a user executes the client program.
The client establishes a TCP connection to the server, and then begins sending keys-
trokes to the server and reading output that the server sends back.

486 Applications: Remote Login (TELNET, Rlogin) Chap. 25

How can our imagined remote interactive editing service be generalized? The
problem with using one server for each computational service is that machines quickly
become swamped with server processes. We can eliminate most specialized servers and
provide more generality by allowing the user to establish a login session on the remote
machine and then execute commands. With a remote login facility, users have access to
all the commands available on the remote system, and system designers need not pro-
vide specialized servers.

Of course, providing remote login may not be simple. Computer systems that are
designed without considering networking expect login sessions only from a directly
connected keyboard and display. On such a computer, adding a remote login server re-
quires modifying the machine's operating system. Building interactive client software
may also be difficult. Consider, for example, a system that assigns special meaning to
some keystrokes. If the local system interprets Control< to mean "abort the currently
executing command process," it may be impossible to pass Control< to the remote
machine. If the client does pass Control-C to the remote site, it may be impossible to
abort the local client process.

Despite the technical difficulties, system programmers have managed to build re-
mote login server software for most operating systems and to construct application pro-
grams that act as clients. Often, the client software ovemdes the local interpretation of
all keys except one, allowing a user to interact with the remote machine exactly as one
would from a locally connected terminal. The single key exception provides a way for
a user to escape to the local environment and control the client (e.g., to abort the client).
In addition, some remote login protocols recognize a set of trusted hosts, permitting re-
mote login from such hosts without verifying passwords, and others achieve security by
encrypting all transmissions.

25.3 TELNET Protocol

The TCPlIP protocol suite includes a simple remote terminal protocol called TEL-
NET that allows a user to log into a computer across an internet. TELNET establishes a
TCP connection, and then passes keystrokes from the user's keyboard directly to the re-
mote computer as if they had been typed on a keyboard attached to the remote machine.
TELNET also carries output from the remote machine back to the user's screen. The
service is called transparent because it gives the appearance that the user's keyboard
and display attach directly to the remote machine.

Although TELNET is not as sophisticated as some remote terminal protocols, it is
widely available. Usually, TELNET client software allows the user to spec* a remote
machine either by giving its domain name or IP address. Because it accepts IP ad-
dresses, TELNET can be used with hosts even if a name-to-address binding cannot be
established (e.g., when domain naming software is being debugged).

TELNET offers three basic services. First, it defines a network virtual tenninal
that provides a standard interface to remote systems. Client programs do not have to
understand the details of all possible remote systems; they are built to use the standard

Sec . 25.3 TELNET Protocol 487

interface. Second, TELNET includes a mechanism that allows the client and server to
negotiate options, and it provides a set of standard options (e.g., one of the options con-
trols whether data passed across the connection uses the standard 7-bit ASCII character
set or an 8-bit character set). Finally, TELNET treats both ends of the connection sym-
metrically. In particular, TELNET does not force client input to come from a keyboard,
nor does it force the client to display output on a screen. Thus, TELNET allows an ar-
bitrary program to become a client. Furthermore, either end can negotiate options.

Figure 25.1 illustrates how application programs implement a TELNET client and
server.

E L N E T client s e h client reads
from terminal \ to server

server receives
from client

TCPAP
internet

- server sends to
pseudo terminal

Figure 25.1 The path of data in a TELNET remote terminal session as it trav-
els from the user's keyboard to the remote operating system.
Adding a TELNET server to a timesharing system usually re-
quires modifying the operating system.

As the figure shows, when a user invokes TELNET, an application program on the
user's machine becomes the client. The client establishes a TCP connection to the
server over which they will communicate. Once the connection has been established,
the client accepts keystrokes from the user's keyboard and sends them to the server,
while it concurrently accepts characters that the server sends back and displays them on
the user's screen. The server must accept a TCP connection from the client, and then
relay data between the TCP connection and the local operating system.

In practice, the server is more complex than the figure shows because it must han-
dle multiple, concurrent connections. Usually, a master server process waits for new
connections and creates a new slave to handle each connection. Thus, the 'TELNET
server', shown in Figure 25.1, represents the slave that handles one particular connec-
tion. The figure does not show the master server that listens for new requests, nor does
it show the slaves handling other connections.

488 Applications: Remote Login (TELNET, Rlogin) Chap. 25

We use the term pseudo terrninalt to describe the operating system entry point that
allows a running program like the TELNET server to transfer characters to the operating
system as if they came from a keyboard. It is impossible to build a TELNET server un-
less the operating system supplies such a facility. If the system supports a pseudo ter-
minal abstraction, the TELNET server can be implemented with application programs.
Each slave server connects a TCP stream from one client to a particular pseudo termi-
nal.

Arranging for the TELNET server to be an application level program has advan-
tages and disadvantages. The most obvious advantage is that it makes modification and
control of the server easier than if the code were embedded in the operating system.
The obvious disadvantage is inefficiency. Each keystroke travels from the user's key-
board through the operating system to the client program, from the client program back
through the operating system and across the internet to the server machine. After reach-
ing the destination machine, the data must travel up through the server's operating sys-
tem to the server application program, and from the server application program back
into the server's operating system at a pseudo terminal entry point. Finally, the remote
operating system delivers the character to the application program the user is running.
Meanwhile, output (including remote character echo if that option has been selected)
travels back from the server to the client over the same path.

Readers who understand operating systems will appreciate that for the implementa-
tion shown in Figure 25.1, every keystroke requires computers to switch process context
several times. In most systems, an additional context switch is required because the
operating system on the server's machine must pass characters from the pseudo terminal
back to another application program (e.g., a command interpreter). Although context
switching is expensive, the scheme is practical because users do not type at high speed.

25.4 Accommodating Heterogeneity

To make TELNET interoperate between as many systems as possible, it must ac-
commodate the details of heterogeneous computers and operating systems. For exam-
ple, some systems require lines of text to be terminated by the ASCII carriage control
character (CR). Others require the ASCII linefeed (LF) character. Still others require
the two-character sequence of CR-LF. In addition, most interactive systems provide a
way for a user to enter a key that interrupts a running program. However, the specific
keystroke used to interrupt a program varies from system to system (e.g., some systems
use Control<, while others use ESCAPE).

To accommodate heterogeneity, TELNET defines how data and command se-
quences are sent across the Internet. The definition is known as the network virtual ter-
minal (NVT). As Figure 25.2 illustrates, the client software translates keystrokes and
command sequences from the user's terminal into NVT format and sends them to the
server. Server software translates incoming data and commands from NVT format into
the format the remote system requires. For data returning, the remote server translates
from the remote machine's format to NVT, and the local client translates from NVT to
the local machine's format.

tUNM calls the system entry point a pseudo fry because character-oriented devices are called ttys.

Sec. 25.4 Accommodating Heterogeneity 489

Client System format used NVT format used Server System format used

user's
keyboard
& display

Figure 25.2 Use of the Network Virtual Terminal (NVT) format by TELNET.

The definition of NVT format is fairly straightforward. All communication in-
volves 8-bit bytes. At startup, NVT uses the standard 7-bit USASCII representation for
data and reserves bytes with the high order bit set for command sequences. The US-
ASCII character set includes 95 characters that have "printable" graphics (e.g., letters,
digits, and punctuation marks) as well as 33 "control" codes. All printable characters
are assigned the same meaning as in the standard USASCII character set. The NVT
standard defines interpretations for control characters as shown in Figure 25.3t.

/ ' I
Client

ASCII
Control Code

NUL
BEL
BS
HT
LF
VT
FF
CR

other control

TCP connection across internet

Decimal
Value

No operation (has no effect on output)
Sound audibleJvisibIe signal (no motion)
Move left one character position
Move right to the next horizontal tab stop
Move down (vertically) to the next line
Move down to the next vertical tab stop
Move to the top of the next page
Move to the left margin on the current line
No operation (has no effect on output)

Figure 253 The TELNET NVT interpretation of USASCII control characters.
TELNET does not specify the locations of tab stops.

In addition to the control character interpretation in Figure 25.3, NVT defines the
standard line termination to be a two-character sequence CR-LF. When a user presses
the key that corresponds to end-of-line on the local terminal (e.g., ENTER or RETURN),
the TELNET client must map it into CR-LF for transmission. The TELNET server
translates CR-LF into the appropriate end-of-line character sequence for the remote
machine.

tThe NVT interpretation of control characters follows the usual ASCII interpretation.

490 Applications: Remote Login (TELNET, Rlogin) Chap. 25

25.5 Passing Commands That Control The Remote Side

We said that most systems provide a mechanism that allows users to terminate a
running program. Usually, the local operating system binds such mechanisms to a par-
ticular key or keystroke sequence. For example, unless the user specifies otherwise,
many UNIX systems reserve the character generated by CONTROL-C as the intermpt
key. Depressing CONTROL-C causes UNIX to terminate the executing program; the
program does not receive CONTROL-C as input. The system may reserve other charac-
ters or character sequences for other control functions.

TELNET NVT accommodates control functions by defining how they are passed
from the client to the server. Conceptually, we think of NVT as accepting input from a
keyboard that can generate more than 128 possible characters. We assume the user's
keyboard has virtual (imaginary) keys that correspond to the functions typically used to
control processing. For example, NVT defines a conceptual "intermpt" key that re-
quests program termination. Figure 25.4 lists the control functions that NVT allows.

Signal
I P
A0
A n
EC
EL
SYNCH

BRK

Meaning
Interrupt Process (terminate running program)
Abort Output (discard any buffered output)
Are You There (test if server is responding)
Erase Character (delete the previous character)
Erase Line (delete the entire current line)
Synchronize (clear data path until TCP urgent

data point, but do interpret commands)
Break (break key or attention signal)

Figure 25.4 The control functions TELNET NVT recognizes. Conceptually,
the client receives these from a user in addition to normal data,
and passes them to the server's system where they must be inter-
preted.

In practice, most keyboards do not provide extra keys for commands. Instead, in-
dividual operating systems or command interpreters have a variety of ways to generate
them. We already mentioned the most common technique: binding an individual ASCII
character to a control function so when the user presses the key, the operating system
takes the appropriate action instead of accepting the character as input. The NVT
designers chose to keep commands separate from the normal ASCII character set for
two reasons. First, defining the control functions separately means TELNET has greater
flexibility. It can transfer all possible ASCII character sequences between client and
server as well as all possible control functions. Second, by separating signals from nor-
mal data, NVT allows the client to specify signals unambiguously - there is never con-
fusion about whether an input character should be treated as data or as a control func-
tion.

Sec. 25.5 Passing Commands That Control The Remote Side 49 1

To pass control functions across the TCP connection, TELNET encodes them us-
ing an escape sequence. An escape sequence uses a reserved octet to indicate that a
control code octet follows. In TELNET, the reserved octet that starts an escape se-
quence is known as the interpret as command (IAC) octet. Figure 25.5 lists the possible
commands and the decimal encoding used for each.

Decimal
Command Encoding
IAC 255

DON'T
DO
WON'T
WILL
SB
GA
EL
EC
AYT
A0
IP
BRK
DMARK

NOP 241
SE 240
EOR 239

Meaning
Interpret next octet as command (when the IAC

octet appears as data, the sender doubles it
and sends the 2octet sequence IAC-IAC)

Denial of request to perform specified option
Approval to allow specified option
Refusal to perform specified option
Agreement to perform specified option
Start of option subnegotiation
The "go ahead" signal
The "erase line" signal
The "erase character" signal
The "are you there" signal
The "abort output" signal
The "interrupt process" signal
The "break" signal
The data stream portion of a SYNCH (always

accompanied by TCP Urgent notification)
No operation
End of option subnegotiation
End of record

F i r e 25.5 TELNET commands and encoding for each. The codes only
have meaning if preceded by an IAC character. When IAC oc-
curs in the data. it is sent twice.

As the figure shows, the signals generated by conceptual keys on an NVT key-
board each have a corresponding command. For example, to request that the server in-
terrupt the executing program, the client must send the 2-octet sequence IAC IP (255
followed by 244). Additional commands allow the client and server to negotiate which
options they will use and to synchronize communication.

492 Applications: Remote Login (TEJ..NET, Rlogin) Chap. 25

25.6 Forcing The Server To Read A Control Function

Sending control functions along with normal data is not always sufficient to
guarantee the desired results. To see why, consider the situation under which a user
might send the interrupt process control function to the server. Usually, such control is
only needed when the program executing on the remote machine is misbehaving and the
user wants the server to terminate the program. For example, the program might be ex-
ecuting an endless loop without reading input or generating output. Unfortunately, if
the application at the server's site stops reading input, operating system buffers will
eventually fill and the server will be unable to write more data to the pseudo terminal.
When this happens, the server must stop reading data from the TCP connection, causing
its buffers to fill. Eventually, TCP on the server machine will begin advertising a zero
window size, preventing data from flowing across the connection.

If the user generates an interrupt control function when buffers are filled, the con-
trol function will never reach the server. That is, the client can form the command se-
quence IAC IP and write it to the TCP connection, but because TCP has stopped send-
ing to the server's machine, the server will not read the control sequence. The point is:

TELNET cannot rely on the conventional data stream alone to carry
control sequences between client and server, because a misbehaving
application that needs to be controlled might inadvertently block the
data stream.

To solve the problem, TELNET uses an out of band signal. TCP implements out
of band signaling with the urgent data mechanism. Whenever it places a control func-
tion in the data stream, TELNET also sends a SYNCH command. TELNET then ap-
pends a reserved octet called the data mark, and causes TCP to signal the server by
sending a segment with the URGENT DATA bit set. Segments carrying urgent data
bypass flow control and reach the server immediately. In response to an urgent signal,
the server reads and discards all data until it finds the data mark. The server returns to
normal processing when it encounters the data mark.

25.7 TELNET Options

Our simple description of TELNET omits one of the most complex aspects: op-
tions. In TELNET, options are negotiable, making it possible for the client and server
to reconfigure their connection. For example, we said that usually the data stream
passes 7-bit data and uses octets with the eighth bit set to pass control information like
the Interrupt Process command. However, TELNET also provides an option that al-
lows the client and server to pass 8-bit data (when passing 8-bit data, the reserved octet
LAC must still be doubled if it appears in the data). The client and server must nego-
tiate, and both must agree to pass 8-bit data before such transfers are possible.

Sec. 25.7 TELNET Options 493

The range of TELNET options is wide: some extend the capabilities in major ways
while others deal with minor details. For example, the original protocol was designed
for a half-duplex environment where it was necessary to tell the other end to "go
ahead" before it would send more data. One of the options controls whether TELNET
operates in half- or full-duplex mode. Another option allows the server on a remote
machine to determine the user's terminal type. The terminal type is important for
software that generates cursor positioning sequences (e.g., a full screen editor executing
on a remote machine).

Figure 25.6 lists several of the most commonly implemented TELNET options.

Name
Transmit Binary
Echo
Suppress-GA

Status

Timing-Mark

Terminal-Type

End-of-Record
Linemode

Code
0
1
3

RFC
856
857
858

Meaning
Change transmission to &bit binary
Allow one side to echo data it receives
Suppress (no longer send) Go-ahead

signal after data
Request for status of a TELNET

option from remote site
Request timing mark be inserted

in return stream to synchronize two
ends of a connection

Exchange information about the make
and model of a terminal being used
(allows programs to tailor output like
cursor positioning sequences for the
user's terminal)

Terminate data sent with EOR code
Use local editing and send complete

lines instead of individual characters

Figure 25.6 Commonly used TELNET options.

25.8 TELNET Option Negotiation

The way TELNET negotiates options is interesting. Because it sometimes makes
sense for the server to initiate a particular option, the protocol is designed to allow ei-
ther end to make a request. Thus, the protocol is said to be symmetric with respect to
option processing. The receiving end either responds to a request with a positive accep-
tance or a rejection. In TELNET terminology, the request is WILL X, meaning will you
agree to let me use option X; and the response is either DO X or DON'T X, meaning I
do agree to let you use option X or I don't agree to let you use option X . The sym-
metry arises because DO X requests that the receiving party begin using option X, and
WILL X or WON'T X means I will start using option X or I won't start using it?.

?To eliminate potential loops that arise when two sides each think the other's acknowledgement is a re-
quest, the protocol specifies that no acknowledgement be given to a request for an option that is already in
use.

494 Applications: Remote Login (TELNET, Rlogin) Chap. 25

Another interesting negotiation concept arises because both ends are required to
run an unenhanced NVT implementation (i.e., one without any options turned on). If
one side tries to negotiate an option that the other does not understand, the side receiv-
ing the request can simply decline. Thus, it is possible to interoperate newer, more so-
phisticated versions of TELNET clients and servers (i.e., software that understands more
options) with older, less sophisticated versions. If both the client and server understand
the new options, they may be able to improve interaction. If not, they will revert to a
less efficient, but workable style.

We can summarize:

TELNET uses a symmetric option negotiation mechanism to allow
clients and servers to reconfigure the parameters controlling their in-
teraction. Because all TELNET sofiware understands a basic NVT
protocol, clients and servers can interoperate even if one understands
options another does not.

25.9 Rlogin (BSD UNIX)

Operating systems derived from BSD UNIX include a remote login service, rlogin,
that supports trusted hosts. It allows system administrators to choose a set of machines
over which login names and file access protections are shared and to establish
equivalences among user logins. Users can control access to their accounts by authoriz-
ing remote login based on remote host and remote user name. Thus, it is possible for a
user to have login name X on one machine and Y on another, and still be able to re-
motely login from one of the machines to the other without typing a password each
time.

Having automatic authorization makes remote login facilities useful for general
purpose programs as well as human interaction. One variant of the rlogin command,
rsh, invokes a command interpreter on the remote UNIX machine and passes the com-
mand line arguments to the command interpreter, skipping the login step completely.
The format of a command invocation using rsh is:

rsh machine command

on any of the machines in the Computer Science Department at F'urdue University exe-
cutes the ps command on machine merlin, with UNIX's standard input and standard
output connected across the network to the user's keyboard and display. The user sees
the output as if he or she were logged into machine merlin. Because the user can ar-
range to have rsh invoke remote commands without prompting for a password, it can be
used in programs as well as from the keyboard.

Sec. 25.9 Rlogin @SD UNE) 495

Because protocols like rlogin understand both the local and remote computing en-
vironments, they communicate better than general purpose remote login protocols like
TELNET. For example, rlogin understands the UNIX notions of standard input, stan-
dard output, and standard error, and uses TCP to connect them to the remote machine.
Thus, it is possible to type

and have output from the remote command redirected? into file filename. Rlogin also
understands terminal control functions like flow control characters (typically Control-S
and Control-Q). It arranges to stop output immediately without waiting for the delay
required to send them across the network to the remote host. Finally, rlogin exports
part of the user's environment to the remote machine, including information like the
user's terminal type (i.e., the TERM variable). As a result, a remote login session ap-
pears to behave almost exactly like a local login session.

25.1 0 Summary

Much of the rich functionality associated with TCPIIP results from a variety of
high-level services supplied by application programs. The high-level remote login pro-
tocols these programs use build on the basic services: unreliable datagram delivery and
reliable stream transport. The services usually follow the client-server model in which
servers operate at known protocol ports so clients know how to contact them.

We reviewed two remote login systems: TELNET, the TCPIIP internet standard,
and rlogin, a popular protocol used with systems derived from BSD UNIX. TELNET
provides a basic service. It allows the client to pass commands such as interrupt pro-
cess as well as data to the server. It also permits a client and server to negotiate many
options. In contrast to TELNET, rlogin allows system managers and users more flexi-
bility in establishing the equivalence of accounts on multiple machines, but it is not as
widely available as TELNET.

FOR FURTHER STUDY

Many high-level protocols have been proposed, but only a few are in common use.
Edge 119791 compares end-to-end protocols with the hop-by-hop approach. Saltzer,
Reed, and Clark [I9841 argues for having the highest level protocols perform end-to-end
acknowledgement and error detection.

Postel [RFC 8541 contains the TELNET remote login protocol specification. It
was preceded by over three dozen RFCs that discuss TELNET options, weaknesses, ex-
periments, and proposed changes, including Postel [RFC 7641 that contains an earlier
standard. Postel and Reynolds [RFC 8551 gives a specification for options and consid-

tThe "greater than" symbol is the usual UNIX syntax for directing the output of a command into a file.

496 Applications: Remote Login (TELNET, Rlogin) Chap. 25

ers subnegotiation. A lengthy list of options can be found in RFCs 856, 857, 858, 859,
860,861,884,885, 1041, 1091, 1096, 1097, 1184, 1372, 1416, and 1572. The program
h3270 uses a TELNET-like mechanism to provide access to IBM computers running
the VMICMS operating system [RFCs 1576, 1646 and 16471; Rekhter [RFC 10411 cov-
ers the TELNET option that permits communication with IBM 3270 displays.

EXERCISES

Experiment with both TELNET and rlogin. What are the noticeable differences?

Despite the large volume of notes written about TELNET, it can be argued that the pro-
tocol is still not well-defined. Experiment with TELNET: use it to reach a machine, A,
and invoke TELNET on A to reach a second machine, B. Does the combination of two
TELNET connections handle line feed and carriage control characters properly?

What is a remote procedure call?

Folklore says that operating systems come and go while protocols last forever. Test this
axiom by surveying your local computing site to see whether operating systems or com-
munication protocols have changed more frequently.

Build TELNET client software.

Use a TELNET client to connect your keyboard and display to the TCP protocol port for
echo or chargen on your local system to see what happens.

Read the TELNET standard and find out how the SYNCH operation works.

TELNET uses TCP's urgent data mechanism to force the remote operating system to
respond to control functions quickly. Read the standard to find out which commands the
remote server honors while scanning the input stream.

How can the symmetric DODON'T - WILUWON'T option negotiation produce an
endless loop of responses if the other party always acknowledges a request?
RFC 854 (the TELNET protocol specification) contains exactly 854 lines of text. Do
you think there is cosmic significance in this?

Applications: File Transfer
And Access (FTP, TFTP,
NFS)

26.1 Introduction

This chapter continues our exploration of application protocols. It examines the
file access and transfer protocols that are part of the TCPm protocol suite. It describes
their design and shows an example of a typical user interface. We will learn that the
most widely used file transfer protocol builds on TCP, covered in Chapter 13, and TEL-
NET, described in the previous chapter.

26.2 File Access And Transfer

Many network systems provide computers with the ability to access files on remote
machines. Designers have explored a variety of approaches to remote access; each ap-
proach optimizes for a particular set of goals. For example, some designs use remote
file access to lower overall cost. In such architectures, a single, centralizedfile server
provides secondary storage for a set of inexpensive computers that have no local disk
storage. For example, the diskless machines can be portable, hand-held devices used
for chores such as inventory. Such machines communicate with a file server over a
high-speed wireless network.

498 Applications: File Transfer And Access (FTP, TITP, NFS) Chap. 26

Some designs use remote storage to archive data. In such designs, users have con-
ventional computers with local storage facilities and operate them as usual. Periodically
the conventional computers send copies of files (or copies of entire disks) across a net-
work to an archival facility, where they are stored in case of accidental loss.

Finally, some designs emphasize the ability to share data across multiple programs,
multiple users, or multiple sites. For example, an organization might choose to have a
single on-line database of outstanding orders shared by all groups in the organization.

26.3 On-line Shared Access

File sharing comes in two distinct forms: on-line access and whole-file copying.
Shared on-line access means allowing multiple programs to access a single file con-
currently. Changes to the file take effect immediately and are available to all programs
that access the file. Whole-file copying means that whenever a program wants to access
a file, it obtains a local copy. Copying is often used for read-only data, but if the file
must be modified, the program makes changes to the local copy and transfers a copy of
the modified file back to the original site.

Many users think that on-line data sharing can only be provided by a database sys-
tem that operates as a server and allows users (clients) to contact it from remote sites.
However, file sharing is usually more sophisticated and easier to use. For example, a
file system that provides shared, on-line access for remote users does not necessarily re-
quire a user to invoke a special client program as a database system does. Instead, the
operating system provides access to remote, shared files exactly the same way it pro-
vides access to local files. A user can execute any application program using a remote
file as input or output. We say that the remote file is integrated with local files, and
that the entire file system provides transparent access to shared files.

The advantage of transparent access should be obvious: remote file access occurs
with no visible changes to application programs. Users can access both local and re-
mote files, allowing them to perform arbitrary computations on shared data. The disad-
vantages are less obvious. Users may be surprised by the results. For example, consid-
er an application program that uses both local and remote files. If the network or the
remote machine is down, the application program may not work even though the user's
machine is operating. Even if the remote machine is operating, it may be overloaded or
the network may be congested, causing the application program to run slowly, or caus-
ing communication protocols to report timeout conditions that the user does not expect.
The application program seems unreliable.

Despite its advantages, implementing integrated, transparent file access can be dif-
ficult. In a heterogeneous environment, file names available on one computer may be
impossible to map into the file namespace of another. Similarly, a remote file access
mechanism must handle notions of ownership, authorization, and access protection,
which do not transcend computer system boundaries. Finally, because file representa-
tions and allowed operations vary from machine to machine, it may be difficult or im-
possible to implement all operations on all files.

Sec . 26.4 Sharing By File Transfer 499

26.4 Sharing By File Transfer

The alternative to integrated, transparent on-line access is file transfer. Accessing
remote data with a transfer mechanism is a two-step process: the user first obtains a lo-
cal copy of a file and then operates on the copy. Most transfer mechanisms operate out-
side the local file system (i.e., they are not integrated). A user must invoke a special-
purpose client program to transfer files. When invoking the client, the user specifies a
remote computer on which the desired file resides and, possibly, an authorization need-
ed to obtain access (e.g., an account or password). The client contacts a server on the
remote machine and requests a copy of the file. Once the transfer is complete, the user
terminates the client and uses application programs on the local system to read or modi-
fy the local copy. One advantage of whole-file copying lies in the efficiency of opera-
tions - once a program has obtained a copy of a remote file, it can manipulate the
copy efticiently. Thus, many computations run faster with whole-file copying than with
remote file access.

As with on-line sharing, whole-file transfer between heterogeneous machines can
be difficult. The client and server must agree on authorization, notions of file owner-
ship and access protections, and data formats. The latter is especially important because
it may make inverse translations impossible. To see why, consider copying between
two machines, A and B, that use different representations for floating point numbers as
well as different representations for text files. As most programmers realize, it may be
impossible to convert from one machine's floating point fomlat to another's without
losing precision. The same can happen with text files. Suppose system A stores text
files as variable-length lines and system B pads text lines to a fmed length. Transfer-
ring a file from A to B and back can add padding to every line, making the final copy
different from the original. However, automatically removing padding from the ends of
lines during the transfer back to A will also make the copy different from the original
for any files that had padding on some lines.

The exact details of differences in representation and the techniques to handle them
depend on the computer systems involved. Furthermore, we have seen that not all
representational differences can be accommodated - information can be lost when data
must be translated from one representation to another. While it is not essential to learn
about all possible representational differences, remembering that TCP/IP is designed for
a heterogeneous environment will help explain some of the features of the TCP/IP fde
transfer protocols.

26.5 FTP: The Major TCPnP File Transfer Protocol

File transfer is among the most frequently used TCP/IP applications, and it ac-
counts for much network traffic. Standard file transfer protocols existed for the AR-
PANET before TCP/IP became operational. These early versions of file transfer
software evolved into a current standard known as the File Transfer Protocol (FTP).

500 Applications: File Transfer And Access (FTP, TFTP, NFS) Chap. 26

26.6 FTP Features

Given a reliable end-to-end transport protocol like TCP, file transfer might seem
trivial. However, as the previous sections pointed out, the details of authorization, nam-
ing, and representation among heterogeneous machines make the protocol complex. In
addition, FTP offers many facilities beyond the transfer function itself.

Interactive Access. Although FIT is designed to be used by programs, most im-
plementations provide an interactive interface that allows humans to easily interact with
remote servers. For example, a user can ask for a listing of all files in a directory on a
remote machine. Also, the client usually responds to the input "help" by showing the
user information about possible commands that can be invoked.

Format (representation) Specification. FTP allows the client to specify the type
and format of stored data. For example, the user can specify whether a file contains
text or binary integers and whether text files use the ASCII or EBCDIC character sets.

Authentication Control. FTP requires clients to authorize themselves by sending
a login name and password to the server before requesting file transfers. The server re-
fuses access to clients that cannot supply a valid login and password.

26.7 FTP Process Model

Like other servers, most FIT server implementations allow concurrent access by
multiple clients. Clients use TCP to connect to a server. As described in Chapter 21, a
single master server process awaits connections and creates a slave process to handle
each connection. Unlike most servers, however, the slave process does not perform all
the necessary computation. Instead, the slave accepts and handles the control connec-
tion from the client, but uses an additional process or processes to handle a separate
data transfer connection. The control connection carries commands that tell the server
which file to transfer. The data transfer connection, which also uses TCP as the tran-
sport protocol, carries all data transfers.

Usually, both the client and server create a separate process to handle the data
transfer. While the exact details of the process architecture depend on the operating
systems used, Figure 26.1 illustrates the concept:

Sec. 26.7 FTP Process Model

client data
connection

Figure 26.1 An FTP client and server with a TCP control connection between
them and a separate TCP connection between their associated
data transfer processes.

As the figure shows, the client control process connects to the server control pro-
cess using one TCP connection, while the associated data transfer processes use their
own TCP connection. In general, the control processes and the control connection
remain alive as long as the user keeps the FTP session active. However, FTP estab-
lishes a new data transfer connection for each file transfer. In fact, many implementa-
tions create a new pair of data transfer processes, as well as a new TCP connection,
whenever the server needs to send information to the client. The idea can be surnmar-
ized:

Data transfer connections and the data transfer processes that use
them can be created dynamically when needed, but the control con-
nection persists throughout a session. Once the control connection
disappears, the session is terminated and the software at both ends
terminates all data transfer processes.

Of course, client implementations that execute on a computer without operating
system support for multiple processes may have a less complex structure. Such imple-
mentations often sacrifice generality by using a single application program to perfom1
both the data transfer and control functions. However, the protocol requires that such
clients still use multiple TCP connections, one for control and the other(s) for data
transfer.

502 Applications: File Transfer And Access (FP, TFTP, NFS) Chap. 26

26.8 TCP Port Number Assignment

When a client forms an initial connection to a server, the client uses a random, lo-
cally assigned, protocol port number, but contacts the server at a well-known port (21).
As Chapter 21 points out, a server that uses only one protocol port can accept connec-
tions from many clients because TCP uses both endpoints to identify a connection. The
question arises, "When the control processes create a new TCP connection for a given
data transfer, what protocol port numbers do they use?" Obviously, they cannot use the
same pair of port numbers used in the control connection. Instead, the client obtains an
unused port on its machine, which will be used for a TCP connection with the data
transfer process on the server's machine. The data transfer process on the server
machine uses the well-known port reserved for FTP data transfer (20). To ensure that a
data transfer process on the server connects to the correct data transfer process on the
client machine, the server side must not accept connections from an arbitrary process.
Instead, when it issues the TCP active open request, a server specifies the port that will
be used on the client machine as well as the local port.

We can see why the protocol uses two connections - the client control process
obtains a local port to be used in the file transfer, creates a transfer process on the client
machine to listen at that port, communicates the port number to the server over the con-
trol connection, and then waits for the server to establish a TCP connection to the port.
In general:

In addition to passing user commands to the server, FTP uses the
control connection to allow client and server control processes to
coordinate their use of dynamically assigned TCP protocol ports and
the creation of data transfer processes that use those ports.

What format should FTP use for data passing across the control connection?
Although they could have invented a new specification, the designers of FTP did not.
Instead, they allow FTP to use the TELNET network virtual terminal protocol described
in Chapter 25. Unlike the full TELNET protocol, FTP does not allow option negotia-
tion; it uses only the basic NVT definition. Thus, management of an FTP control con-
nection is much simpler than management of a standard TELNET connection. Despite
its limitations, using the TELNET definition instead of inventing a new one helps sim-
plify FTP considerably.

26.9 The User's View Of FTP

Users view FTP as an interactive system. Once invoked, the client performs the
following operations repeatedly: read a line of input, parse the line to extract a com-
mand and its arguments, and execute the command with the specified arguments. For
example, to initiate the version of FTP available under UNIX, the user invokes the fip
command:

Sec. 26.9 The User's View Of FI'P

% ftp

The local FTP client program begins and issues a prompt to the user. Following
the prompt, the user can issue commands like help.

ftp help
Conmands m y be abbreviated. Coar~nands are:

!

$
account

append
ascii
bell

bi==Y
bye
case
cd

caup
close

cr
delete

debug
dir
disconnect
f o m

get
glob
hash
help
lcd
Is

macdef
delete
dir

wet
mkdir
mls
mode

mput
=P
ntrans

open
prompt

Prow
sendport

Put
pwd
quit
quote
recv
remotehelp
rename
reset
rmdir
runique

send
status
struct
sunique
tenex
trace

type
user
verbose
?

To obtain more information about a given command the user types help command
as in the following examples (output is shown in the formatftp produces):

ftp> help 1s
1s list contents of remote directory
ftp> help cdup

cdup change remote working directory to parent directory
ftp> help glob
glob toggle metacharacter expansion of local file names
ftp> help bell
bell beep when c-d completed

To execute a command, the user types the command name:

ftp> bell
Bell mode on.

504 Applications: File Transfer And Access (FIT', TFTP, NFS) Chap. 26

26.10 An Example Anonymous FTP Session

While the access authorization facilities in ITP make it more secure, strict enforce-
ment prohibits an arbitrary client from accessing any file until they obtain a login and
password for the computer on which the server operates. To provide access to public
files, many TCPIIP sites allow anonymous FTP. Anonymous FTP access means a
client does not need an account or password. Instead, the user specifies login name
anonymous and password guest. The server allows anonymous logins, but restricts ac-
cess to only publicly available files?.

Usually, users execute only a few FTP commands to establish a connection and ob-
tain a file; few users have ever tried most commands. For example, suppose someone
has placed an on-line copy of a text in file tcpbook.tar in the subdirectory pub/comer on
machine jip.cs.purdue.edu. A user logged in at another site as usera could obtain a
copy of the file by executing the following:

% ftp ftp.cs.purdue.edu
Connected to lucan.cs.purdue.edu.
220 lucan.cs.purdue.edu FTP server (Version wu-2.4.2-VRl6(1) ready.
Name (ftp.cs.purdue.edu:usera): anonymous
331 Guest login ok, send e-mail address as password.
Password: guest
230 Guest login ok, access restrictions apply.
ftp> get pub/comer/tcpbook.tar bookfile
200 PORT cortunand okay.
150 Opening ASCII mode data connection for tcpbook-tar (9895469 bytes)
226 Transfer complete.
9895469 bytes received in 22.76 seconds (4.3e+02 Kbytes/s)
ftp> close
221 Goodbye.

ftp> quit

In this example, the user specifies machineftp.cs.purdue.edu as an argument to the
FTP command, so the client automatically opens a connection and prompts for authori-
zation. The user invokes anonymous FTP by specifying login anonymous and password
guest* (although our example shows the password that the user types, the ftp program
does not display it on the user's screen).

After typing a login and password, the user requests a copy of a file using the get
command. In the example, the get command is followed by two arguments that specify
the remote file name and a name for the local copy. The remote file name is
pub/comer/tcpbook.tar and the local copy will be placed in boo@le. Once the transfer
completes, the user types close to break the connection with the server, and types quit to
leave the client.

tIn many UNIX systems, the server restricts anonymous FTP by changing the file system root to a small,
restricted directory (e.g., /usr/ftp).

$In practice, the server emits additional messages that request the user to use an e-mail address instead of
guest.

Sec. 26.10 An Example Anonymous FTP Session 505

Intermingled with the commands the user types are infom~ational messages. FTP
messages always begin with a 3-digit number followed by text. Most come from the
server; other output comes from the local client. For example, the message that begins
220 comes from the server and contains the domain name of the machine on which the
server executes. The statistics that report the number of bytes received and the rate of
transfer come from the client. In general:

Control and error messages between the FTP client and server begin
with a 3-digit number followed by text. The sofrware interprets the
number; the text is meant for humans.

The example session also illustrates a feature of FTP described earlier: the creation
of new TCP connections for data transfer. Notice the PORT command in the output.
The client PORT command reports that a new TCP port number has been obtained for
use as a data connection. The client sends the port information to the server over the
control connection; data transfer processes at both ends use the new port number when
forming a connection. After the transfer completes, the data transfer processes at each
end close the connection.

26.1 1 TFTP

Although FTP is the most general file transfer protocol in the TCPm suite, it is
also the most complex and difficult to program. Many applications do not need the full
functionality FTP offers, nor can they afford the complexity. For example, FTP re-
quires clients and servers to manage multiple concurrent TCP connections, something
that may be difficult or impossible on personal computers that do not have sophisticated
operating systems.

The TCP/IP suite contains a second file transfer protocol that provides inexpensive,
unsophisticated service. Known as the Trivial File Transfer Protocol, or (TFTP), it is
intended for applications that do not need complex interactions between the client and
server. TFTP restricts operations to simple file transfers and does not provide authenti-
cation. Because it is more restrictive, TFTP software is much smaller than FTP.

Small size is important in many applications. For example, manufacturers of disk-
less devices can encode TFTP in read-only memory (ROM) and use it to obtain an ini-
tial memory image when the machine is powered on. The program in ROM is called
the system bootstrapt. The advantage of using TFTP is that it allows bootstrapping
code to use the same underlying TCPhP protocols that the operating system uses once it
begins execution. Thus, it is possible for a computer to bootstrap from a server on
another physical network.

Unlike FTP, TFTP does not need a reliable stream transport service. It runs on top
of UDP or any other unreliable packet delivery system, using timeout and retransmis-
sion to ensure that data arrives. The sending side transmits a file in fixed size (512
byte) blocks and awaits an acknowledgement for each block before sending the next.
The receiver acknowledges each block upon receipt.

TChapter 23 discusses the details of bootstrapping with DHCP.

506 Applications: Fie Transfer And Access (FTP, TFTP, NFS) Chap. 26

The rules for TlTP are simple. The first packet sent requests a file transfer and es-
tablishes the interaction between client and server - the packet specifies a file name
and whether the file will be read (transferred to the client) or written (transferred to the
server). Blocks of the file are numbered consecutively starting at 1. Each data packet
contains a header that specifies the number of the block it carries, and each ack-
nowledgement contains the number of the block being acknowledged. A block of less
than 512 bytes signals the end of file. It is possible to send an error message either in
the place of data or an acknowledgement; errors terminate the transfer.

Figure 26.2 shows the format of the five TlTP packet types. The initial packet
must use operation codes 1 or 2, specifying either a read request or a write request.
The initial packet contains the name of the file as well as the access mode the client re-
quests (read access or write access).

2octet opcode n octets 1 octet n octets 1 octet

READ REQ. (1)

2octet opcode n octets 1 octet n octets 1 octet

29ctet opcode 2 octets

ACK (4) BLOCK #

WRITE REQ. (2)

Poctet opcode 2 octets up to 51 2 octets
DATA (3)

Figure 26.2 The five TFTP message types. Fields are not shown to scale be-
cause some are variable length; an initial Zoctet operation code
identifies the message format.

FILENAME

FILENAME 0

2octet opcode 2 octets n octets 1 octet

Once a read or write request has been made, the server uses the IP address and
UDP protocol port number of the client to identify subsequent operations. Thus, neither
data messages (the messages that carry blocks from the file) nor ack messages (the
messages that acknowledge data blocks) need to specify the file name. The final mes-
sage type illustrated in Figure 26.2 is used to report errors. Lost messages can be re-
transmitted after a timeout, but most other errors simply cause termination of the in-
teraction.

MODE 0

BLOCK #

ERROR (5)

0

MODE

DATA OCTETS ...

0

ERROR CODE ERROR MESSAGE 0

Sec. 26.11 TFTP 507

TFTP retransmission is unusual because it is symmetric. Each side implements a
timeout and retransmission. If the side sending data times out, it retransmits the last
data block. If the side responsible for acknowledgements times out, it retransmits the
last acknowledgement. Having both sides participate in retransmission helps ensure that
transfer will not fail after a single packet loss.

While symmetric retransmission guarantees robustness, it can lead to excessive re-
transmissions. The problem, known as the Sorcerer's Apprentice Bug, arises when an
acknowledgement for data packet k is delayed, but not lost. The sender retransmits the
data packet, which the receiver acknowledges. Both acknowledgements eventually ar-
rive, and each triggers a transmission of data packet k + l . The receiver will ack-
nowledge both copies of data packet k+l, and the two acknowledgements will each
cause the sender to transmit data packet k+2. The Sorcerer's Apprentice Bug can also
start if the underlying internet duplicates packets. Once started, the cycle continues in-
definitely with each data packet being transmitted exactly twice.

Although TFTP contains little except the minimum needed for transfer, it does sup-
port multiple file types. One interesting aspect of TFTP allows it to be integrated with
electronic mail?. A client can specify to the server that it will send a file that should be
treated as mail with the FILENAME field taken to be the name of a mailbox to which
the server should deliver the message.

26.12 NFS

Initially developed by Sun Microsystems Incorporated, the Network File System
(NFS) provides on-line shared file access that is transparent and integrated; many
TCP/IP sites use NFS to interco~ect their computers' file systems. From the user's
perspective, NFS is almost invisible. A user can execute an arbitrary application pro-
gram and use arbitrary files for input or output. The file names themselves do not show
whether the files are local or remote.

26.1 3 NFS Implementation

Figure 26.3 illustrates how NFS is embedded in an operating system. When an ap-
plication program executes, it calls the operating system to open a file, or to store and
retrieve data in files. The file access mechanism accepts the request and aatomatically
passes it to either the local file system software or to the NFS client, depending on
whether the file is on the local disk or on a remote machine. When it receives a re-
quest, the client software uses the NFS protocol to contact the appropriate server on a
remote machine and perform the requested operation. When the remote server replies,
the client software returns the results to the application program.

tin practice, the use of TFTP as a mail transport is discouraged. Refer to Chapter 27 for details on elec-
tronic mail.

Applications: File Transfer And Access (IT', T F P , NFS) Chap. 26

6 Lnternet connection

disk to NFS server

Figure 26.3 NFS code in an operating system. When an application program
requests a file operation, the operating system must pass the re-
quest to the local file system or to the NFS client software.

26.14 Remote Procedure Call (RPC)

Instead of defining the NFS protocol from scratch, the designers chose to build
three independent pieces: the NFS protocol itself, a general-purpose Remote Procedure
Call (RPC) mechanism, and a general-purpose external Data Representation (XDR).
Their intent was to separate the three to make it possible to use W C and XDR in other
software, including application programs as well as other protocols.

From the programmer's point of view, NFS itself provides no new procedures that
a program can call. Instead, once a manager has configured NFS, programs access re-
mote files using exactly the same operations as they use for local files. However, both
RPC and XDR provide mechanisms that programmers can use to build distributed pro-
grams. For example, a programmer can divide a program into a client side and a server
side that use RPC as the chief communication mechanism. On the client side, the pro-
grammer designates some procedures as remote, forcing the compiler to incorporate
RPC code into those procedures. On the server side, the programmer implements the
desired procedures and uses other RPC facilities to declare them to be part of a server.
When the executing client program calls one of the remote procedures, RPC automati-
cally collects values for arguments, forms a message, sends the message to the remote
server, awaits a response, and stores returned values in the designated arguments. In
essence, communication with the remote server occurs automatically as a side-effect of
a remote procedure call. The RPC mechanism hides all the details of protocols, making
it possible for programmers who know little about the underlying communication proto-
cols to write distributed programs.

Sec. 26.14 Remote Procedure Call (RPC) 509

A related tool, XDR, provides a way for programmers to pass data among hetero-
geneous machines without writing procedures to convert among the hardware data
representations. For example, not all computers represent 32-bit binary integers in the
same format. Some store the most significant byte at the highest memory address,
while others store the least significant byte at the highest address. Thus, if program-
mers use a network merely to move the bytes of an integer from one machine to another
without rearranging them, the value of the integer may change. XDR solves the prob-
lem by defining a machine-independent representation. At one end of a communication
channel, a program invokes XDR procedures to convert from the local hardware
representation to the machine-independent representation. Once the data has been
transferred to another machine, the receiving program invokes XDR routines to convert
from the machine-independent representation to the machine's local representation.

The chief advantage of XDR is that it automates much of the data conversion task.
Programmers do not need to type XDR procedure calls manually. Instead, they provide
the XDR compiler with the declaration statements from the program for which data
must be transformed, and the compiler automatically generates a program with the need-
ed XDR library calls.

26.1 5 Summary

Access to data on remote files takes two forms: whole-file copying and shared on-
line access. The File Transfer Protocol, FTP, is the major file transfer protocol in the
TCPIIP suite. FTP uses whole-file copying and provides the ability for users to list
directories on the remote machine as well as transfer files in either direction. The Trivi-
al File Transfer Protocol, TFTP, provides a small, simple alternative to FTP for applica-
tions that need only file transfer. Because it is small enough to be contained in ROM,
TFTP can be used for bootstrapping diskless machines.

The Network File System (NFS) designed by Sun Microsystems Incorporated pro-
vides on-line shared file access. It uses UDP for message transport and Sun's Remote
Procedure Call (RPC) and external Data Representation (XDR) mechanisms. Because
RPC and XDR are defined separately from NFS, programmers can use them to build
distributed applications.

FOR FURTHER STUDY

Postel [RFC 9591 contains the F W protocol standard; Horowitz and Lunt [RFC
22281, Allrnan and Ostermann [RFC 25771, and Housley and Hoffman [RFC 25851 dis-
cuss security extensions. Over three dozen RFCs comment on FTP, propose modifica-
tions: or define new versions of the protocol. Among them, Lottor [RFC 9131 describes
a Simple File Transfer Protocol. DeSchon and Braden [RFC 10681 shows how to use
FTP third-party transfer for background file transfer. Allman and Ostermann [RFC

510 Applications: File Transfer And Access (FTP, T m , NFS) Chap. 26

24281 considers FTP with IPv6 and NATs. The Trivial File Transfer Protocol described
in this chapter comes from Sollins [RFC 7831; Finlayson [RFC 9061 describes TFTP's
use in bootstrapping computer systems, and Malkin and Harkin [RFCs 2347 and 23481
discuss options.

Sun Microsystems has published three RFCs that define the Network File System
and related protocols. RFC 1094 contains the standard for NFS, RFC 1057 defines
RPC, and RFC 1014 specifies XDR. More details about RPC and NFS can be found in
Volume 3 of this text.

Why should file transport protocols compute a checksum on the file data they receive,
even when using a reliable end-to-end stream transfer protocol like TCP?

Find out whether FTF' computes a checksum for files it transfers.

What happens in FTF' if the TCP connection being used for data transfer breaks, but the
control connection does not?

What is the chief advantage of using separate TCP connections for control and data
transfer? (Hint: think of abnormal conditions.)

Outline a method that uses TFI'P to bootstrap a diskless machine. Be careful. Exactly
what IP addresses does it use at each step?

Implement a TFTP client.

Experiment with FI'P or an equivalent protocol to see how fast you can transfer a file
between two reasonably large systems across a local area network. Try the experiment
when the network is busy and when it is idle. Explain the result.

Try FI'P from a machine to itself and then from the machine to another machine on the
same local area network. Do the data transfer rates surprise you?
Compare the rates of transfer for FTP and NFS on a local area network. Can you ex-
plain the difference?

Examine the RPC definition. Does it handle datagram loss? duplication? delay? corr-
uption?

Extend the previous question and consider NFS running over RPC. Will NFS work well
across the global Internet? Why or why not?

Under what circumstances is the XDR scheme inefficient?

Consider translating floating point numbers from an internal form to an external form
and back to an internal form. What are the tradeoffs in the choice of exponent and
mantissa sizes in the external form?

FI'P defaults to using ASCII mode (i.e. text mode) to transfer files. Is the default wise?
Argue that the ascii mode default can be considered "harmful".

Applica tions: Electronic Mail
(SMTP, POP, /MAP, MIME)

27.1 Introduction

This chapter continues our exploration of internetworking by considering electronic
mail service and the protocols that support it. The chapter describes how a mail system
is organized, explains alias expansion, and shows how mail system software uses the
client-server paradigm to transfer each message.

27.2 Electronic Mail

An electronic mail (e-mail) facility allows users to send memos across an internet.
E-mail is one of the most widely used application services. Indeed, some users rely on
e-mail for normal business activities.

E-mail is also popular because it offers a fast, convenient method of transferring
information. E-mail accommodates small notes or large voluminous memos with a sin-
gle mechanism. It should not surprise you to learn that more users send files with elec-
tronic mail than with file transfer protocols.

Mail delivery is a new concept because it differs fundamentally from other uses of
networks that we have discussed. In all our examples, network protocols send packets
directly to destinations, using timeout and retransmission for individual segments if no
acknowledgement returns. In the case of electronic mail, however, the system must
provide for instances when the remote machine is temporarily unreachable (e.g., be-
cause a network connection has failed). A sender does not want to wait for the remote

512 Applications: Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 27

machine to respond before continuing work, nor does the user want the transfer to abort
merely because the destination is temporarily unavailable.

To handle delayed delivery, mail systems use a technique known as spooling.
When the user sends a mail message, the system places a copy in its private storage
(spool?) area along with identification of the sender, recipient, destination machine, and
time of deposit. The system then initiates the transfer to the remote machine as a back-
ground activity, allowing the sender to proceed with other computational activities.
Figure 27.1 illustrates the concept.

outgoing client TCP connection
mail spool (background

user
inter-

mail boxes
.

incoming (to accept
mail) for incoming mail mail

Figure 27.1 Conceptual components of an electronic mail system. The user
invokes a user interface to deposit or retrieve mail; all transfers
occur in the background.

The background mail transfer process becomes a client. It first uses the domain
name system to map the destination machine name to an IP address, and then attempts
to form a TCP connection to the mail server on the destination machine. If it succeeds,
the transfer process passes a copy of the message to the remote server, which stores the
copy in the remote system's spool area. Once the client and server agree that the copy
has been accepted and stored, the client removes the local copy. If it cannot form a
TCP connection or if the connection fails, the transfer process records the time delivery
was attempted and terminates. The background transfer process sweeps through the
spool area periodically, typically once every 30 minutes, checking for undelivered mail.
Whenever it finds a message or whenever a user deposits new outgoing mail, the back-
ground process attempts delivery. If it finds that a mail message cannot be delivered
after an extended time (e.g., 3 days), the mail software returns the message to the
sender.

TA mail spool area is sometimes called a mail queue even though the term is technically inaccurate.

Sec. 27.3 Mailbox Names And Aliases 513

27.3 Mailbox Names And Aliases

There are three important ideas hidden in our simplistic description of mail
delivery. First, users specify recipients by giving pairs of strings that identify the mail
destination machine name and a mailbox address on that machine. Second, the names
used in such specifications are independent of other names assigned to machines. Usu-
ally, a mailbox address is the same as a user's login id, and a destination machine name
is the same as a machine's domain name, but that is not necessary. It is possible to as-
sign a mailbox to a position of employment (e.g., the mailbox identifier deparzment-
head can refer to whoever currently chairs the department). Also, because the domain
name system includes a separate query type for mail destinations, it is possible to
decouple mail destination names from the usual domain names assigned to machines.
Thus, mail sent to a user at example.com may go to a different machine than a telnet
connection to the same name. Third, our simplistic diagram fails to account for mail
processing and mail forwarding, which include mail sent from one user to another on
the same machine, and mail that arrives on a machine but which should be forwarded to
another machine.

27.4 Alias Expansion And Mail Forwarding

Most systems provide mail forwarding software that includes a mail alias expan-
sion mechanism. A mail forwarder allows the local site to map identifiers used in mail
addresses to a set of one or more new mail addresses. Usually, after a user composes a
message and names a recipient, the mail interface program consults the local aliases to
replace the recipient with the mapped version before passing the message to the delivery
system. Recipients for which no mapping has been specified remain unchanged. Simi-
larly, the underlying mail system uses the mail aliases to map incoming recipient ad-
dresses.

Aliases increase mail system functionality and convenience substantially. In
mathematical ternls, alias mappings can be many-one or one-many. For example, the
alias system allows a single user to have multiple mail identifiers, including nicknames
and positions, by mapping a set of identifiers to a single person. The system also al-
lows a site to associate groups of recipients with a single identifier. Using aliases that
map an identifier to a list of identifiers makes it possible to establish a mail exploder
that accepts one incoming message and sends it to a large set of recipients. The set of
recipients associated with an identifier is called an electronic mailing list. Not all the
recipients on a list need to be local. Although it is uncommon, it is possible to have a
mailing list at site, Q, with none of the recipients from the list located at Q. Expanding
a mail alias into a large set of recipients is a popular technique used widely. Figure
27.2 illustrates the components of a mail system that supports mail aliases and list ex-
pansion.

Applications: Electronic Mail (SMTP, POP, MAP, MIME) Chap. 27

alias
database

user sends mil Outgoing
mail spool

area

mailboxes

Figure 27.2 An extension of the mail system in Figure 27.1 that supports mail
aliases and forwarding. Both incoming and outgoing mail
passes through the alias expansion mechanism.

As Figure 27.2 shows, incoming and outgoing mail passes through the mail for-
warder that expands aliases. Thus, if the alias database specifies that mail address x
maps to replacement y, alias expansion will rewrite destination address x, changing it to
y. The alias expansion program then determines whether y specifies a local or remote
address, so it knows whether to place the message in the incoming mail queue or outgo-
ing mail queue.

Mail alias expansion can be dangerous. Suppose two sites establish conflicting
aliases. For example, assume site A maps mail address x into mail address y at site B,
while site B maps mail address y into address x at site A. A mail message sent to ad-
dress x at site A could bounce forever between the two sites?. Similarly, if the manager
at site A accidentally maps a user's login name at that site to an address at another site,
the user will be unable to receive mail. The mail may go to another user or, if the alias
specifies an illegal address, senders will receive error messages.

27.5 The Relationship Of Internetworking And Mail

Commercial services exist that can forward electronic mail among computers
without using TCPAP and without having the computers connected to the global Inter-
net. How do such systems differ from the mail system described here? There are two
crucial differences. First, a TCPAP internet makes possible universal delivery service.
Second, electronic mail systems built on TCPAP are inherently more reliable than those

?In practice, most mail forwarders terminate. messages after the number of exchanges reaches a predeter-
mined threshold.

Sec. 27.5 The Relationship Of Internetworking And Mail 515

built from arbitrary networks. The first idea is easy to understand. TCP/IP makes pos-
sible universal mail delivery because it provides universal interconnection among
machines. In essence, all machines attached to an internet behave as if attached to a
single, vendor independent network. With the basic network services in place, devising
a standard mail exchange protocol becomes easier.

The second claim, that using TCPm makes mail delivery more reliable than other
mechanisms, needs explanation. The key idea is that TCP provides end-to-end connec-
tivity. That is, mail software on the sending machine acts as a client, contacting a
server on the ultimate destination. Only after the client successfully transfers a mail
message to the server does it remove the message from the local machine. Thus, direct,
end-to-end delivery enforces the following principle:

Mail systems that use end-to-end delivery can guarantee that each
mail message remains in the sender's machine until it has been suc-
cessfully copied to the recipient's machine.

With such systems, the sender can always determine the exact status of a message by
checking the local mail spool area.

The alternative form of electronic mail delivery uses the application gateway ap-
proach discussed in Chapter 20. The message is transferred through a series of mail
gatewaysj-, sometimes called mail bridges, mail relays, or intermediate mail stops. In
such systems, the sender's machine does not contact the recipient's machine directly.
Instead, a complete mail message is sent from the original sender to the first gateway.
The message is then forwarded to the second gateway, and so on.

The main disadvantage of using mail gateways is that they introduce unreliability.
Once it transfers a message to the first intermediate machine, the sender's computer dis-
cards the local copy. Thus, while the message is in transit, neither the sender nor the
recipient have a copy. Failures at intermediate machines may result in message loss
without either the sender or recipient being informed. Message loss can also result if
the mail gateways route mail incorrectly. Another disadvantage of mail gateways is that
they introduce delay. A mail gateway can hold messages for minutes, hours, or even
days if it cannot forward them on to the next machine. Neither the sender nor receiver
can deternfine where a message has been delayed, why it has not arrived, or how long
the delay will last. The important point is that the sender and recipient must depend on
computers over which they may have no control.

If mail gateways are less reliable than end-to-end delivery, why are they used?
The chief advantage of mail gateways is interoperability. Mail gateways provide con-
nections among standard TCP/IP mail systems and other mail systems, as well as
between TCP/IP internets and networks that do not support Internet protocols. Suppose,
for example, that company X has a large internal network and that employees use elec-
tronic mail, but that the network software does not support TCP/IP. Although it may be
infeasible to make the company's network part of the global Internet, it might be easy
to place a mail gateway between the company's private network and the Internet, and to
devise software that accepts mail messages from the local network and forwards them to
the Internet.

?Readers should not confuse the term mail gateway with the term IP gateway, discussed in Chapter 3.

516 Applications: Electronic Mail (SMTP, POP, MAP, MIME) Chap. 27

While the idea of mail gateways may seem somewhat awkward, electronic mail has
become such an important tool that users who do not have Internet access depend on the
gateways. Thus, although gateways service is not as reliable or convenient as end-to-
end delivery, it can still be useful.

27.6 TCPAP Standards For Electronic Mail Service

Recall that the goal of the TCP/IP protocol effort is to provide for interoperability
across the widest range of computer systems and networks. To extend the interoperabil-
ity of electronic mail, TCP/IP divides its mail standards into two sets. One standard
specifies the format for mail messages?. The other specifies the details of electronic
mail exchange between two computers. Keeping the two standards for electronic mail
separate makes it possible to build mail gateways that connect TCP/IP internets to some
other vendor's mail delivery system, while still using the same message format for both.

As anyone who has used electronic mail knows, each memo is divided into two
parts: a header and a body, separated by a blank line. The TCP/IP standard for mail
messages specifies the exact format of mail headers as well as the semantic interpreta-
tion of each header field; it leaves the format of the body up to the sender. In particu-
lar, the standard specifies that headers contain readable text, divided into lines that con-
sist of a keyword followed by a colon followed by a value. Some keywords are re-
quired, others are optional, and the rest are uninterpreted. For example, the header must
contain a line that specifies the destination. The line begins To: and contains the elec-
tronic mail address of the intended recipient on the remainder of the line. A line that
begins From: contains the electronic mail address of the sender. Optionally, the sender
may specify an address to which replies should be sent (i.e., to allow the sender to
specify that replies should be sent to an address other than the sender's mailbox). If
present, a line that begins Reply-to: specifies the address for replies. If no such line ex-
ists, the recipient will use information on the From: line as the return address.

The mail message format is chosen to make it easy to process and transport across
heterogeneous machines. Keeping the mail header format straightforward allows it to
be used on a wide range of systems. Restricting messages to readable text avoids the
problems of selecting a standard binary representation and translating between the stan-
dard representation and the local machine's representation.

27.7 Electronic Mail Addresses

A user familiar with electronic mail knows that mail address formats vary among
e-mail systems. Thus, it can be difficult to determine a correct electronic mail address,
or even to understand a sender's intentions. Within the global Internet, addresses have
a simple, easy to remember form:

local-part @ domain-name

?Mail system experts refer to the mail message format as "822" because RFC 822 defines the standard.

Sec. 27.7 Electronic Mail Addresses 517

where domain-name is the domain name of a mail destination? to which the mail should
be delivered, and local-part is the address of a mailbox on that machine. For example,
within the Internet, the author's electronic mail address is:

comer @ purdue . edu

However, mail gateways make addresses complex. Someone outside the Internet must
either address the mail to the nearest mail gateway or have software that automatically
does so. For example, when CSNET operated a mail gateway that connected between
outside networks and the Internet, someone with access to the gateway might have used
the following address to reach the author:

comer %purdzle. edu @ relay. cs . net

Once the mail reached machine relay .cs.net, the mail gateway software extracted
local-part, changed the percent sign (%) into an at sign (@), and used the result as a
destination address to forward the mail.

The reason addresses become complex when they include non-Internet sites is that
the mail address mapping function is local to each machine. Thus, some mail gateways
require the local part to contain addresses of the form:

user % domain-name

while others require:

user: domain-name

and still others use completely different forms. More important, electronic mail systems
do not usually agree on conventions for precedence or quoting, making it impossible for
a user to guarantee how addresses will be interpreted. For example, consider the elec-
tronic mail address:

comer %purdue . edu @ relay. cs . net

mentioned earlier. A site using the TCPiIP standard for mail would interpret the ad-
dress to mean, "send the message to mail exchanger relay. c s . net and let that mail ex-
changer decide how to interpret comer %purdue . edu" (the local part). In essence, the
site acts as if the address were parenthesized:

(comer %purdue . edu) @ (relay. cs . net)

At a site that uses % to separate user names from destination machines, the same ad-
dress might mean, "send the mail to user comer at the site given by the remainder of
the address." That is, such sites act as if the address were parenthesized:

(comer) % (purdue . edu @ relay. cs . net)

tTechnically, the domain name specifies a mail exchanger, not a machine name.

518 Applications: Electronic Mail (SMTP, POP, MAP, MIME) Chap. 27

We can summarize the problem:

Because each mail gateway determines the exact details of how it in-
terprets and maps electronic mail addresses, there is no standard for
addresses that cross mail gateway boundaries to networks outside the
Internet.

27.8 Pseudo Domain Addresses

To help solve the problem of multiple mail systems, each with its own e-mail ad-
dress format, a site can use domain-style names for all e-mail addresses, even if the site
does not use the domain name system. For example, a site that uses UUCP can imple-
ment a pseudo-domain, uucp, that allows users to spec@ mail addresses of the form:

uucp-style address @ uucp

or a related form:

user @ uucp-site . uucp

The local mail forwarding software recognizes the special addresses and translates them
to the address syntax required by the UUCP network software. From the user's per-
spective, the advantage is clear: all electronic addresses have the same general format
independent of the underlying communication network used to reach the recipient. Of
course, such addresses only work where local mailers have been instructed to map them
into appropriate forms and only when the appropriate transport mechanisms are avail-
able. Furthermore, even though pseudo-domain mail addresses have the same form as
domain names, they can only be used with electronic mail - one cannot use the
domain name system to resolve a pseudo address into an underlying IP address.

27.9 Simple Mail Transfer Protocol (SMTP)

In addition to message formats, the TCP/IP protocol suite specifies a standard for
the exchange of mail between machines. That is, the standard specifies the exact format
of messages a client on one machine uses to transfer mail to a server on another. The
standard transfer protocol is known as the Simple Mail Transfer Protocol (SMTP). As
you might guess, SMTP is simpler than the earlier Mail Transfer Protocol, (MTP). The
SMTP protocol focuses specifically on how the underlying mail delivery system passes
messages across an internet from one machine to another. It does not specify how the
mail system accepts mail from a user or how the user interface presents the user with
incoming mail. Also, SMTP does not spec@ how mail is stored or how frequently the
mail system attempts to send messages.

Sec. 27.9 Simple Mail Transfer Protocol (SMTP) 519

SMTP is surprisingly straightforward. Communication between a client and server
consists of readable ASCII text. Although SMTP rigidly defines the command format,
humans can easily read a transcript of interactions between a client and server. Initially,
the client establishes a reliable stream connection to the server and waits for the server
to send a 220 READY FOR MAIL message. (If the server is overloaded, it may delay
sending the 220 message temporarily.) Upon receipt of the 220 message, the client
sends a HELO? command. The end of a line marks the end of a command. The server
responds by identifying itself. Once communication has been established, the sender
can transmit one or more mail messages, terminate the connection, or request the server
to exchange the roles of sender and receiver so messages can flow in the opposite direc-
tion. The receiver must acknowledge each message. It can also abort the entire con-
nection or abort the current message transfer.

Mail transactions begin with a MAIL command that gives the sender identification
as well as a FROM: field that contains the address to which errors should be reported.
A recipient prepares its data structures to receive a new mail message, and replies to a
MAIL command by sending the response 250. Response 250 means that all is well.
The full response consists of the text 250 OK. As with other application protocols, pro-
grams read the abbreviated commands and 3-digit numbers at the beginning of lines;
the remaining text is intended to help humans debug mail software.

After a successful MAIL command, the sender issues a series of RCPT commands
that idenclfy recipients of the mail message. The receiver must acknowledge each
RCPT command by sending 250 OK or by sending the error message 550 No such user
here.

After all RCPT commands have been acknowledged, the sender issues a DATA
command. In essence, a DATA command informs the receiver that the sender is ready
to transfer a complete mail message. The receiver responds with message 354 Start
mail input and specifies the sequence of characters used to terminate the mail message.
The termination sequence consists of 5 characters: carriage return, line feed, period, car-
riage return, and line feed*.

An example will clarify the SMTP exchange. Suppose user Smith at host
Alpha.EDU sends a message to users Jones, Green, and Brown at host Beta.GOV. The
SMTP client software on host Alpha.EDU contacts the SMTP server software on host
Beta.GOV and begins the exchange shown in Figure 27.3.

THELO is an abbreviation for "hello."
SSMTP uses CR-LF to terminate a line, and forbids the body of a mail message to have a period on a

line by itself.

Applications: Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 27

S: 220 Beta.GOV Simple Mail Transfer Service Ready
C: HELO Alpha.EDU
S: 250 Beta.GOV

C: MAIL FROM:<Smith@Alpha.EDU>

S: 250 OK

C: RCPT TO:<JonesBBeta.GOV>
S: 250 OK

C: RCPT TO:<Green@Beta.GOV>
S: 550 No such user here

C: RCPT TO:<Brown@Beta.GOV>
S: 250 OK

C: DATA

S: 354 Start mail input; end with <CR><LF>.<CR><LF>
C: ... sends body of mail message. ..
C: ... continues for as many lines as message contains
C: <CR><LF>.<CR><LF>

S: 250 OK

C: QUIT
S: 221 Beta.GOV Service closing transmission channel

Figure 273 Example of SMTP transfer from Alpha.EDU to Beta.GOV.
Lines that begin with "C:" are transmitted by the client (Al-
pha), while lines that begin "S:" are transmitted by the server.
In the example, machine Beta.GOV does not recognize the in-
tended recipient Green.

In the example, the server rejects recipient Green because it does not recognize the
name as a valid mail destination (i.e., it is neither a user nor a mailing list). The SMTP
protocol does not specify the details of how a client handles such errors - the client
must decide. Although clients can abort the delivery completely if an error occurs,
most clients do not. Instead, they continue delivery to all valid recipients and then re-
port problems to the original sender. Usually, the client reports errors using electronic
mail. The error message contains a summary of the error as well as the header of the
mail message that caused the problem.

Once a client has finished sending all the mail messages it has for a particular des-
tination, the client may issue the TURW command to turn the connection around. If it
does, the receiver responds 250 OK and assumes control of the connection. With the
roles reversed, the side that was originally a server sends back any waiting mail mes-

?In practice, few mail servers use the TURN command.

Sec. 27.9 Simple Mail Transfer Protocol (SMTP) 521

sages. Whichever side controls the interaction can choose to terminate the session; to
do so, it issues a QUIT command. The other side responds with command 221, which
means it agrees to terminate. Both sides then close the TCP connection gracefully.

SMTP is much more complex than we have outlined here. For example, if a user
has moved, the server may know the user's new mailbox address. SMTP allows the
server to inform the client about the new address so the client can use it in the future.
When informing the client about a new address, the server may choose to forward the
mail that triggered the message, or it may request that the client take the responsibility
for forwarding.

27.1 0 Mail Retrieval And Mailbox Manipulation Protocols

The SMTP transfer scheme described above implies that a server must remain
ready to accept e-mail at all times; the client attempts to send a message as soon as a
user enters it. The scenario works well if the server runs on a computer that has a per-
manent internet connection, but it does not work well for a computer that has intermit-
tent connectivity. In particular, consider a user who only has dialup Internet access. It
makes no sense for such a user to run a conventional e-mail server because the server
will only be available while the user is dialed in - all other attempts to contact the
server will fail, and e-mail sent to the user will remain undelivered. The question ar-
ises, "how can a user without a permanent connection receive e-mail?"

The answer to the question lies in a two-stage delivery process. In the first stage,
each user is assigned a mailbox on a computer that has a permanent Internet connection.
The computer runs a conventional SMTP server, which always remains ready to accept
e-mail. In the second stage, the user forms a dialup connection, and then runs a proto-
col that retrieves messages from the permanent mailbox. The protocol transfers the
messages to the user's computer where they can be read.

Two protocols exist that allow a remote user to retrieve mail from a permanent
mailbox. The protocols have similar functionality: in addition to providing access, each
protocol allows a user to manipulate the mailbox content (e.g., permanently delete a
message). The next two sections describe the two protocols.

27.1 0.1 Post Off ice Protocol

The most popular protocol used to transfer e-mail messages from a permanent
mailbox to a local computer is known as version 3 of the Post Ofice Protocol (POP3).
The user invokes a POP3 client, which creates a TCP connection to a POP3 server on
the mailbox computer. The user first sends a login and a password to authenticate the
session. Once authentication has been accepted, the user client sends commands to re-
trieve a copy of one or more messages and to delete the message from the permanent
mailbox. The messages are stored and transferred as text files in 822 standard format.

Note that the computer with the permanent mailbox must run two servers - an
SMTP server accepts mail sent to a user and adds each incoming message to the user's

522 Applications: Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 27

permanent mailbox, and a POP3 server allows a user to extract messages from the mail-
box and delete them. To ensure correct operation, the two servers must coordinate use
of the mailbox so that if a message arrives via SMTP while a user is extracting mes-
sages via POP3, the mailbox is left in a valid state.

27.10.2 Internet Message Access Protocol

Version 4 of the Internet Message Access Protocol (IMAP4) is an alternative to
POP3 that uses the same general paradigm. Like POP3, IMAP4 defines an abstraction
known as a mailbox; mailboxes are located on the same computer as a server. Also like
POP3, a user runs an MAP4 client that contacts the server to retrieve messages. Un-
like POP3, however, MAP4 allows a user to dynamically create, delete, or rename
mailboxes.

MAP4 also provides extended functionality for message retrieval and processing.
A user can obtain information about a message or examine header fields without retriev-
ing the entire message. In addition, a user can search for a specified string and retrieve
specified portions of a message. Partial retrieval is especially useful for slow-speed di-
alup connections because it means a user does not need to download useless informa-
tion.

27.1 1 The MIME Extension For Non-ASCII Data

The Multipurpose Internet Mail Extensions (MIME) were defined to allow
transmission of non-ASCII data through e-mail. MIME does not change SMTP or
POP3, nor does MIME replace them. Instead, MIME allows arbitrary data to be encod-
ed in ASCII and then transmitted in a standard e-mail message. To accommodate arbi-
trary data types and representations, each MIME message includes information that tells
the recipient the type of the data and the encoding used. MIME information resides in
the 822 mail header - the MIME header lines speclfy the version of MIME used, the
type of the data being sent, and the encoding used to convert the data to ASCII. For
example, Figure 27.4 illustrates a MIME message that contains a photograph in standard
GIFt representation. The GIF image has been converted to a 7-bit ASCII representa-
tion using the base64 encoding.

Fran: bill@acollege.edu
To : j ohn@example. can
MIME-Version: 1.0
Content-Type: image/gif
Content-Transfer-Encoding: base64

... data for the image ...
Figure 27.4 An example MIME message. Lines in the header identify the

type of the data as well as the encoding used.

TGIF is the Graphics Interchange Format.

Sec. 27.1 1 The MIME Extension For Non-ASCII Data 523

In the figure, the header line MIME-Version: declares that the message was com-
posed using version 1.0 of the MIME protocol. The Content-Type: declaration specifies
that the data is a GIF image, and the Content-Transfer-Encoding: header declares that
base64 encoding was used to convert the image to ASCII. To view the image, a
receiver's mail system must first convert from base64 encoding back to binary, and then
run an application that displays a GIF image on the user's screen.

The MIME standard specifies that a Content-Type declaration must contain two
identifiers, a content type and a subtype, separated by a slash. In the example, image is
the content type, and gifis the subtype.

The standard defines seven basic content types, the valid subtypes for each, and
transfer encodings. For example, although an image must be of subtype jpeg or gif, text
cannot use either subtype. In addition to the standard types and subtypes, MIME per-
mits a sender and receiver to define private content typest. Figure 27.5 lists the seven
basic content types.

Content Type
text
image
audio
video
application
multipart

message

Used When Data In the Message Is
Textual (e.g. a document).
A still photograph or computer-generated image
A sound recording
A video recording that includes motion
Raw data for a program
Multiple messages that each have a separate content

type and encoding
An entire e-mail message (e.g., a memo that has been

forwarded) or an external reference to a
message (e.g., an FTP sewer and file name)

Figure 27.5 The seven basic types that can appear in a MIME Content-Type
declaration and their meanings.

27.12 MIME Multipart Messages

The MIME multipart content type is useful because it adds considerable flexibility.
The standard defines four possible subtypes for a multipart message; each provides im-
portant functionality. Subtype mixed allows a single message to contain multiple, in-
dependent submessages that each can have an independent type and encoding. Mixed
multipart messages make it possible to include text, graphics, and audio in a single mes-
sage, or to send a memo with additional data segments attached, similar to enclosures
included with a business letter. Subtype altenzative allows a single message to include
multiple representations of the same data. Alternative multipart messages are useful
when sending a memo to many recipients who do not all use the same hardware and
software system. For example, one can send a document as both plain ASCII text and
in formatted form, allowing recipients who have computers with graphic capabilities to

tTo avoid potential name conflicts, the standard requires that names chosen for private content types each
begin with the string X- .

524 Applications: Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 27

select the formatted form for viewing. Subtype parallel permits a single message to in-
clude subparts that should be viewed together (e.g., video and audio subparts that must
be played simultaneously). Finally, subtype digest permits a single message to contain
a set of other messages (e.g., a collection of the e-mail messages from a discussion).

Figure 27.6 illustrates one of the prime uses for multipart messages: an e-mail mes-
sage can contain both a short text that explains the purpose of the message and other
parts that contain nontextual information. In the figure, a note in the first part of the
message explains that the second part contains a photographic image.

From: bill@acollege.edu
To : j ohn@example . com
MIME-Version: 1.0
Content-Type : Multipart /Mixed; Boundary=StartO£NextPart

--StartOfNextPart
John,

Here is the photo of our research lab that I promised
to send you. You can see the equipnent you donated.

Thanks again,
Bill

--StartOrnextPart
Content-Type: image/gif
Content-Transfer-mcoding: base64

... data for the image ...
Figure 27.6 An example of a MIME mixed multipart message. Each part of

the message can have an independent content type.

The figure also illustrates a few details of MIME. For example, each header line
can contain parameters of the form X = Y after basic declarations. The keyword Boun-
dary= following the multipart content type declaration in the header defines the string
used to separate parts of the message. In the example, the sender has selected the string
StartoflvextPart to serve as the boundary. Declarations of the content type and transfer
encoding for a submessage, if included, immediately follow the boundary line. In the
example, the second submessage is declared to be a GIF image.

27.1 3 Summary

Electronic mail is among the most widely available application services. Like
most TCP/IF' services, it uses the client-server paradigm. The mail system buffers out-
going and incoming messages, allowing the transfer from client and server to occur in
background.

Sec . 27.13 Summary 525

The TCP/IP protocol suite provides separate standards for mail message format and
mail transfer. The mail message format, called 822, uses a blank line to separate a mes-
sage header and the body. The Simple Mail Transfer Protocol (SMTP) defines how a
mail system on one machine transfers mail to a server on another. Version 3 of the
Post Office Protocol (POP3) specifies how a user can retrieve the contents of a mailbox;
it allows a user to have a permanent mailbox on a computer with continuous Internet
connectivity and to access the contents from a computer with intermittent connectivity.

The Multipurpose Internet Mail Extensions (MIME) provides a mechanism that al-
lows arbitrary data to be transferred using SMTP. MIME adds lines to the header of an
e-mail message to define the type of the data and the encoding used. MIME'S mixed
multipart type pernits a single message to contain multiple data types.

FOR FURTHER STUDY

The protocols described in this chapter are all specified in Internet RFCs. Postel
[RFC 8211 describes the Simple Mail Transfer Protocol and gives many examples. The
exact format of mail messages is given by Crocker [RFC 8221; many RFCs speclfy ad-
ditions and changes. Freed and Borenstein [RFCs 2045, 2046, 2047, 2048 and 20491
specify the standard for MIME, including the syntax of header declarations, the pro-
cedure for creating new content types, the interpretation of content types, and the
base64 encoding mentioned in this chapter. Partridge [RFC 9741 discusses the relation-
ship between mail routing and the domain name system. Horton [RFC 9761 proposes a
standard for the UNIX UUCP mail system.

EXERCISES

Some mail systems force the user to specify a sequence of machines through which the
message should travel to reach its destination. The mail protocol in each machine mere-
ly passes the message on to the next machine. List three disadvantages of such a
scheme.

Find out if your computing system allows you to invoke SMTP directly.

Build an SMTP client and use it to deliver a mail message.

See if you can send mail through a mail gateway and back to yourself.

Make a list of mail address fornis that your site handles and write a set of rules for pars-
ing them.

Find out how the UNIX sendmail program can be used to implement a mail gateway.

Find out how often your local mail system attempts delivery and how long it will contin-
ue before giving up.

526 Applications: Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 27

27.8 Many mail systems allow users to direct incoming mail to a program instead of storing it
in a mailbox. Build a program that accepts your incoming mail, places your mail in a
file, and then sends a reply to tell the sender you are on vacation.

27.9 Read the SMTP standard carefully. Then use TELNET to comect to the SMTP port on
a remote machine and ask the remote SMTP server to expand a mail alias.

27.10 A user receives mail in which the To field specifies the string important-people. The
mail was sent from a computer on which the alias important-people includes no valid
mailbox identifiers. Read the SMTP specification carefully to see how such a situation
is possible.

27.11 POP3 separates message retrieval and deletion by allowing a user to retrieve and view a
message without deleting it from the permanent mailbox. What are the advantages and
disadvantages of such separation?

27.12 Read about POP3. How does the TOP command operate, and why is it useful?

27.13 Read the MIME standard carefully. What servers can be specified in a MIME external
reference?

Applications: World Wide
Web (HTTP)

28.1 Introduction

This chapter continues the discussion of applications that use TCP/IP technology
by focusing on the application that has had the most impact: the World Wide Web
(WWW). After a brief overview of concepts, the chapter examines the primary protocol
used to transfer a Web page from a server to a Web browser. The discussion covers
caching as well as the basic transfer mechanism.

28.2 Importance Of The Web

During the early history of the Internet, FTP data transfers accounted for approxi-
mately one third of Internet traflk, more than any other application. From its inception
in the early 1990s, however, the Web had a much higher growth rate. By 1995, Web
traffic overtook FTP to become the largest consumer of Internet backbone bandwidth,
and has remained the leader ever since. By 2000, Web traffic completely overshadowed
other applications.

Although traffic is easy to measure and cite, the impact of the Web cannot be un-
derstood from such statistics. More people know about and use the Web than any other
Internet application. Most companies have Web sites and on-line catalogs; references to
the Web appear in advertising. In fact, for many users, the Internet and the Web are in-
distinguishable.

528 Applications: World Wide Web (HlTF') Chap. 28

28.3 Architectural Components

Conceptually, the Web consists of a large set of documents, called Web pages, that
are accessible over the Internet. Each Web page is classified as a hypermedia docu-
ment. The suffix media is used to indicate that a document can contain items other than
text (e.g., graphics images); the prefix hyper is used because a document can contain
selectable links that refer to other, related documents.

Two main building blocks are used to implement the Web on top of the global In-
ternet. A Web browser consists of an application program that a user invokes to access
and display a Web page. The browser becomes a client that contacts the appropriate
Web server to obtain a copy of the specified page. Because a given server can manage
more than one Web page, a browser must speclfy the exact page when making a re-
quest.

The data representation standard used for a Web page depends on its contents. For
example, standard graphics representations such as Graphics Interchange Format (GIF)
or Joint Picture Encoding Group (JPEG) can be used for a page that contains a single
graphics image. Pages that contain a mixture of text and other items are represented us-
ing HyperText Markup Language (HTML). An HTML document consists of a file that
contains text along with embedded commands, called tags, that give guidelines for
display. A tag is enclosed in less-than and greater-than symbols; some tags come in
pairs that apply to all items between the pair. For example, the two commands
<CENTER> and </CENTER> cause items between them to be centered in the
browser's window.

28.4 Uniform Resource Locators

Each Web page is assigned a unique name that is used to identify it. The name,
which is called a Uniform Resource Locator (URL)1-, begins with a specification of the
scheme used to access the item. In effect, the scheme specifies the transfer protocol; the
format of the remainder of the URL depends on the scheme. For example, a URL that
follows the http scheme has the following form$:

http: I/ hostname [: port] /path [; parameters] [? query]

where brackets denote an optional item. For now, it is sufficient to understand that the
hostname string specifies the domain name or IP address of the computer on which the
server for the item operates, :port is an optional protocol port number needed only in
cases where the server does not use the well-known port (80), path is a string that iden-
tifies one particular document on the server, ;parameters is an optional string that speci-
fies additional parameters supplied by the client, and ?query is an optional string used
when the browser sends a question. A user is unlikely to ever see or use the optional
parts directly. Instead, URLs that a user enters contain only a hostname and path. For
example, the URL:

t A URL is a specific type of the more general Uniform Resource Identifier (URI).
$Some of the literature refers to the initial string, hrtp:, as a pragma.

Sec. 28.4 Uniform Resource Locators 529

http: //www.cs.purdue.edu/people/comer/

specifies the author's Web page. The server operates on computer www.cs.purdue.edu,
and the document is named /people/comer/.

The protocol standards distinguish between the absolute form of a URL illustrated
above, and a relative form. A relative URL, which is seldom seen by a user, is only
meaningful when the server has already been determined. Relative URLs are useful
once communication has been established with a specific server. For example, when
communicating with server www.cs.purdue.edu, only the string /people/comer/ is needed
to specify the document named by the absolute URL above. We can summarize.

Each Web page is assigned a unique identz3er known as a Uniform
Resource Locator (URL). The absolute form of a URL contains a full
speczjkation; a relative form that omits the address of the server is
only useful when the server is implicitly known.

28.5 An Example Document

In principle, Web access is straightforward. All access originates with a URL - a
user either enters a URL via the keyboard or selects an item which provides the browser
with a URL. The browser parses the URL, extracts the information, and uses it to ob-
tain a copy of the requested page. Because the fornlat of the URL depends on the
scheme, the browser begins by extracting the scheme specification, and then uses the
scheme to determine how to parse the rest of the URL.

An example will illustrate how a URL is produced from a selectable link in a do-
cument. In fact, a document contains a pair of values for each link: an item to be
displayed on the screen and a URL to follow if the user selects the item. In HTML, the
pair of tags ul> and d A > are known as an anchor. The anchor defines a link; a URL
is added to the first tag, and items to be displayed are placed between the two tags. The
browser stores the URL internally, and follows it when the user selects the link. For
example, the following HTML document contains a selectable link:

When the document is displayed, a single line of text appears on the screen:

The author of this text is Douglas Comer.

530 Applications: World Wide Web (HTTF') Chap. 28

The browser underlines the phrase Douglas Comer to indicate that it corresponds
to a selectable link. Internally, of course, the browser stores the URL from the <A>
tag, which it follows when the user selects the link.

28.6 Hypertext Transfer Protocol

The protocol used for communication between a browser and a Web server or
between intermediate machines and Web servers is known as the HyperText Transfer
Protocol (HZTP). HTTP has the following set of characteristics:

Application Level. H'ITP operates at the application level. It assumes
a reliable, connection-oriented transport protocol such as TCP, but does not
provide reliability or retransmission itself.

Request/Response. Once a transport session has been established, one
side (usually a browser) must send an H T T P request to which the other side
responds.

Stateless. Each H'ITP request is self-contained; the server does not
keep a history of previous requests or previous sessions.

Bi-Directional Transfer. In most cases, a browser requests a Web
page, and the server transfers a copy to the browser. HTTP also allows
transfer from a browser to a server (e.g., when a user submits a so-called
''form").

Capability Negotiation. H'ITP allows browsers and servers to nego-
tiate details such as the character set to be used during transfers. A sender
can specify the capabilities it offers and a receiver can specify the capabili-
ties it accepts.

Support For Caching. To improve response time, a browser caches a
copy of each Web page it retrieves. If a user requests a page again, HTTP
allows the browser to interrogate the server to determine whether the con-
tents of the page has changed since the copy was cached.

Support For Intermediaries. HTTP allows a machine along the path
between a browser and a server to act as a proxy server that caches Web
pages and answers a browser's request from its cache.

28.7 HTTP GET Request

In the simplest case, a browser contacts a Web server directly to obtain a page.
The browser begins with a URL, extracts the hosmarne section, uses DNS to map the
name into an equivalent IP address, and uses the IP address to form a TCP connection

Sec. 28.7 HTTP GET Request 53 1

to the server. Once the TCP connection is in place, the browser and Web server use
HTTP to communicate; the browser sends a request to retrieve a specific page, and the
server responds by sending a copy of the page.

A browser sends an HTTP GET command to request a Web page from a server?.
The request consists of a single line of text that begins with the keyword GET and is
followed by a URL and an HTTP version number. For example, to retrieve the Web
page in the example above from server www.cs.purdue.edu, a browser can send the fol-
lowing request:

GET http: llwww.cs.purdue.edu/people/comer/ HTTPl1.1

Once a TCP connection is in place, there is no need to send an absolute URL - the
following relative URL will retrieve the same page:

GET /people/comer/ HTTPll.O

The Hypertext Transfer Protocol (HZTP) is used between a browser
and a Web server. The browser sends a GET request to which a
server responds by sending the requested item.

28.8 Error Messages

How should a Web server respond when it receives an illegal request? In most
cases, the request has been sent by a browser, and the browser will attempt to display
whatever the server returns. Consequently, servers usually generate error messages in
valid HTML. For example, one server generates the following error message:

The browser uses the "head" of the document (i-e., the items between cHEAD> and
</HEAD>) internally, and only shows the "body" to the user. The pair of tags d I 1 >
and </HI> causes the browser to display Bad Request as a heading (i.e., large and
bold), resulting in two lines of output on the user's screen:

?The standard uses the object-oriented term method instead of commond.

Applications: World Wide Web (HlTP) Chap. 28

Bad Request
Your browser sent a request that this server could not understand.

28.9 Persistent Connections And Lengths

Early versions of HITP follow the same paradigm as FTP by using a new TCP
connection for each data transfer. That is, a client opens a TCP connection and sends a
GET request. The server transmits a copy of the requested item, and then closes the
TCP connection. Until it encounters an end of$le condition, the client reads data from
the TCP connection. Finally, the client closes its end of the connection.

Version 1.1, which appeared as an RFC in June of 1999, changed the basic HTTP
paradigm in a fundamental way. Instead of using a TCP connection for each transfer,
version 1.1 adopts a persistent connection approach as the default. That is, once a
client opens a TCP connection to a particular server, the client leaves the connection in
place during multiple requests and responses. When either a client or server is ready to
close the connection, it informs the other side, and the connection is closed.

The chief advantage of persistent connections lies in reduced overhead - fewer
TCP connections means lower response latency, less overhead on the underlying net-
works, less memory used for buffers, and less CPU time used. A browser using a per-
sistent connection can further optimize by pipelining requests (i.e., send requests back-
to-back without waiting for a response). Pipelining is especially attractive in situations
where multiple images must be retrieved for a given page, and the underlying internet
has both high throughput and long delay.

The chief disadvantage of using a persistent connection lies in the need to identify
the beginning and end of each item sent over the connection. There are two possible
techniques that handle the situation: either send a length followed by the item, or send a
sentinel value after the item to mark the end. HTTP cannot reserve a sentinel value be-
cause the items transmitted include graphics images that can contain arbitrary sequences
of octets. Thus, to avoid ambiguity between sentinel values and data, H l T P uses the
approach of sending a length followed by an item of that size.

28.10 Data Length And Program Output

It may not be convenient or even possible for a server to know the length of an
item before sending. To understand why, one must know that servers use the Common
Gateway Interjace (CG4 mechanism that allows a computer program running on the
server machine to create a Web page dynamically. When a request arrives that
corresponds to one of the CGI-generated pages, the server runs the appropriate CGI pro-
gram, and sends the output from the program back to the client as a response. Dynamic
Web page generation allows the creation of information that is current (e.g., a list of the
current scores in sporting events), but means that the server may not know the exact
data size in advance. Furthermore, saving the data to a file before sending it is undesir-

Sec. 28.10 Data Length And Program Output 533

able for two reasons: it uses resources at the server and delays transmission. Thus, to
provide for dynamic Web pages, the HTTP standard specifies that if the server does not
know the length of an item a priori, the server can inform the browser that it will close
the connection after transmitting the item. To summarize:

To allow a TCP connection to persist through multiple requests and
responses, HTTP sends a length before each response. If it does not
know the length, a server informs the client, sends the response, and
then closes the connection.

28.1 1 Length Encoding And Headers

What representation does a server use to send length infom~ation? Interestingly,
HTTP borrows the basic fomlat from e-mail, using 822 format and MIME Extensions?.
Like a standard 822 message, each HTTP transmission contains a header, a blank line,
and the item being sent. Furthermore, each line in the header contains a keyword, a
colon, and information. Figure 28.2 lists a few of the possible headers and their mean-
ing.

Header Meaning
Content-Length Size of item in octets
Content-Type Type of the item
Content-Encoding Encoding used for item
Content-Language Language(s) used in item

Figure 28.1 Examples of items that can appear in the header sent before an
item. The Content-Type and Content-Encoding are taken directly
from MIME.

As an example, consider Figure 28.2 which shows a few of the headers that are
used when a HTML document is transferred across a persistent TCP connection.

Figure 28.2 An illustration of an HTTP transfer with header lines used to
specify attributes, a blank line, and the document itself. A
Content-Length header is required if the connection is persistent.

? S e e Chapter 27 for a discussion of e-mail, 822 format, and MIME.

534 Applications: World Wide Web (H?TP) Chap. 28

In addition to the examples shown in the figure, HTTP includes a wide variety of
headers that allow a browser and server to exchange meta information. For example,
we said that if a server does not know the length of an item, the server closes the con-
nection after sending the item. However, the server does not act without warning - the
server informs the browser to expect a close. To do so, the server includes a Connec-
tion header before the item in place of a Content-Length header:

Connection: close

When it receives a connection header, the browser knows that the server intends to
close the connection after the transfer; the browser is forbidden from sending further re-
quests. The next sections describe the purposes of other headers.

28.1 2 Negotiation

In addition to specifying details about an item being sent, HTI'P uses headers to
permit a client and server to negotiate capabilities. The set of negotiable capabilities in-
cludes a wide variety of characteristics about the connection (e.g., whether access is au-
thenticated), representation (e.g., whether graphics images in jpeg format are acceptable
or which types of compression can be used), content (e.g., whether text files must be in
English), and control (e.g., the length of time a page remains valid).

There are two basic types of negotiation: server-drivep and agent-driven (i.e.,
browser-driven). Server-driven negotiation beginswith a request from a browser. The
request specifies a list of preferences along with the URL of the desired item. The
server selects, from among the available representations, one that satisfies the browser's
preferences. If multiple items satisfy the preferences, the server makes a "best guess."
For example, if a document is stored in multiple languages and a request specifies a
preference for English, the server will send the English version.

Agent-driven negotiation simply means that a browser uses a two-step process to
perform the selection. First, the browser sends a request to the server to ask what is
available. The server returns a list of possibilities. The browser selects one of the pos-
sibilities, and sends a second request to obtain the item. The disadvantage of agent-
driven negotiation is that it requires &o server interactions; the advantage is that a
browser retains complete control over th2choice.

A browser uses an HTI'P Accept header to specify which media or representations
are acceptable. The header lists namis of formats with a preference value assigned to
each. For example,

Accept: text/html, -/plain; -0.5, -/xilvi; M.8

specifies that the browser is willing to accept the te.rtlhtml media type, but if that does
not exist, the browser will accept textlx-dvi, and, if that does not exist, tedplain. The
numeric values associated with the second and third entry can be thought of as a prefer-

Sec. 28.12 Negotiation 535

ence level, where no value is equivalent to q = l , and a value of q=O means the type is
unacceptable. For media types where "quality" is meaningful (e.g., audio), the value
of q can be interpreted as a willingness to accept a given media type if it is the best
available after other forms are reduced in quality by q percent.

A variety of Accept headers exist that correspond to the Content headers described
earlier. For example, a browser can send any of the following:

to specify which encodings, character sets, and languages the browser is willing to ac-
cept.

To summarize:

HTTP uses MIME-like headers to carry meta information. Both
browsers and servers send headers that allow them to negotiate
agreement on the document representation and encoding to be used.

28.13 Conditional Requests

H l T P allows a sender to make a request conditional. That is, when a browser
sends a request, it includes a header that qualifies conditions under which the request
should be honored. If the specified condition is not met, the server does not return the
requested item. Conditional requests allow a browser to optimize retrieval by avoiding
unnecessary transfers. The If-Modified-Since request specifies one of the most straight-
forward conditionals - it allows a browser to avoid transferring an item unless the item
has been updated since a specified date. For example, a browser can include the
header:

If-Modified-Since: Sat, 01 Jan 2000 05:00:01 GMT

with a GET request to avoid a transfer if the item is older than January 1, 2000.

28.1 4 Support For Proxy Servers

Proxy servers are an important part of the Web architecture because they provide
an optimization that decreases latency and reduces the load on servers. However, prox-
ies are not transparent - a browser must be configured to contact a local proxy instead
of the original source, and the proxy must be configured to cache copies of Web pages.
For example, a corporation in which many employees use the Internet may choose to
have a proxy server. The corporation configures all its browsers to send requests to the

536 Applications: World Wide Web (HTTP) Chap. 28

proxy. The f i s t time a user in the corporation accesses a given Web page, the proxy
must obtain a copy from the server that manages the page. The proxy places the copy
in its cache, and returns the page as the response to the request. The next time a user
accesses the same page, the proxy extracts the data from its cache without sending a re-
quest across the Internet. Consequently, traffic from the site to the Internet is signifi-
cantly reduced.

To guarantee correctness, HTTP includes explicit support for proxy servers. The
protocol specifies exactly how a proxy handles each request, how headers should be in-
terpreted by proxies, how a browser negotiates with a proxy, and how a proxy nego-
tiates with a server. Furthermore, several HlTP headers have been designed specifical-
ly for use by proxies. For example, one header allows a proxy to authenticate itself to a
server, and another allows each proxy that handles an item to record its identity so the
ultimate recipient receives a list of all intermediate proxies. Finally, HTI'P allows a
server to control how proxies handle each Web page. For example, a server can include
the Mar-Forwards header in a response to limit the number of proxies that handle an
item before it is delivered to a browser. If the server specifies a count of one, as in:

Max-Forwards: 1

at most one proxy can handle the item along the path from the server to the browser. A
count of zero prohibits any proxy from handling the item.

28.15 Caching

The goal of caching is improved efficiency: a cache reduces both latency and net-
work traffic by eliminating unnecessary transfers. The most obvious aspect of caching
is storage: when a Web page is initially accessed, a copy is stored on disk, either by the
browser, an intermediate proxy, or both. Subsequent requests for the same page can
short-circuit the lookup process and retrieve a copy of the page from the cache instead
of the server.

The central question in all caching schemes concerns timing - how long should
an item be kept in a cache? On one hand, keeping a cached copy too long results in the
copy becoming stale, which means that changes to the original are not reflected in the
cached copy. On the other hand, if the cached copy is not kept long enough, inefficien-
cy results because the next request must go back to the server.

HTTP allows a server to control caching in two ways. First, when it answers a re-
quest for a page, a server can specify caching details, including whether the page can be
cached at all, whether a proxy can cache the page, the community with which a cached
copy can be shared, the time at which the cached copy must expire, and limits on
transformations that can be applied to the copy. Second, HTTP allows a browser to
force revalidation of a page. To do so, the browser sends a request for the page, and
uses a header to specify that the maximum "age" (i.e., the time since a copy of the
page was stored) cannot be greater than zero. No copy of the page in a cache can be

Sec. 28.15 Caching 537

used to satisfy the request because the copy will have a nonzero age. Thus, only the
original server will answer the request. Intermediate proxies along the way will receive
a fresh copy for their cache as will the browser that issued the request.

To summarize:

Caching is key to the efficient operation of the Web. HTTP allows
servers to control whether and how a page can be cached as well as
its lifetime; a browser can force a request for a page to bypass caches
and obtain a fresh copy from the server that owns the page.

28.16 Summary

The World Wide Web consists of hypermedia documents stored on a set of Web
servers and accessed by browsers. Each document is assigned a URL that uniquely
identifies it; the URL specifies the protocol used to retrieve the document, the location
of the server, and the path to the document on that server.

The HyperText Markup Language, HTML, allows a document to contain text
along with embedded commands that control formatting. HTML also allows a docu-
ment to contain links to other documents.

A browser and server use the HyperText Transfer Protocol, HTTP, to communi-
cate. HTTP is an application-level protocol with explicit support for negotiation, proxy
servers, caching, and persistent connections.

FOR FURTHER STUDY

Bemers-Lee, et. al. [RFC 17681 defines URLs. A variety of RFCs contain propo-
sals for extensions. Daniel and Mealling [RFC 21681 considers how to store URLs in
the Domain Name System.

Bemers-Lee and Connolly [RFC 18661 contains the standard for version 2 of
HTML. Nebel and Masinter [RFC 18671 specifies HTML form upload, and Raggett
[RFC 19421 gives the standard for tables in HTML.

Fielding et. al. [RFC 26161 specifies version 1.1 of HTTP, which adds many
features, including additional support for persistence and caching, to the previous ver-
sion. Franks et. al. [RFC 26171 considers access authentication in HTTP.

538

EXERCISES

Applications: World Wide Web OfITP) Chap. 28

Read the standard for UR
the end of a URL?

Ss . What does a pound sign (#) followed by a string mean at

Extend the previous exercise. Is it legal to send the pound sign suffix on a URL to a
Web server? Why or why not?
How does a browser distinguish between a document that contains HTML and a docu-
ment that contains arbitrary text? To find out, experiment by using a browser to read
from a file. Does the browser use the name of the file or the contents to decide how to
interpret the file?

What is the purpose of an HTlT TRACE command?

What is the difference between an H'ITP PUT command and an H'ITP POST command?
When is each useful?
When is an HTlT Keep-Alive header used?

Can an arbitrary Web server function as a proxy? To find out, choose an arbitrary Web
server and configure your browser to use it as a proxy. Do the results surprise you?

Read about HTI'F"s must-revalidate cache control directive. Give an example of a Web
page that would use such a directive.

If a browser does not send an HTTP Content-Length header before a request, how does a
server respond?

Applications: Voice And
Video Over IP (RTP)

29.1 Introduction

This chapter focuses on the transfer of real-time data such as voice and video over
an IP network. In addition to discussing the protocols used to transport such data, the
chapter considers two broader issues. First, it examines the question of how IP can be
used to provide commercial telephone service. Second, it examines the question of how
routers in an IP network can guarantee sufficient service to provide high-quality video
and audio reproduction.

Although it was designed and optimized to transport data, IP has successfully car-
ried audio and video since its inception. In fact, researchers began to experiment with
audio transmission across the ARPANET before the Internet was in place. By the
1990s, commercial radio stations were sending audio across the Internet, and software
was available that allowed an individual to send audio across the Internet or to the stan-
dard telephone network. Commercial telephone companies also began using IP technol-
ogy internally to carry voice.

29.2 Audio Clips And Encoding Standards

The simplest way to transfer audio across an IP network consists of digitizing an
analog audio signal to produce a data file, using a conventional protocol to transfer the
file, and then decoding the digital file to reproduce the original analog signal. Of
course, the technique does not work well for interactive exchange because placing en-

540 Applications: Voice And Video Over IP (RTP) Chap. 29

coded audio in a file and transferring the file introduces a long delay. Thus, file transfer
is typically used to send short audio recordings, which are known as audio clips.

Special hardware is used to form high-quality digitized audio. Known as a
coder/decoder (codec), the device can covert in either direction between an analog au-
dio signal and an equivalent digital representation. The most common type of codec, a
waveform coder, measures the amplitude of the input signal at regular intervals and con-
verts each sample into a digital value (i.e., an integer)?. To decode, the codec takes a
sequence of integers as input and recreates the continuous analog signal that matches
the digital values.

Several digital encoding standards exist, with the main tradeoff being between
quality of reproduction and the size of digital representation. For example, the conven-
tional telephone system uses the Pulse Code Modulation (PCM) standard that specifies
taking an 8-bit sample every 125 p seconds (i.e., 8000 times per second). As a result, a
digitized telephone call produces data at a rate of 64 Kbps. The PCM encoding pro-
duces a surprising amount of output - storing a 128 second audio clip requires one
megabyte of memory.

There are three ways to reduce the amount of data generated by digital encoding:
take fewer samples per second, use fewer bits to encode each sample, or use a digital
compression scheme to reduce the size of the resulting output. Various systems exist
that use one or more of the techniques, making it possible to find products that produce
encoded audio at a rate of only 2.2 Kbps. However, each technique has disadvantages.
The chief disadvantage of taking fewer samples or using fewer bits to encode a sample
is lower quality audio - the system cannot reproduce as large a range of sounds. The
chief disadvantage of compression is delay - digitized output must be held while it is
compressed. Furthermore, because greater reduction in size requires more processing,
the best compression either requires a fast CPU or introduces longer delay. Thus,
compression is most useful when delay is unimportant (e g , when the output from a
codec is being stored in a file).

29.3 Audio And Video Transmission And Reproduction

Many audio and video applications are classified as real-time because they require
timely transmission and delivery*. For example, an interactive telephone call is a real-
time exchange because audio must be delivered without significant delay or users find
the system unsatisfactory. Timely transfer means more than low delay because the
resulting signal is unintelligible unless it is presented in exactly the same order as the
original, and with exactly the same timing. Thus, if a sender takes a sample every 125
p seconds, the receiver must convert digital values to analog at exactly the same rate.

How can a network guarantee that the stream is delivered at exactly the same rate
that the sender used? The conventional telephone system introduced one answer: an
isochronous architecture. Isochronous design means that the entire system, including
the digital circuits, must be engineered to deliver output with exactly the same timing as
was used to generate input. Thus, an isochronous system that has multiple paths
between any two points must be engineered so all paths have exactly the same delay.

+An alternative known as a voice coder/decoder (vocodec) recognizes and encodes human speech rather
than general waveforms.

$Timeliness is more important than reliability; missing data is merely skipped.

Sec. 29.3 Audio And Video Transmission And Reproduction 54 1

An IP internet is not isochronous. We have already seen that datagrams can be du-
plicated, delayed, or arrive out of order. Variance in delay is called jitter, and is espe-
cially pervasive in IP networks. To allow meaningful transmission and reproduction of
digitized signals across a network with IP semantics, additional protocol support is re-
quired. To handle datagram duplication and out-of-order delivery, each transmission
must contain a sequence number. To handle jitter, each transmission must contain a
timestamp that tells the receiver at which time the data in the packet should be played
back. Separating sequence and timing information allows a receiver to reconstruct the
signal accurately independent of how the packets arrive. Such timing information is
especially critical when a datagram is lost or if the sender stops encoding during periods
of silence; it allows the receiver to pause during playback the amount of time specified
by the timestamps. To summarize:

Because an IP internet is not isochronous, additional protocol support
is required when sending digitized real-time data. In addition to
basic sequence information that allows detection of duplicate or reor-
dered packets, each packet must carry a separate timestamp that tells
the receiver the exact time at which the data in the packet should be
played.

29.4 Jitter And Playback Delay

How can a receiver recreate a signal accurately if the network introduces jitter?
The receiver must implement a playback buffer? as Figure 29.1 illustrates.

items inserted at items extracted - d
a variable rate at a fixed rate

Figure 29.1 The conceptual organization of a playback buffer that compen-
sates for jitter. The buffer holds K time units of data.

When a session begins, the receiver delays playback and places incoming data in
the buffer. When data in the buffer reaches a predetem6ned threshold, known as the
playback point, output begins. The playback point, labeled K in the figure, is measured
in time units of data to be played. Thus, playback begins when a receiver has accumu-
lated K time unit's worth of data.

As playback proceeds, datagrams continue to arrive. If there is no jitter, new data
will arrive at exactly the same rate old data is being extracted and played, meaning the
buffer will always contain exactly K time units of unplayed data. If a datagram experi-

t A playback buffer is also called a jitter buffer.

542 Applications: Voice And Video Over IP (RTP) Chap. 29

ences a small delay, playback is unaffected. The buffer size decreases steadily as data
is extracted, and playback continues uninterrupted for K time units. When a delayed
datagram arrives, the buffer is refilled.

Of course, a playback buffer cannot compensate for datagram loss. In such cases,
playback eventually reaches an unfiied position in the buffer, and output pauses for a
time period corresponding to the missing data. Furthermore, the choice of K is a
compromise between loss and delay?. If K is too small, a small amount of jitter causes
the system to exhaust the playback buffer before the needed data arrives. If K is too
large, the system remains immune to jitter, but the extra delay, when added to the
transmission delay in the underlying network, may be noticeable to users. Despite the
disadvantages, most applications that send real-time data across an IF' internet depend
on playback buffering as the primary solution for jitter.

29.5 Real-Time Transport Protocol (RTP)

The protocol used to transmit digitized audio or video signals over an IP internet is
known as the Real-Time Transport Protocol (RTP). Interestingly, RTP does not contain
mechanisms that ensure timely delivery; such guarantees must be made by the underly-
ing system. Instead, RTP provides two key facilities: a sequence number in each packet
that allows a receiver to detect out-of-order delivery or loss, and a timestamp that al-
lows a receiver to control playback.

Because RTP is designed to carry a wide variety of real-time data, including both
audio and video, RTP does not enforce a uniform interpretation of semantics. Instead,
each packet begins with a fixed header; fields in the header specify how to interpret
remaining header fields and how to interpret the payload. Figure 29.2 illustrates the
format of RTP's fixed header.

TIMESTAMP
P

SYNCHRONIZATION SOURCE IDENTIFIER

0 1 3 8 16 31

CONTRIBUTING SOURCE ID . . .

M

Figure 29.2 Illustration of the fixed header used with RTP. Each message
begins with this header; the exact interpretation and additional
header fields depend on the payload type, PTYPE.

?Although network delay and jitter can be used to d e t e d e a value for K dynamically, many playback
buffering schemes use a constant.

PTYPE SEQUENCE NUM

Sec. 29.5 Real-Time Transport Protocol (RTF') 543

As the figure shows, each packet begins with a two-bit RTP version number in
field VER; the current version is 2. The sixteen-bit SEQUENCE NUM field contains a
sequence number for the packet. The first sequence number in a particular session is
chosen at random. Some applications define an optional header extension to be placed
between the fixed header and the payload. If the application type allows an extension,
the X bit is used to specify whether the extension is present in the packet. The interpre-
tation of most of the remaining fields in the header depends on the seven-bit PTYPE
field that specifies the payload type. The P bit specifies whether zero padding follows
the payload; it is used with encryption that requires data to be allocated in fixed-size
blocks. Interpretation of the M ("marker") bit also depends on the application; it is
used by applications that need to mark points in the data stream (e.g., the beginning of
each frame when sending video).

The payload type also affects the interpretation of the TIMESTAMP field. A times-
tamp is a 32-bit value that gives the time at which the first octet of digitized data was
sampled, with the initial timestamp for a session chosen at random. The standard speci-
fies that the timestamp is incremented continuously, even during periods when no signal
is detected and no values are sent, but it does not specify the exact granularity. Instead,
the granularity is determined by the payload type, which means that each application
can choose a clock granularity that allows a receiver to position items in the output with
accuracy appropriate to the application. For example, if a stream of audio data is being
transmitted over RTP, a logical timestamp granularity of one clock tick per sample is
appropriate?. However, if video data is being transmitted, the timestamp granularity
needs to be higher than one tick per frame to achieve smooth playback. In any case, the
standard allows the timestamps in two packets to be identical, if the data in the two
packets was sampled at the same time.

29.6 Streams, Mixing, And Multicasting

A key part of RTP is its support for translation (i.e., changing the encoding of a
stream at an intermediate station) or mixing (i.e., receiving streams of data from multi-
ple sources, combining them into a single stream, and sending the result). To under-
stand the need for mixing, imagine that individuals at multiple sites participate in a
conference call using IP. To minimize the number of RTP streams, the group can
designate a mixer, and arrange for each site to establish an RTP session to the mixer.
The mixer combines the audio streams (possibly by converting them back to analog and
resampling the resulting signal), and sends the result as a single digital stream.

Fields in the RTP header identify the sender and indicate whether mixing occurred.
The field labeled SYNCHRONIZ4TION SOURCE IDENTIFIER specifies the source of a
stream. Each source must choose a unique 32-bit identifier; the protocol includes a
mechanism for resolving conflicts if they arise. When a mixer combines multiple
streams, the mixer becomes the synchronization source for the new stream. Information
about the original sources is not lost, however, because the mixer uses the variable-size
CONTRIBUTING SOURCE ID field to provide the synchronization IDS of streams that

tThe TIMESTAMP is sometimes referred to as a MEDIA TIMESTAMP to emphasize that its granularity
depends on the type of signal being measured.

544 Applications: Voice And Video Over IP (RTP) Chap. 29

were mixed together. The four-bit CC field gives a count of contributing sources; a
maximum of 15 sources can be listed.

RTP is designed to work with IP multicasting, and mixing is especially attractive
in a multicast environment. To understand why, imagine a teleconference that includes
many participants. Unicasting requires a station to send a copy of each outgoing RTP
packet to each participant. With multicasting, however, a station only needs to send
one copy of the packet, which will be delivered to all participants. Furthermore, if mix-
ing is used, all sources can unicast to a mixer, which combines them into a single
stream before multicasting. Thus, the combination of mixing and multicast results in
substantially fewer datagrams being delivered to each participating host.

29.7 RTP Encapsulation

Its name implies that RTP is a transport-level protocol. Indeed, if it functioned
like a conventional transport protocol, RTP would require each message to be encapsu-
lated directly in an IP datagram. In fact, RTP does not function like a transport proto-
col; although it is allowed, direct encapsulation in IP does not occur in practice. In-
stead, RTP runs over UDP, meaning that each RTP message is encapsulated in a UDP
datagram. The chief advantage of using UDP is concurrency - a single computer can
have multiple applications using RTP without interference.

Unlike many of the application protocols we have seen, RTP does not use a
reserved UDP port number. Instead, a port is allocated for use with each session, and
the remote application must be informed about the port number. By convention, RTP
chooses an even numbered UDP port; the following section explains that a companion
protocol, RTCP, uses the next port number.

29.8 RTP Control Protocol (RTCP)

So far, our description of real-time transmission has focused on the protocol
mechanisms that allow a receiver to reproduce content. However, another aspect of
real-time transmission is equally important: monitoring of the underlying network dur-
ing the session and providing out of band communication between the endpoints. Such
a mechanism is especially important in cases where adaptive schemes are used. For ex-
ample, an application might choose a lower-bandwidth encoding when the underlying
network becomes congested, or a receiver might vary the size of its playback buffer
when network delay or jitter changes. Finally, an out-of-band mechanism can be used
to send information in parallel with the real-time data (e.g., captions to accompany a
video stream).

A companion protocol and integral part of RTP, known as the RTP Control Proto-
col (RTCP), provides the needed control functionality. RTCP allows senders and re-
ceivers to transmit a series of reports to one another that contain additional information
about the data being transferred and the performance of the network. RTCP messages

Sec. 29.8 RTP Control Protocol (RTCP) 545

are encapsulated in UDP for transmissiont, and are sent using a protocol number one
greater than the port number of the RTP stream to which they pertain.

29.9 RTCP Operation

RTCP uses five basic message types to allow senders and receivers to exchange in-
formation about a session. Figure 29.3 lists the types.

Type Meaning
200 Sender report
201 Receiver report
202 Source description message
203 Bye message
204 Application specific message

Figure 293 The five RTCP message types. Each message begins with a
fixed header that identifies the type.

The bye and application speczjic messages are the most straightforward. A sender
transmits a bye message when shutting down a stream. The application specific mes-
sage type provides an extension of the basic facility to allow the application to define a
message type. For example, an application that sends a closed caption to accompany a
video stream might choose to define an RTCP message that supports closed captioning.

Receivers periodically transmit receiver report messages that inform the source
about conditions of reception. Receiver reports are important for two reasons. First,
they allow all receivers participating in a session as well as a sender to learn about re-
ception conditions of other receivers. Second, they allow receivers to adapt their rate of
reporting to avoid using excessive bandwidth and overwhelming the sender. The adap-
tive scheme guarantees that the total control traffic will remain less than 5% of the
real-time data traffic, and that receiver reports generate less than 75% of the control
traffic. Each receiver report identifies one or more synchronization sources, and con-
tains a separate section for each. A section specifies the highest sequence number pack-
et received from the source, the cumulative and percentage packet loss experienced,
time since the last RTCP report arrived from the source, and the interarrival jitter.

Senders periodically transmit a sender report message that provides an absolute
timestamp. To understand the need for a timestamp, recall that RTP allows each stream
to choose a granularity for its timestamp and that the first timestamp is chosen at ran-
dom. The absolute timestamp in a sender report is essential because it provides the
only mechanism a receiver has to synchronize multiple streams. In particular, because
RTP requires a separate stream for each media type, the transmission of video and ac-
companying audio requires two streams. The absolute timestamp information allows a
receiver to play the two streams simultaneously.

?Because some messages are short, the standard allows multiple RTCP messages to be combined into a
single UDP datagram for transmission.

546 Applications: Voice And Video Over IP (RTP) Chap. 29

In addition to the periodic sender report messages, senders also transmit source
description messages which provide general information about the user who owns or
controls the source. Each message contains one section for each outgoing RTP stream;
the contents are intended for humans to read. For example, the only required field con-
sists of a canonical name for the stream owner, a character string in the form:

user @ host

where host is either the domain name of the computer or its IP address in dotted de-
cimal form, and user is a login name. Optional fields in the source description contain
further details such as the user's e-mail address (which may differ from the canonical
name), telephone number, the geographic location of the site, the application program or
tool used to create the stream, or other textual notes about the source.

29.10 IP Telephony And Signaling

One aspect of real-time transmission stands out as especially important: the use of
IP as the foundation for telephone service. Known as IP telephony or voice over IP, the
idea is endorsed by many telephone companies. The question arises, "what additional
technologies are needed before IP can be used in place of the existing isochronous tele-
phone system?" Although no simple answer exists, researchers are investigating three
components. First, we have seen that a protocol like RTP is needed to transfer a digi-
tized signal across an IP internet correctly. Second, a mechanism is needed to establish
and terminate telephone calls. Third, researchers are exploring ways an IP internet can
be made to function like an isochronous network.

The telephone industry uses the term signaling to refer to the process of establish-
ing a telephone call. Specifically, the signaling mechanism used in the conventional
Public Switched Telephone Network (PSTN) is Signaling System 7 (SS7). SS7 performs
call routing before any audio is sent. Given a phone number, it forms a circuit through
the network, rings the designated telephone, and c o ~ e c t s the circuit when the phone is
answered. SS7 also handles details such as call forwarding and error conditions such as
the destination phone being busy.

Before IP can be used to make phone calls, signaling functionality must be avail-
able. Furthermore, to enable adoption by the phone companies, IP telephony must be
compatible with extant telephone standards - it must be possible for the IP telephony
system to interoperate with the conventional phone system at all levels. Thus, it must
be possible to translate between the signaling used with IP and SS7 just as it must be
possible to translate between the voice encoding used with IP and standard PCM encod-
ing. As a consequence, the two signaling mechanisms will have equivalent functionali-
ty.

The general approach to interoperability uses a gateway between the IP phone sys-
tem and the conventional phone system. A call can be initiated on either side of the
gateway. When a signaling request arrives, the gateway translates and forwards the re-

Sec. 29.10 IP Telephony And Signaling 547

quest; the gateway must also translate and forward the response. Finally, after signaling
is complete and a call has been established, the gateway must forward voice in both
directions, translating from the encoding used on one side to the encoding used on the
other.

Two groups have proposed standards for IP telephony. The ITU has defined a
suite of protocols known as H.323, and the IETF has proposed a signaling protocol
known as the Session Initiation Protocol (SIP). The next sections summarize the two
approaches.

29.1 0.1 H.323 Standards

The ITU originally created H.323 to allow the transmission of voice over local area
network technologies. The standard has been extended to allow transmission of voice
over IP internets, and telephone companies are expected to adopt it. H.323 is not a sin-
gle protocol. Instead, it specifies how multiple protocols can be combined to form a -
functional IP telephony system. For example, in addition to gateways, H.323 defines
devices known as gatekeepers that each provide a contact point for telephones using IP.
To obtain permission to place outgoing calls and enable the phone system to correctly
route incoming calls, each IP telephone must register with a gatekeeper; H.323 includes
the necessary protocols.

In addition to specifying a protocol for the transmission of real-time voice and
video, the H.323 framework allows participants to transfer data. Thus, a pair of users
engaged in an audio-video conference can also share an on-screen whiteboard, send still
images, or exchange copies of documents.

H.323 relies on the four major protocols listed in Figure 29.4.

Protocol Purpose
H.225.0 Signaling used to establish a call
H.245 Control and feedback during the call
RTP Real-time data transfer (sequence and timing)
T.120 Exchange of data associated with a call

Figure 29.4 The protocols used by H.323 for IP telephony.

Together, the suite of protocols covers all aspects of IP telephony, including phone
registration, signaling, real-time data encoding and transfer (both voice and video), and
control.

Figure 29.5 illustrates relationships among the protocols that comprise H.323. As
the figure shows, the entire suite ultimately depends on UDP and TCP running over IP.

Applications: Voice And Video Over IP (RTP) Chap. 29

I audiolvidw applications

video
codec { I Registr. "225 I Signaling *225 1 clf.21 I Data

T.120

signaling and control
I I I audio

codec

TCP

IP

data
applications

RTP I I I I I
UDP

Figure 29.5 Relationship among protocols that comprise the ITU's H.323 IP
telephony standard.

29.10.2 Session lnitiation Protocol (SIP)

The IETF has proposed an alternative to H.323, called the Session lnitiation Proto-
col (SIP), that only covers signaling; it does not recommend specific codecs nor does it
require the use of RTP for real-time transfer. Thus, SIP does not supply all of H.323
functionality.

SIP uses client-server interaction, with servers being divided into two types. A
user agent server runs in a SIP telephone. It is assigned an identifier (e.g., user @ site),
and can receive incoming calls. The second type of server is intermediate (i.e., between
two SIP telephones) and handles tasks such as call set up and call forwarding. An inter-
mediate server functions as a proxy server that can forward an incoming call request to
the next proxy server along the path to the called phone, or as a redirect server that tells
a caller how to reach the destination.

To provide information about a call, SIP relies on a companion protocol, the Ses-
sion Description Protocol (SDP). SDP is especially important in a conference call, be-
cause participants join and leave the call dynamically. SDP specifies details such as the
media encoding, protocol port numbers, and multicast address.

29.1 1 Resource Reservation And Quality Of Service

The term Quality Of Service (QoS) refers to statistical performance guarantees that
a network system can make regarding loss, delay, throughput, and jitter. An isochro-
nous network that is engineered to meet strict performance bounds is said to provide
QoS guarantees, while a packet switched network that uses best effort delivery is said to
provide no QoS guarantee. Is guaranteed QoS needed for real-time transfer of voice
and video over IP? If so, how should it be implemented? A major controversy sur-
rounds the two questions. On one hand, engineers who designed the telephone system
insist that toll-quality voice reproduction requires the underlying system to provide QoS
guarantees about delay and loss for each phone call. On the other hand, engineers who
designed IP insist that the Internet works reasonably well without QoS guarantees and

Sec. 29.1 1 Resource Reservation And Quality Of Service 549

that adding per-flow QoS is infeasible because routers will make the system both ex-
pensive and slow.

The QoS controversy has produced many proposals, implementations, and experi-
ments. Although it operates without QoS, the Internet is already used to send audio.
Technologies like ATM that were derived from the telephone system model provide
QoS guarantees for each individual connection. Finally, in Chapter 7 we learned that
the E T F adopted a conservative differentiated services approach that divides traffic into
separate QoS classes. The differentiated services scheme sacrifices fine grain control
for less complex forwarding.

29.12 QoS, Utilization, And Capacity

The debate over QoS is reminiscent of earlier debates on resource allocation such
as those waged over operating system policies for memory allocation and processor
scheduling. The central issue is utilization: when a network has sufficient resources for
all traffic, QoS constraints are unnecessary; when traffic exceeds network capacity, no
QoS system can satisfy all users' demands. That is, a network with 1% utilization does
not need QoS, and a network with 101% utilization will fail under any QoS. In effect,
proponents who argue for QoS mechanisms assert that complex QoS mechanisms
achieve two goals. First, by dividing the existing resources among more users, they
make the system more "fair". Second, by shaping the traffic from each user, they al-
low the network to run at higher utilization without danger of collapse.

One of the major arguments against complicated QoS mechanisms arises from im-
provements in the perfomlance of underlying networks. Network capacity has increased
dramatically. As long as rapid increases in capacity continue, QoS mechanisms merely
represent unnecessary overhead. However, if demand rises more rapidly than capacity,
QoS may become an economic issue - by associating higher prices with higher levels
of service, ISPs can use cost to ration capacity.

29.13 RSVP

If QoS is needed, how can an IP network provide it? Before announcing the dif-
ferentiated services solution, the E T F worked on a scheme that can be used to provide
QoS in an IP environment. The work produced a pair of protocols: the Resource Reser-
Vation Protocol (RSVP) and the Common Open Policy Services (COPS) protocol.

QoS cannot be added to IP at the application layer. Instead, the basic infrastruc-
ture must change - routers must agree to reserve resources (e.g., bandwidth) for each
flow between a pair of endpoints. There are two aspects. First, before data is sent, the
endpoints must send a request that specifies the resources needed, and all routers along
the path must agree to supply the resources; the procedure can be viewed as a form of
signaling. Second, as datagrams traverse the flow, routers need to monitor and control
traffic forwarding. Monitoring, sometimes called trafic policing, is needed to ensure

550 Applications: Voice And Video Over IP (RTP) Chap. 29

that the traffic sent on a flow does not exceed the specified bounds. Control of queue-
ing and forwarding is needed for two reasons. The router must implement a queueing
policy that meets the guaranteed bounds on delay, and the router must smooth packet
bursts. The latter is sometimes referred to as traflc shaping, and is necessary because
network traffic is often bursty. For example, a flow that specifies an average
throughput of 1 Mbps may have 2 Mbps of traffic for a millisecond followed by no
traffic for a millisecond. A router can reshape the burst by temporarily queueing in-
coming datagrams and sending them at a steady rate of 1 Mbps.

RSVP handles reservation requests and replies. It is not a routing protocol, nor
does it enforce policies once a flow has been established. Instead, RSVP operates be-
fore any data is sent. To initiate an end-toend flow, an endpoint first sends an RSVP
path message to determine the path to the destination; the datagram carrying the mes-
sage uses the router alert option to guarantee that routers examine the message. After it
receives a reply to its path message, the endpoint sends a request message to reserve
resources for the flow. The request specifies QoS bounds desired; each router that for-
wards the request along to the destination must agree to reserve the resources the re-
quest specifies. If any router along the path denies the request, the router uses RSVP to
send a negative reply back to the source. If all systems along the path agree to honor
the request, RSVP returns a positive reply.

Each RSVP flow is simplex (i.e., unidirectional). If an application requires QoS
guarantees in two directions, each endpoint must use RSVP to request a flow. Because
RSVP uses existing routing, there is no guarantee that the two flows will pass through
the same routers, nor does approval of a flow in one direction imply approval in the
other. We can summarize:

An endpoint uses RSVP to request a simplex flow through an ZP inter-
net with specified QoS bounak. I f routers along the path agree to
honor the request, they approve it; otherwise, they deny it. I f an ap-
plication nee& QoS in two directions, each endpoint must use RSVP
to request a separate flow.

29.1 4 COPS

When an RSVP request arrives, a router must evaluate two aspects: feasibility (i.e.,
whether the router has the resources necessary to satisfy the request) and policies (i.e.,
whether the request lies within policy constraints). Feasibility is a local decision - a
router can decide how to manage the bandwidth, memory, and processing power that is
available locally. However, policy enforcement requires global cooperation - alI
routers must agree to the same set of policies.

To implement global policies, the IETF architecture uses a two-level model, with
client-server interaction between the levels. When a router receives a RSVP request, it
becomes a client that consults a server known as a Policy Decision Point (PDP) to
determine whether the request meets policy constraints. The PDP does not handle traff-

Sec. 29.14 COPS 55 1

ic; it merely evaluates requests to see if they satisfy global policies. If a PDP approves
a request, the router must operate as a Policy Enforcement Point PEP to ensure traffic
does not exceed the approved policy.

The COPS protocol defines the client-server interaction between a router and a
PDP (or between a router and a local PDP if the organization has multiple levels of pol-
icy servers). Although COPS defines its own message header, the underlying format
shares many details with RSVP. In particular, COPS uses the same format as RSVP for
individual items in a request message. Thus, when a router receives an RSVP request,
it can extract items related to policy, place them in a COPS message, and send the
result to a PDP.

29.15 Summary

Analog data such as audio can be encoded in digital form; the hardware to do so is
known as a codec. The telephone standard for digital audio encoding, Pulse Code
Modulation (PCM), produces digital values at 64 Kbps.

RTP is used to transfer real-time data across an IP network. Each RTP message
contains two key pieces of information: a sequence number that a receiver uses to place
messages in order and detect lost datagrams and a media timestamp that a receiver uses
to determine when to play the encoded values. An associated control protocol, RTCP,
is used to supply information about sources and to allow a mixer to combine several
streams.

A debate continues over whether Quality of Service (QoS) guarantees are needed
to provide real-time. Before announcing a differentiated services approach, the IETF
designed a pair of protocols that can be used to provide per-flow QoS. Endpoints use
RSVP to request a flow with specific QoS; intermediate routers either approve or deny
the request. When an RSVP request arrives, a router uses the COPS protocol to contact
a Policy Decision Point and verify that the request meets policy constraints.

FOR FURTHER STUDY

Schulzrinne et. al. 18891 gives the standard for RTP and RTCP. Perkins et.
al. [RFC 21981 specifies the transmission of redundant audio data over RTP, and
Schulzrime [RFC 18901 specifies the use of RTP with an audio-video conference.
Schulzrinne, Rao, and Lanphier P C 23261 describes a related protocol used for
streaming of real-time traffk.

Zhang et. al. [RFC 22051 contains the specification for RSVP. Boyle et. al.
[draft-rap-cops-06.txtI describes COPS.

552

EXERCISES

Applications: Voice And Video Over IP (RTP) Chap. 29

Read about the Real Time Streaming Protocol, RTSP. What are the major differences
between RTSP and RTP?
Argue that although bandwidth is often cited as an example of the facilities a QoS
mechanism can guarantee, delay is a more fundamental resource. (Hint: which con-
straint can be eased with sufficient money?)
If an RTP message amves with a sequence number far greater than the sequence expect-
ed, what does the protocol do? Why?
Are sequence numbers necessary in RTP, or can a timestamp be used instead? Explain.
Would you prefer an internet where QoS was required for all traffic? Why or why not?

Measure the utilization on your connection to the Internet. If all traffic required QoS
reservation, would service be better or worse? Explain.

Applications: Internet
Management (SNMP)

30.1 Introduction

In addition to protocols that provide network level services and application pro-
grams that use those services, an internet needs software that allows managers to debug
problems, control routing, and find computers that violate protocol standards. We refer
to such activities as internet mnagement. This chapter considers the ideas behind
TCP/IP internet management software, and describes an internet management protocol.

30.2 The Level Of Management Protocols

Originally, many wide area networks included management protocols as part of
their link level protocols. If a packet switch began misbehaving, the network manager
could instruct a neighboring packet switch to send it a special control packet. Control
packets caused the receiver to suspend normal operation and respond to commands from
the manager. The manager could interrogate the packet switch to identify problems, ex-
amine or change routes, test one of the communication interfaces, or reboot the switch.
Once managers repaired the problem, they could instruct the switch to resume normal
operations. Because management tools were part of the lowest level protocol, managers
were often able to control switches even if higher level protocols failed.

Unlike a homogeneous wide area network, a TCPm intemet does not have a sin-
gle link level protocol. Instead, the internet consists of multiple physical networks in-
terco~ected by IP routers. As a result, intemet management differs from network

554 Applications: Internet Management (SNMP) Chap. 30

management. First, a single manager can control heterogeneous devices, including IP
routers, bridges, modems, workstations, and printers. Second, the controlled entities
may not share a common link level protocol. Third, the set of machines a manager con-
trols may lie at arbitrary points in an internet. In particular, a manager may need to
control one or more machines that do not attach to the same physical network as the
manager's computer. Thus, it may not be possible for a manager to communicate with
machines being controlled unless the management software uses protocols that provide
end-to-end co~ect ivi ty across an internet. As a consequence, the internet management
protocol used with TCP/IP operates above the transport level:

In a TCP/IP internet, a manager needs to examine and control routers
and other network devices. Because such devices attach to arbitrary
networks, protocols for internet management operate at the applica-
tion level and communicate using TCP/IP transport-level protocols.

Designing internet management software to operate at the application level has
several advantages. Because the protocols can be designed without regard to the under-
lying network hardware, one set of protocols can be used for all networks. Because the
protocols can be designed without regard to the hardware on the managed machine, the
same protocols can be used for all managed devices. From a manager's point of view,
having a single set of management protocols means uniformity - all routers respond to
exactly the same set of commands. Furthermore, because the management software
uses IP for communication, a manager can control the routers across an entire TCPJIP
internet without having direct attachment to every physical network or router.

Of course, building management software at the application level also has disad-
vantages. Unless the operating system, IP software, and transport protocol software
work correctly, the manager may not be able to contact a router that needs managing.
For example, if a router's routing table becomes damaged, it may be impossible to
correct the table or reboot the machine from a remote site. If the operating system on a
router crashes, it will be impossible to reach the application program that implements
the internet management protocols even if the router can still field hardware interrupts
and route packets.

30.3 Architectural Model

Despite the potential disadvantages, having TCP/IP management software operate
at the application level has worked well in practice. The most significant advantage of
placing network management protocols at a high level becomes apparent when one con-
siders a large internet, where a manager's computer does not need to attach directly to
all physical networks that contain managed entities. Figure 30.1 shows an example of
the architecture.

Sec. 30.3 Architectural Model

Figure 30.1 Example of network management. A manager invokes manage-
ment client (MC) software that can contact management agent
(MA) software that runs on devices throughout the internet.

As the figure shows, client software usually runs on the manager's workstation.
Each participating router or host? runs a server program. Technically, the server
software is called a management agent or merely an agent. A manager invokes client
software on the local host computer and specifies an agent with which it communicates.
After the client contacts the agent, it sends queries to obtain information or it sends
commands to change conditions in the router. Of course, not all devices in a large in-
ternet fall under a single manager. Most managers only control devices at their local
sites; a large site may have multiple managers.

tRecall that the TCPlIP term host can refer to a device (e.g., a printer) or a conventional computer.

556 Applications: Internet Management (SNMP) Chap. 30

Internet management software uses an authentication mechanism to ensure only au-
thorized managers can access or control a particular device. Some management proto-
cols support multiple levels of authorization, allowing a manager specific privileges on
each device. For example, a specific router could be configured to allow several
managers to obtain information while only allowing a select subset of them to change
information or control the router.

30.4 Protocol Framework

TCPIIP network management protocolsf divide the management problem into two
parts and specify separate standards for each part. The first part concerns communica-
tion of information. A protocol specifies how client software running on a manager's
host communicates with an agent. The protocol defines the format and meaning of
messages clients and servers exchange as well as the form of names and addresses. The
second part concerns the data being managed. A protocol specifies which data items a
managed device must keep as well as the name of each data item and the syntax used to
express the name.

30.4.1 A Standard Network Management Protocol

The TCP/LP standard for network management is the Simple Network Management
Protocol (SNMP). The protocol has evolved through three generations. Consequently,
the current version is known as SNMPv3, and the predecessors are known as SNMPvl
and SNMPv2. The changes have been minor - all three versions use the same general
framework, and many features are backward compatible.

In addition to specifying details such as the message format and the use of tran-
sport protocols, the SNMP standard defines the set of operations and the meaning of
each. We will see that the approach is minimalistic; a few operations provide all func-
tionality.

30.4.2 A Standard For Managed Information

A device being managed must keep control and status information that the manager
can access. For example, a router keeps statistics on the status of its network interfaces,
incoming and outgoing packet traffic, dropped datagrams, and error messages generated;
a modem keeps statistics about the number of characters sent and received, baud rate,
and calls accepted. Although it allows a manager to access statistics, SNMP does not
specify exactly which data can be accessed on which devices. Instead, a separate stan-
dard specifies the details for each type of device. Known as a Management Information
Base (MIB), the standard specifies the data items a managed device must keep, the
operations allowed on each, and the meanings. For example, the MIB for IP specifies
that the software must keep a count of all octets that arrive over each network interface
and that network management software can only read the count.

tTechnically, there is a distinction between internet management protocols and network management pro-
tocols. Historically, however, TCP/IP internet management protocols are known as nefwork mnugement pro-
tocols; we will follow the accepted terminology.

Sec. 30.4 Protocol Framework 557

The MIB for TCP/IP divides management information into many categories. The
choice of categories is important because identifiers used to specify items include a
code for the category. Figure 30.2 lists a few examples.

MIB category
system

interfaces
at
iP

icmp
tCP
udp
ospf
bgp

rmon
rip-2
dns

Includes lnformation About
The host or router operating system
Individual network interfaces
Address translation (e.g., ARP mappings)
lnternet Protocol software
lnternet Control Message Protocol software
Transmission Control Protocol software
User Datagram Protocol software
Open Shortest Path First software
Border Gateway Protocol software
Remote network monitoring
Routing lnformation Protocol software
Domain Name System software

Figure 30.2 Example categories of MIB information. The category is encod-
ed in the identifier used to specify an object.

Keeping the MIB definition independent of the network management protocol has
advantages for both vendors and users. A vendor can include SNMP agent software in
a product such as a router, with the guarantee that the software will continue to adhere
to the standard after new MIB items are defined. A customer can use the same network
management client software to manage multiple devices that have slightly different ver-
sions of a MIB. Of course, a device that does not have new MIB items cannot provide
the information in those items. However, because all managed devices use the same
language for communication, they can all parse a query and either provide the requested
information or send an error message explaining that they do not have the requested
item.

30.5 Examples of MIB Variables

Versions 1 and 2 of SNMP each collected variables together in a single large MIB,
with the entire set documented in a single RFC. After publication of the second genera-
tion, MIB-11, the IETF took a different approach by allowing the publication of many
individual MIB documents that each specify the variables for a specific type of device.
As a result, more than 100 separate MIBs have been defined as part of the standards
process; they specify more than 10,000 individual variables. For example, separate
RFCs now exist that specify the MIB variables associated with devices such as: a
hardware bridge, an unintermptible power supply, an ATM switch, and a dialup
modem. In addition, many vendors have defined MIB variables for their specific
hardware or software products.

558 Applications: Internet Management (SNMP) Chap. 30

Examining a few of the MIB data items associated with TCPm protocols will help
clanfy the contents. Figure 30.3 lists example MIB variables along with their
categories.

MIB Variable Category Meaning
sysU pTime system Time since last reboot
ifNumber
ifMtu
ipDefaultTTL
ipln Receives
ipFowDatagrams
ipOutNoRoutes
ipReasmOKs
ipFragOKs
ipRoutingTable
icmplnEchos
tcpRtoMin
tcpMaxConn
tcplnsegs
udplnDatagrams

interfaces
interfaces

ip
ip
ip
ip
ip
ip
ip

icmp
t CP
tCP
tcp
UdP

Number of network interfaces
MTU for a particular interface
Value IP uses in time-to-live field
Number of datagrams received
Number of datagrams forwarded
Number of routing failures
Number of datagrams reassembled
Number of datagrams fragmented
IP Routing table
Number of ICMP Echo Requests received
Minimum retransmission time TCP allows
Maximum TCP connections allowed
Number of segments TCP has received
Number of UDP datagrams received

Figure 303 Examples of MIB variables along with their categories.

Most of the items listed in Figure 30.3 are numeric - each value can be stored in
a single integer. However, the MIB also defines more complex structures. For exarn-
ple, the MIB variable ipRoutingTable refers to an entire routing table. Additional MIB
variables define the contents of a routing table entry, and allow the network manage-
ment protocols to reference an individual entry in the table, including the prefix, address
mask, and next hop fields. Of course, MIB variables present only a logical definition of
each data item - the internal data structures a router uses may differ from the MU3 de-
finition. When a query arrives, software in the agent on the router is responsible for
mapping between the MIB variable and the data structure the router uses to store the in-
formation.

30.6 The Structure Of Management Information

In addition to the standards that speclfy MIB variables and their meanings, a
separate standard specifies a set of rules used to define and identify MIB variables. The
rules are known as the Structure of Management Information (SMZ) specification. To
keep network management protocols simple, the SMI places restrictions on the types of
variables allowed in the MIB, specifies the rules for naming those variables, and creates
rules for defining variable types. For example, the SMI standard includes definitions of
terms like IpAddress (defining it to be a Coctet string) and Counter (defining it to be an

Sec. 30.6 The Structure Of Management Information 559

integer in the range of 0 to 232 - l), and specifies that they are the terms used to define
MIB variables. More important, the rules in the SMI describe how the MIB refers to
tables of values (e.g., the IP routing table).

30.7 Formal Definitions Using ASN.l

The SMI standard specifies that all MIB variables must be defined and referenced
using ISO's Abstract Syntax Notation 1 (ASN.11-). ASN.1 is a formal language that has
two main features: a notation used in documents that humans read and a compact en-
coded representation of the same inforn~ation used in communication protocols. In both
cases, the precise, fornlal notation removes any possible ambiguities from both the
representation and meaning. For example, instead of saying that a variable contains an
integer value, a protocol designer who uses ASN.l must state the exact form and range
of numeric values. Such precision is especially important when implementations in-
clude heterogeneous computers that do not all use the same representations for data
items.

Besides keeping standards documents unambiguous, ASN.l also helps simplify the
implementation of network management protocols and guarantees interoperability. It
defines precisely how to encode both names and data items in a message. Thus, once
the documentation of a MIB has been expressed using ASN. 1, the human readable form
can be translated directly and mechanically into the encoded foml used in messages. In
summary:

The TCP/IP network management protocols use a fonnal notation
called ASN.1 to &fine names and types for variables in the manage-
ment information base. The precise notation makes the fonn and con-
rents of variables unambiguous.

30.8 Structure And Representation Of MIB Object Names

We said that ASN.1 specifies how to represent both data items and names. How-
ever, understanding the names used for MIB variables requires us to know about the
underlying namespace. Names used for MIB variables are taken from the object identif-
ier namespace administered by IS0 and ITU. The key idea behind the object identifier
namespace is that it provides a namespace in which all possible objects can be designat-
ed. The namespace is not restricted to variables used in network management - it in-
cludes names for arbitrary objects (e.g., each international protocol standard document
has a name).

The object identifier namespace is absolute (global), meaning that names are struc-
tured to make them globally unique. Like most namespaces that are large and absolute,
the object identifier namespace is hierarchical. Authority for parts of the namespace is
subdivided at each level, allowing individual groups to obtain authority to assign some
of the names without consulting a central authority for each assignment$.

tASN.1 is usually pronounced by reading the dot: "A-S-N dot 1".
$Readers should recall from the Domain Name System discussion in Chapter 24 how authority for a

560 Applications: Internet Management (SNMP) Chap. 30

The root of the object identifier hierarchy is unnamed, but has three direct descen-
dants managed by: ISO, ITU, and jointly by IS0 and ITU. The descendants are as-
signed both short text strings and integers that identify them (the text strings are used
by humans to understand object names; computer software uses the integers to form
compact, encoded representations of the names). IS0 has allocated one subtree for use
by other national or international standards organizations (including U.S. standards or-
ganizations), and the U.S. National Institute for Standards and Technology? has allocat-
ed a subtree for the U.S. Department of Defense. Finally, the IAB has petitioned the
Department of Defense to allocate it a subtree in the namespace. Figure 30.4 illustrates
pertinent parts of the object identifier hierarchy and shows the position of the node used
by TCPhP network management protocols.

Figure 30.4 Part of the hierarchical object identifier namespace used to name
MIB variables. An object's name consists of the numeric labels
along a path from the root to the object.

TNIST was formerly the National Bureau of Standards.

Sec. 30.8 Structure And Representation Of MIB Object Names 56 1

The name of an object in the hierarchy is the sequence of numeric labels on the
nodes along a path from the root to the object. The sequence is written with periods
separating the individual components. For example, the name 1 .3 .6 .1 .2 denotes the
node labeled mgmt, the Internet management subtree. The MIB has been assigned a
node under the mgmt subtree with label mib and numeric value 1. Because all MIB
variables fall under that node, they all have names beginning with the prefix
1 .3 .6 .1 .2 .1 .

Earlier we said that the MIB groups variables into categories. The exact meaning
of the categories can now be explained: they are the subtrees of the mib node of the ob-
ject identifier namespace. Figure 30.5 illustrates the idea by showing part of the nam-
ing subtree under the mib node.

label from the root to
this point is 1 .3 .6

Figure 30.5 Part of the object identifier namespace under the IAB mib node.
Each subtree corresponds to one of the categories of ME3 vari-
ables.

Two examples will make the naming syntax clear. Figure 30.5 shows that the
category labeled ip has been assigned the numeric value 4. Thus, the names of all MIB

562 Applications: Internet Management (SNMP) Chap. 30

variables corresponding to IP have an identifier that begins with the prefm
1 . 3 . 6 . 1 . 2 . 1 . 4 . If one wanted to write out the textual labels instead of the numeric
representation, the name would be:

iso . org . dod. internet. mgmt . mib . ip

A MIB variable named ipInReceives has been assigned numeric identifier 3 under the ip
node in the namespace, so its name is:

iso . org . dod. internet. mgmt . mib . ip . ipInReceives

and the corresponding numeric representation is:

When network management protocols use names of MIB variables in messages, each
name has a suffix appended. For simple variables, the suffix 0 refers to the instance of
the variable with that name. So, when it appears in a message sent to a router, the
numeric representation of iplnReceives is:

which refers to the instance of ipInReceives on that router. Note that there is no way to
guess the numeric value or suffix assigned to a variable. One must consult the pub-
lished standards to find which numeric values have been assigned to each object type.
Thus, programs that provide mappings between the textual form and underlying numeric
values do so entirely by consulting tables of equivalences - there is no closed-form
computation that performs the transformation.

As a second, more complex example, consider the MIB variable ipAddrTable,
which contains a list of the IP addresses for each network interface. The variable exists
in the namespace as a subtree under ip, and has been assigned the numeric value 20.
Therefore, a reference to it has the prefix:

iso . org . dod . internet. mgmt . mib . ip . ipAddrTable

with a numeric equivalent:

1 . 3 . 6 . 1 . 2 . 1 . 4 . 2 0

In programming language terms, we think of the IP address table as a one-dimensional
array, where each element of the array consists of a structure (record) that contains five
items: an IP address, the integer index of an interface corresponding to the entry, an IP
subnet mask, an IP broadcast address, and an integer that specifies the maximum
datagram size that the router will reassemble. Of course, it is unlikely that a router has
such an array in memory. The router may keep this information in many variables or

Sec. 30.8 Structure And Representation Of MIB Object Names 563

may need to follow pointers to find it. However, the MIB provides a name for the array
as if it existed, and allows network management software on individual routers to map
table references into appropriate internal variables. The point is:

Although they appear to specifi, details about data structures, MIB
standards do not dictate the implementation. Instead, MIB definitions
provide a uniform, virtual interface that managers use to access data;
an agent must translate between the virtual items in a MIB and the
intern1 implementation.

Using ASN. 1 style notation, we can define ipAddrTable:

ipAddrTable ::= SEQUENCE OF IpAddrEntry

where SEQUENCE and OF are keywords that define an ipAddrTable to be a one-
dimensional array of IpAddrEntrys. Each entry in the array is defined to consist of five
fields (the definition assumes that IpAddress has already been defined).

IpAddrEntry ::= SEQUENCE {
ipAdEntAddr

IpAddress,
ipAdEntIflndex

INTEGER,
ipAdEntNetMask

IpAddress,
ipAdEntBcastAddr

IpAddress,
ip AdEntReasmMaxSize

INTEGER (0..65535)
1

Further definitions must be given to assign numeric values to ipAddrEntry and to
each item in the IpAddrEntry sequence. For example, the definition:

ipAddrEntry { ipAddrTable 1)

specifies that ipAddrEntry falls under ipAddrTable and has numeric value I. Similarly,
the definition:

ipAdEntNetMask { ipAddrEntry 3)

assigns ipAdEntNetMask numeric value 3 under ipAddrEntry.
We said that ipAddrTable was like a one-dimensional array. However, there is a

significant difference in the way programmers use arrays and the way network manage-

564 Applications: Internet Management (SNMP) Chap. 30

ment software uses tables in the MIB. Programmers think of an array as a set of ele-
ments that have an index used to select a specific element. For example, the program-
mer might write xyz[3] to select the third element from array xyz. ASN.1 syntax does
not use integer indices. Instead, MIB tables append a suffix onto the name to select a
specific element in the table. For our example of an IP address table, the standard
specifies that the suffix used to select an item consists of an IP address. Syntactically,
the IP address (in dotted decimal notation) is concatenated onto the end of the object
name to form the reference. Thus, to speclfy the network mask field in the IP address
table entry corresponding to address 128.10.2.3, one uses the name:

iso.org.dod. internet.mgmt.mib. ip. ipAddrTable. ipAddrEntry. ipAdEntNetMask. 128.10.2.3

which, in numeric form, becomes:

Although concatenating an index to the end of a name may seem awkward, it provides a
powerful tool that allows clients to search tables without knowing the number of items
or the type of data used as an index. The next section shows how network management
protocols use this feature to step through a table one element at a time.

30.9 Simple Network Management Protocol

Network management protocols specify communication between the network
management client program a manager invokes and a network management server pro-
gram executing on a host or router. In addition to defining the form and meaning of
messages exchanged and the representation of names and values in those messages, net-
work management protocols also define administrative relationships among routers be-
ing managed. That is, they provide for authentication of managers.

One might expect network management protocols to contain a large number of
commands. Some early protocols, for example, supported commands that allowed the
manager to: reboot the system, add or delete routes, disable or enable a particular net-
work interface, or remove cached address bindings. The main disadvantage of building
management protocols around commands arises from the resulting complexity. The
protocol requires a separate command for each operation on a data item. For example,
the command to delete a routing table entry differs from the command to disable an in-
terface. As a result, the protocol must change to accommodate new data items.

SNMP takes an interesting alternative approach to network management. Instead
of defining a large set of commands, SNMP casts all operations in a fetch-store para-
digm?. Conceptually, SNMP contains only two commands that allow a manager to
fetch a value from a data item or store a value into a data item. All other operations are
defined as side-effects of these two operations. For example, although SNMP does not

tThe fetch-store paradigm comes from a management protocol system known as HEMS. See Partridge
and Trewitt [RFCs 1021, 1022, 1023, and 10241 for details.

Sec. 30.9 Simple Network Management Protocol 565

have an explicit reboot operation, an equivalent operation can be defined by declaring a
data item that gives the time until the next reboot and allowing the manager to assign
the item a value (including zero).

The chief advantages of using a fetch-store paradigm are stability, simplicity, and
flexibility. SNMP is especially stable because its definition remains fixed, even though
new data items are added to the MIB and new operations are defined as side-effects of
storing into those items. SNMP is simple to implement, understand, and debug because
it avoids the complexity of having special cases for each command. Finally, SNMP is
especially flexible because it can accommodate arbitrary commands in an elegant frarne-
work.

From a manager's point of view, of course, SNMP remains hidden. The user inter-
face to network management software can phrase operations as imperative commands
(e.g., reboot). Thus, there is little visible difference between the way a manager uses
SNMP and other network management protocols. In fact, vendors sell network manage-
ment software that offers a graphical user interface. Such software displays diagrams of
network connectivity, and uses a point-and-click style of interaction.

As Figure 30.6 shows, SNMP offers more than the two operations we have
described.

Command
get-request
get-next-request
get-bulk-request
response
set-request
inform-request
snmpv2-trap
report

Meaning
Fetch a value from a specific variable
Fetch a value without knowing its exact name
Fetch a large volume of data (e.g., a table)
A response to any of the above requests
Store a value in a specific variable
Reference to third-part data (e.g., for a proxy)
Reply triggered by an event
Undefined at present

Figure 30.6 The set of possible SNMP operations. Get-next-request allows
the manager to iterate through a table of items.

Operations get-request and set-request provide the basic fetch and store operations;
response provides the reply. SNMP specifies that operations must be atomic, meaning
that if a single SNMP message specifies operations on multiple variables, the server ei-
ther performs all operations or none of them. In particular, no assignments will be
made if any of them are in error. The trap operation allows managers to program
servers to send information when an event occurs. For example, an SNMP server can
be programmed to send a manager a trap message whenever one of the attached net-
works becomes unusable (i.e., an interface goes down).

566 Applications: Internet Management (SNMP) Chap. 30

30.9.1 Searching Tables Using Names

We said that ASN.1 does not provide mechanisms for declaring arrays or indexing
them in the usual sense. However, it is possible to denote individual elements of a table
by appending a suffix to the object identifier for the table. Unfortunately, a client pro-
gram may wish to examine entries in a table for which it does not know all valid suf-
fixes. The get-next-request operation allows a client to iterate through a table without
knowing how many items the table contains. The rules are quite simple. When sending
a get-next-request, the client supplies a prefm of a valid object identifier, P. The agent
examines the set of object identifiers for all variables it controls, and sends a response
for the variable that occurs next in lexicographic order. That is, the agent must know
the ASN.1 names of all variables and be able to select the first variable with object
identifier greater than P. Because the ME3 uses suffmes to index a table, a client can
send the prefvr of an object identifier corresponding to a table and receive the first ele-
ment in the table. The client can send the name of the first element in a table and re-
ceive the second, and so on.

Consider an example search. Recall that the ipAddrTable uses IP addresses to
identify entries in the table. A client that does not know which IP addresses are in the
table on a given router cannot form a complete object identifier. However, the client
can still use the get-next-request operation to search the table by sending the prefix:

iso . org . dod. internet. mgmt . mib . ip . ipAddrTable . ipAddrEntry . ipAdEntNetMask

which, in numeric form, is:

1.3 .6 .1 .2 .1 .4 .20 .1 .3

The server returns the network mask field of the first entry in ipAddrTable. The client
uses the full object identifier returned by the server to request the next item in the table.

30.10 SNMP Message Format

Unlike most TCPhP protocols, SNMP messages do not have fixed fields. Instead,
they use the standard ASN.1 encoding. Thus, a message can be difficult for humans to
decode and understand. After examining the SNMP message definition in ASN.1 nota-
tion, we will review the ASN.l encoding scheme briefly, and see an example of an en-
coded SNMP message.

Figure 30.7 shows how an SNMP message can be described with an ASN.l-style
grammar. In general, each item in the grammar consists of a descriptive name followed
by a declaration of the item's type. For example, an item such as

msgversion INTEGER (0..2147483647)

declares the name msgversion to be a nonnegative integer less than or equal to
2147483647.

Sec. 30.10 SNMP Message Format

SNMPv3Message ::=
SEQUENCE (

msgversion INTEGER (0..2147483647),
-- note: version number 3 is used for SNMPv3

msgGlobalData HeaderData,
msgSecurityPararneters OCTET STRING,
msgData ScopedPduData

I
Figure 30.7 The SNMP message format in ASN.l-style notation. Text fol-

lowing two consecutive dashes is a comment.

As the figure shows, each SNMP message consists of four main parts: an integer
that identifies the protocol version, additional header data, a set of security parameters,
and a data area that carries the payload. A precise definition must be supplied for each
of the terms used. For example, Figure 30.8 illustrates how the contents of the Header-
Data section can be specified.

HeaderData ::= SEQUENCE {
msgID INTEGER (0..2147483647),

-- used to match responses with requests
msgMaxSize INTEGER (484. .2 147483647),

-- maximum size reply the sender can accept
msgFlags OCTET STRING (SIZE(l)),

-- Individual flag bits specify message characteristics
-- bit 7 authorization used
-- bit 6 privacy used
-- bit 5 reportability (i.e., a response needed)

msgSecurityMode1 INTEGER (1 ..2147483647)
-- determines exact format of security parameters that follow

I

Figure 30.8 The definition of the HeaderData area in an SNMP message.

The data area in an SNMP message is divided into protocol data units (PDUs).
Each PDU consists of a request (sent by client) or a response (sent by an agent).
SNMPv3 allows each PDU to be sent as plain text or to be encrypted for privacy.
Thus, the grammar specifies a CHOICE. In programming language terminology, the
concept is known as a discriminated union.

ScopedPduData ::= CHOICE {
plaintext ScopedPDU,
encryptedPDU OCTET STRING -- encrypted ScopedPDU value

I

568 Applications: Internet Management (SNMP) Chap. 30

An encrypted PDU begins with an identifier of the enginet that produced it. The
engine ID is followed by the name of the context and the octets of the encrypted mes-
sage.

ScopedPDU ::= SEQUENCE {
contextEngineID OCTET STRING,
contextName OCTET STRING,
data ANY -- e.g., a PDU as defined below

I

The item labeled data in the ScopedPDU definition has a type ANY because field
contextName defines the exact details of the item. The SNMPv3 Message Processing
Model (v3MP) specifies that the data must consist of one of the SNMP PDUs as Figure
30.9 illustrates:

PDU ::=
CHOICE {

get-request
GetRequest-PDU,

get-next-request
GetNextRequest-PDU,

get-bulk-request
GetBulkRequest-PDU,

response
Response-PDU,

set-request
SetRequest-PDU,

inform-request
InforrnRequest-PDU,

snmpV2-trap
SNMPv2-Trap-PDU,

report
Report-PDU,

1
Figure 30.9 The ASN.l definitions of an SNMP PDU. The syntax for each

request type must be specified further.

The definition specifies that each protocol data unit consists of one of eight types.
To complete the definition of an SNMP message, we must further specify the syntax of
the eight individual types. For example, Figure 30.10 shows the definition of a get-
request.

tSNMF'v3 distinguishes between an application that uses the service SNMP supplies and an engine,
which is the underlying software that transmits requests and receives responses.

Sec. 30.10 SNMP Message Format

GetRequest-PDU ::= [O]
IMPLICIT SEQUENCE (

request-id
Integer32,

error-status
INTEGER (0.. 18),

error-index
INTEGER (O..max-bindings),

variable-bindings
VarBindList

1

Figure 30.10 The ASN.l definition of a get-request message. Formally, the
message is defined to be a GerRequest-PDU.

Further definitions in the standard speclfy the remaining undefined terms. Both
error-status and error-index are single octet integers which contain the value zero in a
request. If an error occurs, the values sent in a response identify the cause of the error.
Finally, VarBindList contains a list of object identifiers for which the client seeks
values. In ASN.l terms, the definitions specify that VarBindList is a sequence of pairs
of object name and value. ASN.l represents the pairs as a sequence of two items.
Thus, in the simplest possible request, VarBindList is a sequence of two items: a name
and a null.

30.1 1 Example Encoded SNMP Message

The encoded form of ASN.1 uses variable-length fields to represent items. In gen-
eral, each field begins with a header that specifies the type of object and its length in
bytes. For example, each SEQUENCE begins with an octet containing 30 (hexade-
cimal); the next octet specifies the number of following octets that comprise the se-
quence.

Figure 30.1 1 contains an example SNMP message that illustrates how values are
encoded into octets. The message is a get-request that specifies data item sysDescr
(numeric object identifier 1.3.6.1.2.1.1.1 . 0). Because the example shows an actu-
al message, it includes many details. In particular, the message contains a msgSecuri-
tyParameters section which has not been discussed above. This particular message uses
the UsmSecurityParameters form of security parameters. It should be possible, howev-
er, to correlate other sections of the message with the definitions above.

570 Applications: Internet Management (SNMP) Chap. 30

04 01 04
string len=l rrsgFl-M4 (bits man m t h , noPriv, mrtable)

04 25 30 23
string len=37 SBPUENZE len=35 -tvparanreters

04 OC 00 00 00 63 00 00 00
string len=12 I n E g A u t h a r i t a t i ~ . . .
Al CO 93 8E 23

is at IP ad3ress 192.147.142.35, port 161

04 00
string len=O I l l s g A U t h e n t i c a t i ~ t e r s (Ixme)

Sec. 30.11 Example Encoded SNMF' Message

02 01 00
len=l error-status = noJhxr (0)

05 00
null 1-0 (no value specified)

Figure 30.11 The encoded form of an SNMPV3 get-request for data item sys-
Descr with octets shown in hexadecimal and a comment ex-
plaining their meaning below. Related octets have been
grouped onto lines; they are contiguous in the message.

As Figure 30.1 1 shows, the message starts with a code for SEQUENCE which has
a length of 103 octetst. The first item in the sequence is a 1-octet integer that specifies
the protocol version; the value 3 indicates that this is an SNMPV3 message. Successive
fields define a message ID and the maximum message size the sender can accept in a
reply. Security information, including the name of the user (ComerBook) follows the
message header.

The GetRequest-PDU occupies the tail of the message. The sequence labeled
ScopedPDU specifies a context in which to interpret the remainder of the message. The
octet A 0 specifies the operation as a get-Request. Because the high-order bit is turned
on, the interpretation of the octet is context specijk That is, the hexadecimal value A 0
only specifies a GetRequest-PDU when used in context; it is not a universally reserved
value. Following the request octet, the length octet specifies the request is 26 octets
long. The request ID is 2 octets, but each of the error-status and error-index are one oc-

tsequence items occur frequently in an SNMF' message because SNMP uses SEQUENCE instead of con-
ventional programming language constructs like array or struct.

572 Applications: Internet Management (SNMP) Chap. 30

tet. Finally, the sequence of pairs contains one binding, a single object identifier bound
to a null value. The identifier is encoded as expected except that the f i s t two numeric
labels are combined into a single octet.

30.12 New Features In SNMPv3

We said that version 3 of SNMP represents an evolution that follows and extends
the basic framework of earlier versions. The primary changes arise in the areas of secu-
rity and administration. The goals are twofold. First, SNMPv3 is designed to have
both general and flexible security policies, making it possible for the interactions
between a manager and managed devices to adhere to the security policies an organiza-
tion specifies. Second, the system is designed to make administration of security easy.

To achieve generality and flexibility, SNMPv3 includes facilities for several as-
pects of security, and allows each to be configured independently. For example, v3
supports message authentication to ensure that instructions originate from a valid
manager, privacy to ensure that no one can read messages as they pass between a
manager's station and a managed device, and authorization and view-based access con-
trol to ensure that only authorized managers access particular items. To make the secu-
rity system easy to configure or change, v3 allows remote configuration, meaning that
an authorized manager can change the configuration of security items listed above
without being physically present at the device.

30.13 Summary

Network management protocols allow a manager to monitor and control routers
and hosts. A network management client program executing on the manager's worksta-
tion contacts one or more servers, called agents, running on the devices to be controlled.
Because an internet consists of heterogeneous machines and networks, TCP/lP manage-
ment software executes as application programs and uses internet transport protocols
(e.g., UDP) for communication between clients and servers.

The standard TCP/IP network management protocol is SNMP, the Simple Network
Management Protocol. SNMP defines a low-level management protocol that provides
two conceptual operations: fetch a value from a variable or store a value into a variable.
In SNMP, other operations occur as side-effects of changing values in variables. SNMP
defines the format of messages that travel between a manager's computer and a
managed entity.

A set of companion standards to SNMP define the set of variables that a managed
entity maintains. The set of variables comprise a Management Information Base (MIB).
MIB variables are described using ASN.l, a formal language that provides a concise en-
coded form as well as a precise human-readable notation for names and objects. ASN. 1
uses a hierarchical namespace to guarantee that all MIB names are globally unique
while still allowing subgroups to assign parts of the namespace.

For Further Study

FOR FURTHER STUDY

Case et. al. [RFC 25701 presents an overview of SNMPv3, gives background and
motivation, and discusses changes among the various versions. It also contains a sum-
mary of RFCs related to v3, and explains which v2 standards still apply. Many other
RFCs discuss individual aspects of the protocol. For example, Wijnen et. al. [RFC
25751 presents the view-based access control model, and Case et. al. [RFC 25721
discusses message handling.

I S 0 w a y 87a] and [May 87b] contain the standard for ASN.l and specify the en-
coding. McCloghrie et. al. [RFCs 2578, 2579, 25801 define the language used for MIB
modules and provide definitions of data types. Case et. al. [RFC 19071 defines version
2 of the MIB.

An older proposal for a network management protocol called HEMS can be found
in Trewitt and Partridge [RFCs 1021, 1022, 1023, and 10241. Davin, Case, Fedor, and
Schoffstall [RFC 10281 specifies a predecessor to SNMP known as the Simple Gateway
Monitoring Protocol (SGMP).

EXERCISES

Capture an SNMP packet with a network analyzer and decode the fields.
Read the standard to find out how ASN.1 encodes the first two numeric values from an
object identifier in a single octet. Why does it do so?
Read the two standards and compare SNMPv2 to SNMFv3. Under what circumstances
are the v2 security features valid? Invalid?
Suppose the MIB designers need to define a variable that corresponds to a two-
dimensional array. How can ASN.l notation accommodate references to such a vari-
able?
What are the advantages and disadvantages of defining globally unique ASN. 1 names for
MIB variables?
Consult the standards and match each item in Figure 30.1 1 with a corresponding defini-
tion.
If you have SNMP client code available, try using it to read MIB variables in a local
router. What is the advantage of allowing arbitrary managers to read variables in all
routers? The disadvantage?
Read the MIB specification to find the definition of variable ipRoutingTable that
corresponds to an IP routing table. Design a program that will use SNMP to contact
multiple routers and see if any entries in their routing tables cause a routing loop. Exact-
ly what ASN. 1 names should such a program generate?
Consider the implementation of an SNMP agent. Does it make sense to arrange MIB
variables in memory exactly the way SNMP describes them? Why or why not?

574 Applications: Internet Management (SNMP) Chap. 30

30.10 Argue that SNMP is a misnomer because SNMP is not "simple."
30.11 Read about the IPsec security standard described in Chapter 32. If an organization uses

IPsec, is the security in SNMPV3 also necessary? Why or why not?
30.12 Does it make sense to use SNMP to manage all devices? Why or why not? (Hint: con-

sider a simple hardware device such as a dialup modem.)

Summary Of Protocol
Dependencies

31 .I Introduction

TCP/IP has spawned more applications than we can discuss in a single textbook.
In general, each defines its own application protocol and relies on TCP or UDP for
end-to-end transport. In fact, any programmer who builds a distributed application us-
ing TCP/IP defines an application-level protocol.

Although it is not important to understand the details of all protocols, it is impor-
tant to know which protocols exist and how they can be used. This chapter provides a
brief summary of the relationships among fundamental protocols, and shows which are
available for use by applications.

31.2 Protocol Dependencies

The chart in Figure 31.1 shows dependencies among the major protocols we have
discussed. Each enclosed polygon corresponds to one protocol, and resides directly
above protocols that it uses. For example, the mail protocol, SMTP, depends on TCP,
which depends on IP.

576 Summary Of Rotocol Dependencies Chap. 3 1

Users

TCP

Application Programs

FTP

ASN.1- XDR
BOOTP

TELNET DNS TFTP &DHCP RIP RTP RPC -
.

I

I UDP

IP (plus ICMP and IGMP)

I ARP, ATMARP, SLIP, PPP 1
HARDWARE DEVICE DRIVERS AND MEDIA ACCESS PROTOCOLS

Hardware

Figure 31.1 Dependencies among major, higher level TCPm protocols. A
protocol uses the protocols that lie directly below it. Applica-
tion programs can use all protocols above IP.

Several parts of the diagram need further explanation. The bottom layer represents
all protocols that the hardware provides. This level includes all hardware control proto-
cols (e.g., media access and logical link allocation). As we have throughout the text,
we will assume that any packet transfer system can be included in this layer as long as
IP can use it to transfer datagrams. Thus, if a system is configured to send datagrams
through a tunnel, the entry to the tunnel is treated like a hardware interface, despite its
software implementation.

The second layer from the bottom lists link layer and address resolution protocols
like SLIP, PPP, ARP, and ATMARP. Of course, not all networking technologies re-
quire such protocols. ARP is used on connectionless broadcast networks such as Ether-
net; ATMARP is used on non-broadcast multiple access networks such as ATM; and
RARP is seldom used except for diskless machines. Other link layer or address binding
protocols can occur at the same level, but none is currently popular.

Sec. 3 1.2 Protocol Dependencies 577

The third layer from the bottom contains IP. It includes the required error and
control message protocol, ICMP, and the optional multicast group management protocol
IGMP. Note that IP is the only protocol that spans an entire layer. All lower-level pro-
tocols deliver incoming information to IP, and all higher-level protocols must use IP to
send outgoing datagrams. IP is shown with a direct dependency on the hardware layer
because it needs to use the hardware link or access protocols to transmit datagrams after
it uses ARP to bind addresses.

TCP and UDP comprise the transport layer. Of course, new transport protocols
have been suggested, but none has been widely adopted yet.

The application layer illustrates the complex dependencies among the various ap-
plication protocols. Recall, for example, that FTP uses the network virtual terminal de-
finitions from TELNET to define communication on its control connection and TCP to
form data connections. Also recall that HlTP uses syntax and content types from
MIME. Thus, the diagram shows that FTP depends on both TELNET and TCP and that
HTTP depends on both MIME and TCP. The domain name system (DNS) uses both
UDP and TCP for commu~cation, so the diagram shows both dependencies. Sun's
NFS depends on the external data representation (XDR) and remote procedure call
(RPC) protocols. RPC appears twice because, like the domain name system, it can use
either UDP or TCP.

SNMP depends on Abstract Syntax Notation (ASN.l). Although SNMP can use
either UDP or TCP, only dependence on UDP is shown because few implementations
run over TCP. Because XDR, ASN.l, and MIME simply describe syntactic conven-
tions and data representations, they do not use either TCP or UDP. Thus, although it
shows that both SNMP and NFS depend on UDP, the diagram contains a dotted area
below ASN.l and XDR to show that neither of them depends on UDP. A few details
have been omitted in our diagram. For example, it could be argued that IP depends on
BOOTPIDHCP or that many protocols depend on DNS because software that imple-
ments such protocols requires name binding.

31.3 The Hourglass Model

Engineers describe Internet protocols as following an hourglass model. Because it
lies at the heart of all cornmu~cation, IP forms the center of the hourglass. Of all the
protocols we discussed, IP is the only protocol common to all applications - ultimately
all internet communication involves IP datagrams. Thus, universal interoperability is
achieved by making IP run over all possible network technologies. Figure 31.2 illus-
trates the concept by showing the dependency among IP, applications, and underlying
networks.

Summary Of Protocol Dependencies Chap. 31

Figure 31.2 An illustration of the hourglass model. IP is at the center of the
hourglass because all applications depend on IP and IP runs over
all networks.

31.4 Application Program Access

Most systems restrict application programs from accessing lower-level protocols.
That is, most systems only allow an application program to access TCP or UDP or to
implement higher level protocols that use them (e.g., FTP). In fact, a system may
choose to restrict access to transport protocols by allowing only privileged applications
to open lower numbered TCP or UDP protocol ports.

Although direct access from an application to IP is unusual, a few systems do pro-
vide special purpose mechanisms that make it possible. For example, a mechanism
known as a packet filter allows privileged programs to control frame demultiplexing.
Using the packet filter primitives, an application program establishes the criteria used to
capture packets (e.g., the application program can specify that it wishes to capture all
packets with a given value in the type field of a frame). Once the operating system ac-
cepts the filter command, it places all packets that match the specified type on a queue.
The application program uses the packet filter mechanism to extract packets from the

Sec. 3 1.4 Application Program Access 579

queue. For such systems, the diagram in Figure 31.1 should be extended to show appli-
cation access to lower layers.

31.5 Summary

Much of the rich functionality associated with the TCP/IP protocol suite results
from a variety of high-level services supplied by application programs. The high-level
protocols these programs use build on the basic transport services: unreliable datagram
delivery and reliable stream transport. The applications usually follow the client-server
model in which servers operate at known protocols ports so clients know how to contact
them.

The highest level of protocols provides user services like Web browsing, remote
login, and file and mail transfer. The chief advantages of having an internet on which
to build such services are that it provides universal connectivity and simplifies the ap-
plication protocols. In particular, when used by two machines that attach to an internet,
end-to-end transport protocols can guarantee that a client program on the source
machine communicates directly with a server on the destination machine. Because ser-
vices like electronic mail use the end-to-end transport connection, they do not need to
rely on intermediate machines to forward (whole) messages.

We have seen a variety of application level protocols and the complex dependen-
cies among them. Although many application protocols have been defined, a few major
applications such as Web browsing account for most packets on the Internet.

FOR FURTHER STUDY

One of the issues underlying protocol layering revolves around the optimal location
of protocol functionality. Edge [I9791 compares end-to-end protocols with the hop-by-
hop approach. Saltzer, Reed, and Clark [I9841 argues for having the highest level pro-
tocols perform end-to-end acknowledgement and error detection. A series of papers by
Mills [RFCs 956, 957, and 9581 proposes application protocols for clock synchroniza-
tion, and report on experiments.

31.1 It is possible to translate some application protocols into others. For example, it might
be possible to build a program that accepts an FTP request, translates it to a TFTP re-
quest, passes the result to a TFTP server to obtain a file, and translates the reply back to
FTP for transmission to the original source. What are the advantages and disadvantages
of such protocol translation?

Summary Of Protocol Dependencies Chap. 31

Consider the translation described in the previous question. Which pairs of protocols in
Figure 3 1.1 are amenable to such translations?

Some application programs invoked by users may need access to IP without using TCP
or UDP. Find examples of such programs. (Hint: think of ICMP.)

Where do multicast protocols fit into the diagram in Figure 31.1?

DNS allows access by both TCP and UDP. Find out whether your local operating sys-
tem allows a single process to accept both TCP connections and UDP requests.

Choose a complex application like the X window system, and find out which protocols it
uses.
Where does OSPF fit into the diagram in Figure 3 1. I ?

The diagram in Figure 31.1 shows that FTP depends on TELNET. Does your local FTP
client invoke the TELNET program, or does the FTP client contain a separate implemen-
tation of the TELNET protocol?

Redraw Figure 31.1 for a Web browser. Which protocols does it use?

Internet Security And
Fire wall Design (IPsec)

32.1 Introduction

Like the locks used to help keep tangible property secure, computers and data net-
works need provisions that help keep information secure. Security in an internet en-
vironment is both important and difficult. It is important because information has signi-
ficant value - information can be bought and sold directly or used indirectly to create
new products and services that yield high profits. Security in an internet is difficult be-
cause security involves understanding when and how participating users, computers, ser-
vices, and networks can trust one another as well as understanding the technical details
of network hardware and protocols. Security is required on every computer and every
protocol; a single weakness can compromise the security of an entire network. More
important, because TCP/IP supports a wide diversity of users, services, and networks
and because an internet can span many political and organizational boundaries, partici-
pating individuals and organizations may not agree on a level of trust or policies for
handling data.

This chapter considers two fundamental techniques that form the basis for internet
security: perimeter security and encryption. Perimeter security allows an organization
to determine the services and networks it will make available to outsiders and the extent
to which outsiders can use resources. Encryption handles most other aspects of securi-
ty. We begin by reviewing a few basic concepts and teminology.

Internet Security And Firewall Design (IPsec) Chap. 32

32.2 Protecting Resources

The terms network security and information security refer in a broad sense to con-
fidence that information and services available on a network cannot be accessed by
unauthorized users. Security implies safety, including assurance of data integrity, free-
dom from unauthorized access of computational resources, freedom from snooping or
wiretapping, and freedom from disruption of service. Of course, just as no physical
property is absolutely secure against crime, no network is completely secure. Organiza-
tions make an effort to secure networks for the same reason they make an effort to
secure buildings and offices: basic security measures can discourage crime by making it
significantly more difficult.

Providing security for information requires protecting both physical and abstract
resources. Physical resources include passive storage devices such as disks and CD-
ROMs as well as active devices such as users' computers. In a network environment,
physical security extends to the cables, bridges, and routers that comprise the network
infrastructure. Indeed, although physical security is seldom mentioned, it often plays an
important role in an overall security plan. Obviously, physical security can prevent
wiretapping. Good physical security can also eliminate sabotage (e.g., disabling a
router to cause packets to be routed through an alternative, less secure path).

Protecting an abstract resource such as information is usually more difficult than
providing physical security because information is elusive. Information security encom-
passes many aspects of protection:

Data integrity. A secure system must protect information from unauthorized
change.

Data availability The system must guarantee that outsiders cannot prevent legiti-
mate access to data (e.g., any outsider should not be able to block customers from
accessing a Web site).

Privacy or confidentiality. The system must prevent outsiders from making
copies of data as it passes across a network or understanding the contents if
copies are made.

Authorization. Although physical security often classifies people and resources
into broad categories, (e.g., all nonemployees are forbidden from using a particu-
lar hallway), security for information usually needs to be more restrictive (e.g.,
some parts of an employee's record are available only to the personnel office,
others are available only to the employee's boss, and others are available to the
payroll office).

Authentication. The system must allow two communicating entities to validate
each other's identity.

Replay avoidance. To prevent outsiders from capturing copies of packets and us-
ing them later, the system must prevent a retransmitted copy of a packet from be-
ing accepted.

Sec. 32.3 Information Policy 583

32.3 Information Policy

Before an organization can enforce network security, the organization must assess
risks and develop a clear policy regarding information access and protection. The poli-
cy specifies who will be granted access to each piece of information, the rules an indivi-
dual must follow in disseminating the information to others, and a statement of how the
organization will react to violations.

An information policy begins with people because:

Humans are usually the most susceptible point in any security scheme.
A worker who is malicious, careless, or unaware of an organization's
information policy can compromise the best security.

32.4 Internet Security

Internet security is difficult because datagram traveling from source to destination
often pass across many intermediate networks and through routers that are not owned or
controlled by either the sender or the recipient. Thus, because datagrams can be inter-
cepted or compromised, the contents cannot be trusted. As an example, consider a
server that attempts to use source authentication to verify that requests originated from
valid customers. Source authentication requires the server to examine the source IP ad-
dress on each incoming datagram, and only accept requests from computers on an au-
thorized list. Source authentication is weak because it can be broken easily. In particu-
lar, an intermediate router can watch traveling to and from the server, and record
the IP address of a valid customer. Later the intermediate router can manufacture a re-
quest that has the same source address (and intercept the reply). The point is:

An authorization scheme that uses a remote machine's ZP address to
authenticate its identity does not suffice in an unsecure internet. An
imposter who gains control of an intermediate router can obtain ac-
cess by impersonating an authorized client.

Stronger authentication requires encryption. To encrypt a message, the sender ap-
plies a mathematical function that rearranges the bits according to a key which is known
only to the sender. The receiver uses another mathematical function to decrypt the mes-
sage. Careful choices of an encryption algorithm, a key, and the contents of messages
can make it virtually impossible for intermediate machines to decode messages or
manufacture messages that are valid.

584 Internet Security And Fiewall Design (IPsec) Chap. 32

32.5 IP Security (IPsec)

The IETF has devised a set of protocols that provide secure Internet communica-
tion. Collectively known as IPsec (short for IP security), the protocols offer authentica-
tion and privacy services at the IP layer, and can be used with both IPv4 and IPv6t.
More important, instead of completely specifying the functionality or the encryption al-
gorithm to be used, the IETF chose to make the system both flexible and extensible.
For example, an application that employs IPsec can choose whether to use an authenti-
cation facility that validates the sender or to use an encryption facility that also ensures
the payload will remain confidential; the choices can be asymmetric (e.g., authentication
in one direction but not the other). Furthermore, IPsec does not restrict the user to a
specific encryption or authentication algorithm. Instead, IPsec provides a general
framework that allows each pair of communicating endpoints to choose algorithms and
parameters (e.g., key size). To guarantee interoperability, IPsec does include a set of
encryption algorithms that all implementations must recognize. The point is:

IPsec is not a single security protocol. Instead, IPsec provides a set
of security algorithms plus a general framework that allows a pair of
communicating entities to use whichever algorithms provide security
appropriate for the communication.

32.6 IPsec Authentication Header

Instead of changing the basic datagram header or creating an IP option, IPsec uses
a separate Authentication Header (AH) to carry authentication information. Figure 32.1
illustrates the most straightforward use of an authentication header with Pv4.

HEADER HEADER

lhr4
HEADER

Figure 32.1 Illustration of (a) an IPV4 datagram, and (b) the same datagram
after an Psec authentication header has been added. The new
header is inserted immediately after the P header.

TCP
HEADER

TCP
HEADER

?The examples in this chapter focus on IPv4; Chapter 33 describes Ihr6 in detail and illustrates how IP-
sec headers appear in IPv6 datagrams.

TCP
DATA

TCP
DATA

(b)

Sec. 32.6 IPsec Authentication Header 585

As the figure shows, IPsec inserts the authentication header immediately after the
original IP header, but before the transport header. Furthermore, the PROTOCOL field
in the IP header is changed to value 51 to indicate the presence of an authentication
header.

If IPsec modifies the PROTOCOL field in the IP header, how does a receiver
determine the type of information carried in the datagram? The authentication header
has a NEXT HEADER field that specifies the type - IPsec records the original PRO-
TOCOL value in the NEXT HEADER field. When a datagram arrives, the receiver uses
security information from the authentication header to verify the sender, and uses the
NEXT HEADER value to further demultiplex the datagram. Figure 32.2 illustrates the
header format.

NEXT HEADER I PAYLOAD LEN I RESERVED I
SECURITY PARAMETERS INDEX I

I SEQUENCE NUMBER I

I AUTHENTICATION DATA (VARIABLE) I
Figure 32.2 The Psec authentication header format. The field labeled NEXT

HEADER records the original value of the P PROTOCOL field.

Interestingly, the PAYLOAD LEN field does not speclfy the size of the data area in
the datagram. Instead, it specifies the length of the authentication header. Remaining
fields are used to ensure security. Field SEQUENCE NUMBER contains a unique se-
quence number for each packet sent; the number starts at zero when a particular security
algorithm is selected and increases monotonically. The SECURITY PARAMETERS IN-
DEX field specifies the security scheme used, and the AUTHENTICATION DATA field
contains data for the selected security scheme.

32.7 Security Association

To understand the reason for using a security parameters index, observe that a
security scheme defines details that provide many possible variations. For example, the
security scheme includes an authentication algorithm, a key (or keys) that the algorithm
uses, a lifetime over which the key will remain valid, a lifetime over which the destina-
tion agrees to use the algorithm, and a list of source addresses that are authorized to use
the scheme. Further observe that the information cannot fit into the header.

To save space in the header, IPsec arranges for each receiver to collect all the de-
tails about a security scheme into an abstraction known as a secun'ty association (SA).

586 Internet Security And Fiiwall Design (Wsec) Chap. 32

Each SA is given a number, known as a security parameters index, through which
it is identified. Before a sender can use IPsec to communicate with a receiver, the
sender must know the index value for a particular SA. The sender then places the value
in the field SECURITY PARAMETERS INDEX of each outgoing datagram.

Index values are not globally specified. Instead, each destination creates as many
SAs as it needs, and assigns an index value to each. The destination can specify a life-
time for each SA, and can reuse index values once an SA becomes invalid. Conse-
quently, the index cannot be interpreted without consulting the destination (e.g., the in-
dex 1 can have entirely different meanings to two destinations). To summarize:

A destination uses the security parameters index to ident~fy the securi-
t y association for a packet. The values are not global; a combination
of destination address and security parameters index is needed to
identih an SA.

32.8 IPsec Encapsulating Security Payload

To handle privacy as well as authentication, IPsec uses an Encapsulating Security
Payload (ESP), which is more complex than an authentication header. A value 50 in
the PROTOCOL field of the datagram informs a receiver that the datagram carries ESP.
Figure 32.3 illustrates the conceptual organization.

I < authenticated - 1

lPv4
HEADER

I

I 4 encrypted *

(a)

TCP
HEADER

Figure 323 (a) A datagram, and (b) the same datagram using IPsec Encapsu-
lating Security Payload. In practice, encryption means that
fields are not easily identifiable.

TCP
DATA

As the figure shows, ESP adds three additional areas to the datagram. The ESP
HEADER immediately follows the IP header and precedes the encrypted payload. The
ESP TRAILER is encrypted along with the payload; a variable-size ESP AUTH field fol-
lows the encrypted section.

ESP
AUTH

(b)

lPv4
HEADER

ESP
HEADER

ESP
TRAILER

TCP
HEADER

TCP
DATA

Sec. 32.8 IPsec Encapsulating Security Payload 587

ESP uses many of the same items found in the authentication header, but rear-
ranges their order. For example, the ESP HEADER consists of 8 octets that idenhfy the
security parameters index and a sequence number.

0 16 31

SECURITY PARAMETERS INDEX 1
I SEQUENCE NUMBER I

The ESP TRAILER consists of optional padding, a padding length field, PAD
LENGTH, and a NEXT HEADER field that is followed by a variable amount of authen-
tication data.

0 16 24 31

I 0 - 255 OCTETS OF PADDING I PAD LENGTH 1 NEXT HEADER I
ESP AUTHENTICATION DATA (VARIABLE) . . .

Padding is optional; it may be present for three reasons. First, some decryption al-
gorithms require zeroes following an encrypted message. Second, note that the NEXT
HEADER field is shown right-justified within a Coctet field. The alignment is impor-
tant because IPsec requires the authentication data that follows the trailer to be aligned
at the start of a 4-octet boundary. Thus, padding may be needed to ensure alignment.
Third, some sites may choose to add random amounts of padding to each datagram so
eavesdroppers at intermediate points along the path cannot use the size of a datagram to
guess its purpose.

32.9 Authentication And Mutable Header Fields

The IPsec authentication mechanism is designed to ensure that an arriving da-
tagram is identical to the datagram sent by the source. However, such a guarantee is
impossible to make. To understand why, recall that IP is a machine-to-machine layer,
meaning that the layering principle only applies across one hop. In particular, each in-
termediate router decrements the time-to-live field and recomputes the checksum.

IPsec uses the tern mutable fields to refer to IP header fields that are changed in
transit. To prevent such changes causing authentication errors, IPsec specifically omits
such fields from the authentication computation. Thus, when a datagram arrives, IPsec
only authenticates immutable fields (e.g., the source address and protocol type).

588 Internet Security And Fiewall Design (IF'sec) Chap. 32

32.10 lPsec Tunneling

Recall from Chapter 20 that VPN technology uses encryption along with IP-in-IP
tunneling to keep inter-site transfers private. IPsec is specifically designed to accom-
modate an encrypted tunnel. In particular, the standard defines tunneled versions of
both the authentication header and the encapsulating security payload. Figure 32.4 il-
lustrates the layout of datagrams in tunneling mode.

I - aurhenticated +
I< encrypted +

OUTER IP
HEADER

Figure 32.4 Illustration of IPsec tunneling mode for (a) authentication and (b)
encapsulating security payload. The entire inner datagram is
protected.

AUTHENTICATION
HEADER

OUTER IP
HEADER -

32.1 1 Required Security Algorithms

INNER IP DATAGRAM
(INCLUDING IP HEADER)

IPsec defines a minimal set of algorithms that are mandatory (i.e., that all imple-
mentations must supply). In each case, the standard defines specific uses. Figure 32.5
lists the required algorithms.

ESP
HEADER

Authentication

HMAC with MD5 RFC 2403
HMAC with SHA-1 RFC 2404

INNER IP DATAGRAM
(INCLUDING IP HEADER)

Encapsulating Security Payload

DES in CBC mode RFC 2405
HMAC with MD5 RFC 2403
HMAC with SHA-1 RFC 2404
Null Authentication
Null Encryption

ESP
TRAILER

Figure 32.5 The security algorithms that are mandatory for IPsec.

ESP
AUTH

Sec. 32.1 1 Required Security Algorithms 589

32.1 2 Secure Sockets

By the mid 1990s when it became evident that security was important for Internet
commerce, several groups proposed security mechanisms for use with the Web.
Although not formally adopted by the IETF, one of the proposals has become a de facto
standard.

Known as the Secure Sockets Layer (SSL), the technology was originally developed
by Netscape, Inc. As the name implies, SSL resides at the same layer as the socket
API. When a client uses SSL to contact a server, the SSL protocol allows each side to
authenticate itself to the other. The two sides then negotiate to select an encryption al-
gorithm that they both support. Finally, SSL allows the two sides to establish an en-
crypted connection (i.e., a connection that uses the chosen encryption algorithm to
guarantee privacy).

32.13 Firewalls And Internet Access

Mechanisms that control internet access handle the problem of screening a particu-
lar network or an organization from unwanted communication. Such mechanisms can
help prevent outsiders from: obtaining information, changing information, or disrupting
communication on an organization's intranet. Successful access control requires a care-
ful combination of restrictions on network topology, intemlediate information staging,
and packet filters.

A single technique known as an intemetjirewallt, has emerged as the basis for in-
ternet access control. An organization places a firewall at its connection to external net-
works (e.g., the global Internet). A firewall partitions an internet into two regions, re-
ferred to infom~ally as the inside and outside.

32.14 Multiple Connections And Weakest Links

Although concept seems simple, details complicate firewall construction. First, an
organization's intranet can have multiple external connections. The organization must
form a securiq perimeter by installing a fuewall at each external connection. To
guarantee that the perimeter is effective, all fuewalls must be configured to use exactly
the same access restrictions. Otherwise, it may be possible to circumvent the restric-
tions imposed by one firewall by entering the organization's internet through another$.

We can summarize:

An organization that has multiple ex teml connections must install a
jirewall on each ex teml connection and must coordinate all
jirewalls. Failure to restrict access identically on all firewalls can
leave the organization vulnerable.

+The termfirewall is derived from building architecture in which a firewall is a thick, fireproof partition
that makes a section of a building impenetrable to fire.

$The well-known idea that security is only as strong as the weakest point has been termed the weakest
link uxiorn in reference to the adage that a chain is only as strong as its weakest link.

590 Internet Security And Fiewall Design (Psec) Chap. 32

32.1 5 Firewall Implementation

How should a firewall be implemented? In theory, a fxewall simply blocks all
unauthorized communication between computers in the organization and computers out-
side the organization. In practice, the details depend on the network technology, the
capacity of the connection, the traffic load, and the organization's policies. Thus, no
single solution works for all organizations; building an effective, customized firewall
can be difficult.

To operate at network speeds, a fxewall must have hardware and software optim-
ized for the task. Fortunately, most commercial routers include a high-speed filtering
mechanism that can be used to perform much of the necessary work. A manager can
configure the filter in a router to request that the router block specified datagrams. As
we discuss the details of filter mechanisms, we will see how filters form the basic build-
ing blocks of a fuewall. Later we will see how filters can be used in conjunction with
another mechanism to provide communication that is safe, but flexible.

32.1 6 Packet-Level Filters

Many commercial routers offer a mechanism that augments normal routing and
permits a manager to further control packet processing. Informally called a packet
filter, the mechanism requires the manager to specify how the router should dispose of
each datagram. For example, the manager might choose to filter (i.e. block) all da-
tagrams that come from a particular source or those used by a particular application,
while choosing to route other datagrarns to their destination.

The term packet filter arises because the filtering mechanism does not keep a
record of interaction or a history of previous datagrams. Instead, the filter considers
each datagram separately. When a datagram first arrives, the router passes the datagram
through its packet filter before performing any other processing. If the filter rejects the
datagram, the router drops it immediately.

Because TCPDP does not dictate a standard for packet filters, each router vendor is
free to choose the capabilities of their packet filter as well as the interface a manager
uses to configure the filter. Some routers pennit a manager to configure separate filter
actions for each interface, while others have a single configuration for all interfaces.
Usually, when specifying datagrams that the filter should block, a manager can list any
combination of source IP address, destination IP address, protocol, source protocol port
number, and destination protocol port number. For example, Figure 32.6 illustrates a
filter specification.

In the example, the manager has chosen to block incoming datagrams destined for
a few well-known services and to block one case of outgoing datagrams. The filter
blocks all outgoing datagrarns that originate from any host address matching the 16-bit
prefix of 128.5.0.0 that are destined for a remote e-mail server (TCP port 25). The filter
also blocks incoming datagrarns destined for FTP (TCP port 21), TELNET (TCP port
23), WHOIS (UDP port 43), TFTP (UDP port 69), or FINGER (TCP port 79).

Sec. 32.16 Packet-Level Filters

OUTSIDE 2 R 1 INSIDE

ARRIVES ON
INTERFACE

2
2
1
2
2
2

I P
SOURCE

*
*

128.5.0.0 I 1 6
*
*
*

I P
DEST.

*

SOURCE
PROTOCOL PORT

TCP *
TCP *
TCP *
UDP *
UDP *
TCP

DEST.
PORT

21
23
25
43
69
79

Figure 32.6 A router with two interfaces and an example datagram filter
specification. A router that includes a packet filter forms the
basic building block of a fmwall.

32.17 Security And Packet Filter Specification

Although the example filter configuration in Figure 32.6 specifies a small list of
services that should be blocked, such an approach does not work well for an effective
firewall. There are three reasons. Fist, the number of well-known ports is large and
growing rapidly. Thus, listing each service requires a manager to update the list con-
tinually; an error of omission can leave the fuewall vulnerable. Second, much of the
traffic on an internet does not travel to or from a well-known port. In addition to pro-
grammers who can choose port numbers for their private client-server applications, ser-
vices like Remote Procedure Call (RPC) assign ports dynamically. Third, listing ports
of well-known services leaves the firewall vulnerable to tunneling. Tunneling can cir-
cumvent security if a host or router on the inside agrees to accept encapsulated da-
tagrams from an outsider, remove one layer of encapsulation, and forward the datagram
on to the service that would otherwise be restricted by the fuewall.

How can a firewall use a packet filter effectively? The answer lies in reversing the
idea of a filter: instead of specifying the datagrams that should be filtered, a firewall
should be configured to block all datagrams except those destined for specific networks,
hosts, and protocol ports for which external communication has been approved. Thus, a
manager begins with the assumption that communication is not allowed, and then must
examine the organization's information policy carefully before enabling any port. In
fact, many packet filters allow a manager to spec@ a set of datagrams to admit instead
of a set of datagrams to block. We can summarize:

Internet Security And FiewaU Design (TF'sec) Chap. 32

To be effective, a firewall that uses datagram filtering should restrict
access to all ZP sources, ZP destinations, protocols, and protocol ports
except those computers, networks, and services the organization expli-
citly decides to make available externally. A packet filter that allows
a manager to specify which datagrams to admit instead of which da-
tagrarns to block can make such restrictions easy to speczfy.

32.1 8 The Consequence Of Restricted Access For Clients

A blanket prohibition on datagrams arriving for an unknown protocol port seems to
solve many potential security problems by preventing outsiders from accessing arbitrary
servers in the organization. Such a firewall has an interesting consequence: it also
prevents an arbitrary computer inside the firewall from becoming a client that accesses a
service outside the firewall. To understand why, recall that although each server
operates at a well-known port, a client does not. When a client program begins execu-
tion, it requests the operating system to select a protocol port number that is neither
among the well-known ports nor currently in use on the client's computer. When it at-
tempts to communicate with a server outside the organization, a client will generate one
or more datagrams and send them to the server. Each outgoing datagram has the
client's protocol port as the source port and the server's well-known protocol port as the
destination port. The firewall will not block such datagrams as they leave. When it
generates a response, the server reverses the protocol ports. The client's port becomes
the destination port and the server's port becomes the source port. When the datagram
carrying the response reaches the firewall, however, it will be blocked because the desti-
nation port is not approved. Thus, we can see an important idea:

If an organization's firewall restricts incoming datagrams except for
ports that correspond to services the organization makes available
externally, an arbitrary application inside the organization cannot be-
come a client of a server outside the organization.

32.19 Proxy Access Through A Firewall

Of course, not all organizations configure their firewalls to block all datagrams
destined for unknown protocol ports. In cases where a secure fuewall is needed to
prevent unwanted access, however, users on the inside need a safe mechanism that pro-
vides access to services outside. That mechanism forms the second major piece of
fuewall architecture.

In general, an organization can only provide safe access to outside services through
a secure computer. Instead of trying to make all computer systems in the organization
secure (a daunting task), an organization usually associates one secure computer with

Sec. 32.19 Proxy Access Through A Fiewall 593

each f~ewall , and installs a set of application gateways on that computer. Because the
computer must be strongly fortified to serve as a secure communication channel, it is
often called a bastion host. Figure 32.7 illustrates the concept.

Bastion Host

P-
] manually enabled

bypass

INTRANET
(INSIDE)

Figure 32.7 The conceptual organization of a bastion host embedded in a
firewall. The bastion host provides secure access to outside ser-
vices without requiring an organization to admit datagram with
arbitrary destinations.

As the figure shows, the firewall has two conceptual barriers. The outer barrier
blocks all incoming traffic except (1) datagrams destined for services on the bastion
host that the organization chooses to make available externally, and (2) datagrams des-
tined for clients on the bastion host. The inner barrier blocks incoming traffic except
datagram that originate on the bastion host. Most firewalls also include a manual
bypass that enables managers to temporarily pass some or all traffic between a host in-
side the organization and a host outside (e.g., for testing or debugging the network).

To understand how a bastion host operates, consider Web access. Because the
fuewall prevents the user's computer from receiving incoming datagram, the user can-
not use a browser for direct access. Instead, the organization arranges a proxy server on
the bastion host. Inside the organization, each browser is configured to use the proxy.
Whenever a user selects a link or enters a URL, their browser contacts the proxy. The
proxy contacts the server, obtains the specified page, and then delivers it internally.

32.20 The Details Of Firewall Architecture

Now that we understand the basic fuewall concept, the implementation should ap-
pear straightforward. Conceptually, each of the baniers shown in Figure 32.7 requires a
router that has a packet filter?. Networks interconnect the routers and a bastion host.
For example, an organization that connects to the global Internet might choose to imple-
ment a firewall as Figure 32.8 shows.

?Some organizations use a one-amzedfirewall configuration in which a single physical router implements
all the functionality.

594 Internet Security And Fiewall Design (IPsec) Chap. 32

Connection to
global Internet

bastion host H

Figure 32.8 A firewall implemented with two routers and a bastion host. One
of the routers has a connection to the rest of the Internet.

As the figure shows, router R, implements the outer barrier; it filters all traffic ex-
cept datagrams destined for the bastion host, H. Router R, implements the inner barrier
that isolates the rest of the corporate intranet from outsiders; it blocks all incoming da-
tagrams except those that originate on the bastion host.

Of course, the safety of an entire fuewall depends on the safety of the bastion host.
If an intruder can gain access to the computer system running on the bastion host, they
will gain access to the entire inside internet. Moreover, an intruder can exploit security
flaws in either the operating system on the bastion host or the network applications it
runs. Thus, managers must be particularly careful when choosing and configuring
software for a bastion host. In summary:

Although a bastion host is essential for communication through a
firewall, the security of the firewall depends on the safety of the bas-
tion host. An intruder who exploits a securityflaw in the bastion host
operating system can gain access to hosts inside the firewall.

32.21 Stub Network

It may seem that Figure 32.8 contains a superfluous network that connects the two
routers and the bastion host. Such a network is often called a stub network because it is
small (i.e., stubby). The question arises, "Is the stub network necessary or could a site
place the bastion host on one of its production networks?" The answer depends on the
traffic expected from the outside. The stub network isolates the organization from in-
coming datagram traffic. In particular, because router R, admits all datagrams destined
for the bastion host, an outsider can send an arbitrary number of such datagrams across

Sec. 32.21 Stub Network 595

the stub network. If an external connection is slow relative to the capacity of a stub
network, a separate physical wire may be unnecessary. However, a stub network is usu-
ally an inexpensive way for an organization to protect itself against disruption of service
on an internal production network.

32.22 An Alternative Firewall Implementation

The fuewall implementation in Figure 32.8 works well for an organization that has
a single serial connection to the rest of the global Internet. Some sites have a different
interconnection topology. For example, suppose a company has three or four large cus-
tomers who each need to deposit or extract large volumes of information. The company
wishes to have a single fmwall, but allow connections to multiple sitest. Figure 32.9
illustrates one possible fuewall architecture that accommodates multiple external con-
nections.

bastion host -
Figure 32.9 An alternative fuewall architecture that permits multiple external

connections through a single fmwall. Using one firewall for
multiple connections can reduce the cost.

As the figure shows, the alternative architecture extends a firewall by providing an
outer network at which external connections terminate. Router R, acts as in Figure 32.8
to protect the site by restricting incoming datagrams to those sent from the bastion host.
Routers R, through R, each connect one external site to the fmwall.

To understand why fuewalls with multiple connections often use a router per con-
nection, recall that all sites mistrust one another. That is, the organization running the
firewall does not trust any of the external organizations completely, and none of the
external organizations trust one another completely. The packet filter in a router on a
given external connection can be configured to restrict traffic on that particular connec-
tion. As a result, the owner of the firewall can guarantee that although all external con-
nections share a single, common network, no datagram from one external connection
will pass to another. Thus, the organization running the fuewall can assure customers
that it is safe to connect. To summarize:

?A single fuewall can be less expensive and easier to administrate than a separate f ~ e w a l l per connection.

Internet Security And Fiewall Design (IPsec) Chap. 32

When multiple external sites connect through a single firewall, an ar-
chitecture that has a router per external connection can prevent
unwanted packet Pow from one external site to another.

32.23 Monitoring And Logging

Monitoring is one of the most important aspects of a firewall design. The network
manager responsible for a firewall needs to be aware of attempts to bypass security.
Unless a firewall reports incidents, a manager may be unaware of problems.

Monitoring can be active or passive. In active monitoring, a firewall notifies a
manager whenever an incident occurs. The chief advantage of active monitoring is
speed - a manager finds out about a potential problem immediately. The chief disad-
vantage is that active monitors often produce so much information that a manager can-
not comprehend it or notice problems. Thus, most managers prefer passive monitoring,
or a combination of passive monitoring with a few high-risk incidents also reported by
an active monitor.

In passive monitoring, a firewall logs a record of each incident in a file on disk. A
passive monitor usually records information about normal traffic (e.g., simple statistics)
as well as datagrams that are filtered. A manager can access the log at any time; most
managers use a computer program. The chief advantage of passive monitoring arises
from its record of events - a manager can consult the log to observe trends and when a
security problem does occur, review the history of events that led to the problem. More
important, a manager can analyze the log periodically (e.g., daily) to determine whether
attempts to access the organization increase or decrease over time.

32.24 Summary

Security problems arise because an internet can c o ~ e c t organizations that do not
have mutual trust. Several technologies are available to help ensure that information
remains secure when being sent across an internet. IPsec allows a user to choose
between two basic schemes: one that provides authentication of the datagram and one
that provides authentication plus privacy. IPsec modifies a datagram either by inserting
an Authentication Header or by using an Encapsulating Security Payload, which inserts
a header and trailer and encrypts the data being sent. IPsec provides a general frame-
work that allows each pair of communicating entities to choose an encryption algorithm.
Because security is often used with tunneling (e.g., in a VPN), IPsec defines a secure
tunnel mode.

The firewall mechanism is used to control internet access. An organization places
a firewall at each external connection to guarantee that the organization's intranet
remains free from unauthorized traffic. A firewall consists of two barriers and a secure
computer called a bastion host. Each barrier uses a packet filter to restrict datagram
traffk. The bastion host offers externally-visible servers, and runs proxy servers that al-

Sec. 32.24 Summary 597

low users to access outside servers. The filters are configured according to the
organization's information policy. Usually, the fuewall blocks all datagrams arriving
from external sources except those datagrams destined for the bastion host.

A firewall can be implemented in one of several ways; the choice depends on de-
tails such as the number of external connections. In many cases, each barrier in a
firewall is implemented with a router that contains a packet filter. A firewall can also
use a stub network to keep external traffic off an organization's production networks.

FOR FURTHER STUDY

In the mid 1990s, the IETF announced a major emphasis on security, and required
each working group to consider the security implications of its designs. Consequently,
many RFCs address issues of internet security and propose policies, procedures, and
mechanisms. Kent and Atkinson [RFC 24011 defines the IPsec architecture. Kent and
Atkinson [RFC 24021 specifies the IPsec authentication header, and [RFC 24061 speci-
fies the encapsulating security payload.

Many RFCs describe security for particular application protocols. For example,
Wijnen et. al. [RFC 25751 presents the view-based security and Blurnenthal and Wijnen
[RFC 25741 presents a user-based security model, both are intended for use with
SNMPv3.

Cheswick and Bellovin [I9941 discusses firewalls and other topics related to the
secure operation of TCP/IF' internets. Kohl and Neuman [RFC 15101 describes the ker-
beros authentication service, and Borman [RFC 141 11 discusses how kerberos can be
used to authenticate TELNET.

EXERCISES

Many sites that use a bastion host arrange for software to scan all incoming files before
admitting them to the organization. Why do organizations scan files?
Read the description of a packet filter for a commercially available router. What
features does it offer?
Collect a log of all tr&c entering your site. Analyze the log to determine the percen-
tage of traffic that arrives from or is destined to a well-known protocol port. Do the
results surprise you?

If encryption software is available on your computer, measure the time required to en-
crypt a 10 Mbyte file, transfer it to another computer, and decrypt it. Compare the result
to the time required for the transfer if no encryption is used.

Survey users at your site to determine if they send sensitive information in e-mail. Are
users aware that SMTP transfers messages in ASCII, and that anyone watching network
traffic can see the contents of an e-mail message?

598 Internet Security And Fiewall Design (IPsec) Chap. 32

32.6 Survey employees at your site to find out how many use modems and personal comput-
ers to import or export information. Ask if they understand the organization's informa-
tion policy.

32.7 Can a fuewall be used with other protocol suites such as AppleTalk or Netware? Why
or why not?

32.8 Can a firewall be combined with NAT? What are the consequences?
32.9 The military only releases information to those who "need to know." Will such a

scheme work for all information in your organization? Why or why not?
32.10 Give two reasons why the group of people who administer an organization's security

policies should be separate from the group of people who administer the organization's
computer and network systems.

32.11 Some organizations use fuewalls to isolate groups of users internally. Give examples of
ways that internal firewalls can improve network performance and examples of ways
internal firewalls can degrade network performance.

32.12 If your organization uses IPsec, find out which algorithms are being used. What is the
key size?

The Future Of TCP/IP

33.1 Introduction

Evolution of TCP/IP technology is intertwined with evolution of the global Internet
for several reasons. First, the Internet is the largest installed TCPhP internet, so many
problems related to scale arise in the Internet before they surface in other TCPIIP inter-
nets. Second, funding for TCP/IP research and engineering comes from companies and
government agencies that use the operational Internet, so they tend to fund projects that
impact the Internet. Third, because most researchers use the global Internet daily, they
have immediate motivation to solve problems that will improve service and extend
functionality.

With millions of users at tens of thousands of sites around the world depending on
the global Internet as part of their daily work environment, it might appear that the In-
ternet is a completely stable production facility. We have passed the early stage of
development in which every user was also an expert, and entered a stage in which few
users understand the technology. Despite appearances, however, neither the Internet nor
the TCPhP protocol suite is static. Groups discover new ways to use the technology.
Researchers solve new networking problems, and engineers improve the underlying
mechanisms. In short, the technology continues to evolve.

The purpose of this chapter is to consider the ongoing evolutionary process and ex-
amine one of the most significant engineering efforts: a proposed revision of IP. When
the proposal is adopted by vendors, it will have a major impact on TCP/TP and the glo-
bal Internet.

600 The Future Of TCP/IP (IF'v6) Chap. 33

33.2 Why Change?

The basic TCPKP technology has worked well for over two decades. Why should
it change? In a broad sense, the motivation revising the protocols arises from changes
in underlying technologies and uses.

New Computer And Communication Technologies. Computer and network
hardware continues to evolve. As new technologies emerge, they are incorporat-
ed into the Internet.

New Applications. As programmers invent new ways to use TCPAP, additional
protocol support is needed. For example, the emphasis on IP telephony has led
to investigations of protocols for real-time data delivery.

Increases In Size And Load. The global Internet has experienced many years of
sustained exponential growth, doubling in size every nine months or faster. In
1999, on the average, a new host appeared on the Internet every two seconds.
Traffic has also increased rapidly as animated graphics and video proliferate.

33.3 New Policies

As it expands into new countries, the Internet changes in a fundamental way: it
gains new administrative authorities. Changes in authority produce changes in adrninis-
trative policies, and mandate new mechanisms to enforce those policies. As we have
seen, both the architecture of the connected Internet and the protocols it uses are evolv-
ing away from a centralized core model. Evolution continues as more national back-
bone networks attach, producing increasingly complex policies regulating interaction.
When multiple corporations interconnect private TCP/IP internets, they face similar
problems as they try to define policies for interaction and then develop mechanisms to
enforce those policies. Thus, many of the research and engineering efforts surrounding
TCPnP continue to focus on finding ways to accommodate new administrative groups.

33.4 Motivation For Changing IPv4

Version 4 of the Internet Protocol (IPv4) provides the basic communication
mechanism of the TCPnP suite and the global Internet; it has remained almost un-
changed since its inception in the late 1970st. The longevity of version 4 shows that
the design is flexible and powerful. Since the time IPv4 was designed, processor per-
formance has increased over two orders of magnitude, typical memory sizes have in-
creased by over a factor of 100, network bandwidth of the Internet backbone has risen
by a factor of 7000, LAN technologies have emerged, and the number of hosts on the

?Versions I through 3 were never formally assigned, and version number 5 was assigned to the ST proto-
col.

Sec. 33.4 Motivation For Changing 1-4 6 0 1

Internet has risen from a handful to over 56 million. Furthermore, because the changes
did not occur simultaneously, adapting to them has been a continual process.

Despite its sound design, IPv4 must be replaced soon. Chapter 10 describes the
main motivation for updating IP: the imminent address space limitations. When IP was
designed, a 32-bit address space was more than sufficient. Only a handful of organiza-
tions used a LAN; fewer had a corporate WAN. Now, however, most medium-sized
corporations have multiple LANs, and most large corporations have a corporate WAN.
Consequently, even with careful assignment and NAT technology, the current 32-bit IP
address space cannot accommodate projected growth of the global Internet beyond the
year 2020.

Although the need for a larger address space is the most immediate motivation,
other factors contributed to the new design. In particular, to make IP better suited to
real-time applications, thought was given to supporting systems that associate a da-
tagram with a preassigned resource reservation. To make electronic commerce safer,
the next version of IP is designed to include support for security features such as au-
thentication.

33.5 The Road To A New Version Of IP

It took many years for the IETF to formulate a new version of IP. Because the
IETF produces open standards, it invited the entire community to participate in the pro-
cess. Computer manufacturers, hardware and software vendors, users, managers, pro-
grammers, telephone companies, and the cable television industry all specified their re-
quirements for the next version of IP, and all commented on specific proposals.

Many designs were proposed to serve a particular purpose or a particular commun-
ity. One of the major proposals would have made IP more sophisticated at the cost of
increased complexity and processing overhead. Another design proposed using a
modification of the OSI CLNS protocol. A third major design proposed retaining most
of the ideas in IP, but making simple extensions to accommodate larger addresses. The
design, known as SIP? (Simple IP), became the basis for an extended proposal that in-
cluded ideas from other proposals. The extended version was named Simple IP Plus
(SIPP), and eventually emerged as the design selected as a basis for the next IP.

Choosing a new version of IP was not easy. The popularity of the Internet means
that the market for IP products around the world is staggering. Many groups see the
economic opportunity, and hope that the new version of IP will help them gain an edge
over the competition. In addition, personalities have been involved - some individuals
hold strong technical opinions; others see active participation as a path to a promotion.
Consequently, the discussions generated heated arguments.

tThe acronym SIP now refers to the Session Initiation Protocol which is used for signaling (e.g., for IF'
telephony).

602 The Future Of TCPlIP (IPv6) Chap. 33

33.6 The Name Of The Next IP

The IETF decided to assign the revision of IP version number 6 and to name it
IPv6-t to distinguish it from the current IPv4. The choice to skip version number 5
arose after a series of mistakes and misunderstandings. In one mistake, the IAB caused
widespread confusion by inadvertently publishing a policy statement that referred to the
next version of IP as IP version 7. In a misunderstanding, an experimental protocol
known as the Stream Protocol (ST) was assigned version number 5. The assignment
led some to conclude that ST had been selected as the replacement for IP. In the end,
the IETF chose 6 because doing so eliminated confusion.

33.7 Features Of IPv6

The proposed IPv6 protocol retains many of the features that contributed to the
success of IPv4. In fact, the designers have characterized IPv6 as being basically the
same as IPv4 with a few modifications. For example, rPv6 still supports connectionless
delivery (i.e., each datagram is routed independently), allows the sender to choose the
size of a datagram, and requires the sender to specify the maximum number of hops a
datagram can make before being terminated. As we will see, IPv6 also retains most of
the concepts provided by IPv4 options, including facilities for fragmentation and source
routing.

Despite many conceptual similarities, IPv6 changes most of the protocol details.
For example, IPv6 uses larger addresses, and adds a few new features. More important,
IPv6 completely revises the datagram format by replacing IPv4's variable-length options
field by a series of fixed-format headers. We will examine details after considering ma-
jor changes and the underlying motivation for each.

The changes introduced by IPv6 can be grouped into seven categories:

Larger Addresses. The new address size is the most noticeable
change. IPv6 quadruples the size of an IPv4 address from 32 bits
to 128 bits. The IPv6 address space is so large that it cannot be ex-
hausted in the foreseeable future.

Extended Address Hierarchy. IPv6 uses the larger address space to
create additional levels of addressing hierarchy. In particular, P v 6
can define a hierarchy of ISPs as well as a hierarchical structure
within a given site.

Flexible Header Format. IPv6 uses an entirely new and incompati-
ble datagram format. Unlike the IPv4 fixed-format header, IPv6
defines a set of optional headers.

Improved Options. Like IPv4, IPv6 allows a datagram to include
optional control information. IPv6 includes new options that pro-
vide additional facilities not available in IPv4.

?Some documents refer to the effort as "IP - The Next Generation," IPng.

Sec. 33.7 Features Of IPv6 603

Provision For Protocol Extension. Perhaps the most significant
change in IPv6 is a move away from a protocol that fully specifies
all details to a protocol that can permit additional features. The ex-
tension capability has the potential to allow the IETF to adapt the
protocol to changes in underlying network hardware or to new ap-
plications.

Support For Autoconfiguration And Renumbering. IPv6 provides
facilities that allow computers on an isolated network to assign
themselves addresses and begin communicating without depending
on a router or manual configuration. The protocol also includes a
facility that permits a manager to renumber networks dynamically.

Support For Resource Allocation. IPv6 has two facilities that per-
mit preallocation of network resources: a flow abstraction and a
differentiated service specification. The latter will use the same ap-
proach as IPv4's differentiated services.

33.8 General Form Of An IPv6 Datagram

IPv6 completely changes the datagram format. As Figure 33.1 shows, an IPv6 da-
tagram has a fixed-size base header followed by zero or more extension headers, fol-
lowed by data.

Header Header 1
Extension I Header N I DATA. . .

Figure 33.1 The general form of an IPv6 datagram with multiple headers.
Only the base header is required; extension headers are optional.

33.9 IPv6 Base Header Format

Interestingly, although it must accommodate larger addresses, an IPv6 base header
contains less information than an IPv4 datagram header. Options and some of the fixed
fields that appear in an IPV4 datagram header have been moved to extension headers in
IPv6. In general, the changes in the datagram header reflect changes in the protocol:

Alignment has been changed from 32-bit to 64-bit multiples.

The Future Of TCPlLP (IPV6) Chap. 33

The header length field has been eliminated, and the datagram
length field has been replaced by a PAYLOAD LENGTH field.

The size of source and destination address fields has been increased
to 16 octets each.

Fragmentation information has been moved out of fmed fields in
the base header into an extension header.

The TIME-TO-LIVE field has been replaced by a HOP LIMIT field.

The SERVICE TYPE is renamed to be a TRAFFIC CLASS field,
and extended with a FLOW LABEL field.

The PROTOCOL field has been replaced by a field that specifies
the type of the next header.

Figure 33.2 shows the contents and format of an IPv6 base header. Several fields
in an IPv6 base header correspond directly to fields in an IPv4 header. As in IPv4 the
initial 4-bit VERS field specifies the version of the protocol; VERS always contains 6 in
an IPv6 datagram. As in IPv4, the SOURCE ADDRESS and DESTINATION ADDRESS
fields specify the addresses of the sender and intended recipient. In IPv6, however,
each address requires 16 octets. The HOP LIMIT field corresponds to the IPv4 TIME-
TO-LIVE field. Unlike IPv4, which interprets a time-to-live as a combination of hop-
count and maximum time, IPV6 interprets the value as giving a strict bound on the max-
imum number of hops a datagram can make before being discarded.

I VERS I TRAFFIC CLASS I FLOW LABEL I
I PAYLOAD LENGTH I NEXTHEADER I HOP LIMIT I

SOURCE ADDRESS

- -
- DESTINATION ADDRESS -
- -

Figure 33.2 The format of the 40-octet IPv6 base header. Each 1-6 da-
tagram begins with a base header.

Sec. 33.9 IPV6 Base Header Format 605

IPv6 handles datagram length specifications in a new way. First, because the size
of the base header is fixed at 40 octets, the base header does not include a field for the
header length. Second, IPv6 replaces IPv4's datagram length field by a 16-bit PAY-
LOAD LENGTH field that specifies the number of octets carried in the datagram ex-
cluding the header itself. Thus, an IPV6 datagram can contain 64K octets of data.

Two fields in the base header are used in making forwarding decisions. The IPv4
SERVICE CLASS field has been renamed TRAFFIC CLASS. In addition, a new
mechanism in IPv6 supports resource reservation and allows a router to associate each
datagram with a given resource allocation. The underlying abstraction, a flow, consists
of a path through an internet along which intermediate routers guarantee a specific qual-
ity of service. Field FLOW LABEL in the base header contains information that routers
use to associate a datagram with a specific flow and priority. For example, two applica-
tions that need to send video can establish a flow on which the delay and bandwidth is
guaranteed. Alternatively, a network provider may require a subscriber to specify the
quality of service desired, and then use a flow to limit the traffic a specific computer or
a specific application sends. Note that flows can also be used within a given organiza-
tion to manage network resources and ensure that all applications receive a fair share.
A router uses the combination of datagram source address and flow identifier when as-
sociating a datagram with a specific flow. To summarize:

Each IPv6 datagram begins with a 40-octet base header that includes
$elds for the source and destination addresses, the maximum hop lim-
it, the trafic class, the flow label, and the type of the next header.
Thus, an IPv6 datagram must contain at least 40 octets in addition to
the data.

33.1 0 IPv6 Extension Headers

The paradigm of a fixed base header followed by a set of optional extension
headers was chosen as a compromise between generality and efficiency. To be totally
general, IPv6 needs to include mechanisms to support functions such as fragmentation,
source routing, and authentication. However, choosing to allocate fixed fields in the da-
tagram header for all mechanisms is inefficient because most datagrams do not use all
mechanisms; the large IPv6 address size exacerbates the inefficiency. For example,
when sending a datagram across a single local area network, a header that contains
empty address fields can occupy a substantial fraction of each frame. More important,
the designers realize that no one can predict which facilities will be needed.

The IPV6 extension header paradigm works similar to IPv4 options - a sender can
choose which extension headers to include in a given datagram and which to omit.
Thus, extension headers provide maximum flexibility. We can summarize:

606 The Future Of TCPIIP (IF'v6) Chap. 33

IPv6 extension headers are similar to IPv4 options. Each datagram
includes extension headers for only those facilities that the datagram
uses.

33.1 1 Parsing An IPv6 Datagram

Each of the base and extension headers contains a NEXT HEADER field. Software
on intermediate routers and at the final destination that process a datagram use the
values in the NEXT HEADER fields to parse the datagram. Extracting all header infor-
mation from an IPv6 datagram requires a sequential search through the headers. For ex-
ample, Figure 33.3 shows the NEXT HEADER fields of three datagrams that contain
zero, one, and two extension headers.

I Base Header Route Header
NEXT=ROUTE I NEXT=TCP

I TCP Segment I

Base Header
NEXT=TCP

Figure 333 Three datagrams with (a) only a base header, (b) a base header
and one extension, and (c) a base header plus two extensions.
The NEXT HEADER field in each header specifies the type of
the following header.

TCP Segment

Of course, parsing an IPv6 datagram that only has a base header and data is as effi-
cient as parsing an IPv4 datagram. Furthermore, intermediate routers only need to ex-
amine the hop-by-hop extension header; only endpoints process other extension headers.

Sec. 33.12 IPV6 Fragmentation And Reassembly 607

33.1 2 IPv6 Fragmentation And Reassembly

As in IPv4, IPv6 arranges for the ultimate destination to perfornl datagram
reassembly. However, the designers chose to make changes that avoid fragmentation by
routers. Recall that IPv4 requires an intermediate router to fragment any datagram that
is too large for the MTU of the network over which it must travel. In IPv6, fragmenta-
tion is end-toend; no fragmentation needs to occur in intermediate routers. The source,
which is responsible for fragmentation, has two choices: it can either use the guaranteed
minimum MTU of 1280 octets or perform Path MTU Discovery to identify the minimum
MTU along the path to the destination. In either case, the source fragments the da-
tagram so that each fragment is less than the expected path MTU.

The IPv6 base header does not contain fields analogous to the fields used for frag-
mentation in an IPv4 header. Instead, when fragmentation is needed, the source inserts
a small extension header after the base header in each fragment. Figure 33.4 shows the
contents of a Fragment Extension Header.

NEXT HEADER 1 RESERVED I FRAG. OFFSET 1 RS IM
DATAGRAM IDENTIFICATION

Figure 33.4 The fomlat of a Fragment Extension Header.

IPv6 retains the basic IPv4 fragmentation functionality. Each fragment must be a
multiple of 8 octets, the single bit in the M field marks the last fragment like the IPv4
MORE FRAGMENTS bit, and the DATAGRAM IDENTIFICATION field carries a
unique ID that the receiver uses to group fragments?. Finally, field RS is currently
reserved; the two bits are set to zero on transmission and ignored by the receiver.

33.1 3 The Consequence Of End-To-End Fragmentation

The motivation for using end-to-end fragmentation lies in its ability to reduce over-
head in routers and permit each router to handle more datagrams per unit time. Indeed,
the CPU overhead required for IPv4 fragmentation can be significant - in a conven-
tional router, the CPU can reach 100% utilization if the router fragments many or all of
the datagrams it receives. However, end-to-end fragmentation has an important conse-
quence: it alters the fundamental IPv4 assumption that routes change dynamically.

To understand the consequence of end-to-end fragmentation, recall that IPv4 is
designed to permit routes to change at any time. For example, if a network or router
fails, traffic can be routed along a different path. The chief advantage of such a system
is flexibility - traffic can be routed along an alternate path without disrupting service
and without informing the source or destination. In IPv6 however, routes cannot be

tIPv6 expands the IF'v4 IDENTIFICATION field to 32 bits to accommodate higher speed networks.

608 The Future Of TCP/IP (IPv6) Chap. 33

changed as easily because a change in a route can also change the path MTU. If the
path MTU along a new route is less than the path MTU along the original route, either
an intermediate router must fragment the datagram or the original source must be in-
formed. The problem can be summarized:

An internet protocol that uses end-to-end fragmentation requires a
sender to discover the path MTU to each destination, and to fragment
any outgoing datagram that is larger than the path MTU. End-to-end
fragmentation does not accommodate route changes.

To solve the problem of route changes that affect the path MTU, IPv6 includes a
new ICMP error message. When a router discovers that fragmentation is needed, it
sends the message back to the source. When it receives such a message, the source per-
forms another path MTU discovery to determine the new minimum MTU, and then
fragments datagrams according to the new value.

33.14 IPv6 Source Routing

I h 6 retains the ability for a sender to specify a loose source route. Unlike IPv4,
in which source routing is provided by options, IPv6 uses a separate extension header.
As Figure 33.5 shows, the first four fields of the Routing Header are fixed. Field
ROUTING TYPE specifies the type of routing information; the only type that has been
defined, type 0, corresponds to loose source routing. The TYPE-SPECIFIC DATA field
contains a list of addresses of routers through which the datagram must pass. Field
SEG LEFT specifies the total number of addresses that remain in the list. Finally field
HDR EXT LEN specifies the size of the Routing Header.

0 8 16 24 31

I NEXT HEADER I HDR EXT LEN 1 ROUTING TYPE I SEG LEFT I

TYPE-SPECIFIC DATA

Figure 33.5 The format of an IPv6 Routing Header. Only type 0 (loose
source route) is currently defined.

Sec. 33.14 Pv6 Source Routing 609

33.15 IPv6 Options

It may seem that IPv6 extension headers completely replace IPv4 options. Howev-
er, the designers propose two additional extension headers to accommodate rniscellane-
ous information not included in other extension headers. The additional headers are a
Hop By Hop Extension Header and an End To End Extension Header. As the names
imply, the two headers separate the set of options that should be examined at each hop
from the set that are only interpreted at the destination.

Although each of the two option headers has a unique type code, both headers use
the format illustrated in Figure 33.6.

ONE OR MORE OPTIONS

Figure 33.6 The format of an IPv6 option extension header. Both the hop-
by-hop and end-to-end option headers use the same fom~at; the
NEXT HEADER field of the previous header distinguishes
between the two types.

As usual, field NEXT HEADER gives the type of the header that follows. Because
an option header does not have fixed size, the field labeled HEADER LEN specifies the
total length of the header. The area labeled ONE OR MORE OPTIONS represents a se-
quence of individual options. Figure 33.7 illustrates how each individual option is en-
coded with a type, length, and value?; options are not aligned or padded.

Figure 33.7 Encoding of an individual option in an IPv6 option extension
header. Each option consists of a one-octet type and a one-octet
length followed by zero or more octets of data for the option.

0 8 16

As the figure shows, IPv6 options follow the same form as IPv4 options. Each op-
tion begins with a one-octet TYPE field followed by a one-octet LENGTH field. If the
option requires additional data, octets that comprise the VALUE follow the LENGTH.

tIn the literature, an encoding of type, length, and value is sometimes called a TLV encoding.

.
VALUE . TYPE LENGTH

610 The Future Of TCPm (IPv6) Chap. 33

The two high-order bits of each option TYPE field specify how a host or router
should dispose of the datagram if it does not understand the option:

Bits In Type Meaning
00 Skip this option
01 Discard datagram; do not send ICMP message
10 Discard datagram; send ICMP message to source
11 Discard datagram; send ICMP for non-multicast

In addition, the third bit in the TYPE field specifies whether the option can change
in transit. Having such information is important for authentication - the contents of an
option that can change in transit are treated as zeroes for purposes of authentication.

33.1 6 Size Of The IPv6 Address Space

In IPv6 each address occupies 16 octets, four times the size of an IPv4 address.
The large address space guarantees that IPv6 can tolerate any reasonable address assign-
ment scheme. In fact, if the designers decide to change the addressing scheme later, the
address space is sufficiently large to accommodate a reassignment.

It is difficult to comprehend the size of the IPv6 address space. One way to look
at it relates the magnitude to the size of the population: the address space is so large
that every person on the planet can have sufficient addresses to have their own internet
as large as the current Internet. A second way to think of IPv6 addressing relates it to
the physical space available: the earth's surface has approximately 5.1 x 10' square ki-
lometers, meaning that there are over addresses per square meter of the earth's sur-
face. Another way to understand the size relates it to address exhaustion. For example,
consider how long it would take to assign all possible addresses. A 16-octet integer can
hold 2'28 values. Thus, the address space is greater than 3.4 x 10". If addresses are as-
signed at the rate of one million addresses every microsecond, it would take over 1020
years to assign all possible addresses.

33.17 IPv6 Colon Hexadecimal Notation

Although it solves the problem of having insufficient capacity, the large address
size poses an interesting new problem: humans who maintain internets must read, enter,
and manipulate such addresses. Obviously, binary notation is untenable. However, the
dotted decimal notation used for IPv4 does not make such addresses sufficiently com-
pact either. To understand why, consider an example 128-bit number expressed in dot-
ted decimal notation:

Sec. 33.17 IPv6 Colon Hexadecimal Notation 61 1

To help make address slightly more compact and easier to enter, the IPv6 designers
propose using colon hexadecimal notation (abbreviated colon hex) in which the value of
each 16-bit quantity is represented in hexadecimal separated by colons. For example,
when the value shown above in dotted decimal notation has been translated to colon hex
nqtation and printed using the same spacing, it becomes:

Colon hex notation has the obvious advantage of requiring fewer digits and fewer
separator characters than dotted decimal. In addition, colon hex notation includes two
techniques that make it extremely useful. First, colon hex notation allows zero
compression in which a string of repeated zeros is replaced by a pair of colons. For ex-
ample, the address:

FF05:0:0:0:0:0:0:B3

can be written:

To ensure that zero compression produces an unambiguous interpretation, the pro-
posal specifies that it can be applied only once in any address. Zero compression is
especially useful when used with the proposed address assignment scheme because
many addresses will contain contiguous strings of zeros. Second, colon hex notation in-
corporates dotted decimal suffies; we will see that such combinations are intended to
be used during the transition from IPv4 to IPv6. For example, the following string is
valid colon hex notation:

Note that although the numbers separated by colons each specify the value of a
16-bit quantity, numbers in the dotted decimal portion each specify the value of one oc-
tet. Of course, zero compression can be used with the number above to produce an
equivalent colon hex string that looks quite similar to an IPv4 address:

Finally, IPv6 extends CIDR-like notation by allowing an address to be followed by
a slash and an integer that specifies a number of bits. For example,

specifies the first 60 bits of the address or 12ABOOOOOOOOCD3 in hexadecimal.

612 The Future Of TCP/IP (IF'v6) Chap. 33

33.18 Three Basic IPv6 Address Types

Like IPv4, IPv6 associates an address with a specific network connection, not with
a specific computer. Thus, address assignments are similar to IPv4: an IPv6 router has
two or more addresses, and an IPv6 host with one network connection needs only one
address. IPv6 also retains (and extends) the IPv4 address hierarchy in which a physical
network is assigned a prefix. However, to make address assignment and modification
easier, IPv6 permits multiple prefixes to be assigned to a given network, and allows a
computer to have multiple, simultaneous addresses assigned to a given interface.

In addition to permitting multiple, simultaneous addresses per network connection,
IPv6 expands, and in some cases unifies, IPv4 special addresses. In general, a destina-
tion address on a datagram falls into one of three categories:

Unicast The destination address specifies a single computer (host
or router); the datagram should be routed to the destination
along a shortest path.

Anycast The destination is a set of computers, possibly at different
locations, that all share a single address; the datagram
should be routed along a shortest path and delivered to ex-
actly one member of the group (i.e., the closest member)?.

Multicast The destination is a set of computers, possibly at multiple
locations. One copy of the datagram will be delivered to
each member of the group using hardware multicast or
broadcast if viable.

33.19 The Duality Of Broadcast And Multicast

IPv6 does not use the terms broadcast or directed broadcast to refer to delivery to
all computers on a physical network or to a logical IP subnet. Instead, it uses the term
multicast, and treats broadcast as a special form of multicast. The choice may seem odd
to anyone who understands network hardware because more hardware technologies sup-
port broadcast than support multicast. In fact, a hardware engineer is likely to view
multicasting as a restricted form of broadcasting - the hardware sends a multicast
packet to all computers on the network exactly like a broadcast packet, and the interface
hardware on each computer filters all multicast packets except those that software has
instructed the interface hardware to accept.

In theory, the choice between multicast and limited forms of broadcast is irrelevant
because one can be simulated with the other. That is, broadcasting and multicasting are
duals of one another that provide the same functionality. To understand why, consider
how to simulate one with the other. If broadcast is available, a packet can be delivered
to a group by sending it to all machines and arranging for software on each computer to
decide whether to accept or discard the incoming packet. If multicast is available, a

?Anycast addresses were formerly known as cluster addresses.

Sec. 33.19 The Duality Of Broadcast And Multicast 613

packet can be delivered to all machines by arranging for all machines to listen to one
multicast group similar to the all hosts group discussed in Chapter 17.

33.20 An Engineering Choice And Simulated Broadcast

Knowing that broadcasting and multicasting are theoretical duals of one another
does not help choose between them. To see why the designers of IPv6 chose multicast-
ing as the central abstraction instead of broadcasting, consider applications instead of
looking at the underlying hardware. An application either needs to communicate with a
single application or with a group of applications. Direct communication is handled
best via unicast; group communication is handled best by multicast or broadcast. To
provide the most flexibility, group membership should not be determined by network
connections, because group members can reside at arbitrary locations. Using broadcast
for all group communication does not scale to handle an internet as large as the global
Internet.

Not surprisingly, the designers pre-define some multicast addresses that can be
used in place of an IPv4 network broadcast address. Thus, in addition to its own uni-
cast address, each router is required to accept packets addressed to the A11 Routers mul-
ticast groups for its local environment.

33.21 Proposed IPv6 Address Space Assignment

The question of how to partition the IPv6 address space has generated much dis-
cussion. There are two central issues: how to manage address assignment and how to
map an address to a route. The first issue focuses on the practical problem of devising
a hierarchy of authority. Unlike the current Internet, which uses a two-level hierarchy
of network prefix (assigned by the Internet authority) and host suffix (assigned by the
organization), the large address space in IPv6 permits a multi-level hierarchy or multi-
ple hierarchies. The second issue focuses on computational efficiency. Independent of
the hierarchy of authority that assigns addresses, a router must examine each datagram
and choose a path to the destination. To keep the cost of high-speed routers low, the
processing time required to choose a path must be kept small.

As Figure 33.8 shows, the designers of IPv6 propose assigning address classes in a
way similar to the scheme used for Pv4. Although the first 8 bits of an address are
sufficient to identify its type, the address space is not partitioned into sections of equal
size.

614 The Future Of TCPIIP (IF'v6) Chap. 33

Binary Prefix Type Of Address Part Of Address Space
Resewed (IPv4 compatibility)
Unassigned
NSAP Addresses
IPX Addresses
Unassigned
Unassigned
Unassigned
Aggregatable Global Unicast
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Link-Local Unicast Addresses
Site-Local Unicast Addresses
Multicast Addresses

Figure 33.8 The proposed division of IPV6 addresses into types, which are
analogous to Pv4 classes. As in IPV4, the prefix of an address
determines its address type.

As the figure shows, only 15% of the address space has been assigned at present.
The IETF will use the remaining portions as demand grows. Despite the sparse assign-
ment, addresses have been chosen to make processing more efficient. For example, the
high-order octet of an address distinguishes between multicast (all 1 bits) and unicast (a
mixture of 0's and 1's).

33.22 Embedded IPv4 Addresses And Transition

Although the prefm 0000 0000 is labeled Resewed in the figure, the designers plan
to use a small fraction of addresses in that section to encode IPv4 addresses. In particu-
lar, any address that begins with 80 zero bits followed by 16 bits of all ones or 16 bits
of all zeros contains an Wv4 address in the low-order 32 bits. The value of the 16-bit
field indicates whether the node also has a conventional IPv6 unicast address. Figure
33.9 illustrates the two forms.

Sec. 33.22 Embedded IPv4 Addresses And Transition 615

1-80 zero bits-116 bi tsl -32 bi ts- I

1 0000 W O O I 0000 I lPv4 Address 1
0000.WOO 1 FFFF I IPv4 Address

Figure 33.9 The encoding of an IPv4 address in an IPv6 address. The 16-bit
field contains 0000 if the node also has a conventional IPv6 ad-
dress, and FFFF if it does not.

The encoding will be needed during a transition from IPv4 to IPv6 for two reasons.
First, a computer may choose to upgrade from IPv4 to IPv6 software before it has been
assigned a valid IPv6 address. Second, a computer running IPv6 software may need to
communicate with a computer that runs only IPv4 software.

Having a way to encode an IPv4 address in an IPv6 address does not solve the
problem of making the two version interoperate. In addition to address encoding, trans-
lation is needed. To use a translator, an IPv6 computer generates a datagram that con-
tains the IPv6 encoding of the IPv4 destination address. The IPv6 computer sends the
datagram to a translator, which uses IPv4 to communicate with the destination. When
the translator receives a reply from the destination, it translates the IPv4 datagram to
IPv6 and sends it back to the IPv6 source.

It may seem that translating protocol addresses could fail because higher layer pro-
tocols verify address integrity. In particular, TCP and UDP, use a pseudo header in
their checksum computation. The pseudo header includes both the source and destina-
tion protocol addresses, so changing such addresses could affect the computation. How-
ever, the designers planned carefully to allow TCP or UDP on an IPv4 machine to com-
municate with the corresponding transport protocol on an IPv6 machine. To avoid
checksum mismatch, the IPv6 encoding of an IPv4 address has been chosen so that the
16-bit 1's complement checksum for both an IPv4 address and the IPv6 encoding of the
address are identical. The point is:

In addition to choosing technical details of a new Internet Protocol,
the IETF work on IPv6 has focused on finding a way to transition
from the current protocol to the new protocol. In particular, the
current proposal for IPv6 allows one to encode an IPv4 address in-
side an IPv6 address such that address translation does not change
the pseudo header checksum.

616 The Future Of TCPlIP (IPv6) Chap. 33

33.23 Unspecified And Loopback Addresses

As in IPv4, a few IPv6 addresses have been assigned special meaning. For exam-
ple, the all 0's address:

is an unspecified address which cannot be assigned to any computer or used as a desti-
nation. It is only used as a source address during bootstrap by a computer that has not
yet learned its address.

Like IPv4, IPv6 also has a loopback address that is used for testing software. The
IPv6 loopback address is:

Any datagram sent to the loopback address will be delivered to the local machine; it
must never be used as a destination address on an outgoing datagram.

33.24 Unicast Address Hierarchy

One of the most important changes between IPv4 and IPv6 arises from the alloca-
tion strategy used for unicast addresses and the resulting address hierarchy. Recall that
the original IPv4 addressing scheme used a two-level hierarchy in which an address is
divided into a globally unique prefix and a suffi . IPv6 extends the concept by adopt-
ing an address hierarchy with three conceptual levels as Figure 33.10 illustrates.

Level Purpose
1 Globally-known public topology
2 Individual site
3 Individual network interface

Figure 33.10 The three conceptual levels of the Pv6 unicast address hierar-
chy. In practice, an address has additional structure.

The two lowest levels of the conceptual hierarchy are easiest to understand because
they correspond to identifiable entities. The lowest level corresponds to a single attach-
ment between a computer and a network. The middle level of the hierarchy
corresponds to a set of computers and networks located at a site, which implies both
contiguous physical co~ect ivi ty and a single organization that owns and operates the
equipment. We will see that the addressing scheme accommodates both large and small
sites, and allows a site to have complex internal structure.

Sec. 33.24 Unicast Address Hierarchy 617

To provide flexibility, the top level of the hierarchy, which is labeled public topol-
ogy, is not precisely defined. In general, one can think of the public topology as a
"section" of the global Internet that is available for public access. Two types of public
topology are envisioned. The first type corresponds to a major Internet Service Provid-
er (ISP) that provides long-haul service to customers, which are known as subscribers.
The second type, which is called an exchange, is a newly envisioned organization. Ac-
cording to the designers, exchanges will provide two functions. First, an exchange will
operate like a NAP to intercomect major ISPs and pass traffic among them. Second,
unlike current NAPS, exchanges will also service individual subscribers, which means
that the exchange will assign the subscriber an address. The chief advantage of an ad-
dress assigned by an exchange is that the address will not specify an ISP. Thus, a sub-
scriber will be free to move from one ISP to another.

33.25 Aggregatable Global Unicast Address Structure

Authority for IPv6 address assignment flows down the hierarchy. Each top-level
organization (e.g., an ISP or exchange) is assigned a unique prefm. When an organiza-
tion becomes a subscriber of a top-level ISP, the organization is assigned a unique
number for its site. Finally, a manager must assign a number to each network comec-
tion. To make routing efficient, successive sets of bits in the address are reserved for
each assignment. Figure 33.1 1 illustrates the format, which is known as a aggregatable
global unicast address format.

top , , site +. third
level level level

. ,

Figure 33.11 The division of an IPV6 aggregatable global unicast address into
separate fields along with an indication of how those fields
correspond to the three-level hierarchy.

The 3-bit field labeled P in the figure corresponds to the fonnat prefi, which is
001 for an aggregatable global unicast address. The &bit RES field is reserved for the
future and contains zeroes. Remaining fields in the address are arranged to make rout-
ing efficient. In particular, fields that correspond to the highest level of the hierarchy
are grouped together to comprise the most significant bits of the address. Field TLA ID
contains an identifier used for Top-Level Aggregation (i.e., a unique identifier assigned
to the ISP or exchange that owns the address). The owner of the address uses field
N U to provide Next-Level Aggregation (e.g., to identify a particular subscriber).

TLA
ID

SLA
ID INTERFACE ID RES NLA

ID

618 The Future Of TCPIIP (IPV6) Chap. 33

The 16-bit field labeled SLA ID (Site-Level Aggregation) is available for a specific
site to use. The designers envision it being used much like an IPv4 subnet field. Thus,
a site with only a few networks can choose to treat the field as a network identifier, and
a site that has many networks can use the field to partition networks into groups which
can then be arranged in a hierarchy. To create a one-level hierarchy at the site, the or-
ganization must use a prefm to identify the group and a suffvr to identify a particular
network in the group. As with IPv4 subnetting, the division into groups improves rout-
ing efficiency because a routing table only contains routes to each of the other groups
rather than to each individual network.

33.26 Interface Identifiers

As Figure 33.1 1 shows, the low-order 64 bits of an IPv6 aggregatable unicast ad-
dress identifies a specific network interface. Unlike IPv4, however, the IPV6 suffix was
chosen to be large enough to accommodate a direct encoding of the interface hardware
address. Encoding a hardware address in an IP address has two consequences. First,
IPv6 does not use ARP to resolve an IP address to a hardware address. Instead, IPv6
uses a neighbor discovery protocol available with a new version of ICMP (ICMPV6) to
allow a node to determine which computers are its directly c o ~ e c t e d neighbors.
Second, to guarantee interoperability, all computers must use the same encoding for a
hardware address. Consequently, the IPv6 standards specify exactly how to encode
various forms of hardware address. In the simplest case, the hardware address is placed
directly in the IPv6 address; some formats use more complex transformations.

Two example encodings will help clarify the concept. For example, IEEE defines
a standard 64-bit globally unique address format known as EUI-64. The only change
needed when encoding an EUI-64 address in an IPv6 address consists of inverting bit 6
in the high-order octet of the address, which indicates whether the address is known to
be globally unique.

A more complex change is required for a conventional 48-bit Ethernet address.
Figure 33.12 illustrates the encoding. As the figure shows, bits from the original ad-
dress are not contiguous in the encoded form. Instead, 16 bits with hexadecimal value
OXFFFE are inserted in the middle. In addition, bit 6, which indicates whether the ad-
dress has global scope, is changed from 0 to 1. Remaining bits of the address, includ-
ing the group bit (labeled g), the ID of the company that manufactured the interface (la-
beled c), and the manufacturer's extension are copied as shown.

Sec. 33.26 Interface Identifiers

0 8 24 47

cccccOgccccccccccccccc man. ext.

cccccclgccccccccccccccc 111111111111110 man. ext. -
Figure 33.12 (a) The format of a 48-bit IEEE 802 address used with Ethernet,

with bits labeled c specifying the company that manufactured
the interface and bits in the man. ex?. field specifying an exten-
sion the manufacturer chose to uniquely identify the unit, and
(b) the encoding of the address in the low order 64 bits of an
Pv6 unicast address.

33.27 Additional Hierarchy

Although the unicast address format in Figure 33.1 1 implies a strict hierarchy,
many additional levels are possible. For example, bits of the NLA ID can be used to
create a hierarchy of providers. Similarly, the 16-bit SLA ID can be divided to create a
hierarchy within an organization. The large number of bits provides more flexibility
than IPv4 subnetting. An organization can choose to divide into a two-level hierarchy
of areas and assign subnets within each area. Alternatively, an organization can choose
a three-level hierarchy of areas, subareas, and subnets within each subarea.

33.28 Local Addresses

In addition to the global unicast addresses described above, IPv6 includes prefixes
for unicast addresses that have local scope. As Figure 33.8 shows, the standard defines
two types: a link-local address is restricted to a single network, and a site-local address
is restricted to a single site. Routers honor the scoping rules; they do not forward da-
tagrams containing locally-scoped addresses outside the specified scope.

Local addresses solve two problems. Link-local addresses provide communication
across a single physical network without danger of the datagram being forwarded across
the internet. For example, when it performs neighbor discovery, an IPv6 node uses a
link-local address. The scope rules specify that only computers on the same physical
network as the sender will receive neighbor discovery messages. Similarly, computers
co~ec ted to an isolated network (i.e., a network that does not have routers attached)
can use link-local addresses to communicate.

620 The Future Of TCPIIP (IPv6) Chap. 33

Unlike a datagram containing link-local addresses, routers can forward datagrams
containing site-local addresses throughout an entire organization. However, routers are
prohibited from forwarding such datagrams to the global Internet. Thus, site-local ad-
dresses correspond to what IPv4 calls private or nonroutable addresses. An organiza-
tion can assign and use site-local addresses throughout its private intranet without ob-
taining and assigning globally unique prefixes.

33.29 Autoconfiguration And Renumbering

IPv6 is designed to support serverless autoconfigurationt that allows computers to
communicate without requiring a manager to specify an address. Two facilities dis-
cussed above make autoconfiguration possible and efficient: link-local addressing and
embedded interface identifiers. To begin, a computer generates a link-local address by
combining the link-local prefix:

with 54 zero bits and its &bit interface identifier.
Once it verifies that the link-local address is unique, a computer uses the address to

send a router solicitation that requests additional information from a router. If a router
is present on the network, the router responds by sending a router advertisement to in-
form the computer about prefmes that can be used for site-local or global addresses.
When a router advertisement arrives, the computer makes the sender its default router.
Finally, a flag in the advertisement tells the computer whether to rely on autoconfigura-
tion or to use a conventional managed configuration (i.e., DHCP).

To facilitate network renumbering, IPv6 allows routers to limit the time a comput-
er can retain a prefix. To do so, a router advertisement specifies two time values for
each prefix: a valid lifetime and a preferred lifetime. A host must listen for additional
router advertisements. When the preferred lifetime of a prefix expires, the prefm
remains valid, but the host must use another prefix for all communication when possi-
ble. When the valid lifetime expires, the host must stop using the prefix, even if exist-
ing communication is in progress.

33.30 Summary

The IETF has defined a next generation of the Internet Protocol which is known as
IPv6 because it has been assigned version number 6. IPv6 retains many of the basic
concepts from the current protocol, IPv4 but changes most details. Like IPv4, IPv6
provides a connectionless, best-effort datagram delivery service. However, the IPv6 da-
tagram format differs from the IPv4 format, and IPv6 provides new features such as au-
thentication and support for flow-labeling.

IPv6 organizes each datagram as a series of headers followed by data. A datagram
always begins with a 40-octet base header, which contains source and destination ad-

tServerless autoconfiguration is also called stateless autoconfiguration.

Sec. 33.30 Summary 62 1

dresses, a traffic class, and a flow identifier. The base header may be followed by zero
or more extension headers, followed by data. Extension headers are optional - IPv6
uses them to hold much of the information IPv4 encodes in options.

An IPv6 address is 128 bits long, making the address space so large that the space
cannot be exhausted in the foreseeable future. IPv6 uses address prefixes to determine
the location and interpretation of remaining address fields. In addition to traditional un-
icast and multicast addresses, IPv6 also defines anycast addresses. A single anycast ad-
dress can be assigned to a set of computers; a datagram sent to the address is delivered
to exactly one computer in the set (i.e., the computer closest to the source).

IPv6 supports autoconfiguration and renumbering. Each host on an isolated net-
work generates a unique link-local address which it uses for cornrnunication. The host
also uses the link-local address to discover routers and obtain site-local and global pre-
fur information. To facilitate renumbering, all prefixes are assigned a lifetime; a host
must use a new prefix if the lifetime on an existing prefix expires.

FOR FURTHER STUDY

Many RFCs have appeared that contain information pertinent to IPv6. Deering and
Hinden [RFC 24601 specifies the basic protocol. Thomson and Narten [RFC 24621
describes stateless address autoconfiguration. Narten, Nordrnark, and Simpson [RFC
24611 discusses neighbor discovery. Conta and Deering [RFC 24631 specifies ICMPv6
as a companion to IPv6. Crawford [RFC 24641 describes encapsulation of IPv6 for
transmission over Ethernet networks.

Many RFCs focus on IPv6 addressing. Hinden and Deering [RFC 23731 describes
the basic addressing architecture including the meanings of prefixes. Hinden, O'Dell,
and Deering [RFC 23741 considers the aggregatable global unicast address format. Hin-
den and Deering [RFC 23751 specifies multicast address assignments. Johnson and
Deering [RFC 25261 describes reserved anycast addresses. Information about the 64-bit
EUI format can be found in:

EXERCISES

33.1 The current standard for IPv6 has no header checksum. What are the advantages and
disadvantages of this approach?

33.2 How should extension headers be ordered to minimize processing time?

33.3 Although IPv6 addresses are assigned hierarchically, a router does not need to parse an
address completely to select a route. Devise an algorithm and data structure for efficient
routing. (Hint: consider a longest-match approach.)

The Future Of TCP/IP (IPv6) Chap. 33

Argue that 128-bit addresses are larger than needed, and that 96 bits provides sufficient
capacity.
Assume your organization intends to adopt IPv6. Devise an address scheme the organi-
zation will use to assign each host an address. Did you choose a hierarchical assignment
within your organization? Why or why not?
What is the chief advantage of encoding an Ethernet address in an IPv6 address? The
chief disadvantage?
Consider a host that forms a link-local address by encoding its 48-bit Ethernet address
with the standard link-local prefix. Is the resulting address guaranteed to be unique on
the network? Why or why not?
In the previous exercise, does the standard specify that the host must use the Neighbor
Discovery Protocol to verify that the address is unique? Why or why not?
If you were asked to choose sizes for the toplevel, next-level, and site ID fields of an
IPv6 unicast address, how large would you make each? Why?
Read about the IPv6 authentication and security headers. Why are two headers pro-
posed?
How does the IPv6 minimum MTU of 1280 affect its flexibility?

Appendix 1

A Guide To RFCs

Introduction

Most of the written information about TCPm and the connected Internet, includ-
ing its architecture, protocols, and history, can be found in a series of reports known as
Request For Comments or RFCs. An informal, loosely coordinated set of notes, RFCs
are unusually rich in information and color. Before we consider the more serious as-
pects of RFCs, it is fitting that we take a few minutes to pay attention to the colorful
side. A good place to begin is with Cerf's poem 'Twas the Night Before Start-up (RFC
9 6 Q a humorous parody that describes some of the problems encountered when start-
ing a new network. Knowing not to take itself too seriously has pervaded the Internet
effort. Anyone who can remember both their first Internet meeting, filled with network-
ing jargon, and Lewis Carroll's Jabberwocky, filled with strangely twisted English, will
know exactly why D. L. Covill put them together in ARPAWOCKY (RFC 527).

Other RFCs seem equally frivolous. Interspersed amid the descriptions of ideas
that would turn out to dramatically change networking, we find notes like RFC 416,
written in early November, 1972: The ARC System will be Unavailable for Use During
Thanksgiving Week. It says exactly what you think it says. Or consider Crispin's
tongue-in-cheek humor found in RFC 748, which describes the TELNET Randomly-
Lose Option (a proposed option for TELNET that makes it randomly drop characters).
In fact, any RFC dated April 1 should be considered a joke. If such items do not seem
insignificant, think about the seventy-five RFCs listed as never issued. All were as-
signed a number and had an author, but none ever saw the light of day. The holes in
the numbering scheme remain, preserved as little reminders of ideas that vaporized or
work that remains incomplete.

624 A Guide To RFCs Appendix 1

Even after the silly, lighthearted, and useless RFCs have been removed, the
remaining documents do not conform to most standards for scientific writing. Unlike
scholarly scientific journals that concentrate on identifying papers of important archival
interest, screening them carefully, and filing them for posterity, RFCs provide a record
of ongoing conversations among the principals involved in designing, building, measur-
ing, and using the global Internet. The reader understands at once that RFCs include
the thoughts of researchers on the leading edge of technological innovation, not the stu-
died opinions of scholars who have completely mastered a subject. The authors are not
always sure of the consequences of their proposals, or even of the contents, but they
clearly realize the issues are too complex to understand without cornrnuni.ty discussion.
For example, RFC 1173 purports to document the "oral traditions" (which is an oxy-
moron because it became part of the written tradition once the RFC was published).

Despite the inconsistencies in RFCs that sometimes make them difficult for be-
ginners to understand, the RFC mechanism has evolved and now works extremely well.
Because RFCs are available electronically, information is propagated to the community
quickly. Because they span a broad range of interests, practitioners as well as designers
contribute. Because they record informal conversations, RFCs capture discussions and
not merely final conclusions. Even the disagreements and contradictory proposals are
useful in showing what the designers considered before settling on a given protocol
(and readers interested in the history of a particular idea or protocol can use RFCs to
follow it from its inception to its current state).

Importance Of Host And Gateway Requirements Documents

Unlike most RFCs, which concentrate on a single idea or protocol, three special
RFCs cover a broad range of protocols. The special documents are entitled Require-
ments for Internet Routers and Requirements for Internet Hosts (parts 1 and 2).

The requirements documents, published after many years of experience with the
TCP/IP protocols, are considered a major revision to the protocol standards. In essence,
requirement documents each review many protocols. They point out known weaknesses
or ambiguities in the RFCs that define the protocols, state conventions that have been
adopted by vendors, document problems that occur in practice, and list solutions to
those problems that have been accumulated through experience. The RFCs for indivi-
dual protocols have not been updated to include changes and updates from the require-
ments documents. Thus, readers must be careful to always consult the requirements do-
cuments when studying a particular protocol.

RFC Numerology

RFCs cover a surprisingly large range of sizes, with the average size being 47504.5
bytes. The largest, RFC 1166 (Internet numbers), contains 566778 bytes, while the
smallest consists of a 27-byte text file:

RFC Numerology 625

A few interesting coincidences have occurred. For example, the ASCLI text file for
RFC 41 contains exactly 41 lines of text, and the ASCII text file for RFC 854, exactly
854 lines. RFC 1996 has a number that matches the year in which it was published.
However, the number for no other RFC will match the year of publication.

The quantity of RFCs published per year varies widely. Figure Al. l illustrates
how the rate has changed over time. The surge of work in the 1970s represents an ini-
tial period of building; the high rate of publication in the 1990s has resulted from com-
mercialization.

Figure A l . l The number of RFCs published per year.

626 A Guide To RFCs Appendix 1

How To Obtain An RFC Over The Internet

RFCs are available electronically from many repositories around the world. Check
with your local network administrator to find the site nearest you or begin with the fol-
lowing URL:

Browsing Through RFCs

There are several indexes that can help one browse through RFCs. IS1 publishes
an index of all RFCs in chronological order. Readers often need to know which RFC
contains the latest version of an official Internet protocol or which protocols are official
and which are unofficial. To accommodate such needs, the IAB periodically publishes
an RFC entitled INTERNET OFFICIAL PROTOCOL STANDARDS, which provides a
list of all protocols that have been adopted as TCP/IP standards, along with the number
of the most recent RFC or RFCs describing each protocol. RFC 1602, The Internet
Standards Process - Revision 2, describes the Internet standardization process and de-
fines the meaning of the terms proposed standard, draft standard, Internet standard, re-
quired, recommended, and historic.

Despite the available indexes, browsing through RFCs can be difficult, especially
when the reader is searching for information pertinent to a given topic, which may be
spread across RFCs published in many years. Browsing is particularly difficult because
titles do not provide sufficient identification of the content. (How could one guess from
the title Leaving Well Enough Alone that the RFC pertains to FTP?) Finally, having
multiple RFCs with a single title (e.g., Internet Numbers) can be confusing because the
reader cannot easily tell whether a document is out-of-date without checking the ar-
chive.

RFCs Arranged By Topic

The final section of this appendix provides help in finding information in RFCs be-
cause it contains a list of the first 2728 RFCs arranged by topic. Readers can find an
earlier topical index in RFC 1000, which also includes an annotated chronological list-
ing of the first 1000 RFCs. Although long, RFC 1000 is highly recommended as a
source of authoritative and valuable critique - its introduction is especially fascinating.
Recalling the origin of RFCs along with the origin of the ARPANET, the introduction
captures the spirit of adventure and energy that still characterizes the Internet.

Sec. 1 Administration

RFCs Organized By Major Category And Subtopic

1. Administrative
la. Assigned Internet Numbers (official values used by protocols)

1700, 1340, 1166, 1117, 1062, 1060, 1020, 1010,997,990,960,943,923,900, 870,
820,790,776,770,762,758,755,750,739,717,604,503,433, 349,322,317,204,
179, 175, 167

1 b. Official IAB Standards and Other Lists of Protocols
2500, 2400, 2300, 2200,2000, 1920, 1880, 1800, 1780, 1720, 1610, 1600, 1540,
1500, 1410, 1360, 1280, 1250, 1200, 1140, 1130, 1100, 1083, 1011,991,961,944,
924,901,880, 840,694,661,617,582,580,552
774,766

Ic. Meeting Notes and Minutes
2316 -Report of the IAB Security Architecture Workshop
2130 -The Report of the IAB Character Set Workshop held 29 February - 1 March,

1996
1862 -Report of the IAB Workshop on Internet Information Infrastructure, October

12-14, 1994
1636 -Report of IAB Workshop on Security in the Internet Architecture - February

8-10, 1994
1588 -White Pages Meeting Report
1210 -Network and infrastructure user requirements for transatlantic research

collaboration: Brussels, July 16-18, and Washington July 24-25, 1990
1152 -Workshop report: Internet research steering group workshop on very-high-

speed networks
1077 -Critical issues in high bandwidth networking
1019 -Report of the Workshop on Environments for Computational Mathematics
1017 -Network requirements for scientific research: Internet task force on scientific

computing
910, 807 - Multimedia mail meeting notes
898 - Gateway special interest group meeting notes
808, 805,469 - Summary of computer mail services meeting held at BBN on 10

January 1979
585 - ARPANET users interest working group meeting
549, 396, 282, 253 - Minutes of Network Graphics Group meeting, 15-17 July 1973
371 - Demonstration at International Computer Communications Conference
327 - Data and File Transfer workshop notes
3 16 - ARPA Network Data Management Working Group
164, 131, 108, 101, 82,77,63, 37, 21 - Minutes of Network Working Group

meeting, 5/16 through 511917 1
Id. Meeting Announcements and Group Overviews

1160, 1120 - Internet Activities Board
828 - Data communications: IFIP's international "network of experts
63 1 - International meeting on minicomputers and data communication: Call for

papers
584 - Charter for ARPANET Users Interest Working Group
537 - Announcement of NGG meeting July 16-17
526 - Technical meeting: Digital image processing software systems
504 - Distributed resources workshop announcement
483 - Cancellation of the resource notebook framework meeting

A Guide To RFCs Appendix 1

474, 314, 246, 232, 134 - Announcement of NGWG meeting: Call for papers
471 - Workshop on multi-site executive programs
461 - Telnet Protocol meeting announcement
457 - TIPUG
456 - Memorandum: Date change of mail meeting
454 - File Transfer Protocol - meeting announcement and a new proposed

document
453 - Meeting announcement to discuss a network mail system
374 - IMP System Announcement
359 - Status of the Release of the New IMP System (2600)
343, 331 - IMP System change notification
324 - RJE Protocol meeting
323 - Formation of Network Measurement Group (NMG)
320 - Workshop on Hard Copy Line Printers
309 - Data and File Transfer Workshop Announcement
299 - Information Management System
295 - Report of the Protocol Workshop, 12 October 1971
291, 188, 173 - Data Management Meeting Announcement
245, 234, 207, 140, 116, 99, 87, 85, 75,43, 35 - Reservations for Network Group

meeting
222 - Subject: System programmer's workshop
212 - NWG meeting on network usage
157 - Invitation to the Second Symposium on Problems in the Optimization of Data

Communications Systems
149 - Best Laid Plans
130 - Response to RFC 1 1 1: Pressure from the chairman
11 1 - Pressure from the Chairman
48 - Possible protocol plateau
46 - ARPA Network protocol notes

le. Distribution Lists
402, 363, 329, 303, 300, 21 1, 168, 155 - ARPA Network Mailing Lists
69 - Distribution List Change for MIT
52 - Updated distribution list

I f . Policies Documents
2717 -Registration Procedures for URL Scheme Names
2506 -Media Feature Tag Registration Procedure
2489 -Procedure for Defining New DHCP Options
2418, 1603 - IETF Working Group Guidelines and Procedures
2282, 2027 - IAB and IESG Selection, Confirmation, and Recall Process: Operation

of the Nominating and Recall Committees
2278 -1ANA Charset Registration Procedures
2277 -1ETF Policy on Character Sets and Languages
2146, 1816, 181 1 - US Government Internet Domain Names
2135 -Internet Society By-Laws
2050 -Internet Registry IF' Allocation Guidelines
2042 -Registering New BGP Attribute Types
2014 -1RTF Research Group Guidelines and Procedures
1956 -Registration in the MIL Domain
1930 Guidelines for creation, selection, and registration of an Autonomous System

(AS)
1875 -UNINETT PCA Policy Statements
137 1 -Choosing a Common IGP for the IP Internet

Sec. 1 Administrative 629

1124 -Policy issues in interconnecting networks
1087 -Ethics and the Internet
1052 -1AB recommendations for the development of Internet network management

standards
1039 -DoD statement on Open Systems Interconnection protocols
980 - Protocol document order information
952, 810, 608 - DoD Internet host table specification
945 - DoD statement on the NRC report
902 - ARPA Internet Protocol policy
849 - Suggestions for improved host table distribution
678 - Standard file fornlats
602 - "The stockings were hung by the chimney with care"
115 - Some Network Information Center policies on handling documents
53 - Official protocol mechanism

1 g. Request for Comments Administrative
2648 -A URN Namespace for IETF Documents
2629 -Writing I-Ds and RFCs using XML
2499, 2399, 2299, 2199,2099, 1999, 1899, 1799, 1699, 1599, 1499, 1399, 1299,

999, 899,800, 699,598, 200, 170, 160, 100, 84 - Request for Comments -
Summary

2434 -Guidelines for Writing an IANA Considerations Section in RFCs
2360 -Guide for Internet Standards Writers
2223, 1543, 11 11 - Instructions to RFC Authors
21 19 -Key words for use in RFCs to Indicate Requirement Levels
18 18 -Best Current Practices
1796 -Not All RFCs are Standards
13 11 -Introduction to the STD Notes
1150 -FYI on FYI: Introduction to the FYI Notes
1000 -Request For Comments reference guide
825 - Request for comments on Requests For Comments
629 - Scenario for using the Network Journal
628 - Status of RFC numbers and a note on pre-assigned journal numbers

1 h. Other
2691 -A Memorandum of Understanding for an ICANN Protocol Support

Organization
2690 -A Proposal for an MOU-Based ICANN Protocol Support Organization
2436 -Collaboration between ISOChETF and ITU-T
2339, 1790 - An Agreement Between the Internet Society, the IETF, and Sun

Microsystems, Inc
2134 -Articles of Incorporation of Internet Society
2053 -The AM (Amlenia) Domain
203 1 -1ETF-ISOC relationship
2028 -The Organizations Involved in the IETF Standards Process
2026, 1871, 1602, 13 10 - The Internet Standards Process -- Revision 3
1988 -Conditional Grant of Rights to Specific Hewlett-Packard Patents In

Conjunction With the Internet Engineering Task Force's Internet-Standard
Network Management Framework

1984 -1AB and IESG Statement on Cryptographic Technology and the Internet
1917 -An Appeal to the Internet Community to Return Unused IP Networks

(Prefixes) to the IANA
1822 -A Grant of Rights to Use a Specific IBM patent with Photuris
1718, 1539, 1391 - The Tao of IETF - A Guide for New Attendees of the Internet

Engineering Task Force

A Guide To RFCs Appendix 1

1690 -Introducing the Internet Engineering and Planning Group (IEPG)
1689 -A Status Report on Networked Information Retrieval: Tools and Groups
1640 -The Process for Organization of Internet Standards Working Group

(POISED)
1601, 1358 - Charter of the Internet Architecture Board (IAB)
1527 -What Should We Plan Given the Dilemma of the Network?
1481 -1AB Recommendation for an Intermediate Strategy to Address the Issue of

Scaling
1401 -Correspondence between the M3 and DISA on the use of DNS
1396 -The Process for Organization of Internet Standards Working Group

(POISED)
1380 -1ESG Deliberations on Routing and Addressing
1297 -NOC Internal Integrated Trouble Ticket System Functional Specification

Wishlist ("NOC TT REQUIREMENTS")
1287 -Towards the Future Internet Architecture
1272 -Internet Accounting: Background
1261 -Transition of Nic Services
1174 -1AB recommended policy on distributing internet identifier assignment and

IAB recommended policy change to internet "connected" status
637 - Change of network address for SU-DSL
634 - Change in network address for Haskins Lab
616 - Latest network maps
609 - Statement of upcoming move of NIC/NLS service
590 - MULTICS address change
588 - London node is now up
551 - NYU, ANL, and LBL Joining the Net
544 - Locating on-line documentation at SRI-ARC
543 - Network journal submission and delivery
5 18 - ARPANET accounts
5 11 - Enterprise phone service to NIC from ARPANET sites
5 10 - Request for network mailbox addresses
440 - Scheduled network software maintenance
432 - Network logical map
423, 389 - UCLA Campus Computing Network Liaison Staff for ARPANET
421 - Software Consulting Service for Network Users
419 - To: Network liaisons and station agents
416 - ARC System Will Be Unavailable for Use During Thanksgiving Week
405 - Correction to RFC 404
404 - Host Address Changes Involving Rand and IS1
403 - Desirability of a network 1108 service
386 - Letter to TIP users-2
384 - Official site idents for organizations in the ARPA Network
381 - Three aids to improved network operation
365 - Letter to All TIP Users
356 - ARPA Network Control Center
334 - Network Use on May 8
305 - Unknown Host Numbers
301 - BBN IMP (#5) and NCC Schedule March 4, 1971
289 - What we hope is an official list of host names
276 - NIC course
249 - Coordination of equipment and supplies purchase
223 - Network Information Center schedule for network users
185 - NIC distribution of manuals and handbooks

Sec. 1 Administrative

154 - Exposition Style
136 - Host accounting and administrative procedures
118 - Recommendations for facility documentation
95 - Distribution of NWGIRFC's through the NIC
16 - M.1.T

2. Requirements Documents and Major Protocol Revisions
2a. Host Requirements

1127 -Perspective on the Host Requirements RFCs
1123 -Requirements for Internet hosts - application and support
1122 -Requirements for Internet hosts - communication layers

2b. Gateway Requirements
2644 -Changing the Default for Directed Broadcasts in Routers
1812, 1009 - Requirements for IP Version 4 Routers

3. Network Interface Level (Also see Section 8)
3a. Address Binding (ARP, RARP)

2390, 1293 - Inverse Address Resolution Protocol
1931 -Dynamic RARP Extensions for Automatic Network Address Acquisition
1868 -ARP Extension - UNARP
1433 -Directed ARP
1329 -Thoughts on Address Resolution for Dual MAC FDDI Networks
1027 -Using ARP to implement transparent subnet gateways
925 - Multi-LAN address resolution
903 - Reverse Address Resolution Protocol
826 - Ethernet Address Resolution Protocol: Or converting network protocol

addresses to 48.bit Ethernet address for transmission on Ethernet hardware

3b. Internet Protocol over another network (encapsulation)
2728 -The Transmission of IP Over the Vertical Blanking Interval of a Television

Signal
2625 -IP and ARP over Fibre Channel
2176 -IPV4 over MAPOS Version 1
2143 -Encapsulating IP with the Small Computer System Interface
2067, 1374 - IP over HIPPI
2004, 2003, 1853 - Minimal Encapsulation within IP
1390, 1188, 1103 - Transmission of IP and ARP over FDDI Networks
1241 -Scheme for an internet encapsulation protocol: Version 1
1226 -Internet protocol encapsulation of AX.25 frames
1221, 907 - Host Access Protocol (HAP) specification: Version 2
1209 -Transmission of IP datagram over the SMDS Service
1201, 105 1 - Transmitting IP traffic over ARCNET networks
1088 -Standard for the transmission of IP datagrams over NetBIOS networks
1055 -Nonstandard for transmission of IP datagrams over serial lines: SLIP
1044 -Internet Protocol on Network System's HYPERchannel: Protocol

specification
1042 -Standard for the transmission of IP datagrams over IEEE 802 networks
948 - Two methods for the transmission of IP datagrams over IEEE 802.3 networks
895 - Standard for the transmission of IP datagrams over experimental Ethernet

networks
894 - Standard for the transmission of IP datagrams over Ethernet networks
893 - Trailer encapsulations
877 - Standard for the transmission of IP datagrams over public data networks

632 A Guide To RFCs Appendix 1

3c. Nonbroadcast Multiple Access Networks (ATM, IP Switching, MPLS)
2702 -Requirements for Traffic Engineering Over MPLS
2684 -Multiprotocol Encapsulation over ATM Adaptation Layer 5
2682 -Performance Issues in VC-Merge Capable ATM LSRs
2643 -Cabletron's SecureFast VLAN Operational Model
2642 Zabletron's VLS Protocol Specification
2641 Xabletron's VlanHello Protocol Specification Version 4
2603 -ILMI-Based Server Discovery for NHRP
2602 -ILMI-Based Server Discovery for MARS
2601 -ILMI-Based Server Discovery for ATMARP
2583 -Guidelines for Next Hop Client (NHC) Developers
2520 -NHRP with Mobile NHCs
2443 -A Distributed MARS Service Using SCSP
2383 S T 2 + over ATM Protocol Specification - UNI 3.1 Version
2340 -Nortel's Virtual Network Switching (VNS) Overview
2337 -1ntra-LIS IP multicast among routers over ATM using Sparse Mode PIM
2336 -Classical IP to NHRP Transition
2335 -A Distributed NHRP Service Using SCSP
2334 -Server Cache Synchronization Protocol (SCSP)
2333 -NHRP Protocol Applicability Statement
2332 -NBMA Next Hop Resolution Protocol (NHRP)
233 1 -ATM Signalling Support for IP over ATM - UNI Signalling 4.0 Update
2297, 1987 - Ipsilon's General Switch Management Protocol Specification Version

2.0
2269 -Using the MARS Model in non-ATM NBMA Networks
2226 -1P Broadcast over ATM Networks
2225, 1577 - Classical IP and ARP over ATM
2191 -VENUS - Very Extensive Non-Unicast Service
2 170 -Application REQuested IP over ATM (AREQUIPA)
2149 -Multicast Server Architectures for MARS-based ATM multicasting
2129 -Toshiba7s Flow Attribute Notification Protocol (FANP) Specification
2124 Zabletron's Light-weight Flow Admission Protocol Specification Version 1.0
2121 -Issues affecting MARS Cluster Size
2105 -Cisco Systems' Tag Switching Architecture Overview
2098 -Toshiba's Router Architecture Extensions for ATM : Overview
2022 -Support for Multicast over UNI 3.013.1 based ATM Networks
1954 -Transmission of Flow Labelled IPv4 on ATM Data Links Ipsilon Version 1.0
1953 -1psilon Flow Management Protocol Specification for IPv4 Version 1.0
1932 -IP over ATM: A Framework Document
1755 -ATM Signaling Support for IP over ATM
1754 -IP over ATM Working Group's Recommendations for the ATM Forum's

Multiprotocol BOF Version 1
1735 -NBMA Address Resolution Protocol (NARP)
1626 -Default IP MTU for use over ATM AAL5
1483 -Multiprotocol Encapsulation over ATM Adaptation Layer 5

3d. Other
2469 -A Caution On The Canonical Ordering Of Link-Layer Addresses
2427, 1490, 1294 - Multiprotocol Interconnect over Frame Relay
2341 -Cisco Layer Two Forwarding (Protocol) "L2F
2175 -MAPOS 16 - Multiple Access Protocol over SONETISDH with 16 Bit

Addressing
2174 -A MAPOS version 1 Extension - Switch-Switch Protocol

Sec. 3 Network Interface Level (Also see Section 8)

2173 -A MAPOS version 1 Extension - Node Switch Protocol
2172 -MAPOS Version 1 Assigned Numbers
2171 -MAPOS - Multiple Access Protocol over SONET/SDH Version 1
1326 -Mutual Encapsulation Considered Dangerous

4. lnternet Level
4a. lnternet Protocol (IP)

2 1 13 -IP Router Alert Option
1624, 1141 - Computation of the Internet Checksum via Incremental Update
1 191, 1063 - Path MTU discovery
1071 -Computing the Internet checksum
1025 -TCP and IP bake off
815 - IP datagram reassembly algorithms
791, 760 - Internet Protocol
781 - Specification of the Internet Protocol (IP) timestamp option

4b. lnternet Control Message Protocol (ICMP)
2521 -1CMP Security Failures Messages
1788 -1CMP Domain Name Messages
1256 -1CMP Router Discovery Messages
101 8 -Some comments on SQuID
1016 -Something a host could do with source quench: The Source Quench

Introduced Delay (SQUID)
792, 777 - Internet Control Message Protocol

4c. Multicast (IGMP)
2588 -IP Multicast and Fiewalls
2502 -Limitations of Internet Protocol Suite for Distributed Simulation the Large

Multicast Environment
2365 -Administratively Scoped IP Multicast
2357 -1ETF Criteria for Evaluating Reliable Multicast Transport and Application

Protocols
2236 -Internet Group Management Protocol, Version 2
1768 -Host Group Extensions for CLNP Multicasting
1469 -1P Multicast over Token-Ring Local Area Networks
1458 -Requirements for Multicast Protocols
1301 -Multicast Transport Protocol
11 12, 1054,988,966 - Host extensions for IP multicasting

4d. Routing and Gateway Algorithms (BGP, GGP, RIP, OSPF)
27 15 -Interoperability Rules for Multicast Routing Protocols
2676 -QoS Routing Mechanisms and OSPF Extensions
2650 -Using RPSL in Practice
2622,2280 - Routing Policy Specification Language (RPSL
25 19 -A Framework for Inter-Domain Route Aggregation
2453, 1723, 1388 - RIP Version 2
2439 -BGP Route Flap Damping
2385 -Protection of BGP Sessions via the TCP MD5 Signature Option
2370 -The OSPF Opaque LSA Option
2362, 21 17 - Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol

Specification
2338 -Virtual Router Redundancy Protocol
2329 4 S P F Standardization Report
2328,2178, 1583, 1247, 1131 - OSPF Version 2

A Guide To RFCs Appendix 1

2283 -Multiprotocol Extensions for BGP-4
2281 Z i s c o Hot Standby Router Protocol (HSRP)
2270 -Using a Dedicated AS for Sites Homed to a Single Provider
2260 -Scalable Support for Multi-homed Multi-provider Connectivity
2201, 2189 - Core Based Trees (CBT) Multicast Routing Architecture
2154 -0SPF with Digital Signatures
2103 -Mobility Support for Nimrod : Challenges and Solution Approaches
2102 -Multicast Support for Nimrod : Requirements and Solution Approaches
2092 -Protocol Analysis for Triggered RIP
209 1 -Triggered Extensions to RIP to Support Demand Circuits
2082 -RIP-2 MD5 Authentication
2009 -GPS-Based Addressing and Routing
1998 -An Application of the BGP Community Attribute in Multi-home Routing
1997 -BGP Communities Attribute
1992 -The Nimrod Routing Architecture
1966 -BGP Route Reflection An alternative to full mesh IBGP
1965 -Autonomous System Confederations for BGP
1923 - D l Applicability Statement for Historic Status
1863 -A BGPIIDRP Route Server alternative to a full mesh routing
1817 -CIDR and Classful Routing
1793 -Extending OSPF to Support Demand Circuits
1787 -Routing in a Multi-provider Internet
1786 -Representation of IP Routing Policies in a Routing Registry (ripe-81++)
1774 -BGP-4 Protocol Analysis
1773, 1656 - Experience with the BGP-4 protocol
1772, 1655, 1268, 1164 - Application of the Border Gateway Protocol in the Internet
1771, 1654, 1267, 1163 - A Border Gateway Protocol 4 (BGP4)
1765 -0SPF Database Overflow
1745 -BGP4/IDRP for IP---OSPF Interaction
1722 -RIP Version 2 Protocol Applicability Statement
1721, 1387 - RIP Version 2 Protocol Analysis
1702, 1701 - Generic Routing Encapsulation over IPv4 networks
1587 -The OSPF NSSA Option
1586 -Guidelines for Running OSPF Over Frame Relay Networks
1585 -MOSPF: Analysis and Experience
1584 -Multicast Extensions to OSPF
1582 -Extensions to RIP to Support Demand Circuits
1581 -Protocol Analysis for Extensions to RIP to Support Demand Circuits
1520 -Exchanging Routing Information Across Provider Boundaries in the CIDR

Environment
1519, 1338 - Classless Inter-Domain Routing (CIDR): an Address Assignment and

Aggregation Strategy
1517 -Applicability Statement for the Implementation of Classless Inter-Domain

Routing (CIDR)
1504 -Appletalk Update-Based Routing Protocol: Enhanced Appletalk Routing
1482 -Aggregation Support in the NSFNET Policy-Based Routing Database
1479 -Inter-Domain Policy Routing Protocol Specification: Version 1
1478 -An Architecture for Inter-Domain Policy Routing
1477 -IDPR as a Proposed Standard
1465 -Routing Coordination for X.400 MHS Services Within a Multi Protocol /

Multi Network Environment Table Format V3 for Static Routing
1403, 1364 - BGP OSPF Interaction
1397 -Default Route Advertisement In BGP2 and BGP3 Version of The Border

Gateway Protocol

Sec. 4 Internet Level

1383 -An Experiment in DNS Based IP Routing
1370 -Applicability Statement for OSPF
1322 -A Unified Approach to Inter-Domain Routing
1266 -Experience with the BGP Protocol
1265 -BGP Protocol Analysis
1264 -Internet Engineering Task Force Internet Routing Protocol Standardization

Criteria
1254 -Gateway Congestion Control Survey
1246 -Experience with the OSPF Protocol
1245 -0SPF Protocol Analysis
1222 -Advancing the NSFNET routing architecture
1195 -Use of OSI IS-IS for routing in TCP/IP and dual environments
1142 4 S I IS-IS Intra-domain Routing Protocol
1136 -Administrative Domains and Routing Domains: A model for routing in the

Internet
1133 -Routing between the NSFNET and the DDN
1126 -Goals and functional requirements for inter-autonomous system routing
1125 -Policy requirements for inter Administrative Domain routing
1105 -Border Gateway Protocol (BGP)
1104 -Models of policy based routing
1102 -Policy routing in Internet protocols
1093 -NSFNET routing architecture
1092 -EGP and policy based routing in the new NSFNET backbone
1075 -Distance Vector Multicast Routing Protocol
1074 -NSFNET backbone SPF based Interior Gateway Protocol
1058 -Routing Information Protocol
1046 -Queuing algorithm to provide type-of-service for IP links
985 - Requirements for Internet gateways - draft
975 - Autonomous confederations
970 - On packet switches with infinite storage
91 1 - EGP Gateway under Berkeley UNIX 4.2
904, 890, 888, 827 - Exterior Gateway Protocol formal specification
875 - Gateways, architectures, and heffalumps
823 - DARPA Internet gateway

4e. IP: The Next Generation (IPng, IPv6)
271 1 -IPv6 Router Alert Option
2710 -Multicast Listener Discovery (MLD) for IPv6
2675,2147 - IPv6 Jumbograms
2590 -Transmission of IPv6 Packets over Frame Relay
2553, 2133 - Basic Socket Interface Extensions for IPv6
2546 -6Bone Routing Practice
2545 -Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing
2529 -Transmission of IPv6 over IPv4 Domains without Explicit Tunnels
2526 -Reserved IPv6 Subnet Anycast Addresses
2497 -Transmission of IPv6 Packets over ARCnet Networks
2492 -IPv6 over ATM Networks
2491 -IPv6 over Non-Broadcast Multiple Access (NBMA) networks
2473 -Generic Packet Tunneling in IPv6 Specification
2472, 2023 - IP Version 6 over PPP
247 1, 1897 - IPv6 Testing Address Allocation
2470 -Transmission of IPv6 Packets over Token Ring Networks
2467,2019 - Transmission of IPv6 Packets over FDDI Networks
2466, 2465 - Management Information Base for IP Version 6: ICMPv6 Group

636 A Guide To RFCs Appendix 1

2464, 1972 - Transmission of IPv6 Packets over Ethernet Networks
2463, 1885 - Internet Control Message Protocol (ICMPv6) for the Internet Protocol

Version 6 (IPv6) Specification
2462, 1971 - IPv6 Stateless Address Autoconfiguration
2461, 1970 - Neighbor Discovery for IP Version 6 (IPv6)
2460, 1883 - Internet Protocol, Version 6 (IPv6) Specification
2454 -IP Version 6 Management Information Base for the User Datagram Protocol
2452 -IP Version 6 Management Information Base for the Transmission Control

Protocol
2450 -Proposed TLA and NLA Assignment Rule
2375 -IPv6 Multicast Address Assignments
2374, 2073 - An IPv6 Aggregatable Global Unicast Address Format
2373, 1884 - IP Version 6 Addressing Architecture
2292 -Advanced Sockets API for IPv6
2185 -Routing Aspects of IPv6 Transition
2081 -RIPng Protocol Applicability Statement
2080 -RIPng for IPv6
198 1 -Path MTU Discovery for IP version 6
1955 -New Scheme for Internet Routing and Addressing (ENCAPS) for IPNG
1933 -Transition Mechanisms for IPv6 Hosts and Routers
1888 -OSI NSAPs and IPv6
1887 -An Architecture for IPv6 Unicast Address Allocation
1886 -DNS Extensions to support IP version 6
1881 -1Pv6 Address Allocation Management
1809 -Using the Flow Label Field in IPv6
1753 -1Png Technical Requirements Of the Nimrod Routing and Addressing

Architecture
1752 -The Recommendation for the IP Next Generation Protocol
1726 -Technical Criteria for Choosing IP The Next Generation (Png)
17 19 -A Direction for IPng
17 10 -Simple Internet Protocol Plus White Paper
1707 -CATNIP: Common Architecture for the Internet
1705 -Six Virtual Inches to the Left: The Problem with IPng
1688 -1Png Mobility Considerations
1687 -A Large Corporate User's View of IPng
1686 -IPng Requirements: A Cable Television Industry Viewpoint
1683 -Multiprotocol Interoperability In IPng
1682 -1Png BSD Host Implementation Analysis
1680 -1Png Support for ATM Services
1679 -HPN Working Group Input to the IPng Requirements Solicitation
1678 -1Png Requirements of Large Corporate Networks
1677 -Tactical Radio Frequency Communication Requirements for IPng
1676 -1NFN Requirements for an IPng
1675 -Security Concerns for P n g
1674 -A Cellular Industry View of IPng
1673 -Electric Power Research Institute Comments on IPng
1672 -Accounting Requirements for IPng
1671 -IPng White Paper on Transition and Other Considerations
1670 -Input to IPng Engineering Considerations
1669 -Market Viability as a IPng Criteria
1668 -Unified Routing Requirements for IPng
1667 -Modeling and Simulation Requirements for IPng
1622 -Pip Header Processing

Sec. 4 Internet Level

162 1 -Pip Near-term Architecture
1550 -1P: Next Generation (IPng) White Paper Solicitation
1526 -Assignment of System Identifiers for TUBAJCLNP Hosts
1475 -TP/IX: The Next Internet
1454 -Comparison of Proposals for Next Version of IP
1385 -EIP: The Extended Internet Protocol
1375 -Suggestion for New Classes of IP Addresses
1365 -An IP Address Extension Proposal
1347 -TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for

Internet Addressing and Routing
1335 -A Two-Tier Address Structure for the Internet: A Solution to the Problem of

Address Space Exhaustion
4f. IP Address Allocation and Network Numbering

2391 -Load Sharing using IP Network Address Translation (LSNAT)
2101 -1Pv4 Address Behaviour Today
2072 -Router Renumbering Guide
2071 -Network Renumbering Overview: Why would I want it and what is it

anyway?
2036 -Observations on the use of Components of the Class A Address Space within

the Internet
2008 -Implications of Various Address Allocation Policies for Internet Routing
19 18, 1597 - Address Allocation for Private Internets
1916 -Enterprise Renumbering: Experience and Information Solicitation
1900 -Renumbering Needs Work
1879, 1797 - Class A Subnet Experiment Results and Recommendations
1878, 1860 - Variable Length Subnet Table For IPv4
1814 -Unique Addresses are Good
1744 4bservation.s on the Management of the Internet Address Space
1715 -The H Ratio for Address Assignment Efficiency
1681 -On Many Addresses per Host
1627 -Network 10 Considered Harmful (Some Practices Shouldn't be Codified)
1466, 1366 - Guidelines for Management of IP Address Space
12 19 -On the assignment of subnet numbers
950 - Internet Standard Subnetting Procedure
940,936, 932, 917 - Toward an Internet standard scheme for subnetting

49. Network Isolation (VPN, Firewall, NAT)
2694 -DNS extensions to Network Address Translators (DNS-ALG)
2685 -Virtual Private Networks Identifier
2663 -1P Network Address Translator (NAT) Terminology and Considerations
2647 -Benchmarking Terminology for Firewall Performance
2637 -Point-to-Point Tunneling Protocol
2547 -BGP/MPLS VPNs
1961 -GSS-API Authentication Method for SOCKS Version 5
1929, 1928 - Usernarne/Password Authentication for SOCKS V5
1858 -Security Considerations for IP Fragment Filtering
163 1 -The IP Network Address Translator (NAT)

4h. Other
2698 -A Two Rate Three Color Marker
2697 -A Single Rate Three Color Marker
2638 -A Two-bit Differentiated Services Architecture for the Internet
2598 -An Expedited Forwarding PHI3
2597 -Assured Forwarding PHB Group

638 A Guide To RFCs Appendix I

2508 -Compressing IPAJDPIRTP Headers for Low-Speed Serial Links
2507 -IP Header Compression
2481 -A Proposal to add Explicit Congestion Notification (ECN) to IP
2475 -An Architecture for Differentiated Service
2474, 1349 - Definition of the Differentiated Services Field (DS Field) in the IPv4

and IPv6 Headers
2395 -IP Payload Compression Using LZS
2394 -IP Payload Compression Using DEFLATE
2393 -IP Payload Compression Protocol (IPComp)
2075 -IP Echo Host Service
1946 -Native ATM Support for ST2+
1940 -Source Demand Routing: Packet Format and Forwarding Specification

(Version 1)
1937 -"LocaURemote" Forwarding Decision in Switched Data Link Subnetworks
1936 -Implementing the Internet Checksum in Hardware
1919 -Classical versus Transparent IP Proxies
1819, 1190 - Internet Stream Protocol Version 2 (ST2) Protocol Specification -

Version ST2+
1770 -IPv4 Option for Sender Directed Multi-Destination Delivery
1716 -Towards Requirements for IP Routers
1620 -Internet Architecture Extensions for Shared Media
1560 -The MultiProtocol Internet
1518 -An Architecture for IP Address Allocation with CIDR
1476 -RAP: Internet Route Access Protocol
1467, 1367 - Status of CIDR Deployment in the Internet
1393 -Traceroute Using an IP Option
1363 -A Proposed Flow Specification
986 - Guidelines for the use of Internet-IP addresses in the IS0 Connectionless-

Mode Network Protocol
98 1 - Experimental multiple-path routing algorithm
963 - Some problems with the specification of the Military Standard Internet

Protocol
947 - Multi-network broadcasting within the Internet
922, 919 - Broadcasting Internet datagrams in the presence of subnets
871 - Perspective on the ARPANET reference model
831 - Backup access to the European side of SATNET
817 - Modularity and efficiency in protocol implementation
816 - Fault isolation and recovery
814 - Name, addresses, ports, and routes
796 - Address mappings
795 - Service mappings
730 - Extensible field addressing

5. Host Level
5a. User Datagram Protocol (UDP)

768 - User Datagram Protocol
5b. Transmission Control Protocol (TCP)

2582 -The NewReno Modification to TCP's Fast Recovery Algorithm
2581,2001 - TCP Congestion Control
2525 -Known TCP Implementation Problems
2488 -Enhancing TCP Over Satellite Channels using Standard Mechanisms
2416 -When TCP Starts Up With Four Packets Into Only Three Buffers

Sec. 5 Host Level

2415 -Simulation Studies of Increased Initial TCP Window Size
2414 -Increasing TCP's Initial Window
2398 -Some Testing Tools for TCP Implementors
2140 -TCP Control Block Interdependence
2018 -TCP Selective Acknowledgement Options
1693 -An Extension to TCP : Partial Order Service
1644 -T/TCP -- TCP Extensions for Transactions Functional Specification
1379 -Extending TCP for Transactions -- Concepts
1337 -TIME-WAIT Assassination Hazards in TCP
1323, 1185 - TCP Extensions for High Performance
1263 -TCP Extensions Considered Harmful
1146, 1145 - TCP alternate checksum options
1144 -Compressing TCPm headers for low-speed serial links
11 10 -Problem with the TCP big window option
1106 -TCP big window and NAK options
1078 -TCP port service Multiplexer (TCPMUX)
1072 -TCP extensions for long-delay paths
964 - Some problems with the specification of the Military Standard Transmission

Control Protocol
962 - TCP-4 prime
896 - Congestion control in IP/TCP internetworks
889 - Internet delay experiments
879 - TCP maximum segment size and related topics
872 - TCP-on-a-LAN
813 - Window and Acknowledgement Strategy in TCP
794 - Pre-emption
793, 761, 675 - Transmission Control Protocol
721 - Out-of-Band Control Signals in a Host-to-Host Protocol
700 - Protocol experiment

5c. Point-to-Point Protocols (PPP)
2701 -Nortel Networks Multi-link Multi-node PPP Bundle Discovery Protocol
2687 -PPP in a Real-time Oriented HDLC-like Framing
2686 -The Multi-Class Extension to Multi-Link PPP
26 15, 16 19 - PPP over SONETISDH
2516 -Method for Transmitting PPP Over Ethernet (PPPoE)
2509 -IP Header Compression over PPP
2484 -PPP LCP Internationalization Configuration Option
2433 -Microsoft PPP CHAP Extensions
2420 -The PPP Triple-DES Encryption Protocol (3DESE)
2419, 1969 - The PPP DES Encryption Protocol, Version 2 (DESE-bis)
2364 -PPP Over AAL5
2363 -PPP Over FUN1
2284 -PPP Extensible Authentication Protocol (EAP)
2 153 -PPP Vendor Extensions
2125 -The PPP Bandwidth Allocation Protocol (BAP) 1 The PPP Bandwidth

Allocation Control Protocol (BACP)
2 1 18 -Microsoft Point-To-Point Compression (MPPC) Protocol
2097 -The PPP NetBIOS Frames Control Protocol (NBFCP)
2043 -The PPP SNA Control Protocol (SNACP)
1994, 1334 - PPP Challenge Handshake Authentication Protocol (CHAP)
1993 -PPP Gandalf FZA Compression Protocol
1990, 1717 - The PPP Multilink Protocol (MP)
1989, 1333 - PPP Link Quality Monitoring

640 A Guide To RFCs Appendix 1

1979 -PPP Deflate Protocol
1978 -PPP Predictor Compression Protocol
1977 -PPP BSD Compression Protocol
1976 -PPP for Data Compression in Data Circuit-Terminating Equipment (DCE)
1975 -PPP Magnalink Variable Resource Compression
1974 -PPP Stac LZS Compression Protocol
1973 -PPP in Frame Relay
1968 -The PPP Encryption Control Protocol (ECP)
1967 -PPP LZS-DCP Compression Protocol (LZS-DCP)
1963 -PPP Serial Data Transport Protocol (SDTP)
1962 -The PPP Compression Control Protocol (CCP)
1934 -Ascend's Multilink Protocol Plus (MP+)
1915 -Variance for The PPP Connection Control Protocol and The PPP Encryption

Control Protocol
1877 -PPP Internet Protocol Control Protocol Extensions for Name Server

Addresses
1841 -PPP Network Control Protocol for LAN Extension
1764 -The PPP XNS D P Control Protocol (XNSCP)
1763 -The PPP Banyan Vines Control Protocol (BVCP)
1762, 1376 - The PPP DECnet Phase IV Control Protocol (DNCP)
1663 -PPP Reliable Transmission
1662, 1549 - PPP in HDLC-like Framing
1661, 1548 - The Point-to-Point Protocol (PPP)
1638, 1220 - PPP Bridging Control Protocol (BCP)
16 18 -PPP over ISDN
1598 -PPP in X.25
1570 -PPP LCP Extensions
1552 -The PPP Internetworking Packet Exchange Control Protocol (IPXCP)
1547 -Requirements for an Internet Standard Point-to-Point Protocol
1378 -The PPP AppleTalk Control Protocol (ATCP)
1377 -The PPP OSI Network Layer Control Protocol (OSINLCP)
1332, 1172 - The PPP Internet Protocol Control Protocol (PCP)
1331, 1171, 1134 - The Point-to-Point Protocol (PPP) for the Transmission of

Multi-protocol Datagrams over Point-to-Point Links

5e. Transaction Protocols and Distributed Operating Systems
2372 -Transaction Internet Protocol - Requirements and Supplemental Information
2371 -Transaction Internet Protocol Version 3.0
955 - Towards a transport service for transaction processing applications
938 - Internet Reliable Transaction Protocol functional and interface specification
722 - Thoughts on Interactions in Distributed Services
713 - MSDTP-Message Services Data Transmission Protocol
712 - Distributed Capability Computing System (DCCS)
708 - Elements of a Distributed Programming System
707 - High-level framework for network-based resource sharing
684 - Commentary on procedure calling as a network protocol
677 - Maintenance of duplicate databases
674 - Procedure call documents: Version 2
672 - Multi-site data collection facility
671 - Note on Reconnection Protocol
645 - Network Standard Data Specification syntax
615 - Proposed Network Standard Data Pathname syntax
610 - Further datalanguage design concepts
592 - Some thoughts on system design to facilitate resource sharing

Sec. 5 Host Level

578 - Using MIT-Mathlab MACSYMA from MIT-DMS Muddle
5 15 - Specifications for datalanguage: Version 019
500 - Integration of data management systems on a computer network
441 - Inter-Entity Communication - an experiment
437 - Data Reconfiguration Service at UCSB
203 - Achieving reliable communication
76 - Connection by name: User oriented protocol
62 - Systems for Interprocess Communication in a Resource Sharing Computer

Network
61 - Note on Interprocess Communication in a Resource Sharing Computer

Network
5 1 - Proposal for a Network Interchange Language
31 - Binary Message Forms in Computer

5f. Protocols for Local Area Networks (NETBIOS)
1002 -Protocol standard for a NetBIOS service on a TCP/UDP transport: Detailed

specifications
1001 -Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts

and methods
59. IP Mobility and Roaming

2607 -Proxy Chaining and Policy Implementation in Roaming
2548, 2 138,2058 - Microsoft Vendor-specific RADIUS Attributes
2501 -Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues

and Evaluation Considerations
2486 -The Network Access Identifier
2477 -Criteria for Evaluating Roaming Protocols
2356 -Sun's SKIP Firewall Traversal for Mobile IP
2344 -Reverse Tunneling for Mobile IP
2290 -Mobile-IPv4 Configuration Option for PPP IPCP
2194 -Review of Roaming Implementations
2139,2059 - RADIUS Accounting
2041 -Mobile Network Tracing
2005 -Applicability Statement for IP Mobility Support
2002 -IP Mobility Support

5h. Other
1546 -Host Anycasting Service
1312, 1159 - Message Send Protocol 2
115 1, 908 - Version 2 of the Reliable Data Protocol (RDP)
1045 -VMTP: Versatile Message Transaction Protocol: Protocol specification
998, 969 - NETBLT: A bulk data transfer protocol
979 - PSN End-to-End functional specification
869 - Host Monitoring Protocol
643 - Network Debugging Protocol
162 - NETBUGGER3

6. Application Level
6a. Telnet Protocol (TELNET)

2355, 1647 - TN3270 Enhancements
1921 -TNVIP Protocol
1646 -TN3270 Extensions for LUname and Printer Selection
1576 -TN3270 Current Practices
1205 -5250 Telnet interface

A Guide. To RFCs Appendix 1

1184 -Telnet Linemode Option
854, 764 - Telnet Protocol Specification
8 18 - Remote User Telnet service
782 - Virtual Terminal management model
728 - Minor pitfall in the Telnet Protocol
703,702,701,679,669 - July, 1975, survey of New-Protocol Telnet Servers
688 - Tentative schedule for the new Telnet implementation for the TIP
681 - Network UNM
600 - Interfacing an Illinois plasma terminal to the ARPANET
596 - Second thoughts on Telnet Go-Ahead
595 - Second thoughts in defense of the Telnet Go-Ahead
593 - Telnet and FIT implementation schedule change
576 - Proposal for modifying linking
570 - Experimental input mapping between NVT ASCII and UCSB On Line

System
562 - Modifications to the Telnet specification
559 - Comments on The New Telnet Protocol and its Implementation
529 - Note on protocol synch sequences
513 - Comments on the new Telnet specifications
495 - Telnet Protocol specifications
466 - Telnet loggerlserver for host LL-67
452 - TELENET Command at Host LL
435 - Telnet issues
426 - Recomection Protocol
393 - Comments on Telnet Protocol Changes
377 - Using TSO via ARPA Network Virtual Terminal
357 - Echoing strategy for satellite links
355,346 - Response to NWGJRFC 346
340 - Proposed Telnet Changes
339 - MLTNET: A "Multi Telnet" Subsystem for Tenex
328 - Suggested Telnet Protocol Changes
318 - Telnet Protocols
216 - Telnet access to UCSB's On-Line System
215 - NCP, ICP, and Telnet: The Terminal IMP implementation
206 - User Telnet - description of an initial implementation
205 - NETCRT - a character display protocol
190 - DEC PDP- 10-IMLAC communications system
158 - Telnet Protocol: A Proposed Document
139 - Discussion of Telnet Protocol
137 - Telnet Protocol - a proposed document
135, 1 10 - Response to NWGJRFC 1 10
103 - Implementation of Interrupt Keys
97 - Fist Cut at a Proposed Telnet Protocol
91 - Proposed User-User Protocol

6b. Telnet Options
2217 -Telnet Com Port Control Option
2066 -TELNET CHARSET Option
1572, 1408 - Telnet Environment Option
1571 -Telnet Environment Option Interoperability Issues
1416, 1409 - Telnet Authentication Option
141 2 -Telnet Authentication: SPX
141 1 -Telnet Authentication: Kerberos Version 4
1372, 1080 - Telnet Remote Flow Control Option

Sec. 6 Application Level

1143 -The Q Method of Implementing TELNET Option Negotiation
11 16 -Telnet Linemode option
1096 -Telnet X display location option
1091 -Telnet terminal-type option
1079 -Telnet terminal speed option
1073 -Telnet window size option
1053 -Telnet X.3 PAD option
1043 -Telnet Data Entry Tem~nal option: DODIIS implementation
1041 -Telnet 3270 regime option
946 - Telnet terminal location number option
933 - Output marking Telnet option
930 - Telnet terminal type option
927 - TACACS user identification Telnet option
885 - Telnet end of record option
884 - Telnet terminal type option
861 - Telnet Extended Options: List Option
860 - Telnet Timing Mark Option
859 - Telnet Status Option
858 - Telnet Suppress Go Ahead Option
857 - Telnet Echo Option
856 - Telnet Binary Transmission
855 - Telnet Option Specifications
779 - Telnet send-location option
749 - Telnet SUPDUP-Output option
747 - Recent extensions to the SUPDUP Protocol
746 - SUPDUP graphics extension
736 - Telnet SUPDUP option
735 - Revised Telnet byte macro option
732 - Telnet Data Entry Terminal option
73 1 - Telnet Data Entry Terminal option
729 - Telnet byte macro option
727 - Telnet logout option
726 - Remote Controlled Transmission and Echoing Telnet option
719 - Discussion on RCTE
718 - Comments on RCTE from the Tenex Implementation Experience
698 - Telnet extended ASCII option
659 - Announcing additional Telnet options
658 - Telnet output linefeed disposition
657 - Telnet output vertical tab disposition option
656 - Telnet output vertical tabstops option
655 - Telnet output formfeed disposition option
654 - Telnet output horizontal tab disposition option
653 - Telnet output horizontal tabstops option
652 - Telnet output carriage-return disposition option
651 - Revised Telnet status option
587 - Announcing new Telnet options
581 - Corrections to RFC 560: Remote Controlled Transmission and Echoing

Telnet Option
563 - Comments on the RCTE Telnet option
560 - Remote Controlled Transmission and Echoing Telnet option

6c. File Transfer and Access Protocols (FTP, TFTP, SFTP, NFS)
2640 -Internationalization of the File Transfer Protocol
2624 -NFS Version 4 Design Considerations

644 A Guide To RFCs Appendix 1

2623 -NFS Version 2 and Version 3 Security Issues and the NFS Protocol's Use of
RPCSEC-GSS and Kerberos V5

2577 -FTP Security Considerations
2428 -FTP Extensions for IPv6 and NATs
2389 -Feature negotiation mechanism for the File Transfer Protocol
2349, 1784 - TFTP Timeout Interval and Transfer Size Options
2348, 1783 - TFTP Blocksize Option
2347, 1782 - TFTP Option Extension
2228 -FTP Security Extensions
2224 -NFS URL Scheme
2204 -0DETTE File Transfer Protocol
2090 -TFTP Multicast Option
2055 -WebNFS Server Specification
2054 -WebNFS Client Specification
1986 -Experiments with a Simple File Transfer Protocol for Radio Links using

Enhanced Trivial File Transfer Protocol (ETFTP)
18 13 -NFS Version 3 Protocol Specification
1785 -TFTP Option Negotiation Analysis
1639, 1545 - FTP Operation Over Big Address Records (FOOBAR)
1635 -How to Use Anonymous FTP
1579 -Firewall-Friendly FTP
1440 -SIFT/UFT: Sender-InitiatedIUnsolicited File Transfer
1415 -FTP-FTAM Gateway Specification
1350, 783 - The TFTP Protocol (Revision 2)
1282, 1258 - BSD Rlogin
1235 Zoherent File Distribution Protocol
1094 -NFS: Network File System Protocol specification
1068 -Background File Transfer Program (BFTP)
1037 -NFILE - a file access protocol
959, 765, 542, 354, 265, 172, 114 - File Transfer Protocol
949 - FTP unique-named store command
9 13 - Simple File Transfer Protocol
906 - Bootstrap loading using TFTP
775 - Directory oriented FTP commands
743 - FTP extension: XRSQIXRCP
737 - FTP extension: XSEN
697 - CWD command of FTP
691 - One more try on the FTP
686 - Leaving well enough alone
683 - FTPSRV - Tenex extension for paged files
662 - Performance improvement in ARPANET file transfers from Multics
640 - Revised FTP reply codes
630 - FTP error code usage for more reliable mail service
624 - Comments on the File Transfer Protocol
614 - Response to RFC 607: "Comments on the File Transfer Protocol"
607 - Comments on the File Transfer Protocol
571 - Tenex FTP problem
535 - Comments on File Access Protocol
532 - UCSD-CC Server-FIT facility
520 - Memo to FTP group: Proposal for File Access Protocol
506 - FTP command naming problem
505 - Two solutions to a file transfer access problem
501 - Un-muddling "free file transfer"

Sec. 6 Application Level

487 - Free file transfer
486 - Data transfer revisited
480 - Host-dependent FTP parameters
479 - Use of FTP by the NIC Journal
478 - FTP server-server interaction - I1
468 - FTP data compression
463 - FTP comments and response to RFC 430
448 - Print files in FTP
438 - FTP server-server interaction
430 - Comments on File Transfer Protocol
418 - Server file transfer under TSSl360 at NASA Ames
414 - File Transfer Protocol (FTP) status and further comments
4 12 - User FTP Documentation
385 - Comments on the File Transfer Protocol
310 - Another Look at Data and File Transfer Protocols
294 - The Use of "Set Data Type" Transaction in File Transfer Protocol
281 - Suggested addition to File Transfer Protocol
269 - Some Experience with File Transfer
264, 17 1 - The Data Transfer Protocol
250 - Some thoughts on file transfer
242 - Data Descriptive Language for Shared Data
238 - Comments on DTP and FTP proposals
163 - Data transfer protocols
141 - Comments on RFC 114: A File Transfer Protocol
133 - File Transfer and Recovery

6d. Domain Name System (DNS)
2673 -Binary Labels in the Domain Name System
2672 -Non-Terminal DNS Name Redirection
2671 -Extension Mechanisms for DNS (EDNSO)
2606 -Reserved Top Level DNS Names
2541 -DNS Security Operational Considerations
2540 -Detached Domain Name System (DNS) Information
2539 -Storage of Diffie-Hellman Keys in the Domain Name System @NS)
2535 -Domain Name System Security Extensions
2517 -Building Directories from DNS: Experiences from WWWSeeker
2352, 2240 - A Convention For Using Legal Names as Domain Names
23 17 -Classless IN-ADDR.ARPA delegation
2308 -Negative Caching of DNS Queries (DNS NCACHE)
2230 -Key Exchange Delegation Record for the DNS
2219 -Use of DNS Aliases for Network Services
2 182 -Selection and Operation of Secondary DNS Servers
2181 -Clarifications to the DNS Specification
2137 -Secure Domain Name System Dynamic Update
2136 -Dynamic Updates in the Domain Name System (DNS UPDATE)
2065 -Domain Name System Security Extensions
2052 -A DNS RR for specifying the location of services (DNS SRV)
2010 -Operational Criteria for Root Name Servers
1996 -A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)
1995 -Incremental Zone Transfer in DNS
1982 -Serial Number Arithmetic
19 12, 1537 - Common DNS Operational and Configuration Errors
1876 -A Means for Expressing Location Information in the Domain Name System
1794 -DNS Support for Load Balancing

A Guide To RFCs Appendix 1

17 13 -Tools for DNS debugging
1712 -DNS Encoding of Geographical Location
1706, 1637, 1348 - DNS NSAP Resource Records
1591 -Domain Name System Structure and Delegation
1536 -Common DNS Implementation Errors and Suggested Fixes
1535 -A Security Problem and Proposed Correction With Widely Deployed DNS

Software
1480, 1386 - The US Domain
1464 -Using the Domain Name System To Store Arbitrary String Attributes
1394 -Relationship of Telex Answerback Codes to Internet Domains
1183 -New DNS RR Definitions
1101 -DNS encoding of network names and other types
1035 -Domain names - implementation and specification
1034 -Domain names - concepts and facilities
1033 -Domain administrators operations guide
1032 -Domain administrators guide
103 1 -MILNET name domain transition
973 - Domain system changes and observations
953, 8 1 1 - Hostname Server
921, 897 - Domain name system implementation schedule - revised
920 - Domain requirements
883 - Domain names: Implementation specification
882 - Domain names: Concepts and facilities
881 - Domain names plan and schedule
830 - Distributed system for Internet name service
819 - Domain naming convention for Internet user applications
799 - Internet name domains
756 - NIC name server - a datagram-based information utility
752 - Universal host table

6e. Mail and Message Systems (SMTP, MIME, POP, MAP, X.400)
2683 -MAP4 Implementation Recommendations
2646 -The TextJPlain Format Parameter
2645 -ON-DEMAND MAIL RELAY (ODMR) SMTP with Dynamic IP Addresses
2634 -Enhanced Security Services for S/MIME
2633 -S/MIME Version 3 Message Specification
2632 S M I M E Version 3 Certificate Handling
2595 -Using TLS with IMAP, POP3 and ACAP
2586 -The AudioLl6 MIME content type
2557,2110 - MIME Encapsulation of Aggregate Documents, such as HTML

(MHTML)
2554 -SMTP Service Extension for Authentication
2530 -Indicating Supported Media Features Using Extensions to DSN and MDN
2524 -Neda's Efficient Mail Submission and Delivery (EMSD) Protocol

Specification Version 1.3
2505 -Anti-Spam Recommendations for SMTP MTAs
2503 -MIME Types for Use with the IS0 ILL Protocol
2487 -SMTP Service Extension for Secure SMTP over TLS
2480 -Gateways and MIME Security Multipart5
2476 -Message Submission
2449 -POP3 Extension Mechanism
2442 -The Batch SMTP Media Type
2426 -vCard MIME Directory Profile
2425 -A MIME Content-Type for Directory Information

Sec. 6 Application Level

2424 -Content Duration MIME Header Definition
2387, 21 12, 1872 - The MIME Multipart/Related Content-type
2384 -POP URL Scheme
2359 -IMAP4 UIDPLUS extension
2342 -1MAP4 Namespace
23 18 -The textlcss Media Type
23 12 -SNIME Version 2 Certificate Handling
23 1 1 -S/MIME Version 2 Message Specification
2302 -Tag Image File Format (TIFF) - imageltiff MIME Sub-type Registration
2298 -An Extensible Message Format for Message Disposition Notifications
223 1, 21 84 - MIME Parameter Value and Encoded Word Extensions: Character

Sets, Languages, and Continuations
222 1 -IMAP4 Login Referrals
2220 -The ApplicatiodMARC Content-type
2197, 1854 - SMTP Service Extension for Command Pipelining
2195, 2095 - IMAPPOP AUTHorize Extension for Simple Challenge/Response
2193 -IMAP4 Mailbox Referrals
2 192 -IMAP URL Scheme
2180 -IMAP4 Multi-Accessed Mailbox Practice
2 177 -MAP4 IDLE command
2164, 1838 - Use of an XSOOILDAP directory to support MIXER address mapping
2163, 1664 - Using the Internet DNS to Distribute MIXER Conformant Global

Address Mapping (MCGAM)
2162, 1405 - MaXIM-11 - Mapping between X.400 1 Internet mail and Mail-1 1 mail
2161 -A MIME Body Part for ODA
2160 -Carrying Postscript in X.400 and MIME
2158 -X.400 Image Body Parts
2157 -Mapping between X.400 and RFC-822NIME Message Bodies
2156, 1495, 1327, 1148, 1138 - MIXER (Mime Internet X.400 Enhanced Relay):

Mapping between X.400 and RFC 82UMIME
2152, 1642 - UTF-7 A Mail-Safe Transformation Format of Unicode
2142 -Mailbox Names for Common Services, Roles and Functions
2088 -IMAP4 non-synchronizing literals
2087 -MAP4 QUOTA extension
2086 -1MAP4 ACL extension
2077 -The Model Primary Content Type for Multipurpose Internet Mail Extensions
2076 -Common Internet Message Headers
2062 -Internet Message Access Protocol - Obsolete Syntax
2061,2060, 1730 - IMAP4 Compatibility with IMAP2bis
2049 -Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance

Criteria and Examples
2048 -Multipurpose Internet Mail Extensions (MIME) Part Four: Registration

Procedures
2047, 1522, 1342 - MIME (Multipurpose Internet Mail Extensions) Part Three:

Message Header Extensions for Non-ASCII Text
2046 -Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types
2045, 1521, 1341 - Multipurpose Internet Mail Extensions (MIME) Part One:

Format of Internet Message Bodies
2034 -SMTP Service Extension for Returning Enhanced Error Codes
2033 -Local Mail Transfer Protocol
2017 -Definition of the URL MIME External-Body Access-Type
2015 -MIME Security with Pretty Good Privacy (PGP)
1985 -SMTP Service Extension for Remote Message Queue Starting

648 A Guide To RFCs Appendix I

1957 -Some Observations on Implementations of the Post Office Protocol (POP3)
1939, 1725, 1460, 1225, 1082, 1081 - Post Office Protocol - Version 3
1896, 1563, 1523 - The texttenriched MIME Content-type
1895 -The ApplicatiodCALS- 1840 Content-type
1894 -An Extensible Message Format for Delivery Status Notifications
1893 -Enhanced Mail System Status Codes
1892 -The MultipartReport Content Type for the Reporting of Mail System

Administrative Messages
1891 -SMTP Service Extension for Delivery Status Notifications
1873 -Message/External-Body Content-ID Access Type
1870, 1653, 1427 - SMTP Service Extension for Message Size Declaration
1869, 165 1, 1425 - SMTP Service Extensions
1864, 1544 - The Content-MD5 Header Field
1848 -MIME Object Security Services
1847 -Security Multiparts for MIME: Multipadsigned and MultipartIEncrypted
1846 -SMTP 52 1 Reply Code
1845 -SMTP Service Extension for CheckpointJRestart
1844, 1820 - Multimedia E-mail (MIME) User Agent Checklist
1830 -SMTP Service Extensions for Transmission of Large and Binary MIME

Messages
1807, 1357 - A Format for Bibliographic Records
1806 Xommunicating Presentation Information in Internet Messages: The Content-

Disposition Header
1767 -MIME Encapsulation of ED1 Objects
1741 -MIME Content Type for BinHex Encoded Files
1740 -MIME Encapsulation of Macintosh Files - MacMIME
1734 -POP3 AUTHentication command
1733 -Distributed Electronic Mail Models in MAP4
1732 -1MAP4 Compatibility with MAP2 and IMAP2bis
173 1 -IMAP4 Authentication Mechanisms
171 1 -Classifications in E-mail Routing
1685 -Writing X.400 O R Names
1652, 1426 - SMTP Service Extension for 8bit-MIMEtransport
1649 -Operational Requirements for X.400 Management Domains in the GO-MHS

Community
1648 -Postmaster Convention for X.400 Operations
1641 -Using Unicode with MIME
1616 -X.400(1988) for the Academic and Research Community in Europe
1615 -Migrating from X.400(84) to X.400(88)
1590 -Media Type Registration Procedure
1556 -Handling of Bi-directional Texts in MIME
1524 -A User Agent Configuration Mechanism For Multimedia Mail Format

Information
1506 -A Tutorial on Gatewaying between X.400 and Internet Mail
1505, 1154 - Encoding Header Field for Internet Messages
1502 -X.400 Use of Extended Character Sets
1496 -Rules for downgrading messages from X.400188 to X.400184 when MIME

content-types are present in the messages
1494 -Equivalences between 1988 X.400 and RFC-822 Message Bodies
1428 -Transition of Internet Mail from Just-Send-8 to 8bit-SMTPMIME
1344 -Implications of MIME for Internet Mail Gateways
1343 -A User Agent Configuration Mechanism for Multimedia Mail Format

Information

Sec. 6 Application Level

1339 -Remote Mail Checking Protocol
1328 -X.400 1988 to 1984 downgrading
121 1 -Problems with the maintenance of large mailing lists
1204 -Message Posting Protocol (MPP)
1203, 1176, 1064 - Interactive Mail Access Protocol: Version 3
1168 -Intermail and Commercial Mail Relay services
1153 -Digest message format
1137 -Mapping between full RFC 822 and RFC 822 with restricted encoding
1090 -SMTP on X.25
1056, 993, 984 - PCMAIL: A distributed mail system for personal computers
1049 -Content-type header field for Internet messages
1047 -Duplicate messages and SMTP
1026, 987 - Addendum to RFC 987: (Mapping between X.400 and RFC-822)
977 - Network News Transfer Protocol
976 - UUCP mail interchange format standard
974 - Mail routing and the domain system
937, 918 - Post Office Protocol: Version 2
934 - Proposed standard for message encapsulation
915 - Network mail path service
886 - Proposed standard for message header munging
841 - Specification for message format for Computer Based Message Systems
822 - Standard for the format of ARPA Internet text messages
821, 788 - Simple Mail Transfer Protocol
806 - Proposed Federal Information Processing Standard: Specification for message

format for computer based message systems
786 - Mail Transfer Protocol: IS1 TOPS20 MTP-NIMAIL interface
785 - Mail Transfer Protocol: IS1 TOPS20 file definitions
784 - Mail Transfer Protocol: IS1 TOPS20 implementation
780, 772 - Mail Transfer Protocol
77 1 - Mail transition plan
763 - Role mailboxes
757 - Suggested solution to the naming, addressing, and delivery problem for

ARPANET message systems
754 - Out-of-net host addresses for mail
753 - Internet Message Protocol
75 1 - Survey of FTP mail and MLFL
744 - MARS - a Message Archiving and Retrieval Service
733 - Standard for the format of ARPA network text messages
724 - Proposed official standard for the format of ARPA Network messages
720 - Address Specification Syntax for Network Mail
706 - On the junk mail problem
680 - Message Transmission Protocol
644 - On the problem of signature authentication for network mail
577 - Mail priority
574 - Announcement of a mail facility at UCSB
561 - Standardizing Network Mail Headers
555 - Responses to critiques of the proposed mail protocol
539,524 - Thoughts on the mail protocol proposed in RFC 524
498 - On mail service to CCN
491 - What is "Free"?
475 - FTP and network mail system
458 - Mail retrieval via FTP
333 - Proposed experiment with a Message Switching Protocol

650 A Guide To RFCs Appendix 1

278, 224, 221, 196 - Revision of the Mail Box Protocol
6f. Facsimile and Bitmaps

2639 -Internet Printing Protocol/ 1 .O: Implementer's Guide
2569 -Mapping between LPD and IPP Protocols
2568 -Rationale for the Structure of the Model and Protocol for the Internet Printing

Protocol
2567 -Design Goals for an Internet Printing Protocol
2566 -Internet Printing Protocol/ 1 .O: Model and Semantics
2565 -Internet Printing ProtocoVl .O: Encoding and Transport
2542 -Terminology and Goals for Internet Fax
2534 -Media Features for Display, Print, and Fax
2532 -Extended Facsimile Using Internet Mail
253 1 -Content Feature Schema for Internet Fax
2306 -Tag Image File Format (TIFF) - F Profile for Facsimile
2305 -A Simple Mode of Facsimile Using Internet Mail
2304 -Minimal FAX address format in Internet Mail
2303 -Minimal PSTN address format in Internet Mail
2301 -File Format for Internet Fax
2159 -A MIME Body Part for FAX
2083 -PNG (Portable Network Graphics) Specification Version 1.0
1529, 1528, 1486 - Principles of Operation for the TI'C.INT Subdomain: Remote

Printing -- Administrative Policies
1314 -A File Format for the Exchange of Images in the Internet
809 - UCL facsimile system
804 - CCI'IT draft recommendation T.4
803 - Dacom 4501500 facsimile data transcoding
798 - Decoding facsimile data from the Rapicom 450
797 - Format for Bitmap files
769 - Rapicom 450 facsimile file format

69. Graphics and Window Systems
1198 -FYI on the X window system
1013 -X Window System Protocol, version 11: Alpha update April 1987
965 - Format for a graphical communication protocol
553 - Draft design for a text/graphics protocol
493 - Graphics Protocol
401 - Conversion of NGP-0 Coordinates to Device Specific Coordinates
398 - ICP Sockets
387 - Some experiences in implementing Network Graphics Protocol Level 0
35 1 - Graphics information form for the ARPANET graphics resources notebook
336 - Level 0 Graphic Input Protocol
296 - DS-1 display system
292 - Graphics Protocol: Level 0 only
285 - Network graphics
268 - Graphics facilities information
199 - Suggestions for a network data-tablet graphics protocol
192 - Some factors which a Network Graphics Protocol must consider
191 - Graphics implementation and conceptualization at Augmentation Research

Center
186 - Network graphics loader
184 - Proposed graphic display modes
181, 177 - Modifications to RFC 177
178 - Network graphic attention handling

Sec. 6 Application Level

125, 86 - Response to RFC 86: Proposal for Network Standard Format for a
Graphics Data Stream

94 - Some thoughts on Network Graphics
6h. Data Management

304 - Data management system proposal for the ARPA network
195 - Data computers-data descriptions and access language
194 - The Data Reconfiguration Service -- Compilerhterpreter Implementation

Notes
166 - Data Reconfiguration Service: An implementation specification
144 - Data sharing on computer networks
138 - Status report on proposed Data Reconfiguration Service
83 - Language-machine for data reconfiguration

6i. Remote Job Entry (NETRJE, NETRJS)
740,599,589,325, 189,88 - NETWS Protocol
725 - RJE protocol for a resource sharing network
499 - Harvard's network WE
490 - Surrogate RJS for UCLA-CCN
477,436 - Remote Job Service at UCSB
407 - Remote Job Entry Protocol
368 - Comments on "Proposed Remote Job Entry Protocol"
360 - Proposed Remote Job Entry Protocol
338 - EBCDICIASCII Mapping for Network WE
307 - Using network Remote Job Entry
283 - NETRTT: Remote Job Service Protocol for TIPS
105 - Network Specifications for Remote Job Entry and Remote Job Output

Retrieval at UCSB
6j. Remote Procedure Call (RPC)

2695 -Authentication Mechanisms for ONC RPC
2203 -RPCSEC-GSS Protocol Specification
1833 -Binding Protocols for ONC RPC Version 2
183 1 -RPC: Remote Procedure Call Protocol Specification Version 2
1057 -RPC: Remote Procedure Call Protocol specification: Version 2
1050 -RPC: Remote Procedure Call Protocol specification

6k. Time and Date (NTP)
2030, 1769, 1361 - Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6

and OSI
1708 -NTP PICS PROFORMA - For the Network Time Protocol Version 3
1589 -A Kernel Model for Precision Timekeeping
1305, 11 19, 1059 - Network Time Protocol (Version 3) Specification,

Implementation
1165 -Network Time Protocol (NTP) over the OSI Remote Operations Service
1129 -Internet time synchronization: The Network Time Protocol
1128 -Measured performance of the Network Time Protocol in the Internet system
958,957,956 - Network Time Protocol (NTP)
868 - Time Protocol
867 - Daytime Protocol
778 - DCNET Internet Clock Service
738 - Time server
685 - Response time in cross network debugging
34 - Some Brief Preliminary Notes on the Augmentation Research Center Clock
32 - Connecting M.1.T

652 A Guide To RFCs Appendix 1

28 - Time Standards
61. Presentation and Representation (XDR, Character Encoding, HTML,
XML)

2706 -ECML v 1: Field Names for E-Commerce
2659 Security Extensions For HTML
2482 -Language Tagging in Unicode Plain Text
2413 -Dublin Core Metadata for Resource Discovery
2376 -XML Media Types
2346 -Making Postscript and PDF International
23 19 -Ukrainian Character Set KOI8-U
2279,2044 - UTF-8, a transformation format of IS0 10646
2237 -Japanese Character Encoding for Internet Messages
2183 -Communicating Presentation Information in Internet Messages: The Content-

Disposition Header Field
2070 -Internationalization of the Hypertext Markup Language
1980 -A Proposed Extension to HTML : Client-Side Image Maps
1952 -GZIP file format specification version 4.3
195 1 -DEFLATE Compressed Data Format Specification version 1.3
1950 -ZLB Compressed Data Format Specification version 3.3
1947 -Greek Character Encoding for Electronic Mail Messages
1942 -HTML Tables
1922 -Chinese Character Encoding for Internet Messages
1874 -SGML Media Types
1867 -Form-based File Upload in HTML
1866 -Hypertext Markup Language - 2.0
1843 -HZ - A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and

ASCII characters
1842 -ASCII Printable Characters-Based Chinese Character Encoding for Internet

Messages
1832 -XDR: External Data Representation Standard
18 15 -Character Sets ISO- 10646 and ISO- 10646-J- 1
1766 -Tags for the Identification of Languages
1557 -Korean Character Encoding for Internet Messages
1555 -Hebrew Character Encoding for Internet Messages
1554 -1SO-2022-JP-2: Multilingual Extension of ISO-2022-JP
1489 -Registration of a Cyrillic Character Set
1468 -Japanese Character Encoding for Internet Messages
1456 -Conventions for Encoding the Vietnamese Language VISCII: VIetnamese

Standard Code for Information Interchange VIQR: VIetnamese Quoted-
Readable Specification

1278 -A string encoding of Presentation Address
1197 -Using ODA for translating multimedia information
1014 -XDR: External Data Representation standard
1003 -Issues in defining an equations representation standard

6m. Network Management (SNMP, CMOT, RMON)
2593 -Script MIB Extensibility Protocol Version 1.0
2580, 1904, 1444 - Conformance Statements for SMIv2
2579, 1903, 1443 - Textual Conventions for SMIv2
2578, 1902, 1442 - Structure of Management Information Version 2 (SMIv2)
2575, 2275, 2265 - View-based Access Control Model (VACM) for the Simple

Network Management Protocol (SNMP)
2574, 2274, 2264 - User-based Security Model (USM) for version 3 of the Simple

Network Management Protocol (SNMPV~)

Sec. 6 Application Level 653

2573, 2273, 2263 - SNMP Applications
2572, 2272, 2262 - Message Processing and Dispatching for the Simple Network

Management Protocol (SNMP)
2571, 2271, 2261 - An Architecture for Describing SNMP Management Frameworks
2570 -Introduction to Version 3 of the Internet-standard Network Management

Framework
2493 -Textual Conventions for MIB Modules Using Performance History Based on

15 Minute Intervals
2438 -Advancement of MIB specifications on the IETF Standards Track
2257 -Agent Extensibility (AgentX) Protocol Version 1
2107 -Ascend Tunnel Management Protocol - ATMP
2089 -V2ToV1 Mapping SNMPv2 onto SNMPvl within a bi-lingual SNMP agent
2039 -Applicability of Standards Track MIBs to Management of World Wide Web

Servers
1910 -User-based Security Model for SNMPv2
1909 -An Administrative Infrastructure for SNMPv2
1908, 1452 - Coexistence between Version 1 and Version 2 of the Internet-standard

Network Management Framework
1906, 1449 - Transport Mappings for Version 2 of the Simple Network Management

Protocol (SNMPV2)
1905, 1448 - Protocol Operations for Version 2 of the Simple Network Management

Protocol (SNMPv2)
1901 -Introduction to Community-based SNMPv2
1856 -The Opstat Client-Server Model for Statistics Retrieval
1592, 1228 - Simple Network Management Protocol Distributed Protocol Interface

Version 2.0
1503 -Algorithms for Automating Administration in SNMPv2 Managers
1446 -Security Protocols for version 2 of the Simple Network Management Protocol

(SNMPv2)
1445 -Administrative Model for version 2 of the Simple Network Management

Protocol (SNMPv2)
1441 -Introduction to version 2 of the Internet-standard Network Management

Framework
1420, 1298 - SNMP over IPX
1419 -SNMP over AppleTalk
1418, 1283, 1161 - SNMP over OSI
1369 -Implementation Notes and Experience for the Internet Ethernet MIB
1352 -SNMP Security Protocols
135 1 -SNMP Administrative Model
1346 -Resource Allocation, Control, and Accounting for the Use of Network

Resources
1303 -A Convention for Describing SNMP-based Agents
1270 -SNMP Communications Services
1239 -Reassignment of experimental MIBs to standard MIBs
1224 -Techniques for managing asynchronously generated alerts
1215 -Convention for defining traps for use with the SNMP
1212 -Concise MIE3 definitions
1189, 1095 - Common Management Information Services and Protocols for the

Internet (CMOT and CMIP)
1187 -Bulk Table Retrieval with the SNMP
1157, 1098, 1067 - Simple Network Management Protocol (SNMP)
1155, 1065 - Structure and identification of management information for TCPAP-

based internets

654 A Guide To RFCs Appendix 1

1109 -Report of the second Ad Hoc Network Management Review Group
1089 -SNMP over Ethernet
1076 -HEMS monitoring and control language
1028 -Simple Gateway Monitoring Protocol
1024 -HEMS variable definitions
1023 -HEMS monitoring and control language
1022 -High-level Entity Management Protocol (HEMP)
1021 -High-level Entity Management System (HEMS)

6n. Management Information Base Definitions (MIB)
2720, 2064 - Traffic Flow Measurement: Meter MIB
2677 -Definitions of Managed Objects for the NBMA Next Hop Resolution

Protocol (NHRP)
2674 -Definitions of Managed Objects for Bridges with Traffic Classes, Multicast

Filtering and Virtual LAN Extensions
2670 -Radio Frequency (RF) Interface Management Information Base for

MCNSIDOCSIS compliant RF interfaces
2669 -DOCSIS Cable Device MIB Cable Device Management Information Base for

DOCSIS compliant Cable Modems and Cable Modem Termination Systems
2668,2239 - Definitions of Managed Objects for IEEE 802.3 Medium Attachment

Units (MAUs)
2667 -IP Tunnel MIB
2666 -Definitions of Object Identifiers for Identifying Ethernet Chip Sets
2665, 2358, 1650 - Definitions of Managed Objects for the Ethernet-like Interface

Types
2662 -Definitions of Managed Objects for the ADSL Lines
262 1 -RADIUS Accounting Server MIB
2620 -RADIUS Accounting Client MIB
2619 -RADIUS Authentication Server MIB
2618 -RADIUS Authentication Client MIB
2613 -Remote Network Monitoring MIB Extensions for Switched Networks Version

1 .o
2605, 1567 - Directory Server Monitoring MIB
2594 -Definitions of Managed Objects for WWW Services
2592 -Definitions of Managed Objects for the Delegation of Management Script
2591 -Definitions of Managed Objects for Scheduling Management Operations
2584 -Definitions of Managed Objects for APPN/HPR in IF' Networks
2564 -Application Management MIB
2562 -Definitions of Protocol and Managed Objects for TN3270E Response Time

Collection Using SMIv2 (TN3270E-RT-MIB)
2561 -Base Definitions of Managed Objects for TN3270E Using SMIv2
2558, 1595 - Definitions of Managed Objects for the SONETISDH Interface Type
2515, 1695 - Definitions of Managed Objects for ATM Management
2514 -Definitions of Textual Conventions and OBJECT-IDENTITIES for ATM

Management
2513 -Managed Objects for Controlling the Collection and Storage of Accounting

Information for Connection-Oriented Networks
25 12 -Accounting Information for ATM Networks
2496, 1407, 1233 - Definitions of Managed Object for the DS3E3 Interface Type
2495, 1406, 1232 - Definitions of Managed Objects for the DS1, El , DS2 and E2

Interface Types
2494 -Definitions of Managed Objects for the DSO and DSO Bundle Interface Type
2457 -Definitions of Managed Objects for Extended Border Node
2456 -Definitions of Managed Objects for APPN TRAPS

Sec. 6 Application Level 655

2455,2155 - Definitions of Managed Objects for APPN
2417,2366 - Definitions of Managed Objects for Multicast over UNI 3.013.1 based

ATM Networks
2320 -Definitions of Managed Objects for Classical IP and ARP Over ATM Using

SMIv2 (IPOA-MIB)
2287 -Definitions of System-Level Managed Objects for Applications
2266 -Definitions of Managed Objects for IEEE 802.12 Repeater Devices
2249, 1566 - Mail Monitoring MIB
2248, 1565 - Network Services Monitoring MIB
2238 -Definitions of Managed Objects for HPR using SMIv2
2233, 1573, 1229 - The Interfaces Group MIB using SMIv2
2232 -Definitions of Managed Objects for DLUR using SMIv2
2214 -Integrated Services Management Information Base Guaranteed Service

Extensions using SMIv2
2213 -Integrated Services Management Information Base using SMIv2
2128 -Dial Control Management Information Base using SMIv2
2127 -1SDN Management Information Base using SMIv2
21 15, 13 15 - Management Information Base for Frame Relay DTEs Using SMIv2
2108, 1516, 1368 - Definitions of Managed Objects for IEEE 802.3 Repeater

Devices using SMIv2
2096, 1354 - IP Forwarding Table MIB
2074 -Remote Network Monitoring MIB Protocol Identifiers
2063 -T*c Flow Measurement: Architecture
2051 -Definitions of Managed Objects for APPC using SMIv2
2037 -Entity MIB using SMIv2
2024 -Definitions of Managed Objects for Data Link Switching using SMIv2
2021 -Remote Network Monitoring Management Information Base Version 2 using

SMIv2
2020 -IEEE 802.12 Interface MIB
2013 -SNMPv2 Management Information Base for the User Datagram Protocol

using SMIv2
2012 -SNMPv2 Management Information Base for the Transmission Control

Protocol using SMIv2
201 1 -SNMPV2 Management Information Base for the Internet Protocol using

SMIv2
2006 -The Definitions of Managed Objects for IP Mobility Support using SMIv2
1907, 1450 - Management Information Base for Version 2 of the Simple Network

Management Protocol (SNMPv2)
1850, 1253, 1252, 1248 - OSPF Version 2 Management Information Base
1792 -TCP/IPX Connection Mib Specification
1759 -Printer MIB
1757, 1271 - Remote Network Monitoring Management Infornlation Base
1749 -1EEE 802.5 Station Source Routing MIB using SMIv2
1748, 1743, 123 1 - IEEE 802.5 MIB using SMIv2
1747 -Definitions of Managed Objects for SNA Data Link Control (SDLC) using

SMIv2
1742, 1243 - AppleTalk Management Information Base 11
1724, 1389 - RIP Version 2 MIB Extension
1697 -Relational Database Management System (RDBMS) Management

Information Base (MIB) using SMIv2
1696 -Modem Management Information Base (MIB) using SMIv2
1694, 1304 - Definitions of Managed Objects for SMDS Interfaces using SMIv2
1666 -Definitions of Managed Objects for SNA NAUs using SMIv2

656 A Guide To RFCs Appendix 1

1665 -Definitions of Managed Objects for SNA NAUs using SMIv2
1660, 1318 - Definitions of Managed Objects for Parallel-printer-like Hardware

Devices using SMIv2
1659, 1317 - Definitions of Managed Objects for RS-232-like Hardware Devices

using SMIv2
1658, 1316 - Definitions of Managed Objects for Character S t r ew Devices using

SMIv2
1657 -Definitions of Managed Objects for the Fourth Version of the Border

Gateway Protocol (BGP-4) using SMIv2
1643, 1623, 1398, 1284 - Definitions of Managed Objects for the Ethernet-like

Interface Types
1628 -UPS Management Information Base
16 12 -DNS Resolver MIB Extensions
16 1 1 -DNS Server MIB Extensions
1604, 1596 - Definitions of Managed Objects for Frame Relay Service
1593 -SNA APPN Node MIB
1559, 1289 - DECnet Phase IV MIB Extensions
1525, 1493, 1286 - Definitions of Managed Objects for Source Routing Bridges
15 15 -Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units

(MAUS)
1514 -Host Resources MIB
15 13 -Token Ring Extensions to the Remote Network Monitoring MIB
15 12, 1285 - FDDI Management Information Base
1474 -The Definitions of Managed Objects for the Bridge Network Control Protocol

of the Point-to-Point Protocol
1473 -The Definitions of Managed Objects for the IP Network Control Protocol of

the Point-to-Point Protocol
1472 -The Definitions of Managed Objects for the Security Protocols of the Point-

to-Point Protocol
1471 -The Definitions of Managed Objects for the Link Control Protocol of the

Point-to-Point Protocol
1461 -SNMP MIB extension for Multiprotocol Interconnect over X.25
1451 -Manager-to-Manager Management Information Base
1447 -Party MIB for version 2 of the Simple Network Management Protocol

(SNMPV2)
1414 -Identification MIB
1382 S N M P MIB Extension for the X.25 Packet Layer
1381 S N M P MIB Extension for X.25 LAPB
1353 -Definitions of Managed Objects for Administration of SNMP Parties
1269 -Definitions of Managed Objects for the Border Gateway Protocol: Version 3
1230 -1EEE 802.4 Token Bus MIB
1227 -SNMP MUX protocol and MIB
1214 -0SI internet management: Management Information Base
1213, 1158, 1156, 1066 - Management Information Base for Network Management

of TCPhP-based intemets:MIB-II

60. Directory Services (X.500, LDAP, Whitepages)
2714 -Schema for Representing CORBA Object References in an LDAP Directory
2713 -Schema for Representing Java(tm) Objects in an LDAP Directory
2696 -LDAP Control Extension for Simple Paged Results Manipulation
2657 -LDAPV2 Client vs the Index Mesh
2649 -An LDAP Control and Schema for Holding Operation Signatures
2596 -Use of Language Codes in LDAP
2589 -Lightweight Directory Access Protocol (v3): Extensions for Dynamic

Directory Services

Sec. 6 Application Level 657

2587 -Internet X.509 Public Key Infrastructure LDAPv2 Schema
2585 -Internet X.509 Public Key Infrastructure Operational Protocols: FTP and

H'ITP
2560 -X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -

OCSP
2559 -Internet X.509 Public Key Infrastructure Operational Protocols - LDAPv2
2528 -Internet X.509 Public Key Infrastructure Representation of Key Exchange

Algorithm (KEA) Keys in Internet X.509 Public Key Infrastructure
Certificates

2527 -Internet X.509 Public Key Infrastructure Certificate Policy and Certification
Practices Framework

25 11 -Internet X.509 Certificate Request Message Format
25 10 -Internet X.509 Public Key Infrastructure Certificate Management Protocols
2459 -Internet X.509 Public Key Infrastructure Certificate and CRL Profile
2377 -Naming Plan for Internet Directory-Enabled Applications
2307 -An Approach for Using LDAP as a Network Information Service
2294, 1836 - Representing the O R Address hierarchy in the X.500 Directory

Information Tree
2293, 1837 - Representing Tables and Subtrees in the X.500 Directory
2256 -A Summary of the X.500(96) User Schema for use with LDAPv3
2255 -The LDAP URL Format
2254, 1960, 1558 - The String Representation of LDAP Search Filters
2253 -Lightweight Directory Access Protocol (v3): UTF-8 String Representation of

Distinguished Names
2252 -Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions
2251 -Lightweight Directory Access Protocol (v3)
2247 -Using Domains in LDAFVX.500 Distinguished Names
2218 -A Common Schema for the Internet White Pages Service
2148 -Deployment of the Internet White Pages Service
2120 -Managing the X.500 Root Naming Context
21 16, 1632, 1292 - X.500 Implementations Catalog-96
2079 -Definition of an X.500 Amibute Type and an Object Class to Hold Uniform

Resource Identifiers (URIs)
1959 -An LDAP URL Fonnat
1943 -Building an X.500 Directory Service in the US
1823 -The LDAP Application Program Interface
1804 -Schema Publishing in X.500 Directory
1803 -Recommendations for an X.500 Production Directory Service
1802 -Introducing Project Long Bud: Internet Pilot Project for the Deployment of

X.500 Directory Information in Support of X.400 Routing
1801 -MHS use of the X.500 Directory to support MHS Routing
1798 -Connection-less Lightweight X.500 Directory Access Protocol
1781, 1484 - Using the OSI Directory to Achieve User Friendly Naming
1779, 1485 - A String Representation of Distinguished Names
1778, 1488 - The String Representation of Standard Attribute Syntaxes
1777, 1487 - Lightweight Directory Access Protocol
1684 -Introduction to White Pages Services based on X.500
1617, 1384 - Naming and Structuring Guidelines for X.500 Directory Pilots
1609 -Charting Networks in the X.500 Directory
1608 -Representing IP Information in the X.500 Directory
1564 -DSA Metrics (OSI-DS 34 (v3))
1562 -Naming Guidelines for the AARNet X.500 Directory Service
1491 -A Survey of Advanced Usages of X.500

658 A Guide To RFCs Appendix 1

1431 -DUA Metrics (OSI-DS 33 (v2))
1430 -A Strategic Plan for Deploying an Internet X.500 Directory Service
1373 -Portable DUAs
1309 -Technical Overview of Directory Services Using the X.500 Protocol
1308 -Executive Introduction to Directory Services Using the X.500 Protocol
1279 -X.500 and Domains
1277 -Encoding Network Addresses to Support Operation over Non-OSI Lower

Layers
1276 -Replication and Distributed Operations extensions to provide an Internet

Directory using X.500
1275 -Replication Requirements to provide an Internet Directory using X.500
1274 -The COSINE and Internet X.500 Schema
1255, 1218 - A Naming Scheme for c=US
1249 -DIXIE Protocol Specification
1202 -Directory Assistance service
1107 -Plan for Internet directory services

6p. Information Services (HlTP, Gopher, WAS)
2718 Guidelines for new URL Schemes
2660 -The Secure HyperText Transfer Protocol
2656 -Registration Procedures for SOIF Template Types
2655 -CIP Index Object Format for SOIF Objects
2654 -A Tagged Index Object for use in the Common Indexing Protocol
2653 -CIP Transport Protocols
2652 -MIME Object Definitions for the Common Indexing Protocol (CIP)
265 1 -The Architecture of the Common Indexing Protocol (CIP)
2617,2069 - HTTP Authentication: Basic and Digest Access Authentication
2616, 2068 - Hypertext Transfer Protocol -- H'ITPII. 1
261 1 -URN Namespace Definition Mechanisms
25 18 -HTTP Extensions for Distributed Authoring -- WEBDAV
2483 -URI Resolution Services Necessary for URN Resolution
2397 -The "data" URL scheme
2396 -Uniform Resource Identifiers (URI): Generic Syntax
2392, 21 11 - Content-ID and Message-ID Uniform Resource Locators
2388 -Returning Values from Forms: multipart/form-data
2378 -The CCSO Nameserver (Ph) Architecture
2369 -The Use of URLs as Meta-Syntax for Core Mail List Commands and their

Transport through Message Header Fields
2368 -The mailto URL scheme
2345 -Domain Names and Company Name Retrieval
2310 -The Safe Response Header Field
2296 -H'ITP Remote Variant Selection Algorithm -- RVSAll.0
2295 -Transparent Content Negotiation in HTTP
2291 -Requirements for a Distributed Authoring and Versioning Protocol for the

World Wide Web
2288 -Using Existing Bibliographic Identifiers as Uniform Resource Names
2276 -Architectural Principles of Uniform Resource Name Resolution
2259, 2258 - Simple Nomenclator Query Protocol (SNQP)
2227 -Simple Hit-Metering and Usage-Limiting for HTTP
2187, 2186 - Application of Internet Cache Protocol (ICP), version 2
2169 -A Trivial Convention for using HTTP in URN Resolution
2168 -Resolution of Uniform Resource Identifiers using the Domain Name System
2167, 17 14 - Referral Whois (RWhois) Protocol V1.5
2 145 -Use and Interpretation of HTTP Version Numbers

Sec. 6 Application Level

2141 -URN Syntax
2 122 -VEMMI URL Specification
2109 -HTTP State Management Mechanism
2084 -Considerations for Web Transaction Security
2056 -Unifom~ Resource Locators for 239.50
1945 -Hypertext Transfer Protocol -- ~ 1 1 . 0
1914 -How to Interact with a Whois++ Mesh
19 13 -Architecture of the Whoisu Index Service
1835 -Architecture of the WHOIS++ service
1834 -Whois and Network Information Lookup Service, Whois++
1808 -Relative Uniform Resource Locators
1738 -Uniform Resource Locators (URL)
1737 -Functional Requirements for Uniform Resource Names
1736 -Functional Recommendations for Internet Resource Locators
1729 -Using the 239.50 Information Retrieval Protocol
1728 -Resource Transponders
1727 -A Vision of an Integrated Internet Information Service
1630 -Universal Resource Identifiers in WWW A Unifying Syntax for the

Expression of Names and Addresses of Objects on the Network as used in the
World-Wide Web

1625 -WAIS over 239.50-1988
1614 -Network Access to Multimedia Information
1436 -The Internet Gopher Protocol (a distributed document search and retrieval

protocol)
954,812 - NICNAME/WHOIS

6q. Bootstrap and Configuration Protocols (BOOTP, DHCP)
2563 -DHCP Option to Disable Stateless Auto-Configuration in IPv4 Clients
2485 -DHCP Option for The Open Group's User Authentication Protocol
2242 -Netwarem Domain Name and Information
2241 -DHCP Options for Novel1 Directory Services
2132, 1533, 1497, 1395, 1084, 1048 - DHCP Options and BOOTP Vendor

Extensions
2131, 1541, 1531 - Dynamic Host Configuration Protocol
1542, 1532 - Clarifications and Extensions for the Bootstrap Protocol
1534 -Interoperation Between DHCP and BOOTP
95 1 - Bootstrap Protocol

6r. Real-Time Multimedia and Quality of Sewice (RSVP, RTP)
27 19 -Framework Architecture for Signaling Transport
2705 -Media Gateway Control Protocol (MGCP) Version 1.0
2689 -Integrated Services Mappings for Low Speed Networks
2688 -Integrated Services Mappings for Low Speed Networks
2658 -RTP Payload Format for PureVoice(tm) Audio
2543 -SIP: Session Initiation Protocol
2490 -A Simulation Model for IP Multicast with RSVP
2458 -Toward the PSTNAntemet Inter-Networking--Re-PINT Implementations
2448 -AT&T's Error Resilient Video Transmission Technique
2435, 2035 - RTP Payload Format for JPEG-compressed Video
243 1 -RTP Payload Format for BT.656 Video Encoding
2430 -A Provider Architecture for Differentiated Services and Traffic Engineering

(PASTE)
2429 -RTP Payload Format for the 1998 Version of ITU-T Rec
2423, 2422, 2421, 191 1 - VPIM Voice Message MIME Sub-type Registration

A Guide To RFCs Appendix 1

2386 -A Framework for QoS-based Routing in the Internet
2382 -A Framework for Integrated Services and RSVP over ATM
238 1 -1nteroperation of Controlled-Load Service and Guaranteed Service with ATM
2380 -RSVP over ATM Implementation Requirements
2379 -RSVP over ATM Implementation Guidelines
2361 -WAVE and AVI Codec Registries
2354 -Options for Repair of Streaming Media
2343 -RTP Payload Format for Bundled MPEG
2327 -SDP: Session Description Protocol
2326 -Real Time Streaming Protocol (RTSP)
2250, 2038 - RTP Payload Format for MPEGllMPEG2 Video
2216 -Network Element Service Specification Template
2215 General Characterization Parameters for Integrated Service Network Elements
22 12 -Specification of Guaranteed Quality of Service
221 1 -Specification of the Controlled-Load Network Element Service
2210 -The Use of RSVP with IETF Integrated Services
2209 -Resource ReSerVation Protocol (RSVP) -- Version 1 Message Processing

Rules
2208 -Resource ReSerVation Protocol (RSVP) -- Version 1 Applicability Statement

Some Guidelines on Deployment
2207 -RSVP Extensions for IPSEC Data Flows
2206 -RSVP Management Information Base using SMIv2
2205 -Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification
2198 -RTP Payload for Redundant Audio Data
2190 -RTP Payload Format for H.263 Video Streams
2032 -RTP Payload Format for H.261 Video Streams
2029 -RTP Payload Format of Sun's CellB Video Encoding
1890 -RTP Profile for Audio and Video Conferences with Minimal Control
1889 -RTP: A Transport Protocol for Real-Time Applications
1821 -Integration of Real-time Services in an IP-ATM Network Architecture
1789 -INETPhone: Telephone Services and Servers on Internet
1257 -Isochronous applications do not require jitter-controlled networks
1193 Client requirements for real-time communication services
741 - Specifications for the Network Voice Protocol (NVP)

6s. Other
2703 -Protocol-independent Content Negotiation Framework
2614 -An API for Service Location
2610 -DHCP Options for Service Location Protocol
2609 -Service Templates and Service: Schemes
2608, 2165 - Service Location Protocol, Version 2
2552 -Architecture for the Information Brokerage in the ACTS Project GAIA
2533 -A Syntax for Describing Media Feature Sets
2447, 2446, 2445 - icalendar Message-Based Interoperability Protocol (iMIP)
2244 -ACAP -- Application Configuration Access Protocol
2229 -A Dictionary Server Protocol
2 188 -AT&T/Neda' s Efficient Short Remote Operations (ESRO) Protocol

Specification Version 1.2
201 6 -Uniform Resource Agents (URAs)
1861, 1645, 1568 - Simple Network Paging Protocol - Version 3 -Two-way

Enhanced
1756 -Remote Write Protocol - Version 1.0
1703, 1569 - Principles of Operation for the TF'C.INT Subdomain: Radio Paging --

Technical Procedures

Sex. 6 Application Level 66 1

1692 -Transport Multiplexing Protocol (TMux)
1530 -Principles of Operation for the TPC.INT Subdomain: General Principles and

Policy
1492 -An Access Control Protocol, Sometimes Called TACACS
1459 -Internet Relay Chat Protocol
1429 -Listserv Distribute Protocol
1413, 93 1, 912 - Identification Protocol
1307 -Dynamically Switched Link Control Protocol
1288, 1196, 1194,742 - The Finger User Information Protocol
1179 -Line printer daemon protocol
978 - Voice File Interchange Protocol (VFIP)
909 - Loader Debugger Protocol
891 - DCN local-network protocols
887 - Resource Location Protocol
866 - Active users
865 - Quote of the Day Protocol
864 - Character Generator Protocol
863, 348 - Discard Protocol
862, 347 - Echo Protocol
767 - Structured format for transmission of multi-media documents
759 - Internet Message Protocol
734 - SUPDUP Protocol
666 - Specification of the Unified User-Level Protocol
621 - NIC user directories at SRI ARC
569 - NETED: A Common Editor for the ARPA Network
470 - Change in socket for TIP news facility
45 1 - Tentative proposal for a Unified User Level Protocol
109 - Level III Server Protocol for the Lincoln Laboratory NIC 360167 Host
98,79 - Logger Protocol Proposal
29 - Response to RFC 28

7. Program Documentation
1761 -Snoop Version 2 Packet Capture File Format
496 - TNLS quick reference card is available
494 - Availability of MIX and MIXAL in the Network
488 - NLS classes at network sites
485 - MIX and MIXAL at UCSB
431 - Update on SMFS Login and Logout
41 1 - New MULTICS Network Software Features
409 - Tenex interface to UCSB's Simple-Minded File System
399 - SMFS Login and Logout
390 - TSO Scenario
382 - Mathematical Software on the ARPA Network
379 - Using TSO at CCN
373 - Arbitrary Character Sets
350 - User Accounts for UCSB On-Line System
345 - Interest in Mixed Integer Programming (MPSX on NIC 360191 at CCN)
321 - CBI Networking Activity at MITRE
31 1 - New Console Attachments to the USCB Host
25 1 - Weather data
217 - Specifications changes for OLS, RJERJOR, and SMFS
174 - UCLA - Computer Science Graphics Overview
122 - Network specifications for UCSB's Simple-Minded File System
12 1 - Network on-line operators

A Guide To RFCs Appendix 1

120 - Network PL1 subprograms
119 - Network Fortran subprograms
74 - Specifications for network use of the UCSB On-Line System

8. Network Specific (also see Section 3)
8a. ARPANET

1005, 878, 851, 802 - ARPANET AHP-E Host Access Protocol (enhanced AHIP)
852 - ARPANET short blocking feature
789 - Vulnerabilities of network control protocols: An example
745 - JANUS interface specifications
716 - Interim Revision to Appendix F of BBN 1822
704 - IMPIHost and HostfIMP Protocol change
696 - Comments on the IMPMost and HostfIMP Protocol changes
695 - Official change in Host-Host Protocol
692 - Comments on IMPMost Protocol changes (RFCs 687 and 690)
690 - Comments on the proposed Host/IMP Protocol changes
687 - IMPIHost and Host/IMP Protocol changes
667 - BBN host ports
660 - Some changes to the IMP and the IMPMost interface
642 - Ready line philosophy and implementation
638,633 - IMPmP preventive maintenance schedule
632 - Throughput degradations for single packet messages
627 - ASCII text file of hostnames
626 - On a possible lockup condition in IMP subnet due to message sequencing
625 - On-line hostnames service
623 - Comments on on-line host name service
622 - Scheduling IMPRP down time
620 - Request for monitor host table updates
619 - Mean round-trip times in the ARPANET
613 - Network connectivity: A response to RFC 603
61 1 - Two changes to the IMPIHost Protocol to improve userlnetwork

communications
606 - Host names on-line
594 - Speedup of Host-IMP interface
591 - Addition to the Very Distant Host specifications
568, 567 - Response to RFC 567 - cross country network bandwidth
548 - Hosts using the IMP Going Down message
547 - Change to the Very Distant Host specification
533 - Message-ID numbers
528 - Software checksumming in the IMP and network reliability
521 - Restricted use of IMP DDT
508 - Real-time data transmission on the ARPANET
476, 434 - IMPRIP memory retrofit schedule (rev 2)
449,442 - Current flow-control scheme for IMPSYS
447,445 - IMPRIP memory retrofit schedule
417 - Link usage violation
410 - Removal of the 30-Second Delay When Hosts Come Up
406 - Scheduled IMP Software Releases
395 - Switch Settings on IMPS and TIPS
394 - Two Proposed Changes to the IMP-Host Protocol
369 - Evaluation of ARPANET services January-March, 1972
335 - New Interface - IMP1360
312 - Proposed Change in IMP-to-Host Protocol

Sec. 8 Network Specific (also see Section 3)

297 - TIP Message Buffers
280 - A Draft of Host Names
274 - Establishing a local guide for network usage
273,237 - More on standard host names
271 - IMP System change notifications
270 - Correction to BBN Report No
263 - "Very Distant" Host interface
254 - Scenarios for using ARPANET computers
247 - Proffered set of standard host names
241 - Connecting computers to MLC ports
239 - Host mnemonics proposed in RFC 226 (NIC 7625)
236 - Standard host names
233 - Standardization of host call letters
230 - Toward reliable operation of minicomputer-based terminals on a TIP
229 - Standard host names
228 - Clarification
226 - Standardization of host mnemonics
218 - Changing the IMP status reporting facility
213 - IMP System change notification
209 - HostAMP interface documentation
208 - Address tables
73,67 - Response to NWG/RFC 67
71 - Reallocation in Case of Input Error
70 - Note on Padding
64 - Getting rid of marking
41 - IMP-IMP Teletype Communication
25 - No High Link Numbers
19 - Two protocol suggestions to reduce congestion at swap bound nodes
17 - Some questions re: Host-IMP Protocol
12 - IMP-Host interface flow diagrams
7 - Host-IMP interface
6 - Conversation with Bob Kahn

8b. Host Front End Protocols
929,928,705,647 - Proposed Host-Front End Protocol

8c. ARPANET NCP (Obsolete Predecessor of TCPAP)
801 - NCP/TCP transition plan
773 - Comments on NCP/TCP mail service transition strategy
714 - Host-Host Protocol for an ARPANET-Type Network
689 - Tenex NCP finite state machine for connections
663 - Lost message detection and recovery protocol
636 - TIPRenex reliability improvements
635 - Assessment of ARPANET protocols
534, 516, 512 - Lost message detection
492,467 - Response to RFC 467
489 - Comment on resynchronization of connection status proposal
425 - "But my NCP costs $500 a day"
2 10 - Improvement of Flow Control
176 - Comments on "Byte size for connections"
165 - Proffered official Initial Connection Protocol
147 - Definition of a socket
142 - Time-out Mechanism in the Host-Host Protocol
132, 124, 107, 102 - Typographical Error in RFC 107

A Guide To RFCs Appendix 1

129 - Request for comments on socket name structure
128 - Bytes
117 - Some comments on the official protocol
72 - Proposed Moratorium on Changes to Network Protocol
68 - Comments on Memory Allocation Control Commands: CEASE, ALL, GVB,

RET, and RFNM
65 - Comments on HostIHost Protocol document #1
60 - Simplified NCP Protocol
59 - Flow Control - Fixed Versus Demand Allocation
58 - Logical Message Synchronization
57, 54 - Thoughts and Reflections on NWGIRFC 54
56 - Third Level Protocol: Logger Protocol
55 - Prototypical implementation of the NCP
50,49,47,45,44,40, 39,38,36,33 - Comments on the Meyer Proposal
42 - Message Data Types
23 - Transmission of Multiple Control Messages
22 - Host-host control message formats
18 - IMP-IMP and HOST-HOST Control Links
15 - Network subsystem for time sharing hosts
11 - Implementation of the Host-Host software procedures in GORDO
9, 1 - Host software
8 - Functional specifications for the ARPA Network
5 - Decode Encode Language (DEL)
2 - Host software

8d. ARPANET Initial Connection Protocol
202 - Possible Deadlock in ICP
197 - Initial Connection Protocol - Reviewed
16 1 - Solution to the race condition in the ICP
151, 148, 143, 127, 123 - Comments on a proffered official ICP: RFCs 123, 127
150 - Use of P C Facilities: A Working Paper
145 - Initial Connection Protocol Control Commands
93 - Initial Connection Protocol
80 - Protocols and Data Formats
66 - NIC - third level ideas and other noise

8e. USENET
1036 Standard for interchange of USENET messages
850 - Standard for interchange of USENET messages

8f. Other
1553 -Compressing IPX Headers Over WAN Media (CIPX)
1132 -Standard for the transmission of 802.2 packets over IF'X networks
935 - Reliable link layer protocols
916 - Reliable Asynchronous Transfer Protocol (RATP)
914 - Thinwire protocol for connecting personal computers to the Internet
824 - CRONUS Virtual Local Network

9. Measurement
9a. General

2724 -RTFM: New Attributes for Traffic Flow Measurement
2723 -SRL: A Language for Describing Traffic Flows and Specifying Actions for

Flow Groups
2722 -Traffic Flow Measurement: Architecture

Sec. 9 Measurement

2721 -RTFM: Applicability Statement
2681 -A Round-trip Delay Metric for IPPM
2680 -A One-way Packet Loss Metric for IPPM
2679 -A One-way Delay Metric for IPPM
2678, 2498 - IPPM Metrics for Measuring Connectivity
2544, 1944 - Benchmarking Methodology for Network Interconnect Devices
2432 -Terminology for IP Multicast Benchmarking
2330 -Framework for IP Perfomxime Metrics
2285 -Benchmarking Terminology for LAN Switching Devices
1857, 1404 - A Model for Common Operational Statistics
1273 -Measurement Study of Changes in Service-Level Reachability in the Global

TCP/IP Internet: Goals, Experimental Design, Implementation, and Policy
Considerations

1262 -Guidelines for Internet Measurement Activities
557 - Revelations in network host measurements
546 - Tenex load averages for July 1973
462 - Responding to user needs
415 - Tenex bandwidth
392 - Measurement of host costs for transmitting network data
352 - TIP Site Information Form
308 - ARPANET host availability data
286 - Network Library Information System
214, 193 - Network checkpoint
198 - Site Certification - Lincoln Labs 360167
182 - Compilation of list of relevant site reports
180 - File system questionnaire
156 - Status of the Illinois site: Response to RFC 116
153 - SRI ARC-NIC status
152 - SRI Artificial Intelligence status report
126 - Graphics Facilities at Arnes Research Center
112 - UserlServer Site Protocol: Network host questionnaire responses
106 - UserlServer Site Protocol Network Host Questionnaire
104 - Link 191

9b. Surveys
971 - Survey of data representation standards
876 - Survey of SMTP implementations
848 - Who provides the "little" TCP services?
847 - Summary of Smallberg surveys
846, 845,843,842, 839,838, 837, 836,835, 834, 833, 832 - Who talks TCP? -

survey of 22 February 1983
844 - Who talks ICMP, too? - Survey of 18 February 1983
787 - Connectionless data transmission surveyltutorial
565 - Storing network survey data at the datacomputer
545 - Of what quality be. the UCSB resources evaluators?
530 - Report on the Survey project
523 - SURVEY is in operation again
5 19 - Resource evaluation
5 14 - Network make-work
464 - Resource notebook framework
460 - NCP survey
459 - Network questionnaires
450 - MULTICS sampling timeout change
446 - Proposal to consider a network program resource notebook

666 A Guide To RFCs Appendix 1

96 - An Interactive Network Experiment to Study Modes of Access the Network
Information Center

90 - CCN as a Network Service Center
8 1 - Request for Reference Information
78 - NCP Status Report: UCSB/Rand

9c. Statistics
1030 -On testing the NETBLT Protocol over divers networks
996 - Statistics server
618 - Few observations on NCP statistics
612,601,586,579,566,556,538,522,509,497,482,455,443,422,413,400, 391,

378 - Traffic statistics (December 1973)
603,597, 376, 370,367, 366, 362,353,344,342,332,330, 326,319,315, 306, 298,

293, 288, 287, 267, 266 - Response to RFC 597: Host status
550 - NIC NCP experiment
388 - NCP statistics
255, 252, 240, 235 - Status of network hosts

10. Privacy, Security and Authentication
10a. General

2716 -PPP EAP TLS Authentication Protocol
2712 -Addition of Kerberos Cipher Suites to Transport Layer Security (TLS)
2704 -The KeyNote Trust-Management System Version 2
2693 -SPKI Certificate Theory
2692 -SPKI Requirements
2630 -Cryptographic Message Syntax
2628 -Simple Cryptographic Program Interface (Crypto API)
2627 -Key Management for Multicast: Issues and Architectures
2538 -Storing Certificates in the Domain Name System (DNS)
2537 -RSA/MD5 KEYS and SIGs in the Domain Name System (DNS)
2536 -DSA KEYS and SIGs in the Domain Name System (DNS)
2523,2522 - Photuris: Extended Schemes and Attributes
2504 -Users' Security Handbook
2479 -Independent Data Unit Protection Generic Security Service Application

Program Interface (IDUP-GSS-API)
2478,2078, 1508 - The Simple and Protected GSS-API Negotiation Mechanism
2444 -The One-Time-Password SASL Mechanism
2440 -OpenPGP Message Format
2437, 2313 - PKCS #1: RSA Cryptography Specifications Version 2.0
2367 -PF-KEY Key Management API, Version 2
23 15 -PKCS 7: Cryptographic Message Syntax Version 1.5
23 14 -PKCS 10: Certification Request Syntax Version 1.5
2289, 2243, 1938 - A One-Time Password System
2267 -Network Ingress Filtering: Defeating Denial of Service Attacks which employ

IP Source Address Spoofing
2246 -The TLS Protocol Version 1.0
2245 -Anonymous SASL Mechanism
2222 -Simple Authentication and Security Layer (SASL)
2196, 1244 - Site Security Handbook
2179 -Network Security For Trade Shows
2094 -Group Key Management Protocol (GKMP) Architecture
2093 -Group Key Management Protocol (GKMP) Specification
2025 -The Simple Public-Key GSS-API Mechanism (SPKM)

Sec. 10 Privacy, Security and Authentication

1991 -PGP Message Exchange Formats
1964 -The Kerberos Version 5 GSS-API Mechanism
1949 -Scalable Multicast Key Distribution
1948 -Defending Against Sequence Number Attacks
1898 XyberCash Credit Card Protocol Version 0.8
1824 -The Exponential Security System TESS: An Identity-Based Cryptographic

Protocol for Authenticated Key-Exchange (E.1.S.S.-Report 199514)
1805 -Location-Independent DatalSoftware Integrity Protocol
1760 -The SKEY One-Time Password System
175 1 -A Convention for Human-Readable 128-bit Keys
1750 -Randomness Recommendations for Security
1704 -On Internet Authentication
15 1 1 -Common Authentication Technology Overview
15 10 -The Kerberos Network Authentication Service (V5)
1509 -Generic Security Service API : C-bindings
1507 -DASS - Distributed Authentication Security Service
1457 -Security Label Framework for the Internet
1455 -Physical Link Security Type of Service
1424 -Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification

and Related Services
1423, 11 15 - Privacy Enhancement for Internet Electronic Mail: Part 111:

Algorithms, Modes, and Identifiers
1422, 11 14 - Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-

Based Key Management
1421, 11 13,989 - Privacy Enhancement for Internet Electronic Mail: Part I:

Message Encryption and Authentication Procedures
1355 -Privacy and Accuracy Issues in Network Information Center Databases
128 1 -Guidelines for the Secure Operation of the Internet
1170 -Public key standards and licenses
1 135 -Hehinthiasis of the Internet
1108 -US Department of Defense Security Options for the Internet Protocol
1040 -Privacy enhancement for Internet electronic mail: Part I: Message

encipherment and authentication procedures
1038 -Draft revised IP security option
1004 -Distributed-protocol authentication scheme
972 - Password Generator Protocol

lob. Encryption, Authentication and Key Exchange Algorithms
263 1 -Diffie-Hellman Key Agreement Method
2612 -The CAST-256 Encryption Algorithm
2286 -Test Cases for HMAC-RIPEMD160 and HMAC-RIPEMD128
2268 -A Description of the RC2(r) Encryption Algorithm
2202 -Test Cases for HMAC-MD5 and HMAC-SHA- 1
2144 -The CAST-128 Encryption Algorithm
2040 -The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms
18 10 -Report on MD5 Performance
1321 -The MD5 Message-Digest Algorithm
1320, 1 186 - The MD4 Message-Digest Algorithm
1319 -The MD2 Message-Digest Algorithm

10c. IP Security Protocol (IPSec)
2709 -Security Model with Tunnebmode IPsec for NAT Domains
2451 -The ESP CBC-Mode Cipher Algorithms
2412 -The OAKLEY Key Determination Protocol

668 A Guide To RFCs Appendix 1

241 1 -1P Security Document Roadmap
2410 -The NULL Encryption Algorithm and Its Use With IPsec
2409 -The Internet Key Exchange (IKE)
2408 -Internet Security Association and Key Management Protocol (ISAKMP)
2407 -The Internet IP Security Domain of Interpretation for ISAKMP
2406, 1827 - IP Encapsulating Security Payload (ESP)
2405 -The ESP DES-CBC Cipher Algorithm With Explicit IV
2404 -The Use of HMAC-SHA-1-96 within ESP and AH
2403 -The Use of HMAC-MD5-96 within ESP and AH
2402, 1826 - IP Authentication Header
2401, 1825 - Security Architecture for the Internet Protocol
2104 -HMAC: Keyed-Hashing for Message Authentication
2085 -HMAC-MD5 IP Authentication with Replay Prevention
1852 -1P Authentication using Keyed SHA
1851 -The ESP Triple DES Transform
1829 -The ESP DES-CBC Transform
1828 -IP Authentication using Keyed MD5

11. Network Experience and Demonstrations
2123 -Traffic Flow Measurement: Experiences with NeTraMet
1435 -1ESG Advice from Experience with Path MTU Discovery
1306 -Experiences Supporting By-Request Circuit-Switched T3 Networks
967 - All victims together
573 - Data and file transfer: Some measurement results
525 - MIT-MATHLAB meets UCSB-OLS -an example of resource sharing
439 - PARRY encounters the DOCTOR
420 - CCA ICCC weather demo
372 - Notes on a Conversation with Bob Kahn on the ICCC
364 - Serving remote users on the ARPANET
302 - Exercising The ARPANET
231 - Service center standards for remote usage: A user's view
227 - Data transfer rates (Rand/UCLA)
113 - Network activity report: UCSB Rand
89 - Some historic moments in networking
4 - Network timetable

12. Site Documentation
30, 27, 24, 10, 3 - Documentation Conventions

13. Protocol Standards By Other Groups Of Interest To The
Internet

13a. ANSI
183 - EBCDIC codes and their mapping to ASCII
20 - ASCII format for network interchange

13b. NRC
942 - Transport protocols for Department of Defense data networks
939 - Executive summary of the NRC report on transport protocols for Department

of Defense data networks

13c. IS0
1698 -Octet Sequences for Upper-Layer OSI to Support Basic Communications

Applications
1629. 1237 - Guidelines for OSI NSAP Allocation in the Internet
1575; 1139 - An Echo Function for CLNP (IS0 8473)

Sec. 13 Protocol Standards By Other Groups Of Interest To The Internet

1574 -Essential Tools for the OSI Internet
1561 -Use of IS0 CLNP in TUBA Environments
1330 -Recommendations for the Phase I Deployment of OSI Directory Services

(X.500) and OSI Message Handling Services (X.400) within the ESNET
Community

1238, 1162 - CLNS MIB for use with Connectionless Network Protocol (IS0 8473)
and End System to Intermediate System (IS0 9542)

1223 -OSI CLNS and LLCl protocols on Network Systems HYPERchamel
1008 -Implementation guide for the IS0 Transport Protocol
1007 -Military supplement to the IS0 Transport Protocol
995 - End System to Intermediate System Routing Exchange Protocol for use in

conjunction with IS0 8473
994 - Final text of DIS 8473, Protocol for Providing the Connectionless-mode

Network Service
982 - Guidelines for the specification of the structure of the Domain Specific Part

(DSP) of the IS0 standard NSAP address
941 - Addendum to the network service definition covering network layer

addressing
926 - Protocol for providing the co~ectionless mode network services
905 - IS0 Transport Protocol specification IS0 DP 8073
892 - IS0 Transport Protocol specification
873 - Illusion of vendor support

14. Interoperability With Other Applications And Protocols
14a. Protocol Translation and Bridges

1086 -1SO-TPO bridge between TCP and X.25
1029 -More fault tolerant approach to address resolution for a Multi-LAN system of

Ethernets

14b. Tunneling and Layering
2661 -Layer Two Tunneling Protocol "L2TP"
2556 -OSI connectionless transport services on top of UDP Applicability Statement

for Historic Status
2353 -APPN/HPR in IP Networks APPN Implementers' Workshop Closed Pages

Document
2166 -APPN Irnplementer's Workshop Closed Pages Document DLSw v2.0

Enhancements
2126, 1859, 1006 - IS0 Transport Service on top of TCP (ITOT)
21 14, 2106 - Data Link Switching Client Access Protocol
1795, 1434 - Data Link Switching: Switch-to-Switch Protocol AIW DLSw RIG:

DLSw Closed Pages, DLSw Standard Version 1
1791 -TCP And UDP Over IPX Networks With Fixed Path MTU
1634, 1551, 1362 - Novel1 IPX Over Various WAN Media (IPXWAN)
1613 -cisco Systems X.25 over TCP (XOT)
1538 -Advanced SNA/IP : A Simple SNA Transport Protocol
1356 -Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode
1240 -OSI connectionless transport services on top of UDP: Version 1
1234 -Tunneling IPX traffic through IP networks
1085 -IS0 presentation services on top of TCP/IP based internets
1070 -Use of the Internet as a subnetwork for experimentation with the OSI network

layer
983 - IS0 transport arrives on top of the TCP

670 A Guide To RFCs Appendix 1

14c. Mapping of Names, Addresses, and Identifiers
1439 -The Uniqueness of Unique Identifiers
1236 -1P to X.121 address mapping for DDN
1069 -Guidelines for the use of Internet-IP addresses in the IS0 Connectionless-

Mode Network Protocol

15. Miscellaneous
15a. General

2664, 1594, 1325, 1206, 1 177 - FYI on Questions and Answers - Answers to
Commonly Asked "New Internet User" Questions

2636, 2604 - Wireless Device Configuration (OTASPIOTAPA) via ACAP
2635 -DON'T SPEW A Set of Guidelines for Mass Unsolicited Mailings and

Postings (spam*)
2626 -The Internet and the Millennium Problem (Year 2000)
2555 -30 Years of RFCs
2468 -I REMEMBER IANA
2441 -Working with Jon, Tribute delivered at UCLA, October 30, 1998
2351 -Mapping of Airline Reservation, Ticketing, and Messaging Traffic over IP
2350 -Expectations for Computer Security Incident Response
2309 -Recommendations on Queue Management and Congestion Avoidance in the

Internet
2235 -Hobbes' Internet Timeline
2234 -Augmented BNF for Syntax Specifications: ABNF
215 1, 1739 - A Primer On Internet and TCPhP Tools and Utilities
2150 -Humanities and Arts: Sharing Center Stage on the Internet
2057 -Source Directed Access Control on the Internet
1983, 1392 - Internet Users' Glossary
1958 -Architectural Principles of the Internet
1941, 1578 - Frequently Asked Questions for Schools
1935 -What is the Internet, Anyway?
1865 -ED1 Meets the Internet Frequently Asked Questions about Electronic Data

Interchange (EDI) on the Internet
1855 -Netiquette Guidelines
1775 -To Be "On" the Internet
1758, 1417, 1295 - NADF Standing Documents: A Brief Overview
1746 -Ways to Define User Expectations
1709 -K-12 Internetworking Guidelines
1691 -The Document Architecture for the Cornell Digital Library
1633 -Integrated Services in the Internet Architecture: an Overview
1580 -Guide to Network Resource Tools
1501 -OW2 User Group
1498 4 x 1 the Naming and Binding of Network Destinations
1470, 1147 - FYI on a Network Management Tool Catalog: Tools for Monitoring

and Debugging TCPnP Internets and Interconnected Devices
1462 -FYI on "What is the Internet?"
1453 -A Comment on Packet Video Remote Conferencing and the

Transport/Network Layers
1432 -Recent Internet Books
1402, 1290 - There's Gold in them thar Networks! or Searching for Treasure in all

the Wrong Places
1400 -Transition and Modernization of the Internet Registration Service
1359 -Connecting to the Internet - What Connecting Institutions Should Anticipate
1345 -Character Mnemonics and Character Sets

Sec. 15 Miscellaneous 67 1

1336, 1251 - Who's Who in the Internet: Biographies of IAB, IESG and IRSG
Members

1324 -A Discussion on Computer Network Conferencing
1302 -Building a Network Information Services Infrastructure
1300 -Remembrances of Things Past
1296 -Internet Growth (198 1- 199 1)
129 1 -Mid-Level Networks Potential Technical Services
1259 -Building the open road: The NREN as test-bed for the national public

network
1242 -Benchmarking tem6nology for network interconnection devices
1208 -Glossary of networking terms
1207 -FYI on Questions and Answers: Answers to commonly asked "experienced

Internet user" questions
1199, 1099 - Request for Comments Summary Notes: 1100-1 199
1192 -Commercialization of the Internet summary report
1 18 1 -RIPE Terms of Reference
1 180 -TCP/IP tutorial
1178 -Choosing a name for your computer
1173 -Responsibilities of host and network managers: A summary of the "oral

tradition" of the Internet
1169 -Explaining the role of GOSIP
1167 -Thoughts on the National Research and Education Network
1 1 18 -Hitchhikers guide to the Internet
1015 -Implementation plan for interagency research Internet
992 - On communication support for fault tolerant process groups
874 - Critique of X.25
531 - Feast or famine? A response to two recent RFC's about network information
473 - MIX and MIXAL?
472 - Illinois' reply to Maxwell's request for graphics infom~ation (NIC 14925)
429 - Character Generator Process
408 - NETBANK
361 - Deamon Processes on Host 106
3 13 - Computer based instruction
256 - IMPSYS change notification
225 - RandIUCSB network graphics experiment
219 - User's view of the datacomputer
187 - Network1440 Protocol Concept
169 - Computer networks
146 - Views on issues relevant to data sharing on computer networks
13 - Zero Text Length EOF Message

15b. Bibliographies
2007 -Catalogue of Network Training Materials
1463 -FYI on Introducing the Internet-- A Short Bibliography of Introductory

Internetworking Readings
1175 -FYI on where to start: A bibliography of internetworking information
1012 -Bibliography of Request For Comments 1 through 999
829 - Packet satellite technology reference sources
290 - Computer networks and data sharing: A bibliography
243 - Network and data sharing bibliography

15c. Humorous RFCs
2551 -The Roman Standards Process -- Revision III
2550 -YlOK and Beyond

672 A Guide To RFCs Appendix 1

2549 -1P over Avian Carriers with Quality of Service
2325 -Definitions of Managed Objects for Drip-Type Heated Beverage Hardware

Devices using SMIv2
2324 -Hyper Text Coffee Pot Control Protocol (HTCPCPIl .O)
2323 -1ETF Identification and Security Guidelines
2322 -Management of IP numbers by peg-dhcp
2321 -RITA -- The Reliable Internetwork Troubleshooting Agent
2100 -The Naming of Hosts
1927 -Suggested Additional MIME Types for Associating Documents
1926 -An Experimental Encapsulation of IP Datagram on Top of ATM
1925 -The Twelve Networking Truths
1924 -A Compact Representation of IPv6 Addresses
1882 -The 12-Days of Technology Before Christmas
1776 -The Address is the Message
1607 -A VIEW FROM THE 21ST CENTURY
1606 -A Historical Perspective On The Usage Of IP Version 9
1605 -SONET to Sonnet Translation
1438 -Internet Engineering Task Force Statements Of Boredom (SOBS)
1437 -The Extension of MIME Content-Types to a New Medium
13 13 -Today's Programming for KRFC AM 13 13 Internet Talk Radio
1217 -Memo from the Consortium for Slow Commotion Research (CSCR)
1216 -Gigabit network economics and paradigm shifts
1149 -Standard for the transmission of IP datagrams on avian carriers
1 12 1 -Act one - the poems
1097 -Telnet subliminal-message option
968 - Twas the night before start-up
748 - Telnet randomly-lose option
527 - ARPAWOCKY

16. Unissued
2727, 2726, 2725,2708,2707, 2700, 2699, 2600, 2599,2576, 1849, 1840, 1839,
1260, 1182, 1061, 853,723,715,711,710,709,693,682,676,673,670,668,665,
664, 650, 649, 648, 646, 641, 639, 605, 583, 575, 572, 564, 558, 554, 541, 540, 536,
517, 507, 502, 484, 481, 465, 444, 428, 427, 424, 397, 383, 380, 375, 358, 341, 337,
284, 279, 277, 275, 272, 262, 261, 260, 259, 258, 257, 248, 244, 220, 201, 159, 92,
26, 14

Appendix 2

Glossary Of Internetworking
Terms And Abbreviations

TCPhP Terminology

Like most large enterprises, TCP/IP has a language all its own. A curious blend of
networking jargon, protocol names, and abbreviations, the language is both difficult to
learn and difficult to remember. To outsiders, discussions among the cognoscenti sound
like meaningless babble laced with acronyms at every possible opportunity. Even after
a moderate amount of exposure, readers may find that specific terms are =cult to
understand. The problem is compounded because some terminology is loosely defined
and because the sheer volume is overwhelming.

This glossary helps solve the problem by providing short definitions for terms used
throughout the Internet. It is not intended as a tutorial for beginners. Instead, we focus
on providing a concise reference to make it easy for those who are generally
knowledgeable about networking to look up the meaning of specific terms or acronyms
quickly. Readers will find it substantially more useful as a reference after they have
studied the text than before.

Glossary of Internetworking Terms and Abbreviations Appendix 2

A Glossary of Terms and Abbreviations
In Alphabetical Order

1011 00 hardware
Applied to any Ethernet hardware that can operate at either 10 Mbps or 100 Mbps.

1 0Base2
The technical name for the original thick Ethernet.

1 0Base5
The technical name for thin Ethernet.

1OBaseT
The technical name for twisted pair Ethernet operating at 10 Mbps.

1 WBase-T
The technical name for twisted pair Ethernet operating at 100 Mbps. The term
IOOBase-TX is more specific.

1 000 Base-T
The technical name for twisted pair Ethernet operating at 1000 Mbps (1 Gbps).

127.0.0.1
The IF' loopback address used for testing. Packets sent to this address are processed
by the local protocol software without ever being sent across a network.

W Problem
An inefficient routing situation caused by mobile IF' in which a datagram crosses the
global Internet twice when traveling from a computer to a mobile that is visiting a
nearby network.

576
The minimum datagram size all hosts and routers must handle.

802.3
The IEEE standard for Ethernet.

822
The TCPIIP standard format for electronic mail messages. Mail experts often refer
to "822 messages." The name comes from RFC 822 that contains the specification.
822 format was previously known as 733 format.

91 80
The default MTU size for sending IP datagrams over an ATM network.

AAL
(ATM Adaptation Layer) Part of the ATM protocols. Several adaptation layers ex-
ist; AAL5 is used for data.

TCPlIP Internet Terms In Alphabetical Order 675

ABR
Either Available Bit Rate, an ATM designation for service that does not guarantee a
rate, or Area Border Router, an OSPF designation for a router that communicates
with another area.

ACK
Abbreviation for acknowledgement.

ACK implosion
A reference to a problem that can occur with a reliable multicast protocol in which
many acknowledgements (ACKs) go back to the source. Most reliable multicast
schemes use designated routers to aggregate ACKs.

acknowledgement
A response sent by a receiver to indicate successful reception of information. Ack-
nowledgements may be implemented at any level including the physical level (using
voltage on one or more wires to coordinate transfer), at the link level (to indicate
successful transmission across a single hardware link), or at higher levels (e.g., to al-
low an application program at the final destination to respond to an application pro-
gram at the source).

acknowledgement aggregator
Used in a reliable multicast scheme to avoid the ACK implosion problem.

active open
The operation that a client performs to establish a TCP connection with a server at a
known address.

adaptive retransmission
The scheme TCP uses to make the retransmission timer track the mean round-trip
time.

address
An integer value used to identify a particular computer that must appear in each
packet sent to the computer.

address binding
The translation of a higher-layer address into an equivalent lower-layer address (e.g.,
translation of a computer's IP address to the computer's Ethernet address).

address mask
A synonym for subnet mask.

address resolution
Conversion of a protocol address into a corresponding physical address (e.g.,
conversion of an IP address into an Ethernet address). Depending on the underlying
network, resolution may require broadcasting on a local network. See ARP.

administrative scoping
A scheme for limiting the propagation of multicast datagrams. Some addresses are
reserved for use within a site or within an organization.

676 Glossary of Internetworking Terms and Abbreviations Appendix 2

ADSL
(Asymmetric Digital Subscriber Line) A popular DSL variant.

Advanced Networks and Services
The company that owned and operated the Internet backbone in 1995.

agent
In network management, an agent is the server software that runs on a host or router
being managed.

AH
(Authentication Header) A header used by IPsec to guarantee the authenticity of a
datagram's source.

all routers group
The well-known IP multicast group that includes all routers on the local network.

all systems group
The well-known IP multicast group that includes all hosts and routers on the local
network.

anonymous FTP
An FTP session that uses login name anonymous to access public files. A server
that permits anonymous FTP often allows the password guest.

anonymous network
A synonym for unnumbered network.

ANS
Abbreviation for Advanced Networks and Services.

ANSI
(American National Standards Institute) A group that defines U.S. standards for the
information processing industry. ANSI participates in defining network protocol
standards.

ANSNET
The Wide Area Network that formed the Internet backbone until 1995.

anycast
An address form introduced with IPv6 in which a datagram sent to the address can
be routed to any of a set of computers. An anycast address is called a cluster ad-
dress.

API
(Application Program Interface) The specification of the operations an application
program must invoke to communicate over a network. The socket API is the most
popular for internet communication.

application gateway
An application program that connects two or more heterogeneous systems and
translates among them. E-mail gateways are especially popular.

TCPm Internet Terms In Alphabetical Order

application-server paradigm
A synonym for client-server paradigm.

area
In OSPF, a group of routers that exchange routing information.

area manager
A person in charge of an IETF area. The set of area managers form the IESG.

ARP
(Address Resolution Protocol) The TCP/IF' protocol used to dynamically bind a
high-level IP Address to a low-level physical hardware address. ARP is used across
a single physical network and is limited to networks that support hardware broad-
cast.

ARPA
(Advanced Research Projects Agency) The government agency that funded the AR-
PANET, and later, the global Internet. The group within ARPA with responsibility
for the ARPANET was IPTO (Information Processing Techniques Ofice), later
called ISTO (Information Systems Technology w e e) . ARPA was named DARPA
for many years.

ARPANET
A pioneering long haul network funded by ARPA (later DARPA) and built by BBN.
It served from 1969 through 1990 as the basis for early networking research and as a
central backbone during development of the Internet. The ARPANET consisted of
individual packet switching nodes interconnected by leased lines.

ARQ
(Automatic Repeat reQuest) Any protocol that uses positive and negative ack-
nowledgements with retransmission techniques to ensure reliability. The sender au-
tomatically repeats the request if it does not receive an answer.

AS
(Autonomous System) A collection of routers and networks that fall under one ad-
ministrative entity and cooperate closely to propagate network reachability (and
routing) information among themselves using an interior gateway protocol of their
choice. Routers within an autonomous system have a high degree of trust. Before
two autonomous systems can communicate, one router in each system sends reacha-
bility information to a router in the other.

ASN.l
(Abstract Syntax Notation. 1) The IS0 presentation standard protocol used by
SNMP to represent messages.

Assigned Numbers
The RFC document that specifies (usually numeric) values used by TCPAP proto-
cols.

678 Glossary of internetworking Terms and Abbreviations Appendix 2

ATM
(Asynchrotwzu Transfer Mode) A ~o~ec t ion -~ r i en t ed network technology that uses
small, fixed-size cells at the lowest layer. ATM has the potential advantage of being
able to support voice, video, and data with a single underlying technology.

ATM Adaptation Layer (AAL)
One of several protocols defined for ATM that specifies how an application sends
and receives information over an ATM network. Data transmissions use AALS.

ATMARP
The protocol a host uses for address resolution when sending IP over an ATM net-
work.

AUI
(Attachment Unit Interjime) The connector used for thick-wire Ethernet.

authority zone
A part of the domain name hierarchy in which a single name server is the authority.

backbone network
Any network that forms the central interconnect for an internet. A national back-
bone is a WAN; a corporate backbone can be a LAN.

base64
An encoding used with MIME to send non-textual data such as a binary file through
e-mail.

base header
In the proposed IPng, the required header found at the beginning of each datagram.

baseband
Characteristic of any network technology like Ethernet that uses a single carrier fre-
quency and requires all stations attached to the network to participate in every
transmission. Compare to broadband.

bastion host
A secure computer that forms part of a security firewall and runs applications that
communicate with computers outside an organization.

baud
Literally, the number of times per second the signal can change on a transmission
line. Commonly, the transmission line uses only two signal states (e.g., two vol-
tages), making the baud rate equal to the number of bits per second that can be
transferred. The underlying transmission technique may use some of the bandwidth,
so it may not be the case that users experience data transfers at the line's specified
bit rate. For example, because asynchronous lines require 10 bit-times to send an
8-bit character, a 9600 baud asynchronous transmission line can only send 960 char-
acters per second.

TCP/IP Internet Terms In Alphabetical Order 679

BCP
(Best Current Practice) A label given to a subset of RFCs that contain recommenda-
tions from the IETF about the use, configuration, or deployment of internet techno-
logies.

Bellman-Ford
A synonym for distance-vector.

Berkeley broadcast
A reference to a nonstandard IP broadcast address that uses all zeros in the host por-
tion instead of all ones. The name arises because the technique was introduced and
propagated in Berkeley's BSD UNIX.

besteffort delivery
Characteristic of network technologies that do not provide reliability at link levels.
IP works well over best-effort delivery hardware because IP does not assume that
the underlying network provides reliability. The UDP protocol provides best-effort
delivery service to application programs.

BGP
(Border Gateway Protocol) The major exterior gateway protocol used in the Inter-
net. Four major versions of BGP have appeared, with BGP-4 being the current.

big endian
A format for storage or transmission of binary data in which the most-significant
byte (bit) comes first. The TCPIIP standard network byte order is big endian. Com-
pare to little endian.

binary exponential backoff
A technique used to control network contention or congestion quickly. A sender
doubles the amount of time it waits between each successive attempt to use the net-
work.

BISYNC
(BInary SYNchronous Communication) An early, low-level protocol developed by
IBM and used to transmit data across a synchronous communication link. Unlike
most modem link level protocols, BISYNC is byte-oriented, meaning that it uses
special characters to mark the beginning and end of frames. BISYNC is often called
BSC, especially in commercial products.

BNC
The style of connector used with thin-wire Ethernet.

BOOTP
Abbreviation for BOOTstrap Protocol, a protocol a host uses to obtain stamp infor-
mation, including its IP address, from a server.

bps
(bits per second) A measure of the rate of data transmission.

680 Glossary of Internetworking Terms and Abbreviations Appendix 2

bridge
A computer that c o ~ e c t s two or more networks and forwards packets among them.
Bridges operate at the physical network level. For example, an Ethernet bridge con-
nects two physical Ethernet cables, and forwards from one cable to the other exactly
the packets that are not local. Bridges differs from repeaters because bridges store
and forward complete packets, while repeaters forward all electrical signals. Bridges
differ from routers because bridges use physical addresses, while routers use IP ad-
dresses.

broadband
Characteristic of any network technology that multiplexes multiple, independent net-
work carriers onto a single cable (usually using frequency division multiplexing).
For example, a single 50 Mbps broadband cable can be divided into five 10 Mbps
carriers, with each treated as an independent Ethernet. The advantage of broadband
is less cable; the disadvantage is higher cost for equipment at connections. Compare
to baseband.

broadcast
A packet delivery system that delivers a copy of a given packet to all hosts that at-
tach to it is said to broadcast the packet. Broadcast may be implemented with
hardware (e.g., as in Ethernet) or with software (e.g., IP broadcasting in the presence
of subnets).

broadcast and prune
A technique used in data-driven multicast forwarding in which routers forward each
datagram to each network until they learn that the network has no group members.

brouter
(Bridging ROUTER) A device that operates as a bridge for some protocols and as a
router for others (e.g., a brouter can bridge DECNET protocols and route IP).

BSC
(Binary Synchronous Communication) See BISYNC.

BSD UNIX
(Berkeley Software Distribution UNIX) The version of UNIX released by U.C.
Berkeley or one of the commercial systems derived from it. BSD UNIX was the
first to include TCP/IP protocols.

care-of address
A temporary IP address used by a mobile while visiting a foreign network.

category 5 cable
A standard for wiring that is used with twisted pair Ethernet.

CBT
(Core Based Trees) A demand-driven multicast routing protocol that builds shared
forwarding trees.

TCP/JP Internet Terms In Alphabetical Order 68 1

CClRN
(Coordinating Committee for Intercontinental Research Networking) An internation-
al group that helps coordinate international cooperation on internetworking research
and development.

CClrr
(Consultative Committee on International Telephony and Telegraphy) The former
name of International Telecommunications Union.

CDDl
(Copper Distributed Data Interface) An adaptation of the FDDI network technology
for use over copper wires.

cell
A small, fixed-size packet. The fixed size makes hardware optimization possible.
Cells are often associated with ATM networks in which a cell contains 48 octets of
data and 5 octets of header.

cell tax
A reference to the 10% header overhead imposed by ATM.

CGI
(Common Gateway Interface) A technology a server uses to create a Web page
dynamically when the request arrives.

checksum
A small, integer value computed from a sequence of octets by treating them as in-
tegers and computing the sum. A checksum is used to detect errors that result when
the sequence of octets is transmitted from one machine to another. Typically, proto-
col software computes a checksum and appends it to a packet when transmitting.
Upon reception, the protocol software verifies the contents of the packet by recom-
puting the checksum and comparing to the value sent. Many TCP/IP protocols use a
16-bit checksum computed with one's complement arithmetic, with all integer fields
in the packet stored in network byte order.

ClDR
(Classless Inter-Domain Routing) The standard that specifies the details of both
classless addressing and an associated routing scheme.

CL
See connectionless service.

class of address
The category of an IP address. The class of an address determines the location of
the boundary between network prefix and host suffix.

classful addressing
The original IPv4 addressing scheme in which host addresses were divided into
three classes: A, B, and C.

682 Glossary of Internetworking Terms and Abbreviations Appendix 2

classless addressing
An extension of the original IPv4 addressing scheme that ignores the original class
boundaries. Classless addressing was motivated by the problem of address space
exhaustion.

client-server
The model of interaction in a distributed system in which a program at one site
sends a request to a program at another site and awaits a response. The requesting
program is called a client; the program satisfying the request is called the server. It
is usually easier to build client software than server software.

closed window
A situation in TCP where a receiver has sent a window advertisement of zero be-
cause no additional buffer space is available. The sending TCP cannot transmit ad-
ditional data until the receiver opens the window.

cluster address
The term originally used for anycast address.

CO
See connection-oriented service.

codec
(coder/decoder) A hardware device used to convert between an analog audio signal
and a stream of digital values.

congestion
A situation in which traffic (temporarily) exceeds the capacity of networks or
routers. TCP includes a congestion control mechanism that allows it to back off
when the internet becomes congested.

connection
An abstraction provided by protocol software. TCP provides a connection from an
application on one computer to an application on another.

connectionoriented service
Characteristic of the service offered by any technology that requires communicating
entities to establish a connection before sending data. TCP provides connection-
oriented service as does ATM hardware.

connectionless service
Characteristic of any packet delivery service that treats each packet or datagram as a
separate entity and allows communicating entities to transmit data before establish-
ing communication. Each packet carries a destination address to identa the intend-
ed recipient. Most network hardware, the Internet Protocol (IP), and the User Da-
tagram Protocol (UDP) provide connectionless service.

COPS
(Common Open Policy Service) A protocol used with RSVP to venfy whether a re-
quest meets policy constraints.

TCP/IF' Internet Terms In Alphabetical Order 683

core architecture
Characteristic of an internet architecture that has a central routing system surrounded
by local routing systems. The original Internet had a single backbone network, and
used a core architecture. As ISPs developed backbone systems, the Internet moved
away from a single core.

count to infinity
A popular synonym for the slow convergence problem.

CRC
(Cyclic Redundancy Code) A small, integer value computed from a sequence of oc-
tets used to detect errors that result when the sequence of octets is transmitted from
one machine to another. Typically, packet switching network hardware computes a
CRC and appends it to a packet when transmitting. Upon reception, the hardware
verifies the contents of the packet by recomputing the CRC and comparing it to the
value sent. Although more expensive to compute, a CRC detects more errors than a
checksum that uses additive methods.

CR-LF
(Carriage Return - Line Feed) A two-character sequence used to terminate text lines
in application-layer protocols such as TELNET and SMTP.

CSMAlCD
(Carrier Sense Multiple Access with Collision Detection) A characteristic of network
hardware that operates by allowing multiple stations to contend for access to a
transmission medium by listening to see if the medium is idle, and a mechanism that
allows the hardware to detect when two stations simultaneously attempt transmis-
sion. Ethernet uses CSMAICD.

CSUIDSU
(Channel Service Unit/Data Service Unit) An electronic device that connects a
computer or router to a digital circuit leased by the telephone company. Although
the device fills two rolls, it usually consists of a single physical piece of hardware.

cumulative acknowledgement
An alternative to the selective acknowledgements used by TCP. A cumulative ack-
nowledgement reports all data that has been received successfully rather than each
piece of data that arrives.

DARPA
(Defense Advanced Research Projects Agency) Former name of ARPA.

data-driven multicast
A scheme for multicast forwarding that uses the broadcast and prune approach. See
demand-driven multicast.

datagram
See IP datagram.

684 Glossary of Internetworking Terms and Abbreviations Appendix 2

DCE
(Data Communications Equipment) Term ITU protocol standards apply to switching
equipment that forms a packet switched network to distinguish it from the comput-
ers or terminals that connect to the network. Also see DTE.

DDCMP
(Digital Data Communication Message Protocol) The link level protocol used in the
original NSFNET backbone.

DDN
(Defense Data Network) The part of the Internet associated with U.S. military sites.

default route
A single entry in a list of routes that covers all destinations which are not included
explicitly. The routing tables in most routers and hosts contain an entry for a de-
fault route.

delay
One of the two primary measures of a network. Delay refers to the difference
between the time a bit of data is injected into a network and the time the bit exits.

delayed acknowledgement
A heuristic employed by a receiving TCP to avoid silly window syndrome.

demand-driven multicast
A scheme for multicast forwarding that requires a router to join a shared forwarding
tree before deliverying packets. See data-driven multicast.

demultiplex
To separate from a common input into several outputs. Demultiplexing occurs at
many levels. Hardware demultiplexes signals from a transmission line based on
time or carrier frequency to allow multiple, simultaneous transmissions across a sin-
gle physical cable. IP software demultiplexes incoming datagram, sending each to
the appropriate high-level protocol module or application program. See multiplex.

DHCP
(Dynamic Host Conjguration Protocol) A protocol that a host uses to obtain all
necessary configuration information including an IP address. DHCP is popular with
ISPs because it allows a host to obtain a temporary IP address.

DiffServe
(Dlfferentiated Services) A scheme adopted to replace the original IP type of service.
DiffServe provides up to 64 possible types of service (e.g., priorities); each datagram
carries a field in the header that specifies the type of service it desires.

directed broadcast address
An IP address that specifies "all hosts" on a specific network. A single copy of a
directed broadcast is routed to the specified network where it is broadcast to all
machines on that network.

TCP/IP Internet Terms In Alphabetical Order 685

distance-vector
A class of routing update protocols that use a distributed shortest path algorithm
(SPF) in which each participating router sends its neighbors a list of networks it can
reach and the distance to each network.

DNS
(Domain Name System) The on-line distributed database system used to map
human-readable machine names into IP addresses. DNS servers throughout the con-
nected Internet implement a hierarchical narnespace that allows sites freedom in as-
signing machine names and addresses. DNS also supports separate mappings
between mail destinations and IP addresses.

domain
A part of the DNS naming hierarchy. Syntactically, a domain name consists of a se-
quence of names (labels) separated by periods (dots).

dotted decimal notation
A syntactic fonn used to represent 32-bit binary integers that consists of four 8-bit
numbers written in base 10 with periods (dots) separating them. Many TCPIIP ap-
plication programs accept dotted decimal notation in place of destination machine
names.

dotted hex notation
A syntactic form used to represent binary values that consists of hexadecimal values
for each 8-bit quantity with dots separating them.

dotted quad notation
A syntactic form used to represent binary values that consists of hexadecimal values
for each 16-bit quantity with dots separating them.

DS3
A telephony classification of speed for leased lines equivalent to approximately 45
Mbps.

DSL
(Digital Subscriber Line) A set of technologies used to provide high-speed data ser-
vice over the copper wires that connect between telephone offices, local residences
or businesses.

DTE
(Data Terminal Equipment) Tern1 ITU protocol standards apply to computers andor
terminals to distinguish them from the packet switching network to which they con-
nect. Also see DCE.

DVMRP
(Distance Vector Multicast Routing Protocol) A protocol used to propagate multi-
cast routes.

E.164
An address format specified by ITU and used with ATM.

686 Glossary of Internetworking Terms and Abbreviations Appendix 2

EACK
(Extended ACKnowledgement) Synonym for SACK.

echo request and reply
A type of message that is used to test network connectivity. The ping program uses
ICMP echo request and reply messages.

EGP
(Exterior Gateway Protocol) A term applied to any protocol used by a router in one
autonomous system to advertise network reachability to a router in another auto-
nomous system. BGP-4 is currently the most widely used exterior gateway proto-
col.

EIA
(Electronics Industry Association) A standards organization for the electronics in-
dustry. Known for RS232C and RS422 standards that speclfy the electrical charac-
teristics of interconnections between terminals and computers or between two com-
puters.

encapsulation
The technique used by layered protocols in which a lower level protocol accepts a
message from a higher level protocol and places it in the data portion of the low-
level frame. Encapsulation means that datagrams traveling across a physical net-
work have a sequence of headers in which the first header comes from the physical
network frame, the next from the Internet Protocol (IP), the next from the transport
protocol, and so on.

end-to-end
Characteristic of any mechanism that operates only on the original source and final
destination. Applications and transport protocols like TCP are classified as end-to-
end.

epoch date
A point in history chosen as the date from which time is measured. TCP/IF' uses
January 1, 1900, Universal Time (formerly called Greenwich Mean Time) as its
epoch date. When TCP/IP programs exchange date or time of day they express time
as the number of seconds past the epoch date.

ESP
(Encapsulating Security Payload) A packet format used by IPsec to send encrypted
information.

Ethernet
A popular local area network technology invented at the Xerox Corporation Palo
Alto Research Center. An Ethernet is a passive coaxial cable; the intercomections
contain all active components. Ethernet is a best-effort delivery system that uses
CSMNCD technology. Xerox Corporation, Digital Equipment Corporation, and In-
tel Corporation developed and published the standard for 10 Mbps Ethernet. Origi-
nally, Ethernet used a coaxial cable. Later versions use a smaller coaxial cable
(thinnet) or twisted pair cable (10Base-T).

TCPlIP Internet Terms In Alphabetical Order 687

Ethernet meltdown
An event that causes saturation or near saturation on an Ethernet. It usually results
from illegal or rnisrouted packets, and typically lasts only a short time.

EUI-64
A 64-bit IEEE layer-2 addressing standard.

exponential backoff
See binary exponential backoff.

extension header
Any of the optional IPV6 headers that follows the base header.

external Data Representation
See XDR.

extra hop problem
A routing problem in which a datagram takes an extra, unnecessary trip across a net-
work. The problem can be difficult to detect because communication appears to
work.

fair queueing
A well-known technique for controlling congestion in routers. Called "fair" be-
cause it restricts every host to an equal share of router bandwidth. Fair queueing is
not completely satisfactory because it does not distinguish between small and large
hosts or between hosts with a few active connections and those with many.

Fast Ethernet
A popular tern1 for 100Base-T Ethernet.

FCCSET
(Federal Coordinating Council for Science, Engineering, and Technology) A
govemment group noted for its report that called for high-speed computing and
high-speed networking research.

FDDI
(Fiber Distribution Data Interface) A token ring network technology based on fiber
optics. FDDI specifies a 100 Mbps data rate using 1300 nanometer light
wavelength, and limits networks to approximately 200 km in length, with repeaters
every 2 km or less.

FDM
(Frequency Division Multiplexing) The method of passing multiple, independent sig-
nals across a single medium by assigning each a unique carrier frequency.
Hardware to combine signals is called a multiplexor; hardware to separate them is
called a demultiplexor. Also see TDM.

file server
A process running on a computer that provides access to files on that computer to
programs running on remote machines. The term is often applied loosely to com-
puters that run file server programs.

688 Glossary of Internetworking Terms and Abbreviations Appendix 2

FIN
A special TCP segment used to close a connection. Each side must send a FIN.

firewall
A configuration of routers and networks placed between an organization's internal
internet and a connection to an external internet to provide security.

five-layer reference model
The protocol layering model used by TCPAP. Although originally controversial, the
success of TCP/IP has led to wide acceptance.

fixed-length subnetting
A subnet address assignment scheme in which all physical nets in an organization
use the same mask. The alternative is variable-length subnetting.

flat namespace
Characteristic of any naming in which object names are selected from a single set of
strings (e.g., street names in a typical city). Flat naming contrasts with hierarchical
naming in which names are divided into subsections that correspond to the hierarchy
of authority that administers them.

flow
A general term used to characterize a sequence of packets sent from a source to a
destination. Some technologies define a separate flow for each pair of cornrnunicat-
ing applications, while others define a single flow to include all packets between a
pair of hosts.

flow control
Control of the rate at which hosts or routers inject packets into a network or internet,
usually to avoid congestion.

Ford-Fulkerson algorithm
A synonym for the distance-vector algorithm that refers to the researchers who
discovered it.

forwarding
The process of accepting an incoming packet, looking up a next hop in a routing
table, and sending the packet on to the next hop. IP routers perform datagram for-
warding.

fragment extension header
An optional header used by IPv6 to mark a datagram as a fragment.

fragmentation
The process of dividing an IP datagram into smaller pieces when they must travel
across a network that cannot handle the original datagram size. Each fragment has
the same format as a datagram; fields in the IP header specify whether a datagram is
a fragment, and if so, the offset of the fragment in the original datagram. IP
software at the receiving end must reassemble fragments to produce the original da-
tagram.

TCP/IP Internet Terms In Alphabetical Order 689

frame
Literally, a packet as it is transmitted across a serial line. The term derives from
character oriented protocols that added special start-of-frame and end-of-frame char-
acters when transmitting packets. We use the tern throughout this book to refer to
the objects that physical networks transmit.

Frame Relay
The name of a connection-oriented network technology that is offered by telephone
companies.

FTP
(File Transfer Protocol) The TCP/IP standard, high-level protocol for transferring
files from one machine to another. FTP uses TCP.

full duplex
Characteristic of a technology that allows simultaneous transfer of data in two direc-
tions. TCP provides full duplex connections.

FYI
(For Your Information) A subset of the RFCs that contain tutorials or general infor-
mation about topics related to TCP/IP or the connected Internet.

gated
(GATEway Daemon) A program run on a router that uses an IGP to collect routing
information from within one autonomous system and EGP to advertise the infornla-
tion to another autonomous system.

gateway
Any mechanism that connects two or more heterogeneous systems and translates
among them. Originally, researchers used the term IP gateway for dedicated com-
puters that route IF' datagrams; vendors have adopted the tern IP router.

gateway requirements
See router requirements.

Gbps
(Giga Bits Per Second) A measure of the rate of data transmission equal to 230 bits
per second. Also see Kbps, Mbps, and baud.

GGP
(Gateway to Gateway Protocol) The protocol originally used by core gateways to
exchange routing infornlation. GGP is now obsolete.

gopher
An early menu-driven information service used in the Internet.

GOSlP
(Government Open Systems Interconnection Profile) A U.S. government procure-
ment document that specified agencies may use OSI protocols in new networks after
August 1991. Although GOSIP was originally thought to eliminate the use of
TCP/IP on government internets, clarifications have specified that government agen-
cies can continue to use TCP/IP.

690 Glossary of Internetworking Terms and Abbreviations Appendix 2

graceful shutdown
A protocol mechanism that allows two communicating parties to agree to terminate
communication without confusion even if underlying packets are lost, delayed, or
duplicated. TCP uses a 3-way handshake to guarantee graceful termination.

graft
An operation in which a multicast router joins a shared forwarding tree; the opposite
of prune.

GRE
(Generic Routing Encapsulation) A scheme for encapsulating information in IP that
includes IP-in-IP as one possibility.

H.323
An ITU recommendation for a suite of protocols used for IP telephony.

half duplex
Characteristic of a technology that only permits data transmission in one direction at
a time. Compare tofill duplex.

hardware address
The low-level addresses used by physical networks. Synonyms include physical ad-
dress and MAC address. Each type of network hardware has its own addressing
scheme (e.g., an Ethernet address is 48 bits).

header
Information at the beginning of a packet or message that describes the contents and
specifies a destination.

HELLO
A protocol used on the original NSFNET backbone. Although obsolete, Hello is in-
teresting because it uses delay as the routing metric and chooses a path with
minimum delay.

HELO
The command on the initial exchange of the SMTP protocol.

hierarchical addressing
An addressing scheme in which an address can be subdivided into parts that each
identify successively finer granularity. IP addresses use a two-level hierarchy in
which the first part of the address identifies a network and the second part identifies
a particular host on that network. Routers use the network portion to forward a da-
tagram until the datagram reaches a router that can deliver it directly. Subnetting in-
troduces additional levels of hierarchical routing.

historic
An IETF classification used to discourage the use of a protocol. In essence, a pro-
gram that is declared historic is obsolete.

hold down
A short fixed time period following a change to a routing table during which no
further changes are accepted. Hold down helps avoid routing loops.

TCPKF' Internet Terms In Alphabetical Order 69 1

hop count
A measure of distance between two points in an internet. A hop count of n means
that n routers separate the source and destination.

hop limit
The IPv6 name for the datagram header field that IPv4 calls time to live. The hop
limit, which prevents datagrams from following a routing loop forever, is decre-
mented by each router along the path.

host
Any end-user computer system that connects to a network. Hosts include devices
such as printers, small notebook computers, as well as large supercomputers. Com-
pare to router.

host requirements
A long document that contains revisions and updates of many TCP/IF' protocols.
The host requirements document is published in a pair of RFCs. See router require-
ments.

host-specific route
An entry in a routing table that refers to a single host computer as opposed to routes
that refer to a network, an IP subnet, or a default.

HTML
(HyperTexr Markup Language) The standard document format used for Web pages.

HTTP
(Hypertext Transfer Protocol) The protocol used to transfer Web documents from a
server to a browser.

hub
An inexpensive electronic device to which multiple computers attach, usually using
twisted pair wiring, to send and receive packets. A hub operates at layer 2 by repli-
cating signals. Ethernet hubs are especially popular.

IAB
(Internet Architecture Board) A small group of people who set policy and direction
for TCPnP and the global Internet. The IAB was formerly known as the Internet
Activities Board. See IETF.

I AC
(Interpret As Command) An escape used by TELNET to distinguish commands from
normal data.

IANA
(Internet Assigned Number Authority) Essentially one individual (Jon Postel), IANA
was originally responsible for assigning IP addresses and the constants used in
TCP/IF' protocols. Replaced by ICANN in 1999.

ICANN
(Internet Corporation For Assigned Names and Numbers) The organization that
took over the IANA duties after Postel's death.

692 Glossary of Internetworking Terms and Abbreviations Appendix 2

ICCB
(Internet Control and Configuration Board) A predecessor to the IAB.

ICMP
(Internet Control Message Protocol) An integral part of the Internet Protocol (IP)
that handles error and control messages. Specifically, routers and hosts use ICMP to
send reports of problems about datagrams back to the original source that sent the
datagram. ICMP also includes an echo requestlreply used to test whether a destina-
tion is reachable and responding.

ICMPv6
(Internet Control Message Protocol version 6) The version of ICMP that has been
defined for use with IPv6.

IEN
(Internet Engineering Notes) A series of notes developed in parallel to RFCs.
Although the series is obsolete, some IENs contain early discussion of TCPW and
the Internet not found in RFCs.

IESG
(Internet Engineering Steering Group) A committee consisting of the IETF chairper-
son and the area managers. The IESG coordinates activities among the IETF work-
ing groups.

IETF
(Internet Engineering Task Force) A group of people under the IAB who work on
the design and engineering of TCPJIP and the global Internet. The IETF is divided
into areas, which each has an independent manager. Areas are further divided into
working groups.

IGMP
(Internet Group Management Protocol) A protocol that hosts use to keep local
routers apprised of their membership in multicast groups. When all hosts leave a
group, routers no longer forward datagrams that arrive for the group.

IGP
(Interior Gateway Protocol) The generic term applied to any protocol used to pro-
pagate network reachability and routing information within an autonomous system.
Although there is no single standard IGP, RIP is among the most popular.

IMP
(Inter&ace Message Processor) The original term for packet switches in the AR-
PANET; now loosely applied to a switch in any packet network.

InATMARP
(Inverse ATM ARP) Part of the address resolution protocol needed for non-broadcast
multiple access networks such as ATM.

indirect delivery
Delivery of a datagram through a router as opposed to a direct transmission from the
source host to the destination host.

TCP/IP Internet Terms In Alphabetical Order 693

INOC
(Internet Network Operations Center) Originally, a group of people at BBN that
monitored and controlled the Internet core gateway system. Now applied to any
group that monitors an internet.

inter-autonomous system routing
Also known as exterior routing. BGP-4 is currently the most popular protocol for
exterior routing.

International Organization for Standardization
See 1.50.

International Telecommunications Union (ITU)
An international organization that sets standards for interconnection of telephone
equipment. It defined the standards for X.25 network protocols. (Note: in Europe,
PTTs offer both voice telephone services and X.25 network services).

internet
Physically, a collection of packet switching networks interconnected by routers
along with TCPIIP protocols that allow them to function logically as a single, large,
virtual network. When written in upper case, Internet refers specifically to the glo-
bal Internet.

lnternet
The collection of networks and routers that spans over 200 countries, and uses
TCP/IP protocols to form a single, cooperative virtual network.

lnternet address
See IP address.

lnternet Draft
A draft document generated by the IETF; if approved, the document will become an
RFC.

lnternet Protocol
See IP.

lnternet Society
The non-profit organization established to foster interest in the Internet. The Inter-
net Society is the host organization of the IAB.

lnternet worm
A program designed to travel across the Internet and replicate itself endlessly.
When a student released the Internet worm, it made the Internet and many attached
computers useless for hours.

interoperability
The ability of software and hardware on multiple machines from multiple vendors to
communicate meaningfully. This term best describes the goal of internetworking,
namely, to define an abstract, hardware independent networking environment that
makes it possible to build distributed computations that interact at the network tran-
sport level without knowing the details of underlying technologies.

694 Glossary of Internetworking Terms and Abbreviations Appendix 2

lntranet
A private corporate network consisting of hosts, routers, and networks that use
TCPm technology. An intranet may or may not connect to the global Internet.

IP
(Internet Protocol) The TCP/IP standard protocol that defines the IP datagram as the
unit of information passed across an internet and provides the basis for connection-
less, best-effort packet delivery service. IP includes the ICMP control and error
message protocol as an integral part. The entire protocol suite is often referred to as
TCP/IP because TCP and IP are the two fundamental protocols.

IP address
A 32-bit address assigned to each host that participates in a TCPm internet. IP ad-
dresses are the abstraction of physical hardware addresses just as an internet is an
abstraction of physical networks. To make routing efficient, each IP address is di-
vided into a network portion and a host portion.

IP datagram
The basic unit of information passed across a TCPm internet. An IP datagram is to
an internet as a hardware packet is to a physical network - each datagram contains
a source and destination address along with data.

IP gateway
A synonym for IP router.

IP-in-IP
The encapsulation of one IP datagram inside another for transmission through a tun-
nel. IP in IP is often used to send multicast datagrams across the Internet.

IP multicast
An addressing and forwarding scheme that allows transmission of IP datagrams to a
subset of hosts. The Internet currently does not have extensive facilities for routing
IP multicast.

IP router
A device that connects two or more (possibly heterogeneous) networks and passes
IP traffic between them. As the name implies, a router looks up the datagram's des-
tination address in a routing table to choose a next hop.

IP switching
Originally a high-speed IP forwarding technology developed by Ipsilon Corporation,
now generally used in reference to any of several similar technologies.

IP telephony
A telephone system that uses IP to transport digitized voice.

lPng
(Internet Protocol - the Next Generation) A term applied to all the activities sur-
rounding the specification and standardization of the next version of IP. Also see
IPv6.

TCPIIP Internet Terms In Alphabetical Order 695

lPsec
(IP SECurity) A security standard that allows the sender to choose to authenticate or
encrypt a datagram. IPsec can be used with either IPv4 or IPv6.

IPv4
(Internet Protocol version 4) . The official name of the current version of IP.

lhr6
(Internet Protocol version 6). The name of the next version of IP. Also see IPng.

IRSG
(Internet Research Steering Group) The group of people who head the IRW.

IRTF
(Internet Research Task Force) A group of people working on research problems re-
lated to TCP/IP and the c o ~ e c t e d Internet. The lRTF is not as active as the IETF.

ISDN
(Integrated Services Digital Nerwork) The name of the digital network service that
telephone carriers provide.

IS0
(International Organization for Standardization) An international body that drafts,
discusses, proposes, and specifies standards for network protocols. IS0 is best
know for its 7-layer reference model that describes the conceptual organization of
protocols. Although it has proposed a suite of protocols for Open System Intercon-
nection, the OSI protocols have not been widely accepted in the commercial market.

ISOC
Abbreviation for Internet Society.

isochronous
Characteristic of a network system that does not introduce jitter. The conventional
telephone system is isochronous.

ISODE
(IS0 Development Environment) Software that provides an IS0 transport level pro-
tocol interface on top of TCP/IP. ISODE was designed to allow researchers to ex-
periment with ISO's higher-level OSI protocols without requiring an internet that
supports the lower levels of the OSI suite.

ISP
(Internet Service Provider) Any organization that sells Internet access, either per-
manent connectivity or dialup access.

ITU
Abbreviation for the International Telecommunication Union, a standards organiza-
tion.

jitter
A technical term used to describe unwanted variance in delay caused when one
packet in a sequence must be delayed more than another. The typical cause of jitter
is other traffic on a network.

696 Glossary of Internetworking Terms and Abbreviations Appendix 2

Karn's Algorithm
An algorithm that allows transport protocols to distinguish between valid and invalid
round-trip time samples, and thus improve round-trip estimations.

Kbps
(Kilo Bits Per Second) A measure of the rate of data transmission equal to 2'' bits
per second. Also see Gbps, Mbps, and baud.

keepalive
A small message sent periodically between two communicating entities to ensure
that network connectivity remains intact and that both sides are still responding.
BGP uses keepalives.

LAN
(Local Area Network) Any physical network technology designed to span short dis-
tances (up to a few thousand meters). Usually, LANs operate at tens of megabits
per second through several gigabits per second. Examples include Ethernet and
FDDI. See MAN and WAN.

layer 1
A reference to the hardware interface layer of communication. The name is derived
from the IS0 7-layer reference model. Layer 1 specifications refer to physical con-
nections, including connector configuration and voltages on wires. (Sometimes
called level 1 .)

layer 2
In the IS0 7-layer model, a reference to link level communication (e.g., frame for-
mat). In the TCP/IP 5-layer model, layer 2 refers to physical frame format and ad-
dressing. Thus, a layer 2 address is a MAC address (e.g., an Ethernet address).

layer 3
In the IS0 7-layer model, a reference to the network layer. In the TCP/IP 5-layer
model, a reference to the internet layer (IP and the IP datagram format). Thus, an IP
address is a layer 3 address.

leaf
A graph-theoretic term for a router or a network at the "edge" of an internet.

link-local address
An address used with IPv6 that has significance only on a single network.

link state routing
One of two approaches used by routing protocols in which routers broadcast status
messages and use Dijkstra's SPF algorithm to compute shortest paths. See distance
vector routing.

link status routing
A synonym for link state routing.

TCPm Internet Terms In Alphabetical Order 697

LIS
(Logical ZP Subnet) A group of computers connected via ATM that use ATM as an
isolated local network. A computer in one LIS cannot send a datagram directly to a
computer in another LIS.

little endian
A format for storage or transmission of binary data in which the least-significant
byte (bit) comes first. See big endian.

LLC
(Logical Link Control) One of the fields in an NSAP header.

logical subnet
An abbreviation of Logical IP Subnet (LIS).

long haul network
Older term for wide area network (WAN).

longest-prefix matching
The technique used by IF' routers when searching a routing table. Among all entries
that match the destination address, a router picks the one that has the longest subnet
mask.

loopback address
A network address used for testing which causes outgoing data to be processed by
the local protocol software without sending packets. IF' uses 127.0.0.0 as the loop-
back prefix.

LSR
(Loose Source Route) An IF' option that contains a list of router addresses that the
datagram must visit in order. Unlike a strict source route, a loose source route al-
lows the datagram to pass through additional routers not on the list. See SSR.

MABR
(Multicast Area Border Router) The MOSPF tern1 for a multicast router that ex-
changes routing information with another area.

MAC
(Media Access Control) A general reference to the low-level hardware protocols
used to access a particular network. The term MAC address is often used as a
synonym for physical address.

mail bridge
Informal term used as a synonym for a mail gateway.

mail exchanger
A computer that accepts e-mail; some mail exchangers forward the mail to other
computers. DNS has a separate address type for mail exchangers.

698 Glossary of Internetworking Terms and Abbreviations Appendix 2

mail exploder
Part of an electronic mail system that accepts a piece of mail and a list of addresses
as input and sends a copy of the message to each address on the list. Most electron-
ic mail systems incorporate a mail exploder to allow users to define mailing lists lo-
cally.

mail gateway
A machine that connects to two or more electronic mail systems (especially dissimi-
lar mail systems on two different networks) and transfers mail messages among
them. Mail gateways usually capture an entire mail message, reformat it according
to the rules of the destination mail system, and then forward the message.

MAN
(Metropolitan Area Network) Any physical network technology that operates at high
speeds (usually hundreds of megabits per second through several gigabits per
second) over distances sufficient for a metropolitan area. See LAN and WAN.

Management Information Base
See MIB.

martians
Humorous term applied to packets that turn up unexpectedly on the wrong network,
often because of incorrect routing tables.

mask
See subnet mask.

maximum transfer unit
See MTU.

MBONE
(Multicast BackBONE). A cooperative agreement among sites to forward multicast
datagrams across the Internet by use of IP tunneling.

Mbps
(Millions of Bits Per Second) A measure of the rate of data transmission equal to 220
bits per second. Also see Gbps, Kbps, and baud.

MIB
(Management Information Base) The set of variables (database) that a system run-
ning an SNMP agent maintains. Managers can fetch or store into these variables.

MILNET
(MILitary NETwork) Originally part of the ARPANET, MILNET was partitioned in
1984.

MIME
(Multipurpose Internet Mail Extensions) A standard used to encode data such as im-
ages as printable ASCII text for transmission through e-mail.

TCP/IP Internet Terms In Alphabetical Order 699

mobile IP
A technology developed by the IETF to permit a computer to travel to a new site
while retaining its original IP address. The computer contacts a server to obtain a
second, temporary address, and then arranges for all datagrams to be forwarded to it.

Mosaic
An early Web browser program.

MOSPF
(Multicast Open Shortest Path First) Multicast Extensions to the OSPF routing pro-
tocol.

MPLS
(Multi-Protocol Label Switching) A technology that uses high speed switching
hardware to carry IP datagrams. MPLS is descended from IP switching and label
switching.

mrouted
(Multicast ROUTE Daemon) A program used with a protocol stack that supports IP
multicast to establish multicast routing.

MSL
(Maximum Segment Lifetime) The longest time a datagram can survive in the Inter-
net. Protocols use the MSL to guarantee a bound on the time duplicate packets can
survive.

MSS
(Maximum Segment Size) A term used with TCP. The MSS is the largest amount of
data that can be transmitted in one segment. Sender and receiver negotiate max-
imum segment size at connection startup.

MTU
(Maximum Transfr Unit or Maximum Transmission Unit) The largest amount of
data that can be transferred across a given physical network. The MTU is deter-
mined by the network hardware.

multi-homed host
A host using TCPJIP that has connections to two or more physical networks.

multicast
A technique that allows copies of a single packet to be passed to a selected subset of
all possible destinations. Some hardware (e.g., Ethernet) supports multicast by al-
lowing a network interface to belong to one or more multicast groups. IP supports
an internet multicast facility.

multiplex
To combine data from several sources into a single stream in such a way that it can
be separated again later. Multiplexing occurs at many levels. See demultiplex.

multiplicative decrease
A technique used by TCP to reduce transmission when congestion occurs. TCP de-
creases the size of the effective window by half each time a segment is lost.

700 Glossary of Internetworking Terms and Abbreviations Appendix 2

NACK
(Negative Acknowledgement) A response from the recipient of data to the sender of
that data to indicate that the transmission was unsuccessful (e.g., that the data was
corrupted by transmission errors). Usually, a NACK triggers retransmission of the
lost data.

Nagle algorithm
A self-clocking heuristic that clumps outgoing data to improve throughput and avoid
silly window syndrome.

NAK
Synonym for NACK.

name resolution
The process of mapping a name into a corresponding address. The domain name
system provides a mechanism for naming computers in which programs use remote
name servers to resolve a machine name into an IF' address.

NAP
(Network Access Point) One of several physical locations where ISPs interconnect
their networks. A NAP also includes a route server that supplies each ISP with
reachability information from the routing arbiter system. In addition to NAPS, many
ISPs now have private peering arrangements.

NAT
(Network Address Translation) A technology that allows hosts with private ad-
dresses to communicate with an outside network such as the global Internet.

NBMA
(Non-Broadcast Multi-Access). A characteristic of a network that connects multiple
computers but does not supply hardware-level broadcast. ATM is the prime exam-
ple of a NBMA network.

Net 10 address
A general reference to a nonroutable address (i.e., one that is reserved for use in an
intranet and not used on the global Internet). The prefix 10.0.0.0 was formerly as-
signed to ARPANET; it was designated as a nonroutable address when the AR-
PANET ceased operation.

Net BlOS
(Network Basic Input Output System) NetBIOS is the standard interface to networks
on IBM PC and compatible personal computers. TCP/IP includes guidelines that
describe how to map NetBIOS operations into equivalent TCPlIP operations.

network byte order
The TCPDP standard for transmission of integers that specifies the most significant
byte appears first (big endian). Sending machines are required to translate from the
local integer representation to network byte order, and receiving machines are re-
quired to translate from network byte order to the local machine representation.

TCPlIP Internet Terns In Alphabetical Order

network management
See MIB and SNMP.

Next Header
A field used in IPv6 to specify the type of the item that follows.

NFS
(Network File System) A protocol originally developed by SUN Microsystems, In-
corporated that uses IP to allow a set of cooperating computers to access each
other's file systems as if they were local.

NIC
(Network Interface Card) A hardware device that plugs into the bus on a computer
and connects the computer to a network.

NIST
(National Institute of Standards and Technology) Formerly, the National Bureau of
Standards. NIST is one standards organization within the US that establishes stan-
dards for network protocols.

NLA
(Next Level Aggregation) In IPv6 addressing, the third most significant set of bits in
a unicast address. Also see TLA.

NOC
(Network Operations Center) Originally, the organization at BBN that monitored
and controlled several networks that formed part of the global Internet. Now, used
for any organization that manages a network.

nonroutable address
Any address that uses one of the network prefures which are reserved for use in in-
tranets. Routers in the global Internet will report an error if a datagram containing a
nonroutable address accidentally reaches them. See net-10 address.

NSAP
(Network Service Access Point) An address format that can be encoded in 20 octets.
The ATM Forum recommends using NSAP addresses.

NSF
(National Science Foundation) A U.S. government agency that funded some of the
research and development of the Internet.

NSFNET
(National Science Foundation NETwork) Used to describe the Internet backbone in
the U.S., which is supported by NSF.

NVT
(Network Virtual Terminal) The character-oriented protocol used by TELNET.

OC series standards
A series of standards for the transmission of data over optical fiber. For example,
the popular 0C3 standard has a bit rate of approximately 155 million bits per
second.

702 Glossary of Internetworking Terms and Abbreviations Appendix 2

octet
An &bit unit of data. Although engineers frequently use the term byte as a
synonym for octet, a byte can be smaller or larger than 8 bits.

one-armed router
An IP router that understands two addressing domains, but only has one physical
network connection. One-armed routers are typically used to add security or address
translation rather than to forward packets between networks. Also called a one-
armed firewall.

OSI
(Open Systems Interconnection) A reference to protocols developed by IS0 as a
competitor for TCPAP. They are not widely deployed or supported.

OSPF
(Open Shortest Path First) A link state routing protocol design by the IETF.

OUI
(Organizationally Unique Identifier) Part of an address assigned to an organization
that manufactures network hardware; the organization assigns a unique address to
each device by using its OUI plus a suffm number.

out of band data
Data sent outside the normal delivery path, often used to carry abnormal or error in-
dicators. TCP has an urgent data facility for sending out-of-band data.

packet
Used loosely to refer to any small block of data sent across a packet switching net-
work.

packet filter
A mechanism in a router that can be configured to reject some types of packets and
admit others. Packet filters are used to create a security fuewall.

path MTU
The minimum MTU along a path from the source to destination, which specifies the
largest datagram that can be sent along the path without fragmentation. The stan-
dard recommends that IP use Path MTU Discovery.

PCM
(Pulse Code Modulation) A standard for voice encoding used in digital telephony
that produces 8000 &bit samples per second.

PDN
(Public Data Network) A network service offered by a common carrier.

PDU
(Packet Data Unit) An IS0 term used for either packet or message.

peering arrangement
An cooperative agreement between two ISPs to exchange both reachability informa-
tion and data packets. In addition to peering at NAPS, large ISPs often have private
peering arrangements.

TCPlIP Internet Tern In Alphabetical Order 703

PEM
(Privacy Enchanced Mail) A protocol for encrypting e-mail to prevent others from
reading messages as they travel across an internet.

perimeter security
A network security mechanism that places a firewall at each connection between a
site and outside networks.

physical address
A synonym for MAC address or hardware address.

PIM-DM
(Protocol Independent Multicast Dense Mode) A data-driven multicast routing pro-
tocol similar to DVMRP.

PIM-SM
(Protocol Independent Multicast Sparse Mode) A demand-driven multicast routing
protocol that extends the ideas in CBT.

PING
(Packet InterNet Groper) The name of a program used with TCP/IP internets to test
reachability of destinations by sending them an ICMP echo request and waiting for a
reply. The term is now used like a verb as in, "please ping host A to see if it is
alive."

playback point
The minimum amount of data required in a jitter buffer before playback can begin.

point-to-point network
Any network technology such as a serial line that connects exactly two machines.
Point-to-point networks do not require attached computers to have a hardware ad-
dress.

poison reverse
A heuristic used by distance-vector protocols such as RIP to avoid routing loops.
When a route disappears, instead of simply removing the route from its advertise-
ment, a router advertises that the destination is no longer reachable.

POP
(Post Ofice Protocol) The protocol used to access and extract e-mail from a mail-
box.

Port
See protocol port.

positive acknowledgement
Synonym for acknowledgement.

POTS
(Plain OM Telephone Service) A reference to the standard voice telephone system.

704 Glossary of Intemetworking T e r n and Abbreviations Appendix 2

PPP
(Point to Point Protocol) A protocol for framing IP when sending across a serial
line. Also see SLIP.

promiscuous ARP
See proxy ARP.

promiscuous mode
A feature of network interface hardware that allows a computer to receive all pack-
ets on the network.

protocol
A formal description of message formats and the rules two or more machines must
follow to exchange those messages. Protocols can describe low-level details of
machine to machine interfaces (e.g., the order in which the bits from a byte are sent
across a wire), or high-level exchanges between application programs (e.g., the way
in which two programs transfer a file across an internet). Most protocols include
both intuitive descriptions of the expected interactions as well as more formal
specifications using finite state machine models.

protocol port
The abstraction that TCP/IP transport protocols use to distinguish among multiple
destinations within a given host computer. TCP/IP protocols identify ports using
small positive integers. Usually, the operating system allows an application program
to specify which port it wants to use. Some ports are reserved for standard services
(e.g., electronic mail).

provider prefix
An addressing scheme in which an ISP owns a prefix of an address and assigns each
customer addresses that begin with the prefix. IPV6 offers provider prefur address-
ing.

provisioned service
A service that is configured manually.

proxy
Any device or system that acts in place of another (e.g., a proxy Web server acts in
place of another Web server).

proxy ARP
The technique in which one machine, usually a router, answers ARP requests intend-
ed for another by supplying its own physical address. By pretending to be another
machine, the router accepts responsibility for forwarding packets. The purpose of
proxy ARP is to allow a site to use a single IP network address with multiple physi-
cal networks.

prune
An operation in which a multicast router removes itself from a shared forwarding
tree; the opposite of gruff.

TCPiIF' Internet Terms In Alphabetical Order 705

pseudo header
Source and destination IP address information sent in the IP header, but included in
a TCP or UDP checksum.

PSN
(Packet Switching Node) The formal name of ARPANET packet switches that re-
placed the original term IMP.

PSTN
(Public Switched Telephone Network) The standard voice telephone system.

public key encryption
An encryption technique that generates encryption keys in pairs. One of the pair
must be kept secret, and one is published.

PUP
(Parc Universal Packet) In the internet system developed by Xerox Corporation, a
PUP is the fundamental unit of transfer, like an IP datagram is in a TCP/IP internet.
The name was derived from the name of the laboratory at which the Xerox internet
was developed, the Palo Alto Research Center (PAW).

push
The operation an application performs on a TCP connection to force data to be sent
immediately. A bit in the segment header marks pushed data.

PVC
(Permanent Virtual Circuit) The type of virtual circuit established by an administra-
tor rather than by software in a computer. Unlike an SVC, a PVC lasts a long time
(e.g., weeks or months).

QoS
(Quality of Service) Bounds on the loss, delay, jitter, and minimum throughput that
a network guarantees to deliver. Some proponents argue that QoS is necessary for
real-time traffic.

RA
See routing arbiter.

RARP
(Reverse Address Resolution Protocol) A protocol that can be used at startup to find
an IP address. Although once popular, most computers now use BOOTP or DHCP
instead.

RDP
(Reliable Datagram Protocol) A protocol that provides reliable datagram service on
top of the standard unreliable datagram service that IP provides. RDP is not among
the most widely implemented TCP/IP protocols.

reachability
A network is "reachable" from a given host if a datagram can be sent from the host
to a destination on the network. Exterior routing protocols exchange reachability in-
formation.

706 Glossary of Internetworking Terms and Abbreviations Appendix 2

reassembly
The process of collecting all the fragments of an IP datagram and using them to
create a copy of the original datagram. The ultimate destination performs reassem-
bly.

RED
(Random Early Discard) A technique routers use instead of tail-drop when their
queue overflows to improve TCP performance. As the queue fills, the router begins
discarding datagrams at random.

redirect
An ICMP message sent from a router to a host on a local network to instruct the
host to change a route.

reference model
A description of how layered protocols fit together. TCPAP uses a 5-layer reference
model; earlier protocols used the IS0 7-layer reference model.

regional network
A network that covers a medium-size geographical area such as a few cities or a
state.

reliable multicast
A multicast delivery system that guarantees reliable transfer to every member.

reliable transfer
Characteristic of a mechanism that guarantees to deliver data without loss, without
corruption, without duplication, and in the same order as it was sent, or to inform
the sender that delivery is impossible.

repeater
A hardware device that extends a LAN. A repeater copies electrical signals from
one physical network to another. No longer popular.

replay
An error situation in which packets from a previous session are erroneously accepted
as part of a later session. Protocols that do not prevent replay are not secure.

reserved address
A synonym for nonroutable address.

reset
A segment sent by TCP to report an error.

resolution
See address resolution

RFC
(Request For Comments) The name of a series of notes that contain surveys, meas-
urements, ideas, techniques, and observations, as well as proposed and accepted
TCPnP protocol standards. RFCs are available on-line.

TCPlIP Internet Terms In Alphabetical Order 707

RIP
(Routing Information Protocol) A protocol used to propagate routing information in-
side an autonomous system. RIP derives from an earlier protocol of the same name
developed at Xerox.

RJE
(Remote Job Entry) A service that allows submission of a (batch) job from a remote
site.

rlogin
(Remote LOGIN) The remote login protocol developed for UNIX by Berkeley. Rlo-
gin offers essentially the same service as TELNET.

ROADS
(Running Out of ADdress Space) A reference to the possible exhaustion of the IPv4
address space.

round trip time
The total time required to traverse a network from a source computer to a destina-
tion and back to the source. TCP uses round trip times to compute a retransmission
timer.

route
In general, a route is the path that network traffic takes from its source to its destina-
tion. In a TCPJIP internet, each IP datagram is routed independently; routes can
change dynamically.

route aggregation
The technique used by routing protocols to combine multiple destinations that have
the same next hop into a single entry. A default route provides the highest degree of
aggregation.

route server
A server that operates at a NAP and uses BGP to communicate reachability informa-
tion from the routing arbiter database.

routed
(Route Daemon) A program devised for UNIX that implements the RIP protocol.
Pronounced "route-d."

router
A special purpose, dedicated computer that attaches to two or more networks and
forwards packets from one to the other. In particular, an IP router forwards IP da-
tagrams among the networks to which it connects. A router uses the destination ad-
dress on a datagram to choose a next-hop to which it forwards the datagram.
Researchers originally used the term gateway.

router alert
An IP option that causes each intermediate router to examine a datagram even if the
datagram is not destined to the router.

708 Glossary of Internetworking Tenns and Abbreviations Appendix 2

router requirements
A document that contains updates to TCP/IP protocols used in routers. See host re-
quirements.

routing arbiter
A replicated, authenticated database that contains all possible routes in the Internet.
Each ISP that connects to a NAP uses BGP to communicate with a route server to
obtain information.

routing loop
An error condition in which a cycle of routers each has the next router in the cycle
as the shortest path to a given destination.

RP
(Rendezvous Point) The router used as a target for a join request in a demand-driven
multicast scheme.

RPB
(Reverse Path Broadcast) A synonym for RPF.

RPC
(Remote Procedure Call) A technology in which a program invokes services across
a network by making modified procedure calls. The NFS protocol uses a specific
type of RPC.

RPF
(Reverse Path Forwarding) A technique used to propagate broadcast packets that en-
sures there are no routing loops. IF' uses reverse path forwarding to propagate sub-
net broadcast and multicast datagrams.

RPM
(Reverse Path Multicast) A general approach to multicasting that uses the TRPB al-
gorithm.

RS
See route server.

RS232
A standard by EIA that specifies the electrical characteristics of slow speed intercon-
nections between terminals and computers or between two computers. Although the
standard commonly used is RS232C, most people refer to it as RS232.

RST
(ReSeT) A common abbreviation for a TCP reset segment.

RSVP
(Resource Reservation Protocol) The protocol that allows an endpoint to request a
flow with specific QoS; routers along the path to the destination must agree before
they approve the request.

RTCP
(RTP Control Protocol) The companion protocol to RTP used to control a session.

TCP/IP Internet Terms In Alphabetical Order 709

RTO
(Round trip Time-out) The delay used before retransmission. TCP computes RTO
as a function of the current round trip time and variance.

RTP
(Real-time Transport Protocol) The primary protocol used to transfer real-time data
such as voice and video over IP.

R l T
(Round Trip Time) A measure of delay between two hosts. The round trip time con-
sists of the total time taken for a single packet or datagram to leave one machine,
reach the other, and return. In most packet switching networks, delays vary as a
result of congestion. Thus, a measure of round trip time is an average, which can
have high standard deviation.

SA
(Security Association) Used with IPsec to denote a binding between a set of security
parameters and an identifier carried in a datagram header. A host chooses SA bind-
ings; they are not globally standardized. See SPI.

SACK
(Selective ACKnowledgement) An acknowledgement mechanism used with sliding
window protocols that allows the receiver to acknowledge packets received out of
order, but within the current sliding window. Also called extended acknowledge-
ment. Compare to the cumulative acknowledgement scheme used by TCP.

SAR
(Segmentation And Reassembly) The process of dividing a message into cells, send-
ing them across an ATM network, and reforming the original message. AAL5 per-
forms SAR when sending IP across an ATM network.

segment
The unit of transfer sent from TCP on one machine to TCP on another. Each seg-
ment contains part of a stream of bytes being sent between the machines as well as
additional fields that identlfy the current position in the stream and a checksum to
ensure validity of received data.

selective acknowledgement
See SACK.

self clocking
Characteristic of any system that operates periodically without requiring an external
clock (e.g., uses the arrival of a packet to trigger an action).

self-healing
Characteristic of a mechanism that overcomes failure automatically. A dual FDDI
ring is self-healing because it can accommodate failure of a station or a link.

self-identifying frame
Any network frame or packet that includes a field to identify the type of the data be-
ing carried. Ethernet uses self-identifying frames, but ATM does not.

710 Glossary of Internetworking Terms and Abbreviations Appendix 2

server
A running program that supplies service to clients over a network. Examples in-
clude providing access to files or to World Wide Web pages.

seven-layer reference model
See ISO.

SGMP
(Simple Gateway Monitoring Protocol) A predecessor of SNMP.

shared tree
A forwarding scheme used by demand-driven multicast routing protocols. A shared
tree is an alternative to a shortest path tree.

shortest path routing
Routing in which datagrams are directed over the shortest path; all routing protocols
try to compute shortest paths. Also see SPF.

shortest path tree
The multicast forwarding tree that is optimal from a given source to all members of
the group. A shortest path trees is an alternative to a shared tree.

signaling
A telephony term that refers to protocols which establish a circuit.

silly window syndrome
A condition that can arise in TCP in which the receiver repeatedly advertises a small
window and the sender repeatedly sends a small segment to fill it. The resulting
transmission of small segments makes inefficient use of network bandwidth.

SIP
(Session Initiation Protocol) A protocol devised by the EFT for signaling in IP
telephony. (Note: SIP was formerly used to refer to Simple IP, a protocol that
served as the basis for IPv6.)

SlPP
(SIP Plus) An extension of Simple IP that was proposed for IPv6. See IPv6.

site-local address
An address used with IPv6 that has significance only at a single site.

sliding window
Characteristic of protocols that allow a sender to transmit more than one packet of
data before receiving an acknowledgement. After receiving an acknowledgement for
the first packet sent, the sender "slides" the packet window and sends another. The
number of outstanding packets or bytes is known as the window size; increasing the
window size improves throughput.

SLIP
(Serial Line IP) A framing protocol used to send IP across a serial line. SLIP is po-
pular when sending IP over dialup phone lines. See PPP.

TCP/IF' Internet Terms In Alphabetical Order 711

slow convergence
A problem in distance-vector protocols in which two or more routers form a routing
loop that persists until the routing protocols increment the distance to infinity.

slow-start
A congestion avoidance scheme in TCP in which TCP increases its window size as
ACKs arrive. The term is a slight misnomer because slow-start achieves high
throughput by using exponential increases.

SMDS
(Switched Multimegabit Data Service) A connectionless packet service developed by
regional telephone companies.

SMI
(Structure of Management Information) Rules that describe the form of MIB vari-
ables.

SMTP
(Simple Mail Transfer Protocol) The TCPDP standard protocol for transferring elec-
tronic mail messages from one machine to another. SMTP specifies how two mail
systems interact and the format of control messages they exchange to transfer mail.

SNA
(System Network Architecture) The name applied to an architecture and a class of
network products offered by IBM Corporation. SNA does not interoperate with
TCPIIP.

SNAP
(SubNetwork Attachment Point) An IEEE standard for a small header that is added
to data when sending across a network that does not have self-identifying frames.
The SNAP header specifies the type of the data.

SNMP
(Simple Network Management Protocol) A protocol used to manage devices such as
hosts, routers, and printers. A specific version is denoted with a suffix (e.g.,
SNMPv3). Also see MIB.

SOA
(Start Of Authority) A keyword used with DNS to denote the beginning of the
records for which a particular server is the authority. Other records in the server are
reported as non-authoritative answers.

socket API
The set of procedures an application uses to communicate over a TCPIIP network.
The name is derived from an abstraction offered by the Unix operating system.

soft state
A technique in which a receiver times out information rather than depending on the
sender to maintain it. Soft state works well when the sender and receiver become
disconnected.

712 Glossary of Internetworking Terms and Abbreviations Appendix 2

source quench
A congestion control technique in which a machine experiencing congestion sends a
message back to the source of the packets requesting that the source stop transmit-
ting. In a TCP/IP internet, routers send an ICMP source quench message when a
datagram overruns the input queue.

source route
A route that is determined by the source. In IP, a source route consists of a list of
routers a datagram should visit; the route is specified as an IP option. Source rout-
ing is most often used for debugging. See LSR and SSR.

source tree
A synonym for shortest path tree.

SPF
(Shortest Path First) A class of routing update protocols that uses Dijkstra's algo-
rithm to compute shortest paths. See link state routing.

SPI
(Security Parameters Index) The identifier IPsec uses to specify the Security Associ-
ation that should be used to process a datagram.

split horizon update
A heuristic used by distance-vector protocols such as RIP to avoid routing loops.
Routes are not advertised over the interface from which they were learned.

SS7
(Signaling System 7) The conventional telephone system standard used for signaling.

SSL
(Secure Sockets Layer) A de facto standard for secure communication created by
Netscape, Inc. SSL was an Internet Draft, but did not become an RFC.

SSR
(Strict Source Route) An IP option that contains a list of router addresses that the
datagram must visit in order. See LSR.

standard byte order
See network byte order.

STD
(STanDard) The designation used to classify a particular FWC as describing a stan-
dard protocol.

store-and-fotward
The paradigm used by IP routers in which an incoming datagram is stored in
memory until it can be forwarded on toward its destination.

TCPIIP Internet Terms In Alphabetical Order 713

subnet addressing
An extension of the IP addressing scheme that allows a site to use a single IP net-
work address for multiple physical networks. Outside of the site using subnet ad-
dressing, routing continues as usual by dividing the destination address into a net-
work portion and a local portion. Routers and hosts inside a site using subnet ad-
dressing interpret the local portion of the address by dividing it into a physical net-
work portion and a host portion.

subnet mask
A bit mask used to select the bits from an IP address that correspond to the subnet.
Each mask is 32 bits long, with one bits in the portion that identifies a network and
zero bits in the portion that identifies a host.

SubNetwork Attachment Point
See SNAP.

supernet addressing
Another name for CIDR.

SVC
(Switched Virtual Circuit) The type of virtual circuit established dynamically and
temGnated when no longer needed; usually software in a computer requests an SVC.
Unlike a PVC, an SVC can have a short duration.

SWS
See silly window syndrome.

SYN
(SYNchronizing segment) The first segment sent by the TCP protocol, it is used to
synchronize the two ends of a connection in preparation for opening a connection.

T3
The telephony designation for a protocol used over DS3-speed lines. The term is
often used (incorrectly) as a synonym for DS3.

tail drop
A policy routers use to manage queue overflow which simply discards all datagrams
that arrive after the queue is full. More harmful to TCP throughput than RED.

TCP
(Transmission Control Protocol) The TCP/IP standard transport level protocol that
provides the reliable, full duplex, stream service on which many application proto-
cols depend. TCP allows a process on one machine to send a stream of data to a
process on another. TCP is connection-oriented in the sense that before transmitting
data, participants must establish a connection. All data travels in TCP segments,
which each travel across the Internet in an IP datagram. The entire protocol suite is
often referred to as TCP/IP because TCP and IP are the two fundamental protocols.

TCPAP Internet Protocol Suite
The official name of the TCP/IP protocols.

714 Glossary of Internetworking Terms and Abbreviations Appendix 2

TDM
(Time Division Multiplexing) A technique used to multiplex multiple signals onto a
single hardware transmission channel by allowing each signal to use the channel for
a short time before going on to the next one. Also see FDM.

TDMA
(Time Division Multiple Access) A method of network access in which time is divid-
ed into slots and each node on the network is assigned one of the slots. Because all
nodes using TDMA must synchronize exactly (even though the network introduces
propagation delays between them), TDMA technologies are difficult to design and
the equipment is expensive.

TELNET
The TCPIrP standard protocol for remote terminal service. TELNET allows a user
at one site to interact with a remote timesharing system at another site as if the
user's keyboard and display connected directly to the remote machine.

TFTP
(Trivial File Transfer Protocol) The TCPIIP standard protocol for file transfer with
minimal capability and minimal overhead. TFTP depends only on the unreliable,
connectionless datagram delivery service (UDP), so it is designed for use on a local
network.

thicknet
Used to refer to the original thick coaxial cable used with 10Base5 Ethernet. See
thinner, lOBase2, and 10Base-T.

thinnet
Used to refer to the thinner, more flexible coaxial cable used with 10Base2 Ethernet.
See thicknet, lOBase5, and 1OBase-T.

three-way handshake
The 3-segment exchange TCP uses to reliably start or gracefully terminate a connec-
tion.

TLA
(Top Level Aggregation) In IPv6 addressing, the second most significant set of bits
in a unicast address. Also see NLA.

TLI
(Transport Layer Znte$ace) An alternative to the socket interface defined for System
v UNIX.

TLV encoding
Any representation format that encodes each item with three fields: a type, a length,
and a value. IP options often use TLV encoding.

tn3270
A version of TELNET for use with IBM 3270 terminals.

TCP/IF' Internet T e r n In Alphabetical Order 715

token ring
When used in the generic sense, a type of network technology that controls media
access by passing a distinguished packet, called a token, from machine to machine.
A computer can only transmit a packet when holding the token. When used in a
specific sense, it refers to the token ring network hardware produced by IBM.

TOS
(Type Of Service) A reference to the original interpretation of the field in an IPV4
header that allows the sender to specify the type of service desired. Now replaced
by DzfJServe.

TP-4
A protocol designed by IS0 to be similar to TCP.

traceroute
A program that prints the path to a destination. Traceroute sends a sequence of da-
tagrams with the Time-To-Live set to 1, 2, etc., and uses the ICMP TIME EX-
CEEDED messages that are returned to determine routers along the path.

traffic class
A reference to a set of services available in the DifJServe interpretation.

traffic policing
A reference to mechanisms used with systems that guarantee QoS. Incoming traffic
is measured, and any traffic that exceeds the agreed bounds is discarded.

traffic shaping
A reference to mechanisms used with systems that guarantee QoS. Incoming traffic
is placed in a buffer and clocked out at a fixed rate.

trailer encapsulation
A nonconventional method of encapsulating IF' datagrams for transmission in which
the "header" information is placed at the end of the packet. Trailers have been
used with Ethernet to aid in aligning data on page boundaries. ATM's AAL5 uses
trailers.

transceiver
A device that connects a host interface to a local area network (e.g., Ethernet). Eth-
ernet transceivers contain analog electronics that apply signals to the cable and sense
collisions.

triggered updates
A heuristic used with distance-vector protocols such as RIP. When a routing table
changes, the router sends updates immediately without waiting for the next cycle.

TRPB
(Truncated Reverse Path Broadcast) A technique used in data-driven multicasting to
forward multicast datagrams. See broadcast and prune.

TRPF
(Truncated Reverse Path Forwarding) A synonym for TRPB.

716 Glossary of Internetworking Terms and Abbreviations Appendix 2

TTL
(Time To Live) A technique used in best-effort delivery systems to avoid endlessly
looping packets. For example, each IP datagram is assigned an integer time to live
when it is created. Each router decrements the time to live field when the datagram
amves, and a router discards any datagram if the time to live counter reaches zero.

tunneling
A technique in which a packet is encapsulated in a high-level protocol and passed
across a transport system. The MBONE tunnels each IP multicast datagram inside a
conventional IP datagram; a VPN uses tunneling to pass encrypted datagrams
between sites. See IP-in-IP.

twisted pair Ethernet
The 10Base-T Ethernet wiring scheme that uses twisted pair wires from each com-
puter to a hub. See thicknet and thinnet.

type of service routing
A routing scheme in which the choice of path depends on the characteristics of the
underlying network technology as well as the shortest path to the destination.

UART
(Universal Asynchronous Receiver and Transmitter) An electronic device consisting
of a single chip that can send or receive characters on asynchronous serial cornrnuni-
cation lines that use RS232. UARTs are flexible because they have control lines
that allow the designer to select parameters like transmission speed, parity, number
of stop bits, and modem control. UARTs appear in terminals, modems, and on the
U0 boards in computers that connect the computer to tenninal(s).

UCBCAST
See Berkeley broadcast.

UDP
(User Datagram Protocol) The protocol that allows an application program on one
machine to send a datagram to an application program on another. UDP uses the In-
ternet Protocol (IP) to deliver datagrams. Conceptually, the important difference
between UDP datagram and IP datagrams is that UDP includes a protocol port
number, allowing the sender to distinguish among multiple application programs on
a given remote machine.

unicast
A method of addressing and routing in which a packet is delivered to a single desti-
nation. Most IP datagrams are sent via unicast. See multicast.

universal time
The international standard time reference that was formerly called Greenwich Mean
Time. It is also called universal coordinated time.

unnumbered network
A technique for conserving IP network prefixes that leaves a point to point connec-
tion between two routers unnumbered.

TCPlIP Internet Terms In Alphabetical Order 717

unreliable delivery
Characteristic of a mechanism that does not guarantee to deliver data without loss,
corruption, duplication, or in the same order as it was sent. IP is unreliable.

urgent data
The method used in TCP to send data out of band. A receiver processes urgent data
immediately upon receipt.

URI
(Unifonil Resource Identifier) A generic term used to refer to a URN or a URL.

URL
(Uniform Resource Locator) A string that gives the location of a piece of informa-
tion. The string begins with a protocol type (e.g., FTP) followed by the identifica-
tion of specific information (e.g., the domain name of a server and the path name to
a file on that server).

URN
(Uniform Resource Name) A string that gives the location of a piece of information.
Unlike a URL, a URN is guaranteed to persist over long periods of time.

UUCP
(Unix to Unix Copy Program) An application program developed in the mid 1970s
for version 7 UNIX that allows one UNIX timesharing system to copy files to or
from another UNIX timesharing system over a single (usually dialup) link. Because
UUCP is the basis for electronic mail transfer in UNIX, the tern1 is often used loose-
ly to refer to UNIX mail transfer.

variable-length subnetting
A subnet address assignment scheme in which each physical net in an organization
can have a different mask. The alternative is jixed-length subnetting.

vBNS
(very high speed Backbone Network Service) The 155 Mbps backbone network that
was deployed in 1995 and is now used for networking research.

VC
(Virtual Circuit) A path through a network from one application to another that is
used to send data. The VC, established either by protocol software or manually,
provides the illusion of a "comection". Although the concept is the same, ATM
expands the term to Virtual Channel.

vector-distance
Now called distance-vector.

very high speed Backbone Network Service
See vBNS.

virtual circuit
The basic abstraction provided by a connection-oriented protocol like TCP. Once a
virtual circuit has been created, it stays in effect until explicitly shut down.

718 Glossary of Internetworking Terms and Abbreviations Appendix 2

VLSM
(Variable Length Subnet Mask) A subnet mask used with variable length subnetting.

VPI IVCI
(Virtual Path Identij?er plus Virtual Circuit Identifier) A connection identifier used
by ATM; each connection a host opens is assigned a unique VPWCI.

VPN
(Virtual Private Network) A technology that connects two or more separate sites
over the Internet, but allows them to function as if they were a single, private net-
work. W N software guarantees that although packets travel across the Internet, the
contents remains private.

WAN
(Wide Area Network) Any physical network technology that spans large geographic
distances. Also called long-haul networks, WANs have significantly higher delays
and higher costs than networks that operate over shorter distances. See LAN and
MAN.

well-known port
Any of a set of protocol port numbers preassigned for specific uses by transport lev-
el protocols (ie., TCP and UDP). Each server listens at a well-known port, so
clients can locate it.

window
See sliding window.

window advertisement
A value used by TCP to allow a receiver to tell a sender the size of an available
buffer.

Windows Sockets Interface
A variant of the socket API developed by Microsoft. Often called WINSOCK.

working group
A group of people in the IETF working on a particular protocol or design issue.

World Wide Web
The large hypermedia service available on the Internet that allows a user to browse
information.

WWW
See World Wide Web.

X
See X- Window System.

X.25
An older protocol standardized by the ITU which was popular in Europe before
TCPrn.

TCPlIP Internet Terms In Alphabetical Order 719

X25NET
(X.25 NETwork) A service offered by CSNET that passed IP traffic between a sub-
scriber site and the Internet using X.25.

X.400
The ITU protocol for electronic mail.

XDR
(external Data Representation) The standard for a machine-independent data
representation. To use XDR, a sender translates from the local machine representa-
tion to the standard external representation and a receiver translates from the exter-
nal representation to the local machine representation.

X-Window System
A software system developed at MIT for presenting and managing output on bit-
mapped displays. Each window consists of a rectangular region of the display that
contains textual or graphical output from one remote program. A special program
called a window manager allows the user to create, move, overlap, and destroy win-
dows.

zero window
See closed window.

zone of authority
Term used in the domain name system to refer to the group of names for which a
given name server is an authority. Each zone must be supplied by two name servers
that have no common point of failure.

Bibliography

ABRAMSON, N. [1970], The ALOHA System - Another Alternative for Computer
Communications, Proceedings of the Fall Joint Computer Conference.

ANDREWS, D. W., and G. D. SHLJLTZ [1982], A Token-Ring Architecture for Local Area
Networks: An Update, Proceedings of Fall 82 COMPCON, IEEE.

ATALLAH, M., and D. E. COMER [June 19981, Algorithms for Variable Length Subnet Address
Assignment, IEEE Transactions on Computers, vol. 47:6, 693-699.

BBN [1981], A History of the ARPANET: The First Decade, Technical Report Bolt, Beranek,
and Newman, Inc.

BBN [December 19811, Specification for the Interconnection of a Host and an IMP (revised),
Technical Report 1822, Bolt, Beranek, and Newman, Inc.

BERTSEKAS D., and R. GALLAGER [1991], Data Networks, 2nd edition, Prentice-Hall, Upper
Saddle River, New Jersey.

BIAGIONI E., E. COOPER, and R. SANSOM [March 19931, Designing a Practical ATM LAN,
IEEE Network, 32-39.

BIRRELL, A., and B. NELSON [February 19841, Implementing Remote Procedure Calls, ACM
Transactions on Computer Systems, 2(1), 39-59.

BLACK, U., [1995], ATM: Foundation for Broadband Networks, Prentice-Hall, Upper Saddle
River, New Jersey.

BOGGS, D., J. SHOCH, E. TAFT, and R. METCALFE [April 19801, Pup: An Internetwork
Architecture, IEEE Transactions on Communications.

BORMAN, D., [April 19891, Implementing TCP/IP on a Cray Computer, Computer
Communication Review, 19(2), 1 1-15.

BROWNBRIDGE, D., L. MARSHALL, and B. RANDELL [December 19821, The Newcastle
Connections or U M e s of the World Unite!, Sofrware - Practice and Experience, 12(12),
1147-1 162.

CASNER, S., and S. DEERING [July 19921, First IETF Internet Audiocast, Computer
Communications Review, 22(3), 92-97.

722 Bibliography

CERF, V., and E. CAIN [October 19831, The DOD Internet Architecture Model, Computer
Networks.

CERF, V., and R. KAHN [May 19741, A Protocol for Packet Network Interco~ection, IEEE
Transactions of Communications, Com-22(5).

CERF, V. [October 19891, A History of the ARPANET, ConneXions, The Interoperability Report,
480 San Antonio Rd, Suite 100, Mountain View, California.

CHERITON, D. R. [1983], Local Networking and Internetworking in the V-System, Proceedings
of the Eighth Data Communications Symposium.

CHERITON, D. [August 19861, VMTP: A Transport Protocol for the Next Generation of
Communication Systems, Proceedings of ACM SIGCOMM '86,406-415.

CHESSON, G. [June 19871, Protocol Engine Design, Proceedings of the 1987 Summer USENIX
Conference, Phoenix, AZ.

CHESWICK, W., and S. BELLOVIN [1998], Firewalls And Internet Security: Repelling the Wiley
Hacker, 2nd edition, Addison-Wesley, Reading, Massachusetts.

CLARK, D., and W. FANG [August 19981, Explicit Allocation Of Best-Effort Packet Delivery
Service, IEEEIACM Transactions On Networking, 6(4).

CLARK, D., M. LAMBERT, and L. ZHANG [August 19871, NETBLT: A High Throughput
Transport Protocol, Proceedings of ACM SIGCOMM '87.

CLARK, D., V. JACOBSON, J. ROMKEY, and H. SALWEN [June 19891, An Analysis of TCP
Processing Overhead, IEEE Communications, 23-29.

COHEN, D., [1981], On Holy Wars and a Plea for Peace, IEEE Computer, 48-54.

COMER, D. E., [1999], Computer Networks And Internets, 2nd edition, Prentice-Hall, Upper
Saddle River, New Jersey.

COMER, D. E. and J. T. KORB [1983], CSNET Protocol Software: The IP-to-X25 Interface,
Computer Communications Review, 13(2).

COMER, D. E., T. NARTEN, and R. YAVATKAR [April 19871, The Cypress Network: A Low-
Cost Internet Connection Technology, Technical Report TR-653, Purdue University, West
Lafayette, IN.

COMER, D. E., T. NARTEN, and R. YAVATKAR [1987], The Cypress Coaxial Packet Switch,
Computer Networks and ISDN System., vol. 14:2-5, 383-388.

COMER, D. E. and D. L. STEVENS [1999], Internetworking With TCP/IP: Volume 11: Design,
Implementation, and Internals, 3rd edition, Prentice-Hall, Upper Saddle River, New Jersey.

COMER, D. E. and D. L. STEVENS [1996], Internetworking With TCPAP Volume I11 - Client-
Server Programming And Applications, BSD socket version, 2nd edition, Prentice-Hall, Upper
Saddle River, New Jersey.

COMER, D. E. and D. L. STEVENS [1994], Internetworking With TCPLP Volume III - Client-
Server Programming And Applications, AT&T TLI version, Prentice-Hall, Upper Saddle River,
New Jersey.

COMER, D. E. and D. L. STEVENS [1997], Internetworking With T C P m Volume III - Client-
Server Programming And Applications, Windows Sockets version, Prentice-Hall, Upper Saddle
River, New Jersey.

724 Bibliography

GERLA, M., and L. KLEINROCK [April 19801, Flow Control: A Comparative Survey, IEEE
Transactions on Communications.

HINDEN, R., J. HAVERTY, and A. SHELTZER [September 19831, The DARPA Internet:
Interconnecting Heterogeneous Computer Networks with Gateways, Computer.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [June 1986a1, Information
processing systems - Open Systems Interconnection - Transport Service Definition,
International Standard number 8072, ISO, Switzerland.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [July 1986b1, Information
processing systems - Open Systems Interconnection - Connection Oriented Transport
Protocol Specification, International Standard number 8073, ISO, Switzerland.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [May 1987a], Information
processing systems - Open Systems Interconnection - Speczfication of Basic Specifcation of
Abstract Syntax Notation One (ASN.]), International Standard number 8824, ISO, Switzerland.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [May 1987b1, Information
processing systems - Open Systems Interconnection - Specijication of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.1). International Standard number 8825, ISO,
Switzerland.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [May 1988a], Information
processing systems - Open Systems Interconnection - Management Information Service
Definition, Part 2: Common Management Information Service, Draft International Standard
number 9595-2, ISO, Switzerland.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [May 1988a], Information
processing systems - Open Systems Interconnection - Management Information Protocol
Definition, Part 2: Common Management Information Protocol, Draft International Standard
number 9596-2.

JACOBSON, V. [August 19881, Congestion Avoidance and Control, Proceedings ACM
SIGCOMM '88.

JAIN, R. [January 19851, On Caching Out-of-Order Packets in Window Flow Controlled
Networks, Technical Report, DEC-TR-342, Digital Equipment Corporation.

JAIN, R. [March 19861, Divergence of Timeout Algorithms for Packet Retransmissions,
Proceedings Fifh Annual International Phoenix Conference on Computers and
Communications, Scottsdale, AZ.

JAIN, R. [October 19861, A Timeout-Based Congestion Control Scheme for Window Flow-
Controlled Networks, IEEE Journal on Selected Areas in Communications, Vol. SAC-4, no. 7.

JAIN, R., K. RAMAKRISHNAN, and D-M. CHIU [August 19871, Congestion Avoidance in
Computer Networks With a Connectionless Network Layer. Technical Report, DEC-TR-506,
Digital Equipment Corporation.

JAIN, R. [1991], The Art of Computer Systems Pegormance Analysis, John Wiley & Sons, New
York.

JAIN, R. w a y 19921, Myths About Congestion Management in High-speed Networks,
Internetworking: Research and Experience, 3(3), 101 -1 13.

Bibliography 725

JAIN, R. [1994], FDDI Handbook; High-speed Networking Using Fiber and Other Media,
Addison Wesley, Reading, Massachusetts.

JENNINGS, D. M., L. H. LANDWEBER, and I. H. FUCHS [February 28, 19861, Computer
Networking for Scientists and Engineers, Science vol 23 1 , 941 -950.

JUBIN, J. and J. TORNOW [January 19871, The DARPA Packet Radio Network Protocols, IEEE
Proceedings.

KAHN, R. [November 19721, Resource-Sharing Computer Communications Networks,
Proceedings of the IEEE, 60(1 l), 1397-1407.

KARN, P., H. PRICE, and R. DIERSING [May 19851, Packet Radio in the Amateur Service, IEEE
J o u m l on Selected Areas in Communications,

KARN, P., and C. PARTRIDGE [August 19871, Improving Round-Trip Time Estimates in Reliable
Transport Protocols, Proceedings of ACM SIGCOMM '87.

KAUFMAN, C., PERLMAN, R., and SPECINER, M. [1!#5], Network Security: Private
Communication in a Public World, Prentice-Hall, Upper Saddle River, New Jersey.

KENT, C., and J. MOGUL [August 19871, Fragmentation Considered Harmful, Proceedings of
ACM SIGCOMM '87.

LAMPSON, B. W., M. PAUL, and H. J. SIEGERT (EDS.) [1981], Distributed Systems -
Architecture and Implementation (An Advanced Course), Springer-Verlag, Berlin.

LAMPSON, B. W., V. SRINIVASAN, and G. VARGHESE [June 19991, IP Lookups Using
Multiway and Multicolumn Search, IEEWACM Transactions on Networking, vol7, 324-334.

LANZILLO, A. L., and C. PARTRIDGE [January 19891, Implementation of Dial-up IP for UNIX
Systems, Proceedings 1989 Winter USENIX Technical Conference, San Diego, CA.

LEFFLER, S., M. McKUSICK, M. KARELS, and J. QUARTERhUN [1996], The Design and
Implementation of the 4.4BSD UNIX Operating System, Addison Wesley, Reading,
Massachusetts.

MCNAMARA, J. [1998], Technical Aspects of Data Communications, 2nd edition, Digital Press,
Digital Equipment Corporation, Bedford, Massachusetts.

MCQUILLAN, J. M., I. RICHER, and E. ROSEN [May 19801, The New Routing Algorithm for the
ARPANET, IEEE Transactions on Communications, (COM-28), 7 1 1-7 19.

METCALFE, R. M., and D. R. BOGGS [July 19761, Ethernet: Distributed Packet Switching for
Local Computer Networks, Communications of the ACM, 19(7), 395-404.

Mn.LS, D., and H-W. BRAUN [August 19871, The NSFNET Backbone Network, Proceedings of
ACM SIGCOMM '87.

MORRIS, R. [1979], Fixing Timeout Intervals for Lost Packet Detection in Computer
Communication Networks, Proceedings AFIPS National Computer Conference, AFPS Press,
Montvale, New Jersey.

NAGLE, J. [April 19871, On Packet Switches With Infinite Storage, IEEE Transactions on
Communications, Vol. COM-35:4.

NARTEN, T. [Sept. 19891, Internet Routing, Proceedings ACM SIGCOMM '89.

NEEDHAM, R. M. [1979], System Aspects of the Cambridge Ring, Proceedings of the ACM
Seventh Symposium on Operating System Principles, 82-85.

726 Bibliography

NEWMAN, P., G. MINSHALL, and T. L. LYON [April 19981, IP Switching - ATM Under IP,
IEEE Transactions on Networking, Vol. 6:2, 1 17-129.

OPPEN, D., and Y. DALAL [October 19811, The Clearinghouse: A Decentralized Agent for
Locating Named Objects, Office Products Division, XEROX Corporation.

PARTRIDGE, C. [June 19861, Mail Routing Using Domain Names: An Informal Tour,
Proceedings of the 1986 Summer USENIX Conference, Atlanta, GA.

PARTRIDGE, C. [June 19871, Implementing the Reliable Data Protocol (RDP), Proceedings of the
1987 Summer USENIX Conference, Phoenix, Arizona.

PARTRIDGE, C. [1994], Gigabit Networking, Addison-Wesley, Reading, Massachusetts.

PELTON, J. [1995], Wireless and Satellite Telecommunications, Prentice-Hall, Upper Saddle
River, New Jersey.

PERLMAN, R. [2000], Interconnections: Bridges and Routers, 2nd edition, Addison-Wesley,
Reading, Massachusetts.

PETERSON, L. [1985], Defining and Naming the Fundamental Objects in a Distributed Message
System, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana.

PETERSON, L., and B. DAVE, [1999], Computer Networks: A Systems Approach, 2nd edition,
Morgan Kaufmam, San Francisco, CA.

PIERCE, J. R. [1972], Networks for Block Switching of Data, Bell System Technical Journal, 51.

POSTEL, J. B. [April 19801, Internetwork Protocol Approaches, IEEE Transactions on
Communications, COM-28, 604-61 1 .

POSTEL, J. B., C. A. SUNSHINE, and D. CHEN [1981], The ARPA Internet Protocol, Computer
Networks.

QUARTERMAN, J. S., and J. C. HOSKmS [October 19861, Notable Computer Networks,
Communications of the ACM, 29(10).

RAMAKRISHNAN, K. and R. JAIN w a y 19901, A Binary Feedback Scheme For Congestion
Avoidance In Computer Networks, ACM Transactions on Computer Systems, 8(2), 158-1 81.

REYNOLDS, J., J. POSTEL, A. R. KATZ, G. G. FINN, and A. L. DESCHON [October 19851, The
DARPA Experimental Multimedia Mail System, IEEE Computer.

=HIE, D. M. [October 19841, A Stream Input-Output System, AT&T Bell Laboratories
Technical Journal, 63(8), 1987-1910.

RITCHIE, D. M., and K. THOMSON [July 19741, The UNIX Time-sharing System,
Comrnzmications of the ACM, 17(7), 365-375; revised and reprinted in Bell-System Technical
Journal, 57(6), [July-August 19781, l%X- 1929.

ROSE, M. [1993], The Internet Message: Closing The Book with Electronic Mail, Prentice-Hall,
Upper Saddle River, New Jersey.

SAL'IZER, J. [1978], Naming and Binding of Objects, Operating Systems, An Advanced Course,
Springer-Verlag, 99-208.

SAL'IZER, J. [April 19821, Naming and Binding of Network Destinations, International
Symposium on Local Computer Networks, lFIPm.C.6, 3 1 1-3 17.

Bibliography 727

SALTZER, J., D. REED, and D. CLARK [November 19841, End-to-End Arguments in System
Design, ACM Transactions on Computer Systems, 2(4), 277-288.

SHOCH, J. F. [1978], Internetwork Naming. Addressing, and Routing, Proceedings of
COMPCON.

SHOCH, J. F., Y. DALAL, and D. REDELL [August 19821, Evolution of the Ethernet Local
Computer Network, Computer.

SOLOMON, J. [1997], Mobile 1P: The Internet Unpluggeci; Prentice-Hall, Upper Saddle River,
New Jersey.

SOLOMON, M., L. LANDWEBER, and D. NEUHEGEN [1982], The CSNET Name Server,
Computer Networks (6). 161-1 72.

SRINIVASAN, V., and G. VARGHESE [February 19991, Fast Address Lookups Using Controlled
Prefix Expansion, ACM Transactions on Computer Systems, vol. 17, 1-40.

STALLINGS, W. [1997], Local and Metropolitan Area Networks, Prentice-Hall, Upper Saddle
River, New Jersey.

STALLINGS, W. [1998], High-speed Networks: TCP/IP and ATM Design Principles, Prentice-
Hall, Upper Saddle River, New Jersey.

STEVENS, W. R. [1998], UNlX Network Programming, 2nd edition, Prentice-Hall, Upper Saddle
River, New Jersey.

SWINEHART, D., G. MCDANIEL, and D. R. BOGGS [December 19791, WFS: A Simple Shared
File System for a Distributed Environment, Proceedings of the Seventh Symposium on
Operating System Principles, 9- 17.

TICHY, W., and Z. RUAN [June 19841, Towards a Distributed F i e System, Proceedings of
Summer 84 USENlX Conference, Salt Lake City, Utah, 87-97.

TOMLINSON. R. S. [1975], Selecting Sequence Numbers, Proceedings ACM SlGOPS/SIGCOMM
Interprocess Communication Workshop, 1 1-23, 1975.

WATSON, R. [1981], Timer-Based Mechanisms in Reliable Transport Protocol Connection
Management, Computer Networks, North-Holland Publishing Company.

WEMERGER, P. J. [1985], The UNIX Eighth Edition Network File System, Proceedings 1985
ACM Computer Science Conference, 299-301.

WELCH, B., and J. OSTERHAUT [May 19861, Prefix Tables: A Simple Mechanism for Locating
Files in a Distributed System, Proceedings 1EEE Sixth lntemutioml Conference on Distributed
Computing Systems, 1845-189.

WILKES, M. V., and D. J. WHEELER w a y 19791, The Cambridge Digital Communication Ring,
Proceedings Local Area Computer Network Symposium.

XEROX [1981], Internet Transport Protocols, Report XSIS 028112, Xerox Corporation, Office
Products Division, Network Systems Administration Office, 3333 Coyote Hill Road, Palo
Alto, California.

ZHANG, L. [August 19861, Why TCP Timers Don't Work Well, Proceedings of ACM SIGCOMM
'86.

Index

Constants and numeric items
10/100 hardware 27
10Base-T 25
125 p seconds 540
127.0.0.1 70, 674
1280 607
16 298
20 minutes 8 1
2X problem 384
3-way handshake 237
5-layer model 184
576 104, 674
802.3 20, 674
822 516, 525
9180 362, 674

A
AAL5 360, 674
abort 222
ABR 347, 675
absolute 529
absolute name 559
Abstract Syntax Notation 1 183, 559
accept function 424
access control 589
ACK 211
ACK implosion 348
acknowledgement 6, 21 1,225, 247, 265,

675

aggregator 348
ambiguity 228
cumulative 225
delayed 247

acknowledgement point 348
ACM SIGCOMM 15
active 297
active monitoring 596
active open 218, 675
adapter 21
adaptive bridge 3 1
adaptive retransmission 226, 675
address 5, 55, 63, 462, 675

ARPANET 40
Ethernet 29
IP 64
MAC 29
X.121 47
X.25 47
all 1s 66
broadcast 29
class 64
class D 321
classless 67
co-located 379
directed broadcast 66
dotted decimal notation 70
foreign agent 380
hardware 20, 29
internet 64
layer 2 29
limited broadcast 66

Index

link-local 619
local broadcast 66
loopback 70
mail 513, 516
multicast 29, 68
network 20
physical 29
resolution 77, 78
self-idenbfying 65
site-local 619
subnet 67
supernet 164
translation to name 461
unicast 29

address allocation 616
address ambiguity 156
address binding 363, 366,675
address boundary 124, 191
address domain 399
address hierarchy 616
address lease 45 1
address mask 142, 675
address resolution 675
address resolution problem 78
Address Resolution Protocol 79
addressing scheme 322
administrative scoping 326, 675
ADSL 676
Advanced Networks and Services 44, 676
Advanced Research Projects Agency 38
advertise routes 264
agent 378, 555,676
agent discovery 380
agent-driven negotiation 534
aggregatable global unicast address 617
aggregation 302, 303,617
AH 584, 676
algorithm

routing 122
shortest path 266

alias 513
all agents group 380
all hosts 67
all routers group 324, 613, 676

all systems group 324, 329,676
alternative subtype (MIME) 523
ambiguity of acknowledgements 228
anchor 529
anonymous FIT 504, 676
anonymous network 162, 676
ANS 44, 676
ANSI 676
ANSNET 12, 45,676
anycast 612, 676
API 413, 676
application 568
application gateway 53, 393,676
application layer 183, 184
application program 197
Application Program Interface 41 3
application protocol 6
Application Specific message 545
application-server paradigm 403, 677
architecture 96
area 309, 347, 677
Area Border Router 347
area manager 10, 677
ARF' 79, 81,677

cache 81
encapsulation 84
hack 150
implementation 82
inverse 93
message format 85
protocol 77

ARPA 2, 6, 38, 677
AFWAJNSF Internet 2
ARPANET 6, 38,677

address 40
port 39

ARQ 677
AS 274, 677
ASCII mode 5 10
ASN.l 183, 559,577,677
Assigned Numbers 677
Asynchronous Transfer Mode 37, 353
AT&T 46
ATM 37, 93,353,678

Index

adaptation layer 358, 678
ATMARP 366, 678
atomic assignment 565
attachment unit interface 21
audio 539
audio clip 540
AUI 21, 678
authentication 277, 309, 381,582
Authentication Header 584
authority zone 481, 678
authorization 572, 582
autoconfiguration 172, 450,620
autonomous confederation 308
autonomous system 269, 274
autonomous system number 275
availability of data 582
average 306

B
backbone network 41, 678
backoff 28
backoff in TCP 229
bad news 299
base header 603, 678
base64 522, 678
baseband 678
bastion host 593, 678
baud 678
BBN 7, 39
BCP 679
Bellman-Ford 262, 679
Berkeley broadcast 679
Berkeley Software Distribution 7
Berkeley UNIX 7
besteffort delivery 28, 96,97, 322, 679
BGP 276, 290,296,679

authentication 277
characteristics 277
classless addressing 277
incremental update 277
keepalive message 283
message header 278
notification message 288
open message 279

path attributes 282
path information 277
peer 276
route aggregation 277
transport 277
update message 280

BGP-4 276
big endian 74, 75,679
binary exponential backoff 28, 679
binary trie 169
bind function 417
BISYNC 679
block 590
BNC connector 24
BOOTP 142, 443,444,679
bootstrap 89, 443, 505
BOOTstrap Protocol 444
Border Gateway Protocol 276
border router 276
boundary 191
bps 679
bridge 115, 680

mail 5 15
broadband 680
broadcast 27, 161, 612,680
broadcast address 29, 66, 319
broadcast and prune 339, 680
broadcast delivery 68
broadcasting 3 19
brouter 680
browser 528
browser-driven negotiation 534
BSC 680
BSD UNJX 7, 680
buffer 198
buffering 210
bursty 550
bus 27
Bye message 545
byte 30
byte order 74

Index

C
cache 81
caching 473
canonical name 546
capacity 26
care of 379
care-of address 680
carriage control 488
carrier sense 28
category 5 cable 25, 680
CBT 343, 680
CCIRN 681
CCI'IT 40, 182,681
CDDI 33, 681
cell 37, 358, 681
cell tax 372, 681
CGI 532, 681
channel 356
checksum 107, 132, 199,203,224,681
CIDR 165, 681

block 165
mask 165
notation 166

circuit switching 18
CL 353, 681
class A, B, or C address 65
class D address 321
class of address 64, 68 1
class of name - 468
classful 64
classful addressing 64, 681
classification scheme 373
classless addressing 67, 164, 277, 303,

682
Classless Inter-Domain Routing 165
classless notation 166
client 403, 404, 446

example 435
client-server 403, 682

see Volume 111
CLNS 601
close system call 417
closed state 241
closed window 682

closing connections 239
clumping 248
cluster address 612, 682
CO 353, 682
co-located address 379
coaxial cable 20
code bits 222
codec 540, 682
codepoint 100
coderldecoder 540
collision detection 28
colon hexadecimal notation 61 1
Common Gateway Interface 532
Common Open Policy Services 549
Computer Science NETwork 7, 46
conditional request 535
conference call 543
confidentiality 582
configuration 620
congestion 136, 232,682
congestion avoidance 234
congestion collapse 233
congestion control 220
congestion window 233
connect function 418
connected socket 418
connection 5, 18,210,237,356,682

closing 239
reset 24 1

connection abstraction 2 17
connection endpoint 2 17
connection management 365
connection-oriented 18, 37
connection-oriented service 682
connectionless 5, 18,97, 198
connectionless service 97, 682
content type 523
context specific 57 1
control connection 500
control messages 129
control packet 553
convergence 36 1
Copper Distributed Data Interface 33
COPS 549, 682

Index

core architecture 683
Core Based Trees 343
core problems 259
core router 257, 343
cosmic significance 496
count to infinity 298, 683
counter rotating 34
CR 488
CR-LF 489, 5 19, 683
CRC 30, 683
CSMAICD 28, 683
CSNET 7, 46
CSUDSU 683
cumulative acknowledgement 225, 683
cyclic redundancy check 30

D
DARPA 2, 683
data availability 582
data field 30
data integrity 582
data mark 492
data stream 2 19
data transfer connection 500
data-driven multicast 683
datagram 5, 97, 98, 683

MTU 102
UDP 199
differentiated service 99
format 98
fragmentation 102, 105
options 107
size 102
time to live 106
type of service 99

date service 406
DCA 6, 38
DCE 684
DDCMP 684
DDN 38, 684
default route 121, 255, 302, 684
default-free zone 288
Defense Communication Agency 6
delay 19, 684

delay metric 305
delay variance 230
delayed acknowledgement 247, 684
delivery mechanism 322
delivery tree 337
deltas 277
demand-driven 343, 347
demultiplex 192, 684
dense mode 344
deregister 379
designated gateway 309
designated router 348
destination address 20
destination port 198, 199
destination unreachable 134, 398
deviation 230
DHCP 443, 444,450,684

lease 451
message format 455

dial-up IP 49
differentiated services 100, 549

codepoint 100
DiffServe 684
digest subtype (MIME) 524
Digital Equipment Corp. 20
Digital Subscriber Line 50
digitizing 539
Dijkstra shortest path algorithm 266
direct delivery 1 17
directed broadcast address 66, 684
discovery mechanism 344
discriminated union 567
diskless 89
distance 302
distance factoring 265
distance metric 264
Distance Vector Multicast Routing Proto-

col 339
distance-vector 262, 685
DNS 8, 395,461,465,577,685
dn-comp procedure 432
dn-expand procedure 432
DO (TELNET) 493
do not fragment 105, 223, 445

Index

DOD 2
DOE 2
dog-leg forwarding 384
domain 685
domain class 468
domain name

pointer query 478
recursive resolution 47 1
server 469
zone 481

Domain Name System 8, 461,465
domain suffn list 478
domain type 468
dotted decimal notation 70, 685
dotted hex notation 321, 685
dotted quad notation 69, 685
DR 348
draft standard 626
dropping packets 135
DS 100
DS3 45, 685
DSCP 100
DSL 50, 685
DTE 685
dual-speed Ethernet 27
DVMRP 339, 685
dynamic configuration 450
Dynamic Host Configuration Proto-

col 444, 450

E
e-mail

see electronic mail
E.164 366, 685
EACK 686
echo

ICMP reques t/repl y 1 3 3
UDP requesttreply 404
port 404

echo reply 398
echo request 344, 398
echo request and reply 686
EGP 276, 686
EL4 686

electronic mail 4, 5 1 1
destination 5 13
list 513
spool 512

Encapsulating Security Payload 586
encapsulation 102, 201, 386, 686

ICMP 131
IP 101
IP datagram 102
RAlW 91

enclosures 523
encoding type 523
encryption 391, 583
end of file 532
end-of-packet bit 361
end-to-end 6, 184, 186, 234, 355, 361,

686
endhostent procedure 433
endnetent procedure 433
endpoint 2 17
endprotoent procedure 434
endservent procedure 435
engine 568
ENTER 489
epoch date 406, 686
error messages 129
error reporting mechanism 130
escape 486, 488, 491
ESP 586, 686
established state 241
establishing a connection 237
ether 20
Ethernet 20, 686

AUI 21
CRC 30
NIC 21
address 29
broadcast 27
capacity 26
collision 28
data field 30
frame 30
host interface 21
hub 25

Index

meltdown 687
multicast 321
preamble 30
repeater 31
transceiver 21
twisted pair 25
type 102
type field 30

EUI-64 618, 687
exchange 617
exchanger (e-mail) 5 17
exec system call 4 16
exploder 513
exponential backoff 28, 687
extension 38 1
extension header 603, 687
Exterior Gateway Protocol 269, 276
external Data Representation 508, 687
extra hop problem 272, 687

F
factoring 265
fair queueing 687
family of protocols 177
Fast Ethernet 26, 687
FCCSET 15, 687
FDDI 33, 36,687
FDM 687
fetch-store paradigm 564
fiber 354
file descriptor 414
file server 497, 687
file transfer 4, 499
File Transfer Protocol 398, 499
filter 590
FIN 239, 688
fingerd 408
finite state machine 24 1
firewall 581, 688
five-layer reference model 688
fured-length subnetting 154, 688
flat address 40
flat namespace 462, 688
flow 373, 549,605,688

flow control 136, 219,220,688
FLOW LABEL 604
Ford-Fulkerson 262, 688
foreign 378
foreign agent 380
foreign agent address 380
fork system call 416
form 530
format prefix 617
forward error-correcting codes 349
forwarding 688

mail 513
forwarding facility 322
forwarding tree 337
fragment bit 105
Fragment Extension Header 607, 688
fragmentation 102, 103, 105, 113, 607,

688
fragmentation needed 135
frame 30, 36, 39, 182, 689

self-identifying 30
type 30

Frame Relay 93, 689
FTP 70, 398,499,577,689
full duplex 21 1, 493,689
fuzzball 41, 305
FW 689

G
gated 308, 689
gatekeeper 547
gateway 56, 57, 115,264, 276,546,689

VAN 47
border 276
designated 309
mail 515

gateway requirements 689
gateway-to-gateway protocol 264
Gbps 689
Generic Routing Encapsulation 38 1
GET 531
getdomainname function 427
gethostbyaddr procedure 433
gethostbyname procedure 432

Index

gethostent procedure 433
gethostname function 426
getnetbyaddr procedure 433
getnetbyname procedure 433
getnetent procedure 433
getpeemame function 422
getprotobyname procedure 434
getprotobynumber procedure 434
getprotoent procedure 434
getservbyname procedure 434
getservbyport procedure 434
getservent procedure 435
getsockname function 423
getsockopt function 423
GGP 264, 689
GIF 522, 523,528
global Internet 2
global name 559
good news 299
gopher 689
GOSIP 689
graceful shutdown 239, 690
graft 339, 690
graph 266
Graphics Interchange Format 528
GRE 381, 690
group 29
guaranteed minimum MTU 607
guest 504

H
H.323 547, 690
half duplex 2 1 1, 493,690
hardware address 20, 29, 78,690
hashing 168
HDLC 40, 182
header 278, 690
header length field 99
HELLO 293, 305,690
hello (OSPF) 3 10
HELO 519, 690
HHS 2
hidden network 273
hierarchical addressing 153, 690

hierarchical routing 153
hierarchy 304
high-level name 462
historic 264, 626,690
history 6
hold down 300, 305,690
hold timer 279, 284
home address 379
home agent 380
hop count 139, 264, 297, 304,691
hop limit 106, 604,691
hop-by-hop 606
hops 264
host 39, 691
host adapter 21
host interface card 21
host requirements 69 1
host table 76
host-specific route 12 1, 69 1
hourglass model 577
HTML 528, 691
htonl procedure 429
htons procedure 429
HTI'P 527, 530,577,691
http scheme 528
hub 25, 691
hybrid network 390
hypermedia 528
HyperText Markup Language 528
HyperText Transfer Protocol 530
hysteresis 297

I
YO 414
IAB 8, 691
IAC 491, 691
IANA 71, 691
IBM token ring 49
ICANN 71, 691
ICCB 6, 692
ICMP 129, 130, 194, 328,692

address mask 142
checksum field 132
code field 132

Index

destination unreachable 134, 398
echo requestheply 133, 398
encapsulation 132
information requestheply 142
message encapsulation 13 1
message types 133, 135
parameter problem 140
protocol 129
redirect 137, 398
redirect message 137
router discovery 143
router solicitation 144
source quench 136
subnet mask 142
time exceeded 139
timestamp 140
type field 132
use with NAT 398

ICMPv6 618, 692
IEEE 20, 29
IEN 11, 692
IESG 10, 692
IETF 10, 692
IGMP 328, 692
IGMPv2 328
IGP 295, 692
IMAP4 522
IMP 38, 692
implementation

see Volume 11
InATMARP 369, 692
inconsistencies in routing 257
incremental update 277
indirect delivery 117, 692
inet-addr procedure 429
inet-inaof procedure 430
inet-makeaddr procedure 430
inet-netof procedure 430
inet-network procedure 429
inet-ntoa procedure 430
infinity 302, 304, 343, 380,451
infmity (RIP) 298
information request 142
information security 582

inheritance 41 6
initial sequence numbers 239
INOC 693
inside 589
integrated 498
integrity of data 582
Intel 20
inter-autonomous system routing 307,

693
interface 21
Interface Message Processor 38
interior gateway protocol 295
interior router 293
International Organization for Standardi-

zation 693
International Telecommunications Un-

ion 40, 182,693
Internet 693

Architect 9
Architecture Board 8
Assigned Number Authority 71
Control Message Protocol 130
Engineering Notes 1 1
Engineering Steering Group 10
Group Management Protocol 328
Message Access Protocol 522
Protocol 95, 97, 600
Research Steering Group 1 1
Service Provider 12, 72, 164, 617
Society 11
Task Force 8, 10
datagram 97
drafts 11
research group 6
standard 626
worm 38, 408

internet 54, 55, 95, 693
access 589
address 64, 77, 89
architecture 96
control message 129
dotted decimal address 70
error messages 129
fiewall 589

Index

layer 185
management 553
properties 55
router 56
routing 116
routing table 1 19

Internet address 693
internet address 78
Internet Architect 9
Internet Draft 693
internet gateway 56
Internet Protocol 693
internet router '56
internet security 582
Internet Society 693
Internet worm 693
internetwork

see internet
interoperability 3, 693
interpret as command 491
interrupt 222
intranet 694
Inverse ARP 93
Inverse ATMARP 369
inverse query 478
IP 95, 694

address 64
encapsulation 101

IP (telnet) 491
IP address 64, 694
IP addressing 68, 97
IP checksum 107
IP data 107
IP datagram 97, 98, 694
IP destination address 107
IP dial-up 49
IP differentiated services 99
IP dotted decimal 70
IP encapsulation 102
IP FLAGS 105
IP forwarding 1 16
IP FRAGMENT OFFSET 105
IP gateway 56, 264,694
IP header length 99

IP IDENTIFICATION 105
IP mobility 68, 377, 378
IP more fragments 106
IP multicast 694
IP multicasting 68, 321
IP next generation 602
IP options 107
IP padding 107
IP payload 107
IP precedence 99
IP PROTOCOL field 107, 604
IP reassembly 103
IP record route option 109
IP reserved prefixes

72
IP router 56, 115, 694
IP routing 1 16
IP routing table 1 19, 254
IP source address 107
IP source route option 110
IP switching 1 16, 37 1,694
IP telephony 546, 694
IP time to live 106
IP timestamp option 11 1
IP type of service 99
IP version 99
IP-based technology 97
IP-in-IP 341, 378, 383, 386, 391, 588,

694
ipAddrTable 562
ipInReceives 562
IPng 602, 694

see IPv6
IPsec 584, 695
IPv4 99, 600,602,695
IPv6 584, 602,695

anycast 612
fragmentation 607
hop-by-hop header 609

IRSG 11, 695
IRTF 10, 695
ISDN 695
IS0 181, 559,695
IS0 model 18 1

Index

ISOC 11, 695
isochronous 540, 695
ISODE 695
isolated network 389, 619
ISP 12, 72, 164,617,695
iterative name resolution 47 1
ITU 40, 182,547,559,695

J
jitter 235, 541, 695
join request 344
Joint Picture Encoding Group 528
Jon Postel 11
P E G 523, 528

K
K-out-of-N 306
k-out-of-n rule 266
Karn's Algorithm 229
Kbps 696
keepalive 283, 696
kerberos 597
kernel 340
key 583

L
label 465
label switching 372
LAN 19, 696
LAPA 182
LAPB 40, 182
layer

application 183, 184
internet 185
link 182
network 182
network interface 185
physical 182
presentation 183
session 183
transport 183, 184

layer 2 address 29
layer 3 classification 373
layer 3 switching 116, 372

layer 4 classification 373
layer 4 switching 373
layering 177, 178, 184, 202, 217,234

IS0 181
TCPLP 183

layering principle 187, 361
leaf 337, 696
learning bridge 3 1
lease 451
level compressed hie 172
LF 488
limited broadcast 66, 144
linefeed 488
link layer 182
link state routing 266, 308,696
link status 3 13
link status routing 266, 3 13,696
link-local address 619, 696
LIS 364, 697
listen function 424
little endian 74, 697
LLC 363, 697
load balancing 150, 309
local area network 19
local network broadcast address 66
locality of reference 384
locator 63
logging 596
Logical IP Subnet 364
Logical Link Control 363
login 521
long haul network 19, 697
longest-prefix matching 171, 697
lookup algorithm 167
loopback address 70, 616,697
loose source routing 11 1
low-level name 462
LSR 697

M
MABR 347, 697
MAC 697
MAC address 29
machine-to-machine 36 1, 587

Index

magic cookie 448
mail alias expansion 513
mail bridge 5 15, 697
mail destination 5 13
mail exchanger 468, 5 17,697
mail exploder 5 13, 698
mail forwarding 5 13
mail gateway 515, 698
mail processing 5 13
mail queue 5 12
mail relay 5 15
mail spool area 5 12
mailbox 513, 522
mailing list 5 13
MAN 698
managed configuration 620
management agent 555
Management Information Base 556, 698
manual bypass 593
manual configuration 450
mapping of IP address 78
martians 698
mask 165, 698
masquerade 400
maximum segment lifetime 241
maximum segment size 223
maximum transfer unit 102, 698
MBONE 342, 698
Mbps 698
MCI 46
media access address 29
MEDIA TIMESTAMP 543
message authentication 572
message header 278, 310
method 531
metric 305
metric transformation 308
MIB 556, 572,698
MIB-I1 557
mid-level network 41
military network 6
MILNET 6, 38,698
MIME 522, 577,698
mixed subtype (MIME) 523

mixing 543
MMDS 50
mobile IP 378, 699
mobility 68, 377
mobility agent 380
mobility support 378
monitoring 596
more fragments 106
Mosaic 699
MOSPF 343, 347,699
MOTIS 183
MPLS 372, 699
rnrouted 340, 699
MSL 241, 699
MSS 223, 699
MTP 518
MTU 102, 223,607,699
multi-address NAT 396
multi-homed host 65, 699
Multi-Protocol Label Switching 372
multicast 29, 68, 144, 319, 320, 340,

347,612,613,699
address 29, 323
data-driven 339
demand-driven 343
group 321
router 322, 326
tunnel 340

Multicast Area Border Router 347
Multicast Backbone 342
Multicast extensions to OSPF 343, 347
multimode 354
multipart type (MIME) 523
multiple access 28
multiplex 192, 699
multiplicative decrease 233, 699
Multipurpose Internet Mail Exten-

sions 522
mutable fields 587

N
NACK 348, 366, 700
Nagle 234
Nagle algorithm 249, 700

Index

name 55, 63,462
abbreviation 477
domain 461, 465
recursive resolution 47 1
resolution 47 1
resolver 469
server 8, 469
translation to address 461

name caching 473
name resolution 700
namespace partition 464
NAP 287, 617,700
NAPT 396
NASA 2
NAT 389, 394,700
NAT box 394
National Institute for Standards and Tech-

nology 560
National Science Foundation 40
NBMA 353, 363,700
NBS 560
negative acknowledgement 348
negotiation 534
neighbor 264
neighbor discovery protocol 61 8
Net 10 address 700
NetBIOS 700
netstat 70, 411
network 18

address 20, 63
anonymous 162
capacity 26
point-to-point 48
unnumbered 162

Network Access Point 287
Network Address Port Translation 3%
Network Address Translation 394
network byte order 700
Network File System 507
network interface 184
Network Interface Card 19
network interface layer 185
network layer 182
network management 556, 701

network MTU 102
network security 582
Network Service Access Point 366
network services 5
network standard byte order 74
Network to Network Interface 354
network virtual terminal 486, 488, 502
NETWORLD+INTEROP 15
news traveling 299
next generation 602
NEXT HEADER 585, 606,701
next hop 119, 122, 159,277
NFS 507, 701
NIC 19, 462,701
NIST 701
NLA 701
NNI 354
NOC 39, 701
node 337
Non-Broadcast Multiple-Access 353
non-selfreferential 741
nonauthoritative 473
noncore router 257
nomoutable address 172, 620, 701
notification mechanism 322
notification message 288
NSAP 366, 368,701
NSF 2, 7,40, 701
NSFNET 7, 41,42,701
nslookup 482
ntohl procedure 429
ntohs procedure 429
null 572
number of hops 264, 297
NVT 488, 502,701

0
object identifier 559
OC series standards 701
OC-3 48
octet 30, 702
on-line access 498
one-armed firewall 593
one-armed router 702

Index

open (TCP) 21 8
open message 279
Open SPF protocol 308
open standard 308, 601
open system interconnection 1
open-read-write-close 414
operating system boundary 192
optical fiber 354
options 107, 457,492
Organizationally Unique Identifier 363
oscillation 305
OSI 702
OSPF 293, 308,702

Hello message 3 10
area 309
link status routing 3 13
link status update 3 13
message header 3 10

OUI 363, 702
out of band 492, 544
out of band data 222, 702
outside 589
overlapping segment problem 25 1

P
packet 18, 702
packet delivery service 5
packet filter 578, 590, 702
packet radio 50
packet switching 18
Packet Switching Node 38
PAD 183
page (Web) 528
paradox

see non-selfreferential
parallel subtype (MIME) 524
parameter problem 140
PARC 296
parent domain 472
partial routing information 255
passive 297
passive monitoring 596
passive open 218
password 521

path attributes 282
path message 550
path MTU 223, 607,702
PATRICIA tree 172
PCM 48, 540,702
PDN 46, 702
PDP 550
PDU 567, 702
peer 276
peer backbone networks 260
peering arrangement 46, 702
PEM 703
PEP 551
perimeter security 703
permanent virtual circuit 356
persistent connection 532
PF-DIET 415, 418
physical address 29, 78, 703
physical layer 182
piggybacking 21 1
PIM 343, 344,703
PING 133, 146,398,703
pipe 416
pipeline 532
playback 541
playback point 703
Point to Point Protocol 189
point-to-point network 48, 49, 162, 163,

703
pointer query 478, 479
poison reverse 300, 703
policy 550
policy constraint 282
Policy Decision Point 550
Policy Enforcement Point 55 1
POP 703
POP3 521
port 39, 135,404, 703
PORT command (FTP) 505
port redirection 401
port unreachable 204
positive acknowledgement 21 1, 703
positive feedback cycle 306
Post Office Protocol 521

Index

Postel, Jon 11, 71
POTS 703
PPP 189, 704
pragma 528
preamble 30
preference level 535
prefix extension 380
presentation layer 183
primary address 378
primary server 92
privacy 389, 572,582
private 389, 391
private address 172, 620
private network 389, 390
process 197, 404
promiscuous ARP 150, 704
promiscuous mode 704
proNET 49
proposed standard 626
protocol 3, 704

ARP 77, 85
BGP 276
BOOTP 443
CBT 343
DHCP 443
DVMRP 339
FTP 500
GGP 264
HELLO 293, 305
ICMP 129
IGMP 328
IGP 295
IP 95, 97
IPV4 602
IPV6 602
Internet 95
MOSPF 343, 347
MTP 518
OSPF 293, 308
PIM 343, 344
RARP 89, 90
RIP 293, 296
RTCP 544
RTP 542

SMTP 518
SNMP 556
ST 602
TCP 209, 215
TELNET 486
TFTP 505
UDP 197, 198
application 6, 184
data link 184
datagram 197
internet 184
layering 177, 178, 184
mobile IP 377
neighbor discovery 6 18
network management 556
port 198
reachability 286
standards 12
stream 209

protocol data unit 567
protocol family 177
protocol independence 345
Protocol Independent Mu1 ticast 343
protocol port 216, 243,404, 704
protocol standards 8
protocol suite 177
provider prefix 704
provisioned service 356, 704
proxy 592, 704
proxy ARP 150, 370, 385, 704
proxy server 530, 535, 548
prune 339, 344, 704
pseudo header 200, 224,615,705
pseudo terminal 488
PSN 38, 705
PSTN 546, 705
Public Data Networks 46
public key encryption 705
Public Switched Telephone Network 546
public topology 617
Pulse Code Modulation 48, 540
PUP 705
push 2 1 1, 243,705
PVC 356, 705

Index

Q
Quality Of Service 548, 705

R
RA 287, 705
Random Early Discard 235, 349
range 326
RAFW 89, 90, 142,444,705
RARP server 91
rationalized routing 287
rcp 7
RDP 705
reachability 286, 705
Read Only Memory 89
read request 506
read system call 421
readv system call 421
real-time 540
Real-Time Transport Protocol 542
reassembly 103, 104, 361, 607, 706
reassembly timer 105
Receiver Report message 545
receiver SWS avoidance 246
record route option 109
recursive name resolution 471
recv function 421
recvfrom function 422
recvmsg function 422
RED 235, 349,706
redirect 137, 398, 706
redirect server 548
reference model 18 1, 706
regional network 4 1, 706
registration request 382
relative 529
relay (mail) 5 15
relay agent 45 1
reliable multicast 347, 706
reliable stream service 96
reliable transfer 21 1, 706
remote configuration 572
remote login 4, 486
Remote Procedure Call 508, 591
Rendezvous Point 345

renumbering 620
repeater 3 1, 706
replay 265, 582, 706
Request For Comments 1 1, 623
reserved prefixes 72, 706
reset 241, 706
resolution 706
resolving addresses 78
resolving names 47 1
resource records 476
Resource Reservation Protocol 549
res-init procedure 43 1
res-mkquery procedure 43 1
res-send 431
retransmission 21 1, 212, 225, 226, 265
RETURN 489
revalidation 536
Reverse Address Resolution Protocol 90
Reverse Path Broadcasting 334
Reverse Path Forwarding 161, 334
Reverse Path Multicast 338
RFC 1 1, 623,706
RFC editor 11
RFNM 39
ring network 34
RIP 293, 296,707

default route 302
version 1 300
version 2 303

RTE 707
rlogin 494, 707
ROADS 164, 707
ROM 89
root node 337
round trip time 226, 707
route 63, 137, 707

default 12 1
host-specific 121

route advertisement 264
route aggregation 277, 303, 707
route metric 305
route server 287, 707
route table search 168
routed 296, 340,707

Index

router 56, 57, 115, 118, 137, 707
core 257
designated 309
stub 257

router advertisement 380, 620
router alert 550, 707
router discovery 143, 380
router requirements 708
router solicitation 144, 380,620
routing 97, 1 15

SPF 266
extra hop problem 272
link state 266
size of group 27 1

routing arbiter 287, 708
routing core 256
routing cycle 139
routing hierarchically 153
routing hops 264
routing inconsistencies 257
Routing Information Protocol 296
routing loop 261, 282,708
routing metrics 305
routing peers 260
routing policy 282
routing table 119, 254
routing table search 167
RP 345, 708
RPB 334, 708
RPC 508, 577,591,708
RPF 334, 708
RPM 338, 708
RS 287, 708
RS232 708
rsh 494
RST 708
RSVP 549, 708
RTCP 544, 708
RTO 709
RTP 542, 709
RTP Control Protocol 544
RTT 226, 709
ruptirne 409

S
SA 585, 709
SACK 709
sample round trip time 226
SAR (ATM) 361, 709
scheme 528
scope 326
SDP 548
search algorithm 167
secondary address 378
Secure Sockets Layer 589
security 121, 581,582
security association 585
security parameters index 586
security perimeter 589
segment 219, 221,709
segmentation 361
select function 425
selectable link 528
selective acknowledgement 709
self clocking 248, 709
self-healing 34, 709
self-identifying 167, 277
self-identifying address 65
self-identifying frame 30, 39, 362, 709
send function 420
Sender Report message 545
sender SWS avoidance 248
sendmsg function 420
sendto function 420
sentinel value 532
sequence number 265
Serial Line IP 189
server 90, 403, 446, 710

RARF' 91
example 437
primary 92
time of day 404
web 404, 528

server-driven negotiation 534
serverless autoconfiguration 620
service

connectionless packet delivery 5
reliable stream 5

Index

reliable stream transport 209
unreliable packet delivery 97

SERVICE TYPE 604
Session Description Protocol 548
Session Initiation Protocol 547, 548
session layer 183
setdomainname function 427
sethostent procedure 433
sethostname function 426
semetent procedure 433
setprotoent procedure 434
setservent procedure 435
setsockopt function 423
seven-layer reference model 7 10
SGMP 573, 710
shared 34
shared bus 27
shared tree 344, 7 10
shortest path algorithm 266
Shortest Path First 266
shortest path routing 7 10
shortest path tree 345, 7 10
SIGCOMM 15
signaling 356, 546, 710
Signaling System 7 546
silly window syndrome 246, 710
Simple lP 601
Simple IP Plus 601
Simple Mail Transfer Protocol 5 18
Simple Network Management Proto-

col 556
simplex 550
SIP 547, 548,601,710
SIPP 601, 710
site 616
site-local address 619, 710
size of datagram 102
size of routing group 27 1
slash notation 166
sliding window 213, 219, 710
SLIP 189, 710
sllrp 399
slow convergence 298, 299,7 1 1
slow-start 233, 234, 71 1

small infinity 298
SMDS 362, 71 1
SMI 558, 71 1
SMTP 518, 711
SNA 711
SNAP 363, 71 1
SNMP 556, 577,711
SOA 711
sockaddr 418
socket 7, 415
socket API 7 11
socket function 415
socket interface 14
socket library 44 1
socketpair function 416
soft state 81, 143, 265, 71 1
soft-start 234
Sorcerer's Apprentice Bug 507
source authentication 583
source port 198, 199
source quench 136, 7 12
source route 110, 135, 608, 712
source route option 1 10
source tree 346, 7 12
SP tree 345
span 304
spanning tree 33
sparse mode 344
spatial locality 384
SPF 266, 712
SPI 712
split horizon update 299, 7 12
spoofing 151
spooling 512
SPREAD 295
SS7 546, 712
SSL 589, 712
SSR 712
ST 602
stale 536
standard byte order 74, 712
standard YO 495
standardization 12
standards 6, 48

Index

stateless autoconfiguration 620
states of TCP FSM 242
STD 712
store-and-forward 7 12
stream 5, 210
strict source routing 11 1
Structure of Management Informa-

tion 558
STS standards 48
stub network 594
stub router 257
subnet addressing 67, 152, 713
subnet broadcast 16 1
subnet mask 142, 156, 159,713
subnet routing 152, 158
subnet rule 158
subnetting 152
SubNetwork Attachment Point 363, 7 13
subscriber 617
subtype 523
suite of protocols 177
supernet addressing 164, 713
supernetting 67, 164
SVC 356, 713
Switched Multimegabit Data Service 362
switched virtual circuit 356
SWS 246, 713
SWS avoidance 246
symbol 36
symbol (FDDI) 36
symmetric 493
SYN 238, 241,713
SYNCH 492
synchronization error 279
synchronize 545
system call 414

T
T1 48
T3 45, 713
tag 528
tag switching 372
tail drop 235, 713
tap 21

task 197, 404
TCP 194, 209,215,713

3-way handshake 237
FIN 239
Nagle algorithm 249
RST 241
RTT 226
SYN 238
acknowledgements 225
adaptive retransmission 226, 230
ambiguity of acknowledgements 228
characteristics 210
checksum 224
clumping 248
code bits 222, 241
congestion control 220
~ 0 ~ e c t i o n close 239
connection establishment 237
finite state machine 24 1, 242
flow control 220
full duplex 21 1
graceful shutdown 239
header 221
initial sequence 239
maximum segment 223
out of band data 222
port numbers 216
protocol port 243
pseudo header 224
push 211, 243
reset 241
segment format 22 1
sequence number 219
silly window syndrome (SWS) 246
urgent data 222
window 245
window advertisement 220
zero window 220

TCP protocol 209, 215
TCP/IP 2
TCPIIP Internet Protocol Suite 7 13
TDM 714
TDMA 714
technology independence 5

Index

telephone system 464
TELNET 70, 486,502,577,714

options 492
TERM 495
TFTP 505, 714
thick Ethernet 23
thicknet 23, 714
thin-wire Ethernet 23
thinnet 23, 714
this network 67
three-way handshake 237, 714
threshold 306
time exceeded message 139
time service 406
time to live 106, 139, 189, 325, 326, 340,

473, 587, 604
time-of-day server 404
timed wait state 241
timeout 225, 226, 370
timeout and retransmission 445
timer 81

reassembly 105
timer backoff 229
timestamp 111, 141, 541, 543
TLA 714
TLI 14, 441,442,714
TLV encoding 448, 609, 7 14
tn3270 496, 714
token ring 34, 49, 715
TOP 526
top level aggregation 617
topology 347
TOS 99, 715
TP-4 209, 715
traceroute 146, 7 15
traffic class 604, 7 15
traffic monitor 27 1
traffic policing 549, 715
traffic shaping 550, 715
trailer encapsulation 7 15
transceiver 21, 715
transient multicast group 323
translation 543
Transmission Control Protocol 209, 215

transparent 3 1, 394
transparent access 498
transparent router 149
transparent service 486
transport layer 183, 184
Transport Layer Interface 14, 441
transport service 5
tree 337
triangle forwarding 384
trie 169
triggered updates 300, 715
Trivial File Transfer Protocol 505
TFWB 334, 715
TFWF 334, 715
truncated RPF 334
trusted hosts 486
TTL 106, 326,340,716
tty 488
tunnel 340, 341, 378
tunneling 46, 591, 716
twice NAT 401
twisted pair Ethernet 25, 7 16
two-crossing problem 384
two-stage oscillation 305
type 362, 363
type field 30, 107, 132, 194
type of name 468
Type Of Service 99
type of service routing 309, 716

U
UART 716
UCBCAST 716
UDP 194, 198,716

echo server 404
encapsulation 201
message format 199
port 198
protocol 197
pseudo header 200
semantics 198

unacknowledged packet 2 14
unconnected socket 41 8
UNI 354

Index

unicast 612, 716
unicast address 29, 320
unicast delivery 68
Uniform Resource Identifier 528
Uniform Resource Locator 528
universal assignment 204
universal communication service 63
universal interconnection 5, 55
universal time 112, 406, 716
UNIX 414
unnumbered network 162, 716
unreachable destination 134
unreliable delivery 96, 97, 198, 7 17
unspecified address 6 16
update message 280
urgent data 222, 492,496,717
URI 528, 717
URL 528, 717
URN 717
user agent server 548
user datagram 197, 199,443
User Datagram Protocol 198
user level process 197, 404
User to Network Interface 354
UUCP 518, 717

v
v3MP 568
VAN gateway 47
variable-length subnetting 155, 303, 717
variance 230
vBNS 45, 717
VC 47, 717
vector-distance 262, 717
video 539
view-based access control 572
virtual channel 356
virtual circuit 47, 210,356,717
virtual circuit identifier 357
virtual network 95
virtual path identifier 357
Virtual Private Network 391
VLSM 718
vocodec 540

voice coder / decoder 540
voice over IP 546
VPWCI 357, 718
VPN 389, 391,718

W
w3c.org 15
WAN 19, 718
waveform coder 540
weak authentication 583
weakest link axiom 589
web 4, 404, 528
weighted average 237
well-known address 323
well-known port 204, 243,7 18
whole-file copying 498
wide area network 19
wildcard 424
wildcard receiver 347
WILL (TELNET) 493
window 214, 245,718

congestion 233
window advertisement 220, 7 18
window size 214
Windows Sockets 413
Windows Sockets Interface 14, 718
WINSOCK 413
wireless network 50
working group 10, 718
World Wide Web 4, 12, 527, 718
worm 38, 408
write 248
write request 506
write system call 419
writev system call 419
WWW 527, 718
www.isoc.org 15

X
X 718
X-Window System 719
X.121 47
X.25 40, 46,47, 182,718
X.400 183, 719

Index

X25NET 46, 719
XDR 508, 577,719
Xerox PARC 20
X N S 114

z
zero compression 61 1
zero window 220, 719
zone of authority 481, 719

Fourth EdCtian 1 1 m

VOLUME l

PRINCIPLES, PROTOCOLS, AM) ARCHITECTURES
DOUGLAS E, COMER

ISBN 0-13-OL8380-b

Prentioe Hall
Upper Saddle River, NJ 0'7458
h t t p : / / w w w . ~ . c o m

	Cover
	Contents
	Foreword
	Preface
	Introduction And Overview
	Review Of Underlying Network Technologies
	Internetworking Concept And Architectural Model
	Classful Internet Addresses
	Mapping Internet Addresses To Physical Addresses (ARP)
	Determining An Internet Address At Startup (RA RP)
	Internet Protocol: Connectionless Datagram Delivery
	lnternet Protocol: Routing IP Datagrams
	Internet Protocol: Error And Control Messages (ICMP)
	Classless And Subnet Address Extensions (CIDR)
	Protocol Layering
	User Datagram Protocol (UDP)
	Reliable Stream Transport Service (TCP)
	Routing: Cores, Peers, And Algorithms
	Routing: Exterior Gateway Protocols And Autonomous Systems (BGP)
	Routing: In An Autonomous System (RIP, OSPF, HELLO)
	Internet Multicasting
	TCP/IP Over ATM Networks
	Mobile IP
	Private Network Lnterconnection (NAT, VPN)
	Client-Server Model Of Interaction
	The Socket Interface
	Bootstrap And Autoconfiguration (BOOTP, DHCP)
	The Domain Name System (DNS)
	Applications: Remote Login (TELNET, Rlogin)
	Applications: File Transfer And Access (FTP, TITP, NFS)
	Applications: Electronic Mail (SMTP, POP, IMAP, MIME)
	Applications: World Wide Web (HlTF')
	Applications: Voice And Video Over IP (RTP)
	Applications: Internet Management (SNMP)
	Summary Of Rotocol Dependencies
	Internet Security And Fiewall Design (IPsec)
	The Future Of TCP/IP (IF'v6)
	Appendixes
	A Guide To RFCs
	Glossary of Internetworking Terms and Abbreviations
	Index

	Back Cover

