






























































































































































































































































































































































































































































































































































































































































































































































































































































































































































This Page Intentionally Left Blank



2424

Email and DNS
Under IPv6

This chapter provides step-by-step instructions for setting up DNS services
under IPv6, including setting up BIND, as well as a section detailing the
process of setting up an email server under IPv6.

24.1 Building BIND 9 with OpenSSL Support*

This section explains in detail how to obtain and compile both OpenSSL
and BIND 9 for use with an IPv6 DNS system.

∗This section is adapted from a document written by Robert C. Zilbauer Jr., © Zama
Networks.

449



450 Part Three • IPv6 Practice

24.1.1 GATHERING THE PIECES

Here’s a brief list of what you’ll need for this project.

• The ability to compile binaries from source code. This usually
means a working gcc installation coupled with the necessary
compilation utilities (e.g., make, ld, etc.).

• The ability to uncompress files with gzip.
• The ability to un-bundle file packages with tar.
• The latest version of the Berkeley Internet Name Domain

software (BIND). Currently, this is BIND 9.1.0
(http://www.isc.org/products/BIND/).

• OpenSSL release 0.9.5a or newer (http://www.openssl.org).

24.1.2 BUILDING OPENSSL

Although BIND 9 comes with its own version of SSL (for use with
DNSSEC), that version contains no architecture-dependent optimizations.
By compiling OpenSSL on your own, you’ll be able to take advantage of
assembly code optimizations that can dramatically speed up BIND’s SSL
operations (particularly on Intel and Sparc architectures).

The first thing you need to do is obtain the latest OpenSSL source code.
You can find this code and a great deal of information about OpenSSL
itself at the main OpenSSL Web site (http://www.openssl.org). For use
with BIND 9, you’ll need OpenSSL version 0.9.5a or higher. As just
mentioned, the latest source release of OpenSSL is also available from
http://www.zamanetworks.com.

Like most source packages, OpenSSL comes compressed and bundled into
a tar file. If you’re using the GNU version of tar, you can un-tar the package
at the same time that you’re uncompressing it. The following command
will accomplish this.

% tar fxz openssl-0.9.6.tar.gz

Otherwise, you’ll have to uncompress the package first and then proceed
with the tar command.

% gzip d openssl-0.9.6.tar.gz

% tar fx openssl-0.9.6.tar



Chapter 24 • Email and DNS Under IPv6 451

Once you’ve uncompressed and extracted the source from the tar file,
compiling the code is fairly straightforward. While in the directory created
by un-tarring the source, configure the compilation process by running the
supplied config script.

% cd openssl-0.9.6

% ./config

Once the configure script is finished, type “make” and the compilation of
the source code into usable binaries will begin.

Once the make process is complete, test the resulting libraries and exe-
cutables by doing a make test. Assuming everything goes well, do a make
install and allow OpenSSL to install itself into the default location. This
means that all of your OpenSSL libraries and executables will be found
under /usr/local/ssl.

Building BIND The BIND software is the meat of your new domain
name server. This is the software that will be responding to DNS queries.
Not only will it supply DNS information about your domain to external
parties, but it will also resolve DNS information about external domains
for you.

The first step is obtaining the source code. Currently, the package you
want to use is BIND Version 9.1.0 or later. You can get this from the Internet
Software Consortium’s Web site (http://www.isc.org/products/BIND/).
Just download the file and uncompress/un-tar it as you did with the
OpenSSL software.

Once the source has been un-tarred, cd into the newly created directory and
begin configuring the source for compilation. You want to make sure BIND
uses the OpenSSL libraries you compiled earlier, so begin the configuration
with the following command.

% cd bind-9.1.0

% ./configure with-openssl=/usr/local/ssl

The configure script will now check your system for the elements
required to build BIND and incorporate your previously compiled
OpenSSL libraries.

Once the configure script is done, type make. This will start the compil-
ation process. Assuming everything compiles correctly (i.e., you don’t get



452 Part Three • IPv6 Practice

any fatal errors), you should do a make check to run through the first part
of the collection of test scripts that come with BIND. Check the output of
these tests, and make sure there aren’t any grievous errors. Toward the
end of the testing, you’ll get a number of errors regarding unconfigured
interfaces, but you can ignore those. We’ll deal with them next.

As a matter of fact, we’ll deal with them now. If you’ve seen the uncon-
figured interface errors, your make check is probably finished. To run
through the rest of the tests, you’ll have to set up a bunch of virtual inter-
faces for the test scripts to use. Fortunately, the BIND installation comes
with a script made to do just that. The script, ifconfig.sh, can be found in
bin/tests/system/ from the top of the BIND 9 source tree. You may want
to cd into that directory for the next few steps.

% cd bin/tests/system/

Unfortunately, as of BIND Version 9.1.1rc2, the ifconfig.sh script doesn’t
work at all for the Intel version of Solaris 8 and doesn’t work completely
for the Sun version of Solaris 8. The code maintainers have been notified,
but just in case you’re using unfixed code, you should be able to use the
following script.

#!/bin/sh

#

# Copyright (C) 2000, 2001 Internet Software Consortium.

#

# Permission to use, copy, modify, and distribute this software for any

# purpose with or without fee is hereby granted, provided that the above

# copyright notice and this permission notice appear in all copies.

#

# THE SOFTWARE IS PROVIDED “AS IS” AND INTERNET SOFTWARE CONSORTIUM

# DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL

# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL

# INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT,

# INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

# FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

# NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION

# WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.



Chapter 24 • Email and DNS Under IPv6 453

# $Id: ifconfig.sh,v 1.25.4.1 2001/01/09 22:34:37 bwelling Exp $

#

# Set up interface aliases for bind9 system tests.

#

# If running on hp-ux, don’t even try to run config.guess.

# It will try to create a temporary file in the current directory,

# which fails when running as root with the current directory

# on a NFS mounted disk.

case ‘uname -a‘ in

*HP-UX*) sys=hpux ;;

*) sys=‘../../../config.guess‘ ;;

esac

case “$1” in

start|up)

for ns in 1 2 3 4 5

do

case “$sys” in

*-pc-solaris2.8)

ifconfig lo0:$ns plumb

ifconfig lo0:$ns 10.53.0.$ns up

;;

*-sun-solaris2.8)

ifconfig lo0:$ns plumb

ifconfig lo0:$ns 10.53.0.$ns up

;;

*)

echo “Don’t know how to set up interface.

Giving up.”

exit 1

esac

done

;;

stop|down)



454 Part Three • IPv6 Practice

for ns in 5 4 3 2 1

do

case “$sys” in

*-pc-solaris2.8)

ifconfig lo0:$ns 10.53.0.$ns down

ifconfig lo0:$ns 10.53.0.$ns unplumb

;;

*-sun-solaris2.8)

ifconfig lo0:$ns 10.53.0.$ns down

ifconfig lo0:$ns 10.53.0.$ns unplumb

;; *)

echo “Don’t know how to destroy interface.

Giving up.”

exit 1

esac

done

;;

*)

echo “Usage: $0 { up | down }”

exit 1

esac

The preceding script is a stripped-down version of BIND’s ifconfig.sh
script. I’ve eliminated everything not pertaining to Solaris 8 and fixed
the “down” section to properly unplumb the interfaces when you’re done
with them.

Armed with the proper ifconfig.sh script, you’re ready to finish up with
BIND’s automated tests. First, run the script with the up argument.
This will set up the required virtual interfaces BIND will use during the
tests.

% ./ifconfig.sh up

Now, do a make test to run through the remaining tests. Once the tests
have completed successfully, you’ll want to clean up the virtual interfaces



Chapter 24 • Email and DNS Under IPv6 455

used in the tests. The same script will do this. Just give it the down
argument instead of up.

% ./ifconfig.sh down

Finally, your newly built BIND package has been tested and is ready
for installation. Move up to the top of the BIND source tree (assuming
you dropped into the bin/tests/system directory) and issue the install
command.

% cd ../../..

% make install

Several BIND executables will be installed in /usr/local/bin. The name
server binary itself, named, will be installed in /usr/local/sbin, and
several name server-related libraries will be put in /usr/local/lib. All
that’s left to do now is configure your new name server.

24.2 Configuring an IPv4/IPv6 DNS**

This section explains in detail how to configure BIND 9 for use as an
IPv4/IPv6 domain name server. Configuration details will be given for
both a master (primary) and a slave (secondary) server. In addition,
example configuration files and a current root server list will be included
at the end of this document.

24.2.1 GATHERING THE PIECES

Here’s a brief list of what you’ll need for this project.

• A working Solaris 8 (either Intel or Sun) machine for each
server (master and slave).

• Both machines should have a correctly configured IPv4
interface.

• Both machines should have a properly configured IPv6
interface. It is recommended that both machines be configured
with a static IPv6 address.

∗∗This section is adapted from a document written by Robert C. Zilbauer Jr., © Zama
Networks.



456 Part Three • IPv6 Practice

• The servers should also have the OpenSSL and BIND 9
packages compiled and installed on them.

24.2.2 CONFIGURING YOUR MASTER DNS

Once the preceding groundwork has been completed, you can move right
into configuring your new DNS machines. By default BIND will look for its
configuration file, named.conf, in /etc. A sample named.conf file has been
included at the end of this document for your convenience. However, in the
following section, we’ll go over some of the highpoints of the configuration
file and explain why they’re in there.

All of the information that BIND will serve as your DNS (a.k.a., your
zone records) can be kept anywhere you’d like. In this case, we’ll create
a directory, /var/named and instruct BIND to look there for its zone
records. Also, we need to explicitly tell BIND to answer IPv6 queries.
All of these things are done at the top of the named.conf file in an options
section like this.

options

{

listen-on-v6

{

any;

};

directory “/var/named”;

notify yes;

provide-ixfr yes;

};

The first line of the options section tells BIND to listen for IPv6 queries.
The directory option tells it where to find its zone records. The notify and
provide-ixfr options begin to define the relationship of your primary (or
master) DNS with your secondary (or slave) DNS. The notify line says
your master DNS should send notification to its slaves when a record has
been updated, and the provide-ixfr option allows your slaves to request
incremental updates (i.e., only the parts of the records that have been
changed).



Chapter 24 • Email and DNS Under IPv6 457

Make sure you have at least the default logging enabled. The following
will allow BIND to send messages through syslog, which (usually) end up
in your /var/adm/messages file.

logging

{

category “default”

{

“default_syslog”;

“default_debug”;

};

};

Next, you must tell your name server where to look for root zone infor-
mation. This is done with the root.hint file (the current version of which
is included at the end of this document) and the following section in your
named.conf file.

zone “.”

{

type hint;

file “root.hint”;

};

Now you’ll need to start adding records for your DNS to serve. We’ll start
with the loopback addresses of your DNS.

zone “localhost”

{

type master;

file “db.localhost”;

};

zone “0.0.127.in-addr.arpa”

{

type master;

file “db.127.0.0”;

notify no;

};



458 Part Three • IPv6 Practice

The config file definitions indicate that your forward localhost records can
be found in a file named db.localhost and your reverse localhost records
can be found in db.127.0.0. We’ll describe the contents of these and the rest
of your zone files later on in this paper. For now, just assume that the file
names are correct and that they’ll be there when we need them.

Since this is an IPv6 DNS, we’ll need the IPv6 equivalent of the preceding
files. So add the following lines to your config file for your IPv6 localhost
lookups (only reverse is needed in this section; your forward IPv6 localhost
lookups will be handled by the db.localhost file we defined earlier).

zone “0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int”

{

type master;

file “db.0000:0000:0000:0000.ip6.int”;

notify no;

};

zone “\[x0000000000000000/64].ip6.arpa”

{

type master;

file “db.0000:0000:0000:0000.ip6.arpa”;

notify no;

};

Officially, the ip6.int format (also known as “nibble format”) is deprecated.
However, it is still in use for compatibility with existing IPv6 applications.

Now identify the file name and other properties for your domain’s zone
records. For simplicity, we’ll assume we’re only setting up our DNS to
answer queries for one (creatively named) domain, “mydomain.com.”

zone “mydomain.com“

{

type master;

file “db.mydomain.com“;

notify yes;

allow-transfer

{



Chapter 24 • Email and DNS Under IPv6 459

192.168.25.4;

};

};

Before going into further explanation, let’s add in the reverse lookups
for our IPv6 network. This document assumes that your IPv4 reverse
DNS lookups are being handled by whoever gave you your addresses,
so we won’t be dealing with those. For our purposes, we’ll use an IPv6
network beginning with 3ffe:80f0:1:1:… Notice that we’re using both the
“bitstring“ format as well as the deprecated nibble format.

zone “\[x3ffe80f000010001/64].ip6.arpa“

{

type master;

file “db.3ffe:80f0:0001:0001.ip6.arpa“;

notify yes;

allow-transfer

{

192.168.25.4;

};

};

zone “1.0.0.0.1.0.0.0.0.f.0.8.e.f.f.3.ip6.int“

{

type master;

file “db.3ffe:80f0:0001:0001.ip6.int“;

notify yes;

allow-transfer

{

192.168.25.4;

};

};

If you take a look at the three zone definitions you’ve just created, you’ll
notice they all have several things in common. Since this is going to be your



460 Part Three • IPv6 Practice

primary (or “master“) DNS, each zone definition starts by indicating that
this machine holds the master records for that zone (type master). Next,
you’ve defined the name of the file in which the zone records will be kept.
The notify yes line indicates that your master DNS should notify its slave
DNS whenever records are updated within the given zone. And, last, the
allow-transfer definition tells your server which machine is allowed to do
zone transfers. This should be the IP address of your slave DNS.

24.2.3 CONFIGURING YOUR “localhost“ ZONE

Now that your named.conf file is complete, it’s time to start creating your
zone files. Drop down into the directory you specified in your named.conf
file as having your zone information. If you set up your named.conf file
just like our examples, that would be /var/named.

The first two files you’ll create are to facilitate lookups of your localhost.
The info for your specific machine will (more than likely) be identical to
what you see here. First, we handle the forward lookups (both IPv4 and
IPv6) for your localhost. Create the db.localhost file and fill it with the
following.

$ORIGIN localhost.

@ 4h IN SOA ns1.mydomain.com. dns.mydomain.com. (

2001012501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

;

IN NS ns1.mydomain.com.

IN NS ns2.mydomain.com.

;

$TTL 1h

;

localhost IN A 172.0.0.1

IN AAAA 0000:0000:0000:0000:0000:0000:0000:0001

IN A6 0 0000:0000:0000:0000:0000:0000:0000:0001



Chapter 24 • Email and DNS Under IPv6 461

At this point, we’ll go over some of the key elements to be aware of in
this file (as well as the other files you’ll be creating). You’ll notice the SOA
indicator toward the top of the file. This stands for Start Of Authority. The
machine name immediately following the SOA indicates the name of the
machine, which should be considered “authoritative” for the information
within the zone file. In all cases on your master DNS, this will be the
name of your master DNS machine. The next element of the SOA line,
“dns.mydomain.com,” is actually the email address of the maintainer of
the zone records. While it’s written with periods as punctuation, it means
dns@mydomain.com is the email address of the maintainer of the records
within this zone file. This, too, will likely be the same throughout all of
your zone files.

While we won’t be going over all of the numbers within the parenthesized
section of the SOA record, we will discuss one of them. Whenever you
make updates to your zone records, you should adjust the serial number
accordingly. As a general rule of thumb, use the current date as your serial
number. Since you may be making more than one change to your files
on a particular day, add a two-digit revision number to the end of the
date. For example, the first change you make on March 23, 2001, would
have a serial number of “2001032301” (YYYYMMDDRR, where RR is the
double-digit revision number). Consequently, when you make the second
change to the file on the same day, you’d change the serial number to
“2001032302.”

The reason for this has to do with the interaction between your master
DNS and your slave DNS. In order for your slave DNS to know that there
are new changes it needs to download from the master, the serial number
must be incremented. If you’ve made changes to your master DNS and
expect to see the changes propagate to your slave DNS but they don’t, one
of the first things you should check is your serial number on the master
DNS. If you haven’t incremented the serial number, the changes won’t be
reflected in your slave DNS’s records.

For an explanation of the other numbers within the SOA block
(e.g., refresh, retry, etc.), see the BIND 9 Administrator Reference Manual.
This manual is available in PDF format from Nominum, Inc. (http://
www.nominum.com).

The IN NS records define the name servers responsible for this zone.
Chances are good that these lines will also be the same across all of your
zone files.



462 Part Three • IPv6 Practice

Last, the entry beginning with “localhost” starts the actual localhost DNS
information. In your forward lookup files, you will be defining the IPv4
address (the A record) as well as the IPv6 address. In the case of IPv6
forward lookups (just like with IPv6 reverse lookups), there are two
address formats: the deprecated “quad-A” record (AAAA) and the A6
record. Both are used for compatibility reasons.

The IPv4 reverse lookup file for your localhost zone is much simpler. You’ll
notice that it contains a lot of the same information as the forward lookup
zone. Create the file db.127.0.0 in your /var/named directory, and give it
the following contents.

$ORIGIN 0.0.127.in-addr.arpa.

@ 4h IN SOA ns1.mydomain.com. dns.mydomain.com. (

2001012501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

;

IN NS ns1.mydomain.com.

IN NS ns2.mydomain.com.

;

$TTL 1h

;

1 IN PTR localhost.

The only thing different in this file is the actual zone data. The PTR record
maps 127.0.0.1 to the name “localhost.”

Now on to something a little more complicated: IPv6 reverse lookups
for localhost. Remember that IPv6 reverse lookups (like forward
lookups) have two formats that are both currently in use. We’ll start
with the older, nibble format. Create a new file in your /var/named
directory named db.0000:0000:0000:0000.ip6.int with the following
contents.



Chapter 24 • Email and DNS Under IPv6 463

$ORIGIN 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int.

@ 4h IN SOA ns1.mydomain.com. dns.mydomain.com. (

2001012501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

;

IN NS ns1.mydomain.com.

IN NS ns2.mydomain.com.

;

$TTL 1h

;

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR localhost.

And then put the same information in the newer bitstring format. Create
another file in /var/named with the name db.0000:0000:0000:0000.ip6.arpa
containing this.

$ORIGIN \[x0000000000000000/64].ip6.arpa.

@ 4h IN SOA ns1.mydomain.com. dns.mydomain.com. (

2001012501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

;

IN NS ns1.mydomain.com.

IN NS ns2.mydomain.com.

;

$TTL 1h

;

\[x0000000000000001/64] IN PTR localhost.



464 Part Three • IPv6 Practice

Both of these files are there for the same function: to map the IPv6
localhost address, 0000:0000:0000:0000:0000:0000:0000:0001, to the name
“localhost.”

24.2.4 CONFIGURING FORWARD AND REVERSE DNS LOOKUPS

Now that you’ve configured your localhost records, you’re ready to set
up the forward lookups for your domain, mydomain.com. Create a file in
/var/named called db.mydomain.com with the following contents.

$ORIGIN mydomain.com.

@ 4h IN SOA ns1.mydomain.com. dns.mydomain.com. (

2001021501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

;

IN NS ns1.mydomain.com.

IN NS ns2.mydomain.com.

;

$TTL 1h

;

The rest of the file should be filled in with your domain information. First
of all, you should add IPv4 and IPv6 entries for your master and slave DNS
machines (ns1.mydomain.com and ns2.mydomain.com). Be sure to define
your IPv6 addresses using both the older AAAA record type and the A6
record type. When you’re done with that, your file will look something
like this.

ns1 IN A 192.168.25.5

IN AAAA 3ffe:80f0:1:1:201:2ff:fe00:2112

IN A6 0 3ffe:80f0:1:1:201:2ff:fe00:2112



Chapter 24 • Email and DNS Under IPv6 465

ns2 IN A 192.168.25.4

IN AAAA 3ffe:80f0:1:1:201:2ff:fe00:2111

IN A6 0 3ffe:80f0:1:1:201:2ff:fe00:2111

Now add entries for any other machines for which you’d like to have
DNS entries. Let’s say, for example, you want a Web server to answer
at www.mydomain.com. Its DNS entry in this file would look something
like this.

www IN A 192.168.25.7

IN AAAA 3ffe:80f0:1:1:201:2ff:fee8:efa1

IN A6 0 3ffe:80f0:1:1:201:2ff:fee8:efa1

The last thing to do is to configure the reverse lookups for your IPv6 net-
work. Again, you should create two reverse lookup zone files: one for
nibble format and one for bitstring format. First the nibble format. Create
a file in /var/named called db.3ffe:80f0:0001:0001.ip6.int. Its contents will
look something like this.

$ORIGIN 1.0.0.0.1.0.0.0.0.f.0.8.e.f.f.3.ip6.int.

@ 4h IN SOA ns1.mydomain.com. dns.mydomain.com. (

2001020201 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

;

IN NS ns1.mydomain.com.

IN NS ns2.mydomain.com.

;

$TTL 1h

;

1.1.1.2.0.0.e.f.f.f.2.0.1.0.2.0

IN PTR ns2.mydomain.com.

2.1.1.2.0.0.e.f.f.f.2.0.1.0.2.0



466 Part Three • IPv6 Practice

IN PTR ns1.mydomain.com.

1.a.f.e.8.e.e.f.f.f.2.0.1.0.2.0

IN PTR www.mydomain.com.

And, finally, create a file in /var/named called db.3ffe:80f0:0001:0001.
ip6.arpa. This file will contain the reverse DNS information for your IPv6
network in bitstring format. Much like the preceding file, your bitstring
reverse DNS file will look something like this.

$ORIGIN \[x3ffe80f000010001/64].ip6.arpa.

@ 4h IN SOA ns1.mydomain.com. dns.mydomain.com. (

2001020201 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

;

IN NS ns1.mydomain.com.

IN NS ns2.mydomain.com.

;

$TTL 1h

;

\[x020102fffe002111/64]

IN PTR ns2.mydomain.com.

\[x020102fffe002112/64]

IN PTR ns1.mydomain.com.

\[x020102fffee8efa1/64]

IN PTR www.mydomain.com.

24.2.5 STARTING AND TESTING YOUR MASTER DNS

If you’ve gotten this far, you should have the following configuration files
ready to go.

• The BIND configuration file itself: /etc/named.conf
• localhost forward lookups: /var/named/db.localhost



Chapter 24 • Email and DNS Under IPv6 467

• localhost IPv4 reverse lookups: /var/named/db.127.0.0
• localhost IPv6 reverse lookups (nibble format):

/var/named/ db.0000:0000:0000:0000.ip6.int
• localhost IPv6 reverse lookups (bitstring format):

/var/named/ db.0000:0000:0000:0000.ip6.arpa
• mydomain.com forward lookups:

/var/named/db.mydomain.com
• IPv6 reverse lookups (nibble format):

/var/named/db.3ffe:80f0:0001:0001.ip6.int
• IPv6 reverse lookups (bitstring format):

/var/named/db.3ffe:80f0:0001:0001.ip6.arpa
• The root zone information file: /var/named/root.hint (see the

end of this document)

Starting up the named process is as simple as typing in the name of the
executable on the command line as root.

ns1# /usr/local/sbin/named

The named process will automatically look for its configuration file in
/etc/named.conf and then load all of the zone files you’ve specified.
Wait a few seconds for named to initialize itself and then check
/var/adm/messages for any error messages. Assuming all looks good,
you’re ready to do some testing.

You can do some initial testing on the name server machine itself using
the host command that comes with BIND 9. The host command takes the
following arguments: options, item to lookup, and name server to use.
Using the -a option with host will show you all of the information your
new name server returns in response to a particular query. For example,
to test your IPv6 lookups you would use the following command.

ns1# host -

a www.mydomain.com 3ffe:80f0:1:1:201:2ff:fe00:2112

That command will return something similar to the following.

Trying “www.mydomain.com.”

Using domain server:

Name: 3ffe:80f0:1:1:201:2ff:fe00:2112

Address: 3ffe:80f0:1:1:201:2ff:fe00:2112#53



468 Part Three • IPv6 Practice

Aliases:

;;

-> >HEADER< <- opcode: QUERY, status: NOERROR, id: 54299

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 6

;; QUESTION SECTION: ;www.mydomain.com. IN ANY

;; ANSWER SECTION: www.mydomain.com.

3600 IN A 192.168.25.7 www.mydomain.com.

3600 IN AAAA 3ffe:80f0:10:1:201:2ff:fee8:efa1 www.mydomain.com.

3600 IN A6 0 3ffe:80f0:10:1:201:2ff:fee8:efa1

;; AUTHORITY SECTION:

mydomain.com. 14400 IN NS ns2.mydomain.com.

mydomain.com. 14400 IN NS ns1.mydomain.com.

;; ADDITIONAL SECTION:

ns1.mydomain.com. 3600 IN A 192.168.25.5

ns1.mydomain.com. 3600 IN A6 0 3ffe:80f0:1:1:201:2ff:fe00:2112

ns1.mydomain.com. 3600 IN AAAA 3ffe:80f0:1:1:201:2ff:fe00:2112

ns2.mydomain.com. 3600 IN A 192.168.25.4

ns2.mydomain.com. 3600 IN A6 0 3ffe:80f0:1:1:201:2ff:fe00:2111

ns2.mydomain.com. 3600 IN AAAA 3ffe:80f0:1:1:201:2ff:fe00:2111

Received 293 bytes from 3ffe:80f0:1:1:201:2ff:fe00:2112#53 in 3 ms

At the top of the output you’ll see the IP address and port of the name server
that host is using to look up the information. In this case the IP address
is the IPv6 address you specified—3ffe:80f0:1:1:201:2ff:fe00:2112—and the
port is the standard DNS port—53. The rest of the information shows you
all of the records your new name server can return for that machine name.

Similar tests can be performed for the other machines you’ve defined. Also,
you can (and should) test the reverse lookups for your machines as well.
To test the IPv4 forward lookup for www.mydomain.com, you would use
the IPv4 address of your new name server in the host command.

ns1# host a www.mydomain.com 192.168.25.5

To do a reverse lookup on the IPv6 address of www.mydomain.com, you
would just specify its IP address in place of the machine name in the host
command.



Chapter 24 • Email and DNS Under IPv6 469

ns1# host -

a 3ffe:80f0:10:1:201:2ff:fee8:efa1 3ffe:80f0:1:1:201:2ff:fe00:2112

You can do similar tests from a separate machine. If that machine also
has BIND9 installed, you can use the same exact host commands for
your testing. Otherwise, you can use the standard nslookup command
to do some rudimentary testing from a remote machine. I say rudimentary
because nslookup won’t generally understand IPv6 addresses. However,
you can make sure your new DNS responds with IPv6 addresses from an
IPv4 query. That’s still a good sign you’re set up correctly.

First, get into the nslookup command interpreter by typing nslookup at
a prompt. Now, point nslookup at your new name server with the server
<ip address> command. The next step is to tell nslookup to show you all
the records it can by issuing a set type=any command. Now just type in
the machine you want to test.

A test for www.mydomain.com with nslookup against your new name
server will look something like this.

remotemachine.com> nslookup

Default Server: ns1.remotemachine.com Address: 216.65.257.1

> server 192.168.25.5

Default Server: [192.168.25.5]

Address: 192.168.25.5

> set type=any

> www.mydomain.com.

Server: [192.168.25.5]

Address: 192.168.25.5

www.mydomain.com

internet address = 192.168.25.7 www.mydomain.com

IPv6 address = 3ffe:80f0:10:1:201:2ff:fee8:efa1

www.mydomain.com

record type 38, interpreted as: www.mydomain.com.

3600 IN 38 ?38? mydomain.com

nameserver = ns2.mydomain.com mydomain.com

nameserver = ns1.mydomain.com ns1.mydomain.com



470 Part Three • IPv6 Practice

internet address = 192.168.25.5 ns1.mydomain.com

record type 38, interpreted as: ns1.mydomain.com.

3600 IN 38 ?38? ns1.mydomain.com

IPv6 address = 3ffe:80f0:1:1:201:2ff:fe00:2112

ns2.mydomain.com

internet address = 192.168.25.4 ns2.mydomain.com

record type 38, interpreted as: ns2.mydomain.com.

3600 IN 38 ?38? ns2.mydomain.com

IPv6 address = 3ffe:80f0:1:1:201:2ff:fe00:2111

You’ll notice in this output that the newer IPv6 record type, A6, is not
understood. However, the IPv6 address comes through via the older
AAAA record format.

You’ve now tested your master DNS both locally and remotely. Since
I’m sure there’s no chance of anything going wrong, you now have
a working master domain name server capable of serving both IPv4 and
IPv6 addresses. You’re done!

24.2.6 CONFIGURING YOUR SLAVE DNS

Make that you’re done unless you want to set up another machine as your
slave DNS (a machine to answer DNS queries in case your master server is
down or otherwise unavailable). The initial setup of the slave DNS machine
will be identical to that of the master DNS machine. Check through the
“Gathering the Pieces” section, and make sure the machine you want to
use as your slave DNS meets all of the prerequisites. After that section is
where things start to diverge.

You should still create a directory for your zone records as you did with
the master DNS. Putting it in the same place, /var/named, is always
a good idea. You should also copy over the root.hint file from your primary
DNS into the /var/named directory of your new secondary DNS. Both the
master and the slave need that file.

While you’re copying files over, you may want to copy over the four
files responsible for the localhost lookups. Although this machine is
a slave DNS, it’s still in charge of its own localhost lookups. The files
you want are db.localhost, db.127.0.0.0, db.0000:0000:0000:0000.ip6.int,
and db.0000:0000:0000:0000.ip6.arpa. The only change you should make
to these files is in the SOA line at the top. In each of these four files, change



Chapter 24 • Email and DNS Under IPv6 471

the ns1.mydomain.com entry (immediately following the SOA element) to
ns2.mydomain.com.

The rest of the files in /var/named on your slave DNS machine will be
created automatically, however. So the only other file you need to change
is the main BIND configuration file, /etc/named.conf.

The options section of the configuration file is different on a slave DNS
machine. Basically, it doesn’t need any of the options regarding zone
transfers or slave notification. So the modified options section would look
like this.

options

{

listen-on-v6 {

any;

};

directory “/var/named”;

};

All of the following sections of the /etc/named.conf file on your slave DNS
system will be identical to those on your master DNS machine.

• The “.” zone section (which indicates the name of the root.hint
file)

• The logging section
• The localhost zone (for forward localhost lookups)
• The zone responsible for reverse IPv4 localhost lookups
• The two zones responsible for reverse IPv6 localhost lookups

(both the nibble and bitstring formats)

You can copy and paste those elements from your master DNS machine’s
/etc/named.conf file into your slave’s. That sets up all of the basic BIND
elements you need. Now, it’s just a matter of setting up slave zones for the
forward and reverse lookups of mydomain.com.

To do that, just add three zone definitions to your /etc/named.conf file.
They will look similar to the following.

zone “mydomain.com”

{

type slave;



472 Part Three • IPv6 Practice

file “bk.mydomain.com”;

masters

{

192.168.25.5;

};

};

zone “\[x3ffe80f000010001/64].ip6.arpa”

{

type slave;

file “bk.3ffe:80f0:0001:0001.ip6.arpa”;

masters

{

192.168.25.5;

};

};

zone “1.0.0.0.1.0.0.0.0.f.0.8.e.f.f.3.ip6.int”

{

type slave;

file “bk.3ffe:80f0:0001:0001.ip6.int”;

masters

{

192.168.25.5;

};

};

The first one handles the forward lookups for mydomain.com, while the
last two take care of the different formats of IPv6 reverse lookups. In each
case, the type is set to slave, which indicates that this server should rely
on another for its information about these zones. The file is where it will
save that information once it is obtained, and the masters section tells it
from which machine it should get that information. The IP address in that
masters sections should be the IP address of your master DNS.

Now start the name server process (named) as root just like you did on
your master DNS.

ns1# /usr/local/sbin/named



Chapter 24 • Email and DNS Under IPv6 473

After a few moments of initialization, you should see the three bk.* files
show up in /var/named. Once they’re in there, you can run some DNS
query tests using the host command as you did with your master server.
Just use the address of your slave server instead of the one for your master.

The final thing you should test is a zone transfer. Go over to your master
server and make a change to one of your zone files. For example, add a test
machine entry to db.mydomain.com. Important: Make sure you increment
the serial number at the top of the file or the slave won’t know the contents
have changed.

Once you’ve made the appropriate changes, send the named process on
your master server a HUP signal. This tells named to reread its configura-
tion files. First, determine what process ID the named process is running
under. Then send that process ID the HUP signal.

ns1:/var/named# ps -ef | grep named

root 164 1 0 Feb 05 ? 0:08 /usr/local/sbin/named

ns1:/var/named# kill -HUP 164

Shortly after sending the HUP signal, you should see the changes
propagate over to the appropriate bk.* file on your slave server. In this
case, since we made the change to db.mydomain.com, you’ll see the
change reflected in bk.mydomain.com.

Now that you know your secondary server is correctly responding to
queries and correctly handling zone transfers, you can pat yourself on
the back. You’ve successfully set up an IPv6 capable master/slave DNS
system!

24.2.7 EXAMPLE named.conf OPTIONS

Example named.conf (master) options

{

listen-on-v6

{

any;

};



474 Part Three • IPv6 Practice

directory “/var/named”;

notify yes;

provide-ixfr yes;

};

logging

{

category “default”

{

“default_syslog”;

“default_debug”;

};

};

zone “.”

{

type hint;

file “root.hint”;

};

// IPv4 localhost and localhost reverse. zone “localhost”

{

type master;

file “db.localhost”;

};

zone “0.0.127.in-addr.arpa”

{

type master;

file “db.127.0.0”;

notify no;

};

// IPv6 localhost and localhost reverse.

// .ip6.int is deprecated but kept for compatibility for now.

zone “0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int“

{

type master;



Chapter 24 • Email and DNS Under IPv6 475

file “db.0000:0000:0000:0000.ip6.int”;

notify no;

};

zone “\[x0000000000000000/64].ip6.arpa”

{

type master;

file “db.0000:0000:0000:0000.ip6.arpa”;

notify no;

};

zone “mydomain.com”

{

type master;

file “db.mydomain.com”;

notify yes;

allow-transfer

{

192.168.25.4;

};

};

// Reverse lookups for 3ffe:80f0:0001:0001:

// ... zone “\[x3ffe80f000010001/64].ip6.arpa”

{

type master;

file “db.3ffe:80f0:0001:0001.ip6.arpa”;

notify yes;

allow-transfer

{

192.168.25.4;

};

};

zone “1.0.0.0.1.0.0.0.0.f.0.8.e.f.f.3.ip6.int”

{

type master;

file “db.3ffe:80f0:0001:0001.ip6.int”;



476 Part Three • IPv6 Practice

notify yes;

allow-transfer

{

192.168.25.4;

};

};

Example named.conf (slave) options

{

listen-on-v6

{

any;

};

directory “/var/named”;

};

logging

{

category “default”

{ “default_syslog“; “default_debug”;

};

};

zone “.“

{

type hint;

file “root.hint”;

};

// IPv4 localhost and localhost reverse.

zone “localhost“

{

type master;

file “db.localhost”;

};



Chapter 24 • Email and DNS Under IPv6 477

zone “0.0.127.in-addr.arpa”

{

type master;

file “db.127.0.0”;

notify no;

};

// IPv6 localhost and localhost reverse.

// .ip6.int is deprecated but kept for

// compatibility for now.

zone “0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int”

{

type master;

file “db.0000:0000:0000:0000.ip6.int”;

notify no;

};

zone “\[x0000000000000000/64].ip6.arpa”

{

type master;

file “db.0000:0000:0000:0000.ip6.arpa”;

notify no;

};

zone “mydomain.com”

{

type slave;

file “bk.mydomain.com”;

masters

{

192.168.25.5;

};

};

// Reverse lookups for 3ffe:80f0:0001:0001:...

zone “\[x3ffe80f000010001/64].ip6.arpa”

{

type slave;

file “bk.3ffe:80f0:0001:0001.ip6.arpa”;

masters



478 Part Three • IPv6 Practice

{

192.168.25.5;

};

};

zone “1.0.0.0.1.0.0.0.0.f.0.8.e.f.f.3.ip6.int”

{

type slave;

file “bk.3ffe:80f0:0001:0001.ip6.int”;

masters

{

192.168.25.5;

};

};

Current root.hint file

; This file holds the information on root name servers needed to

; initialize cache of Internet domain name servers

; (e.g. reference this file in the “cache . <file>”

; configuration file of BIND domain name servers).

;

; This file is made available by InterNIC registration services

; under anonymous FTP as

; file /domain/named.root

; on server FTP.RS.INTERNIC.NET

; -OR- under Gopher at RS.INTERNIC.NET

; under menu InterNIC Registration Services (NSI)

; submenu InterNIC Registration Archives

; file named.root

;

; last update: Aug 22, 1997

; related version of root zone: 1997082200

;

;



Chapter 24 • Email and DNS Under IPv6 479

; formerly NS.INTERNIC.NET

;

. 3600000 IN NS A.ROOT-SERVERS.NET.

A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

;

; formerly NS1.ISI.EDU

;

. 3600000 NS B.ROOT-SERVERS.NET.

B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

;

; formerly C.PSI.NET

;

. 3600000 NS C.ROOT-SERVERS.NET.

C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12

;

; formerly TERP.UMD.EDU

;

. 3600000 NS D.ROOT-SERVERS.NET.

D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90

;

; formerly NS.NASA.GOV

;

. 3600000 NS E.ROOT-SERVERS.NET.

E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10

;

; formerly NS.ISC.ORG

;

. 3600000 NS F.ROOT-SERVERS.NET.

F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241

;

; formerly NS.NIC.DDN.MIL

;

. 3600000 NS G.ROOT-SERVERS.NET.



480 Part Three • IPv6 Practice

G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4

;

; formerly AOS.ARL.ARMY.MIL

;

. 3600000 NS H.ROOT-SERVERS.NET.

H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53

;

; formerly NIC.NORDU.NET

;

. 3600000 NS I.ROOT-SERVERS.NET.

I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17

;

; temporarily housed at NSI (InterNIC)

;

. 3600000 NS J.ROOT-SERVERS.NET.

J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10

;

; housed in LINX, operated by RIPE NCC

;

. 3600000 NS K.ROOT-SERVERS.NET.

K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129

;

; temporarily housed at ISI (IANA)

;

. 3600000 NS L.ROOT-SERVERS.NET.

L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12

;

; housed in Japan, operated by WIDE

;

. 3600000 NS M.ROOT-SERVERS.NET.

M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33

; End of File



Chapter 24 • Email and DNS Under IPv6 481

24.3 Designing and Implementing an IPv6 Email Server

This section explains in detail how to configure and install an IPv6-capable
email server using Courier Mail Server.

24.3.1 GATHERING THE PIECES

Here’s a brief list of what you’ll need for this project.

• A working FreeBSD 4.2 machine (Intel) that is configured
for IPv6

• db or gdbm (can be found on FreeBSD in /usr/ports/
databases/)

• gcc 2.91 or higher (available from ftp://ftp.gnu.org/gnu/gcc/)
• gmake (can be found on FreeBSD in /usr/ports/devel/)
• Perl 5.6 (available fromhttp://www.cpan.org/src/index.html)
• Gnupg (available from http://www.gnupg.org)
• OpenSSL 0.96 (available from www.openssl.org)
• Apache 1.3.19 source code that includes the IPv6 patch and the

mod_ssl patch
• Courier Mail Server 0.32.0 or higher (available from

http://sourceforge.net/projects/courier/)
• A static IPv6 ip address (obtain this from the Network

Administrator or your IPv6 ISP)
• IPF Firewall configured for IPv4 and IPv6

24.3.2 “Pre-Courier” SOFTWARE INSTALLATION

Courier Mail Server is dependent on a number of other software packages
that need to be configured and installed prior to unzipping and untarring
Courier. Please refer to the INSTALL files for the software for configuration
and installation specifics.

This is the recommended order for installing the software prior to Courier
Mail Server.

gcc

gmake

db or gdbm



482 Part Three • IPv6 Practice

gnupg

OpenSSL

Perl

Apache

Once OpenSSL is installed, there is a chance that you will have to manually
seed the pseudo-random number generator (PRNG). If the PRNG is not
seeded, you will see error messages when running scripts to create SSL
certificates for Apache and Courier.

To seed the PRNG, do the following.

1. Create a file named .rand in /usr/local/ssl, and make sure that
it is readable by root only.

2. Use a text editor, such as vi, and enter at least five lines of
random gibberish.

3. Save the file, and then run the following command to finish
seeding the PRNG.

$ openssl rand -out /usr/local/ssl/.rand -rand /usr/local/ssl/.rand -base64 1024

24.3.3 INSTALLING APACHE

For the Apache build, the installation instructions differ from those in the
INSTALL file.

1. Make sure that root has /usr/local/ssl/lib and /usr/local/
ssl/include contained in the LD_LIBRARY_PATH setting.

2. From within the build directory for Apache, run the script
configure.v6 (this runs configure with the patch for IPv6
support and the mod_ssl patch).

3. Run make.
4. Run make certificate to generate a self-signed certificate. If you

see an error message indicating that the PRNG is not seeded,
see the section “Installing OpenSSL” for instructions to seed the
PRNG.

5. Run make install to complete the install process.

Try starting Apache with the /usr/local/apache/bin/apachectl startssl
command to see if it finds the SSL libraries that it needs to run



Chapter 24 • Email and DNS Under IPv6 483

HTTPS connections. To avoid having to enter the passphrase each time
you want to start Apache with SSL running (for instance, at boot up), you
should remove the encryption from the RSA private key (while preserving
the original file).

$ cp server.key server.key.org

$ openssl rsa -in server.key.org -out server.key

And also make sure the server.key file is now only readable by root.

$ chmod 400 server.key

Now server.key will contain an unencrypted copy of the key. If you point
your server at this file it will not prompt you for a passphrase. However, if
anyone gets this key, he or she will be able to impersonate you on the net.
Please make sure that the permissions on that file are really such that only
root or the Web server user can read it (preferably get your Web server to
start as root but run as another server, and have the key readable only by
root).

There will be modifications to the httpd.conf file, but that will be done once
Courier Mail Server has been installed.

24.3.4 PREPARING TO INSTALL COURIER MAIL SERVER

Be sure to read the Courier Mail Server INSTALL document in its entirety
before running configure and make (a “reader-friendly“ version can be
found on the Web at http://courier.sourceforge.net/install.html).

(Note: Keep in mind that configure and make are run as the user courier,
whereas make install and make install-configure are run as root.)

Set up the PATH and LD_LIBRARY_PATH settings for both courier and
root on your system in preparation for configuring and installing Courier
Mail Server. The paths should look like the following examples.

PATH=/usr/local/src:/sbin:/usr/sbin:/bin:/usr/bin:/

usr/local/sbin:/usr/local/bin:/usr/X11R6/bin:/

usr/lib/courier/bin:/usr/lib/courier:/

usr/lib/courier-0.3x.x.xxxxxx:/usr/lib/courier/share



484 Part Three • IPv6 Practice

LD_LIBRARY_PATH=/usr/lib:/usr/local/ssl/lib:/usr/local/

ssl/include:/usr/local/lib:/usr/local/bin

24.3.5 PASSING OPTIONS: THE conf.script FILE

Once the Courier source code is unzipped and un-tarred, cd into the build
directory and create a shell script called conf.script. This script will set flags
for OpenSSL support, execute configure, and pass the desired options to
configure. Here is an example conf.script.

#!/bin/sh

CPPFLAGS=“-I/usr/local/ssl/include”

LDFLAGS=“-L/usr/local/ssl/lib”

export CPPFLAGS

export LDFLAGS

./configure --with-mailuser=courier --with-mailgroup=courier

--with-mailuid=xxxx --with-mailgid=xxxx --without-authpam

--without-authldap --with-authpwd --without-authmysql

--without-authuserdb --without-authvchkpw --without-authcram

--with-waitfunc=wait --enable-webpass=yes --with-ipv6

Make the script executable by the courier user and then run it.

24.3.6 BUILDING COURIER MAIL SERVER

Refer to the steps in the Installation document for Courier Mail Server.
If you run into problems while running configure or any of the makes,
please read the FAQ page (http://courier.sourceforge.net/FAQ.html) or
search the Courier users’ mailing list (http://www.geocrawler.com/lists/
3/SourceForge/3723/0/).

24.3.7 POSTINSTALLATION /etc FILE CONFIGURATION

Use a text editor, such as vi, to make configuration changes to the
following files.

/usr/lib/courier/etc/authmodulelist

authpwd



Chapter 24 • Email and DNS Under IPv6 485

/usr/lib/courier/etc/courierd

DEFAULTDELIVERY=“|/usr/lib/courier/bin/maildrop”

/usr/lib/courier/etc/esmtpd

AUTHMODULES=“authpwd”

...

ESMTPDSTART=YES

/usr/lib/courier/etc/esmtpd.cnf

RANDFILE = /usr/local/ssl.rnd

...

CN=mail.zama6.com

/usr/lib/courier/etc/imap

AUTHMODULES=“authpwd”

...

IMAPDSTART=YES

/usr/lib/courier/etc/imap.cnf

RANDFILE = /usr/local/ssl.rnd

...

CN=mail.zama6.com

/usr/lib/courier/etc/imap-ssl

IMAPDSSLSTART=YES

...

TLS_ALLOWSELFSIGNEDCERT=1 (uncomment this line)

/usr/lib/courier/etc/pop3d

AUTHMODULES=“authpwd”

...

POP3DSTART=YES

/usr/lib/courier/etc/pop3.cnf

RANDFILE = /usr/local/ssl.rnd

...

CN=mail.zama6.com

/usr/lib/courier/etc/pop3d-ssl

POP3DSSLSTART=YES

...

TLS_ALLOWSELFSIGNEDCERT=1 (uncomment this line)



486 Part Three • IPv6 Practice

/usr/lib/courier/etc/aliases/system

postmaster:mailadmin

/usr/lib/courier/etc/smtpaccess/default:

172.16.12 allow,RELAYCLIENT

203.142.132 allow,RELAYCLIENT

203.142.142 allow,RELAYCLIENT

203.142.143 allow,RELAYCLIENT

Create the following files using a text editor.

/usr/lib/courier/etc/locals:

fully qualified hostname

hostname

fully qualified email domain (if different

from hostname)

localhost

/usr/lib/courier/etc/esmtpdacceptmailfor.dir/default:

fully qualified email domain

email domain

localhost

24.3.8 POSTINSTALLATION SCRIPTS

Run the following scripts to read in the configuration changes made
in the etc/esmtpacceptmailfor.dir/default, etc/aliases/system, and
etc/smtpaccess/default files.

$ /usr/lib/courier/share/makeacceptmailfor

$ /usr/lib/courier/share/makealiases

$ /usr/lib/courier/share/makesmtpaccess

Run the following scripts to create the SSL certificate files for IMAP, POP3,
and SMTP.

$/usr/lib/courier/share/mkesmtpdcert



Chapter 24 • Email and DNS Under IPv6 487

$/usr/lib/courier/share/mkeimapdcert

$/usr/lib/courier/share/mkepop3dcert

If these scripts fail, check them to verify that the path to the SSL executable
is set to /usr/bin/openssl. If it is not, use vi to change the path in the
scripts.

24.3.9 FINAL CONFIGURATION CHECKS

Set the directory permissions to 777 for each directory in the path to
the SqWebMail executable /usr/lib/courier/libexec/courier/webmail/.
Otherwise, users attempting to open an HTTP or HTTPS connection
from their browsers will receive a message that they are forbidden from
executing the webmail script.

Set the Courier Mail Server executable to executable by root.

$ (/usr/lib/courier-0.3x.x.xxxxxx/courier.sysvinit).

cd to /var and use mkdir to create a directory called lock. cd into lock and
use mkdir to create a directory called subsys. cd into subsys and touch
a file called courier. Set courier as the owner and group recursively for the
/var/lock directory.

Use a text editor, such as vi, to make the following changes to
/usr/local/apache/conf/httpd.conf.

ScriptAlias /cgi-bin/ “/usr/lib/courier/libexec/courier/webmail/”

...

<Directory “/usr/lib/courier/libexec/courier/webmail”>

...

<Directory “/usr/local/apache/htdocs”>

...

Options FollowSymLinks MultiViews

...

User webuser

Group webuser



488 Part Three • IPv6 Practice

24.3.10 ADDING COURIER AND APACHE TO THE STARTUP SERVICES IN /etc/rc

Use a text editor, such as vi, to make the following entry in the /etc/rc file
to start Courier at boot up.

if [ -x /usr/lib/courier-0.32.0.20010319/courier.sysvinit ]; then

/usr/lib/courier-0.32.0.20010319/courier.sysvinit start

fi

Add the following entry in /etc/rc to start Apache at boot up.

if [ -x /usr/local/apache/bin/apachectl ]; then

/usr/local/apache/bin/apachectl startssl

fi

You’ll also need to modify sendmail on the machine so that it runs
secondary to Courier’s sendmail process and monitors the mail queue
every 15 minutes. Make the following changes to the /etc/rc file’s entry
for running sendmail.

if [ -r /etc/mail/sendmail.cf ]; then

echo -n ’ sendmail’; /usr/sbin/sendmail -q15m

24.3.11 CONFIGURING THE FREEBSD KERNEL FOR FILESYSTEM QUOTA SUPPORT

Courier does not enforce any quota limits on user account size. It relies
on the FreeBSD operating system to handle filesystem quotas. Therefore,
quota support must be enabled at the OS level.

FreeBSD’s default kernel configuration does not support filesystem quotas,
so the option must be added to the configuration file and the kernel has to
be recompiled to read in the new quota option.

cd to the /usr/src/sys/i386/conf/ directory. Copy the file GENERIC to
GENERIC.bak so that the original configuration is preserved and may be
used if the modified file becomes corrupted. Use a text editor to add the
following line to the GENERIC file.

options QUOTA # Filesystem quota support



Chapter 24 • Email and DNS Under IPv6 489

Save the changes to the file and then run the following command.

$ config GENERIC

Then cd to the /usr/src/sys/compile/GENERIC directory and run the
following commands.

$ make depend

$ make

$ make install

Enable quotas in the /etc/rc.conf file by using a text editor to add the
following line.

enable_quotas=“YES”

Edit the /etc/fstab file to enable quotas on a per-file system basis. To enable
per-user quotas on a file system, add the userquota option to the options
field in the /etc/fstab entry for the file system you want to enable quotas
on. Here is an example.

/dev/ad0s1a / ufs rw,userquota 1 1

After the option has been added to the /etc/fstab file, type reboot to reboot
the machine, and read in the new configuration changes for file system
quotas.

Once the machine comes back up and you are logged in, type quota -v to
verify that the quotas are enabled.

24.3.12 SETTING QUOTA LIMITS

The newuser script copies the quota attributes from a “model” Zama Mail
user account called zmail. This account must exist before accounts can be
created via the Web interface.

Create a user called zmail. Now create the Maildir for the zmail account.
From the zmail home directory, run /usr/lib/courier/bin/maildirmake
Maildir. Change the owner and group recursively on the Maildir to zmail.



490 Part Three • IPv6 Practice

Create a file called .courier in the zmail home directory that contains the
following.

| /usr/bin/id > ID

| /usr/bin/env > ENV

| /usr/lib/courier/bin/maildrop

Change the owner and group of the .courier file to zmail. Now set the
quota limits for the zmail user. Type edquota -u zmail. This will pull up
the quota file for the user zmail. Use vi commands to set the soft limit to
4000 and the hard limit to 5000.

/: blocks in use: 67, limits (soft = 4000, hard = 5000)

Quit and save the changes for the zmail account.

Starting and Stopping Courier Mail Server Manually

To start Courier Mail Server manually, run this.

$ /usr/lib/courier-0.3x.x.xxxx/courier.sysvinit start

The services for esmtpd, imapd, imapd-ssl, pop3, and pop3d-ssl should
start running on their appropriate ports.

To stop Courier, run this.

$ /usr/lib/courier-0.3x.x.xxxx/courier.sysvinit stop

This is a hard stop command.

To read in configuration changes, run this.

$ /usr/lib/courier-0.3x.x.xxxx/courier.sysvinit restart

This does stop and then start the services, but restart is a gentler way to
stop the process than the stop option.



Chapter 24 • Email and DNS Under IPv6 491

Set up a Maildir and a .courier file for each user that is owned by the
user.

• If using the Web interface “create account” script, all of this
will be done automatically.

• If not, from the user’s home directory, run the following.

$ /usr/lib/courier/bin/maildirmake Maildir

Change the owner and group recursively on the Maildir to the user.

Copy the .courier file from /home/zmail/ to the user’s home directory
and change the owner and group to the user’s.

24.3.13 TROUBLESHOOTING

If the installation for any of the software applications fails, please refer to
their INSTALL or FAQ documents or user group mail lists.

For Apache (mod_ssl), the user group mail list URL is
http://marc.theaimsgroup.com/

For Courier Mail Server, the user group mail list URL is
http://www.geocrawler.com/lists/3/SourceForge/3723/0/

Also refer to the log files in /var/log and note the messages being logged
for the different applications.

• Apache logs messages in /var/log/error_log and /var/log/
access_log.

• Courier Mail Server logs messages in /var/log/maillog.

24.4 Summary

In this chapter, we looked at the Steps necessary to build an IPv6-capable
DNS server as well as an IPv6-capable email server. Although applica-
tions and distributions change over time, and chances are good that the
software described here may change as well, the broad outlines should give



492 Part Three • IPv6 Practice

deployers guidance needed to roll out their own DNS and email services
with whatever software they choose.

Having built, designed, installed and configured all the systems needed
in an IPv6 network (nodes, servers, routers, security systems, and applica-
tion servers), we move on in the next chapter to a discussion of the current
state of the IPv6 world as well as a look at the future potential of IPv6.



2525

The Present and the
Future of IPv6

Over a decade after work began on IPng and the protocols that would
ultimately comprise IPv6, there are still few production networks of any
size or importance running IPv6. In this chapter, we look at what many
considered the first big win for IPv6: the Third Generation Partnership
Project (3GPP) for cellular communication, followed by a brief discussion
of the few live IPv6 networks that are currently to be found. A section on the
problems with IPv6 is followed by sections that list IPv6 implementations
and IPv6 resources.

25.1 IPv6 and 3GPP

The Third Generation Partnership Project (3GPP) standards have long
been anticipated by the IPv6 community. By 2001, it was said (back in
1998), support for IPv6 would be mandatory in all 3GPP cellular devices,

493



494 Part Three • IPv6 Practice

from mobile telephones to roving wireless PDAs and laptops. By 2003,
the degree to which IPv6 is deployed is considerably less than expected.
RFC 3314, “Recommendations for IPv6 in Third Generation Partnership
Project (3GPP) Standards,” outlines the interoperation between wireless
communication protocols and IPv6, with special attention to whether and
how the protocols need to be modified. RFC 3316, “Internet Protocol Ver-
sion 6 (IPv6) for Some Second and Third Generation Cellular Hosts,”
discusses how existing cellular hosts can be deployed with support
for IPv6.

Both documents reflect optimism that the acceptance of IPv6 for these
devices will be high and problems will all be surmountable. For example,
RFC 3314 suggests that nodes will largely be able to use existing IPv6
implementations with little or no modification, making the process of
migrating to IPv6 support painless.

However, by 2001, we were told, the 3GPP choice of IPv6 might not be as
extensive as originally announced. Instead of deploying it on every 3GPP
device, IPv6 would be used only for multimedia applications with most
traditional wireless services still delivered by circuit-switched telecommu-
nications networks. And there were indications that IPv6 would not even
make the grade for the wireless vendors’ backbones.

While in 2001, industry pundits anticipated 3GPP systems would be live
by 2003, the drama is still playing out. Some IPv6 proponents foresaw
IPv6 networks of as many as a billion or more wireless nodes by now;
the dream of killer-applications for IPv6 has been deferred with many
viewing Asia, especially China and India, as the force driving acceptance
of IPv6.

25.2 Live IPv6 Networks

Ten years after the earliest IPv6 specifications and implementations, IPv6
remains on the extreme periphery of the mainstream portions of the global
Internet. Large organizations willing to go on record as embracing IPv6
for their production networks remain as rare as hens’ teeth. Although the
number of ISPs and other connectivity providers announcing some form
of IPv6 service or support continues to grow, the size of the actual market
for IPv6 remains vanishingly small.



Chapter 25 • The Present and the Future of IPv6 495

IPv6 implementers may be operating largely undetected by the rest of the
Internet, but they are operating.

• Mobile telecommunications providers have begun using IPv6
to allocate addresses to mobile phones. IPv4 is simply incapable
of supporting the millions (or hundreds of millions) of mobile
devices that the wireless industry must support.

• Individuals and small businesses around the world have
embraced IPv6, particularly among the open source move-
ment. Linux and BSD operating systems have incorporated
IPv6 support since the mid-1990s. These early implementers
are adopting IPv6 for a number of reasons, from a desire to
be on the bleeding edge of technology to the hope of develop-
ing new skills and products that will be in demand once IPv6
is accepted more generally. Many, if not most, believe in the
inevitability of IPv6 as the successor to IPv4.

• Businesses, governments, and other groups that have been
largely left out of the mainstream Internet view IPv6 as a viable
alternative to attempting to support millions of IP nodes with
a handful of IPv4 addresses.

A well-maintained and managed IP network, whether v4 or v6, should be
transparent to the end user. Applications should work, and users should
be able to accomplish their tasks without having to be aware of how their
data is sent and received over the network. In many if not most cases,
existing IPv4 networks may never have to support IPv6 except at their
edges. New networks can be added, and are being added, that support
IPv4 only.

It is possible, as of 2003, to implement IPv6-only or IPv6/IPv4 on produc-
tion networks—but just barely. Significant research and preparation are
necessary to locate IPv6-ready connectivity providers as well as IPv6-ready
hardware and software. Much of that preparation may include creating
solutions from scratch, but that is often the case when applying a new
technology.

So where are the IPv6 network and connectivity providers? Attempting to
list them in a chapter here would be as premature as someone trying to
compile a comprehensive and authoritative list of manufacturers and types
of automobiles 100 years ago. The data communication industry remains in
flux, with established corporations merging, filing for bankruptcy, chang-
ing tactics, and spinning off or absorbing operations on a weekly basis.



496 Part Three • IPv6 Practice

One can only hope that by the time of this book’s next edition some leading
providers of IPv6 connectivity will have emerged, but for now the next
generation IP network is still largely invisible.

25.3 The Problems with IPv6

Not everyone sees IPv6 as an inevitable upgrade. In fact, as the global IPv4
Internet continues to operate despite the gloomy predictions, more and
more IPv6 is seen as a phantom menace much as the year 2000 “crisis” is
now perceived.

However, there are problems with IPv6.

• IPv4 still works just fine. Sometimes backbones melt down,
and sometimes attacks bring networks to their knees, but by
and large IPv4 serves the needs of the Internet community.

• NAT seems to (mostly) work, and in conjunction with the un-
allocated IPv4 address space, should provide enough elbow
room for everyone who needs it.

• IPv6 is going to be an expensive hassle. At least, that’s the
perception, and given the costs associated with IT that were
incurred to prepare for a Y2K crisis that never emerged (quite
possibly because so many organizations prepared for it), man-
agers are hard put to push for the budget necessary even to
evaluate IPv6 for production networks.

And by 2001, IPv6 working group leaders were being quoted as saying
that the one and only problem that IPv6 solves and IPv4 does not is that
of address exhaustion. Clearly, no organization that already has enough
address space for its needs could possibly justify the expense of solving a
problem that it doesn’t have.

25.4 IPv6 Promise and Potential

In the early summer of 2003, the Department of Defense announced that
starting in October 2003 the DoD would only purchase IPv6-compliant
network technologies, with the goal of full IPv6-compliance throughout
the U.S. military by 2008.



Chapter 25 • The Present and the Future of IPv6 497

With this announcement, IPv6 scored its first major public technology
win—until mid-2003, IPv6 was only discussed as a technology that might
be possible sometime in the future. There were no major corporations
or other organizations committing to IPv6, and although vendors have
been claiming IPv6 support for their products since the mid-1990s, never
before has IPv6 support been on a list of required features for such a large
consumer of networking technology.

The DoD, with its annual IT budget in excess of $30 billon, quite obvi-
ously will push the networking industry into a much higher commitment
to IPv6 than ever before. What is not immediately obvious is the effect
this decision will have on all the organizations that do business with the
DoD. Every one of those businesses will now have to take a much more
serious look at IPv6 and decide whether they want—or need—to migrate
their own network infrastructures to support IPv6.

Even more than the selection of IPv6 by the 3GPP for deployment in large
networks, the DoD’s embrace of IPv6 for its internal and operational net-
works as well as for battlefield use ensures that IPv6 will (at the very least)
be implemented and refined over the coming years.

25.5 IPv6 Resources

This section includes a list of Web links to sites of interest to the IPv6
networking community. These resources are offered as a selection; readers
seeking the most up-to-date and complete Web resources are urged to use
their favorite search engine. Invariably, many of the Web resources cited
in printed books change or disappear by the time they arrive in bookstores;
it is hoped that the sites referenced in Table 25–1 will still be useful to the
reader.

25.6 Summary

It is becoming increasingly clear that, as explained in Chapter 1, IPv6 will
succeed only if it can be applied to an entirely different field of endeavor.
The global Internet is an IPv4 network; the costs involved in converting it
are much too high. The only way IPv6 can stay off the trash heap of history



498 Part Three • IPv6 Practice

Site URL

Microsoft Research Lab IPv6 www.research.microsoft.com/msripv6/
Microsoft IPv6 Support www.microsoft.com/windowsserver2003/

technologies/ipv6/
Deep Space 6 (IPv6 Linux Portal) www.deepspace6.net
IETF IPv6 Working Group www.ietf.org/html.charters/

ipv6-charter.html
Additional IPv6 Working Group info playground.sun.com/pub/ipv6/
IPv6 Forum (industry consortium) www.ipv6forum.com
Peter Bieringer’s Linux Section: IPv6 www.bieringer.de/linux/IPv6/
UK IPv6 Resource Centre (Lancaster www.cs-ipv6.lancs.ac.uk

University)
NetBSD IPv6 Networking www.netbsd.org/Documentation/network/

ipv6/
KAME Project (BSD IPv6) www.kame.net
Internet2 IPv6 Working Group ipv6.internet2.edu
Links to Global IPv6 Taskforces www.ipv6-taskforce.org
Searching the RFC Archive www.rfc-editor.org/rfcsearch.html

Table 25–1: A selection of Web resources for IPv6.

is if someone figures out a way to use it for some entirely new application,
where huge address spaces are mandatory. To date, promising starts have
already been made in the mobile telecommunications market as well as
the defense industry; whether those initiatives will be enough to propel
IPv6 into every connected device on earth remains to be seen.



IV

Appendix



This Page Intentionally Left Blank



IPv6 RFCs

The following are all IPv6-related RFCs that had been published by the
IETF as of mid-2003. The list was generated by searches on the RFC archive
at www.rfc-editor.org. RFCs are listed in descending order, and each list-
ing includes the RFC number, title, authors, date of publication, status (that
is, whether it is updated or obsoleted by some other RFC or if it updates
or obsoletes some other RFC), and type of document.

INFORMATIONAL RFCs provide information and are not to be
interpreted as specifying an Internet standard.

PROPOSED STANDARD RFCs specify a protocol that has been imple-
mented and that is being considered for use as an Internet standard.

DRAFT STANDARD RFCs specify a protocol that has been implemented in
at least two different forms and that has a body of experience and research
backing it up. It often represents a revision of a PROPOSED STANDARD.

501



502 Part Four • Appendix

STANDARD RFCs (also denoted as STDs) specify a protocol that has been
accepted as a standard for the Internet community.

BEST CURRENT PRACTICES documents are published as RFCs as well as
BCPs and contain information about recommended procedures, processes,
or techniques for accomplishing networking goals.

EXPERIMENTAL RFCs specify a protocol that is being investigated by
researchers. Experimental specifications should generally not be imple-
mented or deployed in production networks and should be used with
extreme caution in laboratory conditions.

RFCs published on April 1 are almost always “April Fool’s” jokes and
should be read for amusement only (however, there have been non-joke
RFCs published on April 1 as well as joke RFCs with a publication date of
April, without the date).

RFC 3572

Internet Protocol Version 6 over MAPOS (Multiple Access Protocol Over
SONET/SDH)

T. Ogura, M. Maruyama, T. Yoshida
July 2003
INFORMATIONAL

RFC 3542

Advanced Sockets Application Program Interface (API) for IPv6
W. Stevens, M. Thomas, E. Nordmark, T. Jinmei
May 2003
Obsoletes RFC 2292
INFORMATIONAL

RFC 3531

A Flexible Method for Managing the Assignment of Bits of an IPv6
Address Block

M. Blanchet
April 2003
INFORMATIONAL

RFC 3513

Internet Protocol Version 6 (IPv6) Addressing Architecture
R. Hinden, S. Deering
April 2003
Obsoletes RFC 2373
PROPOSED STANDARD



Appendix • IPv6 RFCs 503

RFC 3493

Basic Socket Interface Extensions for IPv6
R. Gilligan, S. Thomson, J. Bound, J. McCann, W. Stevens
March 2003
Obsoletes RFC 2553
INFORMATIONAL

RFC 3484

Default Address Selection for Internet Protocol Version 6 (IPv6)
R. Draves
February 2003
PROPOSED STANDARD

RFC 3364

Tradeoffs in Domain Name System (DNS) Support for Internet Protocol
version 6 (IPv6)

R. Austein
August 2002
Updates RFC 2673, RFC 2874
INFORMATIONAL

RFC 3363

Representing Internet Protocol version 6 (IPv6) Addresses in the Domain
Name System (DNS)

R. Bush, A. Durand, B. Fink, O. Gudmundsson, T. Hain
August 2002
Updates RFC 2673, RFC 2874
INFORMATIONAL

RFC 3316

Internet Protocol Version 6 (IPv6) for Some Second and Third Generation
Cellular Hosts

J. Arkko, G. Kuijpers, H. Soliman, J. Loughney, J. Wiljakka
April 2003
INFORMATIONAL

RFC 3314

Recommendations for IPv6 in Third Generation Partnership Project (3GPP)
Standards

M. Wasserman, Ed.
September 2002
INFORMATIONAL

RFC 3307

Allocation Guidelines for IPv6 Multicast Addresses
B. Haberman
August 2002
PROPOSED STANDARD



504 Part Four • Appendix

RFC 3306

Unicast-Prefix-based IPv6 Multicast Addresses
B. Haberman, D. Thaler
August 2002
PROPOSED STANDARD

RFC 3266

Support for IPv6 in Session Description Protocol (SDP)
S. Olson, G. Camarillo, A. B. Roach
June 2002
Updates RFC 2327
PROPOSED STANDARD

RFC 3226

DNSSEC and IPv6 A6 aware server/resolver message size requirements
O. Gudmundsson
December 2001
Updates RFC 2535, RFC 2874
PROPOSED STANDARD

RFC 3194

The H-Density Ratio for Address Assignment Efficiency: An Update on the
H ratio

A. Durand, C. Huitema
November 2001
Updates RFC 1715
INFORMATIONAL

RFC 3178

IPv6 Multihoming Support at Site Exit Routers
J. Hagino, H. Snyder
October 2001
INFORMATIONAL

RFC 3177

IAB/IESG Recommendations on IPv6 Address
IAB, IESG
September 2001
INFORMATIONAL

RFC 3175

Aggregation of RSVP for IPv4 and IPv6 Reservations
F. Baker, C. Iturralde, F. Le Faucheur, B. Davie
September 2001
PROPOSED STANDARD



Appendix • IPv6 RFCs 505

RFC 3162

RADIUS and IPv6
B. Aboba, G. Zorn, D. Mitton
August 2001
PROPOSED STANDARD

RFC 3146

Transmission of IPv6 Packets over IEEE 1394 Networks
K. Fujisawa, A. Onoe
October 2001
PROPOSED STANDARD

RFC 3142

An IPv6-to-IPv4 Transport Relay Translator
J. Hagino, K. Yamamoto
June 2001
INFORMATIONAL

RFC 3122

Extensions to IPv6 Neighbor Discovery for Inverse Discovery
Specification

A. Conta
June 2001
PROPOSED STANDARD

RFC 3111

Service Location Protocol Modifications for IPv6
E. Guttman
May 2001
PROPOSED STANDARD

RFC 3089

A SOCKS-based IPv6/IPv4 Gateway Mechanism
H. Kitamura
April 2001
INFORMATIONAL

RFC 3056

Connection of IPv6 Domains via IPv4 Clouds
B. Carpenter, K. Moore
February 2001
PROPOSED STANDARD



506 Part Four • Appendix

RFC 3053

IPv6 Tunnel Broker
A. Durand, P. Fasano, I. Guardini, D. Lento
January 2001
INFORMATIONAL

RFC 3041

Privacy Extensions for Stateless Address Autoconfiguration
in IPv6

T. Narten, R. Draves
January 2001
PROPOSED STANDARD

RFC 3019

IP Version 6 Management Information Base for The Multicast Listener
Discovery Protocol

B. Haberman, R. Worzella
January 2001
PROPOSED STANDARD

RFC 2928

Initial IPv6 Sub-TLA ID Assignments
R. Hinden, S. Deering, R. Fink, T. Hain
September 2000
INFORMATIONAL

RFC 2921

6BONE pTLA and pNLA Formats (pTLA)
B. Fink
September 2000
INFORMATIONAL

RFC 2894

Router Renumbering for IPv6
M. Crawford
August 2000
PROPOSED STANDARD

RFC 2893

Transition Mechanisms for IPv6 Hosts and Routers
R. Gilligan, E. Nordmark
August 2000
Obsoletes RFC 1933
PROPOSED STANDARD



Appendix • IPv6 RFCs 507

RFC 2874

DNS Extensions to Support IPv6 Address Aggregation and Renumbering
M. Crawford, C. Huitema
July 2000
Updates RFC 1886, Updated by RFC 3152, RFC 3226, RFC 3363, RFC 3364
EXPERIMENTAL

[pub as:PROPOSED STANDARD]

RFC 2767

Dual Stack Hosts using the Bump-In-the-Stack Technique (BIS)
K. Tsuchiya, H. Higuchi, Y. Atarashi
February 2000
INFORMATIONAL

RFC 2766

Network Address Translation—Protocol Translation (NAT-PT)
G. Tsirtsis, P. Srisuresh
February 2000
Updated by RFC 3152
PROPOSED STANDARD

RFC 2765

Stateless IP/ICMP Translation Algorithm (SIIT)
E. Nordmark
February 2000
PROPOSED STANDARD

RFC 2740

OSPF for IPv6
R. Coltun, D. Ferguson, J. Moy
December 1999
PROPOSED STANDARD

RFC 2732

Format for Literal IPv6 Addresses in URL’s
R. Hinden, B. Carpenter, L. Masinter
December 1999
PROPOSED STANDARD

RFC 2711

IPv6 Router Alert Option
C. Partridge, A. Jackson
October 1999
PROPOSED STANDARD



508 Part Four • Appendix

RFC 2710

Multicast Listener Discovery (MLD) for IPv6
S. Deering, W. Fenner, B. Haberman
October 1999
PROPOSED STANDARD

RFC 2675

IPv6 Jumbograms
D. Borman, S. Deering, R. Hinden
August 1999
Obsoletes RFC 2147
PROPOSED STANDARD

RFC 2590

Transmission of IPv6 Packets over Frame Relay Networks Specification
A. Conta, A. Malis, M. Mueller
May 1999
PROPOSED STANDARD

RFC 2553

Basic Socket Interface Extensions for IPv6
R. Gilligan, S. Thomson, J. Bound, W. Stevens
March 1999
Obsoletes RFC 2133, Obsoleted by RFC 3493, Updated by RFC 3152
INFORMATIONAL

RFC 2546

6Bone Routing Practice
A. Durand, B. Buclin
March 1999
Obsoleted by RFC 2772
INFORMATIONAL

RFC 2545

Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing
P. Marques, F. Dupont
March 1999
PROPOSED STANDARD

RFC 2529

Transmission of IPv6 over IPv4 Domains without Explicit Tunnels
B. Carpenter, C. Jung
March 1999
PROPOSED STANDARD



Appendix • IPv6 RFCs 509

RFC 2526

Reserved IPv6 Subnet Anycast Addresses
D. Johnson, S. Deering
March 1999
PROPOSED STANDARD

RFC 2497

Transmission of IPv6 Packets over ARCnet Networks
I. Souvatzis
January 1999
PROPOSED STANDARD

RFC 2492

IPv6 over ATM Networks
G. Armitage, P. Schulter, M. Jork
January 1999
PROPOSED STANDARD

RFC 2491

IPv6 over Non-Broadcast Multiple Access (NBMA) networks
G. Armitage, P. Schulter, M. Jork, G. Harter
January 1999
PROPOSED STANDARD

RFC 2474

Definition of the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers

K. Nichols, S. Blake, F. Baker, D. Black
December 1998
Obsoletes RFC 1455, RFC 1349, Updated by RFC 3168, RFC 3260
PROPOSED STANDARD

RFC 2473

Generic Packet Tunneling in IPv6 Specification
A. Conta, S. Deering
December 1998
PROPOSED STANDARD

RFC 2472

IP Version 6 over PPP
D. Haskin, E. Allen
December 1998
Obsoletes RFC 2023
PROPOSED STANDARD



510 Part Four • Appendix

RFC 2471

IPv6 Testing Address Allocation
R. Hinden, R. Fink, J. Postel (deceased)
December 1998
Obsoletes RFC 1897
EXPERIMENTAL

RFC 2470

Transmission of IPv6 Packets over Token Ring Networks
M. Crawford, T. Narten, S. Thomas
December 1998
PROPOSED STANDARD

RFC 2467

Transmission of IPv6 Packets over FDDI Networks
M. Crawford
December 1998
Obsoletes RFC 2019
PROPOSED STANDARD

RFC 2466

Management Information Base for IP Version 6: ICMPv6 Group
D. Haskin, S. Onishi
December 1998
PROPOSED STANDARD

RFC 2465

Management Information Base for IP Version 6: Textual Conventions and
General Group

D. Haskin, S. Onishi
December 1998
PROPOSED STANDARD

RFC 2464

Transmission of IPv6 Packets over Ethernet Networks
M. Crawford
December 1998
Obsoletes RFC 1972
PROPOSED STANDARD

RFC 2463

Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification

A. Conta, S. Deering
December 1998
Obsoletes RFC 1885
DRAFT STANDARD



Appendix • IPv6 RFCs 511

RFC 2462

IPv6 Stateless Address Autoconfiguration
S. Thomson, T. Narten
December 1998
Obsoletes RFC 1971
DRAFT STANDARD

RFC 2461

Neighbor Discovery for IP Version 6 (IPv6)
T. Narten, E. Nordmark, W. Simpson
December 1998
Obsoletes RFC 1970
DRAFT STANDARD

RFC 2460

Internet Protocol, Version 6 (IPv6) Specification
S. Deering, R. Hinden
December 1998
Obsoletes RFC 1883
DRAFT STANDARD

RFC 2454

IP Version 6 Management Information Base for the User Datagram
Protocol

M. Daniele
December 1998
PROPOSED STANDARD

RFC 2452

IP Version 6 Management Information Base for the Transmission
Control Protocol

M. Daniele
December 1998
PROPOSED STANDARD

RFC 2450

Proposed TLA and NLA Assignment Rule
R. Hinden
December 1998
INFORMATIONAL

RFC 2428

FTP Extensions for IPv6 and NATs
M. Allman, S. Ostermann, C. Metz
September 1998
PROPOSED STANDARD



512 Part Four • Appendix

RFC 2406

IP Encapsulating Security Payload (ESP)
S. Kent, R. Atkinson
November 1998
Obsoletes RFC 1827
PROPOSED STANDARD

RFC 2402

IP Authentication Header
S. Kent, R. Atkinson
November 1998
Obsoletes RFC 1826
PROPOSED STANDARD

RFC 2401

Security Architecture for the Internet Protocol
S. Kent, R. Atkinson
November 1998
Obsoletes RFC 1825, Updated by RFC 3168
PROPOSED STANDARD

RFC 2375

IPv6 Multicast Address Assignments
R. Hinden, S. Deering
July 1998
INFORMATIONAL

RFC 2374

An IPv6 Aggregatable Global Unicast Address Format
R. Hinden, M. O’Dell, S. Deering
July 1998
Obsoletes RFC 2073
PROPOSED STANDARD

RFC 2365

BCP0023
Administratively Scoped IP Multicast
D. Meyer
July 1998
BEST CURRENT PRACTICE

RFC 2292

Advanced Sockets API for IPv6
W. Stevens, M. Thomas
February 1998
Obsoleted by RFC 3542
INFORMATIONAL



Appendix • IPv6 RFCs 513

RFC 2185

Routing Aspects of IPv6 Transition
R. Callon, D. Haskin
September 1997
INFORMATIONAL

RFC 2147

TCP and UDP over IPv6 Jumbograms
D. Borman
May 1997
Obsoleted by RFC 2675
PROPOSED STANDARD

RFC 2133

Basic Socket Interface Extensions for IPv6
R. Gilligan, S. Thomson, J. Bound, W. Stevens
April 1997
Obsoleted by RFC 2553
INFORMATIONAL

RFC 2080

RIPng for IPv6
G. Malkin, R. Minnear
January 1997
PROPOSED STANDARD

RFC 2073

An IPv6 Provider-Based Unicast Address Format
Y. Rekhter, P. Lothberg, R. Hinden, S. Deering, J. Postel
January 1997
Obsoleted by RFC 2374
PROPOSED STANDARD

RFC 2030

Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI
D. Mills
October 1996
Obsoletes RFC 1769
INFORMATIONAL

RFC 2023

IP Version 6 Over PPP
D. Haskin, E. Allen
October 1996
Obsoleted by RFC 2472
PROPOSED STANDARD



514 Part Four • Appendix

RFC 2019

Transmission of IPv6 Packets over FDDI
M. Crawford
October 1996
Obsoleted by RFC 2467
PROPOSED STANDARD

RFC 1981

Path MTU Discovery for IP version 6
J. McCann, S. Deering, J. Mogul
August 1996
PROPOSED STANDARD

RFC 1972

A Method for the Transmission of IPv6 Packets over Ethernet Networks
M. Crawford
August 1996
Obsoleted by RFC 2464
PROPOSED STANDARD

RFC 1971

IPv6 Stateless Address Autoconfiguration
S. Thomson, T. Narten
August 1996
Obsoleted by RFC 2462
PROPOSED STANDARD

RFC 1970

Neighbor Discovery for IP Version 6 (IPv6)
T. Narten, E. Nordmark, W. Simpson
August 1996
Obsoleted by RFC 2461
PROPOSED STANDARD

RFC 1955

New Scheme for Internet Routing and Addressing (ENCAPS) for IPNG
R. Hinden
June 1996
INFORMATIONAL

RFC 1933

Transition Mechanisms for IPv6 Hosts and Routers
R. Gilligan, E. Nordmark
April 1996
Obsoleted by RFC 2893
PROPOSED STANDARD



Appendix • IPv6 RFCs 515

RFC 1924

A Compact Representation of IPv6 Addresses
R. Elz
Apr-01-1996
INFORMATIONAL

RFC 1897

IPv6 Testing Address Allocation
R. Hinden, J. Postel
January 1996
Obsoleted by RFC 2471
EXPERIMENTAL

RFC 1888

OSI NSAPs and IPv6
J. Bound, B. Carpenter, D. Harrington, J. Houldsworth, A. Lloyd
August 1996
EXPERIMENTAL

RFC 1887

An Architecture for IPv6 Unicast Address Allocation
Y. Rekhter, T. Li, Eds.
December 1995
INFORMATIONAL

RFC 1886

DNS Extensions to support IP version 6
S. Thomson, C. Huitema
December 1995
Updated by RFC 2874, RFC 3152
PROPOSED STANDARD

RFC 1885

Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6)

A. Conta, S. Deering
December 1995
Obsoleted by RFC 2463
PROPOSED STANDARD

RFC 1884

IP Version 6 Addressing Architecture
R. Hinden, S. Deering, Eds.
December 1995
Obsoleted by RFC 2373
HISTORIC
[pub as:PROPOSED STANDARD]



516 Part Four • Appendix

RFC 1883

Internet Protocol, Version 6 (IPv6) Specification
S. Deering, R. Hinden
December 1995
Obsoleted by RFC 2460
PROPOSED STANDARD

RFC 1881

IPv6 Address Allocation Management
IAB, IESG
December 1995
INFORMATIONAL

RFC 1827

IP Encapsulating Security Payload (ESP)
R. Atkinson
August 1995
Obsoleted by RFC 2406
PROPOSED STANDARD

RFC 1826

IP Authentication Header
R. Atkinson
August 1995
Obsoleted by RFC 2402
PROPOSED STANDARD

RFC 1825

Security Architecture for the Internet Protocol
R. Atkinson
August 1995
Obsoleted by RFC 2401
PROPOSED STANDARD

RFC 1810

Report on MD5 Performance
J. Touch
June 1995
INFORMATIONAL

RFC 1809

Using the Flow Label Field in IPv6
C. Partridge
June 1995
INFORMATIONAL



Appendix • IPv6 RFCs 517

RFC 1776

The Address is the Message
S. Crocker
Apr-01-1995
INFORMATIONAL

RFC 1753

IPng Technical Requirements Of the Nimrod Routing and Addressing
Architecture

N. Chiappa
December 1994
INFORMATIONAL

RFC 1752

The Recommendation for the IP Next Generation Protocol
S. Bradner, A. Mankin
January 1995
PROPOSED STANDARD

RFC 1726

Technical Criteria for Choosing IP The Next Generation (IPng)
C. Partridge, F. Kastenholz
December 1994
INFORMATIONAL

RFC 1719

A Direction for IPng
P. Gross
December 1994
INFORMATIONAL

RFC 1715

The H Ratio for Address Assignment Efficiency
C. Huitema
November 1994
Updated by RFC 3194
INFORMATIONAL

RFC 1710

Simple Internet Protocol Plus White Paper
R. Hinden
October 1994
INFORMATIONAL



518 Part Four • Appendix

RFC 1707

CATNIP: Common Architecture for the Internet
M. McGovern, R. Ullmann
October 1994
INFORMATIONAL

RFC 1705

Six Virtual Inches to the Left: The Problem with IPng
R. Carlson, D. Ficarella
October 1994
INFORMATIONAL

RFC 1688

IPng Mobility Considerations
W. Simpson
August 1994
INFORMATIONAL

RFC 1687

A Large Corporate User’s View of IPng
E. Fleischman
August 1994
INFORMATIONAL

RFC 1686

IPng Requirements: A Cable Television Industry Viewpoint
M. Vecchi
August 1994
INFORMATIONAL

RFC 1683

Multiprotocol Interoperability In IPng
R. Clark, M. Ammar, K. Calvert
August 1994
INFORMATIONAL

RFC 1682

IPng BSD Host Implementation Analysis
J. Bound
August 1994
INFORMATIONAL



Appendix • IPv6 RFCs 519

RFC 1680

IPng Support for ATM Services
C. Brazdziunas
August 1994
INFORMATIONAL

RFC 1679

HPN Working Group Input to the IPng Requirements Solicitation
D. Green, P. Irey, D. Marlow, K. O’Donoghue
August 1994
INFORMATIONAL

RFC 1678

IPng Requirements of Large Corporate Networks
E. Britton, J. Tavs
August 1994
INFORMATIONAL

RFC 1677

Tactical Radio Frequency Communication Requirements for IPng
B. Adamson
August 1994
INFORMATIONAL

RFC 1676

INFN Requirements for an IPng
A. Ghiselli, D. Salomoni, C. Vistoli
August 1994
INFORMATIONAL

RFC 1675

Security Concerns for IPng
S. Bellovin
August 1994
INFORMATIONAL

RFC 1674

A Cellular Industry View of IPng
M. Taylor
August 1994
INFORMATIONAL



520 Part Four • Appendix

RFC 1673

Electric Power Research Institute Comments on IPng
R. Skelton
August 1994
INFORMATIONAL

RFC 1672

Accounting Requirements for IPng
N. Brownlee
August 1994
INFORMATIONAL

RFC 1671

IPng White Paper on Transition and Other Considerations
B. Carpenter
August 1994
INFORMATIONAL

RFC 1670

Input to IPng Engineering Considerations
D. Heagerty
August 1994
INFORMATIONAL

RFC 1669

Market Viability as a IPng Criteria
J. Curran
August 1994
INFORMATIONAL

RFC 1668

Unified Routing Requirements for IPng
D. Estrin, T. Li, Y. Rekhter
August 1994
INFORMATIONAL

RFC 1667

Modeling and Simulation Requirements for IPng
S. Symington, D. Wood, M. Pullen
August 1994
INFORMATIONAL



Appendix • IPv6 RFCs 521

RFC 1622

Pip Header Processing
P. Francis
May 1994
INFORMATIONAL

RFC 1621

Pip Near-term Architecture
P. Francis
May 1994
INFORMATIONAL

RFC 1550

IP: Next Generation (IPng) White Paper Solicitation
S. Bradner, A. Mankin
December 1993
INFORMATIONAL

RFC 1475

TP/IX: The Next Internet
R. Ullmann
June 1993
EXPERIMENTAL

RFC 1454

Comparison of Proposals for Next Version of IP
T. Dixon
May 1993
INFORMATIONAL



This Page Intentionally Left Blank



00

Index

A

AAAA resource record, 304–305

advantage of, 309–310

A6 versus, 308

Access control, 94

Address Autoconfiguration, 225

Addresses (addressing)

allocation methods, 66–67, 272–273

cluster, 71

problems, proposals to fix, 62–63, 66

renumbering, 137–138

Simple Internet Protocol Plus, 71

Addresses, IPv4, 22, 24–29

compatible, 77, 156

encapsulated within IPv6, 156

mapped, 77, 78, 156

rationing, 38, 39–40

recycling, 38–39

replacing, 39

rethinking, 39

subnetting, 40–44, 48–49

Addresses, IPv6

aggregation, 124–126, 143–144

aggregation fields, 149–151

anycast, 138–139, 142, 195–208

broadcast function, 142–143

format, 148–156

global routing prefix and subnet ID,
151–152

IPv4 addresses encapsulated within, 156

modified EUI-64 interface addressing,
152–155

multicast, 142, 183–194

network and node, 143

node self-awareness, 156–157

obtaining and planning for, 343–344

representation, 144–145, 148–149

unicast, 142, 146–148

523



524 Index

Address family identifier (AFI), 245–246
Address family information, 256
Address Resolution, 225
Address Resolution Protocol (ARP), 138, 227,

239
Address space

geographic-based aggregation, 125–126
IPv6 aggregation, 126
provider-based aggregation, 124–125

Adelman, Len, 100
Administrative domains (ADs), 238
Advanced Encryption Standard (AES), 98
ADVERTISE, 275
Advertisements, router, 224, 231–233,

281–282
Agent Discovery, 293
Aggregation

addressing, 124–126, 143–144
DNS, 306–308
fields, 149–151

Algorithms
encryption and authentication, 97–104
routing, 239–240

ALL_DHCP_Relay_Agents_and_Servers, 274
ALL_DHCP_Servers, 274
All Nodes Addresses, 187–188
Allocation of addresses, 66–67, 272–273
All Routers Addresses, 188
AMD, 8
Anycast, IPv4, 198
Anycast, IPv6, 138–139, 142

address assignment, 199–200
architectural issues, 197–200
binding, 206
configuration, 200
future of, 206–208
identifying unicast addresses, 204–206
IPsec and, 199
Neighbor Discovery and, 227
overview of, 196
pseudo, 196–197
reserved addresses, 201–202
responding to packets, 204

restrictions, 200–201
role of, 195, 196–197
routing, 203–204
scope, 200
specification, 200–201
Subnetwork Router, 201

Anycast Address Resolving Protocol (AARP),
206–207

Apache, 482–483, 488
Apple Computer, Inc., 8, 28

LocalTalk, 154
ARCnet, 154
ARPA, IP4 and IP6, 305
Ascom, 99
A6

AAAA versus, 308
domain name resolution, 307–308
resource record, 306–307

Asymmetric encryption, 100
ATM, 183
Authentication

algorithms, 97–104
data, 114, 117
data origin, 95
defined, 93
Simple Internet Protocol Plus, 71

Authentication Header (AH), 89, 95, 105,
114–119, 133, 162

Autoconfiguration
comparison of IPv4 and IPv6, 24
description of IPv6, 136, 271–289
renumbering, router and network, 272,

284–289
Autoconfiguration, stateful, 24, 136, 271–272

DHCP messages, 274–278
RFCs pertaining to, 273–274

Autoconfiguration, stateless, 14–15, 24, 136,
272–273, 278

collision detection, 281
design goals, 279–280
link-local address, creating, 280–281
privacy issues, 282–284
router advertisements, 281–282



Index 525

Automatic allocation, 272
Automatic tunneling, 80, 81, 329–331

Intra-Site Automatic Tunnel Addressing
Protocol, 335–337

Autonomous system (AS), 238, 251

B
Backbone, 239
Behavior aggregates, 259, 260
Bellman-Ford algorithm, 239
Bidirectional tunneling, 297
Binding update/acknowledgment/

request, 180, 297
BIND 9, 316

building, with OpenSSL support, 449–455
configuring, for use as an IPv4/IPv6

domain name server, 455–480
BitchX, 316
Blowfish, 99
Boeing Computer Services, 28
Boot Protocol (BOOTP), 46, 67, 136, 273
Border Gateway Protocol (BGP), 240

basics of, 254–256
entities involved, 253, 254
gateway, 255
multiprotocol extensions, 256–257
speaker, 255

Border Gateway Protocol version 4 (BGP4),
30, 240, 253–255, 380–381, 389–390,
399–400

Brute-force attacks, 92, 99
Bump-in-the-stack (BITS), 119–120
Bump-in-the-wire (BITW), 120

C
Care-of-address, 140
CAST, 99
“Catenet Model for Internetworking, The”

(Cerf), 26
CATNIP, 69
Cerf, Vint, 26
Checksum, 211
Christensen, Clayton, 6

Cisco Systems, 90, 340
configuring 2611 router for IPv6, 365–376
configuring 7200 router for IPv6, 376–382

Clark, David, 26
CLASS, 302
Classless Inter-Domain Routing (CIDR),

introduction of, 28, 30, 38, 44–46
Client-server message exchanges, 276–278
Cohen, Danny, 26
Collision detection, 155, 281
Confidentiality, defined, 93–94
Configured tunneling, 80, 81
Configuring IPv6

Cisco 2611 router for, 365–376
Cisco 7200 router for, 376–382
on FreeBSD, 352–359
Hitachi GR2000 series routers for,

382–390
NEC IX5010 series routers for, 390–401
on Solaris 8, 359–364
on Windows NT, 349–352

CONFIRM, 275
Connectionless integrity, 95
Connection-Less Network Protocol (CLNP),

69
Connectivity issues, 63, 326–327
Controlled link sharing, 262
Cookie, 101
Costs

comparison of IPv4 and IPv6, 25
IPv6, 14

Courier Mail Server to configure email
server, 481–491

Crocker, Dave, 70
Cyphertext, 92
Cyptography, 92

D

Data Encryption Standard (DES), 98–99
Datagram identification, 129
Datagram length, 129
Data origin authentication, 95
DECLINE, 275



526 Index

Deering, Steve, 70, 71, 125, 220

Denial of service (DoS) attacks, 64, 96

Destination address, 130, 132

Destination Options Header, 133, 162,
174–180

Destination Unreachable message, 212–213,
214–215

DHCP. See Dynamic Host Configuration
Protocol

Differentiated Services (Diffserv) approach,
259, 262, 264–266

Differentiated Services (DS) field, 128–129,
130–131, 259, 264, 266

Diffie-Hellman key exchange, 101

Digital signatures, 94, 96, 103–104

Dijkstra’s Algorithm, 239

Disruptive technologies

examples of, 8–9

use of term, 6

Distance-vector routing algorithm, 239,
242–244

Distinguished names, 64

Domain Name System (DNS)

aggregation, 306–308

anycast and, 207

building BIND 9 with OpenSSL support
for use with IPv6, 449–455

configuring BIND 9 for use an IPv4/IPv6,
455–480

extensions for IPv6, 302–305

forward and reverse lookups,
configuring, 464–466

master, configuring, 456–460

master, starting and testing, 466–470

naming domains, 310

next generation, 308–310

renumbering and, 284

resource records, 301, 302–304,
306–307

slave, configuring, 470–473

upgrading, 344–345

Domain of Interpretation (DOI), 108

Dotted quad format, 144

Dual stacks, 82–83, 347
Duplicate Address Detection, 226
Dynamic allocation, 273
Dynamic Host Configuration Protocol

(DHCP), 38, 46–47, 66, 67, 239
client-server exchanges of messages,

276–278
messages, 274–276
stateful autoconfiguration, 24, 136,

271–278
stateless autoconfiguration, 14–15, 24,

136, 272–273, 278–284

E

Echo function, ICMPv6, 216
Echo Reply message, 213, 216
Echo Request message, 213, 216
Eli Lily and Co., 28
Email server, Courier Mail Server to

configure, 481–491
Enabled applications, 316–317
Encapsulating Security Payload (ESP)

header, 89, 95, 105, 110–114,
118–119, 133–134, 162

Encoded NSAP addresses, 146, 148
Encryption

algorithms, 97–104
asymmetric, 100
data confidentiality, 95
defined, 94
public key, 93, 94, 95, 100
symmetric, 98–100

Endpoint identification, 180
End-to-end (transparency) problems, IPv4,

23, 33–35
Error message, 211
Ethernet, 60
Ethertype, 82
Exchange-based addresses, 144
Explicit Congestion Notification (ECN)

description of, 260, 268–269
flags, 131

Explicit tunneling, 80–81



Index 527

Extended unique identifier (EUI), 143
modified EUI-64 interface addressing,

152–155, 202, 282, 283
Extension headers

adding, to IPv6 headers, 160–162
destination, 133, 162, 174–180
fragment, 162, 170–174
hop-by-hop, 132–133, 162, 174–180
IPv6-in-IPv6 tunneling, 164–165
optional Internet-layer data in, 165
ordering, 162–164
routing, 162, 165–170

Exterior Gateway Protocol (EGP), 239,
240–241

F

Fault tolerance, 207–208
File Transfer Protocol (FTP), 65
Filtering firewalls

on FreeBSD, 418–426
on Solaris 8, 403–418

Fixed-scope multicast addresses, 188–189
Flag days, 285, 287–289
Flags, 129

multicast, 184
Flooding scopes, 253
Flow label, 131, 260, 266–268
Ford Motor Co., 28
Foreign agent, 293
FP (format prefix), 149, 150
Fragmentation, 129, 135, 162, 170–174

IPv4, 170–171
packet, 173–174
path MTU, 217–220

Fragment Header, 133, 162, 170–174
fields, 171–173

Frame Relay, 183
Francis, Paul, 70, 71
FreeBSD

autoconfiguration, 354–356
configuring, for filesystem quota support,

488–489
configuring IPv6 on, 352–359

filtering firewall on, 418–426
kernel configuration, 354
static configuration, 356–359

FreeS/WAN with IPv6 support, 317

G
Gateways, 235
Gateway-to-Gateway Protocol (GGP), 240
General Electric Co., 28
Geographic-based aggregation, 125–126
Global routing prefix, 151–152
Global unicast address, 146, 147
GOST, 99
Group ID, 184, 185, 186

H
Haberman, Brian, 206
Header checksum, 130
Header fields, IPv6, 130–132

version, 130
Header format

IPv4, 127, 128–130
IPv6, 126–130
length, 128
version, 128

Headers
See also Extension headers; Option
headers
Authentication Header (AH), 89, 95, 105,

114–117
Encapsulating Security Payload (ESP), 89,

95, 105, 110–114
RIP, 246
Simple Internet Protocol Plus, 71

Hinden, Robert, 70, 71
Hitachi GR2000 series routers, configuring

for IPv6, 382–390
Home agent, 293
Hop-by-hop options header, 132–133, 162,

174–180
Hop limit field, 129, 131
Host-to-host tunneling, 80
Host-to-router tunneling, 80



528 Index

Huitema, Christian, 28, 69, 70, 220
Huston, Geoff, 32

I

IBM, 28, 98
ICMP (Internet Control Message Protocol),

role of, 210, 227
ICMPv6 (Internet Control Message Protocol

IPv6), 184, 192
Destination Unreachable message,

212–213, 214–215
Echo Reply message, 213, 216
Echo Request message, 213, 216
fragmentation and path MTU,

217–220
Internet control messages, 211–213
message format, 210–211
message header fields, 211
new messages, 209–210
Packet Too Big message, 213, 215
Parameter Problem message, 213, 216
Time Exceeded message, 213,

215–216
IDEA (International Data Encryption

Algorithm), 99
IEEE, 143
Inbound Load balancing, 226
Informational message, 211
INFORMATION-REQUEST, 275
Initialization vector, 113
Innovator’s Dilemma, The (Christensen), 6
Integrated Services (intserv) approach, 262,

263–264, 265
Integrity

connectionless, 95
defined, 93

Integrity Check Value (ICV), 114, 117
Intel, 8, 282–283
Inter-domain routing, 257
Interface ID, 150
Interior Gateway Protocol (IGP), 239
International Organization for Standards

(ISO), 60

Internet

areas designated for change, 61–68

early assumptions about, 59–61

Internet Activities Board (IAB), 60

Internet Architecture Board (IAB), 60, 61

Internet Control Message Protocol. See ICMP

Internet Control Message Protocol IPv6. See
ICMPv6

Internet Engineering Note (IEN), No. 46, 26

Internet Engineering Steering Group (IESG),
60, 61

Internet Group Management Protocol
(IGMP), 184, 192, 210

Internet Key Exchange (IKE) protocol, 101,
108

Internet Security Association and Key
Management Protocol (ISAKMP),
101–102, 108

Internetworking, ad hoc, 61

Internetwork Packet eXchange (IPX), 63, 82

Interoperability, 91–92

Intra-Site Automatic Tunnel Addressing
Protocol (ISATAP), 335–337

IP Address Encapsulation (IPAE), 70

IP Encapsulation, 70

IPFilter, 316–317

IP4.ARPA, 305

IPng (IP Next Generation)

candidates, 68–72

RFCs covering, 72–73

IPsec (IP Security Protocol)

anycast and, 199

Authentication Header (AH), 89, 95, 105,
114–119

basic operation, 104–106

comparison of IPv4 and IPv6, 24, 106

Encapsulating Security Payload (ESP), 89,
95, 105, 110–114, 118–119

goals of, 94–95

implementing, on Sun Solaris, 426–440

implementing and deploying, 119–120

Integrity Check Value (ICV), 114, 117

network address translators and, 52



Index 529

security associations, 107–109

services provided, 91

tunnel and transport mode, 109–110

IP6.ARPA, 305

IPv4

address rationing, 38, 39–40

addresses, 22, 24–29

anycast, 198

end-to-end problems, 23, 33–35

fragmentation, 170–171

headers, 127, 128–130

mobility, 24, 139–140, 292–296, 298

Neighbor Discovery, 227–229

Open Shortest Path First, 253

options, 68

problems with, 22–23

routing, nondefault, 22–23, 29–33

IPv6

advantages over IPv4, 23

Forum Web site, 317

future for, 17–18, 493–497

-in-IPv6 tunneling, 164–165

network value, 11–12

possible growth of, 13–16

problems with, 496

Web sites for, 497, 498

IPv7, 69

Itoh, Jun-ichiro Itojun, 317

J

Jacobson, Van, 49

Java, 317

Jumbograms, 135

Jumbo Payload Option, 132, 133, 178

K

KAME, 317–318, 354

Karupiah, Ettikan Kandasamy, 207–208

Key exchange, 101

Key management, 100–102

KEY (security key), 304

L

Layer 2 Forwarding (L2F), 90
Layer 2 Tunneling Protocol (L2TP), 90
Learning lab, 338–339
LFTP, 317
Link layer address change, 226
Link layer protocols, 314–316
Link-local address, creating, 280–281
Link-local network addresses, 34–35
Link-local unicast address, 146, 147
Link sharing, controlled, 262
Link state algorithm, 239
Link state database, 251
Link state routing, 251
Live networks, 494–496
Load balancing, 207–208, 226–227
localhost, configuring, 460–464
Local state, 251
LocalTalk, 154
Logical IP subnet (LIS), 235–236
Loopback unicast address, 147

M

Mail exchange (MX), 303–304
Man-in-the-middle attacks (MITMs),

96–97
Manual allocation, 273
Maximum transmission unit (MTU), 134–135,

170–71, 215
path, 217–220

MD2, MD4, MD5 (message digest functions),
103, 117

Media Access Control (MAC), 143
-48 interface identifier, 153–154

Merck and Co., Inc., 28
Message authentication codes (MACs),

117
Messages

body, 211
DHCP, 274–278
Internet control, 211–213
Multicast Listener Discovery, 192–193

Metcalfe, Robert, 11, 12



530 Index

Microsoft Corp.
configuring IPv6 on Windows NT,

349–352
as an example of sustaining technology,

7–8
global unique identifiers and, 283
Point-to-Point Tunneling Protocol, 90–91
Verisign’s issue of public key certificates,

93, 96
MIT, 28
Mobile node, 293
Mobility

agent, 140, 293
comparison of IPv4 and IPv6, 24, 139–140,

292–298
home address, 180, 202
RFCs pertaining to, 292

Modified EUI-64 interface addressing,
152–155, 202, 282, 283

Moore’s Law, 11, 20
Multicast, 142

address format, 184–185
principles of, 183–184
reserved and permanent addresses,

186–189, 190–191
scope definitions, 185–186
solicited-node, 188, 189, 191–192

Multicast Listener Discovery (MLD) protocol,
184, 192–193, 210

Multihoming, 258
Multiprotocol reachable NLRI, 257
Multiprotocol unreachable NLRI, 257

N

NAME, 302
NAPTR (naming authority pointer), 304
National Institute of Standards and

Technology (NIST), 98, 103
National Security Agency, 100
NATs. See Network address translators
Native IPv6, 326–327, 329, 332–333
NEC IX5010 series routers, configuring for

IPv6, 390–401

Neighbor Advertisement message, 225
Neighbor Discovery (ND), 138, 210

IPv6 compared with IPv4, 227–230
messages, description of, 224–225
network problems solved, 225–227
router solicitation, 230–233

Neighbor Solicitation message, 224
Neighbor Unreachability Detection, 226
NetWare, 63, 82, 146
Network(s)

addressing, 143
mask, 31
renumbering, 137–138
routed, 236–238
value, 11–12

Network address translators (NATs),
23, 38

basic operation of, 51–52
end-to-end problems and 33–34
formation of, 49
misconceptions, 52–53
reasons for, 50
RFCs pertaining to, 53–55

Network Associates, Inc., 99, 103
Networked “things”, use of term, 10
Network layer reachability information

(NLRI), 256–257
Network Service Access Point (NSAP), 69

encoded addresses, 146, 148, 178
Next headers, 114, 129, 131, 161
Next-hop Determination, 226
Next hop information, 256
Nimrod network architecture, 166, 180
NLA ID (next-level aggregation identifier),

150
Node addressing, 143
Node self-awareness, 156–157
Nonbroadcast multiaccess (NBMA) network,

183
Nondefault routing, 22–23, 29–33, 239
Nonglobal interface identifier, 154
Nordmark, Eric, 206
Nortel’s Entrust products, 99



Index 531

Novell NetWare, 63, 82, 146
NXT (next domain), 304

O
OAKLEY, 102
Ohta, Masataka, 207
Open Shortest Path First (OSPF) algorithm,

239, 251–253
OpenSSL support, building BIND 9 with,

449–455
Option headers

current valid, 178–180
destination, 133, 162, 174–180
format, 174–175
fragment, 133, 162, 170–174
hop-by-hop, 132–133, 162, 174–180
IPv4, 68, 130
IPv6, 130, 132–134
padding, 177
routing, 162, 165–170
Simple Internet Protocol Plus, 71
specification and encoding, 175–177

Organizationally unique identifier (OUI), 143
OSI (Open Systems Interconnection), 60, 63

P
Packets

classification, 263
fragmentation, 173–174
responding to anycast, 204
scheduling, 263
size limits, 134–135

Packet Too Big message, 213, 215
Padding, 113, 177
Padding length, 113
Parameter Discovery, 225
Parameter Problem message, 213, 216
Path MTU discovery (PMTUD), 132, 135, 180

fragmentation and, 218–219
implementation issues, 220–221
IPv6, 220

Payload data, 113
Payload length, 115–116, 129, 131

Peers, 240–241
Performance

comparison of IPv4 and IPv6, 24–25
IPv6, 14

Per-hop behavior (PHB), 264
Permanent multicast addresses, 189, 190–191
Photuris, 101–102
Ping function, 216
P Internet Protocol (Pip), 70
Point-to-Point Tunneling Protocol (PPTP),

90–91
Prefix Discovery, 225
Pretty Good Privacy (PGP), 99, 101
Privacy

autoconfiguration and, 282–284
Simple Internet Protocol Plus, 71

Private keys, 92
Private network address space, 23, 49, 50
Products, technologies versus, 15–16
Protocol data unit (PDU), 217
Protocol field, 129
Protocol Indendent Multicast Sparse-Mode

(PIM-SM), 207
Protocols, life expectancy, 20–21
Protocol tunneling, 164
Provider-based aggregation, 124–125, 144
Proxy advertisements, 227
Pseudo-anycast, 196–197
Public key encryption, 93, 94, 95, 100
Public key infrastructure (PKI) providers,

96–97

Q

Quake for IPv6, 317
Quality of service

approaches to, 262
basics of, 260–265
Differentiated Services (Diffserv)

approach, 259, 262, 264–266
Differentiated Services (DS) field, 259,

264, 266
Explicit Congestion Notification, 260,

268–269



532 Index

Quality of service (Continued)
flows, 266–268
Integrated Services (intserv) approach,

262, 263–264, 265
reserving resources, 262–263
Simple Internet Protocol Plus, 71

Query formats, 304, 305

R

RC2/RC4, 99
RDATA, 303
RDLENGTH, 303
Realm-specific IP (RSIP), 55–56
Real-time services, 262
REBIND, 275
RECONFIGURE, 275
Redirect message, 225, 226
Regional Internet Registries (RIRs), 39, 40, 124
RELAY-FORW, 275
RELAY-REPL, 275
RELEASE, 275
RENEW, 275
Renumbering, router and network, 272,

284–289
Replay attacks, 64, 91, 95
REPLY, 275
REQUEST, 275
Requests for Comments. See RFCs
RES (reserved), 150
Reserved addresses

anycast, 201–202
multicast, 186–189

Reserved area, 116, 150
Resource records (RRs), 301, 302–304, 306–307
Resource ReSerVation Protocol (RSVP),

262–263
Reverse lookup domain, 304, 305
RFCs, lists of

for BOOTP, DHCP and DHCPv6, 273–274
for Differentiated Services, 266
for Explicit Congestion Notification, 260,

268–269
for ICMPv6 message types, 212

for IPv6, in general, 73, 499–521

for IPv6 over X, 315–316

on link layer specifications, 155

on mobility, 292

on transition to IPv6, 76

RFC 33 (New HOST-HOST Protocol), 25

RFC 760 (IP Internet), 25, 26

RFC 768 (User Datagram Protocol), 314

RFC 790 (Assigned Numbers), 26

RFC 791 (Internet Protocol), 20, 25, 26, 27, 40,
41, 63, 128

RFC 823 (DARPA Internet Gateway), 240

RFC 904 (Exterior Gateway Protocol), 240

RFC 917 (Internet Subnets), 41

RFC 950 (Internet Standard Subnetting
Procedure), 41

RFC 951 (Bootstrap Protocol), 46, 136, 273

RFC 1034, 302

RFC 1058 (Routing Information Protocol), 239

RFC 1105 (Border Gateway Protocol), 254

RFC 1122 (Internet Hosts-Communications
Layers), 128

RFC 1174 (IAB Policy on Distributing
Internet Identifier Assignments), 39

RFC 1191 (Path MTU Discovery), 218

RFC 1256 (ICMP Router Discovery
Messages), 227

RFC 1287 (Towards the Future Internet
Architecture), 28, 59–61, 62, 63, 64–65

RFC 1347 (TCP and UDP with TUBA), 68–69

RFC 1349 (Type of Service in IP Suite), 128

RFC 1366 (Management of IP Address
Space), 39, 40

RFC 1367 (Schedule for IP Address Space
Management), 39–40

RFC 1475 (TP/IXTP/IX), 69

RFC 1519 (Classless Inter-Domain
Routing-CIDR), 44–45

RFC 1546 (Host Anycasting Service), 196–197,
198

RFC 1597 (Address Allocation for Private
Internets), 49



Index 533

RFC 1631 (IP Network Address Translators),
49, 54

RFC 1633 (Integrated Services), 262

RFC 1688 (IPng Mobility), 292

RFC 1707 (CATNIP), 69

RFC 1710 (Simple Internet Protocol Plus), 70,
72

RFC 1715 (H Ratio for Address Assignment
Efficiency), 28

RFC 1752 (IP Next Generation Protocol), 723

RFC 1771 (Border Gateway Protocol 4), 240,
254–255

RFC 1772 (Border Gateway Protocol
applications), 255

RFC 1797 (Class A Subnet Experiment), 48–49

RFC 1809 (Flow Label Field in IPv6), 260

RFC 1818 (OSI NSAPs and IPv6), 178

RFC 1879 (Class A Subnet Experiment), 48, 49

RFC 1884 (IPv6 Addressing Architecture),
124, 141, 195

RFC 1885 (Internet Control Message Protocol
for IPv6), 210

RFC 1886 (DNS Extensions), 304, 305

RFC 1917 (recycling of IP networks), 47

RFC 1924 (address representation), 145

RFC 1981 (Path MTU Discovery), 221

RFC 2002 (Mobility Support), 140

RFC 2080 (RIPng for IPv6), 248–250

RFC 2131 (Dynamic Host Configuration
Protocol), 46, 136

RFC 2168, 304

RFC 2205 (Resource ReSerVation Protocol
-RSVP), 262–263

RFC 2283 (Multiprotocol Extensions for
BGP-4), 254, 256

RFC 2328 (OSFP Version 2), 239, 251–253, 253

RFC 2373 (Addressing Architecture), 138,
146, 197

RFC 2374 (aggregation), 143–144, 149–151

RFC 2401 (Security Architecture for Internet
Protocol), 89–93, 91, 107

RFC 2402 (IP Authentication Header),
114–117, 118

RFC 2406 (IP Encapsulating Security
Payload), 110–114, 117, 118

RFC 2453 (RIP version 2), 245

RFC 2460 (extension headers), 160, 161, 163,
166, 260, 266–268, 285

RFC 2461 (Neighbor Discovery), 138, 224–233

RFC 2462 (Stateless Address
Autoconfiguration), 136, 278–279, 284

RFC 2463, 210, 211, 213

RFC 2473 (Packet Tunneling), 178–179

RFC 2474 (Differentiated Services Field),
128–129, 259, 264

RFC 2481 (Explicit Congestion Notification),
260, 268

RFC 2526 (Reserved IPv6 Subnet Anycast
Addresses), 197, 201–202

RFC 2529 (Transmission of IPv6 over IPv4
Domains without Explicit Tunnels),
76, 81

RFC 2535, 304

RFC 2545 (BGP-4 Multiprotocol Extensions),
253–254, 257

RFC 2598 (Expedited Forwarding PHB), 264

RFC 2661 (Layer Two Tunneling Protocol), 91

RFC 2663 (IP NATs), 54

RFC 2675 (Jumbograms), 135

RFC 2710 (Multicast Listener Discovery), 192,
193, 204

RFC 2711 (Router Alert), 179

RFC 2740 (OSPF for IPv6), 253

RFC 2766 (NAT-Protocol Translation), 54, 55

RFC 2874 (DNS Extensions and Aggregation
and Renumbering), 284, 306

RFC 2894 (Router Renumbering), 285,
286–287

RFC 2915, 304

RFC 2960 (Stream Control Transmission
Protocol), 314

RFC 2988 (Integrated Services over Diffserv),
265

RFC 2993 (Architectural Implications of
NATs), 54

RFC 3022 (Traditional NATs), 53–54



534 Index

RFC 3027 (Complications with NATs), 54

RFC 3041 (Privacy Extensions for Stateless
Address Autoconfiguration in IPv6),
154–155, 283–284

RFC 3056 (Connection of IPv6 Domains via
IPv4 Clouds), 76, 83

RFC 3068 (Anycast Prefix for 6to4 Relay
Routers), 202

RFC 3102 (Realm Specific IP), 55–56

RFC 3122 (Extensions to IPv6 Neighbor
Discovery), 229

RFC 3152 (IP6.ARPA), 305

RFC 3168 (Explicit Congestion Notification),
260, 268–269

RFC 3194 (Host-Density Ratio for Address
Assignment Efficiency: An Update on
the H Ratio), 28–29

RFC 3221 (Commentary on Inter-Domain
Routing in the Internet), 32–33

RFC 3314 (IPv6 in Third Generation
Partnership Project), 494

RFC 3316 (IPv6 for Cellular Hosts), 494

RFC 3344 (IP Mobility Support for IPv4),
292–293

RFC 3363 (IPv6 Addresses in DNS), 306, 308

RFC 3364 (Tradeoffs in DNS), 308–309

RFC 3424 (IAB Considerations for UNilateral
Self-Address Fixing-UNSAF), 34

RFC 3513 (address representation), 144–145,
146, 147, 152, 155, 157, 187, 200–201

Rijndael data encryption algorithm, 98

RIPng, 248–250

RIP routing protocol, 239, 240, 242–248

Rivest, Ron, 100

Router Advertisement message, 224, 231–233,
281–282

Router Alert Option, 132, 133, 179

Router Discovery, 225

Routers, configuring for IPv6

Cisco 2611, 365–376

Cisco 7200, 376–382

Hitachi GR2000 series, 382–390

NEC IX5010 series, 390–401

Router Solicitation message, 224, 230–231
Router-to-host tunneling, 80
Router-to-router tunneling, 79–80
Routing

aggregation, 30–31
algorithms, 239–240
anycast, 203–204
Border Gateway Protocol (BGP), 240,

253–257
distance-vector algorithm, 239, 242–244
Exterior Gateway Protocol, 239, 240–241
fundamentals of, 235–242
hardware-based forwarding, 342–343
inter-domain, 257
interior versus external, 238–239
IPv4, 22–23, 29–33, 253
IPv6, 241–242, 257–258
networks, 236–238
nondefault, 22–23, 29–33, 239
Open Shortest Path First (OSPF)

algorithm, 239, 251–253
optimization, 297–298
option, 162, 165–170
problems, proposals to fix, 62–63
renumbering, 284–285, 286–287
RIP, 242–248
RIPng, 248–250
scalability, 32–33
software-based forwarding, 342–343
Source Route Routing Head (Type 0), 166,

167–170
tag, 246, 250

Routing Header, 133, 162, 165–170
Routing Information Base (RIB), 30
RSA, 99
RSA algorithm, 100, 103

S

Scalability, 333–335
Schneier, Bruce, 99
Scope definitions, 185–186
Secret key encryption, 98
Secure Hash Algorithm (SHA), 103, 117



Index 535

Secure hashes, 94, 102–103, 117
Security

See also Filtering firewalls; IPsec
(IP Security Protocol)

encryption and authentication
algorithms, 97–104

gateways, 104–105, 109
goals, 93–97
identifier, 154–155
Internet Protocol issues, 90–93
IPv6, 14, 24
network address translators and, 52–53
proposals addressing, 63–64

Security Association Database (SAD),
108–109

Security Associations (SAs), 107–109
Security Parameter Index (SPI), 107, 112–113,

116
Security Policy Database (SPD), 108
Segments Left field, 166
Sequence number, 113, 116
Session keys, 99
Shamir, Adi, 100
SIG (security signature), 304
Simple Internet Protocol (SIP), 70
Simple Internet Protocol Plus (SIPP), 70,

71–72
Simple Key-management for Internet

Protocols (SKIP), 102
Site-local network addresses, 34–35
Site-local unicast address, 146, 147
Site renumbering, 284, 285–286
6over4, 81, 81–82
6to4, 83–84

automatic tunneling, 329–331
network to native IPv6, 329, 332–333
network to 6to4 network, 329, 331–332

Skipjack, 100
SLA ID (site-level aggregation identifier), 150
Solaris. See Sun Solaris
SOLICIT, 275
Solicited-node multicast address, 188, 189,

191–192

Source address, 130, 131
Source Route Routing Head (Type 0), 166,

167–170
Spoofing attacks, 96
Stateful autoconfiguration, 24, 136, 271–272

DHCP messages, 274–278
RFC pertaining to, 273–274

Stateless autoconfiguration, 14–15, 24, 136,
272–273, 278

collision detection, 281
design goals, 279–280
link-local address, creating, 280–281
privacy issues, 282–284
router advertisements, 281–282

Static tunneling, 327–328
Stream Control Transmission Protocol

(SCTP), 314
Subnet ID, 151–152
Subnetting issues, 257–258
Subnetwork Router anycast address, 201
Subnetworks (subnets), 40–44

Class A addresses, 48–49
Sun Microsystem, 102
Sun Solaris, implementing IPsec on, 426–440
Sun Solaris 8

building TCP wrapper for IPv6 on,
440–447

configuring IPv6 on, 359–364
filtering firewall on, 403–418

Sustaining technology
defined, 7–8
IPv6 as a, 16

Symmetric encryption, 98–100

T

TCP (Transmission Control Protocol), 260,
314

TCP/IP, 60, 63
TCP wrapper for IPv6 on Solaris 8, building,

440–447
Technologies, products versus, 15–16
Third Generation Partnership Project (3GPP),

493–494



536 Index

Time Exceeded message, 213, 215–216
Time-to-live (TTL), 129, 302
TLA ID (top-level aggregation identifier),

150
Traceroute function, 215–216
Traffic analysis attacks, 91
Traffic control, 64
Traffic flow confidentiality, 95
Training, 337–338
Transition

clients, deploying, 347
dual stacks, 82–83, 347
migration, 344–346
phasing out IPv4, 347
planning for, 339–344
preparing for, 337–339
RFCs covering, 76
6over4, 81, 81–82
6to4, 83–84
steps, 323–327
tunnels (tunneling), 77–82

Translation, 340–341
Transparency (end-to-end) problems, IPv4,

23, 33–35
Transport layer protocols, 314
Transport mode, IPsec and, 109–110
Trick or Treat Demon (TOTD), 316
Tsuchiya, Paul, 70
TTL. See Time-to-live
TUBA, 68–69
Tunnels (tunneling), 77–82

automatic (6to4), 329–331
bidirectional, 297
encapsulation limit, 178–179
explicit, 80–81
Intra-Site Automatic Tunnel Addressing

Protocol, 335–337
IPv6-in-IPv6, 164–165
mode and IPsec, 109–110
protocols, 90–91, 164

requirements, 77–79
scalability, 333–335
6to4 network to native IPv6, 329, 332–333
6to4 network to 6to4 network, 329,

331–332
static, 327–328
types, 79–80
without explicit, 81

Twofish, 99
TYPE, 302
Type of Service (ToS), 64, 67, 128–129, 259

U
Ullman, Robert, 69
Unicast addresses, 142, 146–148

identifying, from anycast addresses,
204–206

Unspecified addresses, 147
User Datagram Protocol (UDP), 314

V
Verisign, Inc., 93, 96
Vermicelli Project, 316
Viagenie, 317
Virtual private networks (VPNs), 90, 109
VLAN, 391–394

W
Web sites on IPv6, 497, 498
Windows NT, configuring IPv6 on, 349–352
WWW6to4, 316

X
Xerox, 28

Z
Zero compression, 145
Zimmermann, Philip, 99


