é ,ch08.25203 Page 247 Friday, November 9, 2001 12:27 PM

CHAPTER 8
Elements of Efficiency

Efficiency is a nebulous term. In general, it measures how thoroughly one manages
to achieve some desired result as a function of the required resources. The biggest
problems in implementing efficiency in a computer network are essentially matters of
definition. What is the desired result for a network, and what resources are actually
required?

With a relatively narrow view of the desired results in network design, it essentially
comes down to the factors that I mentioned earlier when talking about network reli-
ability. The network must deliver data to the destination. It must do so within the
required application constraints. In most networks, the desired result is effectively
quantified with just four parameters: latency, jitter, throughput, and dropped pack-
ets. I will define these terms when I come to talk about Quality of Service later in this
chapter.

The hard part of describing efficiency is actually in defining the resources. Which
resources should the definition include? Some resources are obvious. Everybody
would agree that it’s necessary to worry about CPU and memory utilization in their
routers. The same is true for the bandwidth utilization on the various links that con-
nect network devices. But some resources are harder to quantify or harder to see.
How do you compare the relative importance of these resources? Do you want to
save bandwidth, for example, at the expense of CPU load?

The ultimate resource for any organization comes down to money, and efficiency has
to be defined for the entire organization. Suppose, for example, that you can save
money by running a particular application on a particular type of server. The money
you save has to be balanced against the extra money it costs to upgrade parts of the
network. Perhaps the new implementation will turn out to be more expensive over-
all than the old way. But perhaps it will also allow the organization to win new busi-
ness that will more than pay for the difference in cost. Doing such an upgrade is
worthwhile for the organization. You just have to understand where you are draw-
ing the line around what resources to include. Conversely, the network engineer may
look at a Core router and see abnormally high CPU and memory utilization. If fixing

247

4~ ~4]e




é ,ch08.25203 Page 248 Friday, November 9, 2001 12:27 PM

this problem means spending hundreds of thousands of dollars, the organization
may not feel that the expense is justified.

Ultimately, efficiency is a matter of the global economics of the organization. This
subject, however, is far beyond the scope of this book. The resources that I can rea-
sonably talk about here are the ones that are specific to the network. I can discuss
how to make the best use of the resources already in the network, so I look at the
four parameters—Ilatency, jitter, throughput, and dropped packets—that describe
how well the network works. I also look at network resources such as bandwidth,
CPU, and memory utilization. It is never possible to obtain perfect efficiency,
though. Therefore, a network designer’s most difficult job is to decide what tradeoffs
will give the best design possible under the circumstances and will fit in best with
larger corporate goals.

Using Equipment Features Effectively

There are usually several ways to configure any given piece of network equipment to
achieve the same basic result. These different configurations usually do not use
resources in the same way, and they often do not have exactly the same performance
characteristics. For example, an inefficient configuration of a router might mean that
it has to do too much processing on each packet. This extra processing increases the
amount of time that each packet spends inside the router and probably also increases
the memory utilization of the router, as it has to buffer large numbers of packets.

A typical example of this increase happens when an engineer fails to use special fea-
tures of the equipment. For example, in many routers the ability to make most com-
mon routing decisions is delegated to logic circuits supporting the interface card.
This approach works well because it means that the CPU is free to coordinate the
activities of the different cards. The result is vastly improved net throughput; how-
ever, the advantage can be completely lost if this engineer implements a CPU-bound
process that examines the contents of every packet.

For example, the engineer might turn on a feature that prioritizes or routes packets
based on their contents. This sort of feature usually requires the CPU to examine the
packet. So the packet cannot be processed solely by the interface. The same CPU
loading happens if the router is configured to rewrite the contents of the packets, as
in an address-translation feature systematically.

This has several implications for network design. Locally, it is important to ensure
that each device does only what it needs to do and that it does so by the most effi-
cient method. Globally, it means that network designers have to be careful about
what network functions are performed where.

The local issue is really a matter for the network engineer who should sit down with
the manuals for the network hardware and find the most efficient way to implement
the functions of this device. If special optimizations are available, such as Cisco’s

248 | Chapter8: Elements of Efficiency

4~ ~4]e



é ,ch08.25203 Page 249 Friday, November 9, 2001 12:27 PM

*

Fast Switching, then they should be used. Discussing the implementation details
with the hardware vendor may also help, since the vendor should be aware of the
features of the equipment.

The global issue, however, is for the network designer to resolve. A good example of
this resolution comes up in prioritization and Quality of Service (QoS) implementa-
tion. The best place to decide on the priority of a packet is at the point where that
packet enters the network. The entry-point router should examine the packet and
mark its header with the appropriate priority value. Then, each subsequent device
that handles the packet reads this priority value and treats the packet appropriately.
The worst thing a designer can do is make every router look at the packet in detail
and decide again what its priority should be.

Looking at a single byte in the header is easy for a router and can frequently be han-
dled in highly optimized code in the hardware. However, looking at several bytes
and making a decision about each packet takes a huge amount of extra resources. In
most cases, it also increases the forwarding latency and reduces the number of pack-
ets that the router can handle.

Hop Counts

Efficiency means using the smallest amount of resources to accomplish the desired
result. All other things being equal, heavily used network paths should have as few
hops as possible.

Efficiency is actually a natural outcome of using a hierarchical network design. Build-
ing a network in a tree-like structure so that every leaf is no more than three hops
away from the central Core of the network means that the greatest distance between
any two leaves is six hops. Conversely, if the network has a relatively ad hoc struc-
ture, then the only effective upper limit to the number of hops between any two end
points is the number of devices in the network.

Keeping hops counts low has several advantages. First, all routing protocols that
were discussed in Chapters 6 and 7 (for IP and IPX, respectively) converge faster for
lower hop counts. This convergence generally results in a more stable network. More
specifically, it means that the network recovers more quickly after a failure. If a path
is available to route traffic around the failure point, it can be found quickly and put
into use.

Other advantages all have to do with the delivery of packets through the network.
Every extra hop represents at least one additional queue and at least one additional
link. Each additional queue introduces a random amount of latency. If the queue is
relatively full, then the packet may spend extra time waiting to be processed. If the
queue is realtively short, on the other hand, it may be processed immediately. If the
network is extremely busy, the packet may be dropped rather than being kept until
its data is no longer relevant.

Hop Counts | 249

%

ﬁ

*@%



é ,ch08.25203 Page 250 Friday, November 9, 2001 12:27 PM

*

This queuing delay means that every additional hop increases the net latency of the
path. Latency is something that should be kept as low as possible in any network.
Because this extra latency is random, the more hops that exist, the more variation
there is in the latency.

This variation in latency is called jitter. Jitter is not a problem for bulk data transfers.
But in any real-time applications such as audio or video, it is disastrous. These appli-
cations require that the time to deliver a packet from one point to another be as pre-
dictable as possible, or the resulting application will suffer from noticeable gaps.
These gaps will appear as audible pops or skips and frozen or jumping video images.

Finally, there is the problem of what happens to a packet that passes through a
highly congested device in the network. The device can do two things with a new
packet entering its buffers. It can either put it into a queue to be forwarded at some
future time, or it can decide that the queues are already too full and simply drop the
packet. Clearly, the more hops in the path, the greater the probability of hitting one
that is highly congested. Thus, a higher hop count means a greater chance of
dropped packets.

This rule is true even if the network is rarely congested. A relatively short, random
burst of data can temporarily exhaust the queues on a device at any time. Further-
more, the more hops there are in the path, the greater the probability of hitting a link
that generates CRC errors. In most LAN media, the probability of CRC errors is rela-
tively low, but this low probability is multiplied by the number of links in the path.
Thus, the more hops there are the higher the probability that the packet will become
corrupted and have to be dropped.

MTU Throughout the Network

The size of the largest data packet that can pass along any particular section of net-
work is called the Maximum Transmission Unit (MTU). Suppose, for example, that
a network contains both Ethernet and Token Ring segments. The default MTU for
Ethernet is 1,500 bytes. For a 16Mbps Token Ring, the maximum MTU is 18,200
bytes. If a packet travels from one of these media to the other, the network will have
to find a compromise.

There are two main ways to resolve MTU mismatch problems. The network can
either fragment the large packets, or it can force everything to use the smaller value.
In most cases, the network will fragment packets if it can and negotiate the greatest
common MTU value only if it is not allowed to fragment. The efficiency issue is that
both fragmentation and MTU negotiation consume network resources. However,
fragmentation has to be done with every oversized packet, and MTU negotiation is
done primarily during session establishment. MTU negotiation also happens if the
path changes and the new path contains a leg with a lower MTU value.

250 | Chapter8: Elements of Efficiency

%

ﬁ

*@%



é ,ch08.25203 Page 251 Friday, November 9, 2001 12:27 PM

In TCP sessions, the Path MTU Discovery process starts when a packet that has the
Don’t Fragment (DF) bit in the IP header set is sent. This bit literally instructs the
network not to fragment the packet. Fragmentation is the default. Suppose a TCP
packet passes through a network and it gets to a router that needs to break that
packet to send it to the next hop on its path. If the DF bit in the IP header is not set,
then the router simply breaks the packet into as many pieces as necessary and sends
it along. When the fragments reach the ultimate destination, they are reassembled.

If the DF bit is set, then the router drops the packet and sends back a special ICMP
packet explaining the situation. This packet tells the sender that the packet has been
dropped because it could not be fragmented. It also tells the sender the largest packet
it could have sent. Doing so allows the sender to shorten all future packets to this
Path MTU value.

Note that it is more efficient in general to reassemble at the ultimate destination
rather than at the other end of the link with a lower MTU. This is because it is possi-
ble that the packet will encounter another low MTU segment later in the path. Since
there is significant overhead in both fragmentation and reassembly, if the network
has to do it, it should do it only once.

Many protocols do not have a Path MTU Discovery mechanism. In particular, it is
not possible to negotiate an end-to-end MTU for a UDP application. Thus, when-
ever a large UDP packet is sent through a network segment with a lower MTU value,
it must be fragmented. Then the receiver has to carefully buffer and reassemble the
pieces. However, most UDP applications deliberately keep their packets small to
avoid fragmentation.

If the network is noisy or congested, it is possible to lose some fragments. This loss
results in two efficiency problems. First, the device that reassembles the packet from
the fragments must buffer the fragments and hold them in its memory until it decides
it can no longer wait for the missing pieces. This is not only a resource issue on the
device, but it also results in serious latency and jitter problems. The second problem
can actually be more serious. If any fragment is lost, then the entire packet must be
resent, including the fragments that were received properly. Data lost due to conges-
tion problems will make the problem considerably worse.

Obviously, it is better if the network doesn’t have to fragment packets. Thus, in a
multiprotocol network it is often better to configure a common MTU manually
throughout all end-device segments.

This configuration is not always practical for Token Ring segments that run IBM
protocols. Suppose a tunneling protocol such as Data Link Switching (DLSw) con-
nects two Token Ring segments through an Ethernet infrastructure. Generally, it is
most efficient to use the greatest MTU possible. In this case, however, there is an
important advantage. The DLSw protocol is TCP based and operates as a tunnel
between two routers. These routers can discover a smaller Path MTU between them.

MTU Throughout the Network | 251

- ad




é ,ch08.25203 Page 252 Friday, November 9, 2001 12:27 PM

They can then simply hide the fragmentation and reassemble from the end devices.
They will appear to pass full-sized Token Ring frames.

Even here, the routers suffer from additional memory utilization, and there will be
latency and jitter issues on the end-to-end session. If at all possible, it is better to
reduce the Token Ring MTU to match the lower Ethernet value.

Bottlenecks and Congestion

Avoiding bottlenecks in any large network is impossible, and it isn’t always necessary
or desirable to do so. One of the main efficiencies of scale in a large network is the
ability to oversubscribe the Core links. Oversubscribing means that most designers
deliberately aggregate more network segments than the network can support simulta-
neously. Then they hope that these segments don’t all burst to their full capacity at
once. This issue was discussed in Chapter 3 in the section, “Trunk capacity.”

Just oversubscribing is not a problem. The network has a problem only when it can-
not support the actual traffic flow. This is called congestion, and it results in
increased latency and jitter if the application is lucky enough that the network can
queue the packets. If it is not so lucky, the network has to drop packets.

A little bit of congestion is not a bad thing, provided it is handled gracefully. How-
ever, systematic congestion in which one or more network links cannot support typi-
cal traffic volumes is a serious issue. The network can handle intermittent congestion
using the various QoS mechanisms discussed later in this chapter. For systematic
congestion, however, the designer usually has to modify the network design to
reduce the bottleneck.

By intermittent congestion, I mean congestion that never lasts very long. It is not
uncommon for a link to fill up with traffic for short periods of time. This is particu-
larly true when bursty applications use the network.

QoS mechanisms can readily handle short bursts of traffic. They can even handle
longer periods of congestion when it is caused by low-priority applications such as
file transfers. However, when a high volume of interactive traffic causes the conges-
tion, it is usually considered a systematic problem. In general, QoS mechanisms are
less expensive to implement than a redesign of the network, so it is usually best to try
it first.

Another common method for handling intermittent congestion is using a Random
Early Detection (RED) system on the router with the bottleneck. The RED algorithm
deliberately drops some packets before the link is 100% congested. When the load
rises above a certain predetermined threshold, the router begins to drop a few pack-
ets randomly in an attempt to coax the applications into backing off slightly. In this
way, RED tries to avoid congestion before it becomes critical.

252 | Chapter 8: Elements of Efficiency

4~ ~4]e



é ,ch08.25203 Page 253 Friday, November 9, 2001 12:27 PM

However, it is important to be careful about RED because not all applications and
protocols respond well to it. It works very well in TCP applications, but in UDP
applications, as well as Appletalk and IPX, RED does not achieve the desired results.
These protocols cannot back off their sending rates in response to dropped packets.

There are essentially two different ways to handle a systematic and persistent conges-
tion problem at a network bottleneck. You can either increase the bandwidth at the
bottleneck point, or you can reroute the traffic so it doesn’t all go through the same
point.

Sometimes you can get a bottleneck because some redundant paths in a network are
unused, forcing all of the traffic through a few congested links. Examining the link
costs in the dynamic routing protocol can often provide a way to alleviate this
problem.

In many protocols, such as OSPF, it is possible to specify the same cost for several
different paths. This specification invokes equal-cost multipath routing. In some
cases you may find that, despite equal costs, some of these paths are not used. This
may be because the routers are configured to use only a small number (usually two)
of these equal-cost paths simultaneously. Many routers offer the ability to increase
this number. However, it is important to watch the router CPU and memory load if
the number is increased because maintaining the additional paths may cause an addi-
tional strain on the device.

Ultimately, if a subtle rerouting cannot alleviate the bottleneck, it will be necessary to
increase the bandwidth on the congested links. Doing so is not always easy. If the
link is already the fastest available technology in this type, then you have to do some-
thing else.

Other options are usually available to you in these situations. You might migrate to a
different high-speed link technology, such as ATM or 10 Gigabit Ethernet. Or, you
may have the ability to multiplex several fast links together to make one super high-
speed link. If even this is not possible, then it is probably best to start configuring
new redundant paths through the network to share the load.

Filtering

One of the most important things a designer can do to improve how efficiently a net-
work uses resources is to filter out ill-behaved or unwanted traffic. This is particu-
larly true for chatty protocols that tend to transmit data that is not necessary. A good
example of filtering for efficiency comes from IPX networking. In an IPX network,
every device that has any sort of service to offer sends out Service Advertisement
Packets (SAP). This information then circulates not just over the local segment, but
throughout the entire network. Although unnecessary SAP information may not have
a significant effect on the bandwidth used in the network, it can have a large impact

Filtering | 253

- ad




é ,ch08.25203 Page 254 Friday, November 9, 2001 12:27 PM

on the amount of memory that Core routers need to keep track of this information.
Specifically, every printer sends at least one SAP; so does every Windows NT
workstation.

In a large network, it is difficult enough to ensure that the SAP information regard-
ing important servers is distributed correctly. If there are unneeded SAPs for every
printer and workstation, then the amount of required memory can easily exceed the
available resources. So this is a good example of the need for filtering. The first
router that sees the unwanted SAP information simply discards it without passing it
along. The information stays local to the LAN segment where it is used and does not
use up key network resources.

Filtering can also restrict malicious, unwanted traffic. For example, some popular
Internet-based attacks use certain types of ICMP or packets used in setting up TCP
calls. If these packets are not eliminated, they may cause serious network problems.
Thus, these specific types of packets can be filtered at the network boundaries.

[ want to stress once again that connecting to an untrusted external network with-
out a firewall is foolish. However, in some organizations, these same sorts of prob-
lems can arise either because of malicious employees or because of innocently
executed malicious programs. In these cases, it may become necessary to filter the
unwanted traffic at the user LAN segment level, just as I suggested eliminating
unwanted IPX SAP information.

In many networks chatty little unnecessary applications (and network games!) can be
easily filtered and prevented from crossing the network. The key is to remove the
unwanted traffic as soon as possible. This usually means that the filtering should be
applied at the edges of the network. If the network adjoins another network, then the
border routers should perform this filtering before the unwanted traffic enters the
network. Similarly, if the filtering is to restrict traffic from user LAN segments, then
the best place to run the filter is on the default gateway routers for these segments.

Quality of Service and Traffic Shaping

As I mentioned before, four measurable parameters define how well a network per-
forms: latency, jitter, bandwidth, and dropped packets.

Bandwidth is a term borrowed from transmission theory. If a signal has only one fre-
quency that is broadcast perpetually, then it doesn’t contain any information. If that
carrier signal is modulated, then you can use it to carry a data signal. As soon as you
do this, you introduce some fluctuation into the frequency of the carrier signal.
Sometimes the carrier wave pulse comes a little bit earlier because of the modula-
tion, and sometimes it comes a little late. If you draw a graph of the frequency, some-
times it’s a little lower than the carrier, and sometimes it’s a little higher. However,
the average is equal to the carrier wave’s frequency.

254 | Chapter 8: Elements of Efficiency

4~ ~4]e



é ,ch08.25203 Page 255 Friday, November 9, 2001 12:27 PM

The width of this frequency curve is called the bandwidth, and it is a measure of how
much information the signal carries. The width in frequencies is going to be a fre-
quency itself, and frequencies are measured in Hz (cycles/s). If you can put one bit in
a cycle of the wave, then it is exactly the same as bits per second. That’s how the
term originates. However, modern communications protocols use sophisticated
compression and include extra overhead for error checking and so forth. Thus, using
the term “bandwidth” to describe the throughput on a link is no longer accurate.
The meanings of words migrate over time, and today people generally use the word
bandwidth to mean the amount of data that a medium can transmit per unit time.

In any given network, several applications compete for the same bandwidth
resources. Each application has a bandwidth requirement—a certain minimum
amount of data that it has to send and receive. The network designer must balance
these various requirements and find a way for the applications to all work well
together. There are two ways to do this. You can either carve off a certain dedicated
amount of bandwidth for each application, or you can make them share the total
fairly. There are pros and cons to both approaches, as I describe next.

Latency is the amount of time it takes to get from one point in the network to
another. Obviously, latency varies depending on the two points, how far apart they
are, how many hops are between them, and the nature of the media. Three main fac-
tors affect latency: bandwidth, physical distance, and queuing time.

Bandwidth affects latency in a simple way. If the link can support a certain number
of bits per second, then that is how many bits a device can inject per second into the
link medium. It takes 10 times as long to inject a packet onto a 10Mbps Ethernet as
it does onto a 100Mbps Fast Ethernet segment. There are exceptions to this rule for
media that support carrying several bits at once in parallel. But parallel media are
fairly uncommon.

Physical distance also affects latency in a simple way. The further the packet has to
fly, the longer it takes. This time of flight component to latency is most relevant over
WAN links, since it is governed by the speed of light in the transmission medium.
The speed of light in fiber optic cable is governed by the refractive index of the
medium. For glass, this index is about 1.5, so the speed of light in optical fiber is
about 2/3 of its value in vacuum. In wire, the speed is somewhat slower than this,
although the actual speed varies depending on the kind of cable. This effect may
sound small, and usually it is for LAN- and campus-sized networks, but for WAN
links it can be a large part of the total latency. The distance from New York to Los
Angeles is about 4000 km. So the one-way time of flight for a signal through optical
fiber is about 20 milliseconds. Signals sent around the world suffer significantly
larger time-of-flight delays. Finally, queuing time introduces an additional random
component to network latency, as I discussed earlier in the section “Hop Counts.”

Jitter is the packet-by-packet variation in latency. Of the three components to latency
that I just mentioned, only the queuing time is subject to change. So this is the main

Quality of Service and Traffic Shaping | 255

4~ ~4]e




é ,ch08.25203 Page 256 Friday, November 9, 2001 12:27 PM

factor in causing jitter. If the latency is changing very gradually, then it will not gen-
erally cause serious application problems. The most noticeable jitter issues happen
when the latency of one packet is significantly different from the latency of the next
packet following it in the same data stream. This is what causes skips, pops, and fro-
zen frames in audio and video applications. So jitter is defined as the difference in
latency between any two successive packets, as opposed to a general difference or
standard deviation from the mean latency.

As T mentioned, the main cause of jitter is queuing. So devices need to be careful
with how they handle queuing of data streams for jitter-sensitive applications. Basi-
cally, they should queue the packets as little as possible in these sensitive data
streams.

Normally routers set up their queues so that whenever one of these jitter-sensitive
packets arrives, it simply sends it to the front. Equivalently, they can give this appli-
cation its own queue to ensure that other applications do not interfere. As long as the
application doesn’t send a sudden burst of packets to cause congestion within its
own flow, the jitter should be minimal.

The final performance parameter is the number of dropped packets. Obviously the
goal is to drop as few packets as possible. But there are times when the amount of
data transmitted through the network is simply greater than what it can carry.
Devices can only buffer for so long before they have to start throwing some data
away.

Systematically dropping excess packets is also called policing. It is important that it
be done fairly. Low-priority data should be dropped before high priority. But some
high-priority data is extremely sensitive to jitter. In these cases, it may be better to
drop the packet than to hold it in a buffer until it can be transmitted. Controlling
how and when devices decide to drop packets is critical to maintaining any QoS cri-
teria on a network.

QoS Basics

QoS implementations come in three functional flavors. Any real network implement-
ing a QoS system generally uses more than one of these.

The first option is that the network can do nothing to discriminate between different
applications. This is called Best Efforts Delivery. The second functional flavor is
called Preferential Delivery. In this case, network devices define certain applications
as more important than others and give them precedence whenever they encounter
congestion. The final option, called Guaranteed Delivery, allows the network to
reserve a guaranteed minimum bandwidth through the network for each important
application.

In Best Efforts Service, packets are transmitted through the network if there is suffi-
cient capacity. If congestion occurs along the path, then the packet may be dropped.

256 | Chapter8: Elements of Efficiency

4~ ~4]e



é ,ch08.25203 Page 257 Friday, November 9, 2001 12:27 PM

Note that Best Efforts is not necessarily the same thing as First In First Out (FIFO).
FIFO is a queuing strategy in which the router deals with packets in the order in
which they are received. There are several other possible queuing (sometimes called
scheduling) algorithms. For example, many routers use Fair Queuing or Weighted
Fair Queuing algorithms instead of FIFO.

Preferential Delivery requires the network engineer to make certain decisions about
which applications are more important than others. For example, an FTP file trans-
fer might be considered low priority, since it is effectively a batch-mode bulk trans-
fer. An interactive business-critical application, on the other hand, would have a high
priority.

Generically, Preferential Delivery means that if a device is dropping packets, it will
drop low priority first. If it delivers packets, it delivers the high priority first. As I
describe later in this chapter, the delivery priority could be different from the drop
precedence.

Preferential Delivery does not mean that devices have to use any particular queuing
strategy. Standard FIFO queuing is probably not going to provide a terribly effective
way of implementing Preferential Delivery, but Weighted Fair Queuing is certainly a
reasonable option. However, one can also implement a Preferential Delivery mecha-
nism simply by sorting the various priority data streams into their own FIFO queues.

The Guaranteed Delivery service model means that each application is allocated a
certain minimum amount of bandwidth through the network. There are different
ways of implementing this bandwidth guarantee.

In some cases, the different applications have different reserved bandwidths through
certain links. Whether an application uses its reserved minimum or not, that band-
width is set aside for it. In other implementations, the specific applications have
reserved bandwidths, but if they do not use it, other applications can borrow from
the unused pool.

Some implementations allow each application a certain minimum bandwidth plus an
option to burst above it if there is excess capacity. In this case, it is common to spec-
ify that packets sent using this burst capacity can be dropped if they encounter
congestion.

One particularly interesting implementation of Guaranteed Delivery is the so-called
Virtual Leased Line (VLL). In this case, the application is guaranteed a minimum and
a maximum bandwidth with no congestion, no dropping, and minimal jitter. VLL is
often implemented in conjunction with a tunnel, making the VLL look like a realis-
tic dedicated link to the routers.

In general, Guaranteed Delivery allows the designer to specify not only bandwidth
but also latency and jitter limitations. This specification is necessary for real-time
interactive applications such as voice and video. In these applications, the data
stream is usually almost constant, and jitter is intolerable.

Quality of Service and TrafficShaping | 257

4~ ~4]e




é ,ch08.25203 Page 258 Friday, November 9, 2001 12:27 PM

*

The queuing mechanisms required to accomplish this are naturally more complex
than the algorithms that T have discussed so far. They all involve setting up different
queues for the different data streams and then servicing these queues appropriately.
To minimize jitter, each queue has to be serviced on a timer instead of whenever the
router gets around to it.

Layer 2 and Layer 3 QoS

So far, everything 1 discussed has left the actual implementation fairly generic. In
principle, you can implement the QoS functionality at either Layer 2 or Layer 3.

The advantage to Layer 3 is, of course, that you can set a priority parameter in the
Layer 3 packet header and have it visible at every hop through the network. This
results in a good end-to-end QoS implementation and allows you to ensure consis-
tent application behavior throughout the network.

Setting a parameter at Layer 3 tells the network very little about how it should actu-
ally handle this packet as it is routed from one media type to another.

There are also Layer 2 QoS features. Token Ring has the ability to send high-priority
frames preferentially to lower priority frames. ATM has extremely sophisticated QoS
functionality that allows you to specify sustained and burst rates directly, for exam-
ple. Ethernet, on the other hand, has no native QoS functionality. However, Ether-
net VLAN tags can specify a Class of Service value to affect how the frames in trunks
are handled at each subsequent switch.

Over network regions that involve hopping from one segment to another via Layer 2
switches, you need a Layer 2 QoS implementation. This implementation allows you
to specify how the switches handle the frames.

Meanwhile, a network needs Layer 3 QoS to allow consistent handling of packets as
they pass through routers. Ideally, the Layer 3 information should be used to gener-
ate Layer 2 QoS behavior.

When a router receives a packet that has a high Layer 3—priority indication, it should
use this information at Layer 2 in two ways. First, it should copy this information
appropriately into the Layer 2 header so other Layer 2 devices can handle the packet
properly. Second, it should select the appropriate Layer 2 QoS functionality when
delivering the packet.

Buffering and Queuing

When a router receives a packet to pass along from one network to another, it often
cannot transmit immediately. The medium may be in a busy state. For example, it
could be an Ethernet segment on which another device is already talking. Or, the
outbound port may already be busy sending another packet.

258 | Chapter8: Elements of Efficiency

%

ﬁ

*@%



é ,ch08.25203 Page 259 Friday, November 9, 2001 12:27 PM

*

When a packet cannot be forwarded because of a temporary situation like this, it is
usually best if the router holds onto it for a short time until it can send it along. This
is called buffering. The packet is copied into the router’s memory and placed in a
queue to be transmitted as soon as possible.

There are several different kinds of queues. The simplest, which I have already men-
tioned earlier in this chapter, is a FIFO queue. A router using FIFO queuing simply
puts all of the packets for a particular outbound physical interface in one place and
sends them in the order they were received. FIFO queues are conceptually simple
and may seem to treat all applications fairly, but in fact there are serious problems
with FIFO queues when the network becomes busy.

Many bulk file-transfer applications, such as FTP or HTTP, have the property of
sending data as fast as the network can accept it. When this data hits a bottleneck or
congestion point in the network, it fills up the router’s input queue until the router
has to start dropping packets. Then the application backs off until it matches the
available capacity of the network. Unfortunately, if other less-aggressive applications
try to use the same network, their packets are also dropped when the queue fills up.
Thus, FIFO queuing tends to favor the aggressive applications.

The worst part is that these aggressive applications are relatively time insensitive.
The low-rate data flows that are choked off are often used for interactive real-time
applications. Thus, FIFO queuing has the worst possible behavior in this situation.
To get around this problem, other more sophisticated queuing algorithms have been
developed. One of the most popular algorithms is called Fair Queuing.

In Fair Queuing, the router breaks up the incoming stream of packets into separate
conversations and queues these conversations separately. Then the router takes
packets from each queue in a simple rotation. It can take either a single packet at a
time from each queue or, alternatively, a group of packets up to a certain predefined
number of bytes.

Weighted Fair Queuing is a slight modification to this algorithm. Instead of picking
equally (by number of packets or bytes) from each queue, the router assigns a weight
to each queue. This weight can be based on any of a large number of different
parameters such as the rate at which packets are received into the queue or the sizes
of the packets. It can also be associated with formal priority markings such as IP Pre-
cedence or DSCP. In this way, Weighted Fair Queuing actually spans the gap
between Best Efforts and Preferential Delivery service modes.

By breaking up the incoming stream of packets into individual conversations, Fair

Queuing algorithms ensure that no one application can take all of the available band-
width.

Returning to the FTP file-transfer example with Fair Queuing, the packets in this file
transfer go into their own queue. If that queue fills up, then the router drops only
FTP packets, but the other traffic streams are unaffected. When the FTP application

Quality of Service and TrafficShaping | 259

%

ﬁ

*@%



é ,ch08.25203 Page 260 Friday, November 9, 2001 12:27 PM

notices that packets have been dropped, it slows down the rate that it sends data. In
this way, Fair Queuing and Weighted Fair Queuing prevent any one data stream
(usually called a flow) from taking over the network.

Another Queuing option commonly used with Preferential Delivery is called Priority
Queuing. This term means that each incoming packet is categorized by some rule
and put into a queue. There will usually be a small number, perhaps as many as five
of these queues, ranging in priority from high to low. The router services these differ-
ent queues, taking packets preferentially from the high-priority queues.

This servicing is typically done by specifying a maximum number of bytes or packets
to take in each pass from each queue, with the highest priority receiving the best ser-
vice. In the most extreme version, the first priority queue is emptied before the sec-
ond priority queue is considered. However, this process is usually just a recipe for
ensuring that low priority traffic is not delivered at all.

You should be aware of three main problems with any Priority Queuing model. First,
because every packet must be examined to determine its priority, high CPU loads on
routers can occur. Care must be taken in limiting which routers need to do this
examination and in making the test as simple as possible. Preferably, it should be
based on just the IP TOS or DSCP field, which is described later in this chapter.

The second problem is that a straight-priority queue model allows different traffic
flows within each priority grouping to interfere with one another. Effectively, each
individual queue is a FIFO queue. Thus, it is important to understand how the appli-
cation traffic flows work before selecting an implementation. If there is potential for
one conversation within an application group to choke off the others in that group,
then Priority Queuing is not appropriate.

The third problem happens when devices have too many different priorities. Each
packet must be examined and compared to some criteria to find the appropriate pri-
ority. If there are many different priorities, then there are many different tests to per-
form on each packet, which results in high-router CPU load during peak traffic
periods.

Also, using too many different priorities may divide the available bandwidth into too
many pieces. This division then leaves each queue with a tiny amount of useful band-
width, so it is always congested.

Suppose, for example, that a network has to support one extremely important appli-
cation and eight less-important applications, all of which compete for a small
amount of bandwidth. Each time the router services the high-priority queue, it grabs
two packets. It then delivers one packet from each of the eight low-priority queues.
In this example, the router winds up delivering four lower-priority packets for every
high-priority packet. This situation clearly becomes worse the more queues each
device has.

260 | Chapter8: Elements of Efficiency

- ad




é ,ch08.25203 Page 261 Friday, November 9, 2001 12:27 PM

*

Furthermore, the more different queues the router has to service, the longer it takes to
get back to the high-priority queue. This delay results in serious jitter problems, since
there is a large random element in how long it will take to deliver any given packet.
Thus, it is crucial to keep the number of different priorities as small as possible.

Integrated and Differentiated Services

The Internet Engineering Task Force (IETF) has specified two different standards for
IP QoS. These standards are called Integrated Services (intserv) and Differentiated
Services (diffserv).

The basic idea of intserv (also called IS in some documents) is to allow applications
to request resources such as bandwidth or latency characteristics from the network.
The network then keeps track of this individual conversation and ensures that it
always has the reserved resources.

Although it is not required, the most common way to implement this resource
request uses ReSerVation Protocol (RSVP). The end stations taking part in the user
application use RSVP to request a specific performance characteristic from the net-
work. RSVP is discussed later in this chapter.

The network then maintains state information about the individual conversations
(called flows). This maintenance has an enormous overhead in a large network with
thousands of simultaneous conversations. Therefore, it is not usually practical in the
Core of a large network.

Integrated Services attempts to get around this scaling problem by allowing the net-
work to aggregate the flows. In a complex network, allowing any-to-any communica-
tion, this aggregation poses further problems if it is done dynamically. In a
hierarchical network, it should be possible to aggregate flows successfully at least on
the in-bound direction to the Core of the network.

Differentiated Services takes a simpler approach to the same problem. By taking over
the seldom-used TOS byte in the header of the IP packet, it defines an end-to-end
priority. This priority value, called the Differentiated Services Control Point (DSCP),
specifies how each router along the path will treat the packet.

Each router along the path reads this DSCP value. This step is easy for the routers
because the information is stored in a single byte in the IP header. The DSCP value
tells each router how to forward the packet, specifying a Per-Hop Behavior (PHB).
There are standard PHB profiles that the router can follow. But the network engi-
neer can configure the routers manually to interpret specific DSCP values differently.

Two standard flavors of PHB have been defined for Differentiated Services. These fla-
vors are called Expedited Forwarding and Assured Forwarding, although the names
are somewhat misleading. Assured Forwarding (AF) does not imply guaranteed

Quality of Service and TrafficShaping | 261

%

ﬁ

*@%



é ,ch08.25203 Page 262 Friday, November 9, 2001 12:27 PM

*

delivery as the name might suggest, but expedient delivery according to priority lev-
els. Conversely, Expedited Forwarding (EF) is not merely expedient, as it does pro-
vide service assurances.

There are three main differences between the Integrated and Differentiated Services
models for QoS:

* Integrated Services must maintain state information about individual traffic
flows. Conversely, Differentiated Services combines all traffic of a particular
type, which results in much better scaling properties for Differentiated Services
in large networks.

* To set up a nondefault forwarding behavior, Integrated Services uses an external
protocol such as RSVP reserve network resources. This is done on a per-conver-
sation basis. It also works well with multicast data streams. Differentiated Ser-
vices allows the end stations to define the way each individual packet is handled.
This definition is done by setting the DSCP byte in the IP header of each packet.
The network can optionally change this value if it is not appropriate.

* Because Differentiated Services defines the handling properties of each packet by
referring to the DSCP byte in the header, it can handle path failure and path
redundancy situations transparently. Integrated Services, on the other hand,
needs the robust path-tracking features of RSVP to cope well with multiple paths
or with changes in path routing through the network. Even with these capabili-
ties, however, there is a significant probability of losing reserved resources when
the path changes.

Assured Forwarding in Differentiated Services

The Assured Forwarding standard for Per-Hop Behavior Differentiated Services is
defined in RFC 2597. In AF, two basic properties define how each packet will be
forwarded. The standard defines four Classes and three different values for Drop
Precedence.

The Class value is essentially a forwarding priority. Packets with the same Class
value are all queued together. The standard requires that the packets of individual
conversations be forwarded in the same order that they are received, as long as they
are all of the same Class.

The most common way to implement AF is to give a separate queue to each Class.
This allows the network to ensure that flows from different Classes do not interfere
with one another. It also permits higher-priority Classes to receive more bandwidth
from the network by increasing the amount of data taken from the more important
queues each time the router takes packets from them.

In addition to the four Classes, AF defines three different types of Drop Precedence.
This number simply tells the router which packets to drop first in case of conges-
tion. When the Class queue fills up and the router needs to start dropping packets,

262 | Chapter 8: Elements of Efficiency

%

ﬁ

*@%



é ,ch08.25203 Page 263 Friday, November 9, 2001 12:27 PM

*

the ones with lower Drop Precedence values are protected. The router should scan
through the queue and drop the packets with the highest Drop Precedence values
first. If dropping the packets does not alleviate the congestion problem, then the
router should drop all of the next-highest Drop Precedence packets before dropping
the ones with the lowest Drop Precedence values.

In this way, AF can give important data streams better treatment as they pass
through the network. Note, however, that AF does not necessarily guarantee a par-
ticular fraction of the total bandwidth for any one Class. It also doesn’t give guaran-
teed end-to-end performance characteristics for specific data flows. Furthermore, it
does not have the ability to give direct control over parameters such as jitter or band-
width. It is merely a method for providing Preferential Delivery.

Expedited Forwarding in Differentiated Services

The Expedited Forwarding standard for PHB Differentiated Services is defined in
RFC 2598. The basic goal of EF is to provide guaranteed service characteristics such
as bandwidth, latency, and jitter.

One type of proposed EF implementation is the Virtual Leased Line (VLL). This
implementation is essentially a reserved chunk of bandwidth through a network cou-
pled with a queuing mechanism that restricts jitter. As with a real leased line, how-
ever, a VLL cannot handle any traffic in excess of its bandwidth limits. If an
application tries to send packets too quickly, they will be dropped. Thus, EF is usu-
ally used in conjunction with some sort of Traffic Shaping.

IP TOS and Diffserv DSCP

The TP standards foresaw the need for specifying Quality of Service as long ago as
1981 in RFC 791. This document defines the current standard IP (IPv4) packet for-
mat and includes a byte called Type of Service (TOS). As QoS requirements and
technology grew more sophisticated, this field has been replaced by the Distributed
Services Control Point (DSCP), which includes significant backward compatibility
with the older standard.

The TOS or DSCP value is typically set by the end devices. If an application knows
that it needs special priority through the network, then it is able to set the appropri-
ate value in each packet separately to affect how the network handles it. The net-
work, however, is generally free to alter these values if they are not appropriate. If
network devices change TOS or DSCP values, however, you should be careful about
where it is done.

As T discussed elsewhere in this chapter, there is a lot of CPU overhead in categoriz-
ing and marking packets. Thus, the network should do it as little as possible. That
usually means that it will mark the packets with the appropriate TOS or DSCP val-
ues as the packets enter the network. The first router they encounter should be the

Quality of Service and Traffic Shaping | 263

%

ﬁ

*@%



é ,ch08.25203 Page 264 Friday, November 9, 2001 12:27 PM

*

only one making this change. Then the packets can traverse the network, enjoying
the appropriate service level at each hop. If they leave this network and enter
another, then they might be marked again with a different value.

The original standard for the format of the TOS field is defined in RFC 791. It breaks
the 8-bit field into 2 3-bit sections. The first three bits specify the Precedence, and
the second three specify a particular vision of PHB. The final two bits were desig-
nated as unused and set aside for future requirements. The approximate service types
defined in Table 8-1 became the standard IP Precedence values.

Table 8-1. Standard IP Precedence values

IP Precedence Decimal value  Bit pattern
Routine 0 000
Priority 1 001
Immediate 2 010
Flash 3 011
Flash Override 4 100
Critical 5 101
Internetwork Control 6 110
Network Control 7 m

The Internetwork Control value, 110, is reserved for network purposes such as rout-
ing protocol information. The highest-precedence value, Network Control, 111, is
intended to remain confined within a network (or Autonomous System). Any of the
other values can be freely assigned to specific user applications.

The third through sixth bits separately designate the required delay, throughput,
and reliability characteristics, respectively. If the bit had a value of 0, then it could
tolerate a high delay, low throughput, or low reliability. If the bit had a value of 1,
then the packet needs a low delay, high throughput, or high reliability. The stan-
dard recommends setting only two of these parameters at a time, except in extreme
situations.

In RFC 2474, these definitions were updated to allow them to work with Distributed
Services. The TOS byte was renamed the DS byte. It was again broken into a 6-bit
component, the DSCP, and two unused bits.

The 6-bit DSCP is broken into two 3-bit sections. The first three bits define the
Class, and the last three define the PHB. This definition is done to help provide back-
ward compatibility with networks that implement IP Precedence in the older TOS
format. To create the four different Classes and three Drop Precedence values for
Assured Forwarding, RFC 2597 defines the bit patterns as shown in Table 8-2.

264 | Chapter8: Elements of Efficiency

%

ﬁ

*@%



é ,ch08.25203 Page 265 Friday, November 9, 2001 12:27 PM

*

Table 8-2. Assured Forwarding DSCP values

Drop Precedence Class1  Class2  Class3  Class4
Lowest Drop Precedence 001010 010010 011010 100010
Medium Drop Precedence 001100 010100 011100 100100
Highest Drop Precedence 001110 010110 011110 100110

It is easy to see from Table 8-2 that the first three bits define the Class and the last
three bits define the Drop Precedence. With three bits, it is possible to define several
more Classes than the four defined in the standard. Specifically, the values 000, 101,
110, and 111 are all unused in Assured Forwarding. The Class values 110 and 111
are reserved for network purposes such as routing protocol information. Thus, these
values are not available for general users. By default, any packet with a Class value of
000 is to be given a Best Efforts level of service. However, there is room for introduc-
tion of a new Class 5, if it is required. I use this value later when I talk about Expe-
dited Forwarding.

This set of definitions for the AF DSCP is clearly compatible with the older TOS for-
mat. The only difference is that the older definitions of delay, throughput, and reli-
ability are replaced with a new two-bit pattern indicating drop precedence. The last
bit is always equal to zero.

There is only one defined DSCP value for EF. RFC 2598 recommends using the value
101110 for this purpose. Note that this is the obvious extension to the values in
Table 8-2. Since EF offers service guarantees that are not available in AF, it is in some
sense a higher priority. One additional Class value is available before reaching the
reserved values—the value 101, which would be Class 5. At the same time, since
packets designated for EF should not be dropped, they have the highest drop prece-
dence value, 110. This value inherently means that only one type of EF is available.

A network can’t have, for example, two flavors of EF—one with low and the other
with high reserved bandwidth. If this separation is required, the best strategy is to
define additional Control Point values and configure the routers to recognize them.
In this case, it is better to fix the first three bits at 110 and use the second three bits
to specify the different forwarding characteristics. However, it is important to
remember that devices on other networks (such as the public Internet) will not rec-
ognize these parameters and may not handle the packet as delicately as you would

like.

Traffic Shaping

Traffic Shaping is a system for controlling the rate of data flow into a network. Net-
works often use it in conjunction with other QoS mechanisms.

There are two main ways to control the rate of flow of traffic. A device can either
throw away packets whenever the specified rate limit is reached, or it can buffer

Quality of Service and Traffic Shaping | 265

4~ 4

*@%




é ,ch08.25203 Page 266 Friday, November 9, 2001 12:27 PM

*

packets and release them at the specified rate. The process of discarding packets that
exceed a bandwidth parameter is usually called policing. Saving packets for future
transmission is called buffering.

In any real-world application, of course, it is necessary to do both policing and buff-
ering. If an application persistently sends data at twice the rate that the network can
forward it, then it doesn’t matter how many packets are put into the buffer because
the network simply can’t send them all along. If the traffic flow is characterized by a
number of short bursts, then network devices can easily buffer the bursts to smooth
them out—provided, of course, that the time average of the traffic rate is less than
the available output bandwidth.

Traffic Shaping can be done either on an entire pipe of incoming data or on individ-
ual data flows. Usually, network designers implement Traffic Shaping only at net-
work bottlenecks and at input points into the network.

EF is a good example of a place where Traffic Shaping needs to be used in conjunc-
tion with a QoS mechanism. The EF model specifies a certain sustained bandwidth
level that the data flow is allowed to use. If an application exceeds this flow rate,
then the excess packets are dropped. The best way to implement such a service is to
ensure that the data stream entering the network is restricted to less than the
reserved bandwidth. This data flow may enter the network from a user segment
within the network, in which case the first router the traffic encounters does the traf-
fic shaping.

Dropping packets, while undesirable, is not a completely bad thing in a network.
Many protocols such as TCP have the ability to notice when they start losing pack-
ets because every packet has a sequence number. If packets do not follow in
sequence then the end devices usually wait a short time to see if the missing packet
will eventually arrive. When this time has elapsed, the receiving device sends a notifi-
cation to the sending device to tell it about the missing packet.

When this happens, the sender assumes that the network has a reliability problem,
and it reduces the number of packets it will send before it gets an acknowledgement
(the TCP Window). Reducing the packets also reduces the amount of bandwidth
that the application consumes.

By dropping TCP packets, the network can effectively control the rate that the appli-
cation sends data. It tends to back off until it no longer sees dropped packets. This
data-flow rate is exactly equal to the preset Traffic Shaping limit.

However, not all applications behave as well as TCP when they suffer from dropped
packets. For example, UDP packets generally do not need to be acknowledged.
Thus, UDP applications may not respond properly to traffic shaping. IPX has similar
issues. The connection-oriented SPX protocol can respond to dropped packets by
reducing its windowing, similar to TCP. But other IPX protocols are not so well
behaved.

266 | Chapter8: Elements of Efficiency

%

ﬁ

*@%



é ,ch08.25203 Page 267 Friday, November 9, 2001 12:27 PM

*

In general, it is a good idea to monitor applications that use heavily policed links to
ensure that they behave well. If they do not, then you must increase the bandwidth
to reduce the congestion.

Defining Traffic Types

Usually, traffic types are defined by some relatively simple parameters. Generally,
looking at well-known fields within the IP packet header is fairly easy. Thus, these
fields are the main factors used in identifying different traffic types.

In IP packets, five fields are typically used for classifying traffic. These fields are the
source and destination IP addresses, the protocol type (primarily TCP, UDP, and
ICMP), and the source and destination port numbers (for TCP and UDP).

Obviously, this amount of information is limited, but many applications can be eas-
ily identified with some combination of these parameters. Indeed, Fair Queuing
applications use the set of all five fields to identify specific flows uniquely within a
larger data stream.

For example, if a router needs to identify FTP file transfers, it needs only to look for a
TCP protocol packet with either a source or destination port number of 20 or 21
(FTP uses 21 for control and 20 for actual data transfer). Similarly, if there is a large
database server whose traffic needs to be protected, the router can simply look for its
[P address in either the source or destination address field.

Note that in both of these examples the router looked in both the source and destina-
tion fields. This is because, in general, it is necessary to classify both sides of the con-
versation. If the router looks only at the destination address, then it will see the traffic
going to the device with that address, but it will miss all of the traffic coming from it.

Similarly, a TCP session usually begins with a request on a well-known destination
port from client to server. The client includes a dynamically assigned source port
when it places this call. The server then uses this dynamic port number to identify
the destination application when it talks back to the client.

In general, the router doesn’t know which end is client and which end is server.
When looking for a particular TCP port, the usual practice is to look in both the
source and destination fields of a packet.

Some applications are not easily identified. For example, some applications use a
dynamically generated port number. Using this port number can have important
security and programming advantages, but it is extremely difficult for the network to
give this session preferential treatment.

Conversely, some systems group many applications together. In some cases, such as
with the Citrix system, the server passes only screen updates of applications running
on a central server to the user workstation. Passing only screen updates makes it
impossible to tell which packets correspond to which applications.

Quality of Service and TrafficShaping | 267

%

ﬁ

*@%



é ,ch08.25203 Page 268 Friday, November 9, 2001 12:27 PM

*

Citrix also includes the ability to run file transfers. In this case, however, the sys-
tem’s designers were thoughtful enough to include a batch-mode designation for
these data streams and to put the flag specifying this mode in an easily accessible
part of the packet. In this way, the network can at least distinguish between interac-
tive and batch traffic. However, this is not always sufficient granularity.

The same problem occurs in many other network services. For example, it is some-
times necessary to give different Remote Procedure Call (RPC) applications different
priorities. However, the fact that they all use the same basic Layer 4 architecture
makes this difficult. In fact, this problem exists for any application built at a higher
layer on the protocol stack. For programmers, building a new application on stock
networking Application Program Interface (API) calls such as RPC can be extremely
useful. If all of these applications wind up using the same TCP port numbers, it
becomes hard to distinguish between them.

This distinction might be necessary for security reasons, as well as QoS reasons. For
example, blocking Java code from being downloaded from certain web pages might
be useful. However, blocking the code requires that the router distinguish between
different types of URL information within a single web page. To the router, it all just
looks like an HTTP connection.

One partial solution to this problem (there can never be a completely general solu-
tion because of the nature of the problem) is Cisco’s proprietary Network-Based
Application Recognition (NBAR) software. NBAR works with a set of specific Packet
Description Language Module (PDLM) modules that tell the router how to find
higher-layer information in the IP packet. When using NBAR to distinguish two
applications that both use the same Layer 4 information, the router must have the
appropriate PDLM module loaded. The PDLM modules then allow the router to dis-
tinguish between applications that use the same network layer information.

This information can then be applied to Access lists in the same way that Layer 3
information can be isolated. Once the information is accessible to an Access list, it is
relatively easy to use it to set the DSCP or TOS bits in the IP header. The packet can
then pass through the network with the appropriate QoS behavior.

The other parameter that is often used to define QoS classes is the size of the packet.
Real-time applications such as packetized voice or video systems will often use a very
small packet size. Small packets can usually be delivered with lower latency. If the
data segment of a packet represents a constant amount of information, then it fol-
lows that a longer packet contains more data. Thus, a longer packet also represents a
longer time period when capturing sound or video samples. If the application has to
wait a longer time to fill up a packet before it is sent, then this clearly results in a
higher latency.

Real-time applications often use shorter packets than low-priority batch-mode appli-
cations. For this reason, some networks give preferred treatment to smaller packets.

268 | Chapter8: Elements of Efficiency

%

ﬁ

*@%



é ,ch08.25203 Page 269 Friday, November 9, 2001 12:27 PM

RSVP

ReSerVation Protocol (RSVP) is an IP protocol that allows end devices to request
particular resource characteristics from the network. It is a control protocol similar
in concept to ICMP, so it does not carry the data stream. Instead, it just reserves the
resources.

The general concept is that an end device requiring certain network resources will
send an RSVP packet through the network. This is an IP packet whose destination is
the other end device taking part in the application conversation. The packet passes
through the network, hop by hop. Each intermediate router reads the packet and
allocates the appropriate resources, if possible.

If a router is unable to comply with the request, it responds back down the path with
a packet indicating that the request has been refused. All intermediate routers again
read the packet and release the resources. If the router is willing and able to reserve
the resources for this application, it passes the packet along to the next device along
the path.

If the RSVP request goes through the entire network, the end device responds with a
message indicating that the request has been granted.

One clear problem with this model is that most good network designs don’t have a
single unique path between any two points. One of the main design principles is to
use multiple-path redundancy.

RSVP includes elaborate methods for rerouting the reserved path in case of a net-
work failure. When the routing table in a router in the middle of the network
changes, it attempts to establish a new reserved path using the new routing informa-
tion. Also, RSVP uses a periodic system to verify that the reserved resources are still
available.

If a network failure forces a change in path, then the new path may refuse to grant
the reservation request. In fact, this refusal is quite likely because the new path may
suddenly find itself carrying a heavy additional load. Under these circumstances, it
probably will not allow new reservation requests.

Thus, the application may suddenly lose its reserved resources without losing actual
network connectivity. In a large network, this loss tends to result in considerably
less-stable performance than the simpler Differentiated Service model.

Another problem arises because of multiple redundant paths through a network.
There are two ways to handle redundant paths. If a router handling an RSVP request
notices that it has more than one possible way to get to the destination, it could
reserve bandwidth on both paths and forward the RSVP request to downstream
next-hop devices. Or, it could select one of the paths and use it for the application.

Quality of Service and TrafficShaping | 269

4~ ~4]e




é ,ch08.25203 Page 270 Friday, November 9, 2001 12:27 PM

*

The first case is clearly inefficient because the application reserves resources that it
will not use. If the router shares the load among all possible paths, then reserving the
full bandwidth requirement on each path individually is inefficient.

On the other hand, if the router deliberately selects only one of the possible paths for
this traffic stream, then it loses one of the key advantages to a highly redundant
design philosophy. Worse still, the highest level of fault-tolerant redundancy is used
only for the lowest-priority traffic.

The only alternative is to have the RSVP protocol actively track all possible paths
through the network. In doing so, it must have an accurate model for how effec-
tively the network can share loads among these paths. This level of tracking is not
practical in a large network.

Network-Design Considerations

The best QoS implementations readily break up into two functional parts. The first
router a packet encounters upon entering the network should set its TOS or DSCP
field. Then the rest of the devices in the network only need to look at this one field to
know how to treat this packet.

There is a very simple reason for this division of labor. The process of reading and
classifying packets can be extremely CPU intensive, so the network should do it only
once.

Furthermore, when getting closer to the Core of a hierarchical network, one expects
to see more traffic. The easiest place to do the classification is at the edge. In many
cases, the edge router is in a unique position to do this classification. For example, if
the edge router runs any sort of tunneling protocol, such as DLSw, then it can see
application information in the packet before it is encapsulated into the tunnel proto-
col. This fact is even truer when the edge device encrypts the packet contents, as in a
VPN architecture.

In this case, there is essentially no way to differentiate between applications after the
packet is encrypted. The only practical place to do the classification is the edge
router. Then, once the packet enters the network, it needs a design that permits
treating the different traffic classes appropriately. In an Integrated Services imple-
mentation, the design must be built to respond to RSVP requests.

RSVP suffers from efficiency problems when many paths run through the network.
Because it requires every router to keep track of all reserved data flows, it does not
scale well to large networks. However, there is a relatively straightforward way of
getting around this problem.

It is possible to use Integrated Services only at the edges of the network and build the
Core with Differentiated Services. The key to making this possible is in the flow-
aggregation properties of Integrated Services. These properties specify that the

270 | Chapter 8: Elements of Efficiency

%

ﬁ

*@%



é ,ch08.25203 Page 271 Friday, November 9, 2001 12:27 PM

*

network is allowed to group a set of flows together if they all have similar properties
and then treat them all at once. That principle is good in theory, but Differentiated
Services is usually limited to either Assured or Expedited Forwarding. Thus, you
have to be careful about how you map specific RSVP requests to DSCP values and
how you implement the Per-Hop Behavior.

An obvious way to make a gateway between an Integrated Services edge and a Differ-
entiated Services Core is through EF. EF allows explicit reservation of bandwidth up
to and including VLL implementations.

Note that this reservation implies that the network must aggregate an arbitrary num-
ber of reserved bandwidth flows. Thus, it is possible to oversubscribe the bandwidth
that has been reserved in the Core. However, if oversubscription occurs, the router
that acts as the gateway between the Integrated and Differentiated Services regions
simply refuses any further RSVP requests.

For packets passing through Differentiated Services networks, there are many ways
to implement the required traffic-flow characteristics. The simplest method is to use
Weighted Fair Queuing on every router in the Core.

This method does not strictly meet the requirements of either EF or AF PHB models
because it does not have the prescribed drop precedence characteristics. However,
Weighted Fair Queuing does allow the different flows to be weighted according to
the DSCP Class (or TOS IP Precedence, since they are compatible).

If a strict implementation of either EF or AF is not required, this implementation is
much easier. If a strict AF model is required, then you must to consult the router
vendor to find out how to turn on this style of queuing.

For EF implementations, on the other hand, you should define the different perfor-
mance criteria carefully. How much bandwidth is reserved? What are the latency and
jitter requirements? These parameters in turn define how the software that services
the queues is configured. Most importantly for EF implementations, how are the dif-
ferent logical paths defined?

If many physical path possibilities exist between two end points (which is a design
philosophy that I strongly advocate), then the designer has to be absolutely clear on
how structures such as VLL will be implemented. Is the VLL only defined along one
path, or is it configured through multiple paths?

In general, I prefer to keep network design as simple as possible. In almost all cases
where QoS is required, I recommend the AF model of Distributed Services. Classifi-
cation is to be done at the edges of the network. Then every other device in the net-
work needs to implement only the appropriate PHB.

If congestion within the network is kept under control, it is rarely necessary to imple-
ment any real bandwidth reservation. For light congestion, there is little or no
observable difference. However, if congestion becomes severe or sustained, then it is

Quality of Service and TrafficShaping | 271

%

ﬁ

*@%



é ,ch08.25203 Page 272 Friday, November 9, 2001 12:27 PM

usually easier to increase the bandwidth than it is to implement a more strict QoS
system. If there is a serious congestion problem in the network, then implementing
strict bandwidth reservation for one application only makes the congestion problem
worse for every other application using the network.

In any QoS implementation, remember that bandwidth is a finite and limited
resource. All you can with QoS is to allocate it a little more fairly. If there is simply
not enough to go around, then QoS cannot solve the problem.

272 | Chapter 8: Elements of Efficiency

4~ ~4]e



