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Chapter 2CHAPTER 2

Elements of Reliability

Reliability is what separates a well-designed network from a bad one. Anybody can
slap together a bunch of connections that will be reasonably reliable some of the
time. Frequently, networks evolve gradually, growing into lumbering beasts that
require continuous nursing to keep them operating. So, if you want to design a good
network, it is critical to understand the features that can make it more or less reliable.

As discussed in Chapter 1, the network is built for business reasons. So reliability
only makes sense in the context of meeting those business requirements. As I said
earlier, by “business” I don’t just mean money. Many networks are built for educa-
tional or research reasons. Some networks are operated as a public service. But in all
cases, the network should be built for clearly defined reasons that justify the money
being spent. So that is what reliability must be measured against.

Defining Reliability
There are two main components to my definition of reliability. The first is fault toler-
ance. This means that devices can break down without affecting service. In practice,
you might never see any failures in your key network devices. But if there is no inher-
ent fault tolerance to protect against such failures, then the network is taking a great
risk at the business’ expense.

The second key component to reliability is more a matter of performance and capac-
ity than of fault tolerance. The network must meet its peak load requirements suffi-
ciently to support the business requirements. At its heaviest times, the network still
has to work. So peak load performance must be included in the concept of network
reliability.

It is important to note that the network must be more reliable than any device
attached to it. If the user can’t get to the server, the application will not work—no
matter how good the software or how stable the server. In general, a network will
support many users and many servers. So it is critically important that the network
be more reliable than the best server on it.
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Suppose, for example, that a network has one server and many workstations. This
was the standard network design when mainframes ruled the earth. In this case, the
network is useless without a server. Many companies would install backup systems
in case key parts of their mainframe failed. But this sort of backup system is not
worth the expense if the thing that fails most often is connection to the workstations.

Now, jump to the modern age of two- and three-tiered client-server architectures. In
this world there are many servers supporting many applications. They are still con-
nected to the user workstations by a single network, though. So this network has
become the single most important technological element in the company. If a server
fails, it may have a serious effect on the business. The business response to this risk is
to provide a redundant server of some kind. But if the network fails, then several
servers may become inaccessible. In effect, the stability of the network is as impor-
tant as the combined importance of all business applications.

Failure Is a Reliability Issue
In most cases, it’s easiest to think about reliability in terms of how frequently the net-
work fails to meet the business requirements, and how badly it fails. For the time
being, I won’t restrict this discussion to simple metrics like availability because this
neglects two important ways that a network can fail to meet business requirements.

First, there are failures that are very short in duration, but which interrupt key appli-
cations for much longer periods. Second, a network can fail to meet important busi-
ness requirements without ever becoming unavailable. For example, if a key
application is sensitive to latency, then a slow network will be considered unreliable
even if it never breaks.

In the first case, some applications and protocols are extremely sensitive to short fail-
ures. Sometimes a short failure can mean that an elaborate session setup must be
repeated. In worse cases, a short failure can leave a session hung on the server. When
this happens, the session must be reset by either automatic or manual procedures,
resulting in considerable delays and user frustration. The worst situation is when
that brief network outage causes loss of critical application data. Perhaps a stock
trade will fail to execute, or the confirmation will go missing, causing it to be resub-
mitted and executed a second time. Either way, the short network outage could cost
millions of dollars. At the very least, it will cause user aggravation and loss of
productivity.

Availability is not a useful metric in these cases. A short but critical outage would not
affect overall availability by very much, but it is nonetheless a serious problem.

Lost productivity is often called a soft expense. This is really an accounting issue. The
costs are real, and they can severely affect corporate profits. For example, suppose a
thousand people are paid an average of $20/hour. If there is a network glitch of some
sort that sends them all to the coffee room for 15 minutes, then that glitch just cost
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the company at least $5,000 (not counting the cost of the coffee). In fact, these peo-
ple are supposed to be creating net profit for the company when they are working. So
it is quite likely that there is an additional impact in lost revenue, which could be
considerably larger. If spending $5,000 to $10,000 could have prevented this brief
outage, it would almost certainly have been worth the expense. If the outage hap-
pens repeatedly, then multiply this amount of money by the failure frequency. Brief
outages can be extremely expensive.

Performance Is a Reliability Issue
The network exists to transport data from one place to another. If it is unable to trans-
port the volume of data required, or if it doesn’t transfer that data quickly enough,
then it doesn’t meet the business requirements. It is always important to distinguish
between these two factors. The first is called bandwidth, and the second latency.

Simply put, bandwidth is the amount of data that the network can transmit per unit
time. Latency, on the other hand, is the length of time it takes to send that data from
end to end. The best analogy for these is to think of transporting real physical “stuff.”

Suppose a company wants to send grain from New York to Paris. They could put a
few bushels on the Concorde and get it there very quickly (low latency, low band-
width, and high cost per unit). Or they could fill a cargo ship with millions of bush-
els, and it will be there next week (high latency, high bandwidth, and low cost per
unit). Latency and bandwidth are not always linked this way. But the trade-off with
cost is fairly typical. Speeding things up costs money. Any improvement in band-
width or latency that doesn’t cost more is generally just done without further thought.

Also note that the Concorde is not infinitely fast, and the cargo ship doesn’t have
infinite capacity. Similarly, the best network technology will always have limitations.
Sometimes you just can’t get any better than what you already have.

Here the main concern should be with fulfilling the business requirements. If they
absolutely have to get a small amount of grain to Paris in a few hours, and the
urgency outweighs any expense, they would certainly choose the Concorde option.
But, it is more likely that they have to deliver a very large amount cost effectively. So
they would choose the significantly slower ship. And that’s the point here. The busi-
ness requirements and not the technology determine what is the best way.

If the business requirements say that the network has to pass so many bytes of data
between 9:00 A.M. and 5:00 P.M., and the network is not able to do this, then it is
not reliable. It does not fulfill its objectives. The network could pass all of the
required data, but during the peak periods, that data has to be buffered. This means
that there is so much data already passing through the network that some packets
are stored temporarily in the memory of some device while they wait for an opening.
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This is similar to trying to get onto a very busy highway. Sometimes you have to wait
on the on-ramp for a space in the stream of traffic to slip your car into. The result is
that it will take longer to get to your destination. The general congestion on the high-
way will likely also mean that you can’t go as fast. The highway is still working, but
it isn’t getting you where you want to go as fast as you want to get there.

If this happens in a network, it may be just annoying, or it may cause application
timeouts and lost data, just as if there were a physical failure. Although it hasn’t
failed, the network is still considered unreliable because it does not reliably deliver
the required volume of data in the required time. Put another way, it is unreliable
because the users cannot do their jobs.

Another important point in considering reliability is the difference between similar
failures at different points in the network. If a highway used by only a few cars each
day gets washed away by bad weather, the chances are that this will not have a seri-
ous impact on the region. But if the one major bridge connecting two densely popu-
lated regions were to collapse, it would be devastating. In this case one would have
to ask why there was only one bridge in the region. There are similar conclusions
when looking at critical network links.

This is the key to my definition of reliability. I mean what the end users mean when
they say they can’t rely on the network to get their jobs done. Unfortunately, this
doesn’t provide a useful way of measuring anything. Many people have tried to
establish metrics based on the number of complaints or on user responses to ques-
tionnaires. But the results are terribly unreliable. So, in practice, the network archi-
tect needs to establish a model of the user requirements (most likely a different
model for each user group) and determine how well these requirements are met.

Usually, this model can be relatively simple. It will include things like:

• What end-to-end latency can the users tolerate for each application?

• What are the throughput (bandwidth) requirements for each application (sus-
tain and burst)?

• What length of outage can the users tolerate for each application?

These factors can all be measured, in principle. The issue of reliability can then be
separated from subjective factors that affect a user’s perception of reliability.

Redundancy
An obvious technique for improving reliability is to duplicate key pieces of equip-
ment, as in the example of the heavily used bridge between two densely populated
areas. The analogy shows two potential benefits to building a second bridge. First, if
the first bridge is damaged or needs maintenance, the second bridge will still be there

,ch02.24329  Page 17  Friday, November 9, 2001  12:24 PM



This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Elements of Reliability

to support the traffic. Second, if the roads leading to these bridges are well planned,
then it should be possible to balance their traffic loads. This will improve congestion
problems on these major routes.

Exactly the same is true of key network devices. If you duplicate the device, you can
eliminate single points of failure. Using redundancy can effectively double through-
put in these key parts of the network. But, just as in the highway example, neither
benefit is assured. Duplicating the one device that never fails and never needs main-
tenance won’t improve anything. And throughput is only increased if the redundant
equipment is able to load-share with the primary equipment.

These two points are also clear when talking about the car bridge. It may be difficult
to justify spending large amounts of money on a second bridge just because the first
one might one day be flooded out, unless the danger of this failure is obvious and
pressing. Bridges are expensive to build. Besides, if high water affects the first bridge,
it might affect the second bridge as well. In short, you have to understand your
expected failure modes before you start spending money to protect against them.

Similarly, if the access roads to the second bridge are poorly designed, it could be
that nobody will use it. If it is awkward to get there, people will balance the extra
time required to cross the heavily congested first bridge against the extra time to get
to the under-used second bridge.

Finally, if the first bridge is almost never seriously congested, then the financial com-
mitment to build a second one is only justified if there is good reason to believe that
it will be needed soon.

All of these points apply to networks as well. If a network is considered unreliable,
then implementing redundancy may help, but only if it is done carefully. If there is a
congestion problem, then a redundant path may help, but only if some sort of load
balancing is implemented between the old and new paths. If the problem is due to
component failure, then the redundancy should focus on backing up those compo-
nents that are expected to fail. If it is being built to handle future growth, then the
growth patterns have to be clearly understood to ensure that the enhancements are
made where they are most needed.

Redundancy also helps with maintenance. If there is backup equipment in a net-
work, then the primary components can be taken offline without affecting the flow
of traffic. This can be particularly useful for upgrading or modifying network hard-
ware and software.

Guidelines for Implementing Redundancy
Clearly some careful thought is required to implement redundancy usefully. There
are a number of general guidelines to help with this, but I will also discuss instances
where it might be a good idea to ignore these guidelines.
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The first rule of thumb is to duplicate all Core equipment, but don’t back up a
backup.* Figures 2-1 and 2-2 show a typical small part of a large LAN without and
with redundancy, respectively. In Figure 2-2 the Core concentrator and the router
have both been duplicated. There is even a second NIC installed in each of the serv-
ers. What has been accomplished in doing this?

For the time being, I will leave this example completely generic. The LAN protocols
are not specified. The most common example would involve some flavor of Ether-
net. In this case the backup links between concentrators will all be in a hot standby
mode (using Spanning Tree). This is similar to saying that the second highway bridge
is closed unless the first one fails. So there is no extra throughput between the con-
centrators on the user floors and the concentrators in the computer room. Similarly,
the routers may or may not have load-sharing capability between the two paths. So it

* As I will discuss later, there are actually cases where it is useful to back up a backup. If there are good reasons
to expect multiple failures, or if the consequences of such a multiple failure would be catastrophic, it is worth
considering. However, later in this chapter I show mathematically why it is rarely necessary.

Figure 2-1. A simple LAN without redundancy

Basement  computer
room

Desktop system

1st floor

Desktop system

2nd floor

3rd floor

Laser printer

Laser printer

Laser printer

Desktop system

Concentrator

Concentrator

Concentrator

Router Core concentrator

DataData Data

,ch02.24329  Page 19  Friday, November 9, 2001  12:24 PM



This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: Elements of Reliability

is quite likely that the network has gained no additional bandwidth through the
Core. Later, I go into some specific examples that explore load sharing as well as
redundancy, but in general there is no reason to expect that it will work this way.

In fact, for all the additional complexity in this example, the only obvious improve-
ment is that the Core concentrator has been eliminated as a single point of failure.
This may be an important improvement. But it could also prove to be a lot of money
for no noticeable benefit. And if the switchover from the primary to secondary Core
concentrators is a slow or manual process, the network may see only a slight
improvement in overall reliability. You would have to understand your expected fail-
ure modes before you could tell how useful this upgrade has been.

This example looks like it should have been a good idea, but maybe it wasn’t. Where
did it go wrong? Well, the first mistake was in assuming that the problem could be
solved simply by throwing gear at it. In truth, there are far too many subtleties to
take a simple approach like this. One can’t just look at physical connectivity. Most
importantly, be very careful about jumping to conclusions. You must first clearly
understand the problem you are trying to solve.

Figure 2-2. A simple LAN with Core redundancy

Basement  computer
room

Desktop system

1st floor

Desktop system

2nd floor

3rd floor

Laser printer

Laser printer

Laser printer

Desktop system

Concentrator

Concentrator

Concentrator

Router Router

DataData Data

,ch02.24329  Page 20  Friday, November 9, 2001  12:24 PM



This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Redundancy | 21

Redundancy by Protocol Layer
Consider this same network in more detail. Besides having a physical drawing, there
has to be a network-layer drawing. This means that I have to get rid of some of the
generality. But specific examples are often useful in demonstrating general principles.

Figure 2-3 shows the same network at Layer 3. I will assume that everything is Ether-
net or Fast Ethernet. I will also assume a TCP/IP network. The simplest nontrivial
example has two user VLANs and one server VLAN.

I talk about VLANs, routers, and concentrators in considerable detail in Chatpers 3
and 4. But for now it is sufficient to know that a VLAN is a logical region of the net-
work that can be spread across many different devices. At the network layer (the
layer where IP addresses are used to contact devices), VLANs are composed of
groups of devices that are all part of the same subnet (assuming IP networking for
now). Getting a packet from one VLAN to another is the same, then, as sending it
from one IP subnet to another. So the traffic needs to pass through a router.

There are two groups of users, divided into two VLANs. These users may be any-
where on the three floors. All of the servers, however, are on a separate server VLAN.
So, every time a user workstation needs to communicate with a server, it has to send
the packet first to the router, which then forwards the packet over to the server.

Notice in Figure 2-3 how different the diagram looks at the network layer than it did
at the physical layer. It is the same network, but looked at in another complemen-
tary way. There are many different ways to implement the same physical network
logically. This subject will be discussed in depth later in this book because exploit-
ing this flexibility is what network design is all about.

Figure 2-3. A simple LAN with no redundancy—network-layer view
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In Figure 2-3 there are two user VLANs and one server VLAN. These two user seg-
ments are spread throughout the three physical floors in Figures 2-1 and 2-2. So the
users shown in Figure 2-3 could be anywhere in the building. The server VLAN
exists only in the basement and only supports the servers. In theory there is no rea-
son why this VLAN could not also be distributed among all of the concentrators, as
the user VLANs were. But in this example, assume that the servers have been given
their own VLAN.

Data has to pass through the router to get from one VLAN to another. In the physi-
cal-layer diagram (Figure 2-1), the router looks almost like just another server. It is
much harder to see why it should have a backup. But in the network-layer diagram
(Figure 2-3), it becomes the focal point of the whole network. Here is it clear that
this router handles all intersegment traffic. Since the example assumes that the serv-
ers are all on separate segments from the users, essentially all application traffic
except printing will pass through that router.

At the network layer the router is a single point of failure, just as the concentrator was
at the physical layer. If either of these devices stops working, it will disable the entire
network. This is why, in Figure 2-2, I replaced both the router and the concentrator.

I also made some other changes. I didn’t duplicate the concentrators on the floors for
the users, but I did duplicate the trunks connecting them to the basement. Why
would I do this? Actually, there are a few good reasons for this. First, because I dupli-
cated the backbone concentrators in the basement, I need to connect the floor con-
centrators to both of them. This way, if there is a failure of one of the backbone
concentrators, it won’t isolate an entire floor of users. This was the reasoning behind
having a second connection to each of the servers.

Suppose there wasn’t a backup interface on the servers, but the Core concentrators
still duplicated as shown. If either of these concentrators then failed, the network
would lose contact with all of the servers that were connected to that concentrator.
Since all of this redundancy was implemented for these servers, it wouldn’t do much
good if they still had the same single point of failure. In the same way, the trunks
between the Core and floor concentrators have been duplicated so that either Core
concentrator could break without losing contact with the users. But the network
could still lose contact with all of the users on that floor if the local concentrator
failed. So why have I made just the trunks redundant and not the local concentrators?

The answer is that I’m not trying to make the network perfect, just better. There is a
finite probability that any element anywhere in the network might fail. Before intro-
ducing redundancy, the network could lose connectivity to the entire floor if any of a
long list of elements failed: the backbone concentrator, the floor concentrator, the
fiber transceivers on either end of the trunk, the fiber itself. After the change, only a
failure of the floor concentrator will bring down the whole floor. The section “Mean
time between failures” will show some detailed calculations that prove this. But it is
fairly intuitive that the fewer things that can fail, the fewer things that will fail.
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Every failure has some cost associated with it, and every failure has some probability
of occurring. These are the factors that must be balanced against the added expense
required to protect against a failure. For example, it might be worthwhile to protect
your network against an extremely rare failure mode if the consequences are suffi-
ciently costly (or hazardous). It is also often worthwhile to spend more on redun-
dancy than a single failure will cost, particularly if that failure mode occurs with
relative frequency.

Conversely, it might be extremely expensive to protect against a common but incon-
sequential failure mode. This is the reasoning behind not bothering to back up the
connections between end-user devices and their local hubs. Yes, these sorts of con-
nections fail relatively frequently, but there are easy workarounds. And the alterna-
tives tend to be prohibitively expensive.

Multiple Simultaneous Failures
The probability of a network device failing is so small that it usually isn’t necessary
to protect against multiple simultaneous failures. As I said earlier, most designers
generally don’t bother to back up a backup. The section “Mean time between fail-
ures” later in this chapter will talk more about this. But in some cases the network is
so critically important that it contains several layers of redundancy.

A network to control the life-support system in a space station might fall into this
category. Or, for more down-to-earth examples, a network for controlling and moni-
toring a nuclear reactor, or a critical patient care system in a hospital, or for certain
military applications, would require extra attention to redundancy because a failure
could kill people. In these cases the first step is to eliminate key single points of fail-
ure and then to start looking for multiple failure situations.

You’d be tempted to look at anything that can possibly break and make sure that it
has a backup. In a network of any size or complexity, this will probably prove impos-
sible. At some pragmatic level, the designer would have to say that any two or three
or four devices could fail simultaneously.

This statement should be based on combining failure probabilities rather than guess-
ing, though. What is the net gain in reliability by going to another level of redun-
dancy? What is the net increase in cost? Answering these questions tells the designer
if the additional redundancy is warranted.

Complexity and Manageability
When implementing redundancy, you should ask whether the additional complexity
makes the network significantly harder to manage. Harder to manage usually has the
unfortunate consequence of reducing reliability. So, at a certain point, it is quite likely
that adding another level of redundancy could make the overall reliability worse.
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In this example the network has been greatly improved at the cost of an extra con-
centrator and an extra router, plus some additional cards and fibers. This is the other
key point to any discussion of redundancy. By its very definition, redundancy means
having extra equipment and, therefore, extra expense. Ultimately, the cost must bal-
ance against benefit. The key is to use these techniques where they are needed most.

Returning to the reasons for not backing up the floor concentrator, the designer has
to figure out how to put in a backup, how much this would cost, and what the bene-
fit would be. In some cases they might put in a full duplicate system, as in the Core
of the network in the example. This would require putting a second interface card
into every workstation. Do these workstations support two network cards? How
does failover work between them? With popular low-cost workstation technology, it
is often not feasible to do this. Another option might be to just split the users
between two concentrators. This way, the worst failure would only affect half the
users on the biggest floor.

This wouldn’t actually be considered redundancy, since a failure of either floor con-
centrator would still knock out a number of users completely. But it is an improve-
ment if it reduces the probability of failure per person. It may also be an
improvement if there is a congestion problem either within the concentrator or on
the trunk to the Core.

Redundancy is clearly an important way of improving reliability in a network, partic-
ularly reliability against failures. But this redundancy has to go where it will count
the most.

Redundancy may not resolve a congestion problem, for example. If congestion is the
problem, sophisticated load-balancing schemes may be called for. This will be dis-
cussed in more detail in subsequent chapters.

But if fault tolerance is the issue, then redundancy is a good way to approach the
solution. In general it is best to start at the Core (I will discuss the advantages to hier-
archical network topologies later), where failures have the most severe consequences.

Automated Fault Recovery
One of the keys to making redundancy work for fault-tolerance problems is the
mechanism for switching to the backup. As a general rule, the faster and more trans-
parent the transition, the better. The only exceptions are when an automatic
switchover is not physically possible, or where security considerations outweigh
fault-tolerance requirements.

The previous section talked about two levels of redundancy. There was a redundant
router and a redundant concentrator. If the first Core concentrator failed, the floor
concentrators would find the second one by means of the Spanning Tree protocol,
which is described in some detail in Chapter 3. Different hardware vendors have dif-
ferent clever ways of implementing Spanning Tree, which I will talk more about
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later, but in general it is a quick and efficient way of switching off broken links in
favor of working ones. If something fails (a Core concentrator or a trunk, for exam-
ple), then the backup link is automatically turned on to try to restore the path.

Now, consider the redundancy involving the Core router. Somehow the backup
router has to take over when the primary fails. There are generally two ways to han-
dle this switchover. Either the backup router can “become” the primary somehow, or
the end devices can make the switch. Since it is a router, it is addressed by means of
an IP address (I am still talking about a pure TCP/IP network in this example, but
the general principles are applicable to many other protocols).

So, if the end devices (the workstations and servers) are going to make the switch,
then they must somehow decide to use the backup router’s IP address instead of the
primary router’s IP address. Conversely, if the switch is to be handled by the routers,
then the backup router has to somehow adopt the IP address of the primary.

The end stations may realize that the primary router is not available and change their
internal routing tables to point to a second router. But in general this is not terribly
reliable. Some types of end devices can update IP routing tables by taking part in a
dynamic routing protocol such as Routing Information Protocol (RIP). This mecha-
nism typically takes several minutes to complete.

Another way of dealing with this situation at the end device is to specify the default
gateway as the device itself. This method is discussed in detail in Chapter 5. It counts
on a mechanism called proxy ARP to deal with routing. In this case the second router
would simply start responding to the requests that the first router previously handled.

There are many problems with this method. One of the worst is that it generally
takes several minutes for an end station to remove the old ARP entries from its cache
before trying the second router.

It is also possible to switch to the backup router manually by changing settings on
the end devices. This is clearly a massive and laborious task that no organization
would want to go through very often.

Each of these options is slow. Perhaps more importantly, different types of end
devices implement these features differently. That’s a nice way of saying that it won’t
work at all on some devices and it will be terribly slow on others. This leads to a gen-
eral principle for automated fault recovery.

Always let network equipment perform network functions

Wherever possible, the workings of the network should be hidden from the end
device. There are many different types of end devices, all with varying levels of
sophistication and complexity. It is not reasonable to expect some specialized,
embedded system machine for data collection to have the same sophisticated capa-
bilities as a high-end general-purpose server. Further, the network equipment is in a
much better position to know what is actually happening in the network.
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But the most important reason to let the network devices handle automated fault
recovery is speed. The real goal is to improve reliability. And the goal of reliability is
best served by hiding failures from the end devices. After all, the best kind of disaster
is one that nobody notices. If the network can “heal” around the problem before
anything times out and without losing any data, then to the applications and users it
is as if it never happened.

When designing redundancy, automated fault recovery should be one of the primary
considerations. Whatever redundancy a designer builds into the network, it should
be capable of turning itself on automatically. So whenever considering redundancy,
you should work with the fault-tolerance features of the equipment.

Intrinsic versus external automation

There are two main ways that automated fault-recovery systems can be imple-
mented. I will generically refer to these as intrinsic and external. By intrinsic systems,
I mean that the network equipment itself has software or hardware to make the tran-
sition to the backup mode. External, on the other hand, means that some other sys-
tem must engage the alternate pathways or equipment.

An example of an external fault-recovery system would be a network-management
system that polls a router every few seconds to see if it is available. Then, upon dis-
covering a problem, it will run a script to reconfigure another router automatically to
take over the functions of the first router. This example makes it clear that an auto-
mated external system is better than a manual process. But it would be much more
reliable if the secondary router itself could automatically step in as a replacement.

There are several reasons why an intrinsic fault-tolerance system is preferable to an
external one. First, it is not practical for a network-management system to poll a
large number of devices with a high enough frequency to handle transitions without
users noticing. Even if it is possible for one or two devices, it certainly isn’t for more.
In short, this type of scheme does not scale well.

Second, because the network-management box is most likely somewhere else in the
network, it is extremely difficult for it to get a detailed picture of the problem
quickly. Consequently, there is a relatively high risk of incorrectly diagnosing the
problem and taking inappropriate action to repair it. For example, suppose the sys-
tem is intended to reconfigure a backup router to have the same IP address as a
primary router if the network-management system is unable to contact the primary.
It is possible to lose contact with this router temporarily because of an unrelated
problem in the network infrastructure between the management station and the
router being monitored. Then the network-management system might step in and
activate the backup while the primary is still present, thereby causing addressing
conflicts in the network.
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The third reason to caution against external fault-tolerance systems is that the exter-
nal system itself may be unreliable. I mentioned earlier that the network must be
more reliable than any device on it. If this high level of reliability is based on this
lower requirement, it may not be helping much.

So it is best to have automatic and intrinsic fault-recovery systems. It is best if these
systems are able to “heal” the network around faults transparently (that is, so that
the users and applications don’t ever know there was a problem). But these sound
like rather theoretical ideas. Let’s look briefly at some specific examples.

Examples of automated fault recovery

Consider the redundant router shown in Figures 2-2 and 2-4. Suppose that one of
the user workstations shown in the diagram is communicating with one of the serv-
ers. So packets from the workstation are intended for the IP address of the server.
But at Layer 2 the destination address in these packets is the Ethernet MAC address
of the primary router. This router is the default gateway for the VLAN. So it receives
all packets with destination addresses not on the subnet associated with this VLAN,
and it forwards them to the appropriate destination VLAN.

Now, suppose that this primary router’s power supply has failed. Smoke is billowing
out of the back, and it can no longer send or receive anything. It’s gone. Meanwhile,
the secondary router has been chattering back and forth with the primary, asking it
whether it is working. It has been responding dutifully that it feels fine and is able to
continue forwarding packets. But as soon as the power supply failed, it stopped
responding to these queries. After a couple of repeated queries, the secondary router
decides that it must step in to save the day. It suddenly adopts the Ethernet MAC
address and the IP address of the primary on all of the ports that they have in com-
mon. Chapter 3 will discuss the details of how these high-availability protocols work.

Figure 2-4. A simple LAN with redundancy—network-layer view
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The workstation has been trying to talk to the server while all of this is happening. It
has sent packets, but it hasn’t seen any responses. So it has resent them. Every one of
these packets has a destination Ethernet MAC address pointing to the primary router
and a destination IP address pointing to the server. For a few seconds while the sec-
ondary router confirmed that it was really appropriate to take over, these packets
were simply lost. But most applications can handle the occasional lost packet without
a problem. If they couldn’t, then ordinary Ethernet collisions would be devastating.

As soon as the secondary router takes over, the workstation suddenly finds that
everything is working again. It resends any lost packets, and the conversation picks
up where it left off. To the users and the application, if the problem was noticed at
all, it just looks like there was a brief slow-down.

The same picture is happening on the server side of this router, which has been try-
ing to send packets to the workstation’s IP address via the Ethernet MAC address of
the router on its side. So, when the backup router took over, it had to adopt the pri-
mary router’s addresses on all ports. When I pick up the discussion of these Layer 3
recovery mechanisms in Chapter 3, I talk about how to ensure that all of the router’s
functions on all of its ports are protected.

This is how I like my fault tolerance. As I show later in this chapter, every time a
redundant system automatically and transparently takes over in case of a problem, it
drastically improves the network’s effective reliability. But if there aren’t automatic
failover mechanisms, then it really just improves the effective repair time. There may
be significant advantages to doing this, but it is fairly clear that it is better to build a
network that almost never appears to fail than it is to build one that fails but is easy
to fix. The first is definitely more reliable.

Fault tolerance through load balancing

There is another type of automatic fault tolerance in which the backup equipment is
active during normal operation. If the primary and backup are set up for dynamic
load sharing, then usually they will both pass traffic. So most of the time the effec-
tive throughput is almost twice what it would be in the nonredundant design. It is
never exactly twice as good because there is always some inefficiency or lost capacity
due to the load-sharing mechanisms. But if it is implemented effectively, the net
throughput is significantly better.

In this sort of load-balancing fault-tolerance setup, there is no real primary and
backup system. Both are primary, and both are backup. So either can fail, and the
other will just take up the slack. When this happens, there is an effective drop in net-
work capacity. Users and applications may notice this change as slower response
time. So when working with this model, one generally ensures that either path alone
has sufficient capacity to support the entire load.

,ch02.24329  Page 28  Friday, November 9, 2001  12:24 PM



This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Redundancy | 29

The principal advantage to implementing fault tolerance by means of load balancing
is that it provides excess capacity during normal operation. But another less obvious
advantage is that by having the backup equipment active at all times, one avoids the
embarrassing situation of discovering a faulty backup only during a failure of the pri-
mary system. A hot backup system could fail just as easily as the primary system. It is
possible to have a backup fail without being noticed because it is not in use. Then if
the primary system fails, there is no backup. In fact, this is worse than having no
backup because it has the illusion of reliability, creating false confidence.

One final advantage is that the money spent on extra capacity results in tangible ben-
efits even during normal operation. This can help with the task of securing money
for network infrastructure. It is much easier to convince people of the value of an
investment if they can see a real improvement day to day. Arguments based on
reducing probability of failure can seem a little academic and, consequently, a little
less persuasive than showing improved performance.

So dynamic load-balancing fault tolerance is generally preferable where it is practi-
cal. But it is not always practical. Remember the highway example. Suppose there are
two bridges over a river and a clever set of access roads so that both bridges are used
equally. In normal operation, this is an ideal setup. But now suppose that one of
these bridges is damaged by bad weather. If half of the cars are still trying to use this
bridge and one-by-one are plunging into the water, then there is a rather serious
problem.

This sounds silly with cars and roads, but it happens regularly with networks. If the
load-balancing mechanism is not sensitive to the failure, then the network can wind
up dropping every other packet. The result to the applications is slow and unreliable
performance. It is generally worse than an outright failure because, in that case, peo-
ple would give up on the applications and focus on fixing the broken component.
But if every other packet is getting lost, it may be difficult to isolate the problem. At
least when it breaks outright, you know what you have.

More than that, implementing the secondary system has doubled the number of
components that can each cause a network failure. This directly reduces the reliabil-
ity of the network because it necessarily increases the probability of failure.

Further, if this setup was believed to improve reliability, then it has provided an illu-
sion of safety and a false sense of confidence in the architecture. These are danger-
ous misconceptions.

So, where dynamic load balancing for fault tolerance is not practical, it is better to
have a system that automatically switches to backup when a set of clearly defined
symptoms are observed. Preferably, this decision to switch to backup is made intrin-
sically by the equipment itself rather than by any external systems or processes.
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If this sort of system is employed as a fault-tolerance mechanism, it is important to
monitor the utilization. It is common for network traffic to grow over time. So if a
backup trunk is carrying some of the production load, it is possible to reach a point
where it can no longer support the entire load in a failure situation. In this case the
gradual buildup of traffic means that the system reaches a point where it is no longer
redundant.

If this occurs, traffic will usually still flow during a failure, but there will be severe
congestion on these links. This will generally result in degraded performance
throughout the network.

Avoid manual fault-recovery systems

It is universally true that automatic recovery processes are better than manual pro-
cesses. There is far too much uncertainty in manual procedures. Differences in levels
of experience and expertise in the network-operations staff can mean that some-
times the manual procedures work brilliantly. Sometimes the same procedure can fail
catastrophically because of incorrect problem determination or execution. Almost
invariably, human-rooted procedures take longer both to start and to complete than
automatic processes.

There are only two valid reasons to use a manual recovery process. Either there is no
cost-effective way to implement a reliable automatic system, or there are significant
security concerns with an automatic system.

In the first case, it is generally wise to re-evaluate the larger design to understand why
automatic features of the equipment are not applicable or are too expensive. Rede-
signing other elements could allow application of automatic fault recovery. But pres-
ence of key pieces of older equipment might also make automation impossible. In
this case it would be wise to look at upgrading to more modern network technology.

The security reasons for manual processes are more difficult to discuss. But they
come down to manually ensuring that the system taking over the primary function is
legitimate. For example, a concern might be that an imposter device will attempt to
assert itself as a new primary router, redirecting sensitive data for espionage reasons.
Or a dial backup type system might be unwilling to accept connections from remote
sites unless they are manually authenticated, thus ensuring that this backup is not
used to gain unauthorized access to the network.

Usually there are encryption and authentication schemes associated with these sorts
of automated processes to protect against exactly these concerns. In some cases the
data is considered too sensitive to trust with these built-in security precautions. So,
in these cases a business decision has to be made about which is more important,
reliability or security.
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Isolating Single Points of Failure
One often hears the term single point of failure tossed around. In a network of any
size or complexity, it would be extremely unusual to find a single device that, if it
failed, would break the entire network. But it is not unusual to find devices that con-
trol large parts of the network. A Core router will handle a great deal of interseg-
ment traffic. Similarly, a switch or concentrator may support many devices. So, when
I talk about single points of failure, I mean any network element that, if it failed,
would have consequences affecting several things. Further, for there to be a single
point of failure, there must be no backup system. If a single point of failure breaks, it
takes out communication with a section of the network.

Clearly single points of failure are one of the keys to network stability. It is not the
only one, and too much effort spent on eliminating single points of failure can lead
to levels of complexity that also cause instability. So it is important to be careful with
this sort of analysis. It can’t be the only consideration.

I discuss other factors contributing to stability later, but for now I want to focus on
this one. What makes one single point of failure more severe than another depends
on the network. It will depend on how many users are affected, what applications are
affected, and how important those users and applications are to the organization at
that specific point in history. Losing contact with an application that is only used one
day per year doesn’t matter much unless it happens on that one day. While it’s cer-
tainly not true that everybody in an organization is of equal value to the organization
(or they’d all make the same amount of money), the number of people affected by a
failure is clearly an important factor.

In general it isn’t possible to say definitively which failure points are the most impor-
tant. And it isn’t always practical to eliminate them all. In Figure 2-2, two single
points of failure at the Core of the network were eliminated by adding redundant
equipment. But the concentrators on each floor were not made redundant. If one of
these concentrators fails, the network will still lose connection to all of the users on
that floor.

The simplest way to qualitatively analyze stability is to draw out a complete picture
of the network and look at every network device one by one. In the previous section,
both the physical- and network-layer diagrams were necessary to see all of the key
points in the network, and the same is true here. In the preceding simple example,
the router’s critical function in the network was not immediately obvious from the
physical-layer diagram. In a more complicated network the dependencies could be
even less clear.

Look at each box in both of your drawings and ask what happens if this device fails.
You may want to look at both drawings at the same time, referring back and forth
between them. If the answer is that another device takes over for it, then you can
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forget about this device for the time being and move on to the next device. Similarly,
if the device you are looking at exists purely as a standby, then you can skip it. What
remains at the end are all of the places where something can go seriously wrong. In
the process, remember to include the connections themselves. Fiber optic cable can
go “cloudy,” and any cable can be accidentally cut. Consider, for example, what
would happen if somebody accidentally cut through an entire fiber conduit. It hap-
pens. Many network designers make a point of running their redundant connections
through separate conduits.

For each of the remaining elements, it is useful to ask qualitatively how serious a
problem it is if it fails. What is affected? How many users are unable to do their jobs?
In many cases you will find that some people are unable to run some applications.
How important is this to the organization? Rate these problem spots.

Doing this, it should quickly become apparent where the most glaring trouble spots
are in your network. In effect you are doing the calculations of the next section “by
eye.” This tends to assume that the Mean Time Between Failure (MTBF) values for
all network elements are similar. That may not be accurate if you are comparing a
small workgroup hub to a large backbone switch. But, at the same time, chances are
that the backbone switch is a much more critical device, in that it probably supports
more traffic and more users.

As was shown in the previous section, the more of these key failure zones that can be
eliminated, the better the overall stability of the network.

Consider an example network. Figures 2-5 and 2-6 show the Layer 1/2 and Layer 3/4
views of the same fictitious network. There are many problems with this network,
making it a good example for analysis. But clearly there has been some effort at
improving the stability. The engineers who run this imaginary network have twinned
the switches carrying the router-to-router VLANs, “Core A” and “Core B.” And they
have built all of the user VLANs, the server VLAN, and the WAN with redundant
connections as well. But there are still several serious problems.

Look at the “touchdown”* Ethernet segment in Figure 2-6. Clearly there is a single
point of failure in each of the two firewalls. But perhaps this company’s Internet
usage and the connections to its partner firms are considered of lower importance to
other Core parts of the network. So this may be all right. But they have made an
effort to make the connections to the touchdown segment redundant, attaching it to
both Router A and Router B.

Look at the same part of the network in Figure 2-5. The touchdown segment is car-
ried entirely on one Ethernet hub. So the probability of failure for their Internet
access, for example, is actually higher than the probability of failure for the firewall.

* This is a relatively common technique for connecting external networks into a LAN. It will be covered in
more detail in Chapter 3.
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At the Core of the network, care has been taken to include two main switches, Core
switch A and Core switch B. But then both of the main application servers were con-
nected to switch B. This means that much of the advantage of redundancy has been
lost.

Now skip over to the right-hand sides of these diagrams. Figure 2-6 shows that the
bridge that interconnects all of the Token Rings is a single point of failure. But there
are two connections for Routers D and E. Now look at Figure 2-5.

Making two router connections seems to have been an almost wasted effort. After
leaving the routers, all the traffic passes through a single Token Ring MAU, through
a single fiber transceiver, through a single pair of fiber strands, through another sin-
gle fiber transceiver, and then to a single bridge. These are all single points of failure.

Figure 2-5. Physical-layer view of a rather poor LAN
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Connecting several single points of failure together in serial allows the failure of any
one device to break the entire chain. So clearly the probability of failure is signifi-
cantly higher than it has to be.

If you are dealing with a high-availability application where certain outages would be
serious disasters, then the process of finding danger spots becomes more difficult. In
these cases, it is best to break down the network into zones and deal with them sepa-
rately. I discuss how to build network zones in the discussion of topology in
Chapter 3. This concept makes isolating your problems much easier. The idea is to
have a few well-controlled points where one network zone touches the next one.
Then, as long as there is fault tolerance in the interconnections, you can analyze the
zones more or less in isolation.

To deal with multiple failure situations, you can follow a strategy similar to the one
described in the previous case, which was looking only for single points of failure.
Except that this time it will be necessary to make several passes through. On the first
pass, you will look at every network element and decide what will happen if it fails.

Figure 2-6. Network-layer view of a rather poor LAN
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In a high-availability network, the answer to each of these questions should be that
there is a redundant system to take over for the failed element automatically.

Next you will systematically look at each device and assume that it has already failed.
Then go through the remainder of the network and analyze what would happen for
each element if it failed in the absence of that first failed element. This process
sounds time consuming, but it is not quite as bad as it sounds.

Suppose there are 100 elements to consider in this zone. Remember to include all
connections as elements that can fail as well, so the number will usually be fairly
high. The initial analysis has already established that any one element can fail in iso-
lation without breaking the network. Now start by looking at element number 1, and
supposing it has failed, decide what happens if element number 2 fails. And con-
tinue this process through to element 100. On the next pass you start by assuming
that element number 2 has failed. This time you don’t need to consider what hap-
pens if element number 1 fails, because you did that in the last pass. So each pass
through the list is one shorter than the last one.

In practice, this sort of qualitative analysis usually takes many hours to complete.
But it is a worthwhile exercise, as it will uncover many hidden problems if done care-
fully. Most of the time it will be obvious that there is no problem with the second
element failing, since it is backed up by another element unrelated to the first fail-
ure. In fact, it is often worth doing this exercise in a less mission-critical network
because it will show how vulnerabilities are connected.

But, as I mentioned earlier in passing, just eliminating the single points of failure
does not guarantee a stable network. The sheer complexity of the result can itself be
a source of instability for several reasons. First and most important, the more com-
plex the network is, the greater the chance that a human will misunderstand it and
inadvertently break it. But also, the more complex a network, the more paths there
will be to get from point A to point B. As a result, the automated fault-recovery sys-
tems and automated routing systems will have a considerably harder time in finding
the best path. Consequently, they will tend to take much longer in converging and
may try to recalculate the paths through the network repeatedly. The result is a frus-
tratingly slow and unreliable network despite the absence of single points of failure.

Predicting Your Most Common Failures
I have talked about implementing redundancy where it is most needed. But so far I
have only given general comments about where that might be. I’ve mentioned dupli-
cating systems “in the Core” and at “single points of failure,” but the methods have
been mostly qualitative and approximate. As a network designer, you need to know
where to look for problems and where to spend money on solutions. This requires
more rigorous techniques.
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There is an analytical technique based on MTBF that provides a relatively precise
way of numerically estimating probabilities of failure for not only individual compo-
nents in a network, but also for whole sections of networks. I will demonstrate this
technique. I will also discuss some more qualitative methods for finding potential
problem spots.

Mean time between failures

One of the most important numbers your equipment manufacturer quotes in the
specification sheet is the Mean Time Between Failures (MTBF). But this value is fre-
quently misunderstood and misused. So I will discuss the concept a little bit before
going on.

This number just represents a statistical likelihood. It means that half (because it’s a
statistical “mean”) of all equipment of this type will no longer be functioning after
this length of time. It does not mean that sudden and catastrophic failure will occur
at the stroke of midnight. Failure can happen at any time. But just giving an average
without saying anything about the shape of the curve makes it difficult to work with.

Figure 2-7 shows some possible versions of what the curve might look like. These
curves plot the number of device failures as a function of time. There are N total
devices, so at time MTBF, there are N/2 devices remaining.

The thick solid line represents a very ideal world where almost all of the gear sur-
vives right up until moments before the MTBF. Of course, the price for this is that a
large number of devices then all fail at the same time.

The dashed line, on the other hand, shows a sort of worst-case curve, in which the
same number of devices fail every day. This is probably not a realistic approximation
either because there are a lot of devices that either don’t work when you open the

Figure 2-7. Mean time between failures, as it relates to probability of failure per unit of time
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box or fail soon after. Then age will take a toll later as gear gradually burns out
through heavy use. The dotted curve represents a more realistic curve.

But the interesting thing is that, when you look at these curves, it’s clear that the
dashed line isn’t such a bad approximation after all. It’s going to be close. And up
until the MTBF time, it will tend to overestimate the probability of failure. It’s always
a good idea to overestimate when it comes to probability of failure, because the
worst you can do is end up with an unusually stable and reliable network. It’s also
going to be the easiest to do calculations with.

So the dashed line is the one I use for finding the most common failure modes. The
slope of this line gives the failure rate, the number of failures per unit time, and
because it is a straight line, the approximation assumes a constant failure rate. A lit-
tle arithmetic shows that the line rises by N/2 in a distance of MTBF, so the slope is
N/(2 × MTBF). So, if the MTBF is 10 years, then you will expect to see 5% of your
devices fail every year, on average. If the MTBF is 20 years, then the value drops to
2.5%. Most network-equipment manufacturers quote an MTBF in this range.

If you had only one device, then a 5% per year failure rate is probably quite accept-
able. You may not care about redundancy. But this book is concerned with large-
scale networks, networks with hundreds or thousands of devices. At 5% per year,
out of a network of 1000 devices, you will expect to see 50 failures per year. That’s
almost one per week.

The important point to draw from this is that the more devices you have, the greater
the chances are that one of them will fail. So, the more single points of failure in the
network, the greater the probability of a catastrophic failure.

Multiple simultaneous failures

So the MTBF gives, in effect, a probability of failure per unit time. To find the proba-
bility for simultaneous failures, you need a way of combining these probabilities. I
have already described the method of simply adding probabilities to find the aggre-
gate failure rate. But this is a different problem. The important question here is the
probability of exactly two or three or four simultaneous failures.

The naïve approach to combining probabilities would be to say that the probability
of two simultaneous failures is twice the probability of one. This would be close to
true for very small values, but not quite right. To see this, imagine a coin toss experi-
ment. The probability of heads is 50%. The probability of flipping the coin 3 times
and getting 2 heads is not 100%. And it certainly isn’t equal to the probability of flip-
ping the coin 100 times and getting 2 heads.

Now suppose that it is an unfair coin that has a probability P of coming up heads. In
fact, it’s an extremely unfair coin. P is going to be less than 1%. Later I adapt this
simple probability to be a probability of failure per unit time, as it is needed for
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combining these MTBF values. But first I need the probability, kPn, of tossing the
coin n times and getting heads k times. The derivation of this formula is shown in the
Appendix.

For network MTBF, the interesting values are related to number of failures per unit
time. If the MTBF value is M, then you can expect N/(2 × M) failures out of a set of N
per unit time. If N = 1, then this is the probability per unit time of a particular unit
failing. But you can’t just plug this into the formula for kPn. Why not? Look at the
formula. It contains a factor that looks like (1–P)n–k. The number 1 has no units. So
the number P can’t have units either, or the formula is adding apples to oranges.

So it is necessary to convert this probability per unit time to a net probability. The
easiest way to do this is to decide on a relevant time unit and just multiply it. This
time unit shouldn’t be too short or too long. The probability of having two failures in
the same microsecond is very small indeed. And the probability of having two fail-
ures in the same year is going to be relatively large, but it is quite likely that the first
problem has been fixed before the second one occurs.

This is the key to finding the right length of time. How long does it take, on average,
to fix the problem? Note that this is not the length of time for the backup to kick in,
because the result is going to show how appropriate that backup is. If the backup
fails before the primary unit has been fixed, then that’s still a multiple-failure situa-
tion. So the best unit is the length of time required to fix the primary fault.

For this I like to use one day. Sometimes it takes longer than one day to fix a major
problem; sometimes a problem can be fixed in a few hours. But a one-day period is
reasonable because, in most networks, a day with more than one major-device fail-
ure is an exceedingly busy day. And when there are multiple device failures in one
day, there is usually a lot of reporting to senior management required. In any case, it
generally takes several hours to repair or replace a failed device, so a one-day period
for the time unit seems appropriate. At worst, it will overestimate the failure rates
slightly, and it’s always better to overestimate.

I will denote thie MTBF per-day value by the letter M. So the probability of one par-
ticular device failing in a given day is P = 1/2M.

So, substituting into the probability formula gives:

where m = M/1 day.

This formula gives the probability that, in a network of n devices, each with an
MTBF value of M, there will be k failures in one day. Figure 2-8 is a graph of the
probabilities for some representative values. Notice that for most of the values
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plotted, it is quite rare to have any failures at all. But for a network of 1000 nodes,
each with a 100,000-hour MTBF, there will be failures on about 1 day in 10. If that
same network had 10,000 nodes in it, the analysis predicts that only 30% of all days
will have no failures. 36% of days would have some device fail, and about 1 day in 5
would see 2 or more failures. Even the smaller network with only 1000 nodes would
have days with 2 failures 0.6% of the time. That amounts to just over 2 days per year.
So it will happen.

Generally you want to work out these probabilities for your whole network. You
should plan your network for a level of redundancy that the business can handle.
Personally, I don’t like to deal with multiple failures in a single day, so I plan my net-
works so that these bad days are expected much less than once every year. But you
need to determine what your business and your network-management team can
handle.

Combining MTBF values

In general, in a multivendor network, there will be many different MTBF values. In
fact, many vendors quote distinct MTBF values for every component of a modular
device. They do this because how you combine these values to find the number rele-
vant to your network depends greatly on how you decide to use the device.

Figure 2-8. Probability of failure
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This section will describe how to combine the values. I start by looking at how to
combine the MTBF values for a single device and then move on to how to combine
these values for various elements making up a network. A common technique for
this sort of estimation says that the chain is as strong as its weakest link. But this is
not actually a very good rule, as can be seen with a simple example.

Suppose you have a generic device. Maybe it’s a router. Maybe it’s a switch of some
sort. It doesn’t really matter for this example. Table 2-1 shows some fairly typical
made-up values for the MTBFs of these various components.

It is extremely rare for the chassis to fail. If it does fail, it is usually due to damage
such as bent pins from swapping cards too aggressively or heat damage to the back-
plane. Power supplies, however, are much less reliable. Typically the power supply is
the most likely component failure in any piece of electronic equipment. See Table 2-2
for failure probabilities of typical components.

So, this generic device has a chassis, two power supplies (for redundancy), a proces-
sor module, and two network modules. There is no redundancy for the processor or
for the network modules. What is the aggregate MTBF for the device? This could
involve any failure to any component. But the twist is that, if one of the power sup-
plies fails, the other will take over for it.

First these MTBF values have to be converted to probabilities of failure per day.
Recall that the formula for this is just 1/(2m), where m = MTBF/1 day.

First combine the probabilities for the two power supplies failing simultaneously. That
would be two simultaneous failures out of a set of two. This is just 2P2 = P2 in the joint

Table 2-1. Typical component MTBF values

Component Hours

Chassis 2,000,000

Power supply 100,000

Processor 200,000

Network card 150,000

Table 2-2. Typical component-failure probabilities

Component Probability

Chassis 0.0006%

Power supply 0.0120%

Processor 0.0060%

Network card 0.0080%
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probability formula. The square of 0.0120% is a very small number, 1.44 × 10–6%. So
clearly the decision to use redundant power supplies has significantly improved the
weakest link in this system.

Any of the remaining components can fail independently and count as a device fail-
ure, so you can just add these probabilities to get the net probability.

You can now convert this back to an aggregate MTBF for the device. Since P = 1/(2m),
m = 1/(2P). So, in this case, m = 53,100 hours.

As you can see, the weakest-link rule is quite wrong. It would have said that you
could neglect the power supplies because they are redundant (and it would have
been right in saying that). Then it would have picked out the network card’s
150,000-hour MTBF value.

The trouble with this is that it completely neglects the fact that there are several ele-
ments here, any of which can fail. The chances of getting into a car accident are
exceedingly small. Most people only have a few in their entire lives. And yet, in a
large city there are accidents every day. It’s the same with networks. The more com-
ponents you have, the more likely something will fail.

To take this example slightly further, let’s try to understand why many hardware
vendors offer the capability of redundant processor modules. In this case the net
probability is:

which corresponds to an aggregate MTBF for the device of 72,300 hours. So, dupli-
cating the processor module has improved the net MTBF for the device by 36%.

There is one final example to look at before moving on to calculating MTBF values
for an entire network. Often, particularly for power supplies, devices employ what is
called “N+1” redundancy. This means that there is one extra power supply in the
box. Suppose the device needs only 3 power supplies to work. Then you might
install a fourth power supply for redundancy. For a complete failure, you need to
lose 2 of the 4 power supplies. To calculate the probability for this, use the formula
derived in the previous section:

with k = 2 and n = 4.

Pnet 0.0006% 1.44 10
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Recall that the single power-supply failure probability was 0.0120%. For two fully
redundant power supplies the probability is (0.0120%)2 = 0.00000144%. So it
becomes clear that N+1 redundancy in these small numbers provides a large benefit
and is a cost-effective strategy.

The net probability of failure for the entire device (with dual processors, as in the
previous example) would become:

which is effectively the same as the previous example with full redundancy for the
power supplies.

As a quick aside, consider how N+1 redundancy works for larger values of N. How
much can the situation be improved by adding one extra hot standby? In other
words, I want to compare the probability for one failure out of N with the probabil-
ity for two simultaneous failures:

and:

So 2Pn / 1Pn ~ n/4m. This means that as long as N is much smaller than 4 times the
MTBF in days, the approximation should be reasonable. But, for example, if the
MTBF were 100 days, then it would be a very bad idea to use N+1 redundancy for 25
components. In fact, it would probably be wise to look at N+2 or better redundancy
long before this point.

The same prescription can be used for calculating the probability of failure for an
entire network. Consider the network shown in Figures 2-1 and 2-2. How much has
the network’s net MTBF improved by making the Core redundant? Note, however,
that there are failures in this more general case that do not wipe out the entire net-
work. For example, if any of the floor concentrators fails, it will affect only the users
on that floor. However, it is still useful to do this sort of calculation because it gives
an impression of how useful it has been to add the redundancy.
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Calculating the MTBF for only the Core could well miss the possibility that the worst
problems do not lie in the Core. In any case, it is worthwhile understanding how
often to expect problems in the entire network.

Table 2-3 presents some representative fiction about the MTBF values for the indi-
vidual components in the network. Note that I have included the fiber runs between
the floors, but I assume that the fiber transceivers are built into the concentrators,
and are included in the MTBF for the device. Also note that for simplicity, I use the
same model of device for the floor and Core concentrators. This would probably not
be true in general.

Adding up the net probability for the network without redundancy gives:

So the net MTBF is 28,846 hours. And, with redundancy:

which gives a net MTBF of 38,460 hours. This is a 33% improvement in MTBF, or a
25% improvement in Pnet. So implementing redundancy has helped significantly.
Looking specifically at the terms, one can easily see that the terms for the Core are
now very small. The bulk of the failures are expected to occur on the floor concentra-
tors now. Interestingly, this was true even before introducing the Core redundancy.
But, clearly, the redundancy in the Core has radically improved things overall.

This way of looking at reliability provides another particularly useful tool: it shows
where to focus efforts in order to improve overall network reliability further.

It could be that there are only 3 users on the first floor and 50 on the second. In some
sense, the failure of the second floor is more important. So it may be useful to pro-
duce a weighted failure rate per user. To do this, look at each device and how many
users are affected if it fails. Then, in the calculation of Pnet, multiply the number of
users by the probability. When you do this, the number is no longer a probability,
and you can no longer convert it back to an MTBF. You can only use it as a relative
tool for evaluating how useful the change you propose to make will be. See Table 2-4
for user failure probabilities for sample components.

Table 2-3. Example component-failure probabilities

Component Hours Probability

Concentrator 150,000 0.0080%

Fiber connection 1,000,000 0.0012%

Router 200,000 0.0060%

Pnet 4 0.0080%( )⋅ 3 0.0012%( )⋅ 0.0060%
0.0416%=

+ +=

Pnet 3 0.0080%( )⋅ 6 0.0012%( )⋅ 0.0080%( )2
0.0060%( )2

0.0312%=

+ + +=
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So adding up the weighted probability for the nonredundant case gives:

I have changed the symbol from Pnet to Wnet. This is to remind you that this is not a
real probability anymore. It is just a tool for comparison.

Now let’s look at the redundant case:

This shows that the changes have improved the per-user reliability by better than a
factor of 2. It also shows that doing any better than this will mean doing something
for the people on the second floor, because the terms corresponding to them make
up more than 2/3 of the total value of Wnet.

But perhaps network engineering is on the first floor and marketing or bond trading
is on the second. In this case, losing the 50 users on the second floor could be a net
benefit to the company, but losing the 3 network engineers would be a disaster. If
this is the case, you may want to use another weighting scheme, based on the rela-
tive importance of the users affected. Remember, though, that these weighted values
are no longer probabilities. Weighting the different terms destroys what mathemati-
cians call normalization. This means that these W values will not sum to 1. So you
can’t use the numbers where you would use probabilities, for example, in calculat-
ing MTBF.

Failure Modes
Until I have talked about the various standard network topologies, it will be difficult
to have an in-depth discussion of failure modes. But I can still talk about failure

Table 2-4. Example component-failure probabilities by user

Component Hours Probability Users

First floor concentrator 150,000 0.0080% 3

First floor fiber connection 1,000,000 0.0012% 3

Second floor concentrator 150,000 0.0080% 50

Fiber connection 1,000,000 0.0012% 50

Third floor concentrator 150,000 0.0080% 17

Third floor fiber connection 1,000,000 0.0012% 17

Backbone concentrator 150,000 0.0080% 70

Router 200,000 0.0060% 70

Wnet 3 0.0080%( ) 3 0.0012%( ) 50 0.0080%( ) 50 0.0012%( )
17 0.0080%( ) 17 0.0012%( ) 70 0.0080%( ) 70 0.0060%( )

1.624%=
⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅=

Wnet 3 0.0080%( ) 2 3 0.0012%( ) 50 0.0080%( ) 2 50 0.0012%( )
17 0.0080%( ) 2 17 0.0012%( ) 70 0.0080%( )2

70 0.0060%( )2

0.728%=

⋅+⋅+⋅ ⋅+⋅+

⋅ ⋅+⋅+⋅ ⋅+⋅=
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modes in general. Obviously, the worst failure mode is a single point of failure for
the entire network. But, as the previous section showed, the overall stability of the
network may be governed by less obvious factors.

At the same time, this proves that any place where you can implement redundancy in
a network drastically improves the stability for that component. In theory it would
be nice to be able to do detailed calculations as earlier. Then you could look for the
points where the weighted failure rates are highest. But in a large network this is
often not practical. There may be thousands of components to consider. So this is
where the simpler qualitative method described earlier is useful.

What the quantitative analysis of the last section shows, though, is that it is a seri-
ous problem every time you have a failure that can affect a large number of users.
Even worse, it showed that the probability of failure grows quickly with each addi-
tional possible point of failure. The qualitative analysis just finds the problem spots;
it doesn’t make it clear what the consequences are. Having one single point of fail-
ure in your network that affects a large number of users is not always such a serious
problem, particularly if that failure never happens. But the more points like this that
you have, the more likely it is that these failures will happen.

Suppose you have a network with 100,000 elements that can fail. This may sound
like a high number, but in practice it isn’t out of the ordinary for a large-scale LAN.
Remember that the word “element” includes every hub, switch, cable, fiber, card in
every network device, and even your patch panels.

If the average MTBF for these 100,000 elements is 100,000 hours (which is probably
a little low), then on net you can expect about one element per day to break. Even if
there is redundancy, the elements will still break and need to be replaced: it just
won’t affect production traffic. Most of these failures will affect very small numbers
of users. But the point is that, the larger your network, the more you need to under-
stand what can go wrong, and the more you will need to design around these failure
modes.

So far I have only discussed so-called hard failures. In fact, most LAN problems
aren’t the result of hard failures. There are many kinds of failures that happen even
when the network hardware is still operating. These problems fall into a few general
categories: congestion, traffic anomalies, software problems, and human error.

Congestion
Congestion is the most obvious sort of soft problem on a network. Everybody has
experienced a situation where the network simply cannot handle all of the traffic that
is passing through it. Some packets are dropped; others are delayed.

In dealing with congestion, it is important to understand your traffic flows. In
Figure 2-5, user traffic from the various user floors flows primarily to the Internet,
the application servers, and the mainframe. But there is very little floor-to-floor
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traffic. This allows you to look for the bottlenecks where there might not be enough
bandwidth. In this example all traffic flows through the two Core VLANs. Is there
sufficient capacity there to deal with all of the traffic?

Congestion is what happens when traffic hits a bottleneck in the network. If there is
simply not enough downstream capacity to carry all of the incoming traffic, then
some of it has to be dropped. But before dropping packets, most network equip-
ment will attempt to buffer them.

Buffering basically means that the packets are temporarily stored in the network
device’s memory in the hopes that the incoming burst will relent. The usual example
is a bucket with a hole in the bottom. If you pour water into the bucket, gradually it
will drain out through the bottom.

Suppose first that the amount you pour in is less that the total capacity of the bucket.
In this case the water will gradually drain out. The bucket has changed a sudden
burst of water into a gradual trickle.

On the other hand, you could just continue pouring water until the bucket over-
flows. An overflow of data means that packets have to be dropped, there simply isn’t
enough memory to keep them all. The solution may be just to get a bigger bucket.
But if the incoming stream is relentless, then it doesn’t matter how big the bucket is:
it will never be able to drain in a controlled manner.

This is similar to what happens in a network when too much data hits a bottleneck.
If the burst is short, the chances are good that the network will be able to cope with
it easily. But a relentless flow that exceeds the capacity of a network link means that
a lot of packets simply can’t be delivered and have to be dropped.

Some network protocols deal well with congestion. Some connection-based proto-
cols such as TCP have the ability to detect that some packets have been dropped.
This allows them to back off and send at a slower rate, usually settling just below the
peak capacity of the network. But other protocols cannot detect congestion, and
instead they wind up losing data.

Lost data can actually make the congestion problem worse. In many applications, if
the data is not received within a specified time period, or if only some of it is
received, then it will be sent again. This is clearly a good idea if you are the applica-
tion. But if you are the network, it has the effect of making a bad problem worse.

Ultimately, if data is just not getting through at all for some applications, they can
time out. This means that the applications decide that they can’t get their jobs done,
so they disconnect themselves. If many applications disconnect, it can allow the con-
gestion to dissipate somewhat. But often the applications or their users will instead
attempt to reconnect. And again, this connection-setup traffic can add to the conges-
tion problem.
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Congestion is typically encountered on a network anywhere that connections from
many devices or groups of devices converge. So, the first common place to see con-
gestion is on the local Ethernet or Token Ring segment. If many devices all want to
use the network at the same time, then the Data Link protocol provides a method
(collisions for Ethernet, token passing for Token Ring) for regulating traffic. This
means that some devices will have to wait.

Worse congestion problems can occur at points in the network where traffic from
many segments converges. In LANs this happens primarily at trunks. In networks
that include some WAN elements, it is common to see congestion at the point where
LAN traffic reaches the WAN.

The ability to control congestion through the Core of a large-scale LAN is one of the
most important features of a good design. This requires a combination of careful
monitoring and a scalable design that makes it easy to move or expand bottlenecks.
In many networks congestion problems are also mitigated using a traffic-prioritiza-
tion system. This issue is discussed in detail in Chapter 10.

Unlike several of the other design decisions I have discussed, congestion is an ongo-
ing issue. At some point there will be a new application, a new server. An old one
will be removed. People will change the way they use existing services, and that will
change the traffic patterns as well. So there must be ongoing performance monitor-
ing to ensure that performance problems don’t creep up on a network.

Traffic Anomalies
By traffic anomalies, I mean that otherwise legitimate packets on the network have
somehow caused a problem. This is distinct from congestion, which refers only to
loading problems. This category includes broadcast storms and any time a packet
has confused a piece of equipment. Another example is a server sending out an erro-
neous dynamic routing packet or ICMP packet that caused a router to become con-
fused about the topology of the network. These issues will be discussed more in
Chapter 6.

But perhaps the most common and severe examples are where automatic fault-
recovery systems, such as Spanning Tree at Layer 2, or dynamic routing protocols,
such as Open Shorted Path First (OSPF) at Layer 3, become confused. This is usu-
ally referred to as a convergence problem. The result can be routing loops, or just
slow unreliable response across the network.

The most common reason for convergence problems at either Layer 2 or 3 is com-
plexity. Try to make it easy for these processes by understanding what they do. The
more paths available, the harder it becomes to find the best path. The more neigh-
bors, the worse the problem of finding the best one to pass a particular packet to.
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A broadcast storm is a special type of problem. It gets mentioned frequently, and a
lot of switch manufacturers include features for limiting broadcast storms. But what
is it really? Well, a broadcast packet is a perfectly legitimate type of packet that is
sent to every other station on the same network segment or VLAN. The most com-
mon example of a broadcast is an IP ARP packet. This is where a station knows the
IP address of a device, but not the MAC address. To address the Layer 2 destination
part of the frame properly, it needs the MAC address. So it sends out a request to
everybody on the local network asking for this information, and the station that
owns (or is responsible for forwarding) this IP address responds.

But there are many other types of broadcasts. A storm usually happens when one
device sends out a broadcast and another tries to be helpful by forwarding that
broadcast back onto the network. If several devices all behave the same way, then
they see the rebroadcasts from one another and rebroadcast them again. The LAN is
instantly choked with broadcasts.

The way a switch attempts to resolve this sort of problem usually involves a simple
mechanism of counting the number of broadcast packets per second. If it exceeds a
certain threshold, it starts throwing them away so that they can’t choke off the net-
work. But clearly the problem hasn’t gone away. The broadcast storm is just being
kept in check until it dies down on its own.

Containment is the key to traffic anomalies. Broadcast storms cannot cross out of a
broadcast domain (which usually means a VLAN, but not necessarily). OSPF conver-
gence problems can be dealt with most easily by making the areas small and simple
in structure. Similarly, Spanning Tree problems are generally caused by too many
interconnections. So in all cases, keeping the region of interest small and simple
helps enormously.

This doesn’t mean that the network has to be small, but it does support the hierar-
chical design models I discuss later in this book.

Software Problems
Software problems are a polite term for bugs in the network equipment. It happens.
Sometimes a router or switch will simply hang, or sometimes it will start to misbe-
have in some peculiar way.

Routers and switches are extremely complex specialized computers. So software
bugs are a fact of life. But most network equipment is remarkably bug-free. It is not
uncommon to encounter a bug or two during initial implementation phases of a net-
work. But a network that avoids using too many novel features and relies on mature
products from reputable vendors is generally going to see very few bugs.

Design flaws are much more common than bugs. Bugs that affect Core pieces of
code, like standard IP routing or OSPF, are rare in mature products. More rare still
are bugs that cannot be worked around by means of simple design changes.
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Human Error
Unfortunately, the most common sort of network problem is where somebody
changed something, either deliberately or accidentally, and it had unforeseen conse-
quences. There are so many different ways to shoot oneself in the foot that I won’t
bother to detail them here. Even if I did, no doubt tomorrow we’d all go out and find
new ones.

There are design decisions that can limit human error. The most important of these
is to work on simplicity. The easier it is to understand how the network is supposed
to work, the less likely that somebody will misunderstand it. Specifically, it is best to
make the design in simple, easily understood building blocks. Wherever possible,
these blocks should be as similar as possible. One of the best features of the other-
wise poor design shown in Figure 2-5 is that it has an identical setup for all of the
user floors. Therefore, a new technician doesn’t need to remember special tricks for
each area; they are all the same.

The best rule of thumb in deciding whether a design is sufficiently simple is to imag-
ine that something has failed in the middle of the night and somebody is on the
phone in a panic wanting answers about how to fix it. If most of the network is
designed using a few simple, easily remembered rules, the chances are good that
you’ll be able to figure out what they need to know. You want to be able to do it
without having to race to the site to find your spreadsheets and drawings.
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