

Demystifying the IPsec Puzzle

For a listing of recent titles in the Artech House
Computing Library, turn to the back of this book.

For quite a long time, computer security was a rather narrow field of
study that was populated mainly by theoretical computer scientists, electrical
engineers, and applied mathematicians. With the proliferation of open sys-
tems in general, and the Internet and the World Wide Web (WWW) in
particular, this situation has changed fundamentally. Today, computer and
network practitioners are equally interested in computer security, since they
require technologies and solutions that can be used to secure applications
related to electronic commerce (e-commerce). Against this background, the
field of computer security has become very broad and includes many topics
of interest. The aim of this series is to publish state-of-the-art, high standard
technical books on topics related to computer security. Further information
about the series can be found on the WWW by the following URL:

http://www.esecurity.ch/serieseditor.html

Also, if you�d like to contribute to the series and write a book about a
topic related to computer security, feel free to contact either the Commis-
sioning Editor or the Series Editor at Artech House.

Recent Titles in the Artech House
Computer Security Series

Rolf Oppliger, Series Editor

Demystifying the IPsec Puzzle, Sheila Frankel
Information Hiding Techniques for Steganography and Digital Watermarking,

Stefan Katzenbeisser and Fabien A. P. Petitcolas
Secure Messaging With PGP and S/MIME, Rolf Oppliger
Security Fundamentals for E-Commerce, Vesna Hassler
Security Technologies for the World Wide Web, Rolf Oppliger

Demystifying the IPsec Puzzle

Sheila Frankel

Artech House
Boston � London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data
Frankel, Sheila.

Demystifying the IPsec puzzle / Sheila Frankel.
p. cm. � (Artech House computer security series)

Includes bibliographical references and index.
ISBN 1-58053-079-6 (alk. paper)
1. IPSec (Computer network protocol) I. Title. II. Series.

TK5105.567 .F73 2001
004.6�2�dc21 2001018807

British Library Cataloguing in Publication Data
Frankel, Sheila

Demystifying the IPsec puzzle. � (Artech House computer security series)
1. IPSec (Computer network protocol)
I. Title
004.6�2

ISBN 1-58053-399-X

Cover design by Igor Valdman

© 2001 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording, or by any information storage and retrieval system, with-
out permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

International Standard Book Number: 1-58053-079-6
Library of Congress Catalog Card Number: 2001018807

10 9 8 7 6 5 4 3 2 1

To Mechy, my partner in everything important
and

to the most wonderful results (direct and indirect) of our collaboration,
Benjamin, Shlomit, Chana, Yaakov, Daniel and Eitan,

Sara, Nomi, Shana, and Aryeh

Contents

Preface xvii

1 Introduction 1

1.1 The TCP/IP Protocol Stack 5

1.1.1 IP Packets 7

1.1.2 IP Packetization and Fragmentation 10

1.2 Introducing IPsec 12

1.3 Summary 13

1.4 Further Reading 14

References 14

2 The First Puzzle Piece: The Authentication Header 15

2.1 Protections Provided by AH 15

2.2 Security Associations and the Security Parameters
Index 16

2.3 AH Format 19

vii

2.4 AH Location 20

2.5 AH Modes 21

2.6 Nested Headers 22

2.7 Implementing IPsec Header Processing 23

2.8 AH Processing for Outbound Messages 25

2.9 AH Processing for Inbound Messages 30

2.10 Complications 32

2.11 Auditing 35

2.12 Threat Mitigation 37

2.13 Summary 37

2.14 Further Reading 38

References 38

3 The Second Puzzle Piece: The Encapsulating
Security Payload 41

3.1 Protections Provided by ESP 41

3.2 Security Associations and the Security
Parameters Index 42

3.3 ESP Header Format 43

3.4 ESP Header Location and Modes 45

3.5 Nested and Adjacent Headers 46

3.6 ESP Header Processing for Outbound Messages 48

3.7 ESP Header Processing for Inbound Messages 49

3.8 Complications 52

3.9 Criticisms and Counterclaims 52

viii Demystifying the IPsec Puzzle

3.10 Threat Mitigation 54

3.11 Why Two Security Headers? 55

3.12 Summary 56

3.13 Further Reading 56

References 57

4 The Third Puzzle Piece: The Cryptographic
Algorithms 59

4.1 Underlying Principles 60

4.2 Authentication Algorithms 62

4.2.1 The MD5 Algorithm 64

4.2.2 The SHA-1 Algorithm 65

4.2.3 The HMAC Algorithm 66

4.2.4 Other Authentication Algorithms 68

4.3 The ESP Header Encryption Algorithms 68

4.3.1 The DES Algorithm 70

4.3.2 The Triple DES Algorithm 72

4.3.3 Other Encryption Algorithms 76

4.3.4 The AES Algorithm 77

4.4 Complications 78

4.5 Public Key Cryptography 79

4.5.1 Digital Signatures 80

4.5.2 Other Public Key Operations 80

4.5.3 The Diffie-Hellman Exchange 80

4.6 Conclusion 82

4.7 Further Reading 82

References 83

Contents ix

5 The Fourth Puzzle Piece: The Internet Key
Exchange (IKE) 87

5.1 The IKE Two-Step Dance 87

5.2 Payloads and Exchanges 88

5.3 Authentication Methods 88

5.4 Proposals and Counterproposals 90

5.5 Cookies 94

5.6 The Security Association Payload 95

5.7 The Proposal Payload 95

5.8 The Message ID 96

5.9 Nonces 96

5.10 Identities and Identity Protection 97

5.11 Certificates and Certificate Requests 98

5.12 Keys and Diffie-Hellman Exchanges 99

5.13 Notifications 100

5.14 Lifetimes 101

5.15 Vendor IDs 101

5.16 The Phase 1 Negotiation 101

5.16.1 Main Mode 102

5.16.2 Aggressive Mode 108

5.16.3 Base Mode 110

5.17 The Phase 2 Negotiation 112

5.17.1 Quick Mode 113

5.17.2 The Commit Bit 116

5.18 New Group Mode 117

5.19 Informational Exchanges 118

x Demystifying the IPsec Puzzle

5.20 The ISAKMP Header 119

5.21 The Generic Payload Header 120

5.22 The IKE State Machine 121

5.23 The Origins of IKE 122

5.24 An Example 122

5.25 Criticisms and Counterclaims 123

5.26 Threat Mitigation 125

5.27 Summary 125

5.28 Further Reading 126

References 127

6 The Fifth Puzzle Piece: IKE and the Road Warrior 129

6.1 Legacy Authentication Methods 132

6.2 ISAKMP Configuration Method 134

6.3 Extended Authentication 139

6.4 Hybrid Authentication 140

6.5 Challenge-Response for Authenticated
Cryptographic Keys 142

6.6 User-Level Authentication 145

6.7 Credential-Based Approaches 145

6.8 Complications 150

6.9 Threat Mitigation 151

6.10 Summary 151

6.11 Further Reading 151

References 152

Contents xi

7 The Sixth Puzzle Piece: IKE Frills and Add-Ons 153

7.1 Renegotiation 154

7.2 Heartbeats 157

7.3 Initial Contact 162

7.4 Dangling SAs 163

7.5 Summary 164

7.6 Further Reading 164

References 164

8 The Glue: PF_KEY 165

8.1 The PF_KEY Messages 166

8.2 A Sample PF_KEY Exchange 171

8.3 Composition of PF_KEY Messages 173

8.4 Complications 177

8.5 Summary 177

8.6 Further Reading 177

Reference 177

9 The Missing Puzzle Piece: Policy Setting and
Enforcement 179

9.1 The Security Policy Database 180

9.2 The Policy Problem 187

9.2.1 Policy Configuration 187

9.2.2 Policy Servers 188

9.2.3 Gateway Discovery 188

9.2.4 Policy Discovery 189

9.2.5 Policy Exchange 190

xii Demystifying the IPsec Puzzle

9.2.6 Policy Resolution 191

9.2.7 Policy Decorrelation 191

9.2.8 Policy Compliance Checking 193

9.3 Revisiting the Road Warrior 193

9.4 IPsec Policy Solutions 194

9.4.1 The IPsec Configuration Policy Model 195

9.4.2 The IPsec Policy Information Base 196

9.4.3 The Security Policy Protocol 196

9.4.4 The Security Policy Specification Language 200

9.4.5 The KeyNote Trust Management System 201

9.4.6 An Overall Plan 203

9.5 Summary 204

9.6 Further Reading 204

References 204

10 The Framework: Public Key Infrastructure (PKI) 207

10.1 PKI Functional Components 208

10.2 The PKI World View 210

10.3 The Life Cycle of a Certificate 211

10.4 PKI Protocol-Related Components 212

10.5 Certificates and CRLs 215

10.6 Certificate Formats 216

10.7 Certificate Contents 218

10.8 IKE and IPsec Considerations 222

10.9 Summary 225

10.10 Further Reading 225

References 226

Contents xiii

11 The Unsolved Puzzle: Secure IP Multicast 229

11.1 Some Examples 230

11.2 Multicast Logistics 231

11.3 Functional Requirements 232

11.4 Security Requirements 233

11.4.1 Key Management 234

11.4.2 Secrecy 236

11.4.3 Data Integrity 236

11.4.4 Source Authentication 236

11.4.5 Order of Cryptographic Operations 237

11.4.6 Membership Management 237

11.4.7 Access-Related Issues 238

11.4.8 Policy Determination 238

11.4.9 Anonymity 238

11.4.10 Nonrepudiation 239

11.4.11 Service Availability 239

11.4.12 Firewall Traversal 239

11.4.13 Piracy 239

11.5 Whither IP Multicast Security? 239

11.6 Summary 240

11.7 Further Reading 240

References 241

12 The Whole Puzzle: Is IPsec the Correct Solution? 243

12.1 Advantages of IPsec 244

12.2 Disadvantages of IPsec 245

12.3 Alternatives to IPsec 245

12.3.1 Transport Layer Security Protocol 245

12.3.2 Layer 2 Tunneling Protocol 245

xiv Demystifying the IPsec Puzzle

12.3.3 Point-to-Point Tunneling Protocol 247

12.4 IPsec Today 247

12.5 The Future of IPsec 247

12.6 Summary 249

12.7 Further Reading 249

References 249

List of Acronyms and Abbreviations 251

About the Author 261

Index 263

Contents xv

Preface

IPsec (Internet Protocol Security) has been publicized in the popular com-
puter press; numerous articles have heralded its ready-for-prime-time status;
and, of course, numerous standards make up its quintessential and normative
definition. But very few books attempt to systematically describe each facet
of this ever expanding creature. That is the goal of this book. It is directed at
network administrators, informed users, and curious graduate students.

The book is organized as follows. Chapter 1 sets the stage with an
introduction to TCP/IP, the basis for Internet communications. Each sub-
sequent chapter discusses a different facet of IPsec

• Chapters 2 and 3 examine the protocols that make up classic IPsec,
the Authentication Header (AH) and the Encapsulating Security
Payload (ESP).

• Chapter 4 discusses the cryptographic algorithms used in IPsec.

• Chapter 5 looks at the Internet Key Exchange (IKE), IPsec�s key
negotiation protocol.

• Chapter 6 applies IKE to the road warrior.

• Chapter 7 describes late-breaking additions to IKE.

• Chapter 8 examines PF_KEY, the protocol that enables IKE to talk
to IPsec.

xvii

• Chapter 9 takes a look at wider-ranging IPsec policy concerns.

• Chapter 10 explains public key infrastructure (PKI) and certificates.

• Chapter 11 discusses extending IPsec protection to multicast
communications.

• Chapter 12 gives a summary and conclusions.

Now that it is over, I would like to extend a hearty thanks to Rolf Oppliger,
Artech House Series Editor for Computer Security, who recruited me to
write this book and who read each chapter within days of its submission.
I also would like to thank my editors at Artech House: Viki Williams,
who lured me into this and then fled to greener pastures; Ruth Harris,
who patiently endured missed deadlines, cracked the whip when necessary,
and stretched the schedule (pronounced �shedule�) to its limits; and
Katie McMenamy, who patiently guided a novice through the prepubli-
cation maze. I also would like to thank my colleagues at NIST, Jim Dray,
Rob Glenn, Tim Polk, and John Wack; and Paul Hoffman, Director of the
VPN Consortium, who took time from their busy schedules to read portions
of the book. Their comments were right on target; any remaining errors are
mine alone. r"alyez

Sheila Frankel
sheila.frankel@nist.gov

xviii Demystifying the IPsec Puzzle

1
Introduction

Railroad carriages are pulled at the enormous speed of 15 mph by
engines which, in addition to endangering life and limb of passengers,
roar and snort their way through the countryside, setting fire to the
crops, scaring the livestock, and frightening women and children. The
Almighty certainly never intended that people should travel at such
breakneck speed.

Martin Van Buren

Back in the old days, when the Internet was young, fire-breathing dragons
roamed the earth, and Bill Gates was still working on his fifth billion, the
Internet was the plaything of a group of academics and researchers. Its goal
was to maximize communication, connectedness, and collaboration and to
minimize barriers that would detract from the realization of those goals. The
protocols that were defined then�and that still govern the underpinnings of
the Internet now�reflect that reality.

When I mentioned to a friend that I was thinking of writing a book
on Internet security, he responded, �Internet security is an oxymoron.� I
found myself reacting in a defensive and somewhat protective manner,
although from the perspective of anyone who reads newspapers� daily reports
on break-ins and viruses, his response was entirely appropriate.

Once the Internet became the �information superhighway,� and the
traffic (not to mention the drivers) became more diverse, security blossomed

1

into a major concern. It was as if the inhabitants of a private single-family
house were to wake up one morning and discover that each bedroom was
inhabited by a group of strangers. If a family member should complain about
the lack of privacy or security, one of the interlopers might surely say, �In
this house, security is an oxymoron.�

Embedded within the complex and rapidly evolving infrastructure, it
proved impossible to radically or suddenly alter the Internet protocols, those
agreed-on conventions, formats, and rules that govern Internet communica-
tions. Thus, two types of solutions have emerged in response to the security
hazards that threaten Internet traffic: localized solutions and application-
specific solutions. Localized solutions are attempts by computer network
administrators to isolate or fortify their particular fiefdoms and take the form
of screening routers, firewalls, defensive scanners, and the elimination of
known security holes from operating systems and application programs.
Application-specific solutions are applied to specific applications, such as
electronic commerce or email, and are agreed on by some segment of the user
population.

What differentiates IPsec from other solutions? IPsec is an attempt to
define a more global solution to the problem of Internet security. Because
IPsec will be applied at the Internet layer of communications, it can be used
by any or all applications. Rather than requiring each email program or Web
browser to implement its own security mechanisms, IPsec involves a change
to the underlying networking facilities that are used by every application. It
also allows network managers to apply protection to network traffic without
involving end users.

The IPsec protocols are like a jigsaw puzzle, consisting of numerous
interconnected pieces that, assembled, make a cohesive whole. This book
examines the component pieces one at a time; while we are analyzing
individual pieces of the puzzle, we shall assume that other, still unexplored
components magically appear in an unspecified manner, perhaps through
invocations or wizardry.

The impact of each IPsec piece is easier to understand when viewed in
the context of a sample communications scenario. Throughout, this book
uses three simple but commonplace scenarios for that purpose. The sample
scenarios are comprised of two types of building blocks: hosts and gateways.

• A host is a system that can initiate messages to be sent across the
Internet and receive messages from other systems but cannot act
as an intermediary to forward or route messages from one system
to another. A host can provide IPsec services for itself but not for

2 Demystifying the IPsec Puzzle

other systems. Examples of hosts are a single-user PC, a laboratory
computer used to gather and analyze data, and a business data
repository.

• A gateway is a system that can initiate messages to be sent across the
Internet, receive messages from other systems, and act as an inter-
mediary to forward or route messages from one system to another.
Routers and firewalls are examples of gateways. A security gateway,
in our framework, is a gateway that can provide IPsec services for
itself and for other systems.

Scenario 1 is the simplest case: two hosts communicating with each
other. Currently, one of the common uses of IPsec is the creation of a virtual
private network (VPN). If a company needs to conduct secure communica-
tions between scattered locations, a private network can be constructed by
leasing or stringing private communication lines. A less expensive and more
flexible alternative is a VPN that uses the Internet as the communications
medium and employs IPsec to ensure that the communications are indeed
private. Although the VPN�s traffic crosses the public Internet, IPsec protec-
tion prevents unauthorized outsiders from reading or modifying the traffic.

Scenario 2 is a small-scale VPN: two separate networks, each protected
from the outside by a security gateway that screens all communications to
and from its associated network. This topology can represent a single busi-
ness with several branch locations or with separate departmental networks in
the same location.

Scenario 3 combines aspects of the first two: a single host communicat-
ing with another host that resides on a network protected by a security gate-
way. This commonly occurs when an employee dials into a business network
from home or when on a business trip. Scenario 3 is complicated by the fact
that the single host, when dialing into the network, may not have a fixed
network address. Figures 1.1(a), 1.1(b), and 1.1(c) illustrate scenarios 1, 2,
and 3, respectively.

Because you are reading this book, you must have some interest in
IPsec. Instead of touting the superiority of the IPsec approach, this book first
describes the details of the IPsec protocol itself. Once we have �assembled�
the IPsec puzzle, we will compare IPsec to the other leading contenders and
contrast their relative strengths and weaknesses.

The information in this book will, we hope, be sufficient to turn
IPsec-illiterate readers into informed users of IPsec products or to turn
IPsec-aware readers into tweakers of existing IPsec implementations. By

Introduction 3

itself, however, this book is neither sufficiently rigorous nor sufficiently
detailed to enable readers to become IPsec implementers from scratch.
The technology is complex enough and still in flux so that would-be

4 Demystifying the IPsec Puzzle

Internet
Host H1

Host H2

Figure 1.1(a) Communication scenario 1: host-to-host.

Internet

Host H1-3

Host H1-2Host H1-1 Host H2-2Host H2-1

Host H2-3

Gateway
SG1

Gateway
SG2

Network N1 Network N2

Figure 1.1(b) Communication scenario 2: gateway-to-gateway.

Internet

Gateway
SG2

Host H1

Host H2-1 Host H2-2

Host H2-3

Network N2

Figure 1.1(c) Communication scenario 3: host-to-gateway.

implementers need to become intimately familiar with the IPsec Requests for
Comments (RFCs) and Internet Drafts that are the definitive specifications
for this technology.1

However, the RFCs and the Internet Drafts do not always present a
complete picture. In the spirit of the IETF, the organization responsible for
the development of those documents and whose motto is �rough consensus
and running code,� the documents do not always tell the full story. The
details are fleshed out through mailing list discussions, interoperability test-
ing sessions, and hallway discussions at the IETF meetings. Sometimes, the
small but essential details are agreed on, but it takes time until that is
reflected in the documents. This book attempts to convey the flavor and sub-
stance of the finishing details and, in many cases, unresolved disagreements,
which are essential to an understanding of IPsec. Because IPsec is still under
development, it provides a moving target for any attempt at documenting
its features and status. This book attempts to capture the reality of IPsec,
presenting a snapshot of IPsec as of October 2000.

The field of computer security embodies a rich and extensive theoreti-
cal and historical infrastructure. Although this book cannot cover the theory
and practical ramifications of every aspect of IPsec, it does aim to make the
IPsec protocols� goals, functionality, and interrelationships understandable
to the reader. It also suggests voluminous amounts of extra reading material
to those readers with a thirst for IPsec-related knowledge.

1.1 The TCP/IP Protocol Stack

The frame of reference in which IPsec operates is that of the Internet Proto-
col (IP). IP is one part of a layered suite of communication protocols known
as TCP/IP [1�4]. The top layer, the applications layer, consists of protocols
that are familiar to users through the applications they use. Internet browsers
use the Hyper Text Transfer Protocol (HTTP) protocol to communicate;

Introduction 5

1. All the Internet protocols, including IPsec, are defined in documents that are developed
under the sponsorship of the Internet Engineering Task Force (IETF). An Internet Draft
describes a protocol that is in the early stages of development. Once the technology
reaches a certain level of consensus and there are multiple vendor implementations of the
protocol, it is reclassified as an RFC. All current Internet Drafts and RFCs can be found
at the IETF�s Web site, http://www.ietf.org. The IETF cautions against citing Internet
Drafts as references; because many aspects of IPsec have not yet achieved RFC status, this
book does cite Internet Drafts.

email programs use the SMTP, POP3, and IMAP4 protocols; remote termi-
nal programs use TELNET; and file transfer programs use the File Transfer
Protocol (FTP). Those application protocols rely on the Transmission Con-
trol Protocol (TCP), the transport protocol that is used to establish reliable
communications sessions, in which data are predictably transferred without
loss, duplication, or other types of errors.

Other applications and their related protocols are not as familiar to
most users but are essential for the smooth operation of the Internet. Net-
work routing relies on protocols such as the Routing Information Protocol
(RIP); the ability to refer to hosts by their names rather than by a lengthy
string of numbers results from use of the Domain Naming System (DNS)
protocol. Those application protocols rely on the User Datagram Protocol
(UDP), a transport protocol that transmits individual packets without check-
ing for loss or duplication. For applications that run over UDP, the applica-
tions themselves are responsible for this type of reliability insurance, rather
than the underlying transport protocol. The TCP communications model
can be likened to the phone company: A connection is established, and mes-
sages are reliably transmitted and received in the proper order. The UDP
communications model can be compared to the Post Office; messages are
sent out and (one hopes) received, but no checking is done to ensure that
they actually were received or in what order. Both transport protocols, TCP
and UDP, rely on the Internet layer protocol, IP, for the following:

• Transmitting messages from one machine to another;

• Routing the messages so they arrive at the desired destination;

• If the messages are too large to be transmitted by one or more of
the network links encountered along the way, breaking the messages
into smaller fragments and, at the other end, reassembling the frag-
ments to reconstruct the original message.

The Internet Control Message Protocol (ICMP) defines special-purpose
messages used by the IP layer to alert other systems to problematic or errone-
ous conditions and to exchange information related to IP functions.

Figure 1.2 illustrates the layers of a typical system that uses TCP/IP as
its networking protocol. When an outbound message is constructed, each
layer, from the top to the bottom, inserts its own header in front of the
data to be transported and then sends the message to the next (lower)
layer for further processing. When an inbound message is received, the
process is reversed. Each layer, from the bottom to the top, performs its

6 Demystifying the IPsec Puzzle

layer-appropriate processing, strips off its header, and sends the message to
the next (upper) layer for further processing. Each layer views a message as
having two parts: the layer�s header and �other stuff.� The other stuff gener-
ally is referred to as �data,� although in fact it generally contains a series of
upper-layer headers, followed by the message data destined for the application.

1.1.1 IP Packets

The overwhelming majority of packets that traverse the Internet today follow
the rules and the format defined by Internet Protocol Version 4 (IPv4) [5]. A
new protocol, Internet Protocol Version 6 (IPv6) [6�8], has been defined
and is deployed in limited portions of the Internet. The motivation for the
development of IPv6 was the predicted depletion of the IPv4 address space
due to the unanticipated increase in the Internet�s popularity and use. An
IPv6 address is 128 bits, as opposed to the 32 bits in an IPv4 address. That is
not the only difference between the two versions. The designers of IPv6 took
advantage of the experience and lessons learned from the deployment of IPv4
and redesigned many operational aspects, along with the header format. For
example, IPsec is a mandatory part of any IPv6 implementation, while it is
optional for IPv4. The discussions in this text of the various features of IPsec
point out any differences between IPsec for IPv4 and IPsec for IPv6.

The header that is constructed or processed by the IP layer, referred to
as the IP header, differs somewhat depending on whether it is an IPv4 header
or an IPv6 header. The IPv4 header format is illustrated in Figure 1.3; its
composite fields are as follows:

• Version identifies the header as an IPv4 header.

• Hdr Len is the IP header length.

Introduction 7

Data layer

Application layer

Transport layer

Internet (IP) layer

Figure 1.2 The TCP/IP layers.

• Type of Service (TOS) specifies whether the packet should receive
special delivery treatment as it traverses the Internet.

• Total Packet Length is the length of the IP header plus data.

• Fragment Identification Value is the unique identifier assigned to all
fragments of a packet that must be broken up (fragmented) for the
packet to reach its destination.

• Flags are specialized control flags, including the DF (�don�t frag-
ment�) bit, which prohibits intermediate routers from fragmenting
the packet.

• Fragment Offset is the offset of a packet fragment within the reassem-
bled packet.

• Time to Live (TTL) is the maximum number of times a packet can
be forwarded within the Internet before it is discarded. Its purpose is
to prevent an undeliverable packet from indefinitely bouncing from
router to router (possibly in an infinite loop) without ever arriving at
its destination.

• Next Protocol is the protocol of the next packet header, which for
IPv4 generally is TCP, UDP, or ICMP.

• Header Checksum is a computed value to ensure that the IP header is
not inadvertently changed while the packet is in transit. It is recom-
puted at each intermediate router.

• Source Address is the address of the packet�s sender.

• Destination Address is the address of the packet�s recipient.

• Options are used to specify intermediate routing or other special
handling for the packet (not used in most IP implementations).

• Padding consists of zero-filled bytes that ensure the IP header is a
multiple of 32 bits.

8 Demystifying the IPsec Puzzle

Version Hdr Len
Flags

Type of service Total packet length
Fragment identification value Fragment offset

Destination address
Options Padding

Time to live (TTL) Next protocol Header checksum
Source address

Figure 1.3 IPv4 header format.

A number of features or behaviors can be enabled as options to the
IPv4 header. One feature is source routing. Instead of just specifying the
source and the destination of a message and leaving the exact intermediate
routing up to the routers encountered along the way, a source-routed mes-
sage specifies the exact route that a message should take, including intermedi-
ate destinations. To enable source routing and other optional behaviors, the
IPv4 header has a fixed-length options field, which has two disadvantages:
(1) a packet that does not need special processing still carries an unneeded
options field, and (2) any new types of special processing that might be
required have to be retrofitted into the single options field.

The designers of IPv6 took a different approach to options. If needed,
one or more variable-length extension headers can be included in a packet.
The IPv6 extension headers are special-purpose headers that follow the IP
header and describe any intermediate routing or other special handling that
is required. That provides more flexibility for special-purpose handling and
leaves open the possibility that additional extension headers can be defined in
the future. The currently defined IPv6 extension headers are as follows:

• The hop-by-hop header defines special processing that needs to be
applied to the message at each intermediate router.

• The routing header specifies each or some of the intermediate routers
to be encountered by the message.

• The fragment header identifies each individual piece of a packet that
is too large to traverse the path without being divided into multiple
segments, called fragments.

• The destination options header defines special processing that needs
to be applied to the message when it reaches its final destination.

The IPv6 header format is illustrated in Figure 1.4; its composite fields are as
follows:

• Version identifies the header as an IPv6 header.

• Traffic Class specifies whether the packet should receive special
delivery treatment as it traverses the Internet.

• Flow Label identifies a group of packets as members of a group
requiring special processing by intermediate routers.

• Payload Length is the IPv6 payload length (extension headers +
data).

Introduction 9

• Next Header is the protocol of the next packet header, which for
IPv6 generally is TCP, UDP, or ICMP.

• Hop Limit is the maximum number of times a packet can be for-
warded within the Internet before it is discarded. Its purpose is to
prevent an undeliverable packet from indefinitely bouncing from
router to router (possibly in an infinite loop) without ever arriving at
its destination.

• Source Address is the address of the packet�s sender.

• Destination Address is the address of the packet�s recipient.

1.1.2 IP Packetization and Fragmentation

Often, the message to be sent by an application (e.g., an email message or a
page retrieved by a Web browser) is too large to be sent intact across the
Internet, especially after all the requisite headers have been added. How does
TCP/IP handle messages that are too large to be sent in a single packet? The
packetization routines, which generally are incorporated into TCP or into
those applications that run over UDP, divide the message into packets of a
reasonable size (what is considered reasonable is a fairly complex matter that
will not be dealt with here), and the original message is reconstructed when
it is received. In IPv4, the entities that traverse the Internet generally are
referred to as datagrams; in IPv6, the word packet generally is used. This book
uses the word message to refer to the logical units of data generally sent by an
application and the word packet to refer to the packetized entity that consists
of a series of headers followed by the data that make up all or part of the
original message.

What happens if the sender of a packet is unaware that, along the path
leading to the destination, one or more segments, or links, are not equipped
to handle a packet of the size that was sent? In IPv4, the packet�s sender can

10 Demystifying the IPsec Puzzle

Version

Source address

Destination address

Traffic class Flow label
Payload length Next header Hop limit

Figure 1.4 IPv6 header format.

dictate whether the packet can be further segmented, or fragmented, by a
router that the packet encounters. If router R1 attempts to forward a packet
that is too large to be accommodated by a subsequent network link, and if
the originator of the packet disallowed packet fragmentation by turning on
the packet�s DF bit, then router R2 on that link will send an ICMP �packet
too large� message back to the packet�s sender. (Actually, the message is �des-
tination unreachable� with a code that indicates �fragmentation needed and
DF set.�) That message notifies the sender that the oversized packet should
be broken into smaller packets and then resent. If R2 has implemented the
Path Maximum Transmission Unit (PMTU) Discovery Protocol, the mes-
sage will include the size of the largest packet that can be handled by that
link; otherwise, the sender will have to determine the PMTU through trial
and error. If, however, the sender of the oversized packet did not disallow
packet fragmentation, then R2 will break the packet into appropriately
sized fragments, which will be reassembled when they reach their ultimate
destination. Figure 1.5 illustrates fragmentation performed by an intermedi-
ate router. Figure 1.6 shows the situation when intermediate fragmentation
is disallowed by the sender.

In IPv6, the approach is somewhat different. On the basis of the experi-
ence with IPv4, fragmentation is viewed as a suboptimal approach [9],

Introduction 11

Large packet 1

4

2

ICMP message3

Small packet #1 5
6

7
8

9Ho
st

H1

Ro
ut

er
R1

Ro
ut

er
R2

Large packet

ICMP message

Small packet #1 Small packet #1

Small packet #2 Small packet #2Small packet #2 10

Figure 1.6 Fragmentation avoided by reduction of the packet size.

Large packet 1 2 Fragment #1 3

Fragment #2 4

Large packetH
1

R
1

R
2

Figure 1.5 Fragmentation performed by an intermediate router.

because it results in releasing larger numbers of packets, some of which are
most likely quite small. Unlike IPv4, in which fragmentation is performed
and the packets resent by an intermediate router, in IPv6 the packet�s source
host attempts to reduce the size of all the packets. If that is impossible, the
source host fragments the packet into multiple packets, which are identified
as individual pieces of the same packet through the use of one of the IPv6
extension headers, the fragmentation header. As in IPv4, reassembly is per-
formed by the host that is the packet�s final destination.

IP packetization and fragmentation are very different creatures; the
former is the normal operational mode of IP, while the latter is viewed as an
abnormal and potentially harmful beast. Ideally, packetization divides a mes-
sage into packets that are close to the maximum size that can be handled
along the path the packets will take. That minimizes the number of packets
per message; because small packets require the same handling at each inter-
mediate router as do large packets, avoidance of network congestion and
other problematic conditions is best served by the sending of fewer, larger
packets. Because each packet contains a full IP header, including all necessary
routing and special handling options, each packet can be independently
processed by the IP routines once the packet reaches its destination. If por-
tions of a message are not received, only those portions must be resent, rather
than the whole message.

Fragmentation is performed by the IP routines. The first fragment con-
tains a full IP header; the subsequent fragments contain only those portions
of the header necessary for routing and any special handling that must take
place while the packet traverses the route. Thus, the IP routines must reas-
semble the fragments into a complete packet before the packet can be sent to
the appropriate application. Because packet fragments take up space while
they are held for reassembly, the IP routines hold them for only a limited
amount of time. If all fragments do not show up within the specified time
frame, the sender must resend all the fragments, not just the ones that failed
to arrive initially. In addition, fragmentation increases the likelihood that
numbers of small packets will be traversing the network, since it is unlikely
that all of the fragments will be as large as the PMTU.

1.2 Introducing IPsec

Because the format of Internet packets is publicly defined and well known, a
packet that traverses the Internet can be captured by any of the routers that
lie along its path. Its contents can be read and changed. Even the checksums

12 Demystifying the IPsec Puzzle

that are part of the Internet packet format cannot protect a packet from
unauthorized alteration. The checksums were intended to guard against data
corruption caused by malfunctioning devices. If the data alteration is inten-
tional, the attacker simply can recompute the checksum, and the packet will
appear to be perfectly intact. How, then, can Internet packets be protected
from attacks by squatters, marauders, and other cybermenaces? The solution
lies with a technique loved by children of all ages�secret codes. If the con-
tents of a message are rendered unintelligible through the application of a
secret code, then those contents are safe from prying eyes. If a message�s con-
tents are left intact, but a secret code is used to compute a value that uniquely
characterizes the message, then the message�s contents cannot be altered
without alerting the recipient that something is amiss. Today�s computer-
assisted codebreakers, or cryptanalysts, are capable of breaking extremely
complex secret codes. Therefore, information that is impossible to guess,
even with the aid of today�s computing power, must form an integral part of
the coded messages. That information, the secret key, must be known only to
the communication�s participants.

The IPsec protocols are additions to IP that enable the sending and
receiving of cryptographically protected Internet packets. Special IPsec head-
ers identify the types of cryptographic protection that were applied to the
packet and include other information necessary for the successful decoding
of the protected packet. The Encapsulating Security Payload (ESP) header
provides privacy and protects against malicious modification, and the
Authentication Header (AH) protects against malicious modification with-
out providing privacy. The Internet Key Exchange (IKE) protocol is a
mechanism that allows for secret keys and other protection-related parame-
ters to be exchanged prior to a communication without the intervention of
the user.

1.3 Summary

This chapter set the stage for an understanding of IPsec by introducing
its underlying framework, the TCP/IP networking suite, and by describing
IP, the layer in which IPsec operates. This information is critical for an
understanding of the puzzle pieces that make up IPsec. We also presented an
intuitive, somewhat jargon-free introduction to IPsec. The rest of this book
delves more deeply into each facet of IPsec, complete with technical details
and the appropriately mysterious vocabulary that generally accompanies such
details.

Introduction 13

1.4 Further Reading

Two excellent series delve deeply and in great detail into explanations of
TCP/IP, Internetworking with TCP/IP [1, 2] and TCP/IP Illustrated [3, 4].
Each is a three-volume series, in which the first volume describes the architec-
ture of TCP/IP and its numerous protocols, and the second volume explains
its implementation, interconnections, and interfaces. The third volume of
each series contains a more specialized description of specific protocols, aimed
mainly at implementers. The quintessential definition of IPv4 can be found in
RFC 791 [5]; IPv6 is defined in RFC 2460 [6]. Christian Huitema, an
involved participant in the IPv6 development process, has written a book [7]
that describes each aspect of the IPv6 protocol, its motivation, and unresolved
issues. The Internet Architecture Board (IAB), a technical advisory group that
provides architectural oversight and planning for the Internet protocols, issued
a document that presents the arguments in favor of adopting IPv6 [8]. For
those who are interested in the issue of fragmentation, [9] presents a detailed
analysis of the ills brought into the Internet world through its use.

References

[1] Comer, D., Internetworking With TCP/IP. Vol. 1: Principles, Protocols, and Architec-
ture, 3rd Ed., Englewood Cliffs, NJ: Prentice Hall, 1995.

[2] Comer, D., and D. L. Stevens, Internetworking With TCP/IP, Vol. 2: Design, Imple-
mentation, and Internals, 3rd Ed., Englewood Cliffs, NJ: Prentice Hall, 1998.

[3] Stevens, W. R., TCP/IP Illustrated, Vol. 1: The Protocols, Reading, MA: Addison-
Wesley, 1994.

[4] Wright, G., and W. R. Stevens, TCP/IP Illustrated, Vol. 2: The Implementation,
Reading, MA: Addison-Wesley, 1995.

[5] Postel, J. (ed.), Internet Protocol: DARPA Internet Program Protocol Specification,
RFC 791, Sept. 1981.

[6] Deering, S., and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification,
RFC 2460, Dec. 1998.

[7] Huitema, C., IPv6: The New Internet Protocol, 2nd Ed., Englewood Cliffs, NJ:
Prentice Hall, 1997.

[8] King, S., et al., �The Case for IPv6,� <draft-ietf-iab-case-for-ipv6-06.txt>, June 2000.

[9] Kent, C. A., and J. C. Mogul, �Fragmentation Considered Harmful,� Proc. Frontiers
in Computer Communications Technology, ACM SIGCOMM �87, Aug. 1987,
http://gatekeeper.dec.com/pub/DEC/WRL/research-reports/WRL-TR-87.3.pdf.

14 Demystifying the IPsec Puzzle

2
The First Puzzle Piece: The
Authentication Header

It is a riddle wrapped in a mystery inside an enigma.

Winston Churchill, 1939

IPsec is an attempt to enable secure communications at the IP layer. This
security protection is furnished through the use of two optional headers, the
Authentication Header (AH) and the Encapsulating Security Payload header
(ESP). Although the use of these headers is optional, their inclusion in IPv6
systems is mandatory; many implementers of IPv4 systems also furnish IPv4
versions of these headers. This chapter describes the AH, its format, its proc-
essing, and the protections it provides.

2.1 Protections Provided by AH

AH provides several types of protection [1, 2]:

• Connectionless integrity is a guarantee that the message that is
received is the exact one that was sent, and that no tampering has
occurred. Why �connectionless�? Because communications at the
Internet layer are analogous to the Post Office model rather than
the phone company model. Messages are sent from the sender to the

15

receiver, but no attempt is made to ensure that they are received in
order or that any (or all) were in fact received. That task is left to
the transport layer protocol or to the application that originates the
messages.

• Data origin authentication is a guarantee that the message actually
was sent by the apparent originator of the message and not by
another user masquerading as the supposed message originator.

• Replay protection (optional) is the assurance that the same message
is not delivered multiple times and that messages are not delivered
grossly out of order. This capability must be implemented by the
sender; the receiver may optionally enable its use.

2.2 Security Associations and the Security Parameters Index

Before two communicating entities can exchange secure communications,
they need to agree on the nature of the security to be applied to those com-
munications: which security headers (AH, ESP, or both) will be applied, the
cryptographic algorithms to be used, the secret keys, and so forth. A security
association (SA) consists of all the information needed to characterize and
exchange protected communications. The IETF documents treat the SA and
its repository, the security association database (SAD) as hypothetical con-
structs, because they are entities that are internal to each of the peers. They
contain information essential to conducting secured communications via the
IPsec protocols, but the SA in its entirety is not part of that communication,
so the documents do not dictate its form or location. In practice, the SAD
generally is a table that is kept in protected storage by the system process that
handles these communications.

Each SA includes various pieces of information that the IPsec-
processing routines can use to determine whether the SA is eligible to be
applied to a particular inbound or outbound message. Each such item can
have a specific value or values, to narrowly define those messages to which
the SA applies; or a wildcard value, to indicate that an item is not relevant in
evaluating traffic for the SA. These items, called the SA�s selectors, include
the following:

• Source and destination addresses (IPv4 or IPv6). Each of these
addresses can be a single IP address: unicast, anycast (IPv6 only),
broadcast (IPv4 only), or multicast; a range of addresses; an address
plus mask, to specify a subnet. For a single SA, the source address(es)

16 Demystifying the IPsec Puzzle

and the destination address(es) all must be either IPv4 or IPv6. If the
sole selectors for an SA are the IP addresses of the communicating
peers, the SA is called a host-oriented SA, because it governs all com-
munications between the two systems, regardless of which users or
applications are involved.

• Name, either a user ID or a system name. The User ID limits this SA
to traffic initiated by or destined for a specific user. If the sole selec-
tors for an SA are the user IDs of the communicating peers, the SA
is called a user-oriented SA, because it governs all communications
between the two users, regardless of which systems or applications
are involved. The system name limits it to traffic for a specific sys-
tem, which can be a host, a security gateway, or any other address-
able system. The system name can be specified in one of the
following three formats; the user ID can be specified in one of
the first two formats:

• A fully qualified DNS user name (e.g., frankel@artechhouse.com)
or DNS system name (e.g., artechhouse.com);

• An X.500 distinguished name (explained in Chapter 10);
• An X.500 general name (explained in Chapter 10).

• Transport Layer Protocol (TCP or UDP).

• Source and destination ports. A single port number generally is used
to limit the SA�s applicability to a single type of application traffic
(e.g., FTP or TELNET). When one or both of the port selectors are
used in combination with the Transport Layer Protocol selector and
one or both of the address selectors, the SA is called session-oriented,
because its effect is to limit the SA to one session, or instantiation, of
a particular type of traffic between two specific hosts.

Each SA also contains various pieces of information that must be made avail-
able to the IPsec-processing routines, including:

• Data used to provide authentication protection: AH or ESP authen-
tication algorithm, keys, and so forth (further explained later in this
chapter and in Chapter 4);

• Data used to provide confidentiality protection: ESP encryption
algorithm, IV, keys, and so forth (described in Chapters 3 and 4);

• Data used to provide anti-replay protection: sequence number
counter and sequence counter overflow flag for outbound SAs,

The First Puzzle Piece: The Authentication Header 17

anti-replay counter and anti-replay window for inbound SAs
(further explained later in this chapter);

• IPsec header mode flag: Tunnel Mode, Transport Mode, or both
(further explained later in this chapter);

• SA lifetime, measured in elapsed time or number of bytes protected
(SA expiration and replacement are discussed in Chapter 5);

• Data used to perform message fragmentation: PMTU information
for outbound SAs (further explained later in this chapter).

The granularity of an SA is a rough measure of the SA�s selectivity. An
example of an SA with a coarse granularity could be a host-to-host SA or
even a network-to-network SA, one that applies to all traffic between the two
hosts or networks, regardless of application or user. An SA with a moderate
granularity might be limited to a specific type of traffic between two hosts,
such as FTP, or to all traffic between two hosts conducted by a specific user
on each host. An example of an SA with a fine granularity is one that could
be limited to a specific session between two hosts, such as a single FTP file
transfer session.

It is highly likely that multiple SAs will be established between a pair
of communicating hosts. For example, one set of security features might be
required for email or Web communications and a different, more stringent
set for a remote payroll application. When protected messages are sent, the
sender needs to indicate which SA was used to encode the communication,
so the receiver can use the same SA in decoding the message. That is the
function of the security parameters index (SPI). Because each SA is unidirec-
tional, protected two-way communications between two peers requires the
establishment of two SAs: an inbound SA and an outbound SA. The SPI, in
conjunction with the destination address and the security protocol (AH or
ESP), is sufficient to unambiguously select a unique inbound SA from the
SAD. To ensure the SPI�s uniqueness, each peer selects the SPI for its own
inbound SA.

Another hypothetical database, the security policy database (SPD),
reflects more general policies governing the treatment of various classes of
protected and unprotected traffic. Each SPD entry can result in the creation
or negotiation of one or more SAs. The SPD is discussed in excruciating
detail in Chapter 9; for now we simply assume that there is a magical policy
mechanism that is used to determine which SA (if any) applies to an

18 Demystifying the IPsec Puzzle

incoming or outgoing message; we also assume that the applicable SA has
been added, deus ex machina (more on that in Chapter 5), to the SAD.

2.3 AH Format

Figure 2.1 illustrates the AH format. The header comprises six fields. Five of
the fields have a fixed length, for a total length of three 32-bit words; the
sixth field is variable length. The individual header fields are as follows:

• Next header is the type of the header that follows the AH. It might
be the other IPsec header, the ESP header; a TCP header if the
application that originated the message runs over TCP (e.g., email
or Web access via HTTP); a UDP header if the originating applica-
tion runs over UDP (e.g., the troubleshooting program traceroute);
or an ICMP header, if this is an IP error or informational message.
In IPv6, it could be one of the extension headers.

• Payload length is the length of the total AH in words, minus 2 (or
the length of the authentication data portion of the header, plus 1).
This elegant calculation is a legacy of the former version of the AH,
defined in RFC 1826, which did not include a mandatory Sequence
Number field. The intent is to transmit the length of the authentica-
tion data, which is a variable-length field, to the receiver. Initially,
an optional sequence number was included in the authentication
data, and the Payload Length field conveyed the length of that com-
bined field. Once the Sequence Number field was made mandatory
and was separated from the Authentication Data field, a graceful
description of the Payload Length field became impossible.

• RESERVED is a field currently set to 0 but reserved for future use.

• Security parameters index (SPI) is the index into the receiver�s SA
database.

The First Puzzle Piece: The Authentication Header 19

Next header AH payload len Reserved (set to zero)

Anti-replay sequence number field

Authentication data (ICV optional cipher-dependent data)+

Security parameters index (SPI)

Figure 2.1 AH format.

• Sequence Number field is the number of messages sent from the
sender to the receiver using the current SA. By keeping track of this
quantity and sending it to the receiver, the sender enables the
receiver to perform replay protection, if desired.

• Authentication Data field is a variable-length field that fulfills the
AH�s main purpose. It contains the integrity check value (ICV),
which is a cryptographic version (more on this in Chapter 4) of the
message�s contents that can be used by the receiver to check the mes-
sage�s authentication and integrity. This field is padded, if necessary,
so that the total length of the AH is an exact number of 32-bit words
(IPv4) or 64-bit words (IPv6).

2.4 AH Location

Figure 2.2 illustrates AH�s placement for both IPv4 and IPv6. In IPv4, it fol-
lows the IP header, preceding the next header (ESP, TCP, UDP, or ICMP).
Nothing else intervenes between the AH and its preceding IP header or
its trailing next header. In IPv6, the positioning of AH is similar, but the
optional IPv6 extension headers can either precede or follow AH. The IPv6
extension headers that can precede AH are the hop-by-hop header, the

20 Demystifying the IPsec Puzzle

IP
header

AH
header

Upper protocol headers
and packet data

Dest
options
header

AH
header

Dest
options
header

Upper
protocol
headers

and
packet

data

IP
header

Hop-by-hop
header

Routing
header

Fragment
header

(a)

(b)
Authenticated fields

Authenticated fields

Figure 2.2 AH placement in Transport Mode: (a) IPv4 and (b) IPv6.

routing header, and the fragment header. The destination options header
can either precede or follow AH. Its position relative to AH is dependent on
whether the special processing should take place before or after authentica-
tion processing occurs.

2.5 AH Modes

An additional factor governs the placement and processing of AH. Figure 2.2
illustrates the placement of AH in what is known as Transport Mode. This
mode is used primarily for end-to-end authentication between two hosts.
However, when a security gateway is used to provide protection for multiple
hosts on a network, Tunnel Mode is used. An additional (outer) IP header,
whose source address is that of the security gateway, is placed at the begin-
ning of the packet; the original (inner) IP header, whose source address is one
of the network hosts protected by the gateway, is left intact. The new IP
header�s destination address can be the same as the original IP header�s desti-
nation address, or, if the destination is also protected by a security gateway,
the new IP header�s destination address can differ from the original IP head-
er�s destination address. Figure 2.3 illustrates AH�s placement in Tunnel
Mode. In IPv4, AH follows the new IP header and precedes the original IP

The First Puzzle Piece: The Authentication Header 21

(a)

(b)

Outer (new)
IP header

AH
header

Inner (original)
IP header

Upper protocol headers
and packet data

Authenticated fields

Original
extension
headers

Upper
protocol
headers

and packet
data

Outer
(new)

IP header

New
extension
headers

AH
header

Inner
(original)
IP header

Authenticated fields

Figure 2.3 AH placement in Tunnel Mode: (a) IPv4 and (b) IPv6.

header. In IPv6, AH follows the same extension headers (if present) that it
follows in Transport Mode and precedes the original IP header.

Tunnel Mode also can be used for host-to-host communications, in
which case the addresses are the same in both the original IP header and the
additional IP header.

In scenario 1, to provide AH protection between hosts H1 and H2,
either Transport Mode or Tunnel Mode could be used. In scenario 2, if gate-
ways SG1 and SG2 are to provide AH protection for their hosts, a Tunnel
Mode SA will be established between SG1 and SG2. Figure 2.4 illustrates the
Tunnel Mode communication. Traffic from H1-1 to H2-1 will traverse
the leg from SG1 to SG2 inside a Tunnel Mode packet whose outer header
has source address SG1 and destination address SG2, but whose inner
header has source address H1-1 and destination address H2-1. In scenario 3,
if gateway SG2 is to provide AH protection for its hosts, a Tunnel Mode SA
will be established between host H1 and SG2. Traffic from H1 to host H2-1
will traverse the leg from H1 to SG2 inside a Tunnel Mode packet whose
outer header has source address H1 and destination address SG2, but
whose inner header has source address H1 and destination address H2-1.
Figure 2.5 illustrates the Tunnel Mode headers for each of the three scenarios.

2.6 Nested Headers

More than one SA can be applied to a single message. If both endpoints of
both SAs are the same, the AHs are referred to as adjacent AHs; if one or
both sets of endpoints differ, the AHs are referred to as nested AHs. Adjacent

22 Demystifying the IPsec Puzzle

SA # Src
addr

Dest
addr

IPsec
protocol

SPI Mode

1 SG1 SG2 AH SPI1 Tunnel
2 SG2 SG1 AH SPI2 Tunnel

Host H1-1 Host H2-1

Gateway
SG1

Gateway
SG2

SA#1 (SPI1)

SA#2 (SPI2)

Figure 2.4 Tunnel Mode SA between gateways.

AHs do not provide extra protection, and their implementation is not man-
dated. (Adjacent IPsec headers are discussed in Chapter 3.) Nested AHs do
make sense in certain contexts. In scenario 2, if host H1-1 and host H2-1
require end-to-end authentication, but each is protected by a security gate-
way that demands to authenticate all traffic transiting the gateway, nested
AHs are a reasonable approach to fulfill both requirements. A Tunnel Mode
SA can protect traffic between SG1 and SG2, and a Transport Mode SA can
protect traffic between H1-1 and H2-1. When a message is sent from H1-1
to H2-1, it will have a single Transport Mode AH from the time it leaves
H1-1 until it arrives at SG1; as it travels from SG1 to SG2, it will incorporate
nested AHs, an inner Transport Mode AH, and an outer Tunnel Mode AH;
and traveling from SG2 to H2-1, it will once again have a single Transport
Mode AH. Figure 2.6 illustrates the four unidirectional SAs, each with its
own SPI, that provide this protection.

2.7 Implementing IPsec Header Processing

Generally, one portion of the operating system, or kernel, is responsible for
networked communications. For outbound messages, the networking rou-
tines add the IP header to the message, fragment messages when needed, and

The First Puzzle Piece: The Authentication Header 23

Outer IP header

Outer IP header

Outer IP header

AH
header

AH
header

AH
header

Inner IP header

Inner IP header

Inner IP header

Source: H1
Destination: H2

Source: H1
Destination: H2

Source: H1-1
Destination: H2-1

Source: SG1
Destination: SG2

Source: H1
Destination: H2-1

Source: H1
Destination: SG2

Figure 2.5 Sample tunnel headers.

forward the message to the network access or physical layer to be sent out.
For inbound messages, the routines accept messages from the network access
layer, reassemble fragmented messages when appropriate, strip off the IP
header, and forward the message to the transport or application layer for fur-
ther processing. How do the IPsec-processing routines fit in relative to the
operating system networking logic? There are three common approaches:

• Modifying the networking (IP stack) code. This is the most direct
approach, but it involves a change to the kernel code, so it would
normally be the solution of choice for developers of operating sys-
tems. It is applicable to both hosts and gateways.

• Separating the IPsec code from the networking code. This approach
does not involve changing the kernel code, but it can necessitate
reimplementing portions of the networking code (e.g., fragmen-
tation and reassembly of messages). It generally is referred to as a
�bump-in-the-stack� (BITS) implementation, because the IPsec
code is placed between the Internet layer of the stack and the net-
work access layer. A BITS implementation is applicable to hosts and
gateways, but it is more commonly found on hosts with legacy oper-
ating systems.

24 Demystifying the IPsec Puzzle

SA # Src
Addr

Dest
Addr

IPsec
Protocol

SPI Mode

1 H1-1 H2-1 AH SPI1 Transport
2 H2-1 H1-1 AH SPI2 Transport
3 SG1 SG2 AH SPI3 Tunnel
4 SG2 SG1 AH SPI4 Tunnel

Host H1-1 Host H2-1

Gateway
SG1

Gateway
SG2

SA#3 (SPI3)

SA#1 (SPI1)

SA#4 (SPI4)

SA#2 (SPI2)

Figure 2.6 Nested AH SAs.

• Placing the IPsec code outside the machine. This external crypto-
processor, referred to as a �bump-in-the-wire� (BITW) implementa-
tion, is the least intrusive option, in terms of the kernel code. The
IPsec code can be integrated with router or firewall code and placed
in a router or firewall, or it can be implemented in a standalone
�IPsec box.� It can be attached to a single host or gateway or to mul-
tiple machines.

2.8 AH Processing for Outbound Messages

Once it has been determined that an outgoing message needs the protection
afforded by AH (more on that in Chapter 9), and the outbound SA
governing the protected communication has been found (more on that in
Chapter 9) or negotiated (described in Chapter 5), the message is passed to
the IPsec-processing routines, which perform the following steps.

1. Insert an AH template in the proper place (as described above).

2. Fill in the Next Header field.

3. Fill in the SPI field with the SPI of the selected SA.

4. Compute the Sequence Number field. This field has a length of
32 bits, which means it can hold a maximum value of 4294967295
(hex FFFFFFFF, or 232 � 1). If the selected SA has been used to pro-
tect less than that number of messages, the Sequence Number field
is simply incremented by 1; the new value is placed in the AH and
also saved in the SAD. However, if the Sequence Number field has
reached its maximum value, meaning that this SA has already been
used to protect the maximum allowable number of messages, there
are several possibilities. If the SA�s secret keys were negotiated by
the peers (more on that in Chapter 5), it is time to negotiate new
keys, whether or not the message recipient has enabled replay pro-
tection. This message is set aside or discarded until that can take
place. If the SA�s keys are manually established keys that were
agreed on by the peers in some unspecified manner (e.g., over the
telephone or through the use of couriers), and if the sender knows
that the recipient is not enabling replay protection, the sequence
number is simply reset to 1. For manually established keys, in the
case where the recipient does require replay protection, new keys

The First Puzzle Piece: The Authentication Header 25

must be agreed on. Until that happens, this message cannot be sent,
and the AH processing comes to a halt.

5. For a Transport Mode SA, change the preceding IP header�s Next
Header field to AH.

6. Add a tunnel header, if required. If the SA specifies Tunnel Mode,
the additional (outer) IP header must be constructed and added
to the message. The source and destination addresses of the outer
header are the tunnel endpoints, as specified by the SA.

If both headers are IPv4 headers, the following fields are copied
from the inner header to the outer header: Version, Type of Serv-
ice, Protocol, Fragment Identification, MF (More/Last Fragment)
Flag, and Fragment Offset. The following fields are recomputed for
the outer header: Header Length, Total Length, and Header
Checksum; the recomputation is necessary so that these fields
incorporate information from both the inner and outer IP headers
and from the AH. The Next Header field is set to AH. The
Options field is not copied. The TTL is set to the system�s default
value. The local system�s policy also determines the value of the DF
(don�t/may fragment) Flag: It can be copied from the inner header,
set to 1 to prohibit fragmentation, or set to 0 to allow fragmenta-
tion. The fields of the inner header are left intact, with the follow-
ing exception: If the source addresses of the inner and outer headers
differ, that means the inner packet has traveled to reach the tunnel�s
source address. In this case, the inner header�s TTL field is decre-
mented and the inner header�s Header Checksum is recomputed to
reflect that change.

If both headers are IPv6 headers, the following fields are copied
from the inner header to the outer header: Version and Traffic
Class. The Payload Length field is recomputed for the outer header;
the recomputation is necessary so that this field incorporates the
lengths of both the inner and outer IP headers and the AH. The
Next Header field is set to AH or to the header type of the exten-
sion header that precedes the AH. The extension headers them-
selves are not copied. The hop limit is set to the system�s default
value. The fields of the inner header are left intact, with the follow-
ing exception: If the source addresses of the inner and outer headers
differ, that means the inner packet has traveled to reach the tunnel�s
source address. In that case, the inner header�s Hop Limit field is
decremented.

26 Demystifying the IPsec Puzzle

If the inner header is an IPv4 header and the outer header is an
IPv6 header, or vice versa, the processing is slightly different: The
Version field is set to 4 for the IPv4 header and to 6 for the IPv6
header; the Traffic Class field is transformed into TOS; and the
source and destination addresses are converted to the appropriate
format, if necessary.

7. Compute the authentication data. The authentication data consist
of the output of a keyed message hash. An algorithm (more on this
in Chapter 4) is used that takes a message of any size and generates a
fixed-length output, with the property that it is infeasible to modify
a message in such a way that the resulting hash of the modified mes-
sage would be equivalent to that of the original message. Incorporat-
ing a secret key into the hash computations makes it impossible for
a user not privy to the key to fake an authenticating hash.

The entire message is not protected by the AH, because IP
headers can contain three classes of data: immutable data, which
never changes in transit; mutable but predictable data, which can
be modified during transit, but whose final value, on arrival at the
destination, is predictable; and mutable unpredictable data, whose
value can change during transit in an unforeseen manner. Table 2.1
lists the fields of the IP header that fall into each category. Only
the message data and those header fields that will not change in
an unpredictable manner in transit are used as input to the
authenticating hash, so the final recipient of the packet can verify
the hash. Thus, in Transit Mode, the message data and the pre-
dictable fields of the IP header are protected. In Tunnel Mode, the
entire original IP header and the message data are protected, but
only the predictable fields of the added header are protected.
When the hash is computed, zeroes are used in place of the con-
tents of the unprotected header fields.

The mandatory keyed hash algorithms for IPsec AH are
HMAC-MD5, which generates a 128-bit hash, and HMAC-
SHA-1, which generates a 160-bit hash. In AH, to ensure proper
byte boundaries for efficient processing, the authenticating hash is
truncated to 96 bits. Expert cryptographers have ascertained that
truncating the hash does not lessen its uniqueness or the properties
that ensure cryptographic safety. Once the hash has been placed in
the Authentication field, along with any other data required by the
specific hash algorithm, the message is ready to be sent on its way.

The First Puzzle Piece: The Authentication Header 27

8. Fragment the message, if necessary. If the message, enlarged by the
AH and possibly by an additional IP header for Tunnel Mode, is
sufficiently large that it needs to be fragmented before it is sent,
fragmentation takes place at this point. In Transport Mode, the
message�s source address is always the initiator of the message, so
the total message can be authenticated before fragmentation
occurs. In Tunnel Mode, the source address of the original header

28 Demystifying the IPsec Puzzle

Table 2.1
Classes of IP Header Fields

IPv4 IPv6

Immutable Version Version

Internet header length Payload length

Total length Next header (AH)

Identification Source address

Protocol (should be value for AH) Destination address (without routing
extension header)

Source address �

Destination address (without
source routing)

Option type/data length/data
(classified as immutable)

Destination and hop-by-hop extension
headers option type/data length

Destination and hop-by-hop extension
headersoption data (option type classified
as immutable)

Mutable but
Predictable

Destination address (with source
routing)

Destination address (with routing
extension header)

� Routing extension header

Mutable
Unpredictable

TOS Class

Flags Flow label

Fragment offset Hop limit

TTL Destination and hop-by-hop extension
headers: option data (option type
classified as mutable)

Header checksum �

Option type/data length/data
(classified as mutable)

�

is the actual initiator of the message; if that source address differs
from the outer header�s source address, the message may already
have been fragmented after it exited the original host. In that case,
the tunnel header�s authentication was performed on a message
fragment, which at this point may have to be further fragmented.
Figure 2.7 illustrates the Transport Mode case and Figure 2.8 the
Tunnel Mode case.

The First Puzzle Piece: The Authentication Header 29

Fragment #1 2

Fragment #2 3

Recombine
fragments

Authenticate
message

Compute
message ICV

Large message 1

Ho
st

H1

Ho
st

H2

Ro
ut

er
R1

Figure 2.7 Fragmentation and authentication: Transport Mode host-to-host SA.

Fragment #1 1

Fragment #2 2

Compute
Fragment #1�s
ICV

Fragment #1-1 3

Fragment #1-2 4

Fragment #2 5

Recombine
Fragment #1-1
and
Fragment #1-2

Authenticate
Fragment #1

Authenticate
Fragment #2 Recombine

Fragment
#1 and #2

Fragment #1 1

Fragment #2 5

Ro
ut

er
R1

Ho
st

H2

Ga
te

w
ay

SG
1

Ga
te

w
ay

SG
2

Compute
Fragment #2�s
ICV

Figure 2.8 Fragmentation and authentication: Tunnel Mode gateway-to-gateway SA.

2.9 AH Processing for Inbound Messages

When a message is received that contains an AH, the IP processing routines
first ensure that all fragments of the message have been received and reinte-
grated to form a complete message. The routines also ensure that the fields
that identified each piece of the message as a fragment are reinitialized: The
offset field is reset to zero and the �more fragments� flag is turned off,
so the IPsec processing routines do not erroneously identify the reassembled
message as a message fragment. The message is then passed to the IPsec proc-
essing routines, which perform the following steps.

1. Locate the inbound SA governing this protected communication
in the SAD. This step is initially accomplished through the use of
the three identifying indices: the SPI, the destination address, and
the AH protocol. The SA�s indices are compared to those found
in the packet�s outmost AH, whether it is Tunnel Mode or Trans-
port Mode. The packet must also conform to any other selectors
that limit the SA�s applicability (e.g., port or protocol). If this is a
tunnel header, the SA selectors are compared to those found in the
packet�s inner header, because these fields are not copied into
the tunnel header. Once a matching SA has been found, processing
can continue. If no such SA is found, the packet is dropped.

2. If replay protection is enabled, perform the replay protection check.
The originator of a packet with AH will always increment the
replay protection counter; the recipient is free to either ignore this
counter or use it to ensure replay protection. However, because IP
does not guarantee delivery of packets in the same order in which
they were sent (that is the responsibility of the Transport Protocol
or the application), this counter cannot be used to ensure exact
ordering of the packets, but only a relatively correct order within a
window that is a multiple of 32.

For each inbound SA, the SAD includes a replay window. The
size of the window determines how greatly out of order a message
can be without being rejected; the size is a multiple of 32, with 64
recommended as a default. A replay window of size N keeps track
of the sequence numbers of the last N messages received. Any mes-
sage with a sequence number so low that it is outside the window�s
range is dropped. A message within the window�s range whose
sequence number is a duplicate of a message that was already
received is also dropped.

30 Demystifying the IPsec Puzzle

A bit mask (or some equivalent structure) can be used to track
the sequence numbers of the last N messages received for this SA.
Initially, a 64-bit mask could keep track of the receipt of messages
with sequence numbers between 1 and 64. Once a message with
a sequence number greater than 64 (e.g., sequence number 70) is
received, the bit mask would keep track of messages with sequence
numbers from 7 to 70; it would then drop any arriving messages
with a sequence number less than 7. This check ensures that each
inbound message has not been previously received and that it is not
grossly out of order. Figure 2.9 illustrates how the sliding replay
window works.

3. Verify the authentication data. The authentication hash is com-
puted, in exactly the same manner as for an outbound message. If
the computed hash does not match the authentication data found
in the message, the message is discarded and no further processing
takes place.

4. Strip off the AH and repeat the IPsec processing for any remaining
IPsec headers. If there are other nested IPsec headers that terminate
at the current destination, each successive header must be processed

The First Puzzle Piece: The Authentication Header 31

#70

#6

7 8 9 10 � � 64 65 66 67 68 69 70

Packet dropped (not in window)

✔ ✔ ✔

#4

#10

#64

1 2 3 4 5 6 7 8 9 10 � � 64

#10
Packet dropped (duplicate)

Window shifts when
packet #70 arrives

✔ ✔ ✔

Figure 2.9 The sliding replay protection window.

until one of two conditions is met. Once the last IPsec header is
successfully processed, and an upper layer protocol is encountered,
the packet is sent to the IP processing routines so it can proceed up
the IP stack. Alternatively, if a tunneled IP header is encountered
that is not destined for the current host, the packet is forwarded to
that destination, where further IPsec processing takes place.

5. Check the SPD to ensure that the IPsec protection applied to the
incoming packet conforms to the system�s IPsec policy require-
ments (more on this in Chapter 9). This critical step is difficult to
illustrate using only AHs. More impressive examples are possible
once we add the other type of security header, the ESP, into the
brew in Chapter 3.

2.10 Complications

Two somewhat interrelated aspects of IP networking behavior have the
potential to cause severe heartburn for IPsec implementations: packet frag-
mentation and ICMP [3, 4] error messages.

In scenario 2, let�s assume that a Tunnel Mode SA has been established
between SG1 and SG2 that protects all traffic between networks N1 and N2.
If a packet from host H1-1 to host H2-1 is fragmented before it gets to
security gateway SG1 (case 1), either by an intermediate router (IPv4) or by
the originating host (IPv6), SG1 computes separate ICVs, one for each frag-
ment. When the fragments reach security gateway SG2, each is authenticated
separately, prior to packet reassembly. The reassembled, authenticated
packet is then forwarded to its final destination, H2-1. Now let�s assume that
the packet fragmentation is performed by an intermediate router that lies
between SG1 and SG2 (case 2, IPv4 only). SG1 has already computed
an ICV for the whole packet. When the fragments reach SG2, they must
be reassembled before the packet can be authenticated, because the ICV was
computed before fragmentation occurred.

Now let�s change the scenario slightly. Assume that SG2, knowing that
some segments of the path contain bottlenecks in terms of packet size,
decides to do away with the Tunnel Mode SA, thus shortening the size of
each packet by avoiding the addition of the outer IP header. This approach,
although it does not conform to the prescribed IPsec architecture, has at
times been adopted by some implementations. Let�s also alter the topology
slightly. Unknown to SG2, there is another router or security gateway SG3
(perhaps a back door) serving N2, as illustrated in Figure 2.10. If the SAs

32 Demystifying the IPsec Puzzle

between networks N1 and N2 are all Tunnel Mode SAs, negotiated by SG1
and SG2, all the packet fragments will be routed to the appropriate gateway
and the messages properly processed. However, if SG1 and SG2 decide
to economize on packet size and establish Transport Mode SAs, problems
can ensue. SG2 establishes a Transport Mode header with SG1, under the
assumption that it is the only entry point into N2, so that it can grab any
protected packets and perform the authentication before the packet reaches
H2-1. If any of the fragments are routed via SG3, proper reassembly cannot
occur. In case 1, SG2 authenticates each fragment it receives and attempts
reassembly. Because all the fragments will not arrive at SG2, the partially
reassembled packet is discarded once the reassembly timer expires. Mean-
while, the fragment that arrives at SG3 is either discarded by SG3 or for-
warded to H2-1, which, finding no appropriate SA for the fragment, discards
it. In case 2, SG2 attempts to reassemble the packet before performing
authentication, but otherwise the results are the same as for case 1. This is
definitely a worst-case scenario, but in networking worst-case scenarios seem
to occur with alarming frequency.

These cases illustrate why the IPsec security architecture requires Tun-
nel Mode SAs between two gateways, if the SAs protect traffic between hosts
other than the two gateways themselves. This also applies to a gateway-to-
host SA, in which the gateway protects traffic for other hosts behind the gate-
way. They also show the complications that fragmentation can cause in the
IPsec context.

To avoid fragmentation, gateways must communicate to their pro-
tected hosts the size of the headers that the gateway will add to packets sent
by the hosts. The originating host generally attempts to send packets that are
as close as possible to the PMTU [5�7]. Only by first subtracting the size
of the tunnel headers to be added by the security gateway can packet frag-
mentation be avoided.

The First Puzzle Piece: The Authentication Header 33

Gateway
SG1

Gateway
SG2

Gateway
SG3

Fragment #1

Fragment #2

Figure 2.10 Pitfall of (illegal) Transport Mode gateway-to-gateway SAs.

There is another way to avoid fragmented packets: The source host can
probe the network to ascertain the maximum PMTU for the packet and then
adjust the packet size accordingly. In IPv4, this technique also requires that
the source host turn on the DF bit, to prevent fragmentation by intermediate
routers. This approach can also present problems within the context of IPsec.
If a packet is too large to traverse the entire route, an intermediate router
sends the ICMP message �packet too big� back to the originating host. In the
case of a Tunnel Mode SA, the message is sent back to the security gateway
that is the source address of the outer header. It is also significant that the
ICMP �packet too big� message used to convey the maximum transmittable
packet size (the PMTU) is sent to the packet�s source not from the packet�s
ultimate destination but from an intermediate router. This fact can be very
important in an IPsec context, in which we may want to accept only authen-
ticated messages. The gateway then has a problem: Should it believe this
unauthenticated message? If it chooses to accept the message as valid, it then
has to communicate the message, along with the new PMTU (if included) to
the packet�s originating host, the source address of the inner header. If the
gateway chooses not to relay the message to the host, a black hole situation
can occur: The host keeps resending packets with the DF bit on; because
it never receives a PMTU message, it does not reduce the packet size. Thus,
the packets are continuously resent, adding to network congestion, but they
never arrive at their final destination.

The same ICMP messages used to relieve network congestion through
the elimination of packet fragmentation can also be used to mount a denial-
of-service attack on the network. An attacker can send bogus PMTU mes-
sages, with a smaller-than-necessary PMTU. If the gateway accepts unau-
thenticated PMTU messages and passes them on to the originating host, the
host will decrease the packet size for all packets traversing that path. That
leads to the transmission of an increased number of small packets, an increas-
ing number of computationally expensive IP-related operations, possibly
causing network congestion and a degradation of service.

Several proposals have been advanced to handle the PMTU problem.
One possible suggestion involves cooperation between SG1 and SG2. SG1
allows fragmented packets from H1-1 to proceed on their way. To ensure
that, if H1-1 sets the DF bit in the inner header, SG1 does not set it in the
outer header. When SG2 receives the fragmented packets, it sends a PMTU
message to SG1, informing SG1 of the largest fragment size that has success-
fully traversed the path from SG1 to SG2. Because there is an IPsec tunnel
between SG1 and SG2, the PMTU message is protected. This solution dif-
fers from the standard PMTU message usage, because the PMTU message is

34 Demystifying the IPsec Puzzle

sent after receipt of a fragmented message; the normal PMTU message
results from an unsuccessful attempt to forward an unfragmented message.
Alternatively, SG2 can save a PMTU as part of each SA and periodically
inform SG1 of the latest PMTU value. If H1-1 attempts to send too large a
packet, SG1 can communicate the current PMTU to H1-1. As yet, there is
no consensus on the solution to this issue.

Another increasingly common complication is the use of network
address translation (NAT) boxes [8�13]. A NAT box can be a separate entity
or it can be co-resident with a security gateway. NAT is employed in two dif-
ferent situations. The first is a private network, in which the hosts� addresses
must be kept secret for the purposes of security and privacy. The second is
a network that uses private addresses that may duplicate addresses used
elsewhere on the Internet, because the installation was not assigned enough
unique addresses to cover every host. In such a case, a pool of public, globally
unique addresses is used for communications with destinations outside the
private network. When such messages cross the NAT box, the private source
address of an outbound communication is converted to a public address and
the public destination address of an inbound communication is converted
to the corresponding private network address. That effectively rules out the
end-to-end IPsec protection afforded by scenario 1. Because AH authenti-
cates both source and destination addresses, the revised address introduced
by the NAT box causes authentication to fail once the message reaches
its destination. If the NAT transformations are performed before the IPsec
processing for outbound messages and after the IPsec processing for inbound
messages, the gateway-to-gateway protection afforded by scenario 2 still is
possible. Figure 2.11 shows a workable network configuration incorporating
NAT boxes and security gateways.

An IPsec-friendly alternative to NAT, Realm-Specific Internet Proto-
col (RSIP) [14�16], is emerging. With RSIP, traffic from a host with a pri-
vate address does not need to use the private addresses for messages intended
for destinations outside the private network. The host, acting as an RSIP
client, can request a public address from an RSIP server. That way, the
message�s source address is a globally unique, public address that can be used
for end-to-end IPsec protection.

2.11 Auditing

The IPsec documents do not mandate auditing of anomalous or erroneous
behavior, because auditing is a process internal to one of the peers and does

The First Puzzle Piece: The Authentication Header 35

not change the �bits on the wire.� However, events are mentioned that may
trigger auditing. If an event is recorded in an audit log, the entry should
include the date and time, the source and destination addresses, and the SPI;
for IPv6, the flow ID also should be included. In addition, if the system
hosting an IPsec implementation does have auditing capabilities, the IPsec
implementation is required to support auditing and to allow the system
administrator to turn the auditing capability on and off. A warning message
is not required to be sent to the peer, because that could start a hailstorm
of exchanged messages that could lead to denial of service on one or both
machines.

Among the events that can trigger an audit log entry are:

• An attempt to use an outbound SA whose replay counter has
reached its maximum value to a recipient that has enabled replay
protection;

• An attempt to perform inbound IPsec processing on a message
fragment;

• Receipt of an inbound message for which no current, applicable SA
can be found;

• Receipt of an inbound message for which verification of the authen-
tication data fails.

In each of those cases, the message is discarded and no further IPsec process-
ing occurs for the discarded message.

36 Demystifying the IPsec Puzzle

Internet

Host H1-3

Host H1-2Host H1-1 Host H2-2Host H2-1

Host H2-3

Gateway
SG1

Gateway
SG2

Network N1 Network N2
NAT box NAT box

Figure 2.11 Configuring NAT boxes and security gateways.

2.12 Threat Mitigation

What real-life threats [17, 18] are prevented through the use of the AH?
Unauthorized packet alteration can take several forms. The packet content
can be altered. The source address can be altered so that the packet appears to
come from a sender other than the actual sender; this is called �address spoof-
ing.� The packet destination can be altered, in effect rerouting a packet to
an unintended recipient. An end-to-end AH, which protects the packet�s
data, source address, and destination address, protects a packet from all those
unauthorized alterations. Unfortunately, if the AH protection is not end to
end, and an �unfriendly� user is present on the same network as the source
host, that user can capture and alter packets before they reach the gateway
that performs the outbound AH processing. Even if the destination address is
not altered, a packet can be effectively rerouted if a bogus, unauthenticated
DNS message reassigns the destination address (e.g., charlie.org) to the
numeric address (e.g., 1.2.3.4) of another host. DNS spoofing can be
avoided by accepting only authenticated DNS messages.

AH�s replay protection feature can be used to prevent delivery of
grossly out-of-order packets, stemming from network problems, an attacker
attempting repeated delivery of a significant message (e.g., an electronic
funds transfer), or disruption of service via network flooding. The effects of
an attacker attempting to bring down a host by flooding it with messages that
require expensive cryptographic processing can be mitigated through the
use of replay protection, because duplicate packets are discarded before the
inbound AH processing takes place.

However, AH does not provide privacy. Even if the packets safely
traverse the Internet and arrive intact at their destination, the packets can be
read by any of the intermediate nodes that forward the packet on its way. In
particular, an attacker can exploit the source routing header option to divert
a packet and route it past an evil, information-gathering router. The router
can then restore the source routing header to its original form, and the
tampering will not be noticed by the recipient.

2.13 Summary

The AH provides several types of critical protection at the network layer.
It ensures that messages traversing the Internet arrive at their destination
unchanged, that the apparent sender of the message is in actuality the mes-
sage�s originator, and that messages are not erroneously or fraudulently

The First Puzzle Piece: The Authentication Header 37

retransmitted. However, AH does not provide confidentiality to its protected
messages. That is the function of the other security-related header, the ESP
header.

2.14 Further Reading

AH is definitively described in RFC 2402 [1]. The generalized IPsec archi-
tecture, of which AH is an integral part, is defined in RFC 2401 [2]. Two
excellent books [17, 18] describe the nature of various security threats and
solutions, as well as general security-related information. ICMP for IPv4 is
defined in RFC 792 [4]; ICMP for IPv6 is defined in RFC 2463 [3]. The
PMTU protocol for IPv4 is described in RFC 1191 [6]; PMTU for IPv6 in
RFC 1981 [5]. The interaction of PMTU and security gateways is explored
in [7]. NAT is a hotly debated and much analyzed topic; it is defined in RFC
2663 [10] and [12]. The interaction between NAT and IPsec is discussed
in [8] and [13]; the interactions between NAT and other protocols are dis-
cussed in [19]. An approach to enable NAT to coexist with Tunnel Mode
IPsec is defined in [11]. The IAB has issued a report [9] that analyzes NAT�s
relationship to the Internet�s generalized infrastructure and offers guidance
on minimizing its negative impact on Internet communications. RSIP is
defined in [14] and [15], and its relationship to IPsec is described in [16].
The IPsec email list archive can be found at http://www.vpnc.org/ietf-ipsec.

References

[1] Kent, S., and R. Atkinson, IP Authentication Header, RFC 2402, Nov. 1998.

[2] Kent, S., and R. Atkinson, Security Architecture for the Internet Protocol, RFC 2401,
Nov. 1998.

[3] Conta, A., and S. Deering, Internet Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification, RFC 2463, Dec. 1998.

[4] Postel, J., Internet Control Message Protocol, RFC 792, Sept. 1981.

[5] McCann, J., S. Deering, and J. Mogul, Path MTU Discovery for IP Version 6,
RFC 1981, Aug. 1996.

[6] Mogul, J., and S. Deering, Path MTU Discovery, RFC 1191, Nov. 1990.

[7] Richardson, M., �Path MTU discovery in the presence of security gateways,� <draft-
richardson-ipsec-pmtu-discov-02.txt>, Aug. 1998.

[8] Aboba, B., �NAT and IPsec,� <draft-aboba-nat-ipsec-02.txt>, July 2000.

38 Demystifying the IPsec Puzzle

[9] Hain, T., �Architectural Implications of NAT,� <draft-iab-nat-implications-09.txt>,
Aug. 2000.

[10] Srisuresh, P., and M. Holdrege, IP Network Address Translator (NAT) Terminology and
Considerations, RFC 2663, Aug. 1999.

[11] Srisuresh, P., Security Model With Tunnel-mode IPsec for NAT Domains, RFC 2709,
Oct. 1999.

[12] Srisuresh, P., and K. Egevang, �Traditional IP Network Address Translator (Tradi-
tional NAT),� <draft-ietf-nat-traditional-05.txt>, Oct. 2000.

[13] Stenberg, M., et al., �IPsec NAT Traversal,� <draft-stenberg-ipsec-nat-
traversal-00.txt>, July 2000.

[14] Borella, M., et al., �Realm Specific IP: Framework,� <draft-ietf-nat-rsip-
framework-05.txt>, July 2000.

[15] Borella, M., et al., �Realm Specific IP: Protocol Specification,� <draft-ietf-nat-rsip-
protocol-07.txt>, July 2000.

[16] Montenegro, G., and M. Borella, �RSIP Support for End-to-End IPSEC,� <draft-
ietf-nat-rsip-ipsec-04.txt>, July 2000.

[17] Cheswick, W. R., and S. M. Bellovin, Firewalls and Internet Security: Repelling the Wily
Hacker, 2nd Ed., Reading, MA: Addison-Wesley, 2000.

[18] Kaufman, C., R. Perlman, and M. Speciner, Network Security: Private Communication
in a Public World, Englewood Cliffs, NJ: Prentice Hall, 1995.

[19] Holdrege, M., and P. Srisuresh, �Protocol Complications With the IP Network
Address Translator (NAT),� <draft-ietf-nat-protocol-complications-06.txt>, Oct. 2000.

The First Puzzle Piece: The Authentication Header 39

3
The Second Puzzle Piece: The
Encapsulating Security Payload

I couldn�t tell if the streaker was a man or a woman, because it had a bag
on its head.

attributed to Yogi Berra

AH arms a message with several crucial security services, but it does not
provide the quintessential form of cryptographic protection, that of hiding
message contents �in plain sight,� otherwise known as encryption. That
leaves AH-protected messages vulnerable to the Internet�s version of eaves-
dropping: An interested observer along the message�s delivery path can read
its contents and header information. Preventing such loss of privacy is the
domain of the other security mechanism, the Encapsulating Security Payload
(ESP) [1, 2]. Like the AH, the ESP header is required for IPv6 implementa-
tions but is optional for IPv4.

3.1 Protections Provided by ESP

The ESP header can be used to provide two separate sets of security features,
the first of which is unique to ESP and the second of which duplicates those
services provided by AH. Either set or both sets can be furnished through the
use of an ESP header.

41

The following types of protection can be provided through the use of
ESP but not by AH:

• Confidentiality. A guarantee that, even if the message is �read� by an
observer, the contents are not understandable except to the author-
ized recipient.

• Traffic analysis protection (Tunnel Mode only). An assurance that an
eavesdropper cannot determine who is communicating with whom
or the frequency and volume of communications between specific
entities.

The ESP header can provide the following types of protection that are also
covered by AH:

• Connectionless integrity;

• Data origin authentication;

• Replay protection.

There is a distinction between the authentication and integrity pro-
vided by the AH and that provided by the ESP header. A Transport Mode
AH protects both the IP header and packet data, while a Transport
Mode ESP header protects only the packet data. In Tunnel Mode, both types
of headers protect the original header, but only AH protects the outer
header. However, as Chapter 5 shows, SA establishment can indirectly
authenticate the IP addresses, effectively closing the gap between the two
headers� levels of protection. Using a single header to provide multiple types
of security protection lessens both the packet processing and the packet size,
which contributes to increased network effectiveness and performance.

Thus, the ESP header is used to furnish confidentiality and/or a combi-
nation of connectionless integrity and data origin authentication for the com-
munications to which it is applied. If confidentiality is provided in Tunnel
Mode, traffic analysis protection can also be provided. If integrity and authen-
tication are provided, the recipient can optionally select replay protection.

3.2 Security Associations and the Security Parameters Index

The SAD and the SPD are used to keep track of AH SAs and ESP header
SAs. The SA selectors are the same for both types of headers. Some of the
SAD information differs for AH entries and for ESP entries, because the type

42 Demystifying the IPsec Puzzle

of protection offered by the two headers differs and, thus, the identifying
pieces of information differ as well. Because three pieces of information�the
SPI, the destination address, and the header type�are sufficient to pinpoint
a unique inbound SA, theoretically the same SPI can be used to identify both
a unique AH SA and a different, unique ESP SA.

If the ESP header is being used to provide confidentiality, those por-
tions of the IP packet following the ESP header are encrypted and thus
unintelligible to the SA selection routines. That means the SA selectors
located in that portion of the packet cannot be used to distinguish ESP-
protected traffic. In particular, the transport protocol (UDP or TCP) and the
source and destination ports are unavailable as selectors for packets protected
by such an ESP header.

3.3 ESP Header Format

Figure 3.1 illustrates the ESP header format. The header comprises seven
fields, two of which are optional. The individual header fields are as follows:

• SPI: The index into the receiver�s SA database.

• Sequence Number field: The number of messages sent from the
sender to the receiver using the current SA.

• Payload Data field: A variable-length field that fulfills the ESP head-
er�s main purpose. If the message is to be afforded confidentiality
protection, this field contains an encrypted version (more on this
in Chapter 4) of the message�s contents, replacing the initial, unen-
crypted message. In addition to the data portion of the packet, the
three ESP header fields following the data (the padding, the pad
length, and the next header) also are encrypted. This field can also
hold special unencrypted data that is required as input to the
encryption process. (This, too, will be explained in Chapter 4.)

• Padding (optional, with a maximum length of 255 bytes). Padding
can be added for three distinct purposes:

• If an encryption algorithm performs its magic on blocks of a
specific size, padding may be required to ensure that the data�s
length is an integral multiple of the algorithm�s block size. In that
case, the relevant length is the sum of the lengths of the unen-
crypted data that are to be encrypted, the padding, the Pad
Length field, and the Next Header field, but it does not include
the special data that will not be encrypted.

The Second Puzzle Piece: The Encapsulating Security Payload 43

• If the message is to be authenticated, padding is needed to ensure
that the Authentication Data field begins on a 4-byte boundary.
In that case, the relevant length is the sum of the lengths of the
unencrypted data that are to be encrypted, the special data that
will not be encrypted, the padding, the Pad Length field, and the
Next Header field.

• If traffic analysis protection is desired, padding may be added
to disguise the message�s length. Because this type of padding
adds uninformative baggage to the transmission, extreme caution
is recommended in its use.

• Pad length: Total number of bytes of padding (of all three types)
contained in the previous field.

• Next header: The type of the header that follows the ESP header. It
might be a TCP header, if the application that originated the mes-
sage runs over TCP (e.g., email or Web access via HTTP); a UDP
header, if the originating application runs over UDP (e.g., the trou-
bleshooting program traceroute); or an ICMP header, if this is an
IP error or informational message. In IPv6, it could be one of the
extension headers.

• Authentication Data field: An optional, variable-length field that
contains the ICV, if this packet is to be afforded authentication and
integrity protection.

The ESP header is considered to consist of four distinct parts (Figure 3.1):

• The initial ESP header consists of the SPI and the sequence
number.

44 Demystifying the IPsec Puzzle

Pad length Next header

Anti-replay sequence number field

Authentication data (ICV optional cipher-dependent data)+

Security parameters index (SPI)

Payload data (special unencrypted data encrypted data)+

Padding (0-255 bytes)

Figure 3.1 ESP header format.

• The data consist of the special unencrypted data (if any), any desti-
nation extension headers that follow the ESP header (IPv6 only), the
TCP or UDP header, and the message data.

• The ESP trailer consists of the padding (if any), the Pad Length
field, and the Next Header field.

• The ESP authentication data consist of the authentication data
(if any).

What can be confusing is that the term ESP header is usually applied to the
total entity, but at times the same term is used to refer to the initial ESP
header.

3.4 ESP Header Location and Modes

The ESP header can be used in either Transport Mode or Tunnel Mode.
Figure 3.2 illustrates the placement of the ESP transport header for both
IPv4 and IPv6. In IPv4, it follows either an IP header or an AH, preceding
the next header (TCP, UDP, or ICMP). In IPv6, zero or more extension
headers (hop-by-hop, routing, fragment, or destination options) can precede

The Second Puzzle Piece: The Encapsulating Security Payload 45

De
st

op
ts

he
ad

er

De
st

op
ts

he
ad

er

AH
he

ad
er

IP
he

ad
er

Ho
p-

by
-h

op
he

ad
er

Ro
ut

in
g

he
ad

er

Fr
ag

m
en

th
ea

de
r Upper

protocol
headers

and
packet

dataSP
I

an
d

Se
q

#

ES
P

tra
ile

r

ES
P

au
th

da
ta

(b)

Encrypted fields

ESP
trailer

ESP
auth
data

IP
header

SPI &
Seq #

Upper protocol headers
and packet data

AH
header

(a)

Encrypted fields
Authenticated fields

Authenticated fields

Figure 3.2 ESP header placement in Transport Mode: (a) IPv4 and (b) IPv6.

the ESP header; in addition, a destination options header can follow the ESP
header. The position of the destination options header relative to the
ESP header depends on whether its special processing should take place
before or after the ESP processing occurs. If the packet is encrypted, a desti-
nation options header following the ESP header cannot be viewed at any
intermediate destination; it will only become visible once more following
ESP processing and decryption at its final destination.

Figure 3.3 illustrates the placement of the ESP header in Tunnel
Mode. In IPv4, the ESP header follows the new IP header and precedes
the original IP header. In IPv6, the ESP header follows the same extension
headers (if present) that it follows in Transport Mode and precedes the origi-
nal IP header.

3.5 Nested and Adjacent Headers

With two types of security headers, the application of more than one SA to a
single message makes more sense. If adjacent authentication and ESP headers

46 Demystifying the IPsec Puzzle

(b)

ESP
auth
data

Outer
(new)

IP
header AH

he
ad

er Original
extension
headers

Upper
protocol
headers

and
packet

data

New
extension
headers

SP
I

&
Se

q
#

In
ne

r(
ol

d)
IP

he
ad

er

ESP
trailer

Encrypted fields

ESP
trailer

ESP
auth
data

SPI &
Seq #

Outer
(new)

IP
header

AH
header

Inner
(old)

IP
header

Upper
protocol

headers and
packet data

(a)

Encrypted fields
Authenticated fields

Authenticated fields

Figure 3.3 ESP header placement in Tunnel Mode: (a) IPv4 and (b) IPv6.

are desired (i.e., both endpoints of both SAs are the same), the AH will
precede the ESP header. That means the packet is encrypted first and then
authenticated; in that way, the encrypted packet is protected from tamper-
ing. However, that goal can be more efficiently met by using a single ESP
header to provide both authentication and encryption.

Nested headers are a common and useful phenomenon. In scenario 2
(presented in Chapter 1), if host gateways SG1 and SG2 require all gateway-
to-gateway communications to be encrypted and authenticated, that could
be provided in one of two ways: through an ESP SA that furnishes both
authentication and encryption or through adjacent AH and ESP SAs. For
the gateways to protect traffic between hosts H1-1 and H2-1, the SAs would
have to be Tunnel Mode SAs. But that leaves communication between host
H1-1 and its security gateway SG1 unprotected. If H1-1 does not trust its
security gateway to reliably transmit its traffic, or if there are untrustworthy
users or hosts on H1-1�s local network, host H1-1 might want to authenti-
cate local traffic as well. For that purpose, nested SAs would be ideal: a pair of
Tunnel Mode ESP SAs between SG1 and SG2 and a pair of Transport Mode
AH SAs between H1-1 and H2-1. Figure 3.4 illustrates the use of nested
SAs. In this case, when a message is sent from H1-1 to H2-1, it has a sin-
gle Transport Mode AH from the time it leaves H1-1 until it arrives at
SG1; as it travels from SG1 to SG2, it incorporates nested AH and ESP

The Second Puzzle Piece: The Encapsulating Security Payload 47

Host H1-1 Host H2-1

Gateway
SG1

Gateway
SG2

SA#3 (SPI3)

SA#1 (SPI1)

SA#4 (SPI4)

SA#2 (SPI2)

SA #
Src

Addr
Dest
Addr

IPsec
Protocol SPI Mode

1 H1-1 H2-1 AH SPI1 Transport
2 H2-1 H1-1 AH SPI2 Transport
3 SG1 SG2 ESP SPI3 Tunnel
4 SG2 SG1 ESP SPI4 Tunnel

Figure 3.4 Nested headers for end-to-end IPsec protection.

headers, an inner Transport Mode AH, and an outer Tunnel Mode ESP
header; and traveling from SG2 to H2-1, it once again has a single Transport
Mode AH.

3.6 ESP Header Processing for Outbound Messages

A number of the processing steps for ESP and for AH are identical. Those
steps are not described in detail here (they were dealt with in Chapter 2).
Once it has been determined that an outgoing message needs the protection
afforded by the ESP header, and the outbound SA governing this protected
communication has been found or negotiated, the message is passed to the
IPsec-processing routines, which perform the following steps:

1. Insert an initial ESP header template in the proper place (as
described above).

2. Fill in the SPI field with the SPI of the selected SA.

3. Compute the Sequence Number field.

4. If encryption is to take place, and the relevant encryption algorithm
calls for any additional special data that will not be encrypted, add
those data to the packet. All the encryption algorithms currently
defined for the ESP header (more on that in Chapter 4) are chained
block algorithms. These algorithms encrypt one fixed-length block
of the message at a time. The encrypted blocks are chained together
by using the encrypted form of each block as one of the inputs
when the following block is encrypted. Because there is no block
preceding the first message block, a special block-sized number, the
initialization vector (IV), is used instead of the encrypted previous
block. The initialization vector is placed in the packet, unen-
crypted, so the recipient can properly decrypt the message.

5. Add a tunnel header, if required.

6. Append the remaining packet data.

7. Compute the length of any required padding and pad the packet
with the requisite number of bytes of data. The padding contents
should be as specified by the encryption algorithm or, if no such
specification exists, the padding should contain a series of increas-
ing single-byte integers with the values 1, 2, 3, �.

8. Fill in the Next Header field.

48 Demystifying the IPsec Puzzle

9. Encrypt the message, if encryption is mandated by the SA. The
packet data, padding, pad length, and Next Header fields will be
encrypted, along with the tunnel header for a Tunnel Mode SA.
The mandatory encryption algorithms for IPsec ESP are DES-CBC
and the null encryption algorithm. The latter does not provide
encryption protection. Because an ESP header must provide confi-
dentiality, authentication, or both, when the null encryption algo-
rithm is used for encryption, the null authentication algorithm
must not be used for authentication.

10. Compute the authentication data, if authentication is specified by
the SA. The authenticated data includes the initial ESP header, as
well as the data covered by encryption. The mandatory authentica-
tion algorithms for IPsec ESP are HMAC-MD5, HMAC-SHA-1,
and the null authentication algorithm. The last algorithm does
not provide authentication protection. Because an ESP header
must provide confidentiality, authentication, or both, when the
null authentication algorithm is used for authentication, the null
encryption algorithm must not be used for encryption.

11. Fragment the message, if necessary.

3.7 ESP Header Processing for Inbound Messages

When a message is received that contains an ESP header, the IP-processing
routines first ensure that all fragments of the message have been received and
reintegrated to form a complete message. The routines also ensure that the
fields that identified each piece of the message as a fragment are reinitialized:
The offset field is reset to zero and the �more fragments� flag is turned off,
so the IPsec-processing routines do not erroneously identify the reassembled
message as a message fragment. The message is then passed to the IPsec-
processing routines, which perform the following steps.

1. Locate the inbound SA governing the protected communication in
the SAD.

2. If replay protection is enabled, perform the replay protection check.

3. Verify the authentication data. The authentication hash is com-
puted in exactly the same manner as for an outbound message. If
the computed hash does not match the authentication data found
in the message, the message is discarded and no further processing

The Second Puzzle Piece: The Encapsulating Security Payload 49

takes place. Performing the authentication verification prior to
decryption is efficient. If the message has been altered, the compu-
tationally expensive decryption process is avoided.

4. Decrypt the encrypted portion of the packet. If decryption is not
successful or results in garbled header information, the message is
discarded and no further processing takes place.

5. Strip off the padding, if any was added.

6. Strip off the ESP header and repeat the IPsec processing for any
remaining IPsec headers.

7. Check the SPD to ensure that the IPsec protection applied to the
incoming packet conforms to the system�s IPsec policy require-
ments.

The successful authentication or encryption of an incoming packet
as specified by an existing SA does not ensure that the SA should have
been used to protect this particular type of traffic. In scenario 1 (presented in
Chapter 1), let�s assume that hosts H1 and H2 have established several SAs
to provide end-to-end security coverage for their communications. SAs 1 and
2, which ensure that HTTP messages are not tampered with, are AH SAs.
SAs 3 and 4, which protect FTP data transmissions, are ESP SAs. When a
packet comes into H2, and the SPI, protocol (ESP), and destination address
tie in the packet to SA 3, that SA will be used to decrypt the packet. What
would happen if H1 mistakenly used SA 3 to send HTTP traffic to H2?
The inbound packet�s destination address, SPI, and protocol (ESP) would all
point to SA 3. The port number, which would show that the packet is not an
FTP message, cannot be interrogated before the packet has been decrypted.
The packet will successfully decrypt, because it has used a valid SA. It is only
a policy check, after decryption, that will show that the packet has been sent
under the umbrella of the wrong SA. This erroneous usage is demonstrated
in Figure 3.5.

A more dramatic example is the case in which H1 and H2 use an SA
bundle, a grouping of several related SAs, to protect a single packet. Perhaps
the hosts have established two end-to-end SAs: SAs 1 and 2 are ESP
encryption-only SAs, and SAs 3 and 4 are AH SAs that will authenticate the
encrypted traffic and its IP header. What would happen if H1 mistakenly
used only SA 1 to send an FTP request to H2? The inbound packet�s destina-
tion address, SPI, and protocol (ESP) would all point to SA 1. The packet
would successfully decrypt, because SA 1 is perfectly appropriate for this traf-
fic. However, a policy check would reveal that the packet should have had

50 Demystifying the IPsec Puzzle

two security headers, and the packet would be dropped. Figure 3.6 demon-
strates this erroneous case, as well as the correct usage of SAs 1 and 3.

The Second Puzzle Piece: The Encapsulating Security Payload 51

Host H1 Host H2

SA #
Src

Addr
Dest
Addr

IPsec
Protocol Port SPI Mode

1 H1 H2 AH HTTP SPI1 Transport
2 H2 H1 AH HTTP SPI2 Transport
3 H1 H2 ESP FTP SPI3 Transport
4 H2 H1 ESP FTP SPI4 Transport

SA#3 (SPI3)

HTTP packet

Figure 3.5 Erroneous SA usage.

SA
#

SA
Bundle

#
Src

Addr
Dest
Addr

IPsec
Protocol SPI Mode

1 1 H1 H2 ESP SPI1 Transport
2 2 H2 H1 ESP SPI2 Transport
3 1 H1 H2 AH SPI3 Transport
4 2 H2 H1 AH SPI4 Transport

Host H1 Host H2

SA#1 (SPI1)

Host H1 Host H2

SA#1 (SPI1)

SA#3 (SPI3)

(a)

(b)

Figure 3.6 SA bundle applications: (a) erroneous application and (b) correct application.

3.8 Complications

Although encryption of the upper-layer headers is desirable for security pur-
poses, it eliminates the transport header fields, including the Transport Pro-
tocol and ports, as SA selectors. It also poses problems for certain specialized
uses of Internet traffic. A number of fields in the transport header can be
used for purposes other than transport layer processing, including network
traffic analysis, management, and performance enhancement; intrusion
detection; and preferential treatment for specified types of traffic, resulting in
several different classes of quality of service (QOS). A new protocol, called
transport-friendly ESP (TF-ESP) [3], has been proposed, but the details
have not yet been fully hammered out. There are two possible approaches:
(1) defining a special TF-ESP header that would duplicate the critical fields
in an unencrypted form and (2) beginning the encryption at a later point in
the packet, leaving the desired header fields unencrypted. One downside of
the first solution is the fear that security would be compromised by provid-
ing potential attackers with unencrypted header information, which is also
present in its encrypted form in a well-known location within the packet.
Another potential drawback is the duplication of information, resulting in
increased packet size. The second solution could complicate an already com-
plex protocol, requiring additional specialized processing. Whether the
advantages provided by TF-ESP would outweigh the negative considerations
has not yet been determined.

3.9 Criticisms and Counterclaims

The well-known and well-respected cryptographer Bruce Schneier co-
authored, with his colleague Niels Ferguson, an extremely critical analysis of
IPsec and IKE [4]. Ferguson and Schneier begin by stating that complexity is
the sworn enemy of security. Of course, they are correct; unfortunately, the
problem that IPsec is attempting to attack is an extremely complex and mul-
tifaceted area. IPsec not only has to secure IP traffic; it has to coexist with
numerous existing protocols, cope with open-ended network topologies,
and, one would hope, accommodate future networking developments as
well.

In the name of simplification, Ferguson and Schneier suggest the elimi-
nation of the AH protocol and of Transport Mode. Many IPsec developers
agree that AH should be abolished, and it is possible that that will happen in
the next version of IPsec. On the other hand, there may be other protocols
that require the use of AH and would protest its demise. As far as limiting all

52 Demystifying the IPsec Puzzle

SAs to Tunnel Mode, they also suggest a somewhat complex header-
minimization scheme to compensate for the extra baggage of Tunnel Mode
when it is not really needed. The authors admit that they are not networking
experts. Those who are expert in that arena vociferously declare that the
inclusion of both Transport and Tunnel Modes is dictated by the nature of
the network architecture [5, 6].

Ferguson and Schneier are not happy with the order of operations per-
formed in ESP processing; they believe that outgoing packets first should be
authenticated and then encrypted. That order was selected intentionally, so
that incoming packets that did not authenticate properly would not progress
to the more computationally demanding decryption stage. The authors pres-
ent a scenario in which the authentication and encryption keys are decou-
pled, so that successfully undergoing authentication does not guarantee that
the packet will decrypt correctly. To solve the problem without reversing
the order of the operations, Ferguson and Schneier suggest authenticating
the decryption key and any other data used in the encryption, along with the
packet data. On the other hand, the cryptographers who participated in
the IPsec development appear to be comfortable with this order of opera-
tions, without requiring authentication of additional information. In
addition, as discussed in Chapter 5, when IKE is used to negotiate the keys,
the ESP�s authentication and encryption keys are part of an integral whole.

The authors view unidirectional SAs as unnecessary baggage, causing
SAD bloat. They propose bidirectional SAs, reducing the size of the SAD
and simplifying matters. However, a single SAD entry would not allow each
peer to select its own inbound SPI; a dual entry, each with its own SPI,
would restore the SAD�s larger size. Moreover, there may be uses of IPsec,
such as multicast (more on this in Chapter 11), in which traffic actually does
flow in only one direction.

Ferguson and Schneier also are uncomfortable with affording users and
system administrators too much leeway in security decisions. With regard to
the SPD, they feel it is dangerous enough to allow users to choose which
types of traffic should or should not be IPsec-protected. Selecting specific
algorithms and levels of protection is fraught with more peril than they can
bear. It is true that the specification of security-related parameters is a tricky
business. However, it is an area in which individual implementations can dis-
tinguish themselves in terms of the interplay of ease of use and the level of
security controls.

One of their major criticisms is the difficulty of comprehending the
documentation. Aside from the number of documents involved, the failure
to include background, goals, and rationale is a major stumbling block. They

The Second Puzzle Piece: The Encapsulating Security Payload 53

suggest that the documents should include explanations, discussions of trade-
offs, and the reasoning behind the ultimate solution. That could be included
in a nonnormative portion of the document. It also would mitigate another
problem faced by every consensual standards body: the replaying of ancient,
already solved issues as new members join the group. That is, of course, an
excellent suggestion. The problem in a voluntary standards body is that each
member writes his or her own position description. If no one leaps forward
to undertake this major effort, it does not get done. In addition, the IETF
culture is one of the experts working together toward a goal. In spite of the
wide range of the participants� backgrounds and experience, a certain level of
knowledge is assumed.

Protocol development occurs over time in an iterative, give-and-take
process. It is easy to criticize the final product, ignoring the realities that gave
rise to it. Ferguson and Schneier unfavorably compare the IPsec/IKE devel-
opment process to that of the Advanced Encryption Standard (AES) by the
National Institute of Standards and Technology (NIST), in which a compe-
tition was held to select the cryptographic algorithm that will replace DES.
However, an encryption algorithm is an atomic entity. A protocol is much
broader and encompasses a larger, more amorphous problem space.

Once IPsec had reached a critical stage of definition and numerous
implementations had been fielded, there was a reluctance within the IPsec
developers� community to change the protocol definition in such a way as to
�break� compliant implementations. However, just as the current incarna-
tion of IPsec is the second version and is incompatible with the previous
round of IPsec RFCs, there undoubtedly will be another leap forward. The
next round of RFCs will have the chance to address those criticisms and to
incorporate a significant amount of operational experience with IPsec. Another
well-respected world-class cryptographer, Hugo Krawczyk, sums it up:

It could have been better, it could have been simpler, it could have been
more elegant, it could have been better documented, it could have
included some better design decisions, it could have corrected known
weaknesses. But, in spite of all these �could have[s]�, ipsec/ike IS a very
valuable protocol. Not just the best available alternative but a good pro-
tocol in many senses. [7]

3.10 Threat Mitigation

What real-life threats are prevented through the use of the ESP header?
The ESP header with encryption provides privacy. Even if the packets are

54 Demystifying the IPsec Puzzle

captured and read by any of the intermediate nodes that forward the packet
on its way, the packet data are not understandable to an eavesdropper who
does not possess the secret encryption/decryption key.

However, an encrypted packet whose data are not also afforded integ-
rity protection can be subject to a number of cut-and-paste attacks [8]. That
sounds like a benign kindergarten activity, but in an attacker�s toolkit they
can be devastating. For that reason, authentication of encrypted data is
strongly recommended. That can be accomplished through the use of an ESP
header with both encryption and authentication or through the use of adja-
cent or nested ESP and AH headers.

When the ESP header is used in Transport Mode, the packet�s data
are encrypted, but the source and destination addresses are not hidden. Any
node along its path can determine the packet�s source and destination; this
information, as well as the packet�s size and contents, can be used for traffic
analysis. If a business has an internal network and wants to prevent outsiders
from performing this type of analysis, the use of scenario 2 can provide a
limited type of traffic analysis protection. A Tunnel Mode ESP SA between
SG1 and SG2 will encrypt the actual source and destination addresses as part
of the inner header. The outer header will contain the unencrypted gateway
addresses. That allows Internet eavesdroppers to surmise the general source
and destination of the packet from the gateway�s location, but the exact
addresses of the communicating peers and the nature of the traffic are hid-
den. If SG1 and SG2 are not local to a particular business but instead are
provided by a regional Internet server provider (ISP), a greater level of traffic
protection is provided.

3.11 Why Two Security Headers?

Because ESP can provide the same protections as AH, as well as privacy, why
are two distinct security headers necessary? The answer lies in the dual realms
of history and politics. A number of countries forbid the export of software
that enables or incorporates encryption. The initial round of RFCs (RFC
1826 and RFC 1827, both now obsolete) split off the undeniably exportable
AH from the more problematic (in terms of exportability) weapons-grade1

ESP header. In its original form, the ESP header provided only encryption;
if authentication was required, both headers had to be applied. Because an

The Second Puzzle Piece: The Encapsulating Security Payload 55

1. Several countries define encryption software to be munitions, and its export is legally
tantamount to trafficking in weapons.

encrypted, unauthenticated packet is vulnerable to several types of modifica-
tion attacks [8] (more on that in Chapter 4), every encrypted packet also
should be authenticated, which would have required two distinct SAs and a
fair amount of unnecessary processing for each protected packet. Therefore,
in the second round of RFCs (RFC 2402 and RFC 2406), authentication
was added to the ESP header. Initially, the new, improved ESP header always
provided encryption and, optionally, authentication. The definition of
the null ESP encryption algorithm (more on that in Chapter 4) allowed the
ESP header to provide authentication without encryption, thus duplicating
the AH.

It is true that the AH protects header fields not protected by the ESP
header, in particular the source and destination addresses. However, an
authenticated exchange of secret keys can inextricably bind the participants�
addresses to the keys (more on that in Chapter 5), effectively providing
source and destination address protection. In addition, the AH processing,
faced with the necessity to distinguish between mutable and nonmutable IP
header fields, is more complex than that required for ESP. The AH was left
intact for the original political reasons, as well as through a desire not to radi-
cally alter the IPsec protocols, which were beginning to be implemented and
used. It is possible that at some time it may be either eliminated or converted
into an optional component of IPsec.

3.12 Summary

The two IPsec headers, the AH and the ESP header, can be used separately
or together to provide the critical security protections of authentication,
integrity, and confidentiality. Now that we understand the purpose, format,
and processing of those headers, it is time to focus on the mechanisms that
actually furnish the protection: the cryptographic algorithms.

3.13 Further Reading

The ESP header is definitively described in RFC 2406 [1]. The generalized
IPsec architecture, of which ESP is an integral part, is defined in RFC 2401
[2]. A description of the dangers of encryption without integrity protection
can be found in [8]. Steve Bellovin has presented several talks on TF-ESP,
including [3]. Ferguson and Schneier�s critique of IPsec is presented in [4];

56 Demystifying the IPsec Puzzle

responses from IPsec members can be found in [5�7] and on the IPsec mail-
ing list archive, http://www.vpnc.org/ietf-ipsec.

References

[1] Kent, S., and R. Atkinson, IP Encapsulating Security Payload (ESP), RFC 2406,
Nov. 1998.

[2] Kent, S., and R. Atkinson, Security Architecture for the Internet Protocol, RFC 2401,
Nov. 1998.

[3] Bellovin, S., �Transport-Friendly ESP, or, Layer Violations for Fun and Profit,�
NDSS �99, Feb. 1999, http://www.research.att.com/~smb/talks.

[4] Ferguson, N., and B. Schneier, �A Cryptographic Evaluation of IPsec,�
http://www.counterpane.com/ipsec.{pdf,ps.zip}, Feb. 1999.

[5] Bellovin, S., �Bruce Schneier on IPsec,� communication to the IPsec mailing list,
Jan. 19, 2000, http://www.vpnc.org/ietf-ipsec/mail-archive/msg00066.html.

[6] Kent, S., �Counterpane Comments, ASCII Version,� communication to the IPsec mail-
ing list, Jan. 25, 2000, http://www.vpnc.org/ietf-ipsec/mail-archive/msg00123.html.

[7] Krawczyk, H., �Re: Bruce Schneier on IPsec,� communication to the IPsec mailing
list, Jan. 20, 2000, http://www.vpnc.org/ietf-ipsec/mail-archive/msg00075.html.

[8] Bellovin, S., �Problem Areas for the IP Security Protocols,� Proc. 6th Usenix UNIX
Security Symp., July 1996, pp. 205�214.

The Second Puzzle Piece: The Encapsulating Security Payload 57

4
The Third Puzzle Piece: The
Cryptographic Algorithms

To each man is given the key to Heaven. The same key unlocks the gates
of Hell.

Tibetan Buddhist saying

The algorithms used to afford IPsec protection, both those used for authenti-
cation and those used for encryption, ideally would fulfill two incompatible
goals: to provide maximal protection against a variety of mathematical, cryp-
tanalytical, and brute force attacks, and to require minimal processing on
the part of each participant in the communication. The algorithms that were
chosen as the standard IPsec algorithms constitute a best-guess, reasonable
compromise. We know the capabilities of today�s computers and if we
extrapolate to forecast the capabilities of computers in the next decade, those
algorithms are believed to provide a reasonable amount of protection for
most computer applications. The computations that make up the IPsec
algorithms are well known, because they are defined in public specifications.
Rather than relying on keeping the algorithms� definitions a deep, dark
secret, the security provided by the algorithms is enhanced by allowing expert
cryptographers to attempt to break them. Furthermore, the algorithms have
been implemented on today�s computers and gateways, and (one would hope)

59

their widespread use will not demand a level of computation that would
bring electronic commerce and communications to a standstill.

This chapter explains the cryptographic algorithms and mechanisms
used by IPsec and the Internet Key Exchange (IKE). It is not a general-
purpose introduction to cryptography and cryptographic mechanisms [1, 2]
but tries to give the user an understanding of the purpose and operation of
the cryptographic services essential to IPsec and some of the tradeoffs
involved in their selection. It also presents a high-level algorithmic descrip-
tion of IPsec�s mandatory authentication and encryption algorithms,
HMAC-MD5, HMAC-SHA-1, and DES. Although the IPsec documents
mandate specific algorithms to provide standard-grade, interoperable secu-
rity, consenting parties are free to implement additional algorithms, either
selected from the public domain, or private or proprietary algorithms.

4.1 Underlying Principles

The details of the algorithms used in the AH and the ESP header [3] differ,
but a number of generalities apply to all the algorithms currently defined for
both headers.

All the algorithms are block algorithms; starting at the beginning of
the message, each block is processed one at a time. The blocksize is part of
the definition of each algorithm; currently, the most common blocksize is
8 bytes (64 bits). Each block undergoes some sort of repetitive processing;
each iteration of that processing is known as a round. The number of rounds
is sometimes used as a rough characterization of the cryptographic strength
of an algorithm. Each round, in turn, consists of a round function, which is
the processing that constitutes each round of the cipher. The round function
can be simple and straightforward, or it can be extremely complex. Some
algorithms have multiple round functions, each of which is applied to one or
more rounds. In many algorithms, the whole secret key is not used to hash
or encrypt each block; instead, the secret key is used to generate multiple
subkeys, or round keys. Each round can incorporate one or more subkeys.

If each block were hashed or encrypted separately, it would make an
attacker�s job much easier, because the contents of some portions of an Inter-
net packet are known. In the case of a hash function, the final hash must
reflect every bit of every input block, not just the last block. In the case of
an encryption algorithm, if each block could be decrypted separately, with-
out reference to any other block, the predictable blocks could be more easily
attacked. Once the key was known, every block could be decrypted. For this

60 Demystifying the IPsec Puzzle

reason, every mandatory IPsec algorithm incorporates within its definition a
feedback mechanism; the encryption or authentication of each block has, as
one of its inputs, the cryptographically computed output of the previous block.

A number of the operations commonly used in the algorithms may not
be included in the mathematical repository of some readers: the circular shift
operation, the exclusive OR (XOR) operation, and modular arithmetic.
A circular shift operation, illustrated in Figure 4.1, shifts all the bits in a
numerical entity in the prescribed direction, to the left for a circular left shift
and to the right for a circular right shift. The bits that �fall off � the end are
appended, one at a time, to the other end of the entity, thus qualifying it as a
circular shift. To a 32-bit number, a shift from 1 to 31 bits can be applied;
a 32-bit shift would reproduce the original number.

An XOR, illustrated in Figure 4.2, consists of a bit-by-bit comparison
of two numerical quantities. The result of the XOR will contain �0� bits
in the positions in which both input numbers had the same value (either 0
or 1), and �1� bits in the positions in which the input numbers had differing
values.

Modular arithmetic (addition, subtraction, multiplication, and expo-
nentiation) often is used in cryptographic algorithms. For example, when we
perform an addition modulo 232, if the result contains more than 32 bits,
only the last 32 bits are used, in effect dividing the result by 232 and keeping
only the remainder. Operations modulo 32 are commonly used, because the
word size in bits of most computers currently is 32. Figure 4.3 illustrates
arithmetic modulo 16 (or 24), which is more intuitive to people.

The security provided by a cryptographic algorithm obviously depends
on the cryptographic complexity and robustness of the algorithm itself, as

The Third Puzzle Piece: The Cryptographic Algorithms 61

0

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

3-bit circular left shift

1-bit circular right shift

Figure 4.1 The circular shift operation.

well as the algorithm�s resistance to known attacks. However, a secure
algorithm is not sufficient to ensure the security of the communications
protected by that algorithm. Several other factors come into play as well. The
algorithm must be implemented, whether in hardware or software, in an
accurate and secure manner. The secret keys must be the appropriate length
for the algorithm and must be generated, exchanged, managed, and stored in
a secure manner. If a pseudo-random number generator is used to generate
the key or to generate values that will be used in the key�s computation, it is
critical that the outputs of the pseudo-random number generator meet gen-
erally accepted criteria for randomness; if that is not the case, the keys will be
more easily subject to discovery through guessing, which will compromise
the security mechanisms that rely on the pseudo-random number generator.

4.2 Authentication Algorithms

A one-way hash is an algorithm that computes a characteristic value, or hash,
for a message in such a way that it is not feasible, given only the hash, to

62 Demystifying the IPsec Puzzle

7 8 15+ = modulo 10 modulo 16

modulo 10 modulo 16 modulo 16

modulo 10 modulo 16 modulo 16

15

7 18 25 (25 16) 9

7 28 35 (35 2 16) 3

=

+ = = − =

+ = = − ∗ =

Figure 4.3 Modular arithmetic: addition module 16 (24).

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1

1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1

XOR

XOR 0 1
0 0 1
1 1 0

Figure 4.2 The exclusive OR (XOR) operation.

reconstruct the original message. Although in theory an infinite number
of messages could result in a given hash, it should not be computationally
feasible to find two messages with the same hash or, given a message and its
hash, to find a second message with the same hash. A collision-resistant hash
adds the characteristic that it is highly unlikely that two different messages
would result in the same hash. One way of increasing the collision resis-
tance of a hash is to compute the hash not only over the message but
over the concatenation of the message and the message�s length. That
decreases the probability that two messages of different lengths will result
in the same hash.

Computing this type of hash and transmitting it with the original mes-
sage would be sufficient to alert a recipient to transmission errors that are a
result of equipment malfunction or transmission �noise.� It does not protect
a message from purposeful tampering, because the entity that tampers with
the message can simply recompute the hash so that it matches the newly
changed message. What is required is a keyed hash, one that permeates every
bit of the hash with information from a secret key. That type of hash, which
is called a message authentication code (MAC), can be computed only by an
entity that possesses the secret key. If that key is known only to the sender
and to the recipient of a message, the sender can compute the MAC before
transmitting the message, and the recipient can recompute the MAC to ver-
ify that the message as received is identical to the message that was originally
sent. This also serves to provide data origin authentication.

The original AH [4] identified keyed MD5 and keyed SHA-1 as
its default authentication algorithms. In 1996 [5], a successful attack was
mounted on MD5. It was demonstrated that, by solving a series of simulta-
neous equations, it was possible to find two messages that differed in only
one word and resulted in the same output hash. That made it inadvisable
to plan on the continued use of MD5 for an open-ended time period.
The current, revised AH [6] instead specifies HMAC-MD5 and
HMAC-SHA-1. HMAC can be viewed as a cryptographic wrapper; it uses
an existing one-way hash function but iteratively applies the hash function
twice to the message and to the secret key. The iterated application of a
cryptographic primitive serves to strengthen a suspect hash function like
MD5, because attacking iterative applications of the algorithm is a problem
of considerably greater complexity than the original attack on plain MD5.
To understand the operation of HMAC, it first is necessary to explain the
underlying hash functions and then to show how HMAC is superimposed
on the hash.

The Third Puzzle Piece: The Cryptographic Algorithms 63

4.2.1 The MD5 Algorithm

MD5 [7] is the latest hash in a series invented by Ron Rivest. It has a block-
size of 64 bytes (512 bits) and a key length of 128 bits and generates a hash of
16 bytes (128 bits). The MD5 hash of a message is computed as follows.

1. Pad the message so its length in bits is 64 bits less than the blocksize
of 512 bits. Padding is always added; the pad length will always
be between 1 and 512 bits. The first pad bit is set to 1, and the
remaining pad bits are set to 0.

2. Following the padding, append the original message length (with-
out padding) as a 64-bit number.

3. Initialize four 32-bit buffers with specially selected constants.

4. Process each block of the message in turn. The processing consists
of four rounds, with each round consisting of 16 complex compu-
tations. Each computation replaces one of the four buffers with the
sum (modulo 232) of its current contents plus:

a. The contents of one of the other buffers.

b. One of four predefined functions performed on the other three
buffers. Each of those functions has the characteristic that inde-
pendent input (input in which each bit has no predefined rela-
tionship to the other bits) will produce independent output.

c. One word of the current message block.

d. A one-word element of the sin function (a constant).

Before the sum of those four quantities is added to the buffer, it
is first shifted left a specified number of bits.

5. After each block is processed, a feedback mechanism is included.
Each buffer is incremented by the value that it contained at the end
of the previous block�s processing.

6. The output of MD5 is the concatenation of the final values of the
four buffers. Thus, the output hash is 128 bits.

The MD5 definition specifies, for each round and each computation within
that round, the specific values to be used in that computation, which include
the buffers used, the function, the message word, the sin table entry, and the
number of shift bits.

64 Demystifying the IPsec Puzzle

4.2.2 The SHA-1 Algorithm

SHA-1 [8] was originally defined by The National Security Agency (NSA),
and was adopted by NIST as the one-way hash prescribed for use with the
digital signature algorithm (DSA). It has a blocksize of 64 bytes (512 bits)
and a key length of 160 bits and generates a hash of 20 bytes (160 bits). The
SHA-1 hash of a message is computed as follows.

1. Pad the message so its length in bits is 64 bits less than the blocksize
of 512 bits. Padding is always added; the pad length will always
be between 1 and 512 bits. The first pad bit is set to 1, and the
remaining pad bits are set to 0.

2. Following the padding, append the original message length (with-
out padding) as a 64-bit number.

3. Initialize the five buffers (H0, H1, H2, H3, and H4) with specially
selected constants.

Perform steps 4 through 8 for each block of the input message.

4. The block consists of 16 words (512 bits). Compute an additional
64 words, each of which consists of a 1-bit circular left shift of
the XOR of four of the other words.

5. Set each intermediate buffer (A, B, C, D, E) to the contents of
the corresponding H buffer (H0, H1, H2, H3, H4).

6. For each of the 80 words (the 16 message-block words plus the
additional 64 words), compute the sum (modulo 232) of its current
contents plus:

a. The contents of intermediate buffer A, circular-left-shifted
5 bits.

b. One of four predefined functions performed on intermediate
buffers B, C, and D. Each of those functions has the character-
istic that independent input (input in which each bit has no
predefined relationship to the other bits) will produce inde-
pendent output.

c. The contents of intermediate buffer E.

d. One of four specified constants.

7. Shift the intermediate buffers� contents, as follows.

a. Place the contents of buffer D in buffer E.

The Third Puzzle Piece: The Cryptographic Algorithms 65

b. Place the contents of buffer C in buffer D.

c. Place the contents of buffer B, left-circular-shifted 30 bits, in
buffer C.

d. Place the contents of buffer A in buffer B.

e. Place the results of the new calculation in buffer A.

8. This step incorporates the feedback mechanism. Each H buffer
(H0, H1, H2, H3, H4) is set to the sum (modulo 232) of its current
contents and the current contents of the corresponding intermedi-
ate buffer (A, B, C, D, E).

9. The output of SHA-1 is the concatenation of the final values of
the five H buffers. Thus, the output hash is 160 bits.

The SHA-1 definition specifies, for each of the 80 words, the specific func-
tion and the additive and initialization constants to be used in that compu-
tation. Although SHA-1 shares a number of computational constructs with
MD5, the expansion of each block from 16 words to 80 words, in which
each of the new words contains portions of several of the original words,
makes SHA-1 less susceptible to the type of attack that jeopardized MD5�s
security.

4.2.3 The HMAC Algorithm

The HMAC algorithm [9, 10], which was defined by Hugo Krawczyk,
Mihir Bellare, and Ran Canetti, adds a secret key and additional computa-
tional robustness to an existing hash function, without significantly increas-
ing the level of required computational resources. Its purpose is to further
strengthen well-known, well-understood hashes; to allow the continued use
of the original hash�s code; and to facilitate an easy transition from one
underlying hash function to another, if necessary. The blocksize and output
MAC size are those of the underlying hash function. However, for use with
AH or ESP, the MAC is truncated to 96 bits.

The generalized HMAC definition does not specify the key length. If
the key length exceeds the block length of the hash (64 bytes/512 bits for
MD5 and SHA-1), the key is first hashed with the underlying hash function
to yield a new key that is the output size of the hash. For proper security, the
secret key�s length should be no smaller than the output size of the underly-
ing hash (16 bytes/128 bits for MD5, 20 bytes/160 bits for SHA-1). How-
ever, a key length greater than the hash output does not appreciably increase

66 Demystifying the IPsec Puzzle

security. Therefore, for use in IPsec, a key of 16 bytes is mandated for
HMAC-MD5 [11] and a key of 20 bytes for HMAC-SHA-1 [12]. The
HMAC computation is as follows.

1. The key is padded with zeroes, if necessary, to the hash�s blocksize.

2. The key is XOR�d with a special constant (ipad).

3. The message data are appended to the expanded, XOR�d key.

4. The underlying hash is applied to the result of step 3 (the expanded
XOR�d key + message data).

5. The expanded key is XOR�d with another special constant (opad).

6. The output of step 4 (the hash output) is appended to the
expanded, XOR�d key from step 5.

7. The underlying hash is applied to the result of step 6 (the
expanded XOR�d key + hash output).

Figure 4.4 illustrates the steps of the HMAC computation, using MD5 as
the underlying hash.

The Third Puzzle Piece: The Cryptographic Algorithms 67

Key XOR ipad

Key 1

XOR opad

MD5

Key 2

MD5

HMAC

Message data

Keyed hash

Figure 4.4 The HMAC-MD5 algorithm.

4.2.4 Other Authentication Algorithms

One other authentication algorithm, RIPEMD-160 [13], is defined for use
with the IPsec headers. It is a five-round hash with a blocksize of 64 bytes
(512 bits) and a key length of 160 bits, and generates a hash of 20 bytes
(160 bits). RIPEMD�s inventors, Hans Dobbertin, Antoon Bosselaers, and
Bart Preneel, originally intended it to be a more secure version of MD4, the
predecessor of MD5. RIPEMD-160 is a reengineered version of RIPEMD,
with a similar structure but additional security features. It consists of two
parallel MD5-like computations, which differ from each other in the order
of application of the functions, the message words selected for the hash, and
the additive constants. After the final round, the two resulting hashes are
added to produce the final hash.

A number of attempts have been made to discover encryption algo-
rithms that can provide both encryption and authentication in the same
operation. In such a case, the required computations would be greater than
those required for encryption alone but less than the computational require-
ments of encrypting and authenticating with distinct algorithms. So far,
security weaknesses have been discovered in all such schemes. The latest pro-
posal for such a dual-purpose algorithm, integrity-aware plaintext-ciphertext
block chaining (iaPCBC) [14, 15], appears secure, but has not been around
long enough to be subjected to the rigorous cryptographic analysis necessary
for an operational, trusted IPsec algorithm.

4.3 The ESP Header Encryption Algorithms

The ESP header encryption algorithms are all block-oriented algorithms.
Each block of input text, or plaintext, is transformed, through the use of the
encryption algorithm in conjunction with a secret key, into its encrypted
counterpart, known as ciphertext. The chaining mechanism used by the ESP
encryption algorithms is called the Cipher Block Chaining (CBC) Mode. In
CBC Mode, prior to encryption, each unencrypted block is XOR�d with the
encrypted text of the previous block. An analogous value is also needed for
the first block; that value is referred to as the initialization vector (IV).
Because the first encrypted block of text generally contains multiple fields
(e.g., TCP header fields) whose values are known and that are invariant from
one packet to the next, the use of an IV ensures that identical fields that are
encrypted with identical keys will vary from one packet to the next.

68 Demystifying the IPsec Puzzle

A common approach, and the one that is mandated for IPsec, is to gen-
erate a random IV for each packet. When generating IVs for a series of pack-
ets, it is essential that each IV is a random value and that the IV generation
does not follow a predictable pattern. In particular, the IPsec documents cau-
tion against IVs that have a low Hamming distance. The Hamming distance
between two values refers to the difference, in the number and placement of
bits with a value of 1, between the values. Because an IV is XOR�d with the
packet�s first block, it is the IV�s 1-bits that actually mask, or hide, the block�s
data. The IV�s 0-bits preserve the value of the bits with which they are
XOR�d, but the 1-bits flip 1-bits in the data to 0. Thus, IVs whose 1-bits are
similarly placed, applied to similar data, yield results that are not significantly
dissimilar.

Many of the IPsec encryption algorithms belong to a class of ciphers
known as Feistel networks. These ciphers divide each input block into two
sections. The round function is applied to one section of the input block.
The encrypted output of that step then is XOR�d with the other section of
the input block, and the two halves are swapped. The beauty of a Feistel net-
work cipher is its reversibility: The same algorithm that is used to encrypt
the plaintext can be used, unaltered, to decrypt the ciphertext. Generally, the
only difference between encryption and decryption is the order in which the
individual subkeys are applied. That enables efficient, compact implementa-
tions in both software and hardware. The round function itself does not have
to be reversible.

A significant issue related to encryption algorithms is whether a par-
ticular algorithm has known weak keys. Weak keys do not provide the level of
security generally ascribed to the algorithm in question. For instance, two
successive encryptions with a weak key may reproduce the original plaintext,
or a single encryption may result in ciphertext that is more vulnerable to
a known attack. IPsec SAs are not supposed to be established with known
weak keys for the selected encryption algorithm.

Currently, the mandatory ESP encryption algorithm is the Data
Encryption Standard (DES) [16]. DES and its stronger variant, Triple DES,
are the most commonly used ESP encryption algorithms today. There are a
number of other encryption algorithms whose use is described in the ESP
documents. This chapter includes a detailed description of DES and Triple
DES, brief descriptions of the other currently used ESP encryption algo-
rithms, and a summary of the Advanced Encryption Standard (AES), which
will replace DES as the U.S. government�s encryption standard.

The Third Puzzle Piece: The Cryptographic Algorithms 69

4.3.1 The DES Algorithm

DES [17], originally defined by IBM, was adopted by NIST as the govern-
ment�s standard encryption algorithm for unclassified data [18, 19]. It
consists of 16 rounds, has a blocksize of 8 bytes (64 bits), and generates an
encrypted version of a message that, at most, increases the message�s size so
that it is an exact multiple of the blocksize.

The DES algorithm, as originally defined, has four modes. Plain vanilla
DES, which encrypts each input block separately, constitutes the Electronic
Codebook (ECB) Mode. The other three modes, CBC Mode, Cipher Feed-
back (CFB) Mode, and Output Feedback (OFB) Mode all incorporate some
form of feedback. Each block�s encrypted text is a function not only of that
block�s original text and the secret key, but of the encrypted text of one or
more other blocks. The DES Mode required by IPsec is the CBC Mode.
Chaining the encrypted blocks affords some limited protection against cut-
and-paste attacks, protects against replay attacks, disguises repetitive infor-
mation, and increases the cryptographic robustness of the output.

DES requires a secret key that is 64 bits long, but only 56 of those
bits are actual key bits; the remaining 8 bits are parity bits that ensure the
internal consistency of each byte of the key. The DES algorithm consists of
16 rounds, each one of which uses a different 48-bit key to work its wonders.
The original 56-bit key is transformed into sixteen 48-bit keys as follows.

1. Using a table, the 56 bits of the key are permuted, resulting in two
28-bit values, the lefthand key source and the righthand key source.

2. To obtain the key for each round, the lefthand key source and the
righthand key source are each circularly left shifted 1 or 2 bits,
yielding a new lefthand key source and righthand key source. The
current round�s key is obtained by performing a permutation on
the concatenation of the current lefthand key source and the cur-
rent righthand key source, yielding a 48-bit round key.

DES is an extremely complex algorithm. After the key for each round
has been computed, the real fun begins. For CBC Mode, each block is
XOR�d with the previous block�s ciphertext or, for the first block, with the
IV. The XOR�d output is permuted and then divided into a lefthand half
and a righthand half. The righthand half and the round key are used as the
inputs to a complex numeric manipulation; its result is then XOR�d with
the lefthand half. The XOR�d output becomes the new righthand half, the
old righthand half becomes the new lefthand half, and the next round begins.

70 Demystifying the IPsec Puzzle

After 16 of these rounds, the final lefthand half and righthand half are
swapped and concatenated, permuted once again, and ciphertext exists. In
more detail, the processing of each block is as follows.

1. To conform to the CBC Mode, the current block�s to-be-encrypted
text is XOR�d with the previous block�s encrypted text. In the case
of the first message block, its text is XOR�d with the IV, which
for IPsec is a randomly generated 64-bit value. The output of that
operation becomes the current DES input block.

2. The bits of the input block are then rearranged in a complex per-
mutation; the permuted block is then divided into two halves, the
initial lefthand half and the initial righthand half.

3. Each of the 16 rounds consists of the following steps.

a. The previous round�s righthand half (or, for round 1, the initial
righthand half) is stored in the lefthand half.

b. The bits of the current 32-bit righthand half are permuted, and
some of the input bits appear more than once in the output,
resulting in a 48-bit output.

c. The 48-bit output from step 3(b) is XOR�d with the current
round�s 48-bit key.

d. The 48-bit output of step 3(c) is divided into eight 6-bit values.
Each of those eight values is used as the index into one of eight
tables, each with 4 rows and 16 columns. The first bit and the
last bit of each value constitute the row, and the middle 4 bits
are the column. Each of the eight 6-bit values is replaced by
the 4-bit table entry referenced by the row and column index
derived from the 6-bit value. The output of this step is the con-
catenation of the eight derived 4-bit values, resulting in a 32-bit
output. The eight tables used to transform the 6-bit values into
4-bit values are referred to as S tables or S boxes.

e. The 32-bit output of step 4(d) is permuted, resulting in the
new, updated righthand half.

f. The updated righthand half is XOR�d with the previous round�s
lefthand half, and the result is stored in the righthand half.

4 . After the completion of round 16, the lefthand half and the
righthand half are switched. The concatenation of those two val-
ues (righthand half followed by lefthand half) is then subjected to

The Third Puzzle Piece: The Cryptographic Algorithms 71

the inverse of the permutation performed in step 2. The output of
that permutation is the DES encryption of the current block.

The DES definition contains tables that define the initial and intermedi-
ate key permutations; the number of shift operations to be applied to each
round�s key; the initial block permutation and its inverse; the permutation that
expands each block�s righthand half from 32 bits to 48 bits; the eight S tables;
and the permutation applied to the output of the S tables. Figure 4.5 illustrates
the general DES logic necessary to encrypt the Nth message block. Figure 4.6
shows the round function as applied to the righthand half of the Nth message
block; intermediate calculations are labeled Val-1, Val-2, and so forth.

A message that has been encrypted with DES is decrypted using the
same algorithm, with just one change: the subkeys are used in the opposite
order; in other words, the last pair of encryption subkeys is used for the first
decryption round. That is easily accomplished by reversing the order of
application of the permutations and by subjecting each key to a right circular
shift, rather than a left circular shift, to obtain the next subkey.

The portions of the DES algorithm that rely on permutations of the
message text conceivably could be vulnerable to analysis and solution using a
series of simultaneous equations. It is the S tables that protect DES from that
type of attack. The values in the S tables were carefully chosen to maximize
the diffusion of each message bit and each key bit throughout the encrypted
output and to protect the output from analytic attacks. In the end, DES suc-
cumbed not to any new, analytic, or elegant attack but to brute force and the
upward creep of technology [20]. In 1997, in response to a challenge from
RSA Security Inc., thousands of ordinary PCs divided up all potential keys
that could have been used on a specific message, and after 4 months, one of
the computers found the actual key. In 1998, that feat was duplicated on a
$250,000 machine in 56 hours. In the face of those successful attacks, DES is
not considered fit for encryption of important communications. Although
DES still is the official default algorithm for the ESP header, a reinforced ver-
sion of DES, called Triple DES, is more commonly used. In October 1999,
NIST declared Triple DES a government standard [17], allowing DES to
be used only by legacy systems and recommending that even those systems
upgrade to Triple DES as soon as possible.

4.3.2 The Triple DES Algorithm

Because it depends on DES, Triple DES also has a blocksize of 8 bytes
(64 bits). Its key size is nominally 192 bits long, but, like DES, 1 bit out of

72 Demystifying the IPsec Puzzle

every 8 is a parity bit that ensures the internal consistency of each byte of the
key. That results in a secret key that is actually 168 bits long. Operationally,

The Third Puzzle Piece: The Cryptographic Algorithms 73

XOR

Permutation

L0 R0

Round 1 Subkey 1

L1 R1

Round 2 Subkey 2

L2 R2

�
L15 R15

Round 16 Subkey 16

L16 R16

Swap

R16 16L

Inverse
permutation

BlockN

ciphertext

BlockN

plaintext

IV or
Block

ciphertext
N 1−

Figure 4.5 DES encryption: overall logic.

the key is broken down into three DES-sized keys of 56 bits each. For IPsec,
the CBC Mode of Triple DES is the default mode.

74 Demystifying the IPsec Puzzle

RN 1−

Val-1 XOR Subkey N

Val-2

Val-3.1 Val-3.2 � Val-3.7 Val-3.8

S-Box 1 S-Box 2 � S-Box 7 S-Box 8

Val-4.1 Val-4.2 � Val-4.7 Val-4.8

Val-5

Permutation

Val-6 XOR LN 1−

RN

Expansion
permutation

32 bits

48 bits

48 bits

6 bits

6 bits

4 bits

4 bits

32 bits

32 bits

32 bits

Figure 4.6 DES encryption: round function.

Each block of the input message is processed as follows.

1. To conform to the CBC Mode, the current block�s to-be-encrypted
text is XOR�d with the previous block�s encrypted text. In the case
of the first message block, its text is XOR�d with the IV, which
for IPsec is a randomly generated 64-bit value. The output of that
operation becomes the current Triple DES input block.

2. Use DES to encrypt the output of step 1 with the first 56-bit secret
key.

3. Use DES to decrypt the output of step 2 with the second 56-bit
secret key.

4. Use DES to encrypt the output of step 3 with the third 56-bit
secret key.

Figure 4.7 illustrates Triple DES encryption. The application of three succes-
sive DES operations to each block results in a considerably increased level
of security that is resistant to brute force key-guessing attacks generated by

The Third Puzzle Piece: The Cryptographic Algorithms 75

XOR

Key 1

Key 2

Key 3
DES encrypt

BlockN

ciphertext

BlockN

plaintext

IV or
Block

ciphertext
N 1−

DES encrypt

DES decrypt

Figure 4.7 The Triple DES algorithm.

current computers. However, if either the first two subkeys or the last two
subkeys are identical, the application of Triple DES would be equivalent to
plain single DES. Thus, such keys should never be used for an IPsec SA. As is
the case for DES, Triple DES messages are decrypted by applying the same
series of operations that were used for encryption, but reversing the order of
key usage.

4.3.3 Other Encryption Algorithms

Currently, DES is the only algorithm designated as mandatory for IPsec. The
most commonly used encryption algorithm, however, is Triple DES. A
number of other encryption algorithms are also defined for use in the ESP
header. Practically speaking, two communicating peers can use any encryp-
tion algorithm on whose use they reach consensus; however, without prior
knowledge, it would be foolish to assume that a potential recipient can han-
dle any algorithms other than the most common ones.

The Blowfish [21, 22] algorithm was invented by the well-known cryp-
tographer Bruce Schneier. It is a 16-round Feistel cipher, capable of handling
a variable-length key; for IPsec, a 128-bit key is defined as the default. Blow-
fish�s subkey computations are quite complex, but the encryption portion
of the algorithm is extremely straightforward. Like DES, the prototype of
Feistel ciphers, Blowfish consists of permutations and a round function that
contains multiple S-box substitutions. Unlike DES, the permutations are key
dependent, as are the four S-boxes. The S-box outputs, which are 32 bits in
length, are combined using XORs and modular addition.

The CAST [23] algorithm is named after its original inventors, Carlisle
Adams of Entrust Technologies and Stafford Tavares of Queens University
in Canada. The generalized CAST algorithm has a variable key size and con-
sists of either 12 or 16 encryption rounds, depending on the size of the key.
The version of the algorithm selected for use with the ESP header is known
as CAST-128, uses a 128-bit key, and has 16 rounds. The cipher uses eight
S boxes, four for the computation of the keys used for the individual rounds
and four for the actual encryption. There are actually two keys for each
round, a �masking key� and a �rotation key.� The masking key is combined
with the block�s data through either modular addition, modular subtraction,
or an XOR, then shifted the number of bits dictated by the rotation key.
Each round uses one of three encryption functions; the functions combine
the output of the S-boxes through the use of modular addition, subtraction,
and XOR, with the order of the three operations dictated by which function
is to be applied to the particular round.

76 Demystifying the IPsec Puzzle

The International Data Encryption Algorithm (IDEA) [24, 25] is the
brainchild of Xuejia Lai and James L. Massey of the Swiss Federal Institute
of Technology. It is an eight-round cipher with a blocksize of 64 bytes
(512 bits) and a key length of 128 bits. It differs from the other ESP ciphers
in several particulars: it is a non-Feistel cipher, and its use is patented. Each
of the eight rounds uses six subkeys and involves a series of XORs, modular
additions, and modular multiplications, combining the subkeys with por-
tions of the input block or results of previous round calculations. Following
the final round, an additional step uses four more subkeys. Although it is not
a Feistel cipher, it is designed so that the encryption and decryption opera-
tions are the same; the decryption is accomplished using different subkeys,
generated from the encryption subkeys.

RC5 [26], which is the creation of Ronald Rivest of MIT, is a straight-
forward and elegant cipher that can be used with a variety of key sizes, block-
sizes, and number of rounds. The version of RC5 specified for use with ESP
has a key of 128 bits, a blocksize of 64 bits, and 16 rounds. A hallmark of
RC5 is data-dependent rotation, which is the left circular rotation of one
data element by a variable number of bits, according to the value of another
data element. The round functions combine those data-dependent rotations,
XORs, and modular addition.

The NULL encryption algorithm is the means through which the ESP
header can be used to provide authentication without encryption. It is
defined in a tongue-in-cheek manner in RFC 2410, which describes its his-
tory, performance (stellar, naturally), and potential usage unencumbered by
patents or other intellectual property limitations.

4.3.4 The AES Algorithm

The DES algorithm is approaching the end of a long and glorious career. To
select its replacement, the Adanced Encryption Standard (AES), NIST con-
ducted a multiyear competition, first announced in January 1997. Of the 15
ciphers that were submitted as AES candidates in August 1998, 5 were desig-
nated as finalists: MARS [27], RC6 [28], Rijndael [29], Serpent [30, 31],
and Twofish [32, 33]. All the finalists have a blocksize of 128 bits and can
handle key sizes of 128, 192, and 256 bits. Public analysis, discussion, and
comparison of the candidates continued until the final selection was made.

Rijndael was chosen as the AES on October 2, 2000. It has a variable
key size and consists of either 10, 12, or 14 encryption rounds, depending on
the size of the key. Each round consists of four steps: byte substitution using
a single S box; column mixing; shifting rows over a variable offset; and

The Third Puzzle Piece: The Cryptographic Algorithms 77

XORing with the round key. The choice was made on the basis of security;
computational efficiency and memory requirements on a variety of software
and hardware, including smart cards; flexibility; and simplicity. The AES will
be the government�s designated encryption cipher for sensitive, nonclassified
information. It undoubtedly will be widely adopted for use by businesses and
financial institutions. The IPsec working group most likely will declare the
AES [34] to be a mandatory encryption algorithm for the ESP header.

NIST has also defined three new hash algorithms that are appropriate
for use with the three key sizes required for AES and that will replace SHA-1
as the government�s standard hash. They are SHA-256, SHA-384, and
SHA-512 [35, 36]; each generates a hash whose length in bits is commensu-
rate with the hash�s name. NIST is also considering whether to define new
chaining modes to replace or supplement those defined for DES [37].
Federal Information Processing Standards (FIPS) will be issued for AES, the
updated SHA hashes, and the modes of operation.

4.4 Complications

The block ciphers used for ESP, other than DES, generally are considered to
be safe from brute force attacks and other known attacks. However, there is
one attack that can be applied to messages that are encrypted but not authen-
ticated [38, 39]. If a message is sent from host H1 to host H2, under certain
circumstances an attacker can devise a cut-and-paste attack that results in the
attacker�s ability to retrieve the unencrypted message. Three conditions are
necessary for such an attack: the hosts are multiuser machines, the attacker
has user accounts on both hosts, and there is a host-oriented SA between the
hosts. In such a case, an attacker can retrieve an outgoing, encrypted message
from H1 to H2 and insert the encrypted portion of the message into a
new message to be sent from the attacker�s account on H1 to the attacker�s
account on H2. Each block of a message that is encrypted with a block cipher
needs three pieces of information to be successfully decrypted: the encrypted
block itself, the secret key, and the preceding encrypted block. Thus, every
block of the compound message sent by the attacker will decipher correctly,
except the first block of the purloined message.

Figure 4.8 illustrates the cut-and-paste attack. The only block of the
attacker�s compound message that will not decipher correctly is the first
block of the original user�s TCP header. The data portion of the original
message is intact and will decipher perfectly. Cut-and-paste attacks can
be prevented if all encrypted messages are also authenticated. The newly

78 Demystifying the IPsec Puzzle

constructed message will not authenticate correctly on receipt at host H2;
therefore, the IPsec routines will not even attempt decryption. The authenti-
cation can be applied as part of the ESP SA that provides the encryption, or it
can be applied through the use of a separate AH SA. Another way to frustrate
a cut-and-paste attack is through the use of user-oriented, rather than host-
oriented, SAs on multiuser machines.

4.5 Public Key Cryptography

The cryptographic algorithms that have been presented so far all depend on
the use of a single shared or symmetric key by both parties involved in the
communication. That necessitates the sharing or exchange of the key, which
is a tricky business (more on that in Chapter 5). Other algorithms, known
as public key algorithms, involve two mathematically related keys, the public
key and the private key. Public-private key pairs can be used for a number of
purposes: for digital signatures, for encryption, and for the exchange or trans-
port of symmetric keys. Why not use public key algorithms in AH and ESP

The Third Puzzle Piece: The Cryptographic Algorithms 79

(a)

(c)

(b)

User's IP
header

User's
TCP header

User's Packet data
User's

ESP header

Encrypted fields

Attacker's
IP header

Attacker's
ESP header

Attacker's
UDP header

Attacker's packet data

Encrypted fields

User's packet dataAttacker's
IP header

Attacker's
ESP header

Attacker's
UDP header

User's
TCP header

Encrypted fields

Figure 4.8 The cut-and-paste attack: (a) user�s original message; (b) attacker�s original
message; (c) attacker�s compound message.

headers and simplify the key distribution nightmare? Unfortunately, public
key algorithms are significantly more resource intensive than symmetric key
algorithms, so they are not a practical alternative in today�s technology.

However, public key cryptography is used for several different purposes
by IPsec�s key negotiation protocol, IKE.

4.5.1 Digital Signatures

A written signature can be used to prove that a communication was author-
ized by the signer. Similarly, if an entity, E1, wants to prove that it actually
sent a specific communication, E1�s digital signature can be used for that
purpose. E1 hashes the contents of the message and signs the hash with E1�s
private key. The peer, E2, verifies the signed hash using E1�s public key; the
verification constitutes proof of E1�s identity. One of the methods used by
IKE to authenticate the communicating peers to each other is digital signa-
tures. If E2 can verify a hash signed by E1, then E2 is assured that the com-
municating peer is indeed E1. If E1 and E2 exchange digitally signed hashes,
then they have mutually authenticated each other�s identity. The digital sig-
nature algorithms that can be used with IKE are RSA [40] and DSA [41].

4.5.2 Other Public Key Operations

Public-private key pairs can be used for encryption and decryption. Besides
transmitting the encrypted value in a secure and private manner, the encryp-
tion/decryption operations can also constitute proof of the sender�s or the
recipient�s identity. E1 encrypts a message, or a portion of a message, with
E1�s private key. If E2 can successfully decrypt the message with E1�s public
key, the decryption constitutes proof of E1�s identity. Thus, another method
used by IKE to authenticate the communicating peers to each other is
through the use of public key encryption. If E1 can use E2�s public key to
successfully decrypt a message that was encrypted with E2�s private key, then
E1 is assured that the communicating peer is E2. If E1 and E2 exchange mes-
sages, each of which is encrypted with the peers� private key, then they have
mutually authenticated each other�s identity. The public key encryption
algorithms that can be used with IKE are RSA [40] and El-Gamal [42, 43].

4.5.3 The Diffie-Hellman Exchange

Another technique closely allied with public key technology and used by IKE
is the Diffie-Hellman exchange. In this ingenious method, two peers, E1 and

80 Demystifying the IPsec Puzzle

E2, can send information across an unprotected public network. If E1 and
E2 each sends its public values to the other, E1 can then combine E2�s public
value with a private value known only to E1, and E2 can combine E1�s pub-
lic value with a private value known only to E2. The results of the two peers�
computations are identical, with the result that E1 and E2 have used a public
channel to compute, in a perfectly secure manner, a shared secret value.

A Diffie-Hellman exchange can be based on one of two types of com-
putations: modular exponentiation or elliptic curves. In the case of modular
exponentiation, the peers� computations involve exponentiation of extremely
large numbers, modulo another very large number. In the case of elliptic
curves, the computations involve the addition of two points on the curve,
which yields another point on the curve. In both cases, the reason an attacker
cannot use the publicly available information to compute the shared secret
rests on the mathematical difficulty of computing inverse logarithms of large
numbers. Today�s computers are capable of raising a number to an extremely
large power, of multiplying extremely large numbers, and of completing
such operations within a reasonable time frame. The inverse operations,
however�computing the inverse logarithm or factoring an extremely large
number�cannot be accomplished within the requisite time frame necessary
to exploit the keys unearthed in such a manner.

Once a Diffie-Hellman exchange has been completed, the two parties
to the exchange possess a secret key known only to them. That key can be
used as a symmetric key to encrypt communications between the peers. A
more common technique for the derivation of the symmetric key is to use the
shared secret as one of the building blocks but not the sole determinant of
the key. The shared secret, along with other information, is plugged into a
keyed hash algorithm, and the output of the hash is used as the secret key. If
the required key is longer than the hash output, an iterative computation is
used to �boost� the size of the available keying material. This is the technique
used by IKE to compute the keys used for the AH and the ESP header.
Chapter 5 examines the other pieces of data that are fed into the hash in
addition to the Diffie-Hellman shared secret.

One advantage of this technique is that one Diffie-Hellman exchange,
which involves a number of computationally expensive calculations, can be
used to generate keys for multiple IPsec SAs. There is, however, a downside
to that economy. If an attacker discovers the shared secret, sometimes
referred to as the long-term key, all the traffic that was protected by symmet-
ric keys generated from that long-term key can be in jeopardy. To avoid that,
an additional Diffie-Hellman exchange may be performed each time a new
symmetric key is required. If that is done, the discovery of the long-term key

The Third Puzzle Piece: The Cryptographic Algorithms 81

will not jeopardize traffic that was protected by any of the subsequently cal-
culated symmetric keys. This additional insurance is known as perfect forward
secrecy.

4.6 Conclusion

This chapter discussed the cryptographic algorithms used for authentication
and encryption in both the AH and the ESP header. It also introduced the
public key techniques used as building blocks in IKE. Now we are ready to
tackle the most complex and complicated part of IPsec: key negotiation, estab-
lishment, deletion, and reestablishment, all of which are handled by IKE.

4.7 Further Reading

For complete descriptions of the theoretical underpinnings, mechanics, and
computations of various cryptographic algorithms, techniques, and flaws,
see Schneier [2] or Menezes [1]. The hash algorithms MD5 and SHA-1 are
defined in [7] and in [8], respectively. HMAC is described and analyzed
in [9, 10]. The application of HMAC-MD5 to IPsec is defined in [11];
HMAC-SHA-1 for IPsec is described in [12]. The RIPEMD-160 hash algo-
rithm is introduced in [13]; its use in IPsec is explicated in [44].

The encryption algorithm DES, its modes, and its implementation
are documented in [17�19]; its application to the ESP header is described
in [16], and its downfall in [20]. Triple DES is defined in [17], CAST-128
in [23], RC5 in [26], IDEA in [24, 25], and Blowfish in [21, 22]. Weak keys
for IDEA are discussed in [45] and those for DES in [2]. The application of
CBC Mode to the ESP header is found in [3], which explicitly applies to
Blowfish, DES, Triple DES, CAST-128, IDEA, and RC5, but by inference
it can apply to any encryption algorithm with a blocksize and IV length of
64 bytes. AES (Rijndael) is defined in [29].

With regard to the other AES finalists, MARS is described in [27],
RC6 in [28], Serpent in [30, 31], and Twofish in [32, 33]. The use of AES
and the other AES finalists in IPsec is explained in [34]. SHA-256,
SHA-384, and SHA-512 are defined in [35]. RSA digital signatures and
public key encryption are defined in [40]. The DSA is described in [41].
El-Gamal public key encryption is introduced in [42, 43]. Schneier [2]
explains numerous other public key techniques and applications. The
successful attack on MD5 is explained in [5], the DES-cracking industry is

82 Demystifying the IPsec Puzzle

described in [20], and other potential IPsec attacks and vulnerabilities
are revealed in [38, 39, 46]. Recommended cipher key lengths, circa 1995,
are prescribed in [47].

References

[1] Menezes, A., P. Van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, Boca Raton, Florida, 1997.

[2] Schneier, B., Applied Cryptography: Protocols, Algorithms and Source Code in C. 2nd
Ed., New York: Wiley, 1995.

[3] Pereira, R., and R. Adams, The ESP CBC-Mode Cipher Algorithms, RFC 2451,
Nov. 1998.

[4] Atkinson, R., The IP Authentication Header, RFC 1826, Aug. 1995 (obsolete).

[5] Dobbertin, H., �The Status of MD5 After a Recent Attack,� RSA Laboratories�
CryptoBytes, Vol. 2, No. 2, Summer 1996, http://www.rsa.com/rsalabs/pubs/
cryptobytes.html.

[6] Kent, S., and R. Atkinson, The IP Authentication Header, RFC 2402, Nov. 1998.

[7] Rivest, R., MD5 Digest Algorithm, RFC 1321, Apr. 1992.

[8] NIST, Secure Hash Standard, FIPS Pub. 180-1, Apr. 1995, http://csrc.nist.gov/fips/
fip180-1.{txt,ps}.

[9] Bellare, M., R. Canetti, and H. Krawczyk, �Keyed Hash Functions and Message
Authentication,� Proc. Crypto �96, LNCS V. 1109, Springer-Verlag, Heidelberg, Ger-
many, 1996, pp. 1�15, http://www.research.ibm.com/security/keyed-md5.html.

[10] Krawczyk, H., M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message Authen-
tication, RFC 2104, Feb. 1997.

[11] Madson, C., and R. Glenn, The Use of HMAC-MD5-96 Within ESP and AH,
RFC 2403, Nov. 1998.

[12] Madson, C., and R. Glenn, The Use of HMAC-SHA-1-96 Within ESP and AH,
RFC 2404, Nov. 1998.

[13] Dobbertin, H., A. Bosselaers, and B. Preneel, �RIPEMD-160: A Strengthened
Version of RIPEMD,� Fast Software Encryption�Cambridge Workshop, LNCS V.
1039, Springer-Verlag, Heidelberg, Germany, 1996, pp. 71�82, ftp://ftp.esat.kuleu-
ven.ac.be/pub/COSIC/bosselae/ripemd/.

[14] Bellovin, S., and V. Gligor, �An iaPCBC Transform for IPsec,� <draft-bellovin-
iapcbc-00.txt>, Nov. 1999.

The Third Puzzle Piece: The Cryptographic Algorithms 83

[15] Gligor, V., and P. Donescu, �Integrity-Aware PCBC Encryption Schemes,� 7th
International Workshop on Security Protocols, Cambridge, Eng., Apr. 1999,
http://www.research.att.com/~smb/papers/iapcbc.ps.

[16] Madson, C., and N. Doraswamy, The ESP DES-CBC Cipher Algorithm With Explicit
IV, RFC 2405, Nov. 1998.

[17] National Institute of Standards and Technology (NIST), Data Encryption Standard
(DES), FIPS Pub. 46-3, Jan. 1999.

[18] National Institute of Standards and Technology (NIST), DES Modes of Operation,
FIPS Pub. 81, Dec. 1980.

[19] National Institute of Standards and Technology (NIST), Guidelines for Implementing
and Using the NBS Data Encryption Standard, FIPS Pub. 74, Apr. 1981.

[20] Electronic Frontier Foundation, Cracking DES: Secrets of Encryption Research, Wiretap
Politics & Chip Design, O�Reilly, Cambridge, MA, July 1998, http://cryptome.org/
cracking-des.htm.

[21] Schneier, B., �The Blowfish Encryption Algorithm�One Year Later,� Dr. Dobb�s
Journal, Sep. 1995, http://www.counterpane.com/bfdobsoyl.html.

[22] Schneier, B., �Description of a New Variable-Length Key, 64-Bit Block Cipher (Blow-
fish),� Fast Software Encryption, Cambridge Security Workshop Proc., Springer-Verlag,
1994, pp. 191�204, http://www.counterpane.com/bfsverlag.html.

[23] Adams, C., The CAST-128 Encryption Algorithm, RFC 2144, 1997.

[24] Lai, X., �On the Design and Security of Block Ciphers,� ETH Series in Information
Processing, Vol. 1, Hartung-Gorre Verlag, Kostanz, Switzerland, 1992.

[25] Lai, X., and J. Massey, �A Proposal for a New Block Encryption Standard,� Advances
in Cryptology�Eurocypt �90, LNCS V. 473, Springer-Verlag, Heidelberg, Germany,
1991, pp. 389-404.

[26] Baldwin, R., and R. Rivest, The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS
Algorithms, RFC 2040, Oct. 1996.

[27] Burwick, C., et al., �MARS�A Candidate Cipher for AES,� NIST AES Proposal,
June 1998, http://www.research.ibm.com/security/mars.{pdf,ps}.

[28] Rivest, R., et al., �The RC6 Block Cipher,� NIST AES Proposal, June 1998,
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/RC6/cipher.pdf,
http://www.rsasecurity.com/rsalabs/aes/.

[29] Daemen, J., and V. Rijman, �AES Proposal: Rijndael,� NIST AES Proposal, Jun 1998,
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Rijndael/Rijndael.pdf,
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/.

[30] Anderson, R., E. Biham, and L. Knudsen, �Serpent: A Proposal for the Advanced
Encryption Standard,� NIST AES Proposal, June 1998, http://csrc.nist.gov/encryption/
aes/round2/AESAlgs/Serpent/Serpent.pdf, http://www.cl.cam.ac.uk/~rjal4/serpent.html.

84 Demystifying the IPsec Puzzle

[31] Biham, E., R. Anderson, and L. Knudsen, �Serpent: A New Block Cipher Proposal,�
Fast Software Encryption�FSE98, Springer LNCS V. 1372, Springer-Verlag, Heidel-
berg, Germany, 1998, pp. 222�238.

[32] Schneier, B., et al., �Twofish: A 128-Bit Block Cipher,� NIST AES Proposal,
June 1998, http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Twofish/Twofish.pdf,
http://www.counterpane.com/twofish.html.

[33] Schneier, B., et al., The Twofish Encryption Algorithm: A 128-Bit Block Cipher,
New York: Wiley, 1999.

[34] Frankel, S., R. Glenn, and S. Kelly, �The AES Cipher Algorithm and Its Use With
IPsec,� <draft-ietf-ipsec-ciph-aes-cbc-01.txt>, Nov. 2000.

[35] National Institute of Standards and Technology (NIST), �Descriptions of SHA-256,
SHA-384, and SHA-512,� http://csrc.nist.gov/cryptval/shs/sha256-384-512.{pdf,ps},
Oct. 12, 2000.

[36] National Institute of Standards and Technology (NIST), �Secure Hash Standard
(SHS),� http://www.nist.gov/sha, Oct. 12, 2000.

[37] National Institute of Standards and Technology (NIST), �Symmetric Key Block
Cipher Modes of Operation,� http://www.nist.gov/modes, Oct., 2000.

[38] Bellovin, S., �An Issue With DES-CBC When Used Without Strong Integrity,� Proc.
32nd IETF, Danvers, MA, Apr. 1995.

[39] Bellovin, S., �Problem Areas for the IP Security Protocols,� Proc. 6th Usenix
UNIX Security Symposium, San Jose, CA, July 1996, pp. 205�214, http://
www.research.att.com/~smb/papers/badesp.{ps, pdf}.

[40] Kaliski, B., PKCS #1: RSA Encryption Version 1.5, RFC 2313, Mar. 1998.

[41] National Institute of Standards and Technology (NIST), Digital Signature Standard,
FIPS Pub. 186-1, Dec. 1998.

[42] El Gamal, T., �A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms,� Advances in Cryptology: CRYPTO 84 Proc., LNCS V. 196, Springer-
Verlag, Heidelberg, Germany, 1985, pp. 10�18.

[43] El Gamal, T., �A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms,� IEEE Trans. on Information Theory, Vol. IT-31. No. 4, 1985,
pp. 469�472.

[44] Keromytis, A., and N. Provos, �The Use of HMAC-RIPEMD-160-96 Within ESP
and AH,� <draft-ietf-ipsec-auth-hmac-ripemd-160-96-04.txt>, Sep. 1999.

[45] Daemen, J., R. Govaerts, and J. Vandewalle, �Weak Keys for IDEA,� Advances in
Cryptology, CRYPTO �93 Proc., LNCS V. 77 Springer-Verlag, Heidelberg, Germany,
1994, pp. 224�230.

The Third Puzzle Piece: The Cryptographic Algorithms 85

[46] Bellovin, S., �Probable Plaintext Cryptanalysis of the IP Security Protocols,� Proc.
Symposium on Network and Distributed System Security, San Diego, CA, Feb. 1997,
pp. 155�160. http://www.research.att.com/~smb/papers/probtxt.{ps, pdf}.

[47] Blaze, M., et al., �Minimal Key Lengths for Symmetric Ciphers to Provide
Adequate Commercial Security: A Report by an Ad Hoc Group of Cryptographers
and Computer Scientists,� Jan. 1996, http://www.bsa.org/policy/encryption/
cryptographers_c.html.

86 Demystifying the IPsec Puzzle

5
The Fourth Puzzle Piece: The Internet
Key Exchange (IKE)

No one can truly be called an entomologist, sir; the subject is too vast
for any single human intelligence to grasp.

Oliver Wendell Holmes, The Poet at the Breakfast Table

So far, we have not addressed the derivation of the symmetric keys used for
IPsec encryption and authentication or the mechanism through which the
communicating peers agree on the algorithms, key sizes, and other minutiae
critical to the successful functioning of the IPsec SAs. Wizardry, extra-
sensory perception, and carrier pigeons have their limitations, hence the need
for IKE.

5.1 The IKE Two-Step Dance

The goal of any IKE [1�4] implementation is to negotiate an IPsec SA with
a peer. That is accomplished through a two-phase negotiation: Phase 1 estab-
lishes an Internet Security Association and Key Management Protocol
(ISAKMP) SA [3], which is a secure channel through which the IPsec SA
negotiation can take place. Phase 2 establishes the actual IPsec SA or, more
precisely, a pair of one-way IPsec SAs: an inbound SA and an outbound SA.

87

The establishment of the ISAKMP SA can be accomplished through
the completion of one of several different phase 1 exchanges, also referred
to as modes: Main Mode, Aggressive Mode, or Base Mode. Each mode is
defined as a series of messages, which consist of multiple payloads and head-
ers. The only phase 2 exchange that has been defined is Quick Mode. In
phase 1, each participant assumes a distinct role: The party that sends the
first message is called the initiator, and the peer is called the responder. In
phase 2 or subsequent negotiations, the roles can be reversed.

Several other exchanges have been defined that perform other IKE-
related functions but that do not qualify as either phase 1 or phase 2
exchanges: New Groups Mode, Unacknowledged Notification exchanges,
and Acknowledged Notification exchanges. We first describe the basic build-
ing blocks and concepts underlying IKE and then describe the function of
each building block within the compound objects that make up IKE.

5.2 Payloads and Exchanges

Each IKE negotiation is made up of a predefined set of messages that must be
exchanged by the peers; the building blocks that make up each message are
called payloads. For each message, IKE specifies the mandatory payloads; in
general, the ordering of the payloads within the message is not significant,
with a few exceptions. In addition to the mandatory payloads, there are a
number of optional payloads. In most of the messages, the mandatory pay-
loads sent by the initiator, containing initiator-specific information, will be
returned by the responder, containing responder-specific information.

Every IKE message is preceded by a standard header; each payload
within the message begins with a generic payload header. The contents of
those headers are discussed later in this chapter. First, let us address a number
of issues and problems that need to be handled by any key negotiation appli-
cation, IKE�s approach to such matters, and the payloads that carry that
information.

5.3 Authentication Methods

In an IKE negotiation, it is essential that each party prove its identity to
its peer; this process is called peer authentication. If the peer�s identity is in
doubt or conceivably could be falsified, then the whole SA negotiation
process is worthless. Even if it results in an SA through which secure,

88 Demystifying the IPsec Puzzle

IPsec-protected traffic is exchanged, the entity receiving the protected traffic
could be the very attacker from whom the traffic needs to be protected!
Three authentication methods are used in IKE: preshared secret key, digital
signatures, and public key encryption. Each method hinges on the peer�s
knowledge and use of some form of specialized information; the methods
differ in the nature of the information, the way in which that information is
obtained, and its use within the IKE negotiation.

Preshared secret key authentication relies on information�the pre-
shared secret key�that is known only to the parties to the negotiation. The
method through which the information is exchanged is unspecified but lies
outside the realm of the IKE negotiation itself. The exchange method must
be secure, however, because knowledge of the preshared secret key is the sole
proof of identity. The peers use that information to generate symmetric keys,
which are used to encrypt and authenticate the IKE messages. The infor-
mation is also used to generate additional keying material that, ultimately,
will be used in conjunction with the IPsec SA. The successful encryption and
decryption of the IKE messages serve as proof of possession of the preshared
secret key. The term preshared secret key can be somewhat confusing, but it is
a different entity entirely from the symmetric secret keys connected to the
eventual IPsec SA.

The biggest drawback to preshared secret key authentication is the lack
of a secure and scalable method of exchanging preshared secret keys. It is
usable in a small-scale environment with a moderate number of systems in
which the set of peers is known in advance. However, if a preshared secret
key is compromised, there is no universal method of notifying the peer and
establishing a replacement.

The other two authentication methods, digital signatures and public
key encryption (introduced in Chapter 4), can potentially remedy that draw-
back. These methods require each peer to possess a public-private key pair.
Each party uses its private key to sign or decrypt information; the other party
uses the corresponding public key to verify or encrypt the information, thus
authenticating the peer�s identity. If the public keys are retrievable from a
secure repository (more on that in Chapter 10), keys can be readily accessed
and updated. In addition, any peers whose keys reside on the same reposi-
tory or who trust each other�s repositories (that, too, will be discussed in
Chapter 10) can freely initiate IKE exchanges using these authentication
methods with no prior special arrangement.

IKE peer authentication via public key encryption, as originally
defined, requires each peer to perform two separate public key encryptions
and decryptions. A revised mode of public key authentication was proposed

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 89

that replaces two of the public key operations performed by each party (one
encryption and one decryption) with symmetric key operations, which are
computationally less demanding. Why are both methods still part of IKE?
The answer lies in ancient IPsec history. Because the original public key
authentication method was already in use in operational IPsec implementa-
tions, it was retained but the revised method was also adopted.

The two public key�based authentication methods, digital signature
and public key encryption, use different public key operations to assert and
verify the peer�s identity. The first employs digital signature (with the peer�s
private key) and verification (with the peer�s public key). The second uses
public key encryption (with the peer�s public key) and decryption (with the
peer�s private key). The content, order, and usage of the IKE payloads also
dictate another difference. For digital signature authentication, the certifi-
cates containing the peers� public keys can be exchanged as part of the IKE
negotiation. For public key authentication, the certificates must be obtained
prior to the IKE exchange. That can be accomplished via retrieval from a
public key infrastructure (PKI), as part of another IKE exchange, or by some
other method. Until Chapter 10, a PKI will remain a murky creature that
lurks somewhere on the Internet. For our purposes here, this chapter consid-
ers a PKI to be an entity that can generate certificates, store them in a secure
manner, and vouch for their authenticity and timeliness.

5.4 Proposals and Counterproposals

The concept of proposing and selecting the protection suites that constitute
an SA is straightforward, but the IKE terminology is full of terms that are
used in multiple contexts, some of which are counterintuitive. In both phase
1 and phase 2, the SA�s potential characteristics are described in an SA pay-
load. The SA payload is a multilayered payload that contains one or more
proposal payloads, each of which contains one or more transform payloads.
Each transform payload defines the specific algorithms, negotiation mecha-
nisms, and policy that characterize the SA; each entity contained within the
transform payload is called an attribute. The totality of the SA payload sent
by the initiator is a series of alternative combinations of the attributes to be
negotiated. Each series of attributes collectively characterizes the operation
and longevity of a particular proposed SA.

In phase 1, the initiator proposes one or more alternative collections of
attributes. This takes the form of a single SA payload, containing a single
proposal payload, which in turn contains one or more transform payloads.

90 Demystifying the IPsec Puzzle

Here is where the terminology confusion sets in. The proposal payload con-
tains one or more proposals that define the different forms of ISAKMP SA
that the initiator is willing to negotiate. However, each proposal is contained
within a single transform payload. Figure 5.1 shows the attributes that might
appear in a sample initiator proposal. Each row of the table constitutes a pro-
posal. The responder selects one of the rows and sends that proposal back to
the initiator. The responder�s SA payload will contain an SA payload, con-
taining a single proposal payload, which contains a single transform payload,
a copy of one of the transform payloads that was sent by the initiator. This is
the method used by the responder to indicate which of the initiator�s propos-
als is preferable; the chosen one then becomes the basis for the ISAKMP SA
negotiated in phase 1. The phase 1 attributes that are open to negotiation are
as follows.

• Encryption algorithm (and key length). The algorithm to be used
to encrypt all IKE messages once the secret key is established. The
mandatory-to-implement algorithm is DES_CBC. If an encryption
algorithm with a variable length key (e.g., BLOWFISH) is selected,
then the key length must also be negotiated.

• Hash algorithm. The keyed hash algorithm to be used in some of
the IKE calculations; if no pseudo-random function (PRF) is negoti-
ated, the HMAC form of the hash algorithm is also used to generate
the key material and to authenticate all IKE messages once the secret
key is established. The mandatory-to-implement hash algorithms
are MD5 and SHA-1.

• Authentication method. The method through which the peers mutu-
ally authenticate each other�s identity (preshared key, digital signa-
tures, public key original mode, or public key revised mode). The
mandatory-to-implement authentication method is preshared key.

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 91

Proposal

#

Transform

#

Enc

Alg

Hash

Alg

Auth

Method

DH

Group #

Lifetime

in Sec

Lifetime

in KB

1 1 Triple
DES SHA-1

Digital
signature 5 3,600 �

1 2 DES MD5 Public key
(original)

1 1,800 1,000

Figure 5.1 Sample phase 1 initiator proposal.

• Group description, type, prime, generator(s), curve(s), order, field size.
The values that define the specifics of the Diffie-Hellman exchange
that will establish the shared secret used in the generation of the key
material. The mandatory-to-implement group (group 1) is a modu-
lar exponentiation (MODP) group with a generator of 2 and the
following prime:

2768 − 2704 − 1 + 264 ∗ [(2638 p) + 149686]

There are three other predefined groups: another MODP group
(group 2) with a different prime and two elliptic curve groups
(groups 3 and 4). The group-description attribute is used to specify
which of the four groups will be used. It is recommended that
implementations support group 2. In practice, that is the default
group for most implementations.

It also is possible to negotiate groups with different defining
characteristics. In that case, the group-type attribute is used to spec-
ify whether the group is an MODP group or an elliptic curve
group. The group-prime and group-generator attributes are used to
define a new MODP group; the group-prime, group-generator,
group-curve, group-order, and field-size attributes are used to
define a new elliptic curve group.

• Life type, life duration. Attributes that specify whether the duration
of the phase 1 SA will be measured in seconds or kilobytes and that
give the numeric value of the SA�s duration in the specified measure
(seconds or kilobytes). There are no default values for life type and
life duration. Life type can be specified as both seconds and kilo-
bytes for a single SA, in which case the SA expires when either one
of the lifetimes is reached. An SA that is authenticated through the
use of a certificate should not last beyond the certificate�s expiration
date or, possibly, beyond the time the next certificate revocation list
(CRL) is issued.

• PRF. Keyed pseudo-random function used to generate the key
material and to authenticate all IKE messages once the secret key is
established. There is no mandatory-to-implement PRF and no pre-
defined values for this attribute; unless the peers agree to a privately
defined PRF, the default PRF is the HMAC version of the negoti-
ated hash function.

92 Demystifying the IPsec Puzzle

In phase 2, the SA proposals can be more complex, because the initiator
needs to be able to propose an SA bundle in situations where more than one
SA (e.g., an AH SA and an ESP SA) is required to protect the same traffic.
An initiator�s phase 2 SA payload can contain one or more proposal pay-
loads, each of which contains one or more transform payloads. When multi-
ple proposal payloads are identified by the same proposal number, they
represent a single SA bundle, which results in the negotiation of multiple
IPsec SA pairs. When multiple proposal payloads are identified by different
proposal numbers, they represent a series of alternative proposals for a single
SA, which results in the negotiation of a single IPsec SA pair. If any proposal
contains more than one transform payload, these always represent alterna-
tives. The responder then selects one proposal (to negotiate a single pair
of IPsec SAs) or one proposal group (to negotiate an SA bundle). Within
each proposal, the responder selects the single transform payload that con-
tains its preferred combination of attributes. The following phase 2 attributes
are open to negotiation.

• Life type, life duration: Attributes that specify whether the duration
of the phase 2 SA will be measured in seconds or kilobytes and the
SA�s duration in the specified measure (seconds or kilobytes). There
are no default values for these attributes. Life type can be specified as
both seconds and kilobytes for a single SA, in which case the SA
expires when either one of the lifetimes is reached.

• Group description: A value that defines the specifics of the optional
phase 2 Diffie-Hellman exchange that will establish the shared
secret(s) used in the generation of the key material if perfect forward
secrecy (PFS) of keys is desired. PFS is a guarantee that only one key
has been generated from a single Diffie-Hellman exchange and that
that key has no relationship to any other keys used between the
peers. The predefined groups are the same as those used for phase 1.
It also is possible to negotiate groups with different defining charac-
teristics. If a New Group Mode exchange previously has occurred
between the peers, that newly defined group may be used.

• Encapsulation Mode. Describes whether the SA will be a Transport
Mode SA or a Tunnel Mode SA.

• Authentication algorithm. The keyed hash algorithm to be used if the
SA is to provide authentication. This is mandatory for an AH SA or
an ESP SA whose encryption algorithm is ESP_NULL but optional
for an ESP SA whose encryption algorithm is not ESP_NULL. The

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 93

mandatory-to-implement authentication algorithms are HMAC-MD5
and HMAC-SHA.

• Key length. An attribute that must be negotiated for an ESP SA
whose encryption algorithm takes a variable length key (e.g., Blow-
fish).

• Key rounds. For an ESP SA whose encryption algorithm key can
be calculated with a variable number of rounds, the number of key
rounds must be negotiated.

• Compress dictionary size. If the SA is to provide traffic compression,
the maximum dictionary size must be negotiated.

• Compress private algorithm. If the SA is to provide traffic compres-
sion, the compression algorithm must be negotiated.

Proposals are always sent as part of an SA payload. The SA payload generally
is required to be the first message payload. Phase 2 messages always begin
with an authenticating hash payload; in this case, the SA payload is the first
payload following the hash payload.

5.5 Cookies

During the course of a phase 1 negotiation, the peers conduct a Diffie-
Hellman exchange, resulting in the calculation of a shared secret (a totally
different kind of beast from the similarly named preshared secret key), which
is used to calculate shared symmetric keys. It is prudent to verify, prior to
performing the Diffie-Hellman calculations, that the peer actually exists and
is interested in conducting an IKE exchange. In some of the IKE exchanges,
verification is accomplished through the exchange of cookies. Each peer
generates a unique, possibly pseudo-random value and sends it to the other
party. Once the cookie exchange has taken place, each party is assured that
the other party exists and is willing to respond. The cookie pair (the initiator
cookie and the responder cookie) incorporates part of the ISAKMP header
attached to almost every message. The only exception is the first phase 1 mes-
sage, which contains only the initiator cookie, since the responder cookie has
not yet been received.

An effective denial-of-service attack is one in which the attacker spoofs
a variety of source addresses and sends multiple IKE negotiation requests to
the victim. If the victim were to begin churning away at Diffie-Hellman cal-
culations in response to each such request, without any sort of verification of

94 Demystifying the IPsec Puzzle

the attacker�s existence and intentions, the victim�s system would quickly
be swamped with those expensive calculations and unable to perform other,
more useful work. The cookie calculations require less computational energy
than the Diffie-Hellman calculations, preventing this type of denial-of-
service attack. Of course, the responder still needs to exercise care, since a
large enough number of cookie calculations also could overwhelm a system.

If the cookies contain a time-dependent value, they can be used to pre-
vent replay attacks, in which the attacker attempts to resend messages from
previously negotiated SAs.

The chief virtue of a cookie exchange is also its downside: the necessity
to exchange two full messages prior to the Diffie-Hellman exchange. In IKE,
that is mitigated in two ways. The two cookies, the initiator�s cookie and
the responder�s cookie, are used as the identifying index of the phase 1 SA
(analogous to the SPI of an IPsec SA), both during the SA negotiation and
once the SA has been established. In addition, the messages that constitute
the cookie exchange are used to negotiate the particulars of the SA itself.

5.6 The Security Association Payload

The SA payload itself contains the following fields:

• Domain of interpretation (DOI). The content, format, and interpre-
tation of several types of data (e.g., addresses) are dependent on the
DOI for those data. Currently, the IPsec DOI is the only DOI other
than the generic ISAKMP DOI that has been specified. A phase 1
SA whose DOI is generic ISAKMP can be used to negotiate phase 2
SAs for any other DOI; a phase 1 SA whose DOI is IPsec can be
used only to negotiate phase 2 IPsec SAs. A phase 2 IPsec SA always
has a DOI of IPsec.

• Situation. For the IPsec DOI, the situation indicates whether stan-
dard IPsec ID payloads are sufficient to identify the peers to each
other or some type of compartmented secrecy or integrity labels are
required.

5.7 The Proposal Payload

Each Proposal payload has two fields that define the general nature and
access index of the proposed SA.

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 95

• Protocol ID. In phase 1, the protocol ID is ISAKMP, because an
ISAKMP SA is being negotiated; in phase 2, it can be IPsec AH (for
an AH SA), IPsec ESP (for an ESP SA), or IPCOMP (for a compres-
sion header).

• SPI. The SPI is the unique key used to access or identify the SA.

The phase 1 ISAKMP SA�s SPI consists of the initiator�s cookie followed by
the responder�s cookie. It is used by all messages subsequent to phase 1 (e.g.,
phase 2 messages, new group messages, and informational messages) that will
use the phase 1 ISAKMP SA for protection.

The phase 2 IPsec SA�s SPI is generated by each peer and, together with
the protocol ID and the destination address, uniquely identifies the IPsec SA.
This identification tuple (SPI, protocol, destination) appears in all traffic
covered by the IPsec SA. (The responder�s SPI is used in conjunction with
the initiator�s outbound SA for traffic from initiator to responder; the initia-
tor�s SPI is used in conjunction with the responder�s outbound SA for traffic
from responder to initiator.)

5.8 The Message ID

A single ISAKMP SA can be used as the umbrella under which multiple
IPsec SAs are negotiated. A mechanism is needed to distinguish the messages
related to one such phase 2 SA from another. That is the function of the mes-
sage ID, which is part of the ISAKMP header. In phase 1, the message ID is
always zero; in phase 2, it is a random number unique to its particular SA. In
that way, a single ISAKMP SA can be used to negotiate several IPsec SAs
between two peers; the IPsec SAs can operate either simultaneously or con-
secutively. Multiple simultaneous SAs can be used to protect several different
types of traffic, each requiring a different level of cryptographic protection,
between the peers. If the ISAKMP SA has a longer lifetime than the IPsec
SA, a single ISAKMP SA can be used to negotiate consecutively a successor
to an IPsec SA that is about to expire.

5.9 Nonces

A nonce is a randomly generated value that is used in IKE to provide proof of
either �liveness� [3] or �liveliness� [1, 2]. Whether it is used to demonstrate
bare existence or more creative activity, its intent is to prevent an attacker

96 Demystifying the IPsec Puzzle

from replaying a previous IKE negotiation, either phase 1 or phase 2. Much
of the content of an SA negotiation does not vary from one negotiation to
the next. The proposed protection suite most likely will remain constant, as
will the identities of the peers. If it were possible simply to replay a previous
negotiation, the peer could be fooled into reestablishing an expired SA, pro-
viding additional exposure for the secret keys. To prevent that, in every nego-
tiation each peer generates a new random nonce; both peers then compute a
cryptographic hash of both nonces. Because a replay of a previous negotia-
tion will not include the peer�s newly generated nonce, it will fail.

The actual usage of the nonce is different in phase 1 and phase 2. In
phase 1, the hashed nonces are used with other information to generate the
value used as the basis of the phase 1 keys. In phase 2, the nonces are hashed,
along with the remainder of each message, to create a keyed hash that
authenticates the content of the message. Each nonce is sent in its own nonce
(NONCE) payload.

5.10 Identities and Identity Protection

Several IKE exchanges involve the exchange of identities in an ID payload.
That exchange is essential when the IP address of the entity negotiating the
IPsec SA (e.g., a gateway) is different from the identity of the recipient of
traffic protected by the SA (e.g., a subnet behind the gateway). Even if the
negotiating entity is also the SA�s intended user, identities can be useful. A
system may want to limit an SA�s application to particular types of traffic.
That can be done by specifying not only an identity�s address but also the
applicable port or protocol.

Some IKE exchanges, most notably Main Mode, provide identity pro-
tection. That means the ID payload is never sent unencrypted or in the clear.
When the identity of the SA�s owner differs from the negotiator�s IP address,
that identity is hidden from eavesdroppers on the Internet. Identity protec-
tion is useful even when a system is negotiating its own host-to-host SA,
because an attacker cannot be sure whether the encrypted identity is the
sender�s IP address.

Each peer can negotiate an SA on its own behalf or on the behalf of one
or more other entities. The ID payload defines the nature of the entity for
which the SA is being negotiated, which can be one of the following:

• A single IP address (IPv4 or IPv6). A phase 2 ID payload also con-
tains port and protocol data. In phase 1, the port must be either 0 or

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 97

500 and the protocol must be 0 or UDP; that is the default
port/protocol combination for IKE.

• A fully qualified domain name string (e.g., statecollege.edu).

• A fully qualified username string (e.g., joestudent@statecollege.edu).

• A subnet, defined by an IP address and an IP network mask (both
IPv4 or IPv6).

• A range of IP addresses, represented by two IP addresses (both IPv4
or IPv6).

• An ASN.1 X.500 distinguished name or GeneralName (more on
these in Chapter 10).

• A value agreed on in advance that identifies which preshared key
should be used to authenticate Aggressive Mode negotiations.

The ID payload contains the actual identity in the proper format for the
selected type. In phase 1, the identity is authenticated through one of the
four peer authentication methods. Thus, its format is related to the data used
for authentication. If a public key certificate is used, the identity should be
that of the certificate�s owner or user. For a preshared secret key, there is a
slight chicken-and-egg problem. To hide the identity, we need to generate
a secret symmetric key. Before we generate that key, we need to select
the peer�s preshared secret key. But before the identity has been revealed, the
only identifying data we have for the peer is the source address of the IKE
message. Thus, preshared secret keys must be tied to a single type of identity,
that of the peer�s IP address.

Identities are communicated within an ID payload. If one of the peers
involved in the ISAKMP SA negotiation intends to negotiate an IPsec SA on
behalf of another entity, that information is conveyed in ID payloads during
the phase 2 negotiation. The most common example is a gateway that is
negotiating an IPsec SA for a single host or a subnet. Another example is a
host negotiating an IPsec SA for a specific type of traffic. The phase 2 IDs,
referred to as client IDs, always come in pairs: The initiator�s client ID pay-
load is first, followed by the responder�s client ID payload.

5.11 Certificates and Certificate Requests

For those authentication modes that depend on public key certificates, a host
generally needs to obtain the peer�s certificate to extract the public key. In

98 Demystifying the IPsec Puzzle

some cases (notably for the initiator in public key authentication), the key
must be available before the first phase 1 message is sent. In other cases, the
certificate can be requested and sent as part of an IKE phase 1 exchange.
That is accomplished through the use of two optional payloads that can be
added to almost any phase 1 message: the certificate request (CR) payload
and the certificate (CERT) payload.

The function of the CR payload is to request the peer�s public key
certificate and to specify the types of certificates that are acceptable to the
requester. The certificate that is requested can be relevant to the current
exchange, or it could be requested with the intention of caching it for future
use. Since IKE exchanges consist of a specific number of messages, the
exchange cannot be extended in order to send back the requested certificate.
Thus, the only message that cannot include this payload is the last message of
an exchange.

The CERT payload is used to convey a host�s certificate to the peer. A
CERT payload can be sent in response to the CR payload or, at the initiative
of either peer, in anticipation of its need. However, if the exchange is an
identity protection exchange, the certificate should not be sent in the clear.

When a certificate must be obtained before the phase 1 exchange, the
host must get the peer�s certificate in some non-IKE exchange before the IKE
negotiation can begin. Alternatively, if the peers are able and willing to use an
alternative authentication mode (e.g., preshared secret keys), certificates can
be exchanged and saved for a future, certificate-based IKE negotiation.

5.12 Keys and Diffie-Hellman Exchanges

The phase 1 symmetric keys provide both authentication and encryption for
the ISAKMP SA. The phase 1 key calculation formula differs slightly,
depending on which method of peer authentication is used. In every case, the
keys are derived from one or more pieces of information known only to
the communicating peers. One type of information, used by all four peer
authentication methods, is a shared secret, the result of a Diffie-Hellman
exchange conducted in phase 1. Each host sends its Diffie-Hellman public
value to its peer in a key exchange (KEY) payload. In Main Mode and Base
Mode, the specific Diffie-Hellman parameters are agreed on as part of the
exchange of proposal payloads. In Aggressive Mode, the proposal payload
and the KE payload are included in a single message, so the responder must
be willing to accept the Diffie-Hellman parameters selected by the initiator.

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 99

The phase 2 symmetric keys provide authentication and/or encryption
for the IPsec SA. They are calculated in part from a value derived from the
shared secret established by the phase 1 Diffie-Hellman exchange. Because
multiple phase 2 negotiations can result from a single phase 1 negotiation,
multiple symmetric keys are based on this single shared secret. If PFS is
desired for the phase 2 keys, an additional Diffie-Hellman exchange is con-
ducted as part of the phase 2 exchange. However, both the proposal payload
and the KE payload are part of the first Quick Mode message, so the
responder must accept the initiator�s preference, whether for or against PFS.

In the course of each IKE exchange, various keys need to be calculated.
Those values are generated as the output of a keyed HMAC. At times, the
HMAC in use may not yield enough keying material for the intended use.
For example, the output of HMAC-MD5 is 128 bits long. If HMAC-MD5
is used to generate an encryption key for Triple DES, which requires a 192-
bit key, we wind up short of keying material for the intended purpose. In
that case, IKE defines an iterative technique to expand the generated key to
the desired length.

5.13 Notifications

The IKE informational exchange (discussed in Section 5.19) is designed to
carry diagnostic messages [5]. There are times when it is desirable to attach
an informative message to an ongoing exchange. That is the function of the
notification payload; it is an optional payload that can be attached to any
phase 1 or phase 2 message. For example, when an initiator starts a phase 1
negotiation with a peer, and the initiator has no existing SAs with that peer,
the first phase 1 message can include a notification payload with an �initial
contact� notification message. If the responder has any existing SAs with the
initiator, the message informs the responder that the initiator no longer has
any memory of those SAs, possibly as a result of a system crash or some other
disaster. The responder can then delete any SAs that were previously estab-
lished with the initiator. Similarly, if an initiator begins a phase 1 negotiation
that does not include an �initial contact� message, and the responder has
not previously negotiated SAs with the initiator, the responder can include a
notification payload with an �initial contact� message in message 2 of the
phase 1 exchange.

Another example is the �replay status� message, which can be sent in
phase 2. The responder can use that message to inform the initiator whether

100 Demystifying the IPsec Puzzle

replay protection will be enabled or disabled during IPsec-protected
communications.

5.14 Lifetimes

In the world of Internet communications, even mutually beneficial items,
such as SAs, do not last forever. To expose a secret key by using it to encrypt
too much traffic or by allowing it to sit around begging to be compromised
would be foolhardy. For that reason, all SAs have a negotiated lifetime,
which is one of the attributes included in both the phase 1 and phase 2
proposals.

If the initiator�s proposal is acceptable to the responder in every respect
except the lifetime, it is not necessary to jettison the negotiation. If the life-
time is too short, that provides added security and should be accepted. If
the lifetime is too long for the responder�s comfort level, the proposal can
be accepted; the responder�s message will also include a notification payload
with an �SA lifetime� message. Included in the notification payload will be
the responder�s selected lifetime length value.

5.15 Vendor IDs

In some cases, IKE implementations may want to add features, attributes, or
other extensions that are not part of the standard IKE protocol. The vendor
ID payload is used for that purpose and can be sent in any phase 1 message.
Sending this payload is an announcement that the sender wants to use a
proprietary extension. If the recipient recognizes the requested extension and
can handle it, another vendor ID payload is sent in return. The extension can
then be used, most often in phase 2.

5.16 The Phase 1 Negotiation

There are three possible types of phase 1 exchanges: Main Mode, Aggressive
Mode, and Base Mode. A phase 1 exchange has three goals.

• To negotiate security parameters. The initiator and the responder
must agree on the values and settings of a number of parameters that
will govern the format of the last two (encrypted) messages of phase
1 and all the phase 2 messages. They also must negotiate which

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 101

method the peers will use to authenticate each other; the maxi-
mum lifetime of the phase 1 SA, and how that lifetime will be meas-
ured; the method to be used to establish the shared secret that will
be used to calculate the phase 1 keying material and the parameters
used to generate the shared secret. Those values collectively make up
the ISAKMP SA.

• To establish a shared secret. Once the peers have agreed on the
method and the parameters to be used to generate the phase 1 shared
secret, an exchange of messages is used to establish that shared secret,
which will be used in the generation of secret keys.

• To authenticate identities. The peers authenticate each other�s iden-
tity based on some additional out-of-band information.

Once the ISAKMP SA is established, it can be used to protect multiple phase
2 Quick Mode exchanges, New Group exchanges, and informational
exchanges, until its lifetime expires or some other untoward event occurs
(such as a rebooting of the machine, causing the current SAs to be lost).

5.16.1 Main Mode

A phase 1 Main Mode exchange consists of six messages: three messages from
the initiator to the responder and three sent by the responder to the initiator.

The first two Main Mode messages (message 1 from the initiator to the
responder and message 2 from the responder to the initiator) consist of an
exchange of SA payloads. The initiator�s SA payload contains a single pro-
posal payload, which can have multiple, alternative transform payloads. Each
transform payload defines the specific algorithms, negotiation mechanisms,
and policy (collectively known as attributes) that will characterize the estab-
lished SA. The responder must select one of the transform payloads offered
by the initiator, which is then referred to as the selected �proposal� (the ter-
minology definitely muddies the waters here). The responder�s SA payload
contains the single proposal (i.e., the transform payload) that the responder
selected from all the proposals offered by the initiator.

After the first two messages have been exchanged, each peer is assured
that the other peer exists and is ready to negotiate (as opposed to a denial of
service attack, in which the initiator most likely would be unreachable by the
responder). In addition, both peers have agreed to the security parameters
that will govern the remaining message exchanges. In particular, the authen-
tication method has been selected.

102 Demystifying the IPsec Puzzle

The nature and the order of the payloads that make up the next two
Main Mode messages (message 3 from the initiator to the responder and
message 4 from the responder to the initiator) vary, depending on the
authentication method (preshared secret key, digital signature, public key
original mode, or public key revised mode). Figure 5.2 shows the payloads
contained in each Main Mode message with authentication through pre-
shared secret keys; Figure 5.3 illustrates Main Mode with digital signature
authentication; Figures 5.4 and 5.5 illustrate Main Mode with authentica-
tion through public key encryption and revised public key encryption,
respectively. (In all the figures in this chapter and the following chapters, a

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 103

HDR, SA2

HDR, KEY, NONCE4

HDR, {ID, HASH}6

HDR, KEY, NONCE 3

HDR, {ID, HASH} 5

HDR, SA 1

Re
sp

on
de

r

In
iti

at
or

Figure 5.2 Main Mode exchange with authentication through preshared secret keys.

HDR, SA2

HDR, KEY, NONCE4

HDR, {ID, [CERT], SIG}6

HDR, KEY, NONCE 3

HDR, {ID, [CERT], SIG} 5

HDR, SA 1

In
iti

at
or

Re
sp

on
de

r

Figure 5.3 Main Mode exchange with authentication through digital signatures.

single payload or a series of payloads enclosed in braces, i.e., { }, is encrypted;
payloads enclosed in brackets, i.e., [], are optional.)

104 Demystifying the IPsec Puzzle

HDR, KEY, [HASH], <ID> PubKey,

<NONCE> PubKey

3

HDR, KEY, <ID> PubKey,

<NONCE> PubKey

4

HDR, SA2

HDR, {HASH}6

HDR, SA 1

HDR, {HASH} 5

In
iti

at
or

Re
sp

on
de

r

Figure 5.4 Main Mode exchange with authentication through original public key
encryption.

HDR, [HASH], <NONCE> PubKey,
<KEY> SymKey, <ID> SymKey,
[CERT] SymKey

3

HDR, <NONCE> PubKey,

<KEY> SymKey, <ID> SymKey

4

HDR, SA2

HDR, {HASH}6

HDR, SA 1

HDR, {HASH} 5

Re
sp

on
de

r

In
iti

at
or

Figure 5.5 Main Mode exchange with authentication through revised public key
encryption.

For all the authentication methods, messages 3 and 4 contain a KEY
payload and a nonce payload. The data portion of the KEY payload is used
to conduct a Diffie-Hellman exchange. Each party sends its public value to
the peer; the initiator sends the value g x to the responder, and the responder
sends the value g y to the initiator. Each peer then combines its own private
value with the public value that was received, resulting in the calculation of
the shared secret, g xy.

The nonces are random values generated by each peer that guarantee
that the exchange is a current one rather than a replay of a previous exchange.
They will be used in the phase 1 key material calculations.

If authentication is by either of the Public Key Modes, portions of mes-
sages 3 and 4 are encrypted through either direct or indirect use of the public
keys. Because each payload�s header has its own individual length field,
which is essential for processing, only the data portions of the relevant pay-
loads are encrypted, leaving the payload headers unencrypted. For the public
key authentication modes, those messages contain an ID payload. For the
original Public Key Mode, the data portions of the identification and nonce
payloads are encrypted with the peer�s public key. For the revised Public Key
Mode, the data portion of the nonce payload is encrypted with the peer�s pub-
lic key, and the data portions of the KEY and ID payloads are encrypted with a
symmetric private key derived from the host�s nonce and cookie. Because sym-
metric encryption and decryption operations are less processor intensive than
the corresponding public key operations but no less secure, the revised Public
Key Mode is an improvement over the original Public Key Mode.

If the authentication method is one of the Public Key Modes and the
responder has multiple public key certificates, the initiator must inform the
responder which public key was used for payload encryption. That is accom-
plished by sending a hash payload, which contains a hash of the appropriate
responder�s public key certificate. The certificate is hashed using the hash
function negotiated in the first two Main Mode messages. Similarly, if the
authentication method is the revised Public Key Mode and the initiator
has multiple public key certificates, the initiator must inform the responder
which of the initiator�s public keys the responder should use for payload
encryption. That is accomplished by sending a CERT payload, which con-
tains a copy of the appropriate initiator�s public key certificate. The certifi-
cate is encrypted with the symmetric private key derived from the nonce.
The initiator must possess the responder�s public key before sending the mes-
sage, since it is used to encrypt the nonce.

The secret phase 1 keys can now be calculated by each peer. A value
called SKEYID is first calculated. The exact calculation, shown in Figure 5.6,

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 105

depends on the authentication method. In each case, two types of informa-
tion provide input to the calculation: information known only to the peers
and information specific to this IKE negotiation. The secret information
is the preshared key, the encrypted nonces, or the Diffie-Hellman shared
secret. The exchange-specific information is either the cookies or the unen-
crypted nonces. Three secret keys are then calculated from SKEYID:
SKEYID_e, the phase 1 encryption key; SKEYID_a, the phase 1 authentica-
tion key; and SKEYID_d, a value that will be used in the derivation of the
phase 2 keys. The formulas for each of those values are shown in Figure 5.7.

After the first four messages have been exchanged and the secret phase
1 keys calculated, further traffic can be encrypted and authenticated. If the

106 Demystifying the IPsec Puzzle

Basis for calculation of Phase 2 keys:
SKEYID_d Keyed HMAC of Diffie-Hellman shared secret,

Initiator�s Cookie, Responder�s Cookie, 0
With Key SKEYID

SKEYID_a Keyed HMAC of SKEYID_d, Diffie-Hellman shared secret,
Initiator�s Cookie, Responder�s Cookie, 1
With Key SKEYID

SKEYID_e Keyed HMAC of SKEYID_a, Diffie-Hellman shared secret,
Initiator�s Cookie, Responder�s Cookie, 2
With Key SKEYID

=

=

=

=

=

=

Phase 1 authentication key:

Phase 1 encryption key:

Figure 5.7 Keys derived from SKEYID.

Pre-shared secret key:
SKEYID Keyed HMAC of Initiator�s Nonce, Responder�s Nonce

With Key pre-shared secret key

SKEYID Keyed HMAC of Diffie-Hellman shared secret
With Key Initiator�s Nonce, Responder�s Nonce

SKEYID Keyed HMAC of Initiator�s Cookie, Responder�s Cookie
With Key Hash of Initiator�s Nonce, Responder�s Nonce

=
=

=
=

=
=

Signatures:

Public key encryption:

Figure 5.6 SKEYID calculations.

authentication method is either original Public Key Mode or revised Public
Key Mode, an exchange of the peers� identities already has taken place;
through the use of the public keys used for mutual authentication, it was pos-
sible to encrypt the identities and accomplish the exchange without publicly
revealing either identity. If the authentication method is either through sig-
natures or through preshared secret key, the exchange of identities has not
yet taken place; it will occur in this exchange, under the protection of the
negotiated keys. In either case, because the identities are encrypted, a phase 1
Main Mode provides identity protection for the participants. Besides that, all
that remains to be accomplished in phase 1 is to authenticate the negotiation
via the exchange and verification of keyed hashes.

The last two Main Mode messages (message 5 from the initiator to the
responder and message 6 from the responder to the initiator) contain an ID
payload (only if the authentication method is digital signature or preshared
secret key) and a hash payload (if the authentication mode is not digital sig-
nature). If the authentication method is through digital signatures, the hash
payload is replaced by a signature payload, in which the calculated hash is
digitally signed. Optionally, the initiator or the responder can send a CERT
payload containing the public key certificate whose associated private key
was used to generate the digital signature. Figure 5.8 contains the formula for
those hashes.

A number of ramifications and side effects stem from the interplay
between message contents and authentication method in the Main Mode
exchanges. Because the preshared secret key is used to generate the encryp-
tion key, and that key must be used to encrypt the ID payload, the preshared
secret key must be selected based only on the peer�s address. That means that,
although phase 1 SAs of varying granularity can be negotiated with a single

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 107

Phase 1 Initiator�s Hash Keyed HMAC of Initiator�s Public Diffie-Hellman value,
Responder�s Public Diffie-Hellman value,
Initiator�s Cookie, Responder�s Cookie,
Initiator�s SA Payload, Initiator�s ID
With Key SKEYID

Phase 1 Responder�s Hash Keyed HMAC of Responder�s Public Diffie-Hellman value,
Initiator�s Public Diffie-Hellman value,
Responder�s Cookie, Initiator�s Cookie,
Initiator�s SA Payload, Responder�s ID
With Key SKEYID

=

=

=

=

Figure 5.8 Phase 1 hashes.

host once the ID payload is received, they all must be based on a single pre-
shared secret key. It also means that the road warrior (a dial-up or mobile
user who does not have a fixed address) cannot use preshared secret keys
for authentication. In the absence of wide deployment of certificate-based
solutions, that is a serious drawback. A number of solutions that have been
suggested are enumerated in Chapter 6.

Identity protection adds another complication. Because the SA pay-
loads are exchanged before the peer�s identity is revealed, the responder must
select the protection suite based only on the initiator�s IP address. Once the
actual identity is revealed, the responder may decide that the accepted pro-
posal is not applicable to the peer. For example, in scenario 1 (see Chapter 1),
H2 might select a proposal based on H1�s IP address, assuming that H1 is a
known quantity. But perhaps the identity sent in message 5 is an unfamiliar
email address. In that case, H2 might require additional protection; at this
point in the negotiation, the protection suite for the IKE SA cannot be
changed. H2�s only recourse is to terminate the negotiation, and subse-
quently to initiate another negotiation that includes the alternative proposal.

5.16.2 Aggressive Mode

The first Aggressive Mode message from the initiator contains the same fields
normally contained in the initiator�s first two Main Mode messages plus
the ID payload. (In Main Mode, the ID payload is part of message 1 for both
public key authentication methods but part of message 2 for the digital
signature and preshared secret key authentication methods.) The first (and
only) Aggressive Mode message from the responder contains all the fields
spread across that peer�s three Main Mode messages. Thus, a phase 1 Aggres-
sive Mode exchange consists of three messages (two messages sent from the
initiator to the responder and one sent from the responder to the initiator).
Figure 5.9 shows the payloads contained in each Aggressive Mode message
with authentication through preshared secret keys; Figure 5.10 illustrates

108 Demystifying the IPsec Puzzle

HDR, SA, KEY, NONCE, ID, HASH2

HDR, [{] HASH [}] 3

HDR, SA, KEY, NONCE, ID 1

In
iti

at
or

Re
sp

on
de

r

Figure 5.9 Aggressive Mode exchange with authentication through preshared secret keys.

Aggressive Mode with digital signature authentication; Figures 5.11 and 5.12
illustrate Aggressive Mode with authentication through public key encryp-
tion and revised public key encryption, respectively. The payloads of message
3 can be sent either encrypted or unencrypted.

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 109

HDR, SA, KEY, NONCE, ID, [CERT], SIG2
HDR, [{] [CERT], SIG [}] 3

HDR, SA, KEY, NONCE, ID 1

In
iti

at
or

Re
sp

on
de

r

Figure 5.10 Aggressive Mode exchange with authentication through digital signatures.

HDR, SA, [HASH], KEY, <ID> PubKey,

<NONCE> PubKey

1

HDR, SA, KEY, <ID> PubKey,

<NONCE> PubKey, HASH

2

HDR, [{] HASH [}] 3

In
iti

at
or

Re
sp

on
de

r

Figure 5.11 Aggressive Mode exchange with authentication through original public key
encryption.

HDR, SA, [HASH], <NONCE> PubKey,
<KEY> SymKey, <ID> SymKey,
[CERT] SymKey

1

HDR,SA, <NONCE> PubKey,

<KEY> SymKey, <ID> SymKey, HASH

2

HDR, [{]HASH[}] 3

In
iti

at
or

Re
sp

on
de

r

Figure 5.12 Aggressive Mode exchange with authentication tthrough revised public key
encryption.

Unlike Main Mode, in Aggressive Mode the ID payload is received
before the symmetric keys are calculated. Thus, preshared keys can be
attached to the full range of identity types, not just to the peer�s IP
address.

Because the ID payload is sent before any sort of mutual key has been
established, it is not encrypted if either preshared secret key authentication or
digital signature authentication is used; in those cases, an Aggressive Mode
exchange does not provide identity protection for the participants. However,
if identify protection is not required, an Aggressive Mode exchange
requires half the number of messages needed for a Main Mode exchange.
Aggressive Mode with one of the public key authentication methods does
provide identity protection, because the identity is encrypted with the
peer�s public key.

Aggressive Mode has two additional drawbacks. First, the peers must
have agreed on the Diffie-Hellman group beforehand, because the Diffie-
Hellman public values are exchanged in the same messages as the proposals.
Second, Aggressive Mode cannot take full advantage of the cookie exchange�s
main purpose: to prevent denial-of-service attacks. Although SKEYID and
the other secret keys do not have to be computed until after the third mes-
sage has been received, ensuring that both initiator and responder are full
participants, the responder does have to compute its own public value. That
calculation is processor intensive and leaves the responder open to one type
of denial-of-service attack. The initiator could flood the responder with
requests to perform Aggressive Mode. If the initiator spoofs other hosts�
addresses, the responder has no way of knowing that those requests all
originate from the same host. The responder, to respond with real KE
payloads, must perform the actual calculations; the initiator, knowing that
the Diffie-Hellman exchange will not be completed, can just generate fake
Diffie-Hellman public values rather than perform the actual calculations that
result in a public-private value pair.

5.16.3 Base Mode

Base Mode [6] is an attempt to preserve the advantages of Aggressive Mode
while at the same time eliminating its major disadvantages. Figures 5.13
through 5.16 illustrate its four variants. Base Mode consists of four messages,
one more than Aggressive Mode. But that defers the KEY payload and its
expensive Diffie-Hellman calculations, enabling the cookie exchange to miti-
gate the effects of a flooding attack. It also separates the KEY payload from

110 Demystifying the IPsec Puzzle

the SA payload, allowing the peers to negotiate the Diffie-Hellman group�s
parameters. Because the identity payload precedes the key calculations,

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 111

HDR, SA, [HASH], <ID> PubKey,

<NONCE> PubKey

1

HDR, SA, <ID> PubKey,

<NONCE> PubKey

2

HDR, KEY, HASH4

HDR, KEY, HASH 3

In
iti

at
or

Re
sp

on
de

r

Figure 5.15 Base Mode exchange with authentication through original public key
encryption.

HDR, SA, ID, NONCE2

HDR, KEY, [CERT], SIG4

HDR, KEY, [CERT], SIG 3

HDR, SA, ID, NONCE 1

In
iti

at
or

Re
sp

on
de

r

Figure 5.14 Base Mode exchange with authentication through digital signatures.

HDR, SA, ID, NONCE2

HDR, KEY, HASH4
HDR, KEY, HASH 3

HDR, SA, ID, NONCE 1

In
iti

at
or

Re
sp

on
de

r

Figure 5.13 Base Mode exchange with authentication through preshared secret keys.

preshared secret keys can be used with the full range of identities. In addi-
tion, the peer is fully authenticated before the Diffie-Hellman shared secret
is calculated. In authentication modes other than the public key encryption
ones, those advantages come at the expense of identity protection.

Base Mode was an add-on to the original IKE definition, and was pro-
posed after the initial IKE feature set had been somewhat frozen. For that
reason, it has not been widely implemented. In addition, the consensus
seems to be that identity protection is an important priority in a security-
related protocol.

5.17 The Phase 2 Negotiation

Once the phase 1 negotiation is complete, an ISAKMP SA, which is a pro-
tected channel, has been established between the peers. The SA consists of
agreed-on policy and parameters for further negotiations, along with sym-
metric secret keys that can be used to authenticate and encrypt those negotia-
tions. The index, or SPI, used to reference the ISAKMP SA is the quantity
formed by concatenating the initiator cookie and the responder cookie.
Either peer can initiate subsequent negotiations, in which the ISAKMP SA
is used to protect negotiations for a non-ISAKMP SA. The most common
example of a non-ISAKMP SA is an IPsec SA that can then be used to pro-
tect IP communications in general between the peers. The only phase 2 IKE
exchange that has been defined so far is Quick Mode.

112 Demystifying the IPsec Puzzle

HDR, SA, [HASH], <NONCE> PubKey,

<ID> SymKey

1
HDR, SA, <NONCE> PubKey,

<ID> SymKey

2

HDR, <KEY> SymKey, HASH4

HDR, <KEY> SymKey, HASH 3

In
iti

at
or

Re
sp

on
de

r

Figure 5.16 Base Mode exchange with authentication through revised public key
encryption.

5.17.1 Quick Mode

A phase 2 Quick Mode exchange has three goals.

• To negotiate security parameters. The initiator and the responder
must agree on the values and settings of a number of parameters that
will govern the operation of the negotiated IPsec SA. They also must
negotiate the maximum lifetime of the SA and how that lifetime
will be measured. If PFS is desired, they also must communicate the
parameters used to generate the shared secret that will be used to
calculate the phase 2 keying material and establish the shared secret
itself.

• To prevent replay. Authenticating hashes, which include freshly gen-
erated nonces, are exchanged and verified to ensure that the negotia-
tion is not merely a replay of a previous phase 2 negotiation.

• To generate keying material. Using the shared secret from phase 1 (or
a newly generated shared secret if PFS is required), the keying mate-
rial for the IPsec SA is produced. The phase 2 nonces also are used in
the process, to ensure the freshness of the keying material.

In addition, two additional goals may be satisfied.

• To provide PFS of keys and/or identities. PFS is a guarantee that only
one key has been generated from a single Diffie-Hellman exchange
and that the key has no relationship to any other keys used between
the peers. That ensures that discovery of the key by a third party will
jeopardize only traffic protected with the single discovered key but
not traffic protected by another key negotiated by the peers. PFS of
keys is provided by performing a second Diffie-Hellman exchange
during phase 2 and generating the IPsec SA�s key from the new
shared secret rather than using the same shared secret used to gener-
ate the phase 1 authentication key (SKEYID_a) and encryption key
(SKEYID_e). PFS of identities is provided by deleting the phase 1
ISAKMP SA after it has been used for a single phase 2 Quick Mode
exchange.

• To exchange identities. If the address of the negotiating peer is not
sufficient to characterize the IPsec SA, the endpoint identities must
be exchanged. This is necessary in the following cases:

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 113

• The peer is negotiating an SA on behalf of another entity (e.g., a
gateway negotiating a tunnel-mode SA for one or more clients);

• Multiple SAs exist between the peers, each of which is character-
ized by different port and/or protocol numbers, different identi-
ties, or other combinations of selectors.

A phase 2 Quick Mode exchange consists of three messages (two messages
from the initiator to the responder and one message from the responder to
the initiator). Figure 5.17 shows the payloads contained in each Quick Mode
message. The first two Quick Mode messages (message 1 from the initiator
to the responder and message 2 from the responder to the initiator) always
contain a hash payload, an SA payload, and a nonce payload. The hash con-
tained in the hash payload serves to authenticate the message; it is a keyed
hash, using SKEYID_a as the key, of the phase 2 message ID and all
the other payloads in the message. The nonce is proof of the liveness of the
exchange, protecting against a replay attack.

A phase 2 message can contain multiple SA payloads, which results in
the negotiation of multiple IPsec SAs. Each SA payload can contain multiple
proposal payloads, each of which characterizes a different protocol to be pro-
vided by the SA, and each proposal payload can have multiple, alternative
transform payloads. The responder�s SA payload contains a single proposal
(for each protocol for each proposed SA) that the responder selected from all
the proposals offered by the initiator (for that SA). Figure 5.18 contains a
sample Quick Mode initiator proposal. As a proposal, it allows the responder
too many choices; as an example, it is instructive. The first two rows
allow the responder to select an ESP SA with a choice of algorithms,

114 Demystifying the IPsec Puzzle

HDR, {HASH, SA, NONCE, [KEY],

[ID, ID]}

1

HDR, {HASH, SA, NONCE, [KEY],

[ID, ID]}

2

HDR, {HASH} 3

In
iti

at
or

Re
sp

on
de

r

Figure 5.17 Quick Mode exchange.

Diffie-Hellman groups, and lifetimes. The inclusion of a Diffie-Hellman
group in phase 2 indicates that the initiator wants PFS. The responder can
send back a proposal corresponding to either of these �row� proposals. The
last three rows are somewhat more complicated. Row 3 proposes an AH SA
in conjunction with either the ESP SA in row 4 or the one in row 5. To select
that combination, the responder would have to return a proposal corre-
sponding to row 3 and another proposal corresponding to either row 4 or
row 5. In that case, PFS is not selected. If it were, the Diffie-Hellman groups
all would have to be the same.

If PFS of keys is required, the first two messages also include KEY
payloads, and an additional Diffie-Hellman exchange occurs. If either of the
negotiating peers is a gateway, negotiating an SA for some other host(s) or
client, the messages also include two ID payloads, the first of which includes
the identity of the initiator�s client and the second of which includes the
identity of the responder�s client. Unlike Main Mode, in Quick Mode
the identities are sent together with the proposal payload, so the responder is
able to make an informed choice about which proposal to accept, including
the initiator�s client ID in the decision-making process if necessary.

After the first two messages have been exchanged, each peer possesses
enough information to calculate the keying material that will be used for
the IPsec SAs. Figure 5.19 shows the Quick Mode key calculations with and
without PFS. Figure 5.20 illustrates the iterative expansion method used in
Quick Mode to expand the keying material if the formula in Figure 5.19
does not yield a value of the required length. This keying material might
be used for the authentication key of an AH SA, or it might be divided to
provide the authentication key and the encryption key for an ESP SA.

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 115

Proposal
#

Transform
Protocol

Enc
Alg

Auth
Alg

Encapsulation
Mode

DH
Group #

Lifetime
in Sec

Lifetime
in KB

1 1 ESP Triple DES SHA-1 Tunnel 5 1800 �

1 2 ESP DES MD5 Tunnel 1 900 500

2 1 AH � SHA-1 Tunnel � 900 500

2 1 ESP Triple DES � Tunnel � 900 500

2 2 ESP DES � Tunnel � 900 500

Figure 5.18 Sample Quick Mode initiator proposal.

The first exchange negotiates the IPsec SA�s policy and parameters
and generates the keying material in an authenticated manner that protects
against a replay of a previous negotiation. The last message, from the initiator
to the responder, concludes the exchange and reassures the responder that
the responder�s proposal was received. It consists of a hash payload, with a
keyed hash computed over the message ID and the nonces from messages
1 and 2.

Once the IPsec SAs have been established, they can be used to protect
all or some of the traffic between the endpoints, until their lifetimes expire or
some other untoward event occurs (such as a rebooting of the machine that
causes the SAs to be lost).

5.17.2 The Commit Bit

The commit bit shifts the onus of verifying and finalizing the IPsec SA�s
establishment from the initiator to the responder. Without the commit bit,

116 Demystifying the IPsec Puzzle

Key1 Keyed HMAC of [Quick Mode= Diffie-Hellman shared secret,]
protocol (AH or ESP), SPI, Initiator�s Nonce, Responder�s Nonce
with Key SKEYID_d
Key2 Keyed HMAC of Key1, [Quick Mode Diffie-Hellman shared secret,]
protocol (AH or ESP), SPI, Initiator�s Nonce, Responder�s Nonce
with Key SKEYID_d
Key3 = Keyed HMAC of Key2, [Quick Mode Diffie-Hellman shared secret,]
protocol (AH or ESP), SPI, Initiator�s Nonce, Responder�s Nonce
with Key SKEYID_d

Expanded Keying Material Key1, Key2, Key3, �

=
=

=

=

=

…

Figure 5.20 Quick Mode key boost calculations.

Keying Material (without PFS) Keyed HMAC of protocol (AH or ESP), SPI,=
Initiator�s Nonce, Responder�s Nonce
with Key SKEYID_d

Keying Material (with PFS) Keyed HMAC of
Quick Mode Diffie-Hellman shared secret,
protocol (AH or ESP), SPI, Initiator�s Nonce, Responder�s Nonce
with Key SKEYID_d

=

=

=

Figure 5.19 Quick Mode key calculations.

Quick Mode is a three-message protocol. After the first two messages have
been exchanged, the peers have all the data necessary to compute the keying
material and establish the IPsec SA. In the third message, the initiator com-
putes an authenticated hash on both the initiator�s Quick Mode nonce
and the responder�s Quick Mode nonce. Including the nonce that was just
received from the responder serves to reassure the responder that this is a
bona fide negotiation and not a replay of a previous one. But what if that
message is lost? The initiator, assuming that it has arrived safely, will establish
the IPsec SA; the responder, not having received the final Quick Mode mes-
sage, will wait to establish the SA.

Either peer can convert Quick Mode into a four-message protocol by
turning on the commit bit in the ISAKMP header. That way, if the initiator
does not receive the fourth message, it will resend the third message. There is
no ideal solution, because any lost message can create complications. But this
solution avoids a situation in which an initiator preemptively sends the third
message multiple times, because it has no good way to determine whether it
has been received. The fourth Quick Mode message contains a hash payload
and a notification payload with a �connected� notify message.

5.18 New Group Mode

New Group Mode, illustrated in Figure 5.21, is an exchange that uses an
established phase 1 ISAKMP SA to protect the negotiation of a new Diffie-
Hellman group that can then be used in subsequent exchanges. That allows
the peers to negotiate a private group whose parameters are not known,
except to the participants. In subsequent phase 1 exchanges, only the group
description number is required; thus, the specific group parameters are not
sent in an unencrypted message.

A New Group exchange consists of two messages (one message from
the initiator to the responder and one from the responder to the initiator).
Each message consists of an SA payload, used to negotiate the characteristics

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 117

HDR, {HASH, SA}2

HDR, {HASH, SA} 1

In
iti

at
or

Re
sp

on
de

r

Figure 5.21 New Group Mode.

of the group, and a hash payload, which authenticates the message.
Figure 5.22 shows the formula used to calculate the New Group hashes.

The New Group attributes open to negotiation are group description,
type, prime, generator(s), curve(s), order, and field size. Those values define
the specifics of the Diffie-Hellman exchange that will establish the shared
secret used in the generation of the key material. The group description
serves as the group�s ID number. The group type attribute is used to specify
whether the group is an MODP or elliptic curve group. The group prime
and group generator attributes are used to define a new MODP group; the
group prime, group generator, group curve, group order, and field size attrib-
utes are used to define a new elliptic curve group.

5.19 Informational Exchanges

There are two types of informational exchanges: an unacknowledged infor-
mational exchange and an acknowledged informational exchange. An unac-
knowledged informational exchange is a one-way single message used to send
the peer status or diagnostic information. If an ISAKMP SA has been estab-
lished between the peers, the ISAKMP SA is used to protect the exchange,
and the exchange is authenticated with a hash payload. Either the initiator or
the responder of the phase 1 or phase 2 exchange can act as the initiator of an
informational exchange. Each informational exchange has a unique message
ID distinct from the phase 2 message ID (if any). The message contains
either a �notify payload� or a �delete payload.� A �notify payload� contains
the identifying number of a predefined status (e.g., �initial contact received�)
or diagnostic (e.g., �invalid payload type�) message. A �delete payload� is
used to notify the peer that an SA has been deleted and contains data identi-
fying the deleted SA.

There are circumstances in which the sender requires confirmation that
the informational message was received. For example, if the message is a

118 Demystifying the IPsec Puzzle

Initiator�s Hash Keyed HMAC of Message ID,
Initiator�s SA Payload,
With Key SKEYID_a

Responder�s Hash Keyed HMAC of Message ID,
Responder�s SA Payload,
With Key SKEYID_a

=

=

=

=

Figure 5.22 New Group hash calculations.

delete message, the initiator should not delete its SA until the responder has
been notified about the deletion. That goal can be accomplished through the
use of an acknowledged informational exchange, which consists of two mes-
sages, each containing a hash payload, a �notify payload� or a �delete pay-
load,� and a nonce payload for liveness.

If the ISAKMP SA has not been fully established, a situation can occur
that calls for a diagnostic message. For example, if the initiator�s phase 1 pro-
posal sent in message 1 is not acceptable to the responder, the responder will
not send message 2. But an informational �no proposal chosen� message is
a more helpful reaction than no response at all. Alternatively, if one of the
peer�s messages is erroneous, a �bad proposal syntax� or �payload mal-
formed� informational message is in order. An unprotected informational
message does present a dilemma for the recipient. Because it is neither
authenticated nor encrypted, it could come from an attacker, or its contents
could have been altered in transit. In such a case, it makes sense for one peer
to send an informational message and for the other peer to evaluate the secu-
rity ramifications of acting on an unsecured message.

5.20 The ISAKMP Header

The ISAKMP header precedes every IKE message. Even when the body of
the IKE message is encrypted, the ISAKMP header is not encrypted. It con-
sists of the following fields:

• Initiator Cookie. The initiator�s anticlogging device and part of
the phase 1 SA�s SPI, it is the unique key used to identify the phase
1 SA.

• Responder Cookie. The responder�s counterpart to the initiator
cookie, it is zero in phase 1 message 1, because the initiator has not
yet received this value.

• Next Payload. Each message contains one or more payloads; this
header field identifies the type of the first payload.

• Major Version Number/Minor Version Number. These numbers allow
the peer�s IKE implementation to determine whether it is com-
patible with the current IKE version; if not, it can reject this
negotiation.

• Exchange Type. This field indicates the type of exchange to which
this message belongs. If this is the first message of an exchange, the

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 119

exchange type alerts the recipient to the format, content, and order
of the payloads to be expected in this message and the subsequent
messages for this exchange, as well as the total number of messages
to expect. If this is not the first message of an exchange, the exchange
type generally can be deduced from other header fields, but the
exchange type still acts as a sanity check. The possible exchange
types are phase 1: Main Mode, Aggressive Mode, or Base Mode;
phase 2: Quick Mode; and Other: New Group Mode, informa-
tional, or acknowledged informational.

• Flags. The encryption flag indicates that the message following this
header is encrypted; the commit flag is set by one of the negotiators
to notify the peer that an SA in the process of being established
should not be used until the sender sends an informational message
that the SA has been completely established; the authentication-only
flag indicates that the message following this header is an informa-
tional message that is authenticated but not encrypted

• Message ID. A random value generated by the initiator, which serves
as the unique key used to identify the phase 2 SA during negotiation
(zero in phase 1).

• Length. This field indicates the length of the entire message (header
and payloads).

5.21 The Generic Payload Header

Every payload contained in an IKE message is prefaced by a generic payload
header, which contains the following fields.

• Next Payload. This field, which indicates the type of payload that
follows this payload (0 if none), can be somewhat confusing. To
find the payload type of any payload, you need to look at the generic
payload header of the previous payload; for the first payload in a
message, its payload type is found in the next payload field of the
ISAKMP header. It was suggested on the IPsec list that the payload
type should be handled in a more intuitive manner and appear
in the generic payload header immediately preceding the payload.
Because the payload lengths are, for the most part, variable, and
because each generic payload header includes the payload length, it
is not necessary to encounter the payload type prior to reaching the
payload itself.

120 Demystifying the IPsec Puzzle

Because the SA payload contains its proposal and transform pay-
loads, they are not considered the SA payload�s next payload; its next
payload field points to the payload following the SA payload (or
None). If an SA payload contains multiple proposal payloads, each
proposal payload (except the last) within the SA payload has �pro-
posal payload� as its next payload field. Similarly, if a proposal pay-
load contains multiple transform payloads, each transform payload
(except the last) has �transform payload� as its next payload field.

• Reserved. This field is unused (set to 0).

• Payload Length. This field indicates the length of the payload,
including the generic payload header. The length of an SA payload
includes the lengths of all its proposal and transform payloads; the
length of a proposal payload includes the lengths of all its transform
payloads; and the length of a transform payload includes all its asso-
ciated data attributes.

5.22 The IKE State Machine

IKE is a stateful protocol. In a stateless protocol, each message is an inde-
pendent entity and must contain within it all the information necessary
for its processing and interpretation. In a stateful protocol such as IKE, each
message of an ongoing exchange is tied to the exchange�s previous messages
and is evaluated within that context. After a responder receives the first IKE
message, it possesses three pieces of information: the initiator�s IP address,
the initiator cookie, and the phase 1 proposal. That information must be
saved in IKE�s SAD, but until another message is received from the initiator,
proving that the IP address was not spoofed and that the initiator intends to
proceed with the negotiation, the responder will not expend resources on any
further processing.

As each message is received and the IKE SAD entry is found, a sanity
check must be performed to ensure that the message ordering has been pre-
served. If the expected response to a message has not been received in a rea-
sonable amount of time, IKE retransmits the message a specific number of
times before giving up. If a message that is received is not the expected mes-
sage but is instead a retransmission of the previous message, IKE assumes
that its previous message was not received by the peer and retransmits it.

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 121

5.23 The Origins of IKE

In the beginning, there was ISAKMP. There were also Simple Key Manage-
ment for Internet Protocol (SKIP) [7] and Photuris [8, 9]. Each was a candi-
date to be selected as the �official� IPsec key management protocol. SKIP
is an inline keying protocol that carries the encryption key for each packet,
encrypted by a long-term key, within the packet itself. Photuris is a mature
and complex protocol for key negotiation and exchange. ISAKMP is a
key negotiation framework that enables but does not fully specify the key
exchange. Each contender had its advocates in the IPsec group, with no clear
majority distinguishable. The IETF security area director, Jeff Schiller,
selected ISAKMP. SKIP�s packet formats did not conform to IPsec; it carried
extra data in every packet; it was felt to be too inflexible to meet the totality
of IPsec�s future requirements; and it did not allow for PFS. Photuris was
judged to be too fully specified, not allowing modular changes to the proto-
col if the necessity arose in the future. ISAKMP was adjudged to be modular,
flexible, and adaptable to the key negotiation requirements of a wide variety
of protocols.

5.24 An Example

We have now discussed a number of the major components of IPsec, but the
question remains: How do we progress from the creative gleam in a user�s
eye to safely entrusting the resulting creation to the vagaries of the Internet?
Using Scenario 1, the steps would be as follows.

1. Host H1 needs to have an IPsec implementation and an IKE
implementation, with both in a state of readiness.

2. Local policy governing IPsec protection of communications must
be configured by a user or system administrator (more on this in
Chapter 9). Let us assume that H1�s policy requires all communica-
tions, inbound and outbound, to be both encrypted with Triple
DES and authenticated with HMAC-SHA-1 through the use of an
ESP header.

3. When a user or a process on H1 attempts to send an outbound
communication to host H2, a policy check is made before it is
sent for network processing. The IPsec requirement is found,
and the SAD is interrogated. If there is already an existing out-
bound IPsec SA (ESP/Triple DES/HMAC-SHA-1) with H2, the

122 Demystifying the IPsec Puzzle

IPsec-processing routines use it to apply IPsec protection, and the
message continues on its way.

4. If no applicable IPsec SA is found, IKE is brought in for consulta-
tion. IKE checks its own internal SAD. If there is a current ISAKMP
SA between H1 and H2, IKE initiates a Quick Mode negotiation
under the protection of the existing ISAKMP SA. Once the negotia-
tion successfully concludes, the message can be expeditiously sent.

5. If an ISAKMP SA is lacking between H1 and H2, H1�s IKE initi-
ates a phase 1 negotiation with H2, followed by a Quick Mode
negotiation. The message then can be sent on its way.

6. If a problem occurs during the IKE negotiation, the message is
stonewalled and lost to posterity.

What about inbound messages from H2 to H1? The processing would be as
follows.

1. If the message is protected by the appropriate IPsec SA, it is for-
warded for normal inbound processing.

2. If the message is protected by an inappropriate IPsec SA, perhaps
one that has expired or one whose selectors do not match the local
policy requirements, it is abandoned on the spot.

3. If the message arrives without any IPsec protection, H1 drops the
message. But because H1 requires IPsec protection for all inbound
traffic, and clearly H2 is not similarly enlightened, H1 has the option
of requesting its IKE to negotiate an SA with H2. That prevents the
receipt of further unprotected traffic from H2.

This is a sample of IKE and IPsec processing in the simplest, most straight-
forward case.

5.25 Criticisms and Counterclaims

Ferguson and Schneier [10] reserve their harshest criticisms for ISAKMP and
IKE, which they evaluate separately. They correctly point out that the sepa-
rate documents for ISAKMP, IKE, and the DOI would lead one to believe
that these are independent modules. Were that the case, a security analysis
could focus separately on each module. Feature interaction among the
modules increases the analysis requirements exponentially. These modules

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 123

originally were viewed as independent: ISAKMP would provide the frame-
work, IKE would add the key negotiation, and DOI would include specifics
for application to the Internet. However, as the protocol developed, numer-
ous interdependencies and inconsistencies crept in. The next version of the
IKE documentation is expected to consist of a unified, consistent document.

Some of Ferguson and Schneier�s comments relate to vagueness or
underspecification in the documents, a number of which have been discov-
ered in the course of operational experience; solutions have been agreed on
but not yet documented. The order of payloads and which payloads can
appear in which message have been a constant problem; it has been some-
what clarified in the course of numerous bake-offs but not completely. They
also criticize the terminology and layering of the SA payload, a known source
of confusion. Another source of severe displeasure is the use of the word hash
(a noncryptographic entity) when what is actually being referred to is a Mes-
sage Authentication Code (MAC), a keyed, cryptographic hash. (That failing
may well be shared by this author, immersed as she has been in the IPsec
documents. However, the phrases authenticated hash, authenticating hash,
and keyed hash generally are considered to be equivalent to the term MAC.)

A number of criticisms and attacks should be prevented by any well-
designed implementation. One attack requires the attacker to assume the
peer�s identity. Routine ID sanity-checking should discover that and dodge
the bullet on the attack by halting the negotiation. Another attack assumes
that IKE will respond to a replayed message, even after the negotiation suc-
cessfully has progressed past that stage of the negotiation. The IKE state
machine should prevent that from happening. For example, once an initiator
receives Main Mode message 2 from the responder and sends out message 3,
it will ignore a subsequent replay of message 2. If it recognizes this message 2
as belonging to a current negotiation, by virtue of the peer�s source address
and the cookies, it will ignore it because it already has been processed. And if
the message is not recognized as part of a current negotiation (e.g., if the
ISAKMP SA has expired), it still will be ignored, because the state machine
will realize that no corresponding message 1 had been sent out. A third attack
could result in identical keying material for the inbound and outbound SAs,
if both peers select identical SPIs. That is easy to avoid, because the
responder sees the initiator�s SPI and can avoid duplicating it.

Several of their criticisms are on target, and will undoubtedly be
included in the next version of IKE, referred to as son-of-IKE, which has
been long anticipated. They criticize the IKE payload-chaining and pointers,
a valid criticism, which will hopefully be addressed in the updated version.
They also suggest that every message element should be authenticated by a

124 Demystifying the IPsec Puzzle

MAC. This is already done in any of the new IKE protocol extensions, and
will undoubtedly be part of a new, revised IKE.

They point out that the initiator�s SA payload is authenticated by a
MAC, but the responder�s SA payload is not. This problem was already
known, and a solution has been proposed [11]. However, the effects of a
possible attack are limited: An attacker could modify the proposed lifetime,
which should be mitigated by the initiator�s own lifetime constraints; or the
attacker could select the weakest proposal among the initiator�s alternatives.
Because the initiator should not propose anything it is not prepared to
accept, this also should not be a serious drawback.

The critics also insist that the properties of all cryptographic primitives,
including hashes and pseudo-random functions, should be spelled out. This
is to avoid adding new algorithms to IKE that may be secure in some con-
texts but might not fulfill IKE�s requirements. Up to now, most implementa-
tions have limited themselves to well-known, tried-and-true algorithms,
but more explicit specification would be a reasonable hedge against future
problems.

Any future revisions to IKE undoubtedly will take these criticisms and
suggestions seriously.

5.26 Threat Mitigation

What real-life threats are prevented through the use of IKE? This elaborate
and complicated protocol is designed to thwart several types of classic
attacks. The cookie mechanism ensures that the responder will invest only in
cookie processing and in sending a single message in response to an attempted
denial-of-service attack. The more expensive Diffie-Hellman calculations will
not be attempted if the initiator�s first message turns out to be bogus.

The integral connection between peer authentication and the key cal-
culations prevents several types of attackers from successfully completing a
phase 1 exchange. It thwarts an attacker that hijacks the connection or spoofs
the peer�s address, as well as an attacker that attempts a man-in-the-middle
attack. The use of authenticated time-dependent nonces also is helpful in
preventing replay attacks.

5.27 Summary

IKE is a complex protocol, with a rocky and somewhat contentious history.
It needs to be extended to handle the common road warrior scenario. If each

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 125

peer does not have some foreknowledge of the other�s policy requirements
and capabilities (see Chapter 9), negotiations may break down. If you ask an
opinion of anyone who is involved with IKE, you�ll get this response, �IKE is
too complex and cumbersome; furthermore, it�s missing features X and Y.�
However, warts and all, it is an essential element of IPsec, and its advocates
are committed to eliminating inconsistencies and shortcomings.

5.28 Further Reading

Aside from its scope and complexity, a major obstacle to understanding IKE
is the fact that its definition is scattered among no less than four documents.
Because some of them contradict each other, there is a pecking order: In case
of an inconsistency, IKE rules. Actually, each document has a unique pur-
pose. ISAKMP [3] defines the payload types and the general framework but
does not tie that framework to a specific key exchange mechanism. Oakley
[4] fleshes out the key exchange and provides some theoretical background.
IKE [1, 2], originally titled �The Resolution of ISAKMP and Oakley,� speci-
fies the actual phase 1 and 2 exchanges and the payloads that make up each.
DOI [12] further defines a number of payload types, formats, and identify-
ing constants that were not detailed in the other documents, since they are
specifically tied to IPsec.

Further confusion surrounds the IKE document itself. [1] is the defini-
tive description of IKE. [2] was a welcome update, which clarified a number
of ambiguities and resolved several problems. Its expiration date was Novem-
ber 1999; because an updated draft was not issued, officially it does not exist.
But most implementations have added features defined in [2]. The son-of-
IKE, which has been promised for some time, will, we hope, resolve that
dilemma. ISAKMP defines a series of exchanges that generally correspond
with IKE�s phase 1 modes. ISAKMP�s identity protection exchange is IKE�s
Main Mode; both have Aggressive Modes. ISAKMP also has a Base
exchange, which had no corresponding mode in IKE as originally
defined. [6] added an IKE Base Mode. [5] elaborates on the content
and applicability of IKE notification messages. SKIP is described in [7] and
Photuris in [8, 9].

126 Demystifying the IPsec Puzzle

References

[1] Harkins, D., and D. Carrel, The Internet Key Exchange (IKE), RFC 2409, Nov. 1998.

[2] Harkins, D., and D. Carrel, �The Internet Key Exchange (IKE),� <draft-ietf-ipsec-ike-
01.txt>, May 1999.

[3] Maughan, D., et al, Internet Security Association and Key Management Protocol
(ISAKMP), RFC 2408, Nov. 1998.

[4] Orman, H., The OAKLEY Key Determination Protocol, RFC 2412, Nov. 1998.

[5] Kelly, S., and T. Kivinen, �Content Requirements for ISAKMP Notify Messages,�
<draft-ietf-ipsec-notifymsg-03.txt>, July 2000.

[6] Dayan, Y., and S. Bitan, �IKE Base Mode,� <draft-ietf-ipsec-ike-base-mode-02.txt>,
Jan. 2000.

[7] Aziz, A., T. Markson, and H. Prafullchandra, �Simple Key-Management for Internet
Protocols (SKIP),� http://www.skip-vpn.org/spec/SKIP.html, Oct. 1996.

[8] Karn, P., and W. Simpson, Photuris: Extended Schemes and Attributes, RFC 2523,
Mar. 1999.

[9] Karn, P., and W. Simpson, Photuris: Session Key-Management Protocol, RFC 2522,
Mar. 1999.

[10] Ferguson, N., and B. Schneier, �A Cryptographic Evaluation of IPsec,�
http://www.counterpane.com/ipsec.{pdf,ps.zip}, Feb. 1999.

[11] Kivinen, T., �Fixing IKE Phase 1 and 2 Authentication HASHs,� <draft-ietf-ipsec-
ike-hash-revised-01.txt>, Mar. 2000.

[12] Piper, D., The Internet IP Security Domain of Interpretation for ISAKMP, RFC 2407,
Nov. 1998.

The Fourth Puzzle Piece: The Internet Key Exchange (IKE) 127

6
The Fifth Puzzle Piece: IKE and the Road
Warrior

And when you�re alone, there�s a very good chance you�ll meet things
that scare you right out of your pants. There are some, down the road
between hither and yon that can scare you so much you won�t want to
go on.

Dr. Seuss, Oh the Places You�ll Go

The initial IKE standards work well for peers with fixed IP addresses. For
example, a business with several branch offices, suppliers, and trading part-
ners can use IKE to establish a variety of SAs for the different classes of secure
communications, classifying the traffic into different categories according
to IP address, subnet, and application type. IKE also can handle peers with
address-independent credentials verified through the use of certificates. For
those that have neither a fixed address nor a certificate infrastructure, it is a
different situation. In particular, it is necessary to consider the road warrior, a
business employee who would like to access a network protected by a security
gateway but whose IP address is either not known or not trusted by the gate-
way. A catch-22 situation then ensues. If identity protection is desired and
the road warrior lacks certificate-based credentials, the only remaining
authentication method is preshared secret keys. At the point in the IKE
negotiation in which the preshared secret key needs to be used, the IP address

129

is the only known data item that can be used as an index into the database
of preshared secret keys. But the gateway cannot trust the road warrior�s IP
address.

This situation occurs in a number of different scenarios [1�3]. The case
of the unknown IP address occurs when the road warrior dials into an ISP
and then connects to the gateway over the Internet. Because the ISP-assigned
address is variable, it cannot be known in advance by the gateway. An
untrusted IP address can arise when the road warrior uses someone else�s
host, either an Internet kiosk in an airport, shopping mall, or library or a host
in a location that can be accessed both by trusted company employees and by
outsiders. In that case, the IP address suffices only to authenticate the host
machine. Some active user input is required to ensure that the host is being
used by an authorized user.

One possible solution to the problem is the use of a shared road warrior
secret. That could work for a small number of trusted road warriors, but as
the number of road warriors increases, the likelihood that a �group secret�
will remain secret decreases. In the absence of a deployed PKI, how can the
road warrior tap into the company�s IPsec-secured network?

The early approaches to the problem all required modifications to IKE.
Some proposed an alternative phase 1 mode, and some added what became
known as �phase 1 1/2,� an additional exchange of messages inserted
between phase 1 and phase 2. Because the fixed-address gateway is able to
authenticate itself to the road warrior during phase 1, the intermediate
exchange would complete the authentication process by using some non-IKE
authentication method through which the road warrior would authenticate
its identity to the gateway.

Although each of those solutions has been implemented by one or
more vendors in VPN-enabling products, none has advanced to RFC status.
Once it became clear that each of those approaches had detractors in the
IPsec group, and a long-range solution to the problem was not yet in sight,
a spinoff group, the IP Secure Remote Access (IPsra) group, was formed
within the IETF to handle the road warrior problem and other, related issues
involved in secure remote access.

In the IPsra group, a number of new approaches, all of which are based
on short-term credentials or certificates, have been proposed and are still
undergoing debate. The approaches have a number of distinct advantages.
First and foremost, they do not require any alterations to the IKE protocol.
Second, they do not encourage the long-term use of authentication technolo-
gies that some consider outdated or, in some cases, insecure. Third, the

130 Demystifying the IPsec Puzzle

companies that use the approach are free to dictate the details related to cre-
dential issuance procedures, proof of identity, authentication method, and
certificate longevity.

Figure 6.1 shows the components of a typical road warrior scenario.

• A host with an IP address that cannot be authenticated by the secu-
rity gateway, either because it is a temporary address assigned by an
ISP to a dial-up connection or because it is a host that is not known
to be contained within a secured area.

• Security gateway. A gateway that negotiates IPsec SAs on behalf of
clients on a protected network, to which the road warrior is request-
ing access.

• Legacy authentication server. Server that contains an authentication
database and an application that uses the database to verify the iden-
tities of road warriors. It can be located on the same host as the secu-
rity gateway. If it is separate from the gateway and lies outside the
protected network, denial-of-service attacks on the authentication
server can prevent new authentications from taking place but will
not prevent the gateway from working its wonders on IPsec traffic.
In some scenarios, the authentication server might lie behind the
gateway.

The Fifth Puzzle Piece: IKE and the Road Warrior 131

Internet

Security
gateway

Road warrior

Protected
network

Legacy
authentication
server

Authentication
server

Figure 6.1 Road warrior scenario.

The credential-generating approaches require an additional component:

• Authentication server. A server that generates the short-term creden-
tial (generally a certificate or a preshared secret key) once the user
has been authenticated by the legacy authentication server. It can be
on the same host as the legacy authentication server and/or the secu-
rity gateway.

6.1 Legacy Authentication Methods

What methods of user authentication are acceptable and feasible within
the constraints of IPsec? There are a number of well-known authentication
mechanisms that could be used.

• Username/password. A well-known mechanism by which the user
enters an identifying username and its associated secret password.
If the password leaves the user�s host unencrypted, this method is
totally unacceptable; even with an encrypted password, it is consid-
ered to be minimally secure. If the host does not belong to the user,
a long-term secret password could be snatched, cached by the
machine, and used to impersonate the user.

• One-time password (OTP) [4]. A method that combines the sim-
plicity of the username/password approach with an extra measure of
security: Each password is used only once. In that way, even if an
eavesdropper sees the password, it is no longer useful.

• Challenge-response mechanism. A method in which the user�s secret
password, often called a passphrase in this context, is known to both
the user and the legacy authentication server. However, the pass-
phrase itself is not exchanged as part of the authentication negotia-
tion; thus, it does not leave the user�s host and is not exposed to
eavesdroppers. The server sends a string�the challenge�to the
user. The user�s response, which is sent back to the server, is the
result of a computation that involves the challenge, the user�s pass-
phrase, and possibly some other information.

• Two-factor mechanism. A method that combines two security
mechanisms: something the user knows, such as a password, and
something the user possesses, for example, a SmartCard or a bio-
metric device. In some devices, the password may allow the user to
access the device, at which point the device generates a one-time

132 Demystifying the IPsec Puzzle

password. In others, the user might have to enter the password and
the server�s challenge, after which the device generates a response.
Some devices can be plugged directly into the user�s host and con-
duct the authentication negotiation with the server once the user
has entered the password or personal identification number (PIN).
Other devices generate a one-time password or a response to a chal-
lenge but require the user to enter them manually. A single-factor
authentication system can authenticate either the user or the host,
depending on whether active input from the user is required or
the negotiation is conducted by the host without user input. A two-
factor system can authenticate both the user and the host, because it
can require active user input along with host-generated input.

Many authentication systems of each type are deployed today. This chapter
presents an example of each type, along with a sample authentication session.

S/Key [5] is a one-time password program that generally is imple-
mented in software. Initially, the server and the user must agree on a secret
passphrase and a nonsecret seed. The use of a seed allows the user to reuse the
same passphrase on the same host or on multiple hosts and to generate a dif-
ferent series of one-time passwords each time. The server initially applies a
one-way cryptographic hash to the user�s passphrase and the seed a specified
number of times and stores the result. Say that number is 1,000. The server
keeps track of the number of times the user has logged on via S/Key and
prompts the user with that number and the seed. The first time the user logs
on, the one-time password is computed by hashing the secret key 999 times;
the second time, 998 times; and so on. To verify the password, the server sim-
ply has to hash the one-time password once and compare it with the stored
value. If they match, the authentication succeeds and the server replaces the
stored value with the new one. If they do not match, the authentication fails.

SecurID [6] is a two-factor authentication token, a SmartCard that gen-
erates a one-time password. The user begins the authentication by entering a
secret PIN. The SecurID token computes the one-time password, combining
the user�s PIN with the card�s unique seed and the current time, and sends it
to the server. The server, which knows the PIN and the seed of each deployed
token, verifies whether the one-time password is correct. For SecurID to
work properly, the token and the server must have the same value for the
current time. SecurID is a popular, albeit proprietary, authenticator.

Remote access dial-in user service (RADIUS) [7] is not an authentication
method by itself; rather, it is a framework for dial-up authentication that can

The Fifth Puzzle Piece: IKE and the Road Warrior 133

accommodate a number of different authentication methods. In addition to
authentication, RADIUS also handles policy configuration, but those func-
tions are not relevant to this chapter. The RADIUS server has an associated
database that contains all the information necessary to authenticate each
user, including the authentication method to be used, the user ID, and
(depending on the method) the user�s passphrase, PIN, and so forth. Two
authentication methods in particular are often used with RADIUS: Password
Authentication Protocol (PAP) and Challenge Handshake Authentication
Protocol (CHAP). PAP relies on a static password sent from client to server,
is considered to be insecure, and is not recommended for use with IKE.
CHAP [8] is a challenge-response method, in which the server sends a ran-
dom challenge to the user. The user�s response is a cryptographic hash of the
challenge and the user�s secret key. The server, which also knows the user�s
secret key, verifies the accuracy of the user�s response.

If legacy authentication methods are to be used to authenticate road
warriors, how best can they be sandwiched into IKE? There is a whole smor-
gasbord of possible approaches. A revised phase 1 negotiation? Try
Challenge-Response for Authenticated Cryptographic Keys (CRACK). A
revised phase 1 followed by user authentication in phase 1-1/2? Try either
extended authentication (XAUTH) or hybrid authentication. A revised
phase 2 negotiation? Try user-level authentication (ULA). A pre-IKE
credential-generating negotiation? Try Pre-IKE Credential (PIC) Provision-
ing Protocol or one of the four IKE client certificate and key retrieval meth-
ods (no catchy acronyms suggested). Table 6.1 compares the features of each
of those approaches, all of which are described in this chapter.

The methods that propose new IKE variations use either the phase 1
ISAKMP SA or the phase 2 IPsec SA to protect the legacy authentication
negotiation. That ensures that the user authentication information sent to
the authentication server, which includes user ID, passphrases, and the like,
is protected from eavesdropping and replay attacks.

6.2 ISAKMP Configuration Method

Because the kind of data exchanged by the legacy authentication protocols
are different from those normally used by IKE, additional payload types and
message formats are needed. The different types of authentication protocols
require varying numbers of messages, and some of the exchanges can include
a variable number of messages. Thus, a mechanism also is needed to signal
the end of the authentication exchange. Those requirements are fulfilled

134 Demystifying the IPsec Puzzle

by the ISAKMP configuration method, which defines the requisite exchange
mechanism and payloads.

To IKE�s arsenal of payload types, the configuration method adds a
new one: the attribute payload. The data carried by that payload are inter-
preted differently, based on the payload�s message type. The configuration
method defines four message types:

• Request. One of the peers requests information from the other.

• Reply. The recipient of the request message responds with the
requested information.

• Set. One of the peers informs the other of the value of some data.

• Acknowledge. The recipient of the set message signals receipt of that
message and acceptance or refusal of the data values.

Each of the messages contains a single attribute payload, which consists
of zero or more IKE-type attributes. In a request message, those attributes for
which the sender is requesting information have either an empty value or a

The Fifth Puzzle Piece: IKE and the Road Warrior 135

Table 6.1
Authentication Negotiation Schemes

Scheme XAUTH
Hybrid
Authentication CRACK ULA PIC

Phase 1
authentication
method

Any IKE Digital
signature
(gateway only)

Digital
signature
(gateway only)

Any IKE Digital
signature

Phase 1
authentication
mutual/
one-way?

Mutual
(gateway and
client host)

One-way
(gateway)

Mutual
(gateway
and user)

Mutual
(gateway and
client host)

Mutual
(gateway
and user)

Phase 1
authentication
symmetric/
asymmetric?

Symmetric Asymmetric Asymmetric Symmetric Symmetric

User
authentication

Phase 1-1/2 Phase 1-1/2 Phase 1 Post�phase 2 Pre�phase 1

Non-IKE
dependencies

Configuration
method

XAUTH
configuration
method

None None None

suggested value. In the resulting reply message, the peer fills in the values of
some or all of the requested attributes; if that is either not possible or not
desirable, the peer sends an empty attribute payload. In a set message, the
sender suggests values for the specified attributes. In the resulting acknowl-
edge message, the peer returns those attributes whose values it has accepted
but does not return the values themselves; those attributes whose suggested
values were rejected are not returned by the peer.

What types of information can be exchanged using the configuration
method? The authentication-related attributes [9], some or all of which
might be used by a specific authentication mechanism, are the following:

• Authentication type. The authentication protocol or mechanism
to be used. Currently, the only ones specifically identified are
RADIUS-CHAP, OTP, and S/KEY. They demand a specific
sequence of messages and attributes. To use one of these methods,
the server must specifically propose one or more authentication
types, and the client must agree to the method or methods to be
used. Numerous other authentication methods, including Unix and
NT Domain Logins, SecurID, and DIAMETER, are included in
an umbrella generic authentication type. If no authentication type is
proposed, it is assumed to be one of the generic types.

• User name. The unique identifier used by the user to sign on to the
authentication server. It can be a user name log-on string, an email
address, an X.500 distinguished name, or any other unique identi-
fier that is acceptable to the server.

• User password. The user�s password that serves to verify the user�s
identity to the server.

• Passcode. The single-use password generated by an authentication
token (i.e., a SmartCard) or software program.

• Textual message. An informative message, prompt, or diagnostic
message sent to the human user by the authentication server.

• Challenge string. An unpredictable value sent by the server to the
user�s authentication device or software, to be used in its calcula-
tions. Different authentication protocols use a challenge string in
diverse ways. For example, RADIUS-CHAP uses it to hide the
secret password by generating a cryptographic hash of the challenge
string and the password.

136 Demystifying the IPsec Puzzle

• Domain. The authentication domain. This value is specific to the
authentication type.

• Status. Indicates whether the authentication succeeded or failed. The
server can send either value, but the client can indicate only failure.

The following configuration-related attributes [10] can be used by a server to
assign values to a client.

• IP address (IPv4 or IPv6). An internal or private network address
that the server assigns to the client.

• Network mask (IPv4 or IPv6). The network mask of the internal
network.

• Subnet (IPv4 only). The subnet addresses of one or more internal
subnets protected by the gateway.

• Domain name system (DNS) server (IPv4 or IPv6). The addresses of
one or more DNS servers for the internal network.

• Windows Internet Naming Service (WINS) server (IPv4 or IPv6). The
addresses of one or more WINS servers for the internal network.

• Dynamic Host Configuration Protocol (DHCP) server (IPv4 or IPv6).
The addresses of one or more DHCP servers for the internal
network.

• Address expiration. Number of seconds that the internal IP address
that was assigned via the configuration method remains valid. The
address actually expires when one of several events occurs: when
the address expiration limit is reached, when the phase 1 SA used
to protect the exchange expires, (optionally) when the phase 2 SA
nego- tiated following the configuration method expires, or (if none
of those applies) at an implementation-dependent time mandated
by the client.

Several useful housekeeping-type attributes also have been defined [10].

• Version. Used by consenting implementations to communicate
which software version or applications are supported.

• Attributes supported. Used if, prior to an exchange, one of the peers
wants to query which attributes are supported by the other peer.

The Fifth Puzzle Piece: IKE and the Road Warrior 137

The paradigm of repeated request messages and interspersed reply
messages is well suited for the types of authentication methods currently
used in IKE. The set and acknowledge pair of messages is appropriate to end
the exchange and ensure that the peers agree on the success or failure of the
authentication.

When the configuration method is used for road warrior authentica-
tion, it needs to follow a phase 1 exchange; the configuration method
messages are then encrypted and authenticated by the ISAKMP SA. That is
why this type of exchange is called phase 1-1/2. It is not a phase 2 exchange,
because it does not result in the negotiation of an IPsec SA, but it is depend-
ent on the phase 1 SA. In such a case, each message consists of the ISAKMP
header, a hash payload, and the characteristic attributes payload. The con-
figuration method exchange is connected to the phase 1 exchange through
the use of the identifying cookies but is distinguished from the phase 1
exchange through the use of a unique message ID. The phase 1 encryption
key, SKEYID_e, is used to encrypt each message, and the phase 1 authentica-
tion key, SKEYID_a, is used to generate a keyed hash of the message ID
and the attributes payload. The encryption IV for the first message of the
exchange is computed using the same formula used to compute the initial IV
in a phase 2 exchange; subsequent IVs are taken from the last block of the
previous message.

The configuration method can be used to exchange other information
as well. Prior to an authentication-related configuration method exchange,
the server might want to ensure that a client can handle the requisite
attributes or that the client�s authentication application�s version can com-
municate with the server. If that exchange takes place before the ISAKMP SA
has been established, and if the information is not sensitive, those messages
can be sent in the clear. Following a successful authentication-related
exchange, the server can use the configuration method messages to assign
configuration-related information to the client. For the road warrior to have
full access to the network, it can be useful to assign it an internal network
address. The address generally should be accompanied by other network-
related information, such as server addresses and a network mask. Additional
network parameters that may also be required (but which are not discussed
in the context of the configuration method) are [3] PMTU, router-related
information, static routes, additional servers (SMTP, POP, WWW), and
other server-related options. The policy-related ramifications of those con-
figuration choices are explored in Chapter 9.

The configuration method is not a stand-alone protocol. Rather, it is
an enabler for exchanges that are more fully defined in other protocols, such

138 Demystifying the IPsec Puzzle

as hybrid authentication and XAUTH. The original phase 1 negotiations
consist of mutual, symmetric peer authentication; IKE negotiations based
on the configuration method result in mutual authentication, but in an
asymmetric manner.

6.3 Extended Authentication

Picture a scenario in which a gateway needs to authenticate both a communi-
cating host and its user. When does that happen? Perhaps a company has
a number of laptops preconfigured with a common road warrior preshared
secret key or with certificates that can be used to authenticate the particular
host. That does not ensure that the laptop�s user has the proper credentials to
access the company�s network protected by the gateway. That is a job for
Extended Authentication (XAUTH).

XAUTH begins with a mostly normal phase 1 exchange, with just two
modifications: the peers exchange a vendor ID payload whose data consist of
a keyed hash of the XAUTH document�s Internet Draft name and version
number, to ensure that both are operating under the same rules and assump-
tions. XAUTH also has its own special authentication method IDs, which
distinguish this type of phase 1 SA from others, guaranteeing that the phase 1
SA will not be used to negotiate an IPsec SA without the intervening
XAUTH exchange. The XAUTH authentication method ID conveys three
pieces of information.

• The ISAKMP authentication method (preshared secret key, RSA
digital signature, DSS digital signature, encryption, or revised
encryption) to be used in phase 1.

• The role assumed by the road warrior (initiator or responder), that is,
the entity that needs to be authenticated via XAUTH. The majority of
these negotiations most likely will be initiated by the road warrior; how-
ever, if the gateway is the initiator, it must somehow know beforehand
that the peer is a road warrior and that XAUTH is required.

• An XAUTH authentication will follow the phase 1 negotiation.

Once the phase 1 exchange is completed, the gateway has fully authen-
ticated itself to the road warrior, and an ISAKMP SA has been established
between the gateway and the road warrior�s host. That is followed by a unidi-
rectional authentication, which constitutes the XAUTH exchange, in which
the road warrior assumes the role of a client and proves his or her identity to

The Fifth Puzzle Piece: IKE and the Road Warrior 139

the gateway. That generally is accomplished through the use of an existing
authentication server that lies behind the gateway. The gateway acts as a con-
duit between the authentication server and the client, but all communica-
tions between client and gateway are protected by the ISAKMP SA.

The XAUTH exchange takes the form of one or more request messages
sent from the server (via the gateway) to the client and the same number of
reply messages from client to server. If the authentication method is known
in advance, or once the authentication method has been agreed on, the
attributes payload contains those authentication-related attributes dictated
by the particular authentication mechanism. A successful negotiation is fol-
lowed by a set message from server to client that consists of a status attribute
whose value is OK, followed by an acknowledge message with an empty
status attribute from client to server. If the server is not satisfied with the
negotiation, the status attribute�s value will be FAIL. If at any point the client
is unable to complete the negotiation, it sends a reply message with a status
attribute set to FAIL. If the XAUTH exchange fails, the ISAKMP SA must
be deleted, because a phase 2 negotiation cannot now follow.

For a paranoid (or prudent) gateway, the user can be periodically
reauthenticated, without necessitating a new phase 1 negotiation, as long as
the ISAKMP SA has not expired.

A number of criticisms have been leveled at XAUTH. It is a new, rela-
tively untested but complex protocol that is layered on top of IKE, another
complex protocol. The fact that it is an open-ended protocol, rather than one
with a fixed number of messages, leaves it open to denial-of-service attacks.
The use of preshared keys with XAUTH presents a choice of major draw-
backs: XAUTH in Main Mode with preshared keys is vulnerable to a
man-in-the-middle attack by another host that possesses the preshared key;
Aggressive Mode eliminates that problem but does not provide identity pro-
tection. The XAUTH messages that enable a gateway to send a prompt string
to a user contain a considerable amount of known plaintext. In addition, the
use of XAUTH gives rise to an infrastructure that encourages continued sup-
port of legacy authentication mechanisms, rather than supporting a phased
conversion to client certificates. Figure 6.2 illustrates a sample XAUTH
RADIUS-CHAP negotiation.

6.4 Hybrid Authentication

Classical XAUTH cannot be used in some road warrior cases. If the host
has no means of authenticating itself to the gateway, the phase 1 XAUTH

140 Demystifying the IPsec Puzzle

exchange cannot take place. This can happen in a case where a road warrior is
using someone else�s host, for example, an Internet kiosk in an airport, shop-
ping mall, or library, or where the road warrior�s own host is not equipped
with the appropriate host-based authentication credentials. Another configu-
ration method variant, called Hybrid Authentication [11], can be used in
such a case. It involves a special phase 1 negotiation, which is followed by an
XAUTH authentication negotiation.

The phase 1 negotiation, which can be either Main Mode or Aggressive
Mode, is based on a one-way peer authentication, in which the gateway
authenticates itself to the remote user. Either of the digital signature authen-
tication methods can be used to authenticate the gateway; in place of the
signed hash that normally would be used to authenticate the road warrior, an
unsigned keyed hash is sent. Because the client�s identity cannot be proved
through any phase 1 mechanism, it does not have any place in this phase 1
negotiation. The client ID payload generally contains an empty client ID;
thus, ID protection for the road warrior is preserved in Aggressive Mode as
well as in Main Mode. If the gateway sends a CR payload, the road warrior
generally responds with an empty CERT payload.

Hybrid authentication also has its own special authentication method
IDs, which convey three pieces of information.

• The ISAKMP authentication method (RSA digital signature or DSS
digital signature) to be used in phase 1.

• The role assumed by the road warrior (initiator or responder), that
is, the entity that needs to be authenticated via XAUTH. The

The Fifth Puzzle Piece: IKE and the Road Warrior 141

REPLY(Type RADIUS-CHAP,=
Username �= joe�,
Password 987654321987654321=

2

REQUEST(Type RADIUS-CHAP,=
Username ��, Password ��,= =

Challenge 13579246801357924680)=

1

SET (Status OK)=3

ACK (Status ��)= 4

Cl
ie

nt

Ga
te

w
ay

Figure 6.2 Sample XAUTH negotiation: RADIUS-CHAP.

majority of these negotiations most likely will be initiated by the
road warrior; however, if the gateway is the initiator, it somehow
must know beforehand that the peer is a road warrior and that
XAUTH is required.

• This is a phase 1 hybrid authentication exchange, which will be fol-
lowed by an XAUTH authentication.

The phase 1 negotiation is followed by an XAUTH exchange, which
authenticates the road warrior using one of the challenge-response authenti-
cation methods appropriate for XAUTH. This negotiation is initiated by the
gateway and protected by the ISAKMP SA. The ISAKMP SA cannot be used
to protect any other type of exchange until the XAUTH exchange success-
fully terminates; if XAUTH fails, the ISAKMP SA must be deleted.

Hybrid authentication is layered on top of XAUTH, so it shares most
of XAUTH�s drawbacks while adding an additional layer of complexity.
Because the gateway is authenticated through digital signatures and not
through preshared secret keys, it is not vulnerable to a man-in-the-middle
attack.

6.5 Challenge-Response for Authenticated Cryptographic Keys

Challenge-Response for Authenticated Cryptographic Keys (CRACK) [12]
is a new phase 1 negotiation that includes the legacy authentication negotia-
tion as part of phase 1. That ties the authentication more directly to phase 1.
It most closely resembles the phase 1 digital signature negotiations and uses a
digital signature to authenticate the gateway, so the authentication method
must be one of the digital signature variants. A CRACK exchange is always
initiated by the client. The first two messages of the exchange include all
the payloads that normally are distributed over the first four IKE phase 1
messages. Because CRACK is not yet a standard, it is suggested that the peers
exchange a vendor ID payload whose data consist of a keyed hash of the
CRACK document�s Internet Draft name and version number, to ensure
that both are operating under the same rules and assumptions. Because the
Diffie-Hellman exchange occurs in the first two messages, the cookie
exchange does not fulfill one of its normal roles, the prevention of a denial-
of-service attack. If the client does not already possess the gateway�s public
key, it can request it via a CR payload in message 1; the gateway then sends
the certificate in a CERT payload in message 2. To ensure that the gateway�s

142 Demystifying the IPsec Puzzle

Diffie-Hellman value originates from the gateway and to protect it from
tampering, the gateway includes a signed hash of its Diffie-Hellman value in
message 2. If the gateway has multiple public keys used for digital signatures,
it can include a CERT payload containing the appropriate key, even if the
client has not requested the certificate. Once the first two messages have been
exchanged, the shared symmetric keys SKEYID and its derivatives
SKEYID_a, SKEYID_e, and SKEYID_d are calculated, using the same cal-
culations that are used for a standard IKE phase 1 digital signature exchange.
The client trusts this secure channel because the gateway has signed its
Diffie-Hellman value, and the gateway trusts it because the client is willing
to entrust its authentication information to the channel. In addition, the
gateway will not allow the client to access any part of the protected network
until the authentication has succeeded, thus verifying the client�s identity.

The first two messages are followed by the legacy authentication nego-
tiation, which is protected by the secure channel established once the Diffie-
Hellman exchange has taken place. This negotiation consists of one or more
messages, depending on the demands of the particular legacy authentication
method. It necessitates two additional IKE payload types:

• Public key payload. The client uses the public key payload to send
its public key, which will be used for a signed hash following the
authentication negotiation. Once the client has proved its identity
via the authentication negotiation, the gateway can trust its public-
private key pair.

• Challenge-response payload. This payload is used by both the client
and the gateway to conduct the authentication negotiation. It con-
tains the legacy authentication method�s ID along with the relevant
challenge-response information.

The first challenge-response payload is always sent by the client, along
with the public key payload. If the authentication consists only of informa-
tion supplied by the client and verified by the gateway (e.g., either a long-
term password or a one-time password coupled with a user ID), then only
one message with a challenge-response payload is required. For challenge-
response or other more complex methods, multiple challenge-response pay-
loads are exchanged. The gateway terminates the authentication in one of
two ways: If the client has been successfully authenticated, the gateway sends
a signature payload containing a digital signature of the cryptographic hash
of all of the payloads, including headers, that preceded the message. The

The Fifth Puzzle Piece: IKE and the Road Warrior 143

cryptographic hash uses SKEYID_a as its key. It hashes the payloads in their
unencrypted form; messages that were retransmitted are hashed only once. If
the authentication failed, the gateway sends an �authentication failed� notifi-
cation message, also protected by the secure channel. A successful authentica-
tion ends with a signature payload, sent from the client to the gateway, that
signs all the payloads of the previous messages, including the gateway�s signa-
ture payload.

Figure 6.3 shows a CRACK exchange using a challenge-response
authentication method. The challenge-response (ChResp) payload in mes-
sage 3 is empty, the ChResp payload in message 4 contains the challenge,
and the ChResp payload in message 5 contains the response. Figure 6.4
shows a CRACK exchange using a password-based legacy authentication
method. In this case, only one ChResp payload is needed, containing the
client�s password and user ID.

An exchange of identity payloads is not necessary in this negotiation.
The gateway�s identity is known to the client and is authenticated with the
digital signature. The client�s identity is authenticated with the legacy
authentication method. Thus, the exchange can qualify as an identity protec-
tion exchange, because identities are not directly exchanged and, thus, are
not exchanged in the clear. However, if the gateway�s certificate is sent to the
client as a result of a CR payload, an eavesdropper can glean the gateway�s
identity from the certificate.

144 Demystifying the IPsec Puzzle

HDR, SA, KEY, NONCE 1

HDR, {ChResp, PubKey} 3

HDR, SA, KEY, SIG, NONCE2

HDR, {SIG}6

HDR, {ChResp}4

HDR, {ChResp} 5

HDR, {SIG} 7

Cl
ie

nt

Ga
te

w
ay

Figure 6.3 Sample CRACK negotiation: challenge-response.

6.6 User-Level Authentication

To round out the approaches, a post�phase 2 negotiation has been defined:
user-level authentication (ULA) [13]. This approach necessitates a standard
IKE negotiation, which requires either a preshared secret key or a client host
that has been provided with its own certificate. It also adds an additional
ingredient: a proxy application for the authentication protocol on the secu-
rity gateway. The IPsec SA is established with the gateway, but its selectors
allow access only to the authentication server via the authentication proxy
application. That SA then is used to protect the legacy authentication nego-
tiation. If the authentication succeeds, the IKE SA�s selectors can be changed
to allow the client access to the network through the gateway. Alternatively,
the limited SA can remain, to be used repeatedly to reauthenticate the client,
and an additional SA can be added for network access. If several authentica-
tion attempts fail, the limited SA should be deleted. This approach authenti-
cates both the client host and the user.

6.7 Credential-Based Approaches

A number of criticisms have been leveled at the configuration method
and CRACK approaches. One criticism is that they add complicated, open-
ended modifications to an already complex protocol. Another is their
reliance on outmoded and possibly insecure technology. A third criticism,
which applies only to the phase 1-1/2 methods, is that an exchange that
is only loosely tied to the phase 1 exchange is less secure than the tightly

The Fifth Puzzle Piece: IKE and the Road Warrior 145

HDR, SA, KEY, NONCE 1

HDR, {ChResp, PubKey} 3
HDR, SA, KEY, SIG, NONCE2

HDR, {SIG}4

HDR, {SIG} 5

Cl
ie

nt

Ga
te

w
ay

Figure 6.4 Sample CRACK negotiation: password/user ID.

coupled IKE exchanges. A promising alternative is to tie the authentication
methods, not to the phase 1 negotiation, but to the issuing of credentials.
Those credentials could be either short-term certificates that attest to the
user�s identity or short-term preshared secret keys. IKE could remain intact,
and the users of the credentials could make their own decisions about the
security of credentials wedded to the various legacy authentication methods.
Because the credentials would be issued prior to the IKE negotiation, IKE
would not have to be modified.

That approach relies on the assumption that the gateway already has a
certificate that the road warrior trusts. It only remains to leverage the legacy
authentication method to issue a credential, possibly a short-lived one, that
can serve to authenticate the road warrior to the gateway. The credential-
based methods differ in several aspects: the underlying transport mechanisms
and protocols used for the client authentication; which entity generates the
client�s public-private key pair; and where the certificates are stored. Because
these methods are in the early stages of definition, a number of aspects have
yet to be defined.

Because the user�s credentials are generated before the IKE negotiation
begins, a secure channel is needed for the authentication. Two possibilities
have been proposed.

• Transport layer security (TLS). This IETF-blessed form of secure
sockets layer (SSL), which is commonly used to protect Web-based
transactions, seems a natural solution. It requires only a single cer-
tificate, that of the server. It uses a transport protocol (HTTP) and
language (HTML) that are universally available. Although it gener-
ally is used to protect communications between a Web server and
browser, other applications also can be retrofitted to use TLS
mechanisms for the negotiation.

• IKE. A variant of an existing IKE phase 1 negotiation can be used
prior to phase 1 to authenticate the authentication server to the user.

If the credential to be issued is a certificate, there are a number of addi-
tional variations among the approaches. One of those issues is who generates
the user�s public-private key pair. There are two possibilities: the user�s host
and the authentication server.

• User�s host. If the user generates its own public-private key pair,
the public key is transmitted to the authentication server via the

146 Demystifying the IPsec Puzzle

preestablished secure channel. The server then issues and signs the
certificate.

• Authentication server. Rather than burdening the client with key gen-
eration, that responsibility can be transferred to the server, which
can use spare processing cycles to generate key pairs in advance. The
server then issues and signs the certificate and sends the certificate
and private key to the client. Under normal circumstances, it is
unwise for a host to allow another entity to generate its private key,
because that entity then would have all the information necessary
to impersonate the host. In this case, however, the server can be
assumed to be trustworthy, because its primary mission is the
protection of the network through the establishment of secure
communications.

Another issue is the location in which the private key will be stored. Once
again, there are two possibilities: the user�s host and the authentication server.

• User�s host. If the client�s host is a single-user host that can be trusted,
the natural place for private key storage is on the client host.

• Authentication server. If the host is a shared host and the client can-
not safely store the private key, it can be stored on the server. The
key is encrypted before it is stored on the server, in case the server�s
security is ever compromised. To ensure against unauthorized
encryption or decryption of the key, a cipher with a feedback
mechanism (IV) is used each time the key is transmitted between cli-
ent and server.

Five possible schemes have been proposed [14, 15], mixing and match-
ing the various building blocks in different ways. Three of the schemes result
in the issuance of certificates. Issuing a certificate and the ancillary public-
private key-pair generation consume a lot of processing power. When that
processing is used to generate short-lived certificates, and that is followed
by an IKE negotiation, which also involves expensive public-key operations,
the resources expended may exceed the capabilities of one of the hosts. The
fourth scheme avoids those pitfalls. Instead of producing a temporary certifi-
cate, it generates a short-lived preshared secret key, enabling a less expensive
IKE negotiation as well. The fifth scheme can result in either a certificate or a

The Fifth Puzzle Piece: IKE and the Road Warrior 147

preshared secret key. Table 6.2 compares the features of the five different
approaches, which are as follows.

• Client-side certificate generation. A TLS session is established
between the authentication server and the client, and the server
sends the client the appropriate prompt or challenge for the authen-
tication method, along with a request that the client generate a pub-
lic/private key pair. The client generates the keys, and sends the
public key back to the server, along with the authentication
method�s response; both the key and the response are encrypted
with the client�s private key. The server signs the certificate and
sends it back to the client

• Server-side key-pair generation. A TLS session is used to protect the
authentication negotiation, and the server then sends the certificate
and private key to the client.

• Server-side key storage. This scenario is similar to the previous one, in
which the server generates the client�s keys and certificate. In this
case, the server functions as the private key�s storage repository as well.

148 Demystifying the IPsec Puzzle

Table 6.2
Credential-Generating Authentication Schemes

Scheme

Client-Side
Certificate
Generation

Server-Side
Key-Pair
Generation

Server-Side
Key Storage

Server-
Generated
Shared Secret PIC

Credential
authentication
negotiation
protected by

TLS TLS TLS TLS New IKE
variant

Credential Certificate Certificate Certificate Shared secret Certificate or
shared secret

Credential
generated by

Client Server Server Server Server

Keys
generated by

Client Server Server N/A Server

Credential
stored by

Client Client Server Both Client

• Server-generated shared secrets. This solution uses the TLS umbrella
for authentication and then sends a short-lived preshared secret key
to the client. The authentication server also must communicate the
shared secret and the road warrior�s current IP address to the IPsec
gateway. That allows IKE to use preshared secret keys for authenti-
cation but avoids the pitfalls that result from allowing multiple road
warriors to use the same preshared secret key.

• PIC. A revised Aggressive Mode exchange has been suggested [15] in
which the server is authenticated via digital signatures. Figure 6.5
illustrates the exchange, which consists of a one-way authentication
that results in a secure channel between the server, whose identity is
authenticated by the exchange, and the user, whose identity will be
authenticated in an exchange protected by this secure channel. For
that reason, the user�s identity and digital signature are not needed,
which shortens the exchange by one message. SKEYID, SKEYID_a,
and SKEYID_e are then calculated as they are for a standard Aggres-
sive Mode exchange. That is followed by an Extensible Authentica-
tion Protocol (EAP) [16] exchange to authenticate the user. The
user then requests the appropriate credentials from the server, which
delivers them to the user.

The Fifth Puzzle Piece: IKE and the Road Warrior 149

HDR, SA, KEY, NONCE 1

HDR, SA, KEY, NONCE, ID, [CERT], SIG2

XAUTH Credential Reply6

XAUTH Request3

XAUTH Reply 4

XAUTH Credential Request 5

Cl
ie

nt

Se
rv

er

Figure 6.5 Sample PIC negotiation.

For all five methods, once the road warrior is in possession of its own
certificate and private key or its short-lived preshared secret key, it must
make this essential information available to IKE before the phase 1 negotia-
tion can proceed.

There are concerns about full-scale IKE and IPsec deployment in the
context of today�s networks, especially on networks with limited bandwidth,
such as wireless networks, and on today�s less than state-of-the-art hosts. Pre-
ceding an expensive IKE negotiation with an even more expensive authenti-
cation negotiation thus is problematic. However, if the negotiation is seen as
a short-term expedient that will facilitate the transition to full-fledged PKI,
to be used for limited numbers of road warriors, trading partners, or extranet
nodes, the cost can be considered to be bearable.

The details of each of the five approaches have not been nailed down,
but that is not necessarily a drawback to their deployment. Remote authenti-
cation of road warriors is one area in which differing proprietary solutions
can coexist and can successfully be part of a global IPsec infrastructure. That
happens when a locally deployed proprietary solution produces a certificate
that can be used to authenticate the road warrior to peers that do not neces-
sarily espouse the same method of pre-IKE authentication. Of course, that
presupposes acceptance of those certificates within the wider arena. It is also
essential that the road warrior verify the authenticity of the server�s certifi-
cate. If that is not done, a man-in-the-middle attack can take place.

A straw poll was conducted on the IPsra mailing list to select one of the
first four scenarios on which to focus. The first scenario, client-side certificate
generation, was selected, so it appears that that approach, along with PIC, will
be the approach of choice as a bridge to full PKI deployment.

6.8 Complications

Other than the drawbacks and vulnerabilities of each of the individual
approaches, an underlying problem is inherent to all the legacy authentica-
tion systems. An attacker can repeatedly attempt to impersonate a user and
initiate a legacy authentication. Each of the authentication systems will lock
out a user, not allowing further authentication attempts, after a specified
number of failed negotiations. That constitutes a denial of service, because
the road warrior is denied network access either for a specific length of time
or until the user�s account is reinitialized. Such vulnerability is inherent to
the legacy authentication methods and is inherited by any system that uses
them as building blocks.

150 Demystifying the IPsec Puzzle

6.9 Threat Mitigation

What real-life threats are prevented through the use of the IKE remote
authentication scenarios? The remote user�s authentication information,
including the password and the user ID, is hidden from eavesdroppers. In
addition, should an eavesdropper save the packets that constitute an authen-
tication negotiation and replay them in an attempt to sign on to the network
protected by the security gateway, that, too, should fail.

6.10 Summary

With the increasing popularity of telecommuting and the general mobility
of business users, the magnitude of the road warrior problem promises to
increase. Although today�s solutions require mostly IKE modifications and
legacy authentication methods, it seems reasonable that the near future
will see an increase in the use of legacy authentication methods to issue
short-term credentials. That will enable the gradual migration to a full-
blown PKI infrastructure, with long-term user-specific and function-
specific credentials.

6.11 Further Reading

The legacy authentication methods described in this chapter are all defined
in IETF documents: S/Key [5], SecurID [6], the latest version of RADIUS
[7], RADIUS-CHAP [8], and EAP [16]. A generic one-time password proto-
col is discussed in [4]. Each of the IKE remote access approaches has its own
document as well: ISAKMP configuration method [10], XAUTH [9],
hybrid authentication [11], CRACK [12], ULA [13], and PIC [15]. [14]
describes the four other pre-IKE credential-generating authentication meth-
ods. The authors have made quite clear their hope that full-scale PKI deploy-
ment will overtake those methods and negate their necessity well before this
document achieves RFC status. A number of drafts [1�3] contain more
general discussions of criteria and requirements of secure remote access in
the context of IKE and IPsec. The IPsra email list archive can be found at
http://www.vpnc.org/ietf-ipsra.

The Fifth Puzzle Piece: IKE and the Road Warrior 151

References

[1] Aboba, B., �IPSEC Remote Access Protocol Evaluation Criteria,� <draft-aboba-ipsra-
req-00.txt>, Dec. 1999.

[2] Gupta, V., �Secure Remote Access Over the Internet Using IPSec,� <draft-gupta-
ipsec-remote-access-03.txt>, Oct. 1999.

[3] Kelly, S., and S. Ramamoorthi, �Requirements for IPsec Remote Access Scenarios,�
<draft-ipsra-reqmts-00.txt>, Mar. 2000.

[4] Haller, N., et al., A One-Time Password System, RFC 2289, Feb. 1998.

[5] Haller, N., The S/KEY One-Time Password System, RFC 1760, Feb. 1995.

[6] Nystrom, M., The SecurID(r) SASL Mechanism, RFC 2808, Apr. 2000.

[7] Rigney, C., et al., �Remote Authentication Dial In User Service (RADIUS),� <draft-
ietf-radius-radius-v2-06.txt>, Feb. 2000.

[8] Simpson, W., PPP Challenge Handshake Authentication Protocol (CHAP), RFC 1994,
Aug. 1996.

[9] Beaulieu, S., and R. Pereira, �Extended Authentication Within IKE (XAUTH),�
<draft-beaulieu-ike-xauth-00.txt>, Oct. 2000.

[10] Dukes, D., and R. Pereira, �The ISAKMP Configuration Method,� <draft-dukes-ike-
mode-cgf-00.txt>, Oct. 2000.

[11] Litvin, M., R. Shamir, and T. Zegman, �A Hybrid Authentication Mode for IKE,�
<draft-ietf-ipsec-hybrid-auth-05.txt>, Aug. 2000.

[12] Harkins, D., and D. Piper, �IKE Challenge/Response for Authenticated Crypto-
graphic Keys,� <draft-harkins-ipsra-crack-00.txt>, Aug. 2000.

[13] Kelly, S., J. Knowles, and B. Aboba, �User-Level Authentication Mechanisms for
IPsec,� <draft-kelly-ipsra-userauth-00.txt>, Oct. 1999.

[14] Bellovin, S., and R. Moskowitz, �Client Certificate and Key Retrieval for IKE,�
<draft-bellovin-ipsra-getcert-00.txt>, Feb. 2000.

[15] Sheffer, Y., and H. Krawczyk, �PIC, a Pre-IKE Credential Provisioning Protocol,�
<dratf-ietf-ipsra-pic-oo.txt>, Mar. 2000.

[16] Blunk, L., and J. Vollbrecht, PPP Extensible Authentication Protocol (EAP), RFC 2284,
Mar. 1998.

152 Demystifying the IPsec Puzzle

7
The Sixth Puzzle Piece: IKE Frills
and Add-Ons

Software is like entropy. It is difficult to grasp, weighs nothing, and
obeys the Second Law of Thermodynamics, i.e., it always increases.

Norman R. Augustine, Augustine�s Laws, Law Number XVII

The IPsec standards generally specify packet formats and other observable
details that affect Internet traffic. Numerous other details are often labeled
implementation-specific and left to the discretion of the individual imple-
menters. Sometimes, suggested behavior, or �best common practice,� is
defined in an informational RFC. Many times, implementation details are
not discussed at all, even though they can decidedly affect interoperability of
multiple implementations. A number of such details either were omitted
from the original IKE documents or were underspecified. Day-to-day opera-
tional experience with IKE highlighted the need for standardization or clari-
fication of such features, including SA renegotiation, ISAKMP heartbeats,
and dangling SAs. These features are all somewhat controversial, and it is not
clear which will remain for the long haul and which will be consigned to the
dustbin of digital history.

153

7.1 Renegotiation

The timing of IKE renegotiations is an operational detail that can seriously
degrade network communications between two implementations that imple-
ment it in different ways, even if both conform to the IKE specifications [1].

Most implementations do not wait for an IPsec SA to expire; it is com-
mon practice to initiate renegotiation at some interval, either time based
or traffic based, prior to expiration. The interval is generally a random one,
because predictable behavior is the Achilles� heel of security.

One question remains: When should an initiating peer begin using
the newly negotiated outbound SA, and when should the receiving peer stop
accepting traffic on the about-to-expire inbound SA? There are two schools
of thought. The first school advocates �using up� the old SA and not using
the new SA until the old one has actually expired; the second suggests switch-
ing over to the new SA as soon as it is in place, without worrying that the
old SA has not been totally exploited. The cautious approach, which enables
interoperability with both schools, leaves three of the four SAs (the old and
new inbound SAs and the new outbound SA) in place as long as possible.
Outbound traffic, which is under the control of the sender, is sent on the
new SA, just in case the peer has deleted the old one. Inbound traffic, over
which the recipient does not have control, is accepted on the old SA, which is
not deleted until inbound traffic has been received that uses the new SA; it
also is accepted on the new inbound SA.

In any IKE exchange, one peer assumes the role of initiator and the
other the role of responder. However, in any subsequent IKE exchange,
the roles can be reversed. That applies to a phase 2 negotiation that follows a
phase 1, or to a phase 1 exchange that renegotiates an about-to-expire phase
1 SA or any other IKE negotiation.

The renegotiation or rekeying of an IPsec SA is triggered by the end of
the SA�s lifetime as measured in elapsed time or number of kilobytes of data
protected by the SA. Although a new SA must be negotiated, including the
complete set of SA parameters, the process is often referred to as rekeying,
because it is the exposure of the secret keys that motivates the SA renego-
tiation. Too much elapsed time since the SA negotiation or too much data
encrypted by the encryption key can provide enough time and ammunition
for a variety of attacks aimed at discovering the secret key. If the ISAKMP SA
through which the IPsec SA was negotiated is still alive, it can again be used
to negotiate the IPsec SA�s successor, and only a phase 2 negotiation takes
place. If the ISAKMP SA has also expired, a full-blown two-phase negotia-
tion must again occur.

154 Demystifying the IPsec Puzzle

One of the problems that bedevils IKE in a number of different con-
texts is its reliance on an unreliable transport protocol, UDP. That means
reliance on the delivery of different messages in a prespecified order can and
will result in problems. Thus, the specifications must always anticipate these
race conditions and dictate IKE�s behavior under alternative conditions. One
race condition that pertains to rekeying is the timing of the responder�s
reception of the final phase 2 message relative to receiving the first incoming
message protected by the new SA. Figure 7.1 demonstrates this problem.
Assume that host H1 is the initiator of the phase 2 negotiation. If H1 is
a high-powered machine and can encrypt that first message rapidly, and
if the two messages traverse different paths to reach the responder, H2, then
the encrypted message can arrive at H2 before the final phase 2 message.

Because that final message does not contribute any new information
to the SA, and because H2 can calculate the key before it sends the second
phase 2 message, this scenario can have a happy ending, with protected com-
munications exchanged in either case. But that does involve some flexibility
on the part of the responder, which has to be prepared to accept and process
the packet that relies on the new SA before the SA negotiation has formally
concluded. It also leaves the responder open to a replay attack, because the
third message, in which the initiator computes an authenticated hash that
includes the responder�s nonce, constitutes proof that this is not a replayed
negotiation. In the event that this is a replay attack, it could disrupt commu-
nications between H1 and H2. H2 would be convinced that a new pair of
SAs had been established with H1; the keying material would be calculated
from the replayed initiator�s nonce and H2�s newly generated responder�s
nonce. When H2 would send outbound traffic on the bogus outbound SA,

The Sixth Puzzle Piece: IKE Frills and Add-Ons 155

Quick Mode Message #1 1
4

5

Quick Mode Message #22

Set up New SA (I-to-R)3
In

iti
at

or

Re
sp

on
de

r

Quick Mode Message #3

Traffic on

New SA (I-to-R)

Figure 7.1 Rekeying race condition.

that traffic would be rejected by H1, because H1 had not negotiated the new
SA. Obviously, H2 would not receive inbound messages from H1 using this
SA. Any inbound messages would have to be sent by the attacker, which
would replay genuine messages that had been sent to H2 by H1. Those
messages would be protected with the keying material from the old SA, so
they would be rejected by H2. The result would be a disruption of commu-
nications from H2 to H1 and wasted processing performed by H2.

Figure 7.2 shows a suggested sequence of Quick Mode negotiation,
illustrating the order of SA activation and deletion relative to the launch
or arrival of each Quick Mode message. The order was selected to maxi-
mize interoperability and security and to minimize dropped packets. The
responder has the option of activating the new inbound SA either before or
after the third Quick Mode message has been received. Each approach has
its pluses and minuses. The earlier SA activation allows a smooth transition
to the new inbound SA, even if the third Quick Mode message is lost or
delayed. If the first Quick Mode message is a replayed message, or if there is a
problem with the second Quick Mode message (e.g., an incorrect authenti-
cating hash), the new inbound SA is invalid; if the responder then deletes
the old inbound SA, inbound packets are dropped. The initiator will still be

156 Demystifying the IPsec Puzzle

Set up SA #2 (R-to-I)5

Quick Mode Message #1 1

Quick Mode Message #3 4

Quick Mode Message #22

Traffic on SA #2
OR No Traffic for 30 seconds

9

Set up SA #1 (I-to-R) 3

Set up SA #1 (I-to-R)

Set up SA #2 (R-to-I)

Delete Old SA (R-to-I)

6
8

7

Set up SA #1 (I-to-R)

Delete Old SA (R-to-I)

Delete Old SA (I-to-R)

In
iti

at
or

Re
sp

on
de

r

10
11

12

Figure 7.2 Quick Mode rekeying order of operations.

using the old SA, which was deleted by the responder; the responder will be
expecting packets to use the new, invalid SA. The later SA activation avoids
those pitfalls, but it opens up the possibility that the responder would receive
traffic protected by the new SA before receiving the third Quick Mode
message and, therefore, before activating the new inbound SA. That causes a
(temporary, we hope) black hole, resulting in a cessation of inbound traffic
until the third Quick Mode message is received.

7.2 Heartbeats

What happens when a busy gateway or a host that sends most or all of
its traffic under the IPsec umbrella negotiates a large number of IPsec SAs?
Some of them will be used regularly, but some will be used once or twice to
fulfill a specific transaction and then sit idle until they expire. In the event
that an SA was foolishly negotiated to expire only on traffic volume and not
on elapsed time, it may never expire. Unused SAs can cause clutter, at best,
or, in the case of a malicious peer, they can contribute to a denial-of-service
attack. For those reasons, some implementations delete SAs that are unused
for a specific time, even if they have not yet expired.

Another possible cause for the termination of an unexpired SA is the
unexpected shutdown of a host system, either as the result of a system crash
or, for a road warrior, a phone hangup. When the system reappears, it can
send an initial contact message, so that the peer deletes all previously negoti-
ated SAs. Until that happens (if it happens), the peer that neither crashed nor
deleted dormant SAs assumes that those SAs are still operative and blithely
sends outgoing traffic that relies on them. That can result in considerable
wasted processing and lost communications.

To handle that problem, a new mechanism, originally called a keep-
alive but now referred to as a heartbeat [2], has been defined. A heartbeat is a
one-way message sent at periodic intervals that notifies the recipient that its
peer is still alive. The message can optionally include the SPIs of some or
all of the existing outbound SAs between the sender and the recipient, as a
sanity check for the recipient.

The negotiation to set up a heartbeat is a configuration method
exchange that takes place under the protection of an existing ISAKMP SA.
It is always initiated by the intended recipient of the heartbeats. That allows
the recipient to dictate the behavior and timing of the heartbeat messages,
subject to the agreement of the sender. If both peers require this type of
assurance, two separate heartbeat negotiations can take place. Because the

The Sixth Puzzle Piece: IKE Frills and Add-Ons 157

heartbeat is used to prove the continued health of the system as a whole,
even if multiple SAs exist between two peers, the maximum number of heart-
beat negotiations that would be required is two, one in each direction. Five
attributes can be negotiated.

• Heartbeat type. Only a single, standard type is currently defined.
This attribute can be used to extend the protocol in the future or to
agree privately on a different mechanism.

• Heartbeat options. The options are used to negotiate the support of
optional behavior. Generally, heartbeat messages are encrypted
and authenticated, but the �authentication only� option can be used
to negotiate a heartbeat message that will be authenticated but not
encrypted. If the recipient does not propose this option, the sender
should not downgrade security by suggesting its use. The �SPI list
supported� option allows the sender to include an optional SPI list,
detailing some or all of the SPIs in effect between the peers, in some
or all of the heartbeat messages. If the recipient does not propose
the use of this option, it would be wasteful for the sender to suggest
it, knowing that the recipient most likely will just discard the
information.

• Heartbeat interval. The interval is the number of seconds between
heartbeat messages. The suggested default value is 20 seconds. If
the heartbeats� recipient proposes a heartbeat interval, the sender is
allowed to increase the interval to send fewer heartbeats and thus
consume less processing power.

• Heartbeat message accepted. This attribute is used by the heartbeat
negotiation responder (who will be the sender of the heartbeat mes-
sages themselves) to either agree or refuse to initiate the heartbeat
message mechanism.

• Initial sequence number. This attribute is the sequence number to be
sent in the first heartbeat message.

Figures 7.3 and 7.4 show two sample heartbeat negotiations, one in which
the responder sets the parameters that will govern the heartbeat message and
one in which the values are proposed by the initiator.

Once the heartbeat message has been negotiated, the sender can start
sending heartbeats, which consist of regular ISAKMP messages with a new
exchange type: Heartbeat Exchange Mode. Figure 7.5 shows the payloads

158 Demystifying the IPsec Puzzle

The Sixth Puzzle Piece: IKE Frills and Add-Ons 159

REQUEST
(HEARTBEAT_TYPE Standard,=

HEARTBEAT_INTERVAL 20,=

SEQUENCE_NUMBER 1111,=

HRTBEAT_OPTIONS Send SPI List)=

1

REPLY
(HEARTBEAT_TYPE Standard,=

HEARTBEAT_INTERVAL 40,=

SEQUENCE_NUMBER 1111,=

HRTBEAT_OPTIONS Send SPI List,=

PROPOSAL_ACCEPTED 1)=

2

In
iti

at
or

Re
sp

on
de

r

Figure 7.4 Heartbeat negotiation with parameters proposed by the initiator.

REQUEST
(HEARTBEAT_TYPE Standard)=

1
REPLY

(HEARTBEAT_TYPE Standard,=
HEARTBEAT_INTERVAL 20,=
SEQUENCE_NUMBER 1111,=
PROPOSAL_ACCEPTED 1)=

2

In
iti

at
or

Re
sp

on
de

r

Figure 7.3 Heartbeat negotiation with parameters set by the responder.

HDR, {SEQ_NO, HASH,

NOTIFY, [SPI_LIST]}

1

In
iti

at
or

Re
sp

on
de

r

Figure 7.5 Heartbeat payloads.

sent in a typical heartbeat message. Two new payloads were defined for the
heartbeat message.

• Sequence number payload contains the heartbeats� sequence number,
used for replay protection.

• SPI list payload contains a full or partial list of the SPIs of the out-
bound SAs that currently are in place between the sender and the
recipient.

The notify payload contains a special informational message, �notify
still connected.� The hash payload contains the authenticating hash, a keyed
hash of the complete message with SKEYID_a as the key. To authenticate
the complete message, the hash input consists of three parts.

• The ISAKMP header and the message payloads that precede the
hash payload;

• A hash payload, consisting of the generic payload header with a zero
hash value;

• The message payloads that follow the hash payload.

Figure 7.6 shows the authenticating hash for the message shown in Figure 7.5.
When the recipient gets a heartbeat message, it first verifies the authen-

ticating hash to ensure that the message is legitimate. It then examines the
sequence number and performs replay checking by comparing it with the last
sequence number received, in the same manner that is done by IPsec. If the
replay check succeeds, the current sequence number is updated; if the pack-
et�s sequence number lies outside the current replay window and the replay
check fails, the heartbeat packet is ignored. Generally, the ISAKMP SA

160 Demystifying the IPsec Puzzle

Hash Keyed HMAC of HDR,=
SEQ_NO,

HASH_0,

NOTIFY,

SPI_LIST

With Key SKEYID_a=

Figure 7.6 Heartbeats message hash calculation.

is renegotiated before the sequence number reaches the maximum possible
value. If it does reach that value, however, the heartbeat messages must cease,
because there is no way to distinguish a heartbeat with a restarted low value
from the replay of a previous heartbeat message.

Once the predetermined interval passes without receiving a heartbeat,
the recipient can assume that the sender is now incommunicado and can
delete the ISAKMP SA, along with its subsidiary IPsec SAs. If the sender
decides to delete the ISAKMP SA, thus halting the heartbeats as well,
the recipient should be notified of the deletion in a reliable manner, either
through the use of an acknowledged informational message or by repeatedly
sending the delete message to maximize the possibility that it will be
received.

Other relevant metrics are determined or recorded by the heartbeats�
recipient.

• Lost packet tolerance. The number of lost heartbeats that can be toler-
ated before the peer is considered to be dead. The suggested default
value is 3.

• Packet transmission window. The maximum number of seconds
required from heartbeat message origination by the sender until
acceptance by the recipient, including travel time. The suggested
default value is 5 seconds.

• Timeout interval. The number of seconds since the last heartbeat
message considered to signify the peer�s death. The suggested default
value, based on a heartbeat interval of 20 seconds, is 65 seconds,
using the formula

Timeout interval =
(heartbeat interval ∗ lost packet tolerance) +

packet transmission window

• Last good sequence number. Last sequence number received in a valid
heartbeat message.

• Sequence number window. The size of the replay window, that is, the
maximum allowable deviation in sequence number for two consecu-
tive heartbeat packets.

If the SPI list option is supported, it can be sent in each heartbeat mes-
sage or periodically every few messages. In addition to the SPIs themselves,

The Sixth Puzzle Piece: IKE Frills and Add-Ons 161

the SPI list payload contains two special values: the minimum SPI contained
in the list and the maximum SPI. That serves two purposes: It helps the
recipient to process the SPIs more efficiently, and it enables the SPIs to be
distributed among multiple SPI payloads or multiple heartbeat messages.
Thus, if the peers share a large number of SAs, each heartbeat message does
not have to carry that heavy baggage. The recipient of the SA payload should
examine all inbound SAs established with the peer and delete any SAs from
the SAD whose SPIs fall within the minimum-maximum bound but do not
appear in the payload�s list of SPIs.

Because the heartbeats are sent under the protection of the ISAKMP
SA, a new heartbeat negotiation must take place each time the ISAKMP SA
is renegotiated.

What types of attacks are the heartbeat packets designed to avoid? The
sequence number protects the recipient from replay attacks, and the authen-
ticated hash protects against spoofed packets. That prevents replayed and
spoofed packets from presenting false proofs of liveness once a machine has
gone down. In addition, unauthenticated notify messages (e.g., deletes) that
contradict the SPI list in a current heartbeat message can be ignored and
assumed to be bogus. Some types of attacks cannot be avoided. If heartbeat
packets are prevented from reaching the recipient, and the recipient mis-
takenly deletes still-current SAs, that constitutes at least a temporary denial
of service. If the heartbeat packets are authenticated but not encrypted, and
the SPI list option is selected, the SPIs are sent in the clear, exposing that
sensitive information to eavesdroppers.

7.3 Initial Contact

Then there is the opposite problem. What happens when one peer disappears
for a while? That can happen as the result of an unplanned reboot or, for a
road warrior, an unplanned disconnect. When the unfortunate system resur-
faces, it may have lost all its SAs and have to start negotiating new ones. Its
communicating peers, however, still think the old SAs are valid. When the
newly reborn peer begins a phase 1 negotiation, it should include an initial
contact [3] notification message in its first ISAKMP message. That notifies
the peer that this is not a renegotiation of an existing SA but rather a new
start, and any SAs with this peer that are still intact should be deleted.

162 Demystifying the IPsec Puzzle

7.4 Dangling SAs

What happens when a phase 1 SA expires or is deleted as a result of a delete
notification? In particular, should the phase 2 SAs that were negotiated
under its protection be deleted? In general, a phase 2 SA will not outlast its
phase 1 SA, but there are exceptions. In implementations that expire a phase
1 SA on traffic volume, a phase 1 SA that is used to negotiate multiple phase
2 SAs can expire before some of its phase 2 SAs. Alternatively, a phase 1 SA
can be deleted unilaterally due to reasons that might invalidate its phase 2
SAs (certificate revocation, for instance) or due to reasons that would not
affect its phase 2 SAs (such as housekeeping that results in the deletion
of inactive SAs). As often happens, two philosophies govern the relation-
ship between phase 1 and phase 2 SAs: the continuous channel and the
dangling SA.

The continuous-channel advocates believe that there is an intrinsic
dependency between a phase 1 SA and the phase 2 SAs established under
its umbrella. If the phase 1 SA is deleted, because of a security breach, the
expiration of an authentication credential, or time-based or traffic-based
expiration, then the phase 2 SAs also must be summarily deleted, because
phase 2 SAs owe their legitimacy to the phase 1 SA that authenticated
the peer.

Advocates of the dangling SA take a more cavalier view of the relation-
ship. They counter that once a phase 1 SA has completed the tasks of peer
authentication and the provision of a secure negotiating channel, the result-
ing phase 2 SAs possess their own independent validity, even after the phase
1 SA is deleted. That outlook allows the continued existence of dangling or
orphaned phase 2 SAs. Those phase 2 SAs, once negotiated, have an inde-
pendent life and should continue to function until they expire on their own.
For a while, this dispute was the source of a religious war. Finally, the two
camps agreed to disagree. In a spirit of tolerance, implementations on either
side of this great divide should be able to interoperate. However, implemen-
tations that dangle SAs cannot make use of the heartbeats protocol, because
nonarrival of a heartbeat might just indicate the current lack of an ISAKMP
SA between the peers rather than the failure of the sender�s host. Another
problem introduced by this approach is the disappearance of a secure channel
through which informational messages can be sent. The ISAKMP SA,
normally used for diagnostic messages and delete notifications, is no longer
available for that purpose.

The Sixth Puzzle Piece: IKE Frills and Add-Ons 163

7.5 Summary

Clearly, IKE implementation details can ensure or impede the interoperabil-
ity of two implementations. Unfortunately, in some cases an all-seeing oracle
(or a proprietary solution) is needed, because some of the details cannot be
specified or negotiated in the course of an IKE negotiation. Future versions
of IKE undoubtedly will address those issues, facilitating more widespread
and interoperable IKE deployment.

7.6 Further Reading

[1] contains an extensive analysis of rekeying, along with suggestions for
future versions of IKE. [2] defines the heartbeats protocol. The �initial con-
tact� message is described in [3].

References

[1] Jenkins, T., �IPsec Re-keying Issues,� <draft-jenkins-ipsec-rekeying-06.txt>, May 2000.

[2] Krywaniuk, A., and T. Kivinen, �Using Isakmp Heartbeats for Dead Peer Detection,�
<draft-ietf-ipsec-heartbeats-01.txt>, July 2000.

[3] Piper, D., The Internet IP Security Domain of Interpretation for ISAKMP, RFC 2407,
Nov. 1998.

164 Demystifying the IPsec Puzzle

8
The Glue: PF_KEY

That must be wonderful. I have no idea what it means.

Molière

The two general IPsec mechanisms that have been discussed so far, the IPsec
headers (AH and ESP) and the key negotiation (IKE), are implemented in
different parts of the host system. The header processing can be implemented
as part of the operating system, as a software add-on to the networking stack,
or as a hardware processor external to the host. IKE is a special application-
level process. In operating systems capable of assigning different levels of
privileges to various classes of users, IKE can be run only by users who have
root privileges. How do the IPsec header-processing routines notify IKE that
a negotiation is required, and how does IKE in turn give the header-
processing routines the secret keys and other parameters that have been
negotiated? Generally, some sort of process-to-process communication
mechanism, such as sockets, is used for this task.

Interoperability of different IKE and IPsec implementations is critical
to widespread deployment of IPsec. That means that vendor A�s IPsec and
IKE running on host H1 should be able to perform IKE negotiations and
exchange IPsec-protected communications with vendor B�s IPsec and IKE
running on host H2. Is it also possible to run vendor A�s IPsec implementa-
tion with vendor B�s IKE on host H1? That depends on the format, contents,
and sequence of the messages exchanged between each vendor�s IPsec and

165

IKE implementations. PF_KEY is an attempt to standardize intrahost com-
munications, to promote an increased level of IPsec-IKE interoperability.

8.1 The PF_KEY Messages

In its most general form, PF_KEY is an application programming interface
(API) between an SA negotiation application, such as IKE, and the system-
level or kernel routines that create and access the SA database. In fact,
the IPsec header-processing routines perform two disparate functions: (1) the
creation and maintenance of the SAD and (2) the application of a particular
SA to inbound and outbound traffic. SAD creation and maintenance consist
of adding IPsec SAs to the SAD, retrieving SAs from the SAD for header
processing, and deleting expired SAs from the SAD. The PF_KEY RFC uses
the term key engine to describe the IPsec routines that create and maintain
the SAD. To enhance clarity, this chapter refers to the IPsec SAD creation
and maintenance routines simply as IPsec. Although IKE should in truth
be called an SA negotiation program or application, it is more commonly
referred to as a key negotiation program or application; we use that term here
as well.

The PF_KEY API consists of the following 10 messages.

• SADB_REGISTER. If a new SA is required to provide IPsec protec-
tion for outgoing traffic, IPsec needs to know whether a key negotia-
tion application, such as IKE, is available; if not, the traffic will not
be sent. When IKE starts up, it sends two SADB_REGISTER mes-
sages to IPsec that inform IPsec that IKE is available to negotiate
both types of IPsec SAs (AH and ESP). Each time a new key nego-
tiation program registers an SA type with IPsec, IPsec echoes the
SADB_REGISTER message and sends it to all key negotiation pro-
grams that have registered to handle that type of SA. The echoed
message also contains a list of the cryptographic algorithms sup-
ported by IPsec. Subsequently, if new algorithms are dynamically
added to IPsec, an updated SADB_REGISTER message is sent to all
registered programs.

Application programs other than key negotiation programs also
can use PF_KEY to communicate with IPsec. They generally are
not user application programs but privileged system application pro-
grams. An example of such a program is an application used by
a system administrator to interrogate and maintain the SAD. That

166 Demystifying the IPsec Puzzle

program would use the SADB_REGISTER message for two pur-
poses: (1) to make itself known to IPsec so it can send other
PF_KEY messages to IPsec and (2) to ensure that it receives IPsec-
related PF_KEY messages sent by IPsec to all its registered applica-
tion programs.

• SADB_ACQUIRE. When an application attempts to send outbound
traffic that requires IPsec protection (more on this in Chapter 9)
but the SAD has no SA that is appropriate, IPsec sends an
SADB_ACQUIRE message to all registered application programs,
including IKE. The message includes all the information that IKE
needs to negotiate the SA, including the peer address and the secu-
rity gateway address (if any). It also informs IKE which security
headers and cryptographic algorithms should be proposed to the
peer. If the SA is to apply only to the application that requested the
SA, the application�s port number is also included. The operative
assumption is that the appropriate key negotiation program will act
on this message and the others will ignore it. IPsec then waits for
IKE (or another key negotiation program) to negotiate an SA and
report back to IPsec. If IKE successfully negotiates a new SA, it
informs IPsec via other PF_KEY messages (SADB_GETSPI,
SADB_UPDATE, SADB_ADD). If the SA negotiation fails, IKE
notifies IPsec by responding with another SADB_ACQUIRE
message.

At any given time, IPsec can be waiting for the responses to multi-
ple SADB_ACQUIRE messages. How does it associate a response
with the appropriate SADB_ACQUIRE request? IPsec generates
a unique sequence number for each SADB_ACQUIRE message;
all PF_KEY messages issued in response to that SADB_ACQUIRE,
whether they are sent by IPsec or by IKE, carry that sequence
number. In that way, multiple simultaneous SA negotiations can be
handled using PF_KEY.

• SADB_GETSPI. To negotiate an IPsec SA, IKE first must generate
the inbound SPI, which is sent in the first or second Quick Mode
message together with the IPsec SA proposal. To ensure that the SPI
is unique and consistent with any local constraints, it is best to allow
IPsec to generate all SPIs. That is the function of the PF_KEY
SADB_GETSPI message to IPsec. If multiple key management pro-
grams are operating, it makes sense to divide all the valid potential
SPI values among the various key management applications. Valid

The Glue: PF_KEY 167

IPsec SPIs must be greater than 255; IKE sends the applicable
boundary values to IPsec in the SADB_GETSPI message, ensuring
that a valid IPsec SPI will be returned.

In response, IPsec generates the SPI and enters a partial IPsec SA,
also called a larval SA, into the SAD. Because the IKE negotiation
has not yet taken place, IPsec does not know most of the SA�s
parameters; it knows neither the IPsec header to be applied nor the
details of its cryptographic algorithms and secret keys. The only
information that can be inserted into the SAD at this point is the
peer�s address and the SPI. If a security gateway will conduct the
IKE negotiation, its address also may be known at this point (more
on this in Chapter 9). Thus, the larval SA is the initialization of
a one-way inbound SA from the peer to IKE�s host. It is not yet a
functional SA; it is a placeholder that saves all the currently known
SA parameters in the SAD. It also guarantees that the SPI about
to be proposed by IKE will not be reused while the SA is being
negotiated.

IPsec echoes the SADB_GETSPI message, containing the newly
generated SPI, back to all the registered application programs,
including the one that sent the original SADB_GETSPI message.

In general, only one key management application should respond
to a particular SADB_ACQUIRE message, and IPsec should receive
only a single SADB_GETSPI request for each negotiation. If, some-
how, multiple key management applications claim the privilege of
responding to the same SADB_ACQUIRE, there is a mechanism
that enables IPsec to distinguish among messages belonging to the
separate exchanges. Each time a key management application sends
a PF_KEY message to IPsec, it attaches its unique process ID (PID)
to the message, and IPsec uses the same PID in its response. In that
way, IPsec knows which key management application has sent each
message, and each key management application can distinguish the
responses to its own messages.

• SADB_UPDATE. Once IKE is satisfied that the IPsec SA negotia-
tion is complete, the larval inbound IPsec SA must be transformed
into a completed SAD entry. IKE sends an SADB_UPDATE mes-
sage to IPsec, which includes all the IPsec SA parameters that were
negotiated with the peer. The SADB_UPDATE message instructs
IPsec to add the missing information to the partial inbound SA
and convert its status from larval to mature. When IPsec echoes the

168 Demystifying the IPsec Puzzle

SADB_UPDATE message to the registered application programs,
it includes most of the negotiated IPsec SA parameters, but omits
the SA�s secret keys. There are several situations in which IPsec is
not able to update the larval SA into a fully mature SA. If the SA
information furnished by IKE is unsatisfactory or erroneous, per-
haps containing a secret key that is known to be weak, the update is
not performed. If IPsec does not receive an SADB_UPDATE mes-
sage within a reasonable time following the creation of the larval SA,
it deletes the larval SA, freeing its SPI for reuse by another SA. An
SADB_UPDATE message that is subsequently sent will fail, because
the larval SA no longer exists.

If a mature IPsec SA needs to be renegotiated, either because it
has expired or because the requesting application�s security require-
ments have changed, a new SA with a different SPI needs to be
established. In such a case, an SADB_UPDATE cannot be used
simply to change the SA�s parameters. However, the lifetime of
an existing mature SA can be modified through the use of an
SADB_UPDATE message.

• SADB_ADD. An IKE negotiation results in the establishment of
two one-way SAs between the peers. The inbound SA is inserted
into the SAD through the use of the SADB_GETSPI PF_KEY
message, followed by the SADB_UPDATE message. The SPI of the
outbound SA is selected by the peer, so no SADB_GETSPI message
is required. That SA is added to the SAD, in its completed form,
through the use of an SADB_ADD PF_KEY message. An
SADB_ADD message also can be used to add manually keyed SAs,
both inbound and outbound, to the SAD. The SADB_ADD
message, minus secret keys, is then echoed by IPsec to the registered
application programs.

• SADB_GET. Most applications are not aware of SA negotiations
conducted to protect their traffic and have no need to display or
access those SAs. For example, an outbound HTTP packet may
trigger an IKE negotiation, but it is IPsec that issues the
SADB_ACQUIRE message rather than the Web server or browser.
Some privileged applications might want to display or retrieve SAs
from the SAD. For example, a network administrator may periodi-
cally want to examine the SAD as a whole or specific SAs within
the SAD. To accomplish that, an SADB_GET message can be
sent from a privileged application program to IPsec to request

The Glue: PF_KEY 169

information about a particular SA. IPsec then finds the requested SA
in the SAD through a match on source address, destination address,
SA type, and SPI and echoes the SADB_GET message only to the
application program that issued the initial SADB_GET. The ech-
oed message contains all the specifics related to the requested SA,
including the secret keys. As for all PF_KEY messages, the privileged
application program must send an SADB_REGISTER message to
the kernel prior to issuing the SADB_GET message.

• SADB_DUMP. Although this chapter focuses on the application of
PF_KEY to IPsec and IPsec SAs, the SAD can contain non-IPsec
SAs as well. In a manner analogous to the use of the SADB_GET
message, SADB_DUMP is used to display either all the SAs in the
SAD or all the SAs of a particular type. A privileged application
sends an SADB_DUMP message to IPsec; IPsec then sends a series
of SADB_DUMP messages, each containing the information for
a single SA, back to the application program that issued the initial
SADB_DUMP message. Because this message can cause the
exchange of huge amounts of data, it should be used with caution.

• SADB_EXPIRE. In the PF_KEY paradigm, every IPsec SA has three
types of lifetimes: hard, soft, and current. The hard lifetime is the
one negotiated by IKE; when it is reached, IPsec deletes the SA. The
soft lifetime is unilaterally determined by the host system; it should
be less than the hard lifetime and is the point at which the SA gener-
ally is renegotiated, to ensure that the new SA is in place before the
old one expires. The current lifetime is a snapshot of the state of the
SA at any given time; it is used to calculate how much time or traffic
remains until the SA reaches either its soft or hard lifetime. When
the soft lifetime is reached, IPsec generally sends an SADB_EXPIRE
message to IKE to suggest that IKE initiate an SA renegotiation.
The SADB_EXPIRE message also contains the current lifetime of
the SA (elapsed time, packets sent, etc.). If, for some reason, the
renegotiation does not take place before the hard lifetime expires,
IPsec can send IKE an SADB_EXPIRE when it deletes the SA. At
that point, however, there will be a period during which IPsec-
protected communications will be disrupted while the new SA is
negotiated. Other than possibly conducting an IKE negotiation, the
registered application programs do not send IPsec any response to
the SADB_EXPIRE message.

170 Demystifying the IPsec Puzzle

• SADB_DELETE. When an IPsec SA expires or needs to be deleted
as the result of a system crash or security breach, IKE sends an
SADB_DELETE message to IPsec. The corresponding SA is located
in the SAD by matching the source and destination addresses and
the SPI. IPsec deletes the SA and echoes the SADB_DELETE mes-
sage to the registered application programs.

• SADB_FLUSH. Just as SADB_DUMP is a generalization of
SADB_GET, SADB_FLUSH is a broader form of the SADB_
DELETE message. At times, it may be necessary to restart the SAD
by deleting all the SAs of a particular type, such as all IPsec SAs, or
all the SAs in the SAD, regardless of type. A privileged application
program or a key negotiation program can use the SADB_FLUSH
message to accomplish this function. Once IPsec has deleted all the
relevant SAs, it echoes the SADB_FLUSH message to all registered
application programs.

8.2 A Sample PF_KEY Exchange

The PF_KEY RFC [1] describes a number of messages that can be exchanged
between IKE and IPsec. It does not dictate a specific sequence of messages,
so there is some leeway in their use. Following is one possible exchange of
messages that would result in the addition of an IPsec SA to the SAD.

1. IKE registers with IPsec.

2. IPsec requests an IKE negotiation. When an application attempts
to send outbound traffic that requires IPsec protection, IPsec sends
an SADB_ACQUIRE message with a unique sequence number to
IKE and all other registered programs.

3. IKE requests an inbound SPI from IPsec. Once the ISAKMP SA
has been established, IKE is ready to negotiate the IPsec SA. Before
sending the first Quick Mode message, which contains the inbound
SPI, IKE sends an SADB_GETSPI message to IPsec. In response,
IPsec generates the SPI and adds the larval SA to the SAD. IPsec
sends an SADB_GETSPI message containing the newly generated
SPI and IKE�s unique process ID to IKE and all the other registered
programs. IKE then sends the first Quick Mode message.

4. IKE notifies IPsec that an IPsec SA has been successfully negotiated.
Once IKE is satisfied that the IPsec SA negotiation is complete, IKE
sends an SADB_UPDATE message to IPsec, which instructs IPsec

The Glue: PF_KEY 171

to add the missing information to the partial inbound SA and
convert its status from larval to mature. IKE also sends an
SADB_ADD message to IPsec, causing IPsec to add the new out-
bound IPsec SA, including an outbound SPI that was selected by
the peer, to the SAD. IPsec echoes both the SADB_UPDATE
message and the SADB_ADD message to all registered programs.

Figure 8.1 shows the sequence of PF_KEY messages exchanged
between the initiator host�s IPsec and IKE routines, interspersed with the
IKE messages exchanged by the host and its peer. The IKE responder will
exchange the same PF_key messages (except the SADB_ACQUIRE) with its
IPsec routines. Its IKE negotiation will be triggered when it receives Main
Mode Message #1.

172 Demystifying the IPsec Puzzle

Main Mode #1 2

Main Mode #23

SADB_ACQUIRE 1

SADB_GETSPI8

Main Mode #5 6

Main Mode #67

Main Mode #3 4

Main Mode #45

Quick Mode #1

Quick Mode #2

SADB_GETSPI 9

Quick Mode #3

SADB_ADD

SADB_UPDATE

SADB_ADD

SADB_UPDATE

IK
E

In
iti

at
or

IK
E

Re
sp

on
de

r

IP
SE

C
10

11

12
13

14

15

16

Figure 8.1 A sample PF_KEY exchange.

8.3 Composition of PF_KEY Messages

What sort of information is conveyed in a PF_KEY message? Each PF_KEY
message contains an invariant portion, the base message header, which
includes the following information.

• PF_KEY message type. SADB_REGISTER, SADB_GETSPI, and so
forth.

• PF_KEY sequence number. This value is initialized by IPsec in
the SADB_ACQUIRE message that begins a particular series of
PF_KEY messages and is included in each subsequent message of the
resulting negotiation and SA creation.

• Key management program process ID. This is zero if the message
exchange is initiated by IPsec. If the message exchange (e.g., an
SADB_GETSPI) is initiated by the key management program and
echoed by IPsec, it contains the PID of the initiating key manage-
ment program.

To supplement the base message header, most PF_KEY messages con-
tain one or more extension headers. Table 8.1 shows, for each PF_KEY mes-
sage type, which extension headers are required and which are optional. The
extension headers are as follows.

• Security association. Those PF_KEY messages that access specific
SAs (SADB_GET) or update the SAD (SADB_UPDATE,
SADB_ADD, SADB_DELETE) use the SAD to exchange or
specify SA-related information. To access (SADB_GET) or delete
(SADB_DELETE) a mature SA, the only SA-specific information
needed is the SPI, because the source and destination addresses are
found in the address extension. The security association extension
is also used by IPsec to send a requested SPI to IKE via the
SADB_GETSPI message. When a new SA is added to the SAD
(SADB_ADD) or a larval SA is transformed into a mature SA
(SADB_UPDATE), additional SA parameters are sent to IPsec
and echoed to the registered programs. Those parameters include
the SA�s encryption or authentication algorithms, the size of the
replay window, and whether PFS applies to the SA�s negotiation and
renegotiation.

The Glue: PF_KEY 173

174 Demystifying the IPsec Puzzle

Table 8.1
PF_KEY Message Extensions: Required and Optional

Extension
Security
Association Lifetime Address Key Identity Proposal

Algorithms
Supported

SPI
Range

PF_KEY Message

REGISTER

IKE � � � � � � � �

IPsec � � � � � � Req �

ACQUIRE

IPsec � � Req (SD)
Opt(P)

� Opt(SD) Req � �

IKE � � � � � � � �

GETSPI

IKE � � Req � � � � Req

IPsec Req(SPI) � Req(SD) � � � � �

UPDATE

IKE Req Opt(CHS) Req(SD)
Opt(P)

Req(AE) Opt(SD) � � �

IPsec Req Opt(CHS) Req(SD)
Opt(P)

� Opt(SD) � � �

ADD

IKE Req Opt(HS) Req(SD)
Opt(P)

Req(AE) Opt(SD) � � �

IPsec Req Opt(HS) Req(SD)
Opt(P)

� Opt(SD) � � �

GET

IKE Req(SPI) � Req(SD) � � � � �

IPsec Req Opt(CHS) Req(SD)
Opt(P)

Req(AE) Opt(SD) � � �

EXPIRE

IPsec Req Req(CH/S) Req(SD) � � � � �

• Lifetime. When an SA is added (SADB_ADD) or updated
(SADB_UPDATE), the hard and soft lifetime extensions are used to
specify the SA�s hard and soft lifetimes in bytes, seconds, or both.
They are also used by IPsec in the SADB_GET message to inform
IKE of the SA�s hard and soft lifetimes. In addition, the current life-
time extension is used to let IKE know the SA�s current lifetime,
which is either the number of bytes of data that have been protected
by the SA or the number of seconds that have elapsed since the SA
was established.

• Address. There are three types of address extensions: source, destination,
and proxy. PF_KEY messages that access or update a specific SA use the
source and destination address extensions to specify the SA�s source and
destination addresses. Together with the SPI from the security associa-
tion extension, that suffices to pinpoint the SA in the SAD. If a gateway
is negotiating an SA for a host that lies behind the gateway, the proxy
address extension is used to specify the host�s address.

The Glue: PF_KEY 175

Table 8.1 (continued)

Extension
Security
Association Lifetime Address Key Identity Proposal

Algorithms
Supported

SPI
Range

DELETE

IKE Req(SPI) � Req(SD) � � � � �

IPsec Req(SPI) � Req(SD) � � � � �

FLUSH

IKE � � � � � � � �

IPsec � � � � � � � �

DUMP

IKE � � � � � � � �

IPsec Req Opt(CHS) Req(SD)
Opt(P)

Req(AE) Opt(SD) � � �

Key
Req = required
Opt = optional
� = not applicable

SD = source and destination
P = proxy

SPI = SPI only
AE = authentication and/or encryption
C = current
HS = hard and soft
H/S = hard or soft

• Key. When a new SA is added to the SAD (SADB_ADD) or a larval
SA is transformed into a mature SA (SADB_UPDATE), IKE uses
the key extension to send the SA�s secret keys to IPsec. For an ESP
SA, an ESP key extension is used to convey the encryption and
authentication keys; for an AH SA, an AH key extension transmits
just the authentication key. When a new SA is added to the SAD,
IPsec does not echo that sensitive information to the registered pro-
grams. However, when a registered program uses the SADB_GET
message to retrieve an SA from the SAD, the key extension is
included in the echoed message. That is necessary, because the
requesting program may be an application program that will apply
the SA to traffic. The inclusion of the secret keys is the reason an
SADB_GET message is echoed only to the application program that
actually issued this message.

• Identity. If the source and destination addresses are not sufficient
to identify the SA�s endpoints, the source and destination identity
extensions are used. Those identities can take one of several forms: a
network prefix, a fully qualified domain name, or an email address.

• Proposal. When IPsec sends an SADB_ACQUIRE message to IKE,
the proposal extension is used to convey the details of the SA protec-
tion parameters that IKE, as initiator, should propose to the peer.
Because IKE will translate those into a valid IKE IPsec proposal,
they are arranged in order of precedence, highest to lowest. The
proposal extension specifies whether the SA will include replay pro-
tection. In addition, each proposal includes the encryption and
authentication algorithms, minimum and maximum allowable key
lengths, and hard and soft lifetimes in bytes, seconds, or both.

• Supported algorithms. The supported authentication algorithms
extension and the supported encryption algorithms extension are
used in the SADB_REGISTER message sent by IPsec to the regis-
tered programs each time a new program registers with IPsec and
each time a new algorithm is added to IPsec. For each algorithm, the
following information is included: the IV length and the minimum
and maximum permissible key sizes.

• SPI range. IKE uses the SPI range extension to limit the value of the
SPI generated by IPsec as a result of an SADB_GETSPI message.

176 Demystifying the IPsec Puzzle

8.4 Complications

As IPsec and IKE continue to develop, the nature of the information
exchanged also needs to change. New scenarios, additional IKE modes, and
policy extensions can require modified IPsec-IKE communications. PF_KEY
Version 2 dates from July 1998, so it has not kept pace with the latest IKE
and IPsec developments. That means implementations that use PF_KEY
most likely will find it necessary to add extensions not defined in the
PF_KEY document, eliminating the possibility of plugging one vendor�s
unmodified IPsec implementation into another vendor�s IKE. However, the
use of a common underlying mechanism still makes such a merge infinitely
more manageable than it would be without PF_KEY.

8.5 Summary

Ideally, if PF_KEY were usable without proprietary extensions, it would
facilitate mix-and-match deployment of multiple vendors� IKE and IPsec
implementations, even without source code accessibility. Because that is not
yet the case, PF_KEY is widely deployed in public-domain IPsec and IKE
implementations, where the source code can be tweaked to accommodate the
exchange of information not defined as part of the standard PF_KEY mes-
sages. However, an attempt to standardize the messages and data exchanged
by IPsec and IKE serves to clarify and refine the relationship between system
security services and privileged key management applications.

8.6 Further Reading

[1] is the complete description of PF_KEY. Because it describes only inter-
process communications but not �bits on the wire,� it is an informational
RFC rather than a standards track RFC. This chapter concentrated on
PF_KEY exchanges between IPsec and IKE, resulting in IPsec SAs; the RFC
also describes the use of PF_KEY to negotiate non-IPsec SAs with key man-
agement applications other than IKE.

Reference

[1] McDonald, D., C. Metz, and B. Phan, PF_KEY Key Management API, Version 2,
RFC 2367, July 1998.

The Glue: PF_KEY 177

9
The Missing Puzzle Piece: Policy
Setting and Enforcement

To get something done, a committee should consist of three men, two
of whom are absent.

Anonymous

In the very beginning, there was IPsec network-layer packet protection, with
its governing databases, the SPD and the SAD. Then along came IKE, which
negotiates the SAs that populate the SAD. Those SAs, singly or in groups, are
also called protection suites. On the local level, they govern IPsec communica-
tions policy, both inbound and outbound, for a single host relative to its
potential peers. But other questions arise: How does a host decide, or config-
ure, its IPsec security policies? How can two peers minimize the prospect that
their IPsec policies are totally different, thus maximizing the possibility
that an IKE negotiation between the peers will be productive, resulting in the
establishment of one or more SAs? There also are issues related to the use of
security gateways. How can peers that require IPsec protection but cannot
provide it themselves locate security gateways to accomplish that task? How
can a host determine whether to negotiate policy directly with its peer or
with a security gateway? If the peer is protected by a gateway, how does the
host securely ascertain the gateway�s location?

179

A separate IETF group, the IPsec Policy (IPSP) Working Group, was
established to address those issues [1�4]. Its tricky mandate is to solve the
problems in a manner consistent with existing policy-related terminology
[5], theory, and solutions, requiring no changes to the classic IPsec protocols
or IKE but filling in the blanks with approaches that are both generally appli-
cable and secure.

9.1 The Security Policy Database

To address those issues and their solutions, we first need to understand the
place of the SPD within IPsec. In particular, we need to know how the SPD
functions in the context of IPsec communications and how it interacts with
the SAD. We already have determined the functions of the SAD in relation
to IPsec-protected communications and IKE. We know that the SAD dic-
tates which IPsec headers, if any, are applied to outbound traffic and controls
the interpretation and unbundling of inbound IPsec-protected traffic. We
also know that IKE is responsible for negotiating the SAs that populate the
SAD. Now let us take one step back and look at the broader picture, to deter-
mine the placement of the SPD in this partially assembled puzzle. A succinct
generalization of the roles of these two powerful entities would be that
the SAD is the enabler of protected communications and the SPD is the
enforcer.

The SPD fulfills somewhat different roles for outbound and inbound
communications. For outbound packets, it sets down either broad or finer-
grained rules related to each packet�s disposition and possible IPsec process-
ing. For inbound packets, the SPD dictates the circumstances under which
the packet can be accepted by the host. Each rule consists of one or more
selectors, which distinguish among the packets, and an action to be applied
to those packets that match the rule�s selectors. The selectors used by the
SPD are the same ones used by the SAD (see Chapter 2). Three possible
actions can result from the application of an SPD rule.

• Drop the packet. Certain types of traffic may be viewed as inherently
insecure and prohibited from being sent or received in any situation.

• Send out the packet without IPsec protection. A host or security gate-
way may allow some types of communications to be sent or received
in the clear.

• Apply IPsec protection to the packet. If IPsec protection is required for
a packet, the SPD specifies the details of that protection: The IPsec

180 Demystifying the IPsec Puzzle

header(s) to be applied, the cryptographic algorithms to be used, the
encapsulation mode, and so forth. Each outbound SPD rule can
contain pointers to all SAs in the SAD that have been negotiated to
satisfy the rule. Inbound SPD rules also can contain SA pointers,
but, as we will see, those pointers do not necessarily apply to all
inbound traffic selected by the rule; even if they do apply, more than
one SPD rule may have to be applied to a single inbound packet.

For scenario 2 (see Chapter 1), Figure 9.1 demonstrates the SPD rules that
might govern communications between the hosts on networks N1 and N2
and between the security gateways (i.e., SG1 and SG2) themselves. This sam-
ple SPD could be either SG1�s outbound SPD or SG2�s inbound SPD. The
selectors shown are the source and destination addresses, the source and des-
tination ports, and the protocol. If IPsec protection is to be applied, each rule
specifies the IPsec header, algorithms, and Transport Mode. Rule 1 allows
IKE packets, which customarily are sent on port 500, to be sent or received
without any IPsec protection. Rule 2 requires all other gateway-to-gateway
packets to be authenticated with AH HMAC-SHA-1 in Tunnel Mode. For
supersecure host H1-1, rule 3 ensures that all its communications must be
encrypted with AES and authenticated with HMAC-SHA-1. Rule 4 specifies
that the other hosts on networks N1 and N2 require only an ESP header
with Triple DES and HMAC-SHA-1.

The relationship between SPD rules and SAs is not necessarily a one-
to-one relationship. A single SPD rule can spawn multiple SAs. If each of the
rule�s selectors has a single value, then only one SA is negotiated for that rule.
However, if any of the rule�s selectors is a wildcard or a range, multiple SAs
can result from that single rule. For example, in scenario 2, security gateways
SG1 and SG2 each negotiate SAs on behalf of multiple machines. Rule 3 in
Figure 9.1 covers all communications between host H1-1 on network N1
and any host on network N2. The gateways can satisfy that rule by

The Missing Puzzle Piece: Policy Setting and Enforcement 181

Rule
#

Src
Addr

Dest
Addr

Src
Port

Dest
Port Prot Action

IPsec
Hdr

Enc
Alg

Auth
Alg Mode

1 SG1 SG2 500 500 Any Accept � � � �

2 SG1 SG2 Any Any Any IPsec AH � HMAC-SHA-1 Tunnel
3 H1-1 Any Any Any Any IPsec ESP AES HMAC-SHA-1 Tunnel
4 N1 N2 Any Any Any IPsec ESP 3DES HMAC-SHA-1 Tunnel

Figure 9.1 Sample SPD rules for a security gateway.

negotiating a single SA to protect all traffic between H1-1 and network N1.
Alternatively, they can negotiate one SA for each pair of protected hosts. The
latter approach will result in multiple SAs attached to a single SPD rule.
Which approach should be taken is specified as part of each such SPD rule.
Each approach has its benefits and its drawbacks. The one-SA-fits-all
approach consumes fewer resources, requiring only a single IKE negotiation
and a single SAD slot. The one-SA-per-host-pair approach provides less fod-
der for an attacker, because each SA has its own secret key(s) and the volume
of traffic per unit time will be less. However, that approach increases the IKE
traffic load and the size of the SAD. Figure 9.2(a) shows the single SA result-
ing from the one-SA-fits all approach; Figure 9.2(b) shows the SAs resulting
from the one-SA-per-host-pair approach; Figure 9.2(c) shows an alternative
approach, one SA per protocol.

182 Demystifying the IPsec Puzzle

SA #
Src

Addr
Dest
Addr

Src
Port

Dest
Port Prot

IPsec
Hdr

Enc
Alg

Auth
Alg Mode

1 H1-1 Any Any Any TCP ESP AES HMAC-SHA-1 Tunnel

2 H1-1 Any Any Any UDP ESP AES HMAC-SHA-1 Tunnel

Figure 9.2(c) SAs generated from an SPD rule: one SA per protocol type.

SA #
Src

Addr
Dest
Addr

Src
Port

Dest
Port Prot

IPsec
Hdr

Enc
Alg

Auth
Alg Mode

1 H1-1 H2-1 Any Any Any ESP AES HMAC-SHA-1 Tunnel

2 H1-1 H2-2 Any Any Any ESP AES HMAC-SHA-1 Tunnel

3 H1-1 H2-3 Any Any Any ESP AES HMAC-SHA-1 Tunnel

4 H1-1 H2-4 Any Any Any ESP AES HMAC-SHA-1 Tunnel

Figure 9.2(b) SAs generated from an SPD rule: one SA per host pair.

SA #
Src

Addr
Dest
Addr

Src
Port

Dest
Port Prot

IPsec
Hdr

Enc
Alg

Auth
Alg Mode

1 H1-1 Any Any Any Any ESP AES HMAC-SHA-1 Tunnel

Figure 9.2(a) SAs generated from an SPD rule: one SA per rule.

Outbound SPD processing consists of the following steps.

1. Find the first rule in the SPD whose selectors match the packet.
The SPD consists of a set of ordered rules. With the use of wild-
cards as selectors, it is quite possible that multiple rules could apply
to a single packet. Thus, it is essential to put the most restrictive or
strictest rules first.

2. If the rule�s action is to drop the packet or if no applicable rule can
be found, the packet is dropped.

3. If the rule�s action is to send the packet without IPsec protection,
the packet is sent on its way.

4. If the rule specifies IPsec protection, existing SAs that cover that
rule are examined. In the case in which the SA�s selectors match the
packet, the packet is sent to the IPsec-processing routines.

5. If no existing SA can be used for the packet, IKE must negotiate an
SA. If no IKE implementation is available or if the IKE negotiation
fails, the packet is dropped.

6. If a new SA is successfully negotiated, the packet is sent to the
IPsec-processing routines.

As stated in step 2, the RFC on IPsec architecture [6] requires that any
packet for which no applicable SPD rule can be found should be dropped.
In practice, some implementations adhere to that requirement; others allow
such packets to be sent without IPsec protection.

SPD processing for inbound packets differs from outbound SPD proc-
essing; multiple SPD rules and multiple SAs can be called into play for a sin-
gle inbound packet. The IPsec-processing routines first must authenticate or
decrypt packets with IPsec headers whose destination addresses match the
current host�s address. Any IPsec tunnel headers are removed. For each such
header, the applicable SA is found in the SAD using the requisite three indi-
ces: SPI, destination address, and protocol. The packet�s selector values also
are verified through comparison to the SA�s selector values. A record of the
SAs that were used and the order in which they were applied is kept and
passed to the SPD-processing routines. Inbound SPD processing then pro-
ceeds as follows.

1. If each SA in the SAD contains a pointer to its parent SPD rule,
select that rule to be tested first. Otherwise, using the packet�s selec-
tor values, find the first applicable policy rule in the SPD. If the

The Missing Puzzle Piece: Policy Setting and Enforcement 183

packet was tunneled, the selector values are taken from the inner
header.

2. Make sure each SA or SA bundle that protected the packet is
attached to this SPD rule and applied in the required order.

3. If the SPD rule does not apply, try the next applicable rule in the
SPD. Once the appropriate SPD rule has been found, apply
the rule�s action to the packet.

4. If the packet does not satisfy any SPD rule, discard it.

Why might iterative processing be necessary? A single SA can be shared
by multiple SPD rules; if it points to a single rule of the SPD, the pointer
might not point to the correct rule. Figure 9.3(a) illustrates that case. SPD
rule 1 requires both encryption with ESP and authentication with AH for
TCP packets; SPD rule 2 requires only authentication with AH for UDP
packets. To conserve on SA negotiation, a single AH SA is negotiated to
cover both SPD rules, as shown in Figure 9.3(b). The ESP SA has a back
pointer to SPD rule 1, and the AH SA has a back pointer to SPD rule 2.
When a TCP packet comes in, protected by both an ESP header and an AH
header, the AH header is processed last, and its SPD pointer is used. The
packet�s selectors do not match those of SPD rule 2. SPD rule 1 is then
tested, and the TCP packet is a perfect match.

184 Demystifying the IPsec Puzzle

SA #
Src

Addr
Dest
Addr

Src
Port

Dest
Port Prot

IPsec
Hdr

Enc
Alg

Auth
Alg Mode

SPD
Ptr

1 H1-1 H2-1 Any Any TCP ESP 3DES � Tunnel Rule #1
2 H1-1 H2-1 Any Any Any AH � HMAC-SHA-1 Tunnel Rule #2

Figure 9.3(b) SAs pointing to SPD.

Rule
#

Src
Addr

Dest
Addr

Src
Port

Dest
Port Prot Action

IPsec
Prot

Enc
Alg

Auth
Alg Mode

1 H1-1 H2-1 Any Any TCP IPsec ESP
AH

3DES
�

�
HMAC-SHA-1

Tunnel
Tunnel

2 H1-1 H2-1 Any Any UDP IPsec AH � HMAC-SHA-1 Tunnel

Figure 9.3(a) SPD rules: complications and pitfalls.

How can a packet pass the SAD checks but fail at the SPD level? That
can happen in the case of an SA bundle. In Figure 9.3(b), a TCP packet that
arrives with only an AH header would satisfy the SAD selectors for SA 1.
However, it would fail both SPD rules shown in Figure 9.3(a): The action
portion of rule 1 would fail because no ESP header was found, and the selec-
tor portion of rule 2 would fail because it was not a UDP packet.

Following the SPD inbound processing rules as they are presented in
the RFC on IPsec architecture can lead to unwanted results. Figure 9.4(a)
shows a relatively straightforward SPD: Encryption and authentication are
required for all communications to H2-1, with a more stringent encryption
algorithm (AES) for those originating from H1-1 and a less stringent encryp-
tion algorithm (Triple DES) from all other hosts. That gives rise to two SAs,
shown in Figure 9.4(b), one for each rule. If pointers are used from the SAD
to the SPD, a message arriving from H1-1 that erroneously uses Triple DES
is directed to SPD rule 2 and accepted. Similarly, if pointers are not used, but
iterative processing is used, the result is the same. SPD rule 1 will be exam-
ined but will fail, because the encryption algorithm is not AES. Then SPD
rule 2 will be examined, and it will pass, again accepting the erroneous
packet. It appears that, although a prioritized outbound SPD successfully
enforces the most stringent rule, a prioritized inbound SPD with iterative
processing allows the least stringent rule to be followed. To avoid that, the
rules need to be altered. If pointers are not used, the prioritized SPD should
be searched and the search should halt at the first SPD rule whose selectors
match those of the packet. If pointers from the SAD to the SPD are used, the

The Missing Puzzle Piece: Policy Setting and Enforcement 185

SA #
Src

Addr
Dest
Addr

Src
Port

Dest
Port Prot

IPsec
Hdr

Enc
Alg

Auth
Alg Mode

SPD
Ptr

1 H1-1 H2-1 Any Any Any ESP AES HMAC-SHA-1 Tunnel Rule #1
2 H1-* H2-1 Any Any Any ESP 3DES HMAC-SHA-1 Tunnel Rule #2

Figure 9.4(b) Inbound SA rules with pointers to SPD.

Rule
#

Src
Addr

Dest
Addr

Src
Port

Dest
Port Prot Action

IPsec
Prot

Enc
Alg

Auth
Alg Mode

1 H1-1 H2-1 Any Any Any IPsec ESP AES HMAC-SHA-1 Tunnel

2 H1-* H2-1 Any Any Any IPsec ESP 3DES HMAC-SHA-1 Tunnel

Figure 9.4(a) Inbound SPD.

SPD should not be allowed to have multiple entries whose selectors can select
the same packet (more on this later).

These cases illustrate a sad fact of life in the policy arena: Even seem-
ingly simple cases, studied independently, rapidly become complicated.

The most general way to characterize the SAD and SPD is as a series of
databases, one of each type for outbound communications and one of each
type for inbound communications. For a host or gateway that has multiple
external IPsec-enabled interfaces, a separate set of databases would be
required for each such interface. In actuality, the SAD and SPD do not have
to be separate entities within an implementation; they can be implemented
separately, merged into a single entity, or combined with other networking
constructs, such as routing tables or socket definitions. Thus, they do not
necessarily have to take the form of databases. As long as the outward func-
tionality conforms to our description, the organization or placement of the
constructs is irrelevant.

At what point in the communications process is the SPD consulted?
If the IPsec implementation is a sockets-based one that is tightly integrated
with the operating system, it may be necessary only to interrogate the SPD
each time a new socket, inbound or outbound, is created. The action portion
of the relevant SPD rule will be a tightly integrated part of the new socket�s
properties. In other types of implementations, the SPD might be consulted
for each inbound and outbound packet; caching recently applied SPD rules
can expedite the process. For outbound packets, the proper SPD rule must
be found so an SA can be negotiated or applied. If IPsec protection is
required, the packet is then delivered to the IPsec routines; otherwise, it
is dropped or sent on its way. For inbound packets, IPsec processing must
occur first; after those IPsec headers that apply to the current host have been
verified and removed, the SPD must be consulted to ensure that the packet
was properly protected. Only then can the packet be transmitted to its
intended application or forwarded to another destination.

Now that we understand the function of the SPD for a single host, we
can explore the more global policy issues. We have seen how the SPD�s rules,
in conjunction with the SAD�s SAs, are used to control communications,
whether those communications are IPsec-protected or not. The SPD and
SAD are sufficient to handle a single host�s policies and to allow it to use
IPsec to communicate with like-minded hosts. A more global solution
requires several additional elements not handled by this database duo. Obvi-
ously, the next question is this: Where do those rules come from and how are
they enforced?

186 Demystifying the IPsec Puzzle

9.2 The Policy Problem

To understand the broader policy problem and solution, we need to examine
its possible components, the underlying issues, and some new terms relevant
to this area.

9.2.1 Policy Configuration

A single stand-alone host theoretically can set its own policy rules without
affecting or jeopardizing other hosts. But that is not the normal case. Most
hosts belong to networks, whether corporate or private; security gateways
also are often one piece of an extensive and complex whole. In this interde-
pendent model, a host�s security policies can affect other hosts. Insecure traf-
fic allowed onto a network can jeopardize the whole network, not just
the initial recipient of the traffic. With this scenario in mind, it is critical to
define, distribute, and enforce uniform policy rules across multiple hosts and
domains. How can that be accomplished in a secure and efficient manner?

One issue that IPSP has sidestepped is the method in which a host
receives its own policy configuration information. That information is not
necessarily limited to IPsec policy variables. It can also include other configu-
ration information, such as IP address and DNS servers. A number of
mechanisms already are in place to perform that function, and the IPSP
group has declined to add another one to the list. Included in the list of
potential policy configuration delivery mechanisms are: COPS-PR [7] and
SNMPCONF [8, 9]; LDAP [10, 11] for security gateways; DHCP [12, 13]
for hosts; and IPSRA (see Chapter 7) or SACRED [14] for mobile hosts.

The security policies that govern multiple hosts or gateways may origi-
nate from a single source. For example, a single security gateway can be used
to protect multiple network domains within a single site. Each domain can
have its own individual IPsec security policies, all of which will then reside in
the security gateway�s SPD.

An ancillary issue related to policy configuration is the level of inde-
pendence accorded to an individual host relative to its policy configuration.
Whether a host receives its policy-related rules from another host, is precon-
figured by a network administrator, or has a user-friendly policy configura-
tion mechanism, the question remains: Can a user override or change the
configured rules or add new ones? One possible scenario is to assign a priority
to each policy rule. An individual host cannot change high-priority rules;
lesser priority rules cannot be overridden, but they can be strengthened. For
example, if the network�s global policy requires email to be integrity

The Missing Puzzle Piece: Policy Setting and Enforcement 187

protected but not encrypted, individual hosts can require encryption as well.
Of course, adding more stringent policy requirements can result in prevent-
ing communications with entities not equipped to meet those demands. On
the other hand, some companies might want to dictate policy and not allow
clients to change it; they might require that all traffic be IPsec-protected and
all traffic be routed through a security gateway.

9.2.2 Policy Servers

If IPsec policy is to be centrally distributed and administered, a new entity
can be injected into the equation: a policy server. This entity is either a secu-
rity gateway that also assumes those functions or a separate host dedicated to
its policy functions. The policy server knows which hosts it is responsible for.
Its policy-related information is configured by a network administrator. That
information is then distributed to the network hosts for which the policy
server is responsible, to the hosts� potential peers, or to both. All policy-
related information affecting a local host can be distributed to that host at
boot time, when policy changes occur, or as the result of a query. More lim-
ited information can be sent to a nonlocal host that wishes to communicate
with a local host; that action will always result from a query.

If the policy server resides within a protected network, communica-
tions with local hosts that also reside within the same network can be unpro-
tected. But communications with road warriors that are physically located
outside the network and receive their policy instructions from the policy
server must be protected. Communications with potential peers must be
authenticated and, possibly, encrypted as well. In addition, the gateway�s
SPD must contain rules that allow policy-related queries to reach the policy
server and allow policy-related responses to exit the gateway.

There currently is no clear consensus regarding protection of policy-
related communications. On the one hand, potential peers need to know the
policy server�s location and need to be able to query the policy server. On the
other hand, revealing too much network-related and policy-related informa-
tion can increase the network�s vulnerability to attacks.

9.2.3 Gateway Discovery

When a host sets off on the journey toward IPsec-protected communica-
tions, a number of factors not under the host�s control can facilitate or
impede that journey. Before an IKE negotiation can proceed, a host needs to
know whether its peer is empowered to conduct its own IKE negotiations

188 Demystifying the IPsec Puzzle

and provide its own IPsec protections, or whether those protections will be
provided by one or more security gateways. In the latter case, it must be able
to determine the location and identity of the gateways.

A host may be ignorant of the location of its own security gateways.
That can happen in a complex, multilayered network or because of changes
to network topology. In such cases, gateway discovery necessitates the identi-
fication of all security gateways that lie between a host and its peer, whether
those gateways provide IPsec protection for the initiating host or for the peer.

There are a number of facets to security gateway discovery.

• Locating the security gateway. This can be done either directly or indi-
rectly. A query can be directed to a policy server or a secure DNS
repository, which then responds with the security gateway�s address.
Alternatively, some sort of gateway probe message can be sent to the
peer and intercepted by the gateway. The gateway can then respond
with its address. There is a dichotomy inherent in this type of
exchange. On the one hand, allowing bona fide peers to discover
the identity of a network�s security gateway is an essential enabler
for secure communications. On the other hand, handing out that
information unnecessarily can allow attackers to map out network
topology that is not publicly available.

• Authenticating the gateway. Not only does the peer have to prove its
identity to the host, but its security gateway must also authenticate
itself.

• Proving that the gateway is authorized to act on behalf of the host. This
issue is separate from gateway authentication. A host has to have
irrefutable proof that the peer�s IPsec protection is actually provided
by the gateway.

• Locating a backup gateway. If a gateway fails, communications with
the peer will come to a standstill, even though the peer is still avail-
able. A backup gateway can pick up where the original gateway
halted and renegotiate SAs to account for the revised gateway loca-
tion and identification.

9.2.4 Policy Discovery

It also can be beneficial to know in advance whether an IKE negotiation has
a chance of succeeding. When the SPD�s rules are somewhat complex,
involving selectors other than IP addresses, it is doubtful that an IKE

The Missing Puzzle Piece: Policy Setting and Enforcement 189

negotiation can succeed without some foreknowledge of the peer�s security
requirements. If a host can discover, prior to IKE initiation, whether any
of its approved security policies also will be acceptable to its peer, that
eliminates a major obstacle. If multiple security gateways are involved, policy
discovery may have to be performed recursively, to accommodate multiple
SAs with differing endpoints.

There are two models of peer policy discovery. In the centralized
model, there are multiple security policy domains, each consisting of a collec-
tion of hosts and security gateways. Each domain also has one or more policy
servers, which are responsible for distributing IPsec policies to subsidiary
hosts and gateways. Hosts external to the domain would also be able to
obtain policy information from the server prior to initiating an IKE negotia-
tion with one of the domain�s hosts. In the distributed model, each host is an
island of IPsec independence. It can obtain its policy from another source,
but responsibility for communicating those policies to potential peers rests
solely on the individual host.

The question of whether gateway discovery information should be pro-
tected from eavesdroppers also applies to policy discovery. In both cases, the
information clearly needs to be authenticated and integrity protected. But it
is not as clear-cut whether it should be encrypted. If not, it can be exchanged
before an IKE phase 1 exchange; if it requires encryption, it can be
exchanged under the protection of an IKE SA.

Another issue is whether policy discovery should be combined with
either gateway discovery or policy server discovery. An obvious benefit is
minimizing the amount of traffic necessary to conduct the pre-IKE policy
processing. However, separating the processes can result in greater security.
Once the gateway or policy server has been authenticated, the policy
information will be delivered only to a known and trusted entity. In
addition, policy discovery can take place in a more secure manner, with
encryption if that is viewed as desirable.

9.2.5 Policy Exchange

To ensure a productive IKE negotiation and subsequent IPsec communica-
tions, it may not be sufficient to engage in unilateral policy discovery. The
peers may have to conduct a pre-IKE policy exchange, so that each peer
knows exactly what types of SAs are required by the peer and its security
gateways. A series of prioritized policy alternatives may have to be offered.
Each alternative may require multiple SAs, some with the same endpoints

190 Demystifying the IPsec Puzzle

and some with different endpoints. The IKE payloads do not lend them-
selves to this type of complex, multilayered exchange. Thus, in addition to
a protocol that will be used to conduct the policy exchange, a new language
or message format is required that will facilitate the pre-IKE policy
discovery.

9.2.6 Policy Resolution

Once the peers have exchanged prioritized policy discovery information, one
of the peers must attempt to resolve the peers� disparate policies and find
out whether any common ground can be found. Thus, the language used
for pre-IKE policy exchange should lend itself to the resolution process as
well. Alternatively, it should be in a format that can be easily translated into
a resolution-applicable format. The policy exchange language must be well
defined, vendor neutral, and capable of interoperability. It should be easy
for humans to understand, so that security snafus and black holes can be
avoided. It also should be amenable to automated processing and verifica-
tion. If the policy resolution language is distinct from the policy exchange
language, it can be proprietary.

Policy resolution does not necessarily have to be performed by the end
hosts. If a policy server is involved, it can handle the policy discovery and
resolution for the end hosts and gateways. An added benefit is that the policy
server can cache other hosts� policy requirements, making the process more
efficient in the long run. The policy server can also sign and authenticate the
policy information, removing those burdens from the end hosts as well.

Adding pre-IKE policy discovery, exchange, and resolution increases
the processing burden and could leave hosts open to a massive denial-of-
service attack. That possibility is mitigated by the fact that the most expen-
sive operations are borne by the initiator.

9.2.7 Policy Decorrelation

As we have seen, the SPD contains an ordered set of policy rules. The use
of wildcards in one or more selector fields can result in overlapping policy
entries. For SPD processing, as it is defined in the document on IPsec archi-
tecture, careful ordering of the rules generally prevents the unintended appli-
cation of a general rule to traffic that necessitates a more specific one. When
we attempt to connect the SPD�s policy rules with other aspects of policy
processing, overlapping selectors can be extremely problematic.

The Missing Puzzle Piece: Policy Setting and Enforcement 191

If a host receives its policy configuration rules from more than one
source, or if a local network administrator is allowed to override the default
policy configuration rules imposed by a central policy server, it may be neces-
sary to merge two sets of ordered policy rules, which can be a complex under-
taking and may result in unintended consequences. In the areas of policy
exchange and policy resolution, two peers are exchanging and resolving sets
of alternative and possibly complex policy rules. Evaluating each rule or bun-
dle of rules as an independent entity is enough of a task; adding the aspect of
interplay between the alternatives would make it an impossible undertaking.
Thus was born the notion of policy rule decorrelation, which is a requirement
that, within a set of policy-related rules, the selectors of any two rules cannot
apply to the same packet. Figure 9.5(a) shows a sample set of SPD rules
for scenario 2, and Figure 9.5(b) shows the decorrelated version of the same
set of rules. In general, the only difference is the transformation of wildcard

192 Demystifying the IPsec Puzzle

Rule
#

Src
Addr

Dest
Addr

Src
Port

Dest
Port Prot Action

IPsec
Hdr

Enc
Alg

Auth
Alg Mode

1 SG1 SG2 500 500 Any Accept � � � �

2 SG1 SG2 Not
500

Not
500 Any IPsec AH � HMAC-SHA-1 Tunnel

3 H1-1 Not
H2-1

Any Any Any IPsec ESP AES HMAC-SHA-1 Tunnel

4 Not
H1-1

H2-1 Any Any Any IPsec ESP AES HMAC-SHA-1 Tunnel

5
Not
H1-1

Not
H2-1 Any Any Any IPsec ESP 3DES HMAC-SHA-1 Tunnel

Figure 9.5(b) Sample SPD rules after decorrelation.

Rule
#

Src
Addr

Dest
Addr

Src
Port

Dest
Port Prot Action

IPsec
Hdr

Enc
Alg

Auth
Alg Mode

1 SG1 SG2 500 500 Any Accept � � � �
2 SG1 SG2 Any Any Any IPsec AH HMAC-SHA-1 Tunnel
3 H1-1 Any Any Any Any IPsec ESP AES HMAC-SHA-1 Tunnel
4 Any H2-1 Any Any Any IPsec ESP AES HMAC-SHA-1 Tunnel
5 N1 N2 Any Any Any IPsec ESP 3DES HMAC-SHA-1 Tunnel

Figure 9.5(a) Sample SPD rules before decorrelation.

selectors to a list of values to which the rule does not apply. The values are
the ones for which other rules have already been defined.

9.2.8 Policy Compliance Checking

Even after a host has configured its policy, decorrelated the rules, and
exchanged and resolved policy information with every possible communicat-
ing peer for every possible type of traffic, eternal vigilance is still necessary.
Inbound and outbound traffic must be inspected to ensure that no packets
contrary to policy sneak through. Although the preliminary steps may be
more complicated and processor intensive, without constant policy compli-
ance checking the whole edifice will crumble. The SPD processing incorpo-
rates such checks; implementing them would require each implementation
to code and debug this critical and complex methodology. The SPD rules
and their relationship to the SAD have given rise to much confused and
befuddled debate. Another, quite possibly safer approach is to define a uni-
versal policy language for which an automated compliance checker can be
developed. This language�s use could be restricted to compliance checking,
or it could also be used for some of the other policy-related exchanges as well.

9.3 Revisiting the Road Warrior

Chapter 6 discussed the ways in which a road warrior can establish or prove
its identity-related credentials to conduct an IKE negotiation. A number of
policy ramifications also affect the road warrior.

An important issue is the placement, both actual and virtual, of the
road warrior within the corporate network. If a remote client is assigned an
internal network address, but it physically resides outside the network, the
client could conduct two distinct types of communications: direct Internet
communications from its actual physical address and indirect communica-
tions from its virtual address via the security gateway. Figure 9.6 shows both
types of traffic. Solid lines 1 and 2 constitute an IPsec-protected tunnel from
the remote host to the security gateway. If the client was assigned an internal
network address, it can then send unprotected traffic inside the network, rep-
resented by dotted line 5, or protected traffic outside the network covered by
SG2�s policy, represented by solid line 3. From its external address, it can
send traffic, represented by broken line 4, that is controlled by its own local
policy. Alternatively, SG2�s security policy might prohibit that type of traffic

The Missing Puzzle Piece: Policy Setting and Enforcement 193

and require the client to route all traffic through the gateway, as it would if
the client physically resided on the network.

9.4 IPsec Policy Solutions

The current outlook is a little chaotic. A number of solutions have been pro-
posed, each of which tackles one or more aspects of the IPsec policy thicket.
It is not yet clear which of them, if any, will be the mandated solution. When
and if specific approaches are officially blessed, it will be necessary to specify
how the various pieces of the policy puzzle fit together and interact with each
other. At that point, some approaches may be discarded. If the policy server
approach is adopted, a separate gateway discovery process is not necessary.
The policy server will be able to identify any intervening gateways in the
inquiring host�s domain and specify the gateways� security requirements.

A major unresolved issue is whether each aspect of the solution should
be defined as an independent entity or whether some aspects should be
combined in a unified protocol. For example, should the discovery aspects of
policy (gateway or server discovery, peer policy discovery) be combined
or separate? An obvious benefit to the combined approach is to limit the
amount of preliminary policy-related traffic. However, developers are leery
of a new complex and interlocking protocol. If multiple protocols are
defined, changes to one need not affect the others. The same pluses and
minuses apply to the bundling of policy discovery, exchange, and resolution.
Unfortunately, too many separate pieces can well lead to confusion, ambigu-
ity, and security holes.

194 Demystifying the IPsec Puzzle

Internet

Gateway
SG2

Host H1

Host H2-1 Host H2-2

Host H2-3

Network N2

#1

#3

#4

#2

#5

Figure 9.6 Road warrior communications.

The potential solutions currently on the table take several different
forms: a model of the policy-handling process, a protocol for policy discov-
ery, a data structure that can be used for policy configuration, and languages
to handle several aspects of the problem. Some of the solutions appear fairly
complicated and resource intensive, even for the most straightforward case.
IKE has come under attack for its complexity; it remains to be seen what
level of complexity will be acceptable in a pre-IKE protocol.

9.4.1 The IPsec Configuration Policy Model

The IPsec Configuration Policy Model [15] is an attempt to describe the
policy aspects of IPsec in an abstract, conceptual, object-oriented manner.
The model is not tied to any specification language or to any particular
task-related aspect of policy but can be translated into the appropriate
task-dependent specification language to facilitate the performance of a
particular task, such as policy distribution, configuration, or resolution. This
section does not attempt to describe the model in detail, but mention of
select details will give the reader a sampling of its flavor.

The model consists of a hierarchical set of classes, each of which is char-
acterized by one or more properties. The highest level classes of the model
are taken from a general policy model, the Policy Core Information Model
(PCIM). Those classes are Policy, PolicyGroup, PolicyRule, PolicyCondi-
tion, and PolicyAction. New IPsec-specific classes are derived from each of
those classes. For example, PolicyRule has spawned the IPsec class SARule,
which in turn contains two classes: IKERule and IPsecRule. In each Policy-
Group, the rules are defined in order of decreasing priority. The class
PolicyGroup has two interesting properties: IKERuleOverridePoint and
IPsecRuleOverridePoint. All rules above that priority must be enforced at all
times; rules below the priority can be overriden by rules added by a local
administrator. That enables the distribution of global policy guidelines,
which can then be meshed with locally dictated rules.

Each PolicyRule has one or more conditions that lead to the applica-
tion of one or more actions. However, all the rules do not have to take effect
under the same circumstances. Each rule can be set in motion by a triggering
event, which can be one of the following:

• System start-up;

• A user action;

• Traffic (inbound, outbound, or both) not covered by an existing SA;

• An IKE negotiation initiated by a peer.

The Missing Puzzle Piece: Policy Setting and Enforcement 195

There are two classes of actions: static and negotiated. The static actions are
the following:

• Bypass IPsec. Do not require IPsec protection.

• Discard traffic. Do not allow this traffic to proceed further.

• No IKE negotiation. Do not allow an IKE negotiation for this traffic.

• Manual. Apply a manually established IPsec SA, using predefined
algorithms and keys.

The negotiated actions are the following:

• Perform an IKE negotiation.

• Perform an IPsec Transport Mode negotiation.

• Perform an IPsec Tunnel Mode negotiation.

To leverage the usefulness of the model, it needs to be attached to more con-
crete solutions: protocols, languages, or both.

9.4.2 The IPsec Policy Information Base

The IPsec Policy Information Base (PIB) [16] consists of a series of tables
that contain policy-related information. The tables are delivered to IPsec-
enabled hosts from a policy server either in response to a direct request from
the host or when the server sees fit to alter policy-related variables that affect
the host; the recommended communications protocol is COPS-PR. The
information can then be used by the host to construct its internal SPD.
The information contained in the tables includes policy rules (selectors and
actions), IKE and IPsec SA requirements, allowable cryptographic trans-
forms, and SA lifetimes. The tables are designed to be consistent with the
IPsec Configuration Policy Model.

9.4.3 The Security Policy Protocol

The Security Policy Protocol (SPP) [17] can be used to conduct gateway and
policy discovery. It also can be used for certificate exchange. It predicates the
use of policy servers for policy configuration and discovery and, optionally,
for policy resolution. If a hierarchical policy structure is desirable within a

196 Demystifying the IPsec Puzzle

policy domain, a chain of trust is established, consisting of a series of policy
servers, each of which can cryptographically prove that it is responsible for
the policy of the next policy server in the chain. SPP defines message formats
that can be used for server-to-server policy exchange and host-to-server pol-
icy discovery.

All SPP messages require source address authentication and integrity
protection. Within a policy domain, that can be provided through the use of
IPsec; messages that traverse multiple policy domains carry a digital signature
that covers the whole message. Each message also carries a timestamp, which
can be used for anti-replay protection. That requires either an authoritative
time source or time synchronization between the communicating entities.

The policy information carried in SPP messages can be used for policy
resolution, either by individual hosts or by policy servers, but SPP does not
define a resolution methodology. When a host requests policy information
from a policy server, the host can specify whether the policy server should
perform policy resolution for all or part of the chain of trust or whether the
server should just deliver unresolved policy information. If policy resolution
is required, the server merges or resolves policy received from the peer�s pol-
icy server with any local policy requirements before responding to the host.
Because any policy resolution is done either by the initiating host or by that
host�s policy server, the burden of this most demanding aspect of policy pre-
negotiation is borne by the initiator. Thus, it cannot be used to mount a
denial-of-service attack on the responder. On the other hand, if a peer does
not monitor its policy-related traffic, flooding the peer with policy discovery
inquiries could constitute a fairly effective denial-of-service attack.

To enhance the efficiency of the policy discovery process, SPP incorpo-
rates a number of features to facilitate the caching of policy information by
policy servers. Cached information can eliminate the need for a policy server
to request information from a policy server in another domain. However,
care needs to be taken to ensure that the cached information still reflects the
peer�s up-to-date policy requirements. Policy information that is conveyed to
a policy server includes a field that specifies how long that information can be
cached. In addition, SPP messages carry flags that inform the policy server
whether to use cached policy information for the current exchange and
whether to cache policy information for future use.

Although the policies dispensed by the policy servers must be decorre-
lated, SPP does not specify how that should be performed. It also does not
specify the method through which the policy servers are configured with
their initial policies.

The Missing Puzzle Piece: Policy Setting and Enforcement 197

Six types of messages can appear in an SPP exchange.

• Query. A request for policy information sent to a policy server from
a host, security gateway, or another policy server. It optionally can
include policy information that will enable the policy server to nar-
row the scope of the information sent in response to the query.
Three types of information can be requested:

• Security gateway. The identities of all security gateways between
the entity that sent the query and its potential peer;

• Communications security. An indication of whether the potential
peer will allow communications for traffic with specific selectors;

• Certificate. The certificate of one or more of the parties to the
communication or to the policy discovery process.

• Reply. Policy information sent by a policy server in response to a
query message. The reply also echoes the original query to which it is
responding. Alternatively, if the original query was problematic or
erroneous, or if no satisfactory policy information can be found, the
reply contains a diagnostic error code. Five types of information can
be sent:

• Security gateway. The identities of all security gateways, between
the entity that sent the query and its potential peer, for which the
queried policy server or those servers in its chain of trust are
responsible.

• Communications security. An indication of whether the potential
peer will allow communications for traffic with the selectors
specified in the query. The response is to permit unprotected traf-
fic, deny all such traffic, or allow the traffic with IPsec protection.

• SA information. The IPsec protection required by the peer for the
specified selectors.

• Policy server. The identity of the policy server responsible for the
peer.

• Certificate. the certificate that was requested in the query.

• Policy. Policy information sent to a policy server by a host, security
gateway, or another policy server. The information is intended to be
saved in the policy server�s cache for future use.

• Policy acknowledgment. An acknowledgment by a policy server that it
has received a policy message. This message also contains either an

198 Demystifying the IPsec Puzzle

acceptance of the policy information that was sent or a refusal
together with the reason for the refusal.

• Transfer. Used for bulk policy information exchange between policy
servers. SPP does not specify the format and the content of this
information.

• Keep-alive or heartbeat. A periodic notification sent by a policy server
to a security gateway. The notification informs the gateway that the
policy server is still available to dispense policy information.

Figure 9.7 shows scenario 2 (see Chapter 1) reinforced by the addition
of a policy server for each network. In this case, for host H1-1 to commu-
nicate with host H2-1, the SPP policy discovery procedure would work as
follows.

1. Host H1-1 sends a policy query to PS1, the policy server for net-
work N1.

2. If PS1 already has H2-1�s relevant policy in its cache, it responds
immediately to H1-1. Otherwise, PS1 sends a signed policy query
to H2-1.

3. SG2 intercepts the query and forwards it to PS2, the policy server
for network N2.

4. PS2 validates PS1�s signature and then sends the policy response,
signed with its private key, to PS1. The response includes the origi-
nal query, the local policy information necessary to accomplish the

The Missing Puzzle Piece: Policy Setting and Enforcement 199

Internet

Host H1-3

Host H1-2Host H1-1 Host H2-2Host H2-1

Host H2-3

Gateway
SG1

Gateway
SG2

Network N1 Network N2

Policy server
PS1

Policy server
PS2

Figure 9.7 Scenario 2 with policy servers.

requested communication, and proof that PS2 is the authorized
policy server for H2-1.

5. PS1 validates PS2�s signature and verifies that PS2 is H2-1�s
authorized policy server. If the response enables caching, PS1
caches H2-1�s policy for further use. If H1-1 has requested PS1 to
resolve H2-1�s policy with the local policy requirements, it does so.
PS1 then sends the raw or the resolved policy to H1-1.

6. If required, H1-1 performs policy resolution. H1-1 is now ready
to initiate an IKE negotiation with H2-1.

9.4.4 The Security Policy Specification Language

The Security Policy Specification Language (SPSL) [18] is a text-based lan-
guage that a system administrator can use to perform policy-related tasks,
such as policy configuration and resolution. It can also be used by a system
for policy enforcement and by peer systems for interoperable policy
exchange. However, no automated methodology has been identified for the
former; no protocol or message format has been specified for the latter.

SPSL can be applied to node-based or domain-based policy. In node-
based policy, each independent entity (host, security gateway, etc.) manages
and enforces its own policy. For domain-based policy, a group of related
nodes rely on one or more policy enforcement points (PEPs) for their policy
enforcement. Each path leading into or out of the policy domain must con-
tain a PEP. PEPs are extremely powerful entities that can force the establish-
ment and use of IPsec tunnels. Policy servers and/or security gateways can be
either co-located with the PEP or located separately.

Four classes of SPSL objects are currently identified. Each object con-
sists of an ordered set of named attributes, some of which are mandatory and
some optional; each attribute has one or more values. The order of attributes
is significant only when the interpretation of one attribute is dependent on
the value of another. However, if an object is digitally signed, reordering the
attributes can cause object verification to fail. Within each class, the objects
are differentiated by their first attribute, known as the key attribute, which
must have a value that is unique relative to the other members of its class.
The SPSL object classes are as follows.

• Maintainer. Maintainers are management agents that can create,
delete, and change other SPSL objects. They are authenticated either
through passwords or certificates that control the maintainer�s access

200 Demystifying the IPsec Puzzle

to and modification of other objects. Each maintainer has a public
key certificate that is used to sign policies issued by the maintainer.

• Certificate. Certificates are also considered to be management
agents. They are used to sign other SPSL objects.

• Network entity. An individual network entity, which can be a node, a
gateway, or a policy server, is identified by its DNS name and its IP
address. A collective network entity can be a set of nodes, a set of
gateways, or a domain. The first two consist of a list of the appropri-
ate class of individual network entities. A domain is a set of nodes,
gateways, and policy servers. The gateways constitute the PEPs of
the domain.

• Policy. An SPSL policy consists of a set of policy-related conditions
and a related set of prioritized, alternative security actions. The
selectors used in the policy conditions include the standard IPsec
selectors, as well as additional, SPSL-specific selectors. Three of the
extended SPSL selectors are IPv4 fragment, which selects a packet
based on whether it is a fragment; IP header length; and IP version.
Because policies in SPSL are not required to be decorrelated, the
order of policy objects within a domain and the order of policies
within a policy object are significant.

Every policy object is digitally signed with the private key of the policy�s
maintainer; that provides integrity protection and data origin authentica-
tion. SPSL policies can be expressed in a short, long, or combined form.
Figure 9.8 is a sample SPSL policy object in the long form.

9.4.5 The KeyNote Trust Management System

We have already described the SPD processing and its relationship to the
SAD; those steps constitute the original IPsec architectural approach, which
considered only the local policy aspects as they affected the actual IPsec com-
munications and key negotiation. A more policy-centric view can accomplish
the same goal but in a manner that is at once more humanly understandable
and intuitive and at the same time automates the process so that it becomes
more of a �black box.� The policy specifications and proposed communica-
tion are inserted into the box, the crank is turned, and out comes an accep-
tance, a denial, or a specification of further actions that need to be taken.
That is the potential contribution of KeyNote [19�21] to IPsec policy.

The Missing Puzzle Piece: Policy Setting and Enforcement 201

KeyNote, characterized by its authors as a trust management system,
can be applied to a broad range of policy management and compliance
checking problems. It includes a language that can be used to express policies
and other policy-related entities. The language lends itself to automated
processing via a KeyNote interpreter. KeyNote components, which resemble
self-contained executable programs, can be authenticated indirectly through
the use of traditional certificates, or directly through the use of digital
signatures.

As applied to IPsec, KeyNote has four major components:

• Packet filter language. A language that lends itself to the efficient
processing of inbound and outbound packets.

• SA policy language. A more elaborate language that can be used
for policy discovery, exchange, and resolution and for compliance
checking. Figure 9.9 is a sample KeyNote IPsec policy.

202 Demystifying the IPsec Puzzle

ipsec-policy-name: H11-H21-tunnel-long

association: SG1

dst : H2-1

src : H1-1

ike-action: ikemode main \

auth rsa \

cipher des3 \

hash sha1 \

group-desc modp-1024 \

expiry seconds 3600

ike-action: ikemode quick pfs true \

cipher des3 \

hash sha1 \

group-desc modp-1024 \

expiry seconds 900

ipsec-action: esp req \

cipher des3 \

integrity hmacsha1 \

tunnel \

from SG1 \

to SG2

mnt-by: network-admin

changed: network-admin 20010401

signature: network-admin admin-cert rsa-pkcs1 ABCDEFGHIJKLMNOP

Figure 9.8 Sample SPSL policy in the long form.

• IPsec credentials. A language and a procedure for ensuring that policy
entities are authenticated and integrity protected.

• Protocol. Negotiates policy and performs compliance checking using
KeyNote policies and credentials.

The languages are somewhat specified, but the IPsec-specific construc-
tions most likely will need to be more explicitly defined. An automated
general-purpose KeyNote compliance checker has been tested and applied to
IPsec, but the protocol and its interactions with the KeyNote language need
to be fleshed out.

It is not clear whether KeyNote will be an optional or a required ele-
ment of IPsec policy management. The IPSP policy architecture requires that
IPSP policies, when used for anything other than strictly local purposes, be
expressed as KeyNote policies. In particular, it states that policies exchanged
by SPP must be expressed as KeyNote credentials. The SPP draft has no such
expectations.

9.4.6 An Overall Plan

Each approach is at best a partial solution to the IPsec policy problem space.
It is essential to attempt a global, general, and unified approach. Such an
approach should include packet formats and contents for each piece of the
solution. If a different language is required for the node-based processing,
such as decorrelation or policy resolution, it would be helpful to relate the
language used to transport policy-related messages to the language used for
single-node processing. Only when such steps are taken will it become clear
whether the whole problem space has been satisfactorily resolved. As we have
seen, a protocol such as SPP, which needs to take into account the needs of

The Missing Puzzle Piece: Policy Setting and Enforcement 203

Authorizer: "POLICY"
Licensees: �rsa-base64:ABCDEFGHIJKLMNOP�
Conditions: app_domain == �IPsec policy" && doi == �ipsec�

&& pfs == "yes�
&& ah_present == "no" && esp_present == "yes�
&& esp_enc_alg == "3des" && esp_auth_alg == �hmac-sha�
&& esp_encapsulation == "tunnel�
&& remote_ike_address == "SG2";

Signature: �sig-rsa-sha1-base64:QRSTUVWXYZ�

Figure 9.9 Sample KeyNote policy.

stand-alone hosts, domain-based hosts, security gateways, and policy servers,
becomes fairly complex even for the least demanding and simplest example.
It is possible that different policy-related solutions will be needed to address
the needs of different communication models; capitalizing on the specifics of
a particular segment of the problem can make a more streamlined approach
possible.

9.5 Summary

Policy discovery, negotiation, and management make up a critical but not
yet fully explored frontier. Currently, unless they are using the same proprie-
tary implementation, peers need some prior policy-related knowledge before
embarking on an IKE negotiation and subsequent IPsec communications.
Security gateways must be known in advance, and IKE policies must be
either somewhat generic or agreed on in advance. Once a more general
policy-related infrastructure is defined, truly opportunistic IPsec communi-
cations can become a reality.

9.6 Further Reading

The IPSP group�s approach is defined in an architecture document [1] and a
requirements document [2]. There is also an alternative architecture docu-
ment [3]. General policy terminology is defined in [5]. The protocols that
can be used for delivery of policy configuration information are COPS-PR
[7], SNMPCONF [8, 9], LDAP [10, 11], DHCP [12, 13], and SACRED
[14]. The Configuration Policy Model is laid out in [15]; the PIB in [16];
SPP in [17]; SPSL in [18]; and KeyNote in [19�21]. The IPSP email list
archive can be found at http://www.vpnc.org/ipsec-policy.

References

[1] Blaze, M., et al., �IPsec Policy Architecture,� <draft-ietf-ipsp-arch-00.txt>, July 2000.

[2] Blaze, M., et al., �IPSP Requirements,� <draft-ietf-ipsp-requirements-00.txt>,
July 2000.

[3] Cuervo, F., and A. Rayhan, �IPSEC Policy Architecture,� <draft-cuervo-ipsp-
arch-00.txt>, July 2000.

204 Demystifying the IPsec Puzzle

[4] Zao, J., �Semantic Model for IPsec Policy Interaction,� <draft-zao-ipses-policy-
semantics-00.txt>, Mar. 10, 2000.

[5] Westerinen, A., et al., �Policy Terminology,� <draft-ietf-policy-terminology-00.txt>,
July 2000.

[6] Kent, S., and R. Atkinson, Security Architecture for the Internet Protocol, RFC 2401,
Nov. 1998.

[7] Chan, K., et al., �COPS Usage for Policy Provisioning (COPS-PR),� <draft-ietf-rap-
pr-05.txt>, Oct. 2000.

[8] MacFaden, M., and J. Saperia, �Configuring Networks and Devices With SNMP,�
<draft-ietf-snmpconf-bcp-02.txt>, July 2000.

[9] Saperia, J., �Policy Configuration With SNMP,� <draft-saperia-ipsp-spp-00.txt>,
July 2000.

[10] Wahl, M., et al., Authentication Methods for LDAP, RFC 2829, May 2000.

[11] Wahl, M., T. Howes, and S. Kille, Lightweight Directory Access Protocol (v3), RFC
2251, Dec. 1997.

[12] Droms, R., and W. Arbaugh, �Authentication for DHCP Messages,� <draft-ietf-dhc-
authentication-14.txt>, June 2000.

[13] Droms, R., Dynamic Host Configuration Protocol, RFC 2131, March 1997.

[14] Farrell, S., and M. Nystrom, �Securely Available Credentials,� <draft-farrell-
sacred-00.txt>, July 2000.

[15] Jason, J., �IPsec Configuration Policy Model,� <draft-ietf-ipsp-config-policy-
model-01.txt>, July 2000.

[16] Li, M., A. Doria, and J. Jason, �IPSec Policy Information Base,� <draft-ietf-ipsp-
ipsecpib-00.txt>, July 2000.

[17] Sanchez, L., and M. Condell, �Security Policy Protocol,� <draft-ietf-ipsp-spp-00.txt>,
July 2000.

[18] Condell, C., C. Lynn, and J. Zao, �Security Policy Specification Language,� <draft-
ietf-ipsp-spsl-00.txt>, Mar. 2000.

[19] Blaze, M., J. Ioannidis, and A. Keromytis, �Compliance Checking and IPSEC Policy
Management,� <draft-blaze-ipsp-trustmgt-00.txt>, Mar. 2000.

[20] Blaze, M., J. Ioannidis, and A. Keromytis, DSA and RSA Key and Signature Encoding
for the KeyNote Trust Management System, RFC 2792, Mar. 2000.

[21] Blaze, M., et al., The KeyNote Trust-Management System Version 2, RFC 2704,
Sep. 1999.

The Missing Puzzle Piece: Policy Setting and Enforcement 205

10
The Framework: Public Key
Infrastructure (PKI)

�When I use a word,� Humpty Dumpty said, in rather a scornful tone,
�it means just what I choose it to mean�neither more nor less.� �The
question is,� said Alice, �whether you can make words mean so many
different things.� �The question is,� said Humpty Dumpty, �which is to
be master�that�s all.�

Lewis Carroll, Alice�s Adventures in Wonderland

Previous chapters examined mysterious objects called certificates in a number
of contexts related to IPsec and IKE. Those objects are related to a larger
edifice called the public key infrastructure (PKI). PKI and certificates rate
several books on their own. This chapter attempts to present enough back-
ground on these subjects for the reader to understand their role, function,
and significance within the framework of IPsec. Most technological areas
develop their own jargon and acronyms, which serve as a sort of shorthand
for the initiated. The PKI area has more than its share of both, with the inter-
pretation of some acronyms buried three layers deep in a nested acronym
tree. This chapter addresses the most common certificate contents, proce-
dures, and jargon, resulting (one would hope) in PKI-literate users.

As we have seen, it is difficult to define a complex protocol in a com-
plete and unambiguous manner. For PKI, the description and definition of

207

certificates and certificate requests are scattered among a large number of
non-IPsec documents. Agreeing on and pinning down the precise subset
of this constantly developing information is a Herculean task. The most
fruitful method for resolving those conflicts has been the ongoing series
of IPsec interoperability workshops, during which many problems have
surfaced and solutions have been hammered out.

In various aspects of IPsec, we have seen that authentication is
required. A certificate provides assurance that the certificate�s owner is what
it claims to be. But what exactly is that? Many businesses use certificates as an
electronic analog to an ID card. Certificates, then, verify a person�s claim to
be a trusted employee of the company. A certificate is a credential, just as a
driver�s license is a credential. A driver�s license is trusted for two reasons:
the photo ties the license to the owner in an easily verifiable manner, and
the connection is backed by trust in the issuing government agency. Simi-
larly, a certificate ties a public key to its owner, and the connection is backed
by the digital signature of the certificate authority (CA), which is a trusted
entity. Certificate verification requires the user to possess the CA�s public
key, which is used to verify the CA�s digital signature. Once that has been
done, the user can trust the contents of the certificate, including the owner�s
public key. Trust in the CA ensures that the owner�s identity was sufficiently
investigated before the certificate was issued.

The most common type of certificate in use today is the X.509 certifi-
cate [1], defined under the umbrella of the International Telecommuni-
cations Union (ITU). The IETF�s Public Key Infrastructure X.509 (PKIX)
group has developed a large number of documents that address the deploy-
ment of X.509 certificates for the full range of Internet applications and
usage.

The deployment and effective use of a PKI infrastructure require the
solution of a number of global issues and widespread agreement on many
underlying assumptions. As is often the case, IPsec PKI interactions falter
on many levels well below the global ones. It is the minutiae of keys and
certificates that provide those stumbling blocks.

10.1 PKI Functional Components

Who are the players in the PKI process? The following components are
necessary to enable the initial deployment of a PKI and the continued
management and use of its certificates.

208 Demystifying the IPsec Puzzle

• Certification authority (CA). The entity that issues certificates. Each
certificate is signed by the CA�s private key, vouchsafing both its
authenticity and the integrity of its data, including the certificate
holder�s public key and identity. In addition to issuing and signing
the certificates, the CA is responsible for their continued mainte-
nance. That involves reissuing the certificate when it expires or some
other problem occurs, as well as revoking certificates that are no
longer valid and publishing the information in a certificate revoca-
tion list (CRL) or its moral equivalent. The public-private key pair
can be generated centrally by the CA or locally by the certificate
owner. When the keys are not generated by the CA, the CA may
require the applicant to prove that it actually possesses the private
key. This is known as proof of possession (POP).

• Registration authority (RA). The RA is responsible for verifying the
certificate holder�s identity before the certificate is issued. The steps
taken to fulfill that goal depend on the level of security provided by a
certificate and the issuing policies of the CA. If the holder�s identity
is tied to an email address, the registration process can take place
through an exchange of email messages, during which the candidate
certificate holder exhibits the ability to originate mail from the rele-
vant email address. If a round-trip Web-based exchange is deemed
sufficient to verify the IP address of a device that is a potential cer-
tificate holder, a browser session can be used to register. For greater
levels of security, an in-person interview or some other in-depth
investigation may be required, and certificate usage might depend
on the possession of a hardware token as well. In those cases, the RA
not only consists of automated procedures, but human intervention
is required. The RA can be a separate entity, or its functions can be
performed by the CA.

• Certificate holder or owner. Referred to as end entity (EE) in the
PKIX literature, the certificate holder is the object that is bound
to the certificate�s public key and that possesses the corresponding
private key. It can be a person, an email address, a security gateway,
or the like. For IPsec, we are currently interested in identity-based
certificates, which are used to establish an entity�s name or network
address in one of the predefined formats listed in Chapter 2. Using
some of the more restrictive SA selectors, such as port and protocol,
can empower an IPsec certificate to be used for a finer level of access
control as well.

The Framework: Public Key Infrastructure (PKI) 209

Many people feel that a different approach should be taken. A
certificate should not identify who you are but what role or func-
tions you are authorized to perform. The PKIX group has begun to
standardize a privilege management infrastructure (PMI), in which
attribute certificates (ACs) are issued by attribute authorities (AAs).
In this context, the traditional PKI certificates are referred to as
public key certificates (PKCs). Multiple ACs can be tied to a single
PKC; a single AC can be related to multiple PKCs; or ACs can be
used as independent entities.

• Certificate user. Also known as clients in the e-commerce arena and
as peers in the IPsec world, these entities need to transact business
or to communicate with the certificate holder. They use the CA�s
public key to verify the signature on the certificate; after that, they
are free to use the certificate holder�s public key for its intended
use, which can include verification of digital signatures or decryp-
tion of data that were encrypted with the certificate holder�s pri-
vate key.

• Repository. A database in which the certificates and CRLs are stored
and from which they can be accessed by peers wishing to communi-
cate with the certificate holders.

10.2 The PKI World View

A single CA generally issues certificates for a single enterprise, which might
be a business, a government agency, or a department. How do we get from
enterprisewide PKI to worldwide (or at least wider) deployment and use?
Original proponents of PKI envisioned a hierarchical, inverted, tree-like
structure with the root, or most trusted PKI, at the top and successive layers
beneath it. Each CA would issue certificates, signed with its private key, to
the CAs on the next lower level. Assume that two certificate holders, C1 and
C2, hold certificates signed respectively by CA1 and CA2. To communicate,
each would have to �walk� the PKI tree from the top-level CA to the peer.
Figure 10.1 illustrates the tree. All trust stems from the mutually trusted
top-level CA. In this case, C1 and C2 would have to find a certificate path
from the top-level CA to the peer�s certificate. Each would then have to ver-
ify the signatures on the chain of certificates from the peer�s certificate up to
the trusted CA. If two hierarchical PKIs had distinct root CAs, the roots
would have to �cross-certify� each other to enable communications between
holders of certificates of the two separate trees.

210 Demystifying the IPsec Puzzle

At some point, people realized that the world is not hierarchical. The
hierarchical model might work within some limited domains, although trees
with too many levels might require a substantial level of verification-related
computations. An alternative PKI structure, the meshed model, more clearly
models the real world. Arbitrarily complex relationships can result. The root
CAs of several trees can cross-certify each other, but so can individual CAs
within the trees.

What exactly does cross-certification mean? Let�s say that CA1 has
three levels of certificates: Level A is the least secure, level B is intermediate,
and level C is the most secure. CA2 has four levels of certificates, ranging
from level 1 (least secure) to level 4 (most secure). After comparing policies
and procedures, it becomes apparent that CA1�s level A certificates corre-
spond to CA2�s level 1 certificates; CA1�s level B certificates are analogous to
CA2�s level 2 and 3 certificates; and CA1�s level C certificates are comparable
to CA2�s level 4 certificates. If CA1 and CA2 cross-certify each other, holders
of comparable certificates signed by one of the CAs can communicate with
certificate holders of the other CA. To complicate things even more, cross-
certification can flow in both directions or in only one direction. Thus, CA1
might accept CA2�s certificates but CA2 might not accept CA1�s certificates.

10.3 The Life Cycle of a Certificate

Communications between a certificate holder or an aspiring certificate
holder and the CA or RA generally revolve around the following milestones
in the certificate�s life cycle.

The Framework: Public Key Infrastructure (PKI) 211

C1

Intermediate CAs

Top-level CA

CA1
C2

CA2

Figure 10.1 A hierarchical CA structure.

• Certificate establishment. The certificate is issued by the CA, binding
the public key to the certificate holder. This is generally set in
motion when the potential certificate holder sends a CR to the CA.

• Certificate publication. The certificate is made available to potential
users. This can take the form of publication in a directory, posting
on a Web site, availability through email requests, or other methods
agreed on by the community of certificate users.

• Certificate update. If a certificate is about to expire, but the key has
not been used to excess and is considered still to have some useful
life left, the certificate�s life can be extended by updating its expira-
tion date.

• Key update. If a certificate is about to expire, and issuing a new key is
desirable, a replacement certificate can be issued with a new public
key. The old certificate would then be revoked.

• Certificate revocation. The end of the certificate�s useful life, which
can occur as a natural part of the life cycle when the certificate�s
expiration date is reached. Alternatively, it can occur abruptly if the
key is compromised or if the certificate holder is no longer entitled
to the privileges conferred by the certificate. One common case is
that of an employee who quits and is removed from the business�s
PKI. It can also occur at the request of the certificate�s owner. In
such a case, the CA generally requires the use of a previously estab-
lished revocation password to ensure that the entity requesting the
certificate�s termination is in fact the certificate�s owner.

10.4 PKI Protocol-Related Components

We now know the players that must cooperate for successful PKI establish-
ment and deployment. But what are the requirements, in terms of opera-
tional protocols and data formats, that enable users from the same or
different PKI domains to interoperate? The PKIX roadmap [2] identifies
four such components.

• Data content and formats. The format and contents of certificates,
CRs, and CRLs must be standardized. That includes a list of
required fields and allowable values for those fields. The X.509
standard [1] defines the contents of public key certificates in an
extremely broad and flexible manner. RSA defined a whole family

212 Demystifying the IPsec Puzzle

of cryptography-related formats, known collectively as Public Key
Cryptography Standards (PKCS); each member of the family has its
own number, which is appended to the family name. In particular,
PKCS #10 [3] defines the format for CRs, most often used by a
hopeful certificate owner to ask a CA to create a certificate (that does
not yet exist). Certificate requests can also be used by potential cer-
tificate users who want to access or download a specific certificate. In
addition, they appear in IKE CR payloads to ask the peer to send
one or more existing certificates. PKCS #7 [4] is a format that can
be used for a number of cryptographic entities, including digitally
signed certificates and digitally signed CRLs. It also can be used
to send �digital envelopes,� which consist of data encrypted with a
symmetric key, along with the symmetric key encrypted with a pub-
lic key. A newer specification, Certificate Request Message Format
(CRMF), also can be used for CRs.

• Operational protocols. Potential peers of a certificate�s holder need to
be able to retrieve the certificate. They also need to check its current
status, to ascertain whether it is still valid or has been revoked. Plac-
ing the certificates in an accessible directory is a good first step,
but standardized protocols are necessary to accomplish the
certificate-accessing and status-checking operations. Certificates and
CRLs can be retrieved from a directory [5] using LDAP [6�8]. They
also can be requested and obtained via FTP, HTTP, or email.
An alternative to the use of static, periodically updated CRLs is an
online query protocol known as Online Certificate Status Protocol
(OCSP) [9], which allows a potential certificate user to check the
up-to-the-minute status of a certificate.

• Management protocols. CAs and RAs require a different set of proto-
cols than certificate users. CAs need to store, update, and remove
certificates and CRLs. They also must be able to communicate with
other CAs for the purpose of cross-certification and CA hierarchy
establishment. Aspiring certificate holders need to be able to request
a new certificate from the CA, securely provide the CA and RA with
the necessary information, and possibly download the private key
from the CA.

A number of competing protocols have been defined for certifi-
cate establishment and maintenance. Each has its own strengths and
weaknesses, and each is currently used or planned for use by one or
more commercial CAs or CA providers.

The Framework: Public Key Infrastructure (PKI) 213

• Certificate Management Protocol (CMP) [10]. This is a full certifi-
cate life cycle management protocol, specifying all the necessary
messages that could possibly be exchanged by the CA, RA, and
certificate holder or any combination thereof. It is a heavy-duty
protocol, especially because many alternative behaviors are
allowed, and only a few mandatory ones are specified. For exam-
ple, the RA is an optional entity, but if it exists, it can perform
any or all of an array of functions, from user authentication to key
generation. Any required functions not performed by the RA are
assumed by the CA. The preferred message syntax is CRMF. For
backward compatibility, CRs in PKCS#10 format are accepted,
but strongly discouraged. This protocol is actively supported by
Entrust Technologies and Baltimore Technologies.

• Certificate Management Protocol Using CMS (CMC) [11]. This
is a recursive acronym; CMS stands for cryptographic message
syntax. CMC is also a full-service protocol, lacking only the
ability to perform cross-certification. Its messages can be encoded
in multiple formats, including CRMF and PKCS. This protocol
has been blessed by Verisign, Cisco, and Microsoft.

• Simple Certificate Enrollment Protocol (SCEP) [12]. This is a
somewhat limited protocol, created to fill the need for a straight-
forward interactive protocol that can create certificates for
network (specifically IPsec) devices. It was intended for rapid
implementation and deployment while other more complicated
and complete protocols worked their way through the standardi-
zation process. Web-based HTTP messages are exchanged to per-
form certificate issuing and revocation and to access certificates
and CRLs. CRs are in PKCS#10 format; all messages are
PKCS#7-encoded. There is no explicit facility for certificate
renewal; to accomplish that, the certificate holder first must
revoke the certificate and then request a new certificate. A
number of vendors have announced their intentions to imple-
ment SCEP.

• PKCS10 Plus Out of Band (P10POUB). This method will not
be found in any of the standard PKI literature. It was invented
by members of the IPsec community, desperate to successfully
interoperate in the absence of a global PKI infrastructure, and
formally defined in the IKE PKI profile [13]. Communication
with the CA takes place via email messages or through Web
access, with the applicant filling out a form that constitutes the

214 Demystifying the IPsec Puzzle

CR. In either case, the CR is in PKCS#10 format, including the
applicant�s public key; the request also should include the desired
alternative name and certificate extensions. (Certificate fields
are examined later in this chapter.) The CA then sends back the
newly minted certificate in one of a variety of formats.

• Certificate policies and practices. CAs need to specify and adhere
to their individual certificate policy (CP) and certification practice
statement (CPS) [14]. They relate to operational matters and secu-
rity, including the methods used to verify potential certificate hold-
ers� identities, security of physical objects and personnel procedures,
and revocation polices. They affect the level of trust that can be
accorded to the CA�s certificates.

10.5 Certificates and CRLs

A common repository for certificates and CRLs is an X.500 directory. The
directory is a distributed database, which is capable of holding many differ-
ent types of data. In the PKI world, it is used to hold certificates and CRLs.
Those objects are often accessed via the Lightweight Directory Access Proto-
col [8] (LDAP), which permits directory objects to be downloaded. LDAP
does allow for the use of optional access controls and confidentiality, but
they generally are omitted for certificate and CRL retrieval. Because the cer-
tificates� and CRLs� contents are authenticated through the use of the CA�s
digital signature, they can be fetched using an insecure protocol. PKIX also
has defined certificate and CRL access using FTP [15, 16], HTTP [15, 17],
and email. For IKE, those methods suffice if certificates and CRLs are
obtained before the IKE negotiation. IKE can then validate the certificate,
ensuring that its CA is trusted and its contents have not been tampered with,
before using the certificate�s key as part of the peer authentication process.
When the certificates are exchanged as part of the IKE phase 1 exchange with
peer authentication through digital signatures, it is preferable to send the cer-
tificate in Main Mode message 5 or 6, when it can be encrypted and its integ-
rity guaranteed by the authenticating hash. That maximizes the possibility
that the exchange can proceed without sabotage by an attacker that could
otherwise alter the certificate�s contents.

CRLs can be stored and accessed in the same manner as certificates.
CRLs generally are issued at fixed intervals. Certificate revocation can occur
at any time; in particular, it can occur after one CRL has been issued but well
before the next one. Thus, CRLs are not a foolproof method of ensuring the

The Framework: Public Key Infrastructure (PKI) 215

currency of a certificate. OCSP provides more up-to-the-minute informa-
tion, but that protocol has its own complications for IKE, because an IKE
negotiation can time out while waiting for an OCSP response.

10.6 Certificate Formats

For certificates and CRLs to be universally useful, it is important to establish
a standard, unambiguous way in which to describe their components. Ide-
ally, that is the function of Abstract Syntax Notation One [18, 19], generally
referred to as ASN.1. It is a symbolic language, consisting of a series of
rules that, together, definitively describe a composite object; in our case, the
ultimate objects we want to define are certificates, CRs, and CRLs. That is
accomplished in an iterative manner. The initial ASN.1 rule describes the
highest level object in terms of a series of components. Successive rules refine
the definition of each component in an increasingly concrete manner, until
the lowest level, that of digits and characters, is reached.

Figure 10.2 shows the ASN.1 representation of two portions of a
certificate. The first rule defines the general structure of a certificate, which
consists of a �tbscertificate,� the portion of the certificate that will be digitally
signed, an identifier for the algorithm used to create the digital signature, and
the signature itself. The second rule defines the time-related validity period
of the certificate.

Now that we have an abstract way to describe certificates, we need to
be able to translate this structure into an encoding that consists of bits and
bytes. That is where basic encoding rules (BER) and distinguished encoding
rules (DER) come in [20]. Each ASN.1 component is assigned a unique
identifier, a numeric object identifier (OID). BER and DER are used to

216 Demystifying the IPsec Puzzle

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }

Figure 10.2 Sample ASN.1 rules.

translate the abstract definition, using OIDs and the specific data appropri-
ate to an individual case, into an encoded certificate. Figure 10.3 shows the
DER encoding of a sample certificate field, the email address jdoe@bb.gov,
along with two BER alternative encodings. The first example is the DER
encoding; the second is an alternative BER encoding; and the third shows a
BER encoding with the e-mail address broken up into three components:
jdoe, @, and bb.gov.

Why two alternative encodings? The BER rules often allow the same
object to be encoded in several different ways, while the DER rules define
a single encoding for each case. BER can be more efficient to implement,
because its alternative formats generally allow a program to encode or decode
an object in a single pass, without the necessity to look ahead for coming
attractions. Using DER may necessitate some lookahead, but a single stan-
dard encoding is essential to ensure that the verifying signature is computed
over the same entity. Now that we have presented samples of ASN.1, DER,
and BER for the reader�s edification and mystification, we will not delve fur-
ther into their minutiae.

Here�s where it gets even more complicated, if possible. DER-encoded
certificates need to be stored in repositories and transmitted over the net-
work. Some transmission methods, such as email, cannot handle binary
objects. That gave rise to the Privacy Enhanced Mail (PEM) [21], encoding
of the DER encoding of an ASN.1 certificate. PEM-encoded certificates and
CRLs thus can be sent as email attachments. PKCS#10 CRs and PKCS#7
cryptographic objects are defined over the DER format of a certificate. They
can be transformed into, but are not equivalent to, the PEM-encoded ver-
sions. And let us not forget the PKCS#7-wrapped version of PKCS#10
objects. As if that were not confusing enough, the ASN.1 definitions and

The Framework: Public Key Infrastructure (PKI) 217

16 0a
6a 64 6f 65 40 62 62 2e 67 6f 76

16 81 0a
6a 64 6f 65 40 62 62 2e 67 6f 76

36 13
16 04

6a 64 6f 65
16 01

40
16 06

62 62 2e 67 6f 76

Figure 10.3 Sample DER and BER encodings.

OIDs for various certificate pieces are defined in numerous documents, some
intended for the universal PKI domain and some aimed at specific subsets of
that domain.

IPsec implementers have tried to do an end run around some of this
confusion by holding periodic IPsec interoperability workshops, also known
as bake-offs. That allows developers to compare certificate contents and for-
mats. At the end of each workshop, a list of issues that cropped up during the
workshop is compiled. Solutions are discussed on the IPsec email list, and,
once consensus is reached, those solutions are publicized in Internet Drafts.
For vendors who are latecomers to the process, the email list archives supply
a record of previously discussed issues, the array of proposed solutions, and
the rationale behind the ultimate consensual solution.

10.7 Certificate Contents

For an end user of IPsec, it would be nice to treat certificates as opaque
entities that merely serve as grist for the IPsec mill. If that were the case, the
fortunate end user would not need to be aware of the fields and the data
contained within the certificate. Unfortunately, the literature and standards
are replete with quaint compound terms such as subjectAltName and
Distinguished Name.

X.509 certificates consist of a number of basic fields found in all cer-
tificates and a number of optional extensions, added in X.509 version 3. In
addition, communities of certificate users can agree on the definition, for-
mat, applicability, and use of other extensions. The basic fields are as follows.

• Version. Identifies whether the X.509 conventions used in the cer-
tificate conform to version 1, 2, or 3. For PKIX and IPsec, version 3
certificates are used.

• Serial number. A number assigned by the CA that is unique among
all the CA�s certificates.

• Signature. The identifier (OID) of the algorithms used by the CA
to hash and digitally sign the certificate. Two examples men-
tioned in the IKE PKI profile are id-dsa-with-sha1 and
sha-1WithRSAEncryption. The IKE PKIX profile suggests that all
IKE implementations should be able to handle both RSA signatures
and DSA signatures using the SHA-1 hash algorithm. As mentioned
in Chapter 4, DSA can be computed only over a SHA-1 hash, but RSA
can use a variety of hash algorithms, including MD5 and SHA-1.

218 Demystifying the IPsec Puzzle

• Issuer. The distinguished name (DN) of the CA. It generally is made
up of a series of fields that uniquely characterize the CA. Figure 10.4
contains two DNs, the first of which could apply to a CA. Following
are some of the fields that can be used within the DN and examples
of their use.

• Country (C): C = United States
• Organization (O): O = Bureau of the Budget
• Organizational unit (OU): OU = Red Ink Department

• Validity. The start and end dates that delineate the certificate�s life-
time. If an IKE SA is authenticated via a certificate, or an IPsec SA is
generated using this type of IKE SA, the IKE PKI profile does not
allow either SA to expire any later than the certificate�s expiration
date. It also requires IKE to check that no certificates in the path
from the peer�s certificate up to the issuing CA have been revoked.

• Subject. The DN of the certificate�s holder. The second distin-
guished name in Figure 10.4 could appear as a certificate�s subject.
All the fields shown for a CA�s DN can also be used for a certificate
holder�s DN. Some additional DN fields appropriate only for the
holder�s DN are these:

• Common name (CN): CN=Joe Smith
• Surname (SN): SN=Smith
• Given name (GN): GN=Joe
• Personal name (PN): PN=�SN=Smith, GN=Joe�

The DN was originally intended to place its subject at a unique
node in the X.500 directory information tree (DIT), which was
supposed to organize the whole world into a uniform, hierarchical
framework. Because a unified framework has not been established,
this field is of dubious value, and some of its lesser used components
(such as organizationalUnitName, localityName, and stateOr Prov-
ince Name) are applied differently, if at all, in different domains.

• Subject�s public key information. The public key algorithm to be
used in conjunction with the certificate holder�s public key and the
key itself.

The Framework: Public Key Infrastructure (PKI) 219

C US, O �Bureau of the Budget�, CN �Federal PKI�, L Baltimore= = = =

C US, O �Bureau of the Budget�, OU �Red Ink Department�, CN �John Doe�, L Gaithersburg= = = = =

Figure 10.4 Sample distinguished names (DNs).

• Unique subject and issuer (CA) identifiers. These fields are intended
to ensure that a CA cannot issue multiple certificates that have the
same owner�s name but were actually issued to disparate entities.
They also guard against the problem of multiple CAs with the same
issuer name. PKIX disapproves of this approach and recommends
careful use of issuer and subject namespace instead.

• Signature algorithm. The identifiers of the algorithms used by the
CA to hash and digitally sign the certificate. This field is not crypto-
graphically protected by the digital signature, to enable the certifi-
cate�s users to verify the signature. It is duplicated in the signature
field mentioned above, which is included in the digital signature;
that ensures that an attacker cannot disable use of the certificate by
altering this field.

• Signature value. A hash of the DER-encoded form of the certificate�s
contents, digitally signed with the CA�s private key.

The X.509 data definitions include multiple extensions, some of which are
necessary for Internet-related communications. To interoperate, there must
be agreement on support for those extensions. The handling of optional
extensions also must be defined. That is an important step toward the
interoperation of two implementations, one of which includes optional
extensions but does not necessarily expect the peer to process them, and the
other of which can ignore those extensions without rejecting the peer�s whole
data object. Extensions to the basic certificate fields can be processed in sev-
eral different ways. If they are marked as critical fields within the certificate,
certificate users must be capable of processing and acting on the extension
field�s information; otherwise, the certificate must be ignored. Extension
fields not marked as critical can be ignored by certificate users that do not
accept or understand that particular extension. Some of the more commonly
accepted extensions are the following.

• CA. This extension includes the cA bit, used to identify a CA�s pub-
lic key certificate, whose private key can be used to sign other certifi-
cates as well as its own. When this extension is used and the cA bit is
on, the maximum nesting depth of lower-level CA certificates may
be specified. This extension�s official name is basic constraints. PKIX
requires this extension to be present and to be marked as critical in
all CA certificates. The cA bit cannot be on for certificates whose
owner is not a CA.

220 Demystifying the IPsec Puzzle

• Alternative name. This GeneralName (GN) contains any identifying
names of the certificate�s holder that do not fit the DN format,
for example, email address, fully qualified domain name (FQDN),
IP address, or URL. If the certificate holder does not have a DN,
this field must be present and is considered a critical field. The
DN and any alternative names are the identities that are bound to
the certificate�s keys. This field is formally labeled subjectAltName, a
term that is often found in the PKI literature and commonly used
by PKI aficionados. To add to the confusion, PKI documents fre-
quently refer to email addresses as RFC822 [22] names.

For IKE, one of the names in the certificate must match exactly
the peer�s phase 1 ID payload; the ID types and content must be
identical. For example, if the initiator�s phase 1 ID is a DN, it must
match the DN in the certificate presented to the responder. If the
responder�s phase 1 ID is an email address, one of the names that
constitute the certificate�s subjectAltName field must be the same
email address.

The IKE PKI profile allows (but does not require) an IKE par-
ticipant to terminate an IKE negotiation if this field contains an IP
address or DNS domain name that is deemed unacceptable in
the context of the current negotiation. When a peer�s certificate is
accessed and examined prior to an IKE negotiation, that informa-
tion can be used by an initiator to generate the appropriate proposals
or by a responder to evaluate the initiator�s proposals. If the certifi-
cate is sent as part of an IKE negotiation, an unfortunate situation
can occur. In the digital signature mode, the certificates are
exchanged after the protection suite has been negotiated. Thus, a
proposal may have been proposed or accepted based on the IP
address from which the peer sent the packet, which may not corre-
spond to the address or other identity information found in the cer-
tificate. In the public key encryption modes, when a responder has
multiple certificates, the relevant one is identified after the exchange
of proposals, with the responder possibly facing the same dilemma as
in the digital signature mode. In such a case, the only possible solu-
tion might be to terminate peremptorily the current phase 1 nego-
tiation, optionally starting a new negotiation that takes into account
the ID information that has been gleaned from the certificate.

• Key usage. Suggests or mandates the uses to which the certificate�s
public-private key pair can be put, including digital signature, key

The Framework: Public Key Infrastructure (PKI) 221

encipherment (i.e., transport of symmetric session keys), data enci-
pherment (i.e., encryption), and certificate signing (found only in a
CA�s certificate). If this is a critical field, the key can be used only for
one of the designated purposes. To limit the exposure of the private
key, a single entity could have several certificates, each one used for
a different purpose. If this field is marked as critical, that speciali-
zation is enforced; otherwise, it is suggested but not enforced. The
PKIX profile requires the certificate signing bit to be in accord with
the basic constraints extension. For a CA, both the cA bit and the
certificate signing bit must be on; for a non-CA, both must be either
omitted or turned off.

• Extended key usage. In addition to the standardized key usage fields,
additional ones may be defined for special-purpose use. One such is
iKEIntermediate, proposed in the IKE PKI profile to designate a key
that can be used for phase 1 IKE authentication. (In the early days of
IKE, PKIX [23] listed several other IKE-related extended key usage
values, but they were rejected by the proponents of IPsec.) This
field also can be marked critical. If both the key usage field and the
extended key usage fields are critical, the certificate�s key can be used
only in situations that satisfy both fields.

• CRL distribution points. A pointer to the location of the CRL. This is
useful in cases where the CRLs are not colocated with the certificates.

There is a subtle interplay among flexibility, interoperability, and security
in the use and interpretation of many of the certificate fields [24], notably
the key usage and extended key usage bits. If an IKE implementation is
extremely demanding and limiting in the use, interpretation, and validation
of certificate fields, security is enhanced but interoperability may be impos-
sible. At the other end of the spectrum, too much flexibility maximizes
interoperability at the expense of meaningful security.

A CR has the same format as a certificate, but the only fields that con-
tain data are those whose values are required to be matched by the certificate
sent by the IKE peer or generated by the CA in response to the request. The
CRs format specification currently is up to version 2.

10.8 IKE and IPsec Considerations

Standards written for general certificate and PKI use do not always fulfill the
specific needs of IKE and IPsec users. Pieces of the solution are contained in

222 Demystifying the IPsec Puzzle

the PKIX roadmap [2], the PKIX profile [23], and the IKE PKI profile [13].
At times, the PKIX profile and the IKE PKI profile are at odds; in such
a situation, IKE wins hands down. An IPsec PKI profile has not yet been
written, so its relationship to its fellow travelers is as yet undefined. On the
other hand, with continued use and experimentation, new issues continue to
crop up.

In phase 1, peers� certificates can be requested through the use of a CR
payload and transmitted using a certificate payload. In addition to the peer�s
certificate, the certificate payload can include the certificate of the CA whose
private key was used to sign the peer�s certificate; a whole chain of intermedi-
ate CA certificates used to sign and validate the peer�s certificate; and/or the
CA�s latest CRL. Clearly, those payloads can contain data that would be of
interest to an attacker. In particular, if the certificate�s identity is not identi-
cal to the peer�s ID address, revealing that information defeats IKE�s phase 1
identity protection. Thus, the phase 1 messages in which it makes sense
to include either CRs or certificates vary, depending on the type of phase 1
negotiation and the peer authentication method that is used.

When IKE peers use digital signatures for authentication, the certifi-
cate�s public key is only needed by the initiator in Main Mode message 5 and
by the responder in Main Mode message 6. Thus, to preserve identity protec-
tion, certificate payloads should be included only in Main Mode messages 5
or 6 if the identity is a value other than the peer�s IP address or domain
name. A CR can include a specific CA or certificate type, limiting the types
of certificates that will be accepted by the requester. If an IKE initiator does
not want to reveal this type of information, it can send its CR payload as part
of an encrypted Main Mode message 5. Because the responder�s only
encrypted message is the last Main Mode message, message 6, there is no way
for a responder to send a protected CR payload. In Aggressive Mode, because
identity protection is not an issue, the CR payload can be part of message 1
or 2; in Base Mode it can appear in messages 1, 2, or 3. In those two modes,
because the public key is used in only the last two messages, the certificate
payload can appear in any message.

With preshared secret key authentication, certificates can be requested
and exchanged for use in future PKI-based negotiations. The messages in
which they can be used are identical for those in digital signature mode.

When the authentication method is public key encryption, the initiator
and responder public keys are used in Main Mode messages 3 and 4, respec-
tively; in Aggressive Mode and Base Mode, they are required in messages 1
and 2. Thus, for Aggressive Mode and Base Mode, CRs are not useful.
The initiator must obtain the responder�s certificate before the negotiation

The Framework: Public Key Infrastructure (PKI) 223

begins, but the initiator can preemptively send its certificate to the
responder. In Main Mode, the CRs can be sent in messages 1 (initiator) and
2 (responder), and the resulting certificates can be exchanged in messages 2
(responder) and 3 (initiator). Needless to say, in such a case the CRs are not
protected. The initiator�s certificate can be protected with the peer�s public
key (original encryption mode) or the generated symmetric key (revised
encryption mode), but the responder�s certificate must be sent in the clear.

A CR can be used to request a single peer certificate or the whole chain
of intermediate CA certificates; the chain may or may not include the top-
level root certificate. The original IKE documents do not descend to this
level of specificity, leading to numerous interoperability problems. The IKE
PKI profile attempts to rectify that with an extra layer of detail gleaned from
interoperability workshops. However, an implementation still has to be
somewhat flexible in this area. A CR for a PKCS#7-wrapped certificate
should be interpreted as a request for the whole chain of certificates, while a
request for either a signature certificate or a key exchange certificate should
result just in the return of the single peer certificate. If the CR identifies a
specific CA, the resulting peer certificate ultimately should be rooted in the
requested CA. In such a case, it is assumed that the requester already has the
top-level CA certificate, and the returned certificate chain need include only
the peer certificate and the intermediate CA certificates. If no CA is specified
in the CR, the IKE PKI profile allows the receiver to return either a certifi-
cate chain or a single certificate rooted in a CA that the receiver believes will
be trusted by the requester, if such a beast exists. A CRL request that lacks a
CA and is not sent in conjunction with a CR should be ignored.

In the event that a CR asks for a certificate or a CRL that the receiver
cannot provide, the IKE PKI profile recommends that no response to that
request should be provided. On the other hand, there are conditions under
which the receiver should send a notification message containing one of the
IKE standard diagnostics. Those messages, which can apply to either errone-
ous CR payloads or erroneous certificate payloads, include the following.

• Invalid key. The public key is not the expected size.

• Invalid ID. The ID type is not a valid IKE ID type or is not sup-
ported by the peer�s implementation.

• Invalid certificate encoding. Something about the format or encoding
of the certificate or CR is unpalatable to the recipient.

• Invalid certificate. The payload contains invalid data or formatting.

224 Demystifying the IPsec Puzzle

• Certificate type unsupported. The encoding is valid but not supported
by the peer�s implementation.

• Invalid CA. The CA field is erroneous or invalid.

• Invalid hash. The signed hash is not the expected length.

• Authentication failed. The signature�s value is not the expected one.

• Invalid signature. The signature is not the expected length.

• Certificate unavailable. The peer cannot send the requested cer-
tificate. The existence of this message seems to contradict the IKE
PKI profile�s recommendation not to send any diagnostic in such a
situation.

10.9 Summary

Certificates are an essential element of a widespread, multivendor, interoper-
able IPsec. Although great strides have been made in PKI technology and
products, the �killer app� for PKI has not yet surfaced. The knowledge to
build PKI-enabled applications and the applications themselves are still in
the early stages of development. Within the IPsec arena, many of the small
details are not sufficiently specified to enable PKI deployment in any but a
small-scale or controlled environment.

10.10 Further Reading

The IKE PKI profile is laid out in [13]. The PKIX roadmap [2] discusses
PKIX history, defines terminology, discusses PKI requirements and players,
and describes each current PKIX document. Each management protocol has
its own defining document: CMP is defined in [10], which also has a good
discussion about the functions of each player, the handling of each life cycle
step, and the way each management message should be performed; CMC in
[11]; and SCEP in [12]. OCSP�s defining document is [9]. Message trans-
port is described in [15�17]. Certificate policies and practices are laid out in
RFC 2527 [14]. X.500 directories are defined in [5]. LDAP is defined in [8];
its use for X.500 directories is detailed in [7]; and its use within PKIX
is further defined in [6]. The general description of X.509 certificates can
be found in [1]; the more specific PKIX certificate description in [23]; and
attribute certificates in [25]. For some really thrilling fare, ASN.1 is defined
in [18]. However, any document that defines certificate or CRL extensions

The Framework: Public Key Infrastructure (PKI) 225

or modifications (e.g., [23]) generally includes the ASN.1 definitions for
those objects. A more recent ASN.1 definition is in [19], but PKIX elected to
stick with the previous version. DER and BER are elucidated in [20]; PEM
in [21]; PKCS#7 in [4]; and PKCS#10 in [3]. [24] contains a humorous and
informational description of each field in an X.509 certificate, along with
a characterization of the idiosyncrasies of numerous current certificate
implementations.

References

[1] ITU-T Recommendation X.509, �The Directory: Authentication Framework,�
June 1997.

[2] Arsenault, A., and S. Turner, �Internet X.509 Public Key Infrastructure: PKIX
Roadmap,� <draft-ietf-pkix-roadmap-05.txt>, Mar. 2000.

[3] Nystrom, M., and B. Kaliski, PKCS #10: Certification Request Syntax Version 1.7,
RFC 2986, Nov. 2000.

[4] Kaliski, B., PKCS #7: Cryptographic Message Syntax Version 1.5, RFC 2315,
Mar. 1998.

[5] ITU-T Recommendation X.500, �The Directory: Overview of Concepts, Models and
Service,� 1993.

[6] Chadwick, D., �Internet X.509 Public Key Infrastructure: Operational Protocols �
LDAPv3,� <draft-pkix-ldap-v3-03.txt>, Sep. 2000.

[7] Wahl, M., A Summary of the X.500(96) User Schema for Use With LDAPv3,
RFC 2256, Dec. 1997.

[8] Wahl, M., T. Howes, and S. Kille, Lightweight Directory Access Protocol (v3),
RFC 2251, Dec. 1997.

[9] Myers, M., X.509 Internet Public Key Infrastructure: Online Certificate Status Proto-
col�OCSP, RFC 2560, June 1999.

[10] Adams, C., and S. Farrell, �Internet X.509 Public Key Infrastructure: Certificate
Management Protocols,� <draft-ietf-pkix-rfc2510bis-01.txt>, July 2000.

[11] Myers, M., Certificate Management Messages Over CMS, RFC 2797, Apr. 2000.

[12] Liu, X., et al., �Cisco Systems� Simple Certificate Enrollment Protocol (SCEP),�
<draft-nourse-scep-03.txt>, Aug. 2000.

[13] Thayer, R., C. Kunzinger, and P. Hoffman, �A PKIX Profile for IKE,� <draft-ietf-
ipsec-pki-req-05.txt>, July 2000.

[14] Chokhani, S., and W. Ford, Internet X.509 Public Key Infrastructure: Certificate Policy
and Certification Practices Framework, RFC 2527, Mar. 1999.

226 Demystifying the IPsec Puzzle

[15] Housley, R., and P. Hoffman, Internet X.509 Public Key Infrastructure: Operational
Protocols�FTP and HTTP, RFC 2585, May 1999.

[16] Kapoor, A., and R. Tschal�r, �Transport Protocols for CMP,� <draft-ietf-pkix-cmp-
transport-protocols-02.txt>, Oct. 2000.

[17] Reddy, S., �WEB Based Certificate Access Protocol�WebCAP/1.0,� <draft-skreddy-
pkix-webcap-00.txt>, May 2000.

[18] �CCITT Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1),� 1988.

[19] ITU-T Recommendation X.680, �Abstract Syntax Notation One (ASN.1): Specifica-
tion of Basic Notation,� 1994.

[20] ITU-T Recommendation X.690, �Specification of ASN.1 Encoding Rules: Basic
Canonical, and Distinguished Encoding Rules,� 1994.

[21] Kent, S., Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based
Key Management, RFC 844, Feb. 1993.

[22] Crocker, D., Standard for the Format of ARPA Internet Text Messages, RFC 822,
Aug. 1982.

[23] Housley, R., et al., �Internet X.509 Public Key Infrastructure: Certificate and CRL
Profile,� <draft-ietf-pkix-new-part1-02.txt>, July 2000.

[24] Gutmann, P., X.509 Style Guide, http://www.cs.auckland.ac.nz/~pgut001/pubs/
X509guide.txtOct. 2000.

[25] Farrell, S., and R. Housley, �An Internet Attribute Certificate Profile for Authoriza-
tion,� <draft-ietf-pkix-ac509prof-05.txt>, Aug. 2000.

The Framework: Public Key Infrastructure (PKI) 227

11
The Unsolved Puzzle: Secure IP
Multicast

I would not join a group which would have me as a member.

Groucho Marx

The previous chapters discussed IP-layer security for unicast communica-
tions, which are messages sent by a source host to a single destination host.
Sometimes, a message originator may want to send a single message to multi-
ple recipients. A number of special Internet routing mechanisms allow that
to be performed with minimal usage of network resources. One method is
multicast, which carries traffic from a single source host to multiple destina-
tion hosts, often residing on numerous diverse networks.

Although multicast can be used for a wide variety of uses, an oft cited
example is cable television, in which a single sender, the cable company,
sends traffic consisting of video broadcasts to a preselected list of recipients,
which constitutes the multicast group. The sender only has to process a sin-
gle message, which is sent through a series of routers that form a tree struc-
ture; at the end of each terminal tree branch lie one or more group members.
Figure 11.1 shows a sample multicast delivery tree, in which the branches are
intermediate routers or switches and the leaves are the local routers that
deliver the multicast messages to group members on their local network. The
beauty of this approach is that the message has to be duplicated only when it

229

reaches a branch in the tree structure. That minimizes the burden on
both the sender and the network at large. When a new host requests to join a
multicast group, a new multicast tree branch is established, if necessary, to
the host�s nearest router.

This type of traffic most decidedly can require security protection; the
nature and severity of that requirement vary, based on the multicast group�s
purpose, characteristics, and membership. Internet standardization has not
yet selected one or more official multicast security protocols. This chapter
presents different approaches to the various challenges, along with their
pluses and minuses, but does not describe specific groupings of the features
that constitute particular protocols.

11.1 Some Examples

The most commonly mentioned example of a multicast group, involving a
single sender and multiple recipients, is a video broadcast, either pay-per-
view TV, cable TV, or a pay-TV station. Another class with multiple senders
and recipients is a teleconference, which could take the form of a committee,
corporate, or town hall meeting; a conference; or a chat group. There is also
distance learning, involving either the one-way communication of a lecture
or the two-way communication of a class. Groups can form to conduct a
multiplayer video game or to collaborate on the production of a journal or

230 Demystifying the IPsec Puzzle

Leaf routers

Branch routers

Figure 11.1 A sample multicast delivery tree.

a document. Members can sign up to receive periodic updates on the news,
stock quotes, weather conditions, or seismic events. As time goes on, the
categories of multicast groups undoubtedly will continue to increase.

11.2 Multicast Logistics

If security is not an issue, central management is not necessarily required,
because multicast operations are handled mostly by multicast routers. The
Internet Group Management Protocol (IGMP) [1] is used to establish and
maintain membership in a multicast group. A host that wants to join a mul-
ticast group communicates the request to its local multicast router. The
router maintains a list of multicast groups that have members among its
local hosts.

The router periodically queries its local hosts regarding current multi-
cast group membership. When a host wants to leave the multicast group, it
does not have to notify the router. It simply waits until the next multicast
query from the router and omits the abandoned multicast group from its
response. The router then updates its internal multicast membership table. A
local multicast group can be handled in this way by a single multicast router.
For nonlocal groups, multicast routers share information; one of the numer-
ous multicast routing protocols is used to build a multicast delivery tree or
trees. In the best case, the only leaf routers that receive multicast messages are
those that have group members within their local network. Each leaf router
forwards the multicast messages it receives, which contain a multicast des-
tination address that was assigned to the particular group, to all hosts on
its network. Nonmember hosts filter out the unwanted packets either at the
hardware level, using hardware filters, or at the IP level.

This mechanism does not require any one entity, host or router, to
maintain a complete list of multicast group members. Each multicast branch
router needs to know only the next multicast router or routers on the delivery
tree; each multicast leaf router needs to know only whether any of its local
hosts are members, but it does not need to know which specific local hosts
belong. That works well in an ideal world, in which multicast resources are
freely available to any host that desires to receive them and in which message
integrity or secrecy is not necessary. If membership must be limited, due
either to monetary considerations or to the secret or proprietary nature of the
information, this model is not sufficient. That is the niche to be filled by
multicast security.

The Unsolved Puzzle: Secure IP Multicast 231

11.3 Functional Requirements

There are a number of ways in which multicast groups can be characterized.
One way is based on the external characteristics of the group [2�4]. Because
those characteristics are numerous, and any individual group is a mix-and-
match combination of them all, it is difficult to come up with a �typical�
multicast group. The most commonly cited external characteristics are the
following.

• Group size. A multicast group can range from a discussion group
with tens of participants, to an interactive conference or class with
thousands of members, to a video broadcast with millions of recipi-
ents. As with most networking technologies, scalability is an issue.
An approach that may work well for a small group might not be fea-
sible for a medium or large group.

• Processing power. Multicast group managers or controllers need to
have considerably more processing power than ordinary members.
But the members� processing power might affect the volume of traf-
fic or the real-time capabilities of the group.

• Group dynamics. A multicast group could be a static group whose
membership is known in advance or a dynamic group that is con-
stantly gaining new members (referred to as joins) and losing old
ones (referred to as leaves). The demands of handling membership
changes also depend on the patterns of joins and leaves: Are they
randomly distributed in time, or do they come in bursts? Do mem-
bers generally stay in the group a long time (also a relative term), or
are there constant changes? The nature of the group also might dic-
tate the speed with which joins and leaves must be processed. For
example, if a multichannel pay-TV server uses the Internet for its
broadcasts, large numbers of members might join right before the
showing of a popular program and leave immediately after it ends. If
each channel constitutes a separate multicast group, rapid processing
of joins and leaves would be essential, because changing channels
would correspond to leaving one multicast group and joining
another. On the other hand, a group that disseminates newspaper
reports could allow more of a delay for both joins and leaves.

• Composition of senders. There are two broad categories of multicast
groups. In one-to-many groups, a single member is always the sender,
and the rest of the group just receives messages. In many-to-many

232 Demystifying the IPsec Puzzle

groups, any member can send messages to the rest of the group.
Even in many-to-many groups, the majority of the traffic might be
sent by one member or by a relatively limited group of members.
For example, in a distance learning class, to allow students to ask
questions and make comments, any member can send a message;
however, the majority of the traffic is generated by the teacher. Some
multicast groups might even allow messages to originate from non-
members, hosts that do not belong to the group.

• Group lifetime. Once formed, a multicast group could last for a few
minutes or days, or it could continue indefinitely.

• Traffic volume. The number of messages can range from a few short
messages to almost continuous, extremely large messages. An exam-
ple of the former is news headlines or updates sent several times each
day; an example of the latter is a cable TV broadcast.

• Traffic requirements. Some multicast traffic must be received rapidly
and reliably; with other traffic, reliability is important but delay
is acceptable. For example, it is difficult to take part in an online
discussion if messages are dropped, received out of order, or not
received until after the discussion has terminated. On the other
hand, bulk data transfer can stand some delivery delay. The speed
and reliability requirements placed on multicast traffic are inde-
pendent of their frequency and volume. Video broadcasts generally
are high volume and require rapid (real-time) delivery; audio broad-
casts also demand real-time delivery but typically are lower volume;
bulk data delivery is high volume but would not require real-time
handling.

11.4 Security Requirements

What concerns us more than the external traits of a multicast group is its secu-
rity requirements. Although those requirements stem from both the group�s
purpose and its external parameters, two groups can have the same member-
ship, function, and characteristics but very different security-related needs.

When secure multicast is not required, no central authority needs to
manage a multicast group or keep track of its membership. For secure mul-
ticast, which by its nature requires member authentication and secret keys,
a more massive administrative infrastructure is required. The administrative
work of managing a secure multicast group is performed by two entities: the

The Unsolved Puzzle: Secure IP Multicast 233

group controller (GC) and the key server (KS). Those functions can be per-
formed by a single host or be split between two or more hosts. The KS nego-
tiates, manages, and updates the group�s secret keys. The GC handles joins
and leaves, ensuring that the multicast delivery tree is up-to-date. It also
authenticates potential new members, possibly through the use of public
key certificates. Numerous multicast protocols have been designed, some in a
manner specific enough for implementation and others at a theoretical level.
Each protocol uses its own terminology to indicate the entities that corre-
spond to the GC and KS. Some approaches delegate or share some of the
GC�s and KS�s responsibilities, either with trusted routers or with a select
group of members. The trusted routers do not necessarily constitute or even
lie on the multicast delivery path. In that way, the multicast routing protocol
can be totally independent of the multicast security protocol. Some of
the documents refer to these entities as a single body called KS+GC [5] or
GCKS [6, 7]. That does not mean they have to be colocated. It is a method
of deferring or avoiding the necessity to address the specifics of the protocol
used for communications between the KS and the GC.

The rest of this section describes the major security requirements asso-
ciated with multicast groups, along with a number of the methods that have
been suggested to satisfy those needs.

11.4.1 Key Management

Two classes of keys are handled by the KS: individual member keys and
the group key or keys. Once a potential group member is authenticated and
approved for membership, the KS establishes a secure channel, including a
unique symmetric key, with the member. That channel conceivably could be
an IKE SA. Its key is used for administrative exchanges between the KS and
the individual member; it also can be used to communicate group policies
and security parameters to the member, as well as to encrypt the group key
for secure delivery to the member. The group key is used to encrypt and
authenticate the multicast group messages sent to the members. That could
be the product of a special multicast key management protocol, resulting in a
group security association (GSA). When the key of an IKE or IPsec SA is
negotiated, both peers contribute portions of the keying material. In a mul-
ticast GSA, the key can be unilaterally dictated by the KS, or it could be
established by the KS with input from one or more group members.

Obviously, using a single group key to deliver all multicast messages to
the group can be problematic. If it is known to all the members, it may not

234 Demystifying the IPsec Puzzle

remain secret; even if secrecy is not an issue, the key might need to be
updated whenever a member joins or leaves. An update would be required
to prevent a new member from accessing group messages sent prior to its
entry and to prevent an ex-member from accessing group messages sent after
its exit.

Embedding the group key in tamper-resistant hardware, such as a
SmartCard or a set-top box, can help to restrict the key�s use to authorized
members without requiring constant updates. However, even those hardware
solutions can be subject to key-guessing attacks, so that solution may not be
sufficient for ultrasecure multicast communications.

Investing all key-related responsibilities in a single KS or GC also can
be problematic. The existence of a single, critical point of failure in a
security-related protocol is never ideal. In addition, the KS and GC can
become overloaded at peak times. Some approaches delegate member
authentication or key distribution to other entities, either trusted routers or
select group members. That mitigates the processing burden but does not
solve the problems related to a single group key. In this distributed approach,
an additional group key is necessary to enable all the KSs and GCs to
communicate in a secure manner.

Other multicast protocols use a tree-based key approach, in which the
KS establishes a group key with a group of intermediate KSs. The interme-
diate KSs each establish a group key with a designated subset of the group
members or, for a tree with multiple layers, with the next intermediate KS in
the tree. That spreads the workload and reduces the number of members that
need to be rekeyed as a result of joins and leaves; however, it does require
each message to be decrypted and reencrypted by each intermediate KS in its
path. The replacement of an intermediate KS involves a significant amount
of processing and additional network traffic. An interesting side effect of this
delegation of responsibility, whether or not it involves multiple group keys, is
that different subtrees can employ different multicast protocols, both for key
establishment and for message delivery. In that way, the higher level KSs can
select one or more protocols that are optimized for intradomain applications,
and the lower level KSs can use protocols that address interdomain issues.
However, that would appear to necessitate an interaction between the mul-
ticast security protocol and the multicast routing infrastructure. Another fac-
tor that should be taken into consideration is the nature of the differences
between protocols. A single KS conceivably could handle multiple disparate
multicast security protocols, but it would be unreasonable to expect that of a
single host that just wants to participate in multiple multicast groups.

The Unsolved Puzzle: Secure IP Multicast 235

11.4.2 Secrecy

Multicast traffic can require protection from eavesdroppers for different
reasons. If a group charges subscribers for membership, secrecy is required
to prevent nonsubscribers from accessing the messages. That would apply to
groups that furnish traffic as diverse as cable TV broadcasts and up-to-the-
minute stock quotes. Alternatively, a group�s messages might require secrecy
because they contain confidential or proprietary information. That could
apply to interactive meetings or discussions.

Apart from the purpose served by secrecy, there are wide variations in
the required time limitations during which the secrecy must remain in effect.
Ephemeral, or short-lived, secrecy is sufficient for stock quotes, which will
shortly enter the domain of public knowledge; for that purpose, it suffices
if the secrecy guarantees only delayed access by nonmembers. Long-lasting
secrecy would be required for confidential or proprietary information. In
addition, PFS might be desirable, to limit the damage that could result from
the compromise of a single key.

Because the logical way to provide secrecy is through message encryp-
tion with a symmetric key, secrecy is subject to all the issues related to key
management and distribution.

11.4.3 Data Integrity

Even when secrecy is not required, data integrity may be necessary for mul-
ticast traffic. An example is a sensor that sends seismic data to a multicast
group. The data must arrive accurate and unaltered. In addition, when
messages are encrypted, ensuring data integrity is critical. If that integrity is
provided with a shared group key, it can be relied on only if all group mem-
bers can be trusted. Otherwise, any group member could use the group key
to modify the data without the knowledge of the rest of the group.

Once a group key or keys have been established, both encryption and
data integrity could be provided through the use of IPsec headers. However,
it seems likely that multicast IPsec will require alterations to the classic IPsec
headers as well.

11.4.4 Source Authentication

When all the members share a single group key, the source authentication
that can be provided through the use of that key and its associated SA differs
from source authentication in unicast traffic. Knowledge of the group key is
sufficient to prove to the recipient that the message was sent by a member of

236 Demystifying the IPsec Puzzle

the group; that is different from proof that the message�s originator was a
specific member of the group.

If individual authentication is required, each message could be digitally
signed by the sender. However, digital signing and verification are expensive
operations. A number of digital signature variations are more efficient than
the standard RSA or DSS signatures. For example, a batch variant of RSA, in
which multiple messages can be signed without significantly more processing
than that required for a single message, could be appropriate for broadcast-
type multicast groups. Other approaches include [8] stream signatures, flow
signatures, hybrid signatures, timed MACs, and asymmetric MACs. The KS
might need to distribute the individual public keys used to verify the digital
signatures.

11.4.5 Order of Cryptographic Operations

In unicast IPsec, when both authentication and encryption are applied in the
ESP header, the data are first encrypted and then authenticated. That enables
recipients to head off attempted denial-of-service attacks in the form of
bogus IPsec-protected packets. If the authentication fails, the packet is dis-
carded; the more expensive decryption operation is not attempted. In mul-
ticast IPsec, the order of operations might depend on the multicast security
protocol. If group authentication and encryption are required, protection
against denial of service would mandate encrypting first and then authenti-
cating. However, if the protocol involves intermediate routers that perform a
series of decryptions followed by reencryption, performing the group authen-
tication first would eliminate the necessity to recalculate the authenticating
MAC multiple times as well. If individual source authentication is used, it
should be applied first if nonrepudiation also is required. Thus, unlike
unicast ESP, the order of cryptographic operations for multicast ESP might
depend on the nature of the multicast group and on which multicast keying
protocol is used.

11.4.6 Membership Management

Processing joins and leaves requires alterations to the multicast delivery tree,
but that is not a major bottleneck, because it is not performed by a central
KS. Authenticating a new member in a timely and efficient manner, espe-
cially if new membership requests arrive in clumps, or bursts, can be a prob-
lem for the KS.

The Unsolved Puzzle: Secure IP Multicast 237

11.4.7 Access-Related Issues

In some cases, timely updating of the multicast delivery tree is required
just as an expedient measure. Nonmembers do not want to be unnecessarily
bothered with unwanted messages, the network should not be burdened with
unnecessary traffic, and new members want to receive messages as soon as
possible.

In other cases, not only is timely update required, but encryption may
be used to enforce group membership and exclusion. Groups may need
to ensure that a new member does not have access to traffic that predated
the member�s join and that an ex-member cannot access traffic that occurred
after the member�s leave. In the case of subscription-based services, such as
video broadcasts, monetary loss can result, but the message contents them-
selves are not compromised by the inclusion of nonmembers. For confiden-
tial or proprietary teleconferences, exposure to recipients who are not current
members can jeopardize the enterprise itself.

An additional access-related issue is whether nonmembers are allowed
to send messages to the group.

11.4.8 Policy Determination

Multicast policy issues are even thornier than those that face the as-yet-
unresolved unicast model. In addition to the issues of policy representation
and determination across multiple domains, different policies may govern
communication between each member and the GC than those that apply to
the group communications. Before the group is set up, those policies must
be set in place. They can be dictated by the GC or negotiated. Negotiated
policies can take the form of policies that are acceptable to all members,
or some sort of weighted voting system can be used. Once the policies have
been established, a member should not join the group until it is fully cogni-
zant of all policy ramifications. Any members that cannot accept the group�s
security-related policies have the option of not joining.

11.4.9 Anonymity

A multicast group may be constituted to provide three different types of ano-
nymity to its members: keeping group members� identities secret from other
members, keeping them secret from nonmembers, or not revealing the iden-
tity of the sender of some or all of the messages. That may be an impossible
goal if the multicast traffic is susceptible to traffic analysis, because exami-
nation of the packets will reveal the sender�s IP address. In addition,

238 Demystifying the IPsec Puzzle

monitoring the multicast delivery tree will pinpoint the location of the
recipients, if not their exact identities.

11.4.10 Nonrepudiation

In some cases, the opposite of anonymity may be required. It might be desir-
able for a recipient to be able to prove that a specific member was the source
of a particular multicast message.

11.4.11 Service Availability

If the multicast traffic is critically important to its recipients, extra resistance
to active attacks may be required. Such attacks might take the form of net-
work flooding or clogging or denial-of-service attacks aimed at the group, the
KS, or the GC.

11.4.12 Firewall Traversal

For a host that is protected by a firewall to participate in a multicast group,
the firewall must allow several types of relevant traffic to traverse the firewall:
join and leave messages from the host to the GC; management traffic from
the GC to the host; key negotiation and update messages in both directions;
and the multicast traffic itself.

11.4.13 Piracy

Although most security threats to a multicast group come from nonmem-
bers, piracy is a threat posed by group members who are willing to reveal
either the group key or unencrypted group messages to nonmembers.

11.5 Whither IP Multicast Security?

Unicast IPsec is a thorny problem that has a partial universally acknowledged
solution, along with other pieces that are in the process of taking shape.
Numerous secure multicast protocols have been proposed. Some are
applicable to any multicast group but are computationally feasible or
reasonably scalable only under certain restrictions; some are optimized for
the characteristics of a particular group. Some have been tested under wide-
scale deployment; some are still experimental or theoretical. Developing a
secure multicast protocol is not an insurmountable problem; finding a single

The Unsolved Puzzle: Secure IP Multicast 239

multicast protocol that is computationally feasible and scalable for all groups,
all senders, and all receivers is. On the other hand, allowing the solution to
encompass too many protocols would be equally harmful, because it would
impose the burden of dealing with the disparate requirements not only on
the GC and KS but also on the individual members.

Recognizing that this problem required further investigation, in 1998
the Internet Society commissioned a research group under the umbrella of
the Internet Research Task Force (IRTF). That group, the Secure Multicast
Group (SMuG), recently released a number of documents [2, 5�11] setting
out the problems and issues inherent in secure IP multicast, alternative
approaches to resolve them, and components or building blocks that can be
defined separately and then combined to surmount the obstacles. Some of
the documents suggest pieces of protocols and message formats, but that level
of detail most likely will be defined by a different group within the IETF.
That will happen once this topic is considered sufficiently analyzed and
understood to be defined at the operational level.

11.6 Summary

Different multicast groups can have very different characteristics, which
affect the functional and operational priorities on which a multicast security
protocol is based. Because those characteristics generally are closely tied to
the functions and purpose of the group, it is conceivable that multiple mul-
ticast key management protocols will be necessary, each with its own specific
advantages and disadvantages. The initiator or manager of the group can
then select the optimal protocol before the group is formed; potential mem-
bers will have to fall in line with that selection if they want to join.

The advantage of multicast is that each message, although destined
for multiple destinations, is processed only once by the originator. A single
packet leaves the source and travels through the network until the first rout-
ing branch. For both the sender and the network, the amounts of processing
and traffic are several orders of magnitude less than they would be if each
recipient�s message was processed and sent individually.

11.7 Further Reading

The sources on this topic all stem from IETF and IRTF working groups.
Most IETF Internet drafts are written in the context of a somewhat

240 Demystifying the IPsec Puzzle

understood problem. Because multicast security is still a research topic, a
number of Internet drafts fully describe the issues, along with the pros and
cons of alternative solutions. They also cite numerous other sources of infor-
mation. There is a considerable amount of overlap among these documents.
A single, modular, and consistent approach is planned but has not yet been
completely laid out. Two treasure troves of multicast information and analy-
sis are [2] and [4]. IGMP is described in [1]. [5] defines several problem areas
related to multicast security and suggests a series of building blocks that
could constitute the solution and the interrelationships among those compo-
nents. [7] contains a conceptual definition of multicast SAs (GSAs) and the
KS. [6] describes three types of GSAs that could satisfy the multicast require-
ments, along with additional payloads and exchanges used for their establish-
ment. [8] suggests an approach to multicast ESP (MESP), including the
requirements for special-purpose algorithms. [9] describes a multicast key
management scheme for large, dynamic groups. [3] lays out a framework
along with key management approaches for the intradomain trunk region as
well as for the interdomain leaf region. [10] further defines the key manage-
ment protocol for the leaf region. [11] elucidates the issues connected with
multicast policy.

References

[1] Fenner, W., Internet Group Management Protocol, Version 2, RFC 2236, Nov. 1997.

[2] Canetti, R., and B. Pinkas, �A Taxonomy of Multicast Security Issues (Updated
Version),� <draft-irtf-smug-taxonomy-01.txt>, Aug. 2000.

[3] Hardjono, T., B. Cain, and N. Doraswamy, �A Framework for Group Key Manage-
ment for Multicast Security,� <draft-ietf-ipsec-gkmframework-03.txt>, Aug. 2000.

[4] Wallner, D., E. Harder, and R. Agee, Key Management for Multicast: Issues and Archi-
tectures, RFC 2627, June 1999.

[5] Hardjono, T., et al., �Secure IP Multicast: Problem Areas, Framework, and Building
Blocks,� <draft-irtf-smug-framework-01.txt>, Sep. 2000.

[6] Baugher, M., T. Hardjono, and B. Weis, �Group Domain of Interpretation for
ISAKMP,� <draft-irtf-smug-gdoi-00.txt>, Sep. 2000.

[7] Harney, H., M. Baugher, and T. Hardjono, �GKM Building Block: Group Security
Association (GSA) Definition,� <draft-irtf-smug-gkmbb-gsadef-01.txt>, Sep. 2000.

[8] Canetti, R., P. Rohatgi, and P. Cheng, �Multicast Data Security Transformations:
Requirements, Considerations, and Proposed Design,� <draft-irtf-smug-data-
transforms-00.txt>, June 2000.

The Unsolved Puzzle: Secure IP Multicast 241

[9] Balenson, D., D. McGrew, and A. Sherman, �Key Management for Large Dynamic
Groups: One-Way Function Trees and Amortized Initialization,� <draft-ietf-smug-
groupkeymgmt-oft-00.txt>, Aug. 2000.

[10] Hardjono, T., B. Cainm, and I. Monga, �Intra-Domain Group Key Management
Protocol,� <draft-irtf-smug-intragkm-00.txt>, Sep. 2000.

[11] McDaniel, P., et al., �Multicast Security Policy,� <draft-irtf-smug-mcast-
policy-00.txt>, May 2000.

242 Demystifying the IPsec Puzzle

12
The Whole Puzzle: Is IPsec the Correct
Solution?

Ben Bag Bag says: Turn it over and turn it over, for all is contained
within it.

Mishnah Avot 5:26

We have now described the various facets of IPsec. Some of them are mature
in both definition and implementation, some are still in the testing stage,
and others as yet have not been fully fleshed out. It is now time to summarize
the pluses and minuses of IPsec, its major competitors, and its future.

We have seen that IPsec has the potential to add a needed layer of
security to Internet traffic. The protections that it can provide include source
authentication, message integrity and confidentiality, replay protection,
some protection from traffic analysis, and some types of access control.
Those protections qualify IPsec to be used in the creation of VPNs. A fully
fleshed-out and agreed-on IPsec could be used to protect not only Internet
traffic but the Internet�s infrastructure.

When a protocol is used extensively to protect infinite variations on
multiple axes (configuration, policy, types of users, etc.), it risks two oppos-
ing types of failure. One is that it will become so complex that it cannot

243

.da dlejc ,da kesde da kesd :xme` ba ba pa

ej:d zea` iwxs

possibly be implemented correctly, let alone in a secure manner. The other is
that it will not meet the needs of so many of its proponents that they will be
forced to add nonstandard or proprietary extensions. That is the tightrope
walked by IPsec.

12.1 Advantages of IPsec

What are the pluses of IPsec protection? The level at which it is provided, the
IP layer, is a major advantage. That means all types of Internet traffic can be
IPsec protected, independent of the specific applications that conduct the
communications. The applications do not need to be aware of the protection
and do not need to be altered in any way to enable it. It also means that the
granularity of protection can vary widely: A single SA can protect all commu-
nications between two hosts or two networks, just specific types of traffic, a
single application-specific session, or many intermediate gradations of cover-
age. The level and type of IPsec protection to be applied, as well as the keys
to provide that protection, are both flexible and negotiable.

Just as specific applications do not have to be IPsec aware, so too users
can be protected in spite of themselves. A network administrator can deter-
mine and enforce either networkwide or host-specific policies. Individual
users can be prevented from altering those policies; they can be allowed to
strengthen the preset policies but be forbidden from diluting or weakening
them; or they can be afforded total control over their own individual
domain.

A distinct advantage of IPsec is that it can be deployed incrementally;
unlike other network-related protocols or technologies, it is not an all-or-
nothing proposition. A business that leases private communication lines
to link multiple sites can replace one of those lines with an IPsec-protected
VPN connecting two sites. Once the kinks are worked out on that relatively
limited segment, the private lines can gradually be replaced by IPsec VPNs
linking all the sites. IPsec can be easily applied to create various flavors of
VPNs: intranets, extranets, and multiple combinations. But IPsec is not lim-
ited to enterprisewide use. A road warrior who accesses a PC, located either at
home or at work, from a laptop can decide to use IPsec to protect those
communications. If the PC is at a business location protected by a firewall,
the firewall must allow these strange new packet headers to pass through the
firewall�s defenses.

Thus, the flexibility and the power of IPsec are its strongest
advocates.

244 Demystifying the IPsec Puzzle

12.2 Disadvantages of IPsec

What are some of the minuses? The use of IPsec carries a cost: additional
processing and increased packet size. That includes the IKE traffic that pre-
cedes the IPsec-protected communications, as well as the additional informa-
tion added to each IPsec-protected packet. Moreoever, IPsec as it exists today
is not for the faint of heart. It can require quite a bit of network-level tinker-
ing. Those who install IPsec but are not sufficiently knowledgeable about
the options not only risk disruption of network communications but serious
security breaches. Like any entity that has been designed through a consensus
process, IPsec is not always as streamlined or as consistent as it might have
been. But, on balance, even its detractors have great hopes and expectations
for its future expansion and use.

12.3 Alternatives to IPsec

For businesses or individuals looking to improve their Internet security, a
number of alternatives to IPsec are currently in widespread use.

12.3.1 Transport Layer Security Protocol

Originally developed by Netscape and known as the Secure Sockets Layer
(SSL), the Transport Layer Security (TLS) [1] Protocol was subsequently
adopted, renamed, and slightly modified by the IETF. It is a session-oriented
protocol that provides security at the transport layer, a higher layer in the
TCP/IP protocol stack than IP. It can more easily provide individual user-
level access protection than the current IPsec. However, that comes at a
price: Applications that use TLS must be modified for the purpose, and each
individual session must establish its own TLS protection. Moreover, TLS can
protect only applications that run over TCP. TLS is currently used to protect
browser traffic and quite possibly could continue to be used for that purpose
even after IPsec has been more universally deployed.

12.3.2 Layer 2 Tunneling Protocol

The Layer 2 Tunneling Protocol (L2TP) [2] is an extension of the Point-to-
Point Protocol (PPP) [3], which was developed to incorporate dial-up traffic
into an IP network. PPP allows a dial-up user to connect with its destination
and authenticate through the use of a protocol such as RADIUS. It then cre-
ates a PPP tunnel, encapsulating the phone link in an IP packet, enabling the

The Whole Puzzle: Is IPsec the Correct Solution? 245

non-IP phone traffic to act like any other Internet traffic. That is useful if the
user is dialing into a network via a local call. With the advent of ISPs, an
additional leg was added: The first leg, handled by PPP, is from the user to
the ISP�s modem; the new leg, from the ISP�s modem to the network entry
point, is handled by IP. L2TP creates an extended tunnel that includes the
PPP tunnel and the new leg and extends from the dial-up user to the network
entry point. That enables the user to authenticate directly to the network
rather than to the ISP. Once it is established, an L2TP tunnel contains both
control-type messages and the data traffic itself. L2TP allows for authentica-
tion of the tunnel endpoints via any of the PPP authentication mechanisms.
However, it does not include any mechanism for the encryption of either
control or data packets or for data packet integrity.

A number of schemes have been suggested [4�6] for the protection of
L2TP traffic by IPsec, thus providing the facilities of a secure VPN [7, 8].
Like IP, PPP and L2TP were designed to maximize communications with
minimal security protections. The purists are opposed to dependence on
inherently insecure protocols, while the pragmatists oppose the redefinition
of extensive machinery that is already part of existing protocols. This is
another debate that most likely will be resolved in the marketplace. In the
short term, the warring parties have agreed to disagree, and a number of
different variations have been fielded. For opportunistic, multidomain,
interoperable IPsec to be a reality, a unified solution would be preferable. In
the longer term, there most likely will be a shakeout, and one approach will
triumph.

There is another substantive objection to the use of L2TP over IPsec.
IPsec�s tunnel mode is intimately and intricately connected to other aspects
of the protocol, including the tunnel and policy selectors. That is not
possible when IPsec is used in conjunction with another type of tunneling;
security- or policy-related controls are sacrificed in such a case. The IPsec
processing cannot take into account the specific nature of the L2TP-
encapsulated traffic that is protected by IPsec. By the time the traffic is exam-
ined, the IPsec processing has been completed; thus, fields that should be
used as selectors are not accessible to IPsec.

The use of L2TP also has been suggested to fill in nonstandardized
areas within IPsec, such as the exchange of policy or configuration informa-
tion between a road warrior and a gateway. The L2TP messages could be
tunneled using a previously negotiated ISAKMP SA. This approach has been
suggested by the �use existing technology and do not reinvent the wheel�
camp. However, that is vociferously countered by the �do not layer protocols
that were defined with no security features on top of a secure protocol�

246 Demystifying the IPsec Puzzle

proponents. So far, there has been no meeting of the minds, and the volume
of the debate continues to escalate.

12.3.3 Point-to-Point Tunneling Protocol

The Point-to-Point Tunneling Protocol (PPTP) [9] is a predecessor of L2TP
that shares L2TP�s major goals. A version of PPTP, with proprietary Micro-
soft extensions, is found in most Microsoft Windows operating systems.
Thus, it is an attractive and widely accessible vehicle for the creation of
VPNs. Bruce Schneier has criticized the underlying security of Microsoft�s
original PPTP implementation [10] and an improved version [11] and sug-
gests IPsec as a preferable choice.

12.4 IPsec Today

Some of IPsec�s components, including the security headers (ESP and AH)
and IKE, are specified in sufficient detail to enable a reasonable level of
interoperability, following some experimentation. That is all that is required
to establish a VPN between disparate domains under two preconditions. To
enable IKE negotiation, either each domain must trust the other�s root CA
or preshared secrets must be established in advance. In addition, the policy
requirements must be known and agreed on in advance. Some limited
opportunistic IPsec is possible, if the policy requirements of the participants
are either extremely flexible or somewhat standardized and if mutual certifi-
cate recognition is possible. IPsec, with proprietary extensions for policy han-
dling and road warrior configuration, is widely used today to field VPNs.

12.5 The Future of IPsec

IPsec is at times reminiscent of the venerable elephant joke. Several people
encounter an elephant in a dark place, necessitating their discovery of
the nature of the beast only through their sense of touch. The person who
encounters the elephant�s leg pictures an entity resembling a tree trunk. The
one who finds one of the elephant�s ears thinks it is a fan. The person touch-
ing the elephant�s trunk is sure it is a rope. And the person who leans against
the elephant�s side knows it is like a wall. Several aspects of IPsec are plagued
by the elephant problem. Making certain assumptions about specific uses
and users of IPsec enables the solution to be more elegant, efficient, or
secure. But defining a one-size-fits-all garment when we are not too sure of

The Whole Puzzle: Is IPsec the Correct Solution? 247

the elephant�s size or shape presents major problems and leads to unending
and sometimes unresolvable debates regarding the correct approach.

At a recent conference whose sole focus was IPsec1, a panel of experts
was convened to answer these questions: Where are we now? What are the
most pressing issues? What changes can we expect to see? It was agreed that
IPsec and IKE interoperate and that it is possible to create a working IPsec
VPN using the products of any two different vendors. Three or more ven-
dors in an operational (as opposed to experimental or research) environment
is still a tricky business. The consensus was that the following features remain
to be addressed:

• Transparent interoperability among the IPsec implementations of
more than two vendors.

• Simple, failsafe configuration of IPsec devices.

• Secure, user-friendly VPN management and administration.

• A nonproprietary uniform approach to IPsec remote access, includ-
ing authentication that crosses administrative boundaries.

• Interdomain and intradomain policy issues: nonproprietary policy
configuration that is applicable to a wide range of devices (wireless
devices, palm pilots, household appliances); a secure policy distribu-
tion mechanism; gateway discovery.

• Facilitation of IPsec-based VPNs managed by ISPs. Adding
accounting, auditing, and billing capabilities to IPsec devices will
allow ISPs to provide different levels of service to different custom-
ers. It also will allow customers to include quality of service as a
criterion for satisfactory VPN management.

• The inclusion of high availability, backup capability, and resiliency
in IPsec devices.

• The seamless integration of IPsec as an integral part of the network-
ing infrastructure.

• Additional issues that doubtless will crop up as a result of the wide-
spread deployment of IPsec and the increased installation of very
high-speed networks.

248 Demystifying the IPsec Puzzle

1. IPsec2000, Paris Le Defense, October 25�27, 2000, http://www.upperside.fr/
baipsec2.html.

When asked whether IPsec should and would be simplified, Steve
Kent, one of the main architects of IPsec and the author of many Internet
Drafts, replied that everyone connected with IPsec agrees that it is too com-
plex. However, when polled on essential features versus expendable ones,
there is no agreement. A feature labeled as extraneous and overly complex by
one person appears as essential and nonnegotiable on another person�s list.

12.6 Summary

Now that the IPsec puzzle has been assembled, what is it good for? Will it
suffer the fate of numerous standards-based solutions: to be hung on the wall
or shoved into the closet? Nowadays, even as an incomplete solution, IPsec
has a number of very useful applications. It is no longer an esoteric topic
relegated to experimental uses. It is deployed and used in a large number
of diverse networks, providing remote access security, VPN capabilities, and
general IP-level protection. Once the policy and PKI components are more
fully fleshed out, the use of IPsec may well expand into every facet of Internet
communications and infrastructure protection. Its use will spread and diver-
sify as universal solutions are developed that remove the remaining barriers
to its widespread deployment.

12.7 Further Reading

General discussions of VPN frameworks and requirements can be found
in [7] and [8]. Each of IPsec�s rivals is defined in its own RFC: TLS in
RFC 2246 [1], L2TP in RFC 2661 [2], and PPTP in RFC 2637 [9]. PPP is
described in RFC 1661 [3]. Schneier�s critique of Microsoft�s PPTP appears
in [10, 11]. Differing approaches to the marriage of L2TP and IPsec can be
found in [4] and [5]. An IPsec VPN that uses IP tunnels is proposed in [6].

References

[1] Dierks, T., and C. Allen, The TLS Protocol: Version 1.0, RFC 2246, Jan. 1999.

[2] Townsley, W., Layer Two Tunneling Protocol (L2TP), RFC 2661, Aug. 1999.

[3] Simpson, W., The Point-to-Point Protocol (PPP), RFC 1661, July 1994.

[4] Patel, B., et al., �Securing L2TP Using IPsec,� <draft-ietf-l2tpext-security-01.txt>,
Aug. 2000.

The Whole Puzzle: Is IPsec the Correct Solution? 249

[5] Srisurech, P., Secure Remote Access With L2TP, RFC 2888, Aug. 2000.

[6] Touch, J., and L. Eggert, �Use of IPsec Transport Mode for Virtual Networks,�
<draft-touch-ipsec-vpn-00.txt>, Mar. 2000.

[7] Gleeson, B., et al., A Framework for IP Based Virtual Private Networks, RFC 2764,
Feb. 2000.

[8] Yu, J., �Criteria for Evaluating VPN Implementation Mechanisms,� <draft-yu-vpn-
criteria-00.txt>, July 2000.

[9] Hamzeh, K., Point-to-Point Tunneling Protocol (PPTP), RFC 2637, July 1999.

[10] Schneier, B., and Mudge, �Cryptanalysis of Microsoft�s Point-to-Point Tunneling
Protocol (PPTP),� Proc. 5th ACM Conference on Communications and Computer
Security, ACM Press, Nov. 1998, http://www.counterpane.com/pptp.{pdf, ps, zip}

[11] Schneier, B., Mudge, and D. Wagner, �Cryptanalysis of Microsoft�s PPTP Authenti-
cation Extensions (MS-CHAPv2),� CQRE �99, Springer-Verlag, Heidelberg, Germany,
1999, pp. 192�203, http://www.counterpane.com/pptpv2.{pdf, ps, zip}.

250 Demystifying the IPsec Puzzle

List of Acronyms and Abbreviations

AA attribute authority

AC attribute certificate

AES Advanced Encryption Standard

AH Authentication Header

AM Aggressive Mode

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BER basic encoding rules

BITS bump in the stack

BITW bump in the wire

BM Base Mode

251

CA certification authority

CAST Carlisle Adams/Stafford Tavares

CBC cipher block chaining

CFB cipher feedback

CHAP Challenge Handshake Authentication Protocol

CMC Certificate Management using CMS

CMP Certificate Management Protocol

CMS cryptographic message syntax

CN common name

COPS Common Open Policy Service Protocol

COPS-PR COPS Usage for Policy Provisioning

CP certificate policy

CPS certificate practice statement

CR certificate request

CRACK challenge/response for authenticated cryptographic keys

CRL certificate revocation list

CRMF Certificate Request Message Format

DER distinguished encoding rules

DES Data Encryption Standard

DF don�t/may fragment flag

252 Demystifying the IPsec Puzzle

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DIT directory information tree

DN distinguished name

DNS Domain Naming System

DOI domain of interpretation

DSA digital signature algorithm

DSS Digital Signature Standard

EAP Extensible Authentication Protocol

ECB electronic codebook

EE end entity

ESP Encapsulating Security Protocol

FIPS Federal Information Processing Standard

FQDN fully qualified domain name

FTP File Transfer Protocol

GC group controller

GN general name

GSA group security association

H host

HTML Hyper Text Markup Language

List of Acronyms and Abbreviations 253

HTTP Hyper Text Transfer Protocol

IAB Internet Architecture Board

iaPCBC integrity-aware plaintext-ciphertext block chaining

ICMP Internet Control Message Protocol

ICV integrity check value

ID identity or identifier

IDEA International Data Encryption Algorithm

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IKE Internet Key Exchange

IMAP Internet Message Access Protocol

IP Internet Protocol

IPCOMP IP compression

IPsec Internet Protocol Security

IPSP IP Security Policy

IPsra IP Security Remote Access

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IRTF Internet Research Task Force

ISAKMP Internet Security Association and Key Management Protocol

254 Demystifying the IPsec Puzzle

ISP Internet service provider

ITU International Telecommunication Union

ITU-T International Telecommunication Standardization Sector

IV initialization value (or vector)

KS key server

L2TP Layer 2 Tunneling Protocol

LDAP Lightweight Directory Access Protocol

MAC message authentication code

MD message digest

MESP Multicast Encapsulating Security Protocol

MF more/last fragment

MIB Management Information Base

MM Main Mode

MODP modular exponentiation

MTU maximum transmission unit

N Network

NAT network address translation

NSA National Security Agency

OCSP Online Certificate Status Protocol

OFB output feedback

List of Acronyms and Abbreviations 255

OID object identifier

OTP one-time password

P10POUB PKCS 10 Plus Out of Band

PAP Password Authentication Protocol

PCBC Plaintext-Cyphertext Block Chaining

PCIM Policy Core Information Model

PEM privacy enhanced mail

PEP policy enforcement point

PF protocol family

PFS perfect forward secrecy

PIB policy information base

PIC Pre-IKE Credential Provisioning

PID Process Identifier

PIN Personal Identification Number

PKC public key certificate

PKCS Public Key Cryptography Standards

PKI public key infrastructure

PKIX Public Key Infrastructure X.509

PMI Privilege Management Infrastructure

PMTU path maximum transmission unit

256 Demystifying the IPsec Puzzle

POP post office protocol or proof of possession or point of presence

PPP Point-to-Point Protocol

PPTP Point-to-Point Tunneling Protocol

PRF Pseudo-Random Function

PS policy server

QM Quick Mode

QOS quality of service

RA registration authority

RADIUS remote authentication dial-in user service

RFC Request for Comments

RIP Routing Information Protocol

RIPEMD Race Integrity Primitives Evaluation Message Digest

RSA Rivest/Shamir/Adelman

RSIP Realm-Specific Internet Protocol

SA security association

SACRED securely available credentials

SAD and SADB security association database

SCEP Simple Certificate Enrollment Protocol

SG security gateway

SHA Secure Hash Algorithm

List of Acronyms and Abbreviations 257

SKIP Simple Key Management for Internet Protocol

SMTP Simple Mail Transfer Protocol

SMuG Secure Multicast Group

SN sequence number

SNMP Simple Network Management Protocol

SNMPCONF Configuration Management with Simple Network Man-
agement Protocol

SPD security policy database

SPI security parameters index

SPP Security Policy Protocol

SPSL Security Policy Specification Language

SSL secure sockets layer

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TFESP Transport-Friendly Encapsulating Security Protocol

TLS transport layer security

TOS type of service

TTL time to live

UDP User Datagram Protocol

ULA user-level authentication

URI Universal Resource Identifier

258 Demystifying the IPsec Puzzle

URL Uniform Resource Locator

VPN virtual private network

WINS Windows Internet Naming Service

WWW World Wide Web

XAUTH extended authentication

XOR exclusive Or

List of Acronyms and Abbreviations 259

About the Author

Sheila Frankel is a senior computer scientist at the National Institute of Stan-
dards and Technology (NIST). She is currently responsible for the technical
development of NIST�s IPsec and IKE reference implementations, Cerberus
and PlutoPlus; and NIST�s interactive Web-based IPsec interoperability
tester, IPsec-WIT. She remembers when it was possible to have absolute
computer security: The computer was behind glass, and the operator handed
you a printout. In those days, she contributed to the development of IBM�s
optimizing Fortran compilers. She holds a B.A. in mathematics from Yeshiva
University and an M.S. in computer science from New York University�s
Courant Institute of Mathematics. Married and the mother of five children,
she resides in Silver Spring, Maryland.

261

Index

Abstract Syntax Notation One
(ASN.1), 216

Advanced Encryption Standard
(AES), 54, 69

algorithm, 77�78
defined, 77
Federal Information Processing

Standards (FIPS), 78
Aggressive Mode, 88, 108�10

authentication through digital
signatures, 109

authentication through preshared secret
keys, 108

authentication through public key
encryption, 109

drawbacks, 110
See also Internet Key Exchange (IKE)

Auditing, 35�36
Authenticated hash, 124
Authentication

extended, 139�40
hybrid, 140�42
IKE, 88�90
legacy methods, 132�34
negotiation schemes, 135
source, 236�37

through digital signatures, 103, 109, 111
through preshared secret

keys, 103, 108, 111
through public key

encryption, 104, 109, 111
through revised public key

encryption, 104, 109, 112
Transport Mode host-to-host SA, 29
Tunnel Mode gateway-to-gateway

SA, 29
user-level (ULA), 145

Authentication algorithms, 62�68
HMAC, 66�67
MD5, 64
RIPEMD-160, 68
SHA-1, 65�66
See also Cryptographic algorithms

Authentication Header (AH), 15�38
adjacent, 22�23
auditing, 35�36
Authentication Data field, 20
complications, 32�35
connectionless integrity, 15�16
data origin authorization, 16
defined, 13
fields, 19�20

263

Authentication Header (AH) (continued)
format, 19�20
inbound message processing, 30�32
location, 20�21
nested, 22�23
Next Header field, 19, 26
outbound message processing, 25�29
Payload Length field, 19
placement in Transport Mode, 20, 21
placement in Tunnel Mode, 21�22
privacy and, 37
protections, 15�16
replay protection, 16, 37
RESERVED field, 19
security associations (SAs), 16�19
Security Parameters Index (SPI) field, 19
Sequence Number field, 20
summary, 37�38
threat mitigation, 37
See also Encapsulating Security Payload

(ESP) header
Authorization

data origin, 16
proof, 189

Base Mode, 88, 110�12
authentication through digital

signatures, 111
authentication through preshared secret

keys, 111
authentication through public key

encryption, 111, 112
defined, 110
See also Internet Key Exchange (IKE)

Basic encoding rules (BER), 216�17
�Best common practice,� 153
Blocks

blocksize, 60
DES processing, 71�72
rounds, 60
Triple DES processing, 75

Blowfish algorithm, 76
Bump-in-the-stack (BITS), 24
Bump-in-the-wire (BITW), 25

CAST algorithm, 76
Certificate (CERT) payload, 99, 105, 143

Certificate Management Protocol
(CMP), 214

Certificate Management Protocol using
CMS (CMC), 214

Certificate practice statement (CPS), 215
Certificate requests (CRs)

format, 222
Main Mode and, 224
payload, 99, 223

Certificate revocation list (CRL), 209
certificates and, 215�16
storage/access, 215

Certificates
contents, 218�22
CRLs and, 215�16
establishment, 212
formats, 216�18
holder/owner, 209�10
invalid, 224
life cycle, 211�12
publication, 212
revocation, 212
unavailable, 225
update, 212
users, 210
X.509, 218�22

Certification authority (CA), 209
defined, 209
hierarchical structure, 211

Challenge Handshake Authentication
Protocol (CHAP), 134

Challenge-response
mechanism, 132
payload, 143

Challenge-Response for Authenticated
Cryptographic Keys

(CRACK), 134, 142�45
challenge-response negotiation, 144
defined, 142
exchange initiation, 142
negotiation illustration, 144, 145
password/user ID negotiation, 145

Cipher Block Chaining (CBC)
Mode, 68, 74

Ciphertext, 68
Circular shift operation, 61

264 Demystifying the IPsec Puzzle

Commit bit, 116�17
defined, 116
Quick Mode and, 116�17

Confidentiality, ESP, 42, 43
Configuration Policy Model, 195�96
Connectionless integrity, 15�16
Cookies

exchange, 95
IKE, 94�95

Credential-based approaches, 145�50
client-side certificate generation, 148
defined, 146
IKE phase 1 variant, 146
PIC, 149
private key storage location, 147
public-private key pair

generation, 146�47
server-generated shared secrets, 149
server-side key-pair generation, 148
server-side key storage, 148
TLS, 146
See also IKE remote authentication

Cryptographic algorithms, 59�83
AES, 77�78
authentication, 62�68
as block algorithms, 60
Blowfish, 76
CAST, 76
circular shift operation, 61
complications, 78�79
DES, 70�72
ESP header encryption, 68�78
HMAC, 66�67
IDEA, 77
MD5, 64
modular arithmetic, 61
NULL, 77
public key cryptography and, 79�82
RC5, 77
RIPEMD-160, 68
secret keys, 60, 62
SHA-1, 65�66
Triple DES, 72�76
underlying principles, 60�62

Cut-and-paste attack, 78�79

Dangling SAs, 163

Data Encryption Standard. See DES
algorithm

Datagrams, 10
Data origin authorization, 16
Demystifying the IPsec Puzzle

goal, xvii
organization, xvii�xviii
scenarios, 2�3

Denial-of-service attacks, 94
DES algorithm, 70�72

block processing, 71�72
complexity, 70�71
defined, 69, 70
as mandatory ESP encryption

algorithm, 69
modes, 70
overall logic, 73
round function, 74
secret key, 70
tables, 72
Triple, 72�76
See also ESP header encryption

algorithms
Diffie-Hellman exchange, 80�82

additional, 81�82
calculations, 94, 95
computation basis, 81
defined, 80�81
keys and, 99�100
parameters, 99
See also Public key cryptography

Digital signature algorithm (DSA), 65
Digital signatures, 80, 90

authentication through, 103, 109, 111
defined, 80

Distinguished encoding rules
(DER), 216�17

Domain Naming System (DNS), 6

Encapsulating Security Payload (ESP)
header, 41�57

authentication data, 45
Authentication Data field, 44
complications, 52
confidentiality, 42, 43
criticisms and counterclaims, 52�54
data, 45

Index 265

Encapsulating Security Payload (ESP)
header (continued)

defined, 13
format illustration, 44
inbound message processing, 49�51
initial, 44
nested and adjacent headers, 46�48
Next Header field, 44
outbound message processing, 48�49
Padding field, 43�44
Pad Length field, 44
parts, 44�45
Payload Data field, 43
placement in Transport Mode, 45
placement in Tunnel Mode, 46
protections, 41�42
Sequence Number field, 43
SPI, 43
summary, 56
threat mitigation, 54�55
traffic analysis protection, 42
trailer, 45
Transport Mode, 42, 55
Tunnel Mode, 55
See also Authentication Header (AH)

End entity (EE), 209
ESP header encryption algorithms, 68�78

AES, 77�78
Blowfish, 76
CAST, 76
CBC Mode, 68
defined, 68
DES, 70�72
IDEA, 77
mandatory, 69
NULL, 77
RC5, 77
Triple DES, 72�76
See also Cryptographic algorithms

Extended Authentication (XAUTH), 139�40
criticisms, 140
defined, 139
exchange, 139�40
method ID, 139

Feistel networks, 69
File Transfer Protocol (FTP), 6

Firewall traversal, 239
Fragmentation, 10�12

by intermediate router, 11
by IP routines, 12
by reduction of packet size, 11
Transport Mode gateway-to-gateway

SA, 29
Transport Mode host-to-host SA, 29

Fully qualified domain name (FQDN), 221

Gateways
authenticating, 189
authorization proof, 189
backup, locating, 189
defined, 3
discovery, 188�89
locating, 189

Gateway-to-gateway scenario
defined, 3
illustrated, 4
See also Scenarios

Generic payload header, 120�21
defined, 120
fields, 120�21

Group controller (GC), 233�34, 235
Group security association (GSA), 234

Heartbeats, 157�62
attributes, 158
defined, 157
interval, 158
ISAKMP SA renegotiation and, 162
last good sequence number, 161
loss packet tolerance, 161
message acceptance, 158
message hash calculation, 160
metrics, 161
negotiation with parameters proposed

by initiator, 159
negotiation with parameters set by

responder, 159
options, 158
packet transmission window, 161
payloads, 159�60
sequence number window, 161
setup negotiation, 157
timeout interval, 161
types of, 158

266 Demystifying the IPsec Puzzle

HMAC algorithm, 66�67
computation, 67
defined, 66

HMAC-MD5, 27, 60, 63
defined, 27
illustrated, 67
specification, 63

HMAC-SHA-1, 27, 60, 63
defined, 27
specification, 63

Hosts, 2�3
Host-to-gateway scenario

defined, 3
illustrated, 4
See also Scenarios

Host-to-host scenario
defined, 3
illustrated, 4
See also Scenarios

Hybrid authentication, 140�42
authentication method IDs, 141�42
layering, 142

Hyper Text Transfer Protocol (HTTP), 5�6

IKE remote authentication, 129�51
complications, 150
CRACK, 142�45
credential-based, 145�50
hybrid authentication, 140�42
ISAKMP configuration method, 134�39
summary, 151
threat mitigation, 151
user-level authentication (ULA), 145
XAUTH, 139�40
See also Internet Key Exchange (IKE)

Inbound messages
AH processing, 30�32
ESP header processing, 49�51

Initialization vectors (IVs)
defined, 68
generation, 69

Integrity check value (ICV), 20
International Data Encryption Algorithm

(IDEA), 77
Internet Architecture Board (IAB), 14
Internet Control Message Protocol

(ICMP), 6

Internet Group Management Protocol
(IGMP), 231

Internet Key Exchange (IKE), 60, 87�126
Acknowledged Notification exchanges, 88
Aggressive Mode, 88, 108�10
authentication methods, 88�90
Base Mode, 88, 110�12
certificates, 98�99
cookies, 94�95
criticisms and counterclaims, 123�25
defined, 13
example, 122�23
exchanges, 88
generic payload header, 120�21
goal, 87
identities, 97�98
identity protection, 97�98
informational exchanges, 118�19
ISAKMP header, 119�20
keys, 99�100
lifetimes, 101
Main Mode, 88, 102�8
message ID, 96
negotiation, 88, 89
New Groups Mode, 88, 117�18
nonces, 97
notifications, 100�101
origins of, 122
payloads and, 88
peer authentication, 89
phase 1 attributes, 91�93
phase 1 hashes, 107
phase 1 negotiation, 101�12
phase 2 attributes, 93�94
phase 2 negotiation, 112�17
proposal payload, 95�96
proposals and counterproposals, 90�94
Quick Mode, 88, 113�16
road warrior and, 129�51
SAD, 121
SA payload, 95
state machine, 121
summary, 125�26
threat mitigation, 125
Unacknowledged Notification

exchanges, 88
vendor IDs, 101

Index 267

Internet Protocol (IP), 5
header field classes, 28
IPv4, 7
IPv6, 7
packetization and fragmentation, 10�12
packets, 7�10

Internet Research Task Force (IRTF), 240
Internet Security Association and Key

Management Protocol
(ISAKMP) SA, 87

establishment, 88
for exchange protection, 118
heartbeats and, 162
not fully established, 119
phase 2 negotiation, 112
See also ISAKMP configuration method;

ISAKMP header
Internet Security Protocol. See IPsec
IPsec

advantages, 244
alternatives, 245�47
Configuration Policy Model, 195�96
disadvantages, 245
features to be addressed, 248
future, 247�49
header processing

implementation, 23�25
headers, 13
impact, 2
introduction, 12�13
mandatory keyed hash algorithms, 27
overview, 2
Policy Information Base (PIB), 196
policy solutions, 194�204
protocol overview, 2, 13
RFCs, 5, 54
solution, 243�49
today, 247
unicast, 239

IP Secure Remote Access (IPsra) group, 130
IP Security Policy (IPSP), 203
IPv4 header format, 7�9

composite fields, 7�8
defined, 8
disadvantages, 9
illustrated, 8
See also Internet Protocol (IP)

IPv6 header format, 9�10
composite fields, 9�10
illustrated, 10

ISAKMP configuration method, 134�39
authentication-related attributes, 136�37
configuration-related attributes, 137
housekeeping-type attributes, 137
messages, 135
See also Internet Security Association

and Key Management Protocol
(ISAKMP) SA

ISAKMP header, 119�20
defined, 119
fields, 119�20
See also Internet Security Association

and Key Management Protocol
(ISAKMP) SA

Keyed hash, 124
Key engine, 166
KeyNote, 201�3

components, 202�3
defined, 202
IPsec credentials, 203
packet filter language, 202
protocol, 203
sample policy, 203
SA policy language, 202

Key server (KS), 234, 235
Key update, 212

Larval SA, 168
Layer 2 Tunneling Protocol

(L2TP), 245�47
defined, 245
tunnel, 246
use of, 246

Legacy authentication methods, 132�34
challenge-response mechanism, 132
examples, 133�34
one-time password (OTP), 132
two-factor mechanism, 132�33
username/password, 132
See also Authentication

Lifetimes, 101
Lightweight Directory Access Protocol

(LDAP), 215

268 Demystifying the IPsec Puzzle

Main Mode, 88, 102�8
authentication through digital

signatures, 103
authentication through preshared

secret keys, 103
authentication through public key

encryption, 104
CRs and, 224
messages, 102�5
See also Internet Key Exchange (IKE)

MD5 algorithm, 64
computation, 64
defined, 64
original AH and, 63
See also Authentication algorithms

Message authentication code
(MAC), 63, 124

Modular arithmetic, 61
Multicast, 229�41

advantage, 240
delivery tree sample, 230
examples, 230�31
logistics, 231
routers, 231
summary, 240
traffic requirements, 233
traffic volume, 233

Multicast groups
access-related issues, 238
anonymity, 238�39
data integrity, 236
dynamics, 232
firewall traversal, 239
functional requirements, 232�33
key management, 234�35
lifetime, 233
many-to-many, 232�33
membership management, 237
nonrepudiation, 239
one-to-many, 232
order of cryptographic operations, 237
piracy, 239
policy determination, 238
processing power, 232
secrecy, 236
security requirements, 233�39
service availability, 239

size, 232
source authentication, 236�37

Nested headers, 22�23
defined, 22
for end-to-end IPsec protection, 47

Network address translation (NAT)
boxes, 35

alternatives, 35
configuring, 36

New Group Mode, 88, 117�18
attributes, 118
defined, 117
exchange messages, 117�18
hash calculations, 118
illustrated, 117
See also Internet Key Exchange (IKE)

Nonces, 96�97
defined, 96
random, 97

Notifications, IKE, 100�101
NULL encryption algorithm, 77

Object identifiers (OIDs), 216, 217, 218
One-time password (OTP), 132
One-way hash, 62
Organization, this book, xvii�xviii
Outbound messages

AH processing, 25�29
ESP header processing, 48�49

Packetization, 10�12
Packets, 12�13
Padding, 43�44
Password Authentication Protocol

(PAP), 134
Path Maximum Transmission Unit

(PMTU), 11, 34, 35
Payloads, 90�91

attributes, 90
CERT, 99, 105, 143
challenge-response, 143
CR, 99, 223
hash, 160
heartbeat, 159�60
ID, 97�98
KEY, 99, 105
proposal, 91, 95�96

Index 269

Payloads (continued)
public key, 143
SA, 90, 95
SPI list, 162
transform, 90
vendor ID, 101

PF_KEY, 165�77
address extension, 175
base message header, 173
complications, 177
defined, 166
exchange illustration, 172
extension headers, 173�76
identity extension, 176
key engine, 166
key extension, 176
lifetime extension, 175
message composition, 173�76
messages, 166�71
proposal extension, 176
SADB_ACQUIRE message, 167
SADB_ADD message, 169
SADB_DELETE message, 171
SADB_DUMP message, 170
SADB_EXPIRE message, 170
SADB_FLUSH message, 171
SADB_GETSPI message, 167�68
SADB_GET message, 169�70
SADB_REGISTER message, 166�67
SADB_UPDATE message, 168�69
sample exchange, 171�72
security association extension, 173
SPI range extension, 176
summary, 177
supported algorithms extension, 176

Phase 1 negotiation, 101�12
Aggressive Mode, 108�10
Base Mode, 110�12
exchange types, 101
goals, 101�2
Main Mode, 102�8
See also Internet Key Exchange (IKE)

Phase 2 negotiation, 112�17
commit bit, 116�17
Quick Mode, 113�16
See also Internet Key Exchange (IKE)

PKCS10 Plus Out of Band
(P10POUB), 214�15

Plaintext, 68
Point-to-Point Protocol (PPP), 245, 246
Point-to-Point Tunneling Protocol

(PPTP), 247
Policy

compliance checking, 193
configuration, 187�88
determination, 238
discovery, 189�90
exchange, 190�91
IPsec solutions, 194�204
KeyNote, 203
problem, 187�93
resolution, 191
servers, 188
SG2, 193
SPSL, 201
See also Security policy database (SPD)

Policy Core Information Model
(PCIM), 195

Policy decorrelation, 191�93
defined, 192
sample SPD rules after, 192
sample SPD rules before, 192

Policy Information Base (PIB), 196
Preshared secret key, 89

authentication through, 103, 108, 111
defined, 89

Private key, 79
Proof of possession (POP), 209
Proposal payload, 91, 95�96

protocol ID, 96
SPI, 96
See also Payloads

Protection suites, 179
Public key cryptography, 79�82

authentication through, 104, 109,
111, 112

Diffie-Hellman exchange, 80�82
digital signatures, 80
operations, 80
private key, 79
public key, 79

Public Key Cryptography Standards
(PKCS), 213

270 Demystifying the IPsec Puzzle

Public key infrastructure (PKI), 90, 207�26
certificate descriptions, 207�8
certificate holder, 209�10
certificate policies and practices, 215
certificate user, 210
certification authority (CA), 209
CMP, 214
CMS, 214
data content and formats, 212�13
defined, 207
functional components, 208�10
infrastructure use, 208
management protocols, 213
operational protocols, 213
P10POUB, 214�15
registration authority (RA), 209
related components, 212�15
repository, 210
SCEP, 214
world view, 210�11

Public Key Infrastructure X.509
(PKIX), 208, 223

Quick Mode, 88, 113�16
boost calculations, 116
calculations, 116
commit bit and, 116�17
exchange illustration, 114
four-message protocol conversion, 117
goals, 113�14
messages, 114
nonce, 117
rekeying order of operations, 156
sample initiator proposal, 115
See also Internet Key Exchange (IKE)

Race conditions, 155
RC5 algorithm, 77
Realm-Specific Internet Protocol

(RSIP), 35
Remote access dial-in user service

(RADIUS), 133�34
Renegotiation, 154�57

defined, 154
Quick Mode, order of operations, 156
race condition, 155

Replay protection, 16
Requests for Comments (RFCs), 5, 54

RIPEMD-160 algorithm, 68
Road warrior

communications, 194
IKE and, 129�51
scenario, 131�32
shared secret, 130

Round function, 60
Round keys, 60
Rounds, 60
Routing Information Protocol (RIP), 6

SADB_ACQUIRE message, 167, 168
SADB_ADD message, 169
SADB_DELETE message, 171
SADB_DUMP message, 170
SADB_EXPIRE message, 170
SADB_FLUSH message, 171
SADB_GETSPI message, 167�68

echo, 168
function, 167
See also PF_KEY

SADB_GET message, 169�70
defined, 169�70
echo, 170
See also PF_KEY

SADB_REGISTER message, 166�67
SADB_UPDATE message, 168�69

defined, 168
echo, 168�69
SA modification with, 169
See also PF_KEY

Scenarios, 2�3
gateway-to-gateway, 3, 4
host-to-gateway, 3, 4
host-to-host, 3, 4
illustrated, 4

Secure Multicast Group (SMuG), 240
Secure Sockets Layer (SSL), 245
SecurID, 133
Security association database (SAD), 16, 42

bloat, 53
characterization, 186
IKE, 121
information, 42

Security associations (SAs), 16�19
bundle applications, 51
dangling, 163

Index 271

Security associations (SAs) (continued)
defined, 16
erroneous usage, 51
ESP, 47
gateway-to-gateway, 29
granularity, 18
host-to-host, 29
inbound rules with pointers to

SPD, 185
indices, 30
information, 16
IPsec-processing routine

information, 17�18
ISAKMP, 87�88
larval, 168
lifetimes, 101
multiple, 18
multiple simultaneous, 96
nested AH, 24
payload, 90, 95
pointing to SPD, 184
rekeying, 154�57
selectors, 16�17
SPD rule relationship with, 181�82
Transport Mode

gateway-to-gateway, 33
Tunnel Mode, 23
unexpired, termination of, 157
unused, 157
See also Authentication Header (AH)

Security parameters index (SPI), 18
Security policy database

(SPD), 18, 53, 180�86
actions, 180�81
characterization, 186
functioning, 180
for inbound packets, 180
inbound processing, 183�84
outbound processing, 183
role fulfillment, 180
SAs pointing to, 184
See also SPD rules

Security Policy Protocol (SPP), 196�200
defined, 196
keep-alive or heartbeat message, 199
messages, 197
message types, 198�99

policy acknowledgment
message, 198�99

policy discovery procedure, 199�200
policy message, 198
query message, 198
reply message, 198
transfer message, 199

Security Policy Specification Language
(SPSL), 200�201

application, 200
certificates, 201
defined, 200
maintainers, 200�201
network entities, 201
object classes, 200�201
policies, 201

SHA-1 algorithm, 65�66
computation, 65�66
defined, 65
definition specification, 66

SHA-256, 78
SHA-384, 78
SHA-512, 78
Simple Certificate Enrollment Protocol

(SCEP), 214
Simple Key Management for Internet

Protocol (SKIP), 122
S/Key, 133
SKEYID, 105�6, 138

calculations, 106
defined, 105
keys derived from, 106

SPD rules, 191
complications and pitfalls, 184
relationship with SAs, 181�82
sample, after decorrelation, 192
sample, before decorrelation, 192
sample, for security gateway, 181
See also Security policy database (SPD)

Symmetric key, 79

TCP/IP protocol stack, 5�12
layers, 7
message handling, 10

Threat mitigation
AH, 37
ESP header, 54�55

272 Demystifying the IPsec Puzzle

IKE, 125
IKE remote authentication, 151

Traffic analysis protection, 42
Transmission Control Protocol (TCP), 6
Transport-friendly ESP (TF-ESP), 52
Transport layer security (TLS), 146, 245
Transport Mode AH, 20, 21, 23

gateway-to-gateway SA, 33
message source address, 28

Transport Mode ESP header, 42, 55
Triple DES algorithm, 72�76

block processing, 75
CBC Mode, 74
defined, 72
illustrated, 75
message decryption, 76
See also ESP header encryption

algorithms
Tunnel Mode

AH placement in, 21
ESP header, 55
ESP placement in, 46
gateway-to-gateway SA, 29
host-to-host communications, 22
host-to-host SA, 29
message source address, 28�29
SA between gateways, 22

Two-factor mechanism, 132�33

User Datagram Protocol (UDP), 6

User-level authentication (ULA), 145
Username/password authentication

mechanism, 132

Virtual private networks
(VPNs), 243, 244, 247, 248

Weak keys, 69

X.500 directory, 215
X.509 certificates, 218�22

alternative name, 221
CA, 220
CRL distribution points, 222
data definitions, 220
extended key usage, 222
issuer, 219
key usage, 221�22
serial number, 218
signature, 218
signature algorithm, 220
signature value, 220
subject, 219
subject�s public key information, 219
unique subject and issuer (CA)

identifiers, 220
validity, 219
version, 218
See also Certificates

XOR operation, 61, 62

Index 273

	Demystifying the IPsec Puzzle
	Copyright
	Contents
	Preface
	Ch1Introduction
	1.1 The TCP/IP Protocol Stack
	1.1.2 IP Packetization and Fragmentation
	1.1.1 IP Packets

	1.2 Introducing IPsec
	1.3 Summary
	1.4 Further Reading

	Ch2 The First Puzzle Piece: The Authentication Header
	2.1 Protections Provided by AH
	2.2 Security Associations and the Security Parameters Index
	2.3 AH Format
	2.4 AH Location
	2.5 AH Modes
	2.6 Nested Headers
	2.7 Implementing IPsec Header Processing
	2.8 AH Processing for Outbound Messages
	2.9 AH Processing for Inbound Messages
	2.10 Complications
	2.11 Auditing
	2.12 Threat Mitigation
	2.13 Summary
	2.14 Further Reading

	Ch3The Second Puzzle Piece: TheEncapsulating Security Payload
	3.1 Protections Provided by ESP
	3.2 Security Associations and the Security Parameters Index
	3.3 ESP Header Format
	3.4 ESP Header Location and Modes
	3.5 Nested and Adjacent Headers
	3.6 ESP Header Processing for Outbound Messages
	3.7 ESP Header Processing for Inbound Messages
	3.8 Complications
	3.9 Criticisms and Counterclaims
	3.10 Threat Mitigation
	3.11 Why Two Security Headers?
	3.12 Summary
	3.13 Further Reading

	Ch4The Third Puzzle Piece: TheCryptographic Algorithms
	4.1 Underlying Principles
	4.2 Authentication Algorithms
	4.2.1 The MD5 Algorithm
	4.2.2 The SHA-1 Algorithm
	4.2.3 The HMAC Algorithm
	4.2.4 Other Authentication Algorithms

	4.3 The ESP Header Encryption Algorithms
	4.3.1 The DES Algorithm
	4.3.2 The Triple DES Algorithm
	4.3.3 Other Encryption Algorithms
	4.3.4 The AES Algorithm

	4.4 Complications
	4.5 Public Key Cryptography
	4.5.1 Digital Signatures
	4.5.2 Other Public Key Operations
	4.5.3 The Diffie-Hellman Exchange

	4.6 Conclusion
	4.7 Further Reading

	Ch5The Fourth Puzzle Piece: The InternetKey Exchange (IKE)
	5.1 The IKE Two-Step Dance
	5.2 Payloads and Exchanges
	5.3 Authentication Methods
	5.4 Proposals and Counterproposals
	5.5 Cookies
	5.6 The Security Association Payload
	5.7 The Proposal Payload
	5.8 The Message ID
	5.9 Nonces
	5.10 Identities and Identity Protection
	5.11 Certificates and Certificate Requests
	5.12 Keys and Diffie-Hellman Exchanges
	5.13 Notifications
	5.14 Lifetimes
	5.15 Vendor IDs
	5.16 The Phase 1 Negotiation
	5.16.1 Main Mode
	5.16.2 Aggressive Mode
	5.16.3 Base Mode

	5.17 The Phase 2 Negotiation
	5.17.1 Quick Mode
	5.17.2 The Commit Bit

	5.18 New Group Mode
	5.19 Informational Exchanges
	5.20 The ISAKMP Header
	5.21 The Generic Payload Header
	5.22 The IKE State Machine
	5.23 The Origins of IKE
	5.24 An Example
	5.25 Criticisms and Counterclaims
	5.26 Threat Mitigation
	5.27 Summary
	5.28 Further Reading

	Ch6The Fifth Puzzle Piece: IKE and the RoadWarrior
	6.1 Legacy Authentication Methods
	6.2 ISAKMP Configuration Method
	6.3 Extended Authentication
	6.4 Hybrid Authentication
	6.5 Challenge-Response for Authenticated Cryptographic Keys
	6.6 User-Level Authentication
	6.7 Credential-Based Approaches
	6.8 Complications
	6.9 Threat Mitigation
	6.10 Summary
	6.11 Further Reading

	Ch7The Sixth Puzzle Piece: IKE Frillsand Add-Ons
	7.1 Renegotiation
	7.2 Heartbeats
	7.3 Initial Contact
	7.4 Dangling SAs
	7.5 Summary
	7.6 Further Reading

	Ch8The Glue: PF_KEY
	8.1 The PF_KEY Messages
	8.2 A Sample PF_KEY Exchange
	8.3 Composition of PF_KEY Messages
	8.4 Complications
	8.5 Summary
	8.6 Further Reading

	Ch9The Missing Puzzle Piece: PolicySetting and Enforcement
	9.1 The Security Policy Database
	9.2 The Policy Problem
	9.2.1 Policy Configuration
	9.2.2 Policy Servers
	9.2.3 Gateway Discovery
	9.2.4 Policy Discovery
	9.2.5 Policy Exchange
	9.2.6 Policy Resolution
	9.2.7 Policy Decorrelation
	9.2.8 Policy Compliance Checking

	9.3 Revisiting the Road Warrior
	9.4 IPsec Policy Solutions
	9.4.1 The IPsec Configuration Policy Model
	9.4.2 The IPsec Policy Information Base
	9.4.3 The Security Policy Protocol
	9.4.4 The Security Policy Specification Language
	9.4.5 The KeyNote Trust Management System

	9.4.6 An Overall Plan
	9.5 Summary
	9.6 Further Reading

	Ch10The Framework: Public KeyInfrastructure (PKI)
	10.1 PKI Functional Components
	10.2 The PKI World View
	10.3 The Life Cycle of a Certificate
	10.4 PKI Protocol-Related Components
	10.5 Certificates and CRLs
	10.6 Certificate Formats
	10.7 Certificate Contents
	10.8 IKE and IPsec Considerations
	10.9 Summary
	10.10 Further Reading

	Ch11The Unsolved Puzzle: Secure IPMulticast
	11.1 Some Examples
	11.2 Multicast Logistics
	11.3 Functional Requirements
	11.4 Security Requirements
	11.4.1 Key Management
	11.4.2 Secrecy
	11.4.3 Data Integrity
	11.4.4 Source Authentication
	11.4.5 Order of Cryptographic Operations
	11.4.6 Membership Management
	11.4.7 Access-Related Issues
	11.4.8 Policy Determination
	11.4.9 Anonymity
	11.4.10 Nonrepudiation
	11.4.11 Service Availability
	11.4.12 Firewall Traversal
	11.4.13 Piracy

	11.5 Whither IP Multicast Security?
	11.6 Summary
	11.7 Further Reading

	Ch12The Whole Puzzle: Is IPsec the CorrectSolution?
	12.1 Advantages of IPsec
	12.2 Disadvantages of IPsec
	12.3 Alternatives to IPsec
	12.3.1 Transport Layer Security Protocol
	12.3.2 Layer 2 Tunneling Protocol
	12.3.3 Point-to-Point Tunneling Protocol
	12.4 IPsec Today
	12.5 The Future of IPsec
	12.6 Summary
	12.7 Further Reading

	List of Acronyms and Abbreviations
	About the Author
	Index

